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Abstract

In this paper, we explore the objective-Bayesian principle of
minimum information and Maximum Entropy as a solution to
the problem of awareness growth: how should rational agents
adjust their beliefs upon becoming aware of new possibilities?
We introduce the Maximum Entropy principle as a theoreti-
cal solution to the problem of awareness growth and present
the results of two experiments conducted to compare human
reasoners’ responses with the theoretical prescriptions of the
Maximum Entropy approach. We discover that, although the
MaxEnt method may appear computationally demanding, par-
ticipants’ responses are largely consistent with the theoretical
prescription.
Keywords: Maximum Entropy estimation; sequential causal
structure learning; sequential causal reasoning; causal
Bayesian networks

Introduction
Uncertainty is a pervasive feature of decision making and sci-
entific investigation. Bayesian models provide a strong nor-
mative standard for rational belief updating under uncertainty.
Relative to a given probability distribution over a fixed set of
alternatives, updating on evidence leads to an optimal pos-
terior degree of belief (Rosenkrantz, 1992). However, often
uncertainty runs even deeper than what is captured by stan-
dard Bayesian models: in order to entertain a probability of
an event, we must at least be aware that said event is possible.
However, there are many things we are not aware of, and so
we have to adjust our beliefs once we learn about a new rel-
evant alternative. Therefore, it is an important question how
agents should change their rational beliefs if they learn about
new alternative explanations of an observed event, or if their
set of options under consideration increases. Is it possible to
find a more general normative account of optimal belief up-
dating after learning about new possibilities?

In this paper, we present and test the Maximum En-
tropy (MaxEnt) approach, which lies at the heart of objec-
tive Bayesianism (Jaynes, 1968; Williams, 1980; Williamson,
2002, 2003, 2007). In the first section, we explain the prob-
lem of awareness growth within the Bayesian framework,
providing an illustrative running example. In the subse-
quent section, we introduce the principle of MaxEnt, and de-
rive a theoretical solution for the running example. Finally,
we present the results of two experiments conducted to test
whether human reasoners’ behavior aligns with the MaxEnt

principle. Our findings suggest that, while the MaxEnt ap-
proach may seem computationally intensive, participants’ re-
sponses are largely in line with the theoretical prescriptions.

Background: The Problem of Awareness
Growth in Bayesian Epistemology and Decision

Theory
In this section, we present the problem of awareness exten-
sion within a Bayesian setting. To make the problem intu-
itively accessible, we will use the following background story
as a running example:

Anne gets up in the morning and remembers that accord-
ing to yesterday’s weather forecast rain during the night
was unlikely. Furthermore, she knows that if it rained,
the lawn is almost certain to be wet while otherwise, the
lawn is very likely to remain dry.

We can represent Anne’s initial beliefs by a Bayesian Net-
work; the directed acyclic graph (DAG) in figure 1 represents
the causal structure, where R (rain) and W (wet lawn) are two-
valued random variables:

R W

Figure 1: Causal DAG of the initial background story: rain
(R) contributes to the wetness of the lawn (W )

R takes either value r (meaning that it rained during the
night) or ¬r (it didn’t rain), and W takes either value w (the
lawn is wet in the morning) or ¬w (the lawn is not wet).

If we specify the qualitative assessments from the story to
precise values (for illustrative purposes), we obtain the fol-
lowing probability distribution over R and S:

P(r) = 0.15, P(w|r) = 0.99, P(w|¬r) = 0.05

From this, we can calculate Anne’s initial expectation that
the lawn will be wet, when she opens the window, via the law
of total probability:

P(w) = P(w|r)P(r)+P(w|¬r)P(¬r)

= 0.99 ·0.15+0.05 ·0.85 = 0.1915460
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Suppose that Anne now finds that the lawn is indeed wet.
Consequently, she updates her degree of belief that it rained
by standard Bayesian conditionalization:

P(r|w) = P(w|r)P(r)
P(w)

=
0.99 ·0.1

0.191
= 0.7857

This situation is the Bayesian standard case, which results
in an optimal posterior degree of belief, given the initial prob-
ability values. However, what if later on Anne learns about
an alternative cause of the lawn being wet? For example,
Anne could learn that her neighbor bought a sprinkler, and if
he turned it on during the night, the lawn is likely to be wet.
How does this affect the posterior probability of rain? More
generally, how should Anne change her beliefs, in response
to learning about the new possibility?

These questions are related to a formal issue in Bayesian
epistemology and decision theory, known under the labels
of “domain extension”, “algebra extension” or “awareness
growth” (Karni & Vierø, 2015; Bradley, 2017; Steele &
Stefánsson, 2021). Conceptually, the question concerns the
relevant rationality constraints for learning new possibilities
(causes, explanations), relative to a given set of observations.
How much probability should be assigned to the new alter-
natives, and how does this affect the old alternatives? In a
more technical sense, there are two kinds of awareness ex-
tension, discussed in (Steele & Stefánsson, 2021): refine-
ment and expansion. We focus on the former case (refine-
ment): this corresponds to adding a new random variable X
to a propositional algebra A , whereas expansions correspond
to adding a new value to a random variable X (in this case,
some of the old probabilities over X must decrease, so the
new value fits in). Thus, the question is – as in the conceptual
case – how this should be achieved, and what the relevant
rationality constraints are. Importantly, even in the case of
refinements, where changes of the old probabilities may not
be technically necessitated (so that probabilities add up to 1),
becoming aware of new possibilities may still be evidentially
relevant for the assessment of the old prospects.

In the literature, general rationality conditions are dis-
cussed (Steele & Stefánsson, 2021), but there is no agreement
on a single general updating procedure like Bayesian updat-
ing in the case of a fixed algebra. Most normative accounts
of rational awareness extensions discussed in the literature
don’t propose unique prescriptions like Bayes’ rule for up-
dating (Bradley, 2017).

However, there is one proposal that makes more concrete
recommendations that seem promising for moving towards a
robust and general solution. This is the maximum entropy
(MaxEnt) approach that is at the core of objective Bayesian-
ism (Williams, 1980; Williamson, 2003). In the next section
we will introduce MaxEnt, and use it to formally analyse two
variations of our initial example, where the agent learns about
the sprinkler before or after observing the wet lawn. We will
show that the principle of minimum information (Williams,

1980)—i.e. MaxEnt for prior assignment and a correspond-
ing updating procedure for learning evidence—can be used
so that the final result of an awareness extension in combi-
nation with evidential learning (before or after the extension)
will coincide with pure evidential updating of a fully aware
agent. Finally, we present our experimental results where we
investigated how people reason with each to each of these
variations, whether their responses coincide with the MaxEnt
solution, as well as whether there are effects that result from
the order of learning the events.

The Maximum Entropy Solution
Maximum Entropy is the objective Bayesian approach to ra-
tional prior assignment, given any set of prior information. It
consists in maximising the quantity

H(P) =− ∑
ω∈Ω

P(ω) logP(ω), (1)

which is called information entropy in Claude Shannon’s
(1948) mathematical theory of communication. There, it
serves as a measure of expected information content. The
global maximum of H(P) is given when all events have the
same probability, i.e. the distribution is uniform (conversely,
H(P) is minimal if there is exactly one ω′ with P(ω′) = 1,
i.e. the distribution is maximally concentrated). Prior infor-
mation (e.g. about correlations between variables) can con-
strain the space of admissible distributions, and thus, entropy
has to be maximised relative to these constraints (Jaynes,
1968). More generally, the principle of minimum information
(Williams, 1980) states that rational agents should assume
priors that are maximally equivocal, i.e. as uniform as pos-
sible relative to their prior information, and updates on new
information should only deviate from the prior only as much
as necessitated by the new constraints. This can be achieved
by minimising the Kullback-Leibler divergence between pos-
terior and prior distribution, which is a dynamic counter-
part of MaxEnt, and generalises Bayesian conditoinalisation
(Williams, 1980).

Objective Bayesians defend the principle of minimum in-
formation based on considerations of caution and minimising
worst-case expected inaccuracy (Williamson, 2007; Landes
& Williamson, 2013).

Importantly, the principle of minimum information allows
an agent that only becomes sequentially aware of new possi-
bilities to recompute their priors and all subsequent updates,
so that their final belief eventually coincides with that of an
ideal agent who was aware of all possibilities from the start.
We briefly illustrate this with the sprinkler example, before
testing how human reasoners change their beliefs upon be-
coming aware of new possibilities.

We now present two variations of our initial background
story:

Variation 1: First thing after leaving the house, Anne
observes that the lawn is wet (P(w) = 1), so she updates
her belief to Q(r) = P(r|w), as above. After that, she
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learns that her neighbor has bought a new sprinkler, but
it is very unlikely that the sprinkler was actually turned
on overnight – but if it was turned on, it would be likely
that the lawn is wet.

Variation 2: Anne has observed that the lawn is wet,
and learned about the existence of the new sprinkler. Be-
fore she leaves, her neighbor tells Anne that the sprinkler
went off accidentally.

Let us now consider the MaxEnt solutions for each case.
In Variation 1, we have a prior for S (the sprinkler was very
unlikely to be turned on, say P(s) = 0.01), and a likelihood (if
the sprinkler was turned on, it would be likely that the lawn
was wet, say P(w|s) = 0.8). Furthermore, we know that S and
R are independent, i.e. P(s|r) = P(s). Thus, in order to obtain
a prior distribution, we apply the following constraints:

P(r) = 0.15, P(r|s) = P(s) = 0.01, P(w|r) = 0.99,
P(w|¬r) = 0.05, P(w|s) = 0.8

With these constraints, we obtain the following prior dis-
tribution via MaxEnt:

P(r) = 0.15, P(s) = 0.1, P(w|r,s) = 0.99,
P(w|¬r,s)≈ 0.765, P(w|r,¬s)≈ 0.99,

P(w|¬r,¬s)≈ 0.043

with the corresponding DAG representation in figure 2.

R W S

Figure 2: Causal DAG of the extended system: rain (R) and
(S) are independent causes of a wet lawn (W )

This solution corresponds to the prior of an ideal agent
who is fully aware of all relevant variables, as depicted in
the Bayesian Network in Figure 2. Relative to the given con-
straints, the ideal agent obtains the specified distribution by
MaxEnt. Hence, the bounded agent who becomes gradually
aware of S as an alternative cause of W can recompute the
prior distribution over all three variables, and then recom-
pute their updated posterior distribution on the given obser-
vation by minimising the relative entropy (KL-divergence)
between posterior and prior. Note that minimising relative
entropy yields Bayesian conditionalisation as a special case,
if the only new constraint is P(w) = 1 (Williams, 1980).

In Variation 1, where S is added to the algebra, and the
prior is computed as above, the only new observation is
P(w) = 1. Hence, the posterior P(r|w) is computed by
standard conditionalisation, which is the same as in the be-
ginning, since P(w) is already fixed by the constraints on
P(r),P(w|r),P(w|¬r), and hence, P(r|w) = 0.7857.

This result can change slightly, if we remove the constraint
P(w|¬r), i.e. there is no prior information on the probabil-
ity of a wet lawn if it didn’t rain (analogously, the likeli-
hood P(w|¬s) was left unspecified). In this case, MaxEnt
would largely give the same result, with the only difference

being that P(w|¬s,¬r) = 0.5. Furthermore, for the smaller
algebra R,W MaxEnt would yield P(w|¬r) = 0.5, if left un-
constrained. This would entail only slightly different results
regarding the posterior P(w|r) for distribution P1 (over the
small algebra R,W ) and P2 (over the full algebra R,S,W ). In
particular, P1(r|w)≈ 0.2579 and Ps(r|w)≈ 0.2589.

In Variation 2, Anne also learns that P(s)= 1, together with
P(w) = 1. Hence, she updates on both observations, and ob-
tains P(r|w,s)≈ 0.186.

Hence, Anne’s belief in r has dropped significantly in com-
parison to P(r|w), due to the alternative explanation s. Hence,
in qualitative terms, the MaxEnt solution yields the follow-
ing results: upon learning a new variable S, with a prior
P(s) and an associated (partially specified) likelihood P(w|s)
(which is positively relevant for w), the result for P(r|w)
are the approximately identical in both variations (with a
minimal differences if Anne has no prior information about
P(w|¬r)). Furthermore, upon learning P(s) = 1, we always
obtain P(r|w)> P(r|w,s)> P(r).

Experiments overview
Next present two experiments where we explore (i) how peo-
ple revise their beliefs when they become aware of the ele-
ments of the algebra sequentially, as opposed to knowing all
the elements from the start, and (ii) whether and how people
change their beliefs when the old probability constraints are
revised.

Experiment 1
In Experiment 1 we have three conditions. In the first condi-
tion (‘Full’) participants are told all the elements of the alge-
bra (the two causes and one effect) before making any judge-
ments. In the other two conditions (‘Seq’ and ‘Seq aware’)
the algebra was introduced sequentially. The difference be-
tween the two sequential conditions was that in Seq aware
one additional question was asked compared to the Seq con-
dition: namely, after learning about the existence of the sec-
ond cause (sprinkler) but before learning whether or not the
second cause occurred, participants were asked to judge the
probability of the first cause (rain) given that they knew the
effect occurred (the lawn was wet). The purpose of this ques-
tions was to provide insight into how people update their be-
liefs (if at all) after becoming aware of the mere presence of
another potential factor without knowing whether that factor
occurred.

Participants & Design A total of 237 participants
(NFEMALE = 147, MAGE = 41.5 years) were recruited from
Prolific Academic (www.prolific.co). All participants
were native English speakers residing in the UK, the US, or
Canada with approval ratings of 95% or higher. They all gave
informed consent and were paid £6.66 an hour rate for partic-
ipating in the present study, which took on average 7.5 min to
complete.

Participants were randomly assigned to one of the three
conditions: Full condition (N = 81), Seq condition (N = 76),
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and Seq aware condition (N = 80).

Materials & Procedure To explore participants’ proba-
bilistic judgments, we created four scenarios. Each scenario
constructed a background story for a common-effect model
with two causes and one effect. One scenario featured rain
and a sprinkler as causes with a wet lawn as the effect; another
scenario depicted sleep deprivation and diuretics as causes of
low magnesium levels; the third scenario described a weak
car battery and starter motor issues as causes of a slow car
start; and the final cover story identified hunger and thirst in
dogs as causes of agitation in dogs.

After giving informed consent and basic demographic in-
formation, participants were presented with the four scenarios
and questions related to these scenarios. The order in which
the scenarios were presented was randomized for each partic-
ipant.

For example, the Full condition for the rain, sprinkler, and
lawn scenario looked as follows:

One morning, you decide to do some gardening at a
community garden just a mile away from your home.
However, you will have to postpone gardening for an-
other day if it had rained last night. You slept tightly
and do not remember hearing any rain, but you recall
the weather forecast saying that it was unlikely to rain
overnight.

You head outside to check the lawn outside your home,
which is almost always wet in the morning if it rained
overnight.

On your way outside you realize you have to be care-
ful in judging whether it rained last night on the ba-
sis of whether the lawn is wet. Your neighbor has a
lawn sprinkler that can accidentally turn on overnight
and make your lawn wet. This happens rarely and you
believe that it is very unlikely that the sprinkler turned
on overnight.

If, however, the sprinkler turns on overnight, then
the lawn is often wet in the morning.

The above introduced both causes (rain r, and sprinkler s)
and the effect (wet lawn w). It also communicated to the
participants the prior probabilities of each cause (P(r) and
P(s)) and the likelihoods (P(w|r) and P(w|s)). The priors
and the likelihoods were communicated to the participants in
a verbal manner. This is to reduce the amount of the quan-
titative information which could anchor the participants re-
sponses (see e.g. Tešić & Hahn, 2019; Tešić, Liefgreen, &
Lagnado, 2020). Nonetheless, reasoning with verbal infor-
mation, particularly in the context of sequential reasoning,
has been shown to be similar to reasoning with numeric in-
formation (Meder & Mayrhofer, 2017).

After the scenario and the relevant probabilities were com-
municated, participants were asked two questions regarding
the prior probabilities of the two causes, i.e. about P(r) and
P(s):

Q1. How likely is it that it rained overnight?

Q2. How likely is it that the sprinkler turned on
overnight?

To provide answers to the two questions (and all other
quantitative questions in this study), participants were asked
to move a slider that ranged from 0% to 100%. The par-
ticipants were then told that the lawn was wet (P(w) = 1),
but it was still unknown whether the sprinkler had been on
overnight. Participants were then reminded of the priors and
the likelihoods for both causes and asked a questions eliciting
their judgements regarding the probability of rain after learn-
ing the lawn was wet, i.e. P(r|w):

Q3. How likely is it that it rained overnight now that
you know the lawn is wet?

This question was followed by a free format type text box
where participants could explain their reasoning for selecting
certain confidence/reliability estimates.

Participants were then told that the neighbour has informed
them that the sprinkler was on overnight and they had to
turn it off early in the morning. This new information was
followed by a question eliciting the probability of rain af-
ter learning that the sprinkler was on and the lawn was wet,
i.e. P(r|w,s):

Q4. How likely is it that it rained overnight now that
you know the lawn is wet and the sprinkler turned on
overnight?

Finally, participants were told that they just remembered
that the sprinkler has water pressure issues, and if that oc-
curs, the sprinkler doesn’t reach the lawn. This new informa-
tion leads them to revise their estimate of the frequency with
which the sprinkler causes the lawn to be wet. They are now
told to believe that the sprinkler only sometimes makes the
lawn wet if it accidentally turns on overnight. They are then
asked the questions about the probability of rain given this
new constraint, i.e. P(r|w,s, l diff), where l diff indicates that
the likelihood for the sprinkler is now different:

Q5. How likely is it that it rained overnight now that
you know the sprinkler only sometimes causes the lawn
to be wet (you also know that the lawn is wet and
the sprinkler turned on overnight)?

The format for the other three scenarios was the same. Af-
ter the participants answered questions for all four scenarios
they received debriefing information.

The participants in the sequential condition (Seq) were ini-
tially informed only about the rain and the lawn, including
the prior for rain (P(r)) and the likelihood P(w|r). They were
not informed about the sprinkler. They first assessed the prior
probability of rain (question Q1 from above). After learn-
ing about the wet lawn, they were asked to judge the con-
ditional probability P(r|w) (question Q3 from above). Par-
ticipants were then made aware of the sprinkler, informed
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about the prior associated with the sprinkler (P(s)), and the
likelihood (P(w|s)). Subsequently, they assessed the prior
probability for the sprinkler (question Q2 from above). As
in the Full condition, they were informed that the sprinkler
was on overnight and asked to judge P(r|w,s) (question Q4
from above). They were then told about the new likelihood
for the sprinkler and asked to judge P(r|w,s, l diff) (question
Q5 from above). The third condition (Seq aware) was exactly
similar to the Seq condition except that after being told about
the existence of the sprinkler, the associated prior, and the
likelihood, but crucially before learning whether the sprin-
kler was on or off overnight, they were asked to judge the
probability of rain, i.e. P(r|w,A s, where A s indicates that
participant were made aware of the sprinkler but were not
told whether it was on or not:

Q4. How likely is it that it rained overnight now
that you know the lawn is wet and you are aware of
the lawn sprinkler?

After answering this question, participants were informed
that the sprinkler was on, and the rest of the condition pro-
ceeded exactly the same as in the Seq condition.

Results & Discussion Participants’ responses to all the
questions in all three conditions in Experiment 1 are shown
in Figure 3. We first note that participants’ numeric estimates
for the prior probabilities of the two causes were low across
the three condition suggesting that the participants accepted
the priors. In addition, these estimates were consistent across
the conditions, indicating that even though these probabili-
ties were communicated verbally, they still led to consistent
estimates. Participants’ estimates also exhibited a typical ‘ex-
plaining away’ pattern (Wellman & Henrion, 1993; Morris &
Larrick, 1995), where the probability of one cause after learn-
ing about the presence of the effect (P(C1|E)) is higher than
the prior probability of that cause (P(C1)). Then, after learn-
ing that the second cause has occurred, the probability of the
first cause (P(C1|E,C2)) is again lower than the probability
of that cause before learning about the presence of the second
cause, i.e., P(C1|E).

To analyze the data, we built a linear mixed-effects model
(LMM) using the “lme4” package in R (Bates, Mächler,
Bolker, & Walker, 2014). Our model included two fixed ef-
fects: Condition (Full, Seq, and Seq aware) and Question (5
levels), along with their interaction. The Question fixed ef-
fect accounted for all the questions regarding the probability
estimates except for the question eliciting P(r|w,A s, as this
question was only asked in the Seq aware condition. The
model’s only random effect was the intercept for participants,
with no random slope from the participant since the design
was fully between subjects.

The LMM indicated a significant effect of Question
(t(948) = 6.3, p < .001), a non-significant effect of Condi-
tion (t(237) = 1.15, p = .25), and no interaction between the
two fixed effects (t(948) = −0.81, p = .42). This suggests
that participants did change their estimates depending on the

question they were asked. However, the non-significant ef-
fect of Condition suggests that participants did not adjust
their probability estimates differently when learning the alge-
bra sequentially compared to when the full algebra was pre-
sented at the start. This coincides with the prescription of the
principle of minimum information, as explained in the previ-
ous section. From Figure 3, we also observe that in the Seq
aware condition, participants’ estimates for P(C1|E,A C2)
were lower than their estimates for P(C1|E). This suggests
that merely learning about the existence of another variable
(another cause) can affect people’s beliefs, even if they do
not know whether that variable is instantiated or not (whether
the cause occurred). By contrast, in the theoretical MaxEnt
solution we have observed that there can be a slight differ-
ence between the small- and the large algebra, if the agent
does not have any prior knowledge about P(w|¬r). Since
no prior information about P(w|¬r) was given to the partic-
ipants, only slight differences might still be consistent with
MaxEnt. However, we also note that a Kruskal-Wallis rank
sum test showed a non-significant difference between the par-
ticipants’ estimates for these two probabilities (χ2(1) = 1.9,
p = 0.16).

In summary, the results indicate that people are capable
of reasoning with verbal probabilistic information and ex-
hibit common causal reasoning patterns such as ‘explaining
away.’ However, we found that people update their beliefs
similarly whether all elements of the algebra were known
from the start or when some elements were introduced later.
We also observed that simply learning about the existence of
another cause can potentially influence the probability of the
first cause; however, this effect was not statistically signifi-
cant.

Experiment 2

In Experiment 1, participants were directly informed about
both the priors of the causes and the likelihoods related to
those causes. However, only the priors were elicited from
the participants. In Experiment 2, in addition to eliciting the
priors, we also elicited the likelihoods from the participants
to ensure that they have accepted the likelihoods. In all other
aspects, Experiment 2 is exactly the same as Experiment 1
and, as such, it serves as a replication of Experiment 1.
Participants & Design A total of 288 participants
(NFEMALE = 171, MAGE = 43.8 years) were recruited from
Prolific Academic (www.prolific.co). All participants
were native English speakers residing in the UK, the US, or
Canada with approval ratings of 95% or higher. They all gave
informed consent and were paid £6.66 an hour rate for partic-
ipating in the present study, which took on average 9.2 min to
complete.

Participants were randomly assigned to one of the three
conditions: Full condition (N = 94), Seq condition (N = 100),
and Seq aware condition (N = 94).
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Figure 3: Participants’ responses to questions in Experiment 1.
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Figure 4: Participants’ responses to questions in Experiment 2.

Materials & Procedure The materials and procedure were
exactly the same as in Experiment 1, with the exception that
in Experiment 2, participants were also asked the follow-
ing two questions related to the likelihoods (P(E|C1) and
P(E|C2)):

Q3. How likely is it that the lawn is wet if it rains
overnight?

Q4. How likely is it that the lawn is wet if the sprinkler
turns on overnight?

Also, after learning about the new likelihood for the sprin-
kler, participants were again asked the same Q4 from above.
The estimates for this question were labeled as P(E|C2) diff
in Figure 4.

Results & Discussion From Figure 4, we find that, as in
Experiment 1, participants have accepted the low prior and
their estimates exhibit an ’explaining away’ pattern. How-
ever, we also note that participants provided high likelihood
estimates in line with the verbal information communicated
to them (P(E|C1) and P(E|C2)) and have revised their like-
lihoods for P(E|C2) diff when they were informed that these
had changed. This suggests that participants have accepted
the likelihoods, including P(E|C2) diff, indicating that they
were attentive throughout the experiment.

We built an LMM with the same fixed- and random-effect
structure as in Experiment 1. The LMM indicated a signif-
icant effect of Question (t(948) = 6.28, p < .001), a non-
significant effect of Condition (t(237) = 1.15, p = .25), and
no interaction between the two fixed effects (t(948) =−0.81,
p = .42). These results resemble those from Experiment 1
and suggest that people reason similarly whether all elements
of the algebra were known from the start or when some ele-

ments were introduced later. Like in Experiment 1, we also
observe that in the Seq aware condition, participants’ esti-
mates for P(C1|E,A C2) were lower than their estimates for
P(C1|E). This suggests that merely learning about the exis-
tence of another variable (another cause) can affect people’s
beliefs, even if they do not know whether that variable is in-
stantiated (whether the cause occurred). However, unlike in
Experiment 1, in this experiment a Kruskal-Wallis rank sum
test showed a significant difference between the participants’
estimates for these two probabilities (χ2(1)= 9.1, p= 0.003).

In summary, Experiment 2 largely replicated the findings
from Experiment 1. Furthermore, we found that participants
accepted the likelihoods and remained attentive throughout
the experiment. We also observed a significant effect of
merely learning about the existence of another cause (C2) on
the probability of the first cause (C1), even when it is un-
known whether C2 occurred.

Conclusion
In this paper, we explored the Maximum Entropy (MaxEnt)
solution to the problem of awareness growth in Bayesian epis-
temology and decision theory. While MaxEnt is theoretically
well-grounded in objective Bayesian principles (specifically,
the principle of minimum information and arguments from
epistemic cautiousness), the approach seems computationally
intensive, making it seemingly unlikely that real human rea-
soners would adhere to it. However, our experimental re-
sults suggest that, under reasonable conditions, participants’
responses were largely consistent with the MaxEnt solution.
Notably, we observed the ‘explaining away’ effect and found
that assessments of posterior probability that were indepen-
dent of whether all possible causes were known from the be-
ginning.
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