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ORIGINAL

Gas flux and carbonate occurrence at a shallow seep
of thermogenic natural gas

Franklin S. Kinnaman & Justine B. Kimball &
Luis Busso & Daniel Birgel & Haibing Ding &

Kai-Uwe Hinrichs & David L. Valentine

Received: 22 January 2009 /Accepted: 14 January 2010 /Published online: 20 February 2010
# The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract The Coal Oil Point seep field located offshore
Santa Barbara, CA, consists of dozens of named seeps,
including a peripheral ∼200 m2 area known as Brian Seep,
located in 10 m water depth. A single comprehensive
survey of gas flux at Brian Seep yielded a methane release
rate of ∼450 moles of CH4 per day, originating from 68
persistent gas vents and 23 intermittent vents, with gas flux
among persistent vents displaying a log normal frequency
distribution. A subsequent series of 33 repeat surveys
conducted over a period of 6 months tracked eight
persistent vents, and revealed substantial temporal variabil-
ity in gas venting, with flux from each individual vent
varying by more than a factor of 4. During wintertime
surveys sediment was largely absent from the site, and
carbonate concretions were exposed at the seafloor. The
presence of the carbonates was unexpected, as the thermo-
genic seep gas contains 6.7% CO2, which should act to

dissolve carbonates. The average δ13C of the carbonates
was −29.2±2.8‰ VPDB, compared to a range of −1.0
to +7.8‰ for CO2 in the seep gas, indicating that CO2 from
the seep gas is quantitatively not as important as 13C-
depleted bicarbonate derived from methane oxidation.
Methane, with a δ13C of approximately −43‰, is oxidized
and the resulting inorganic carbon precipitates as high-
magnesium calcite and other carbonate minerals. This
finding is supported by 13C-depleted biomarkers typically
associated with anaerobic methanotrophic archaea and their
bacterial syntrophic partners in the carbonates (lipid
biomarker δ13C ranged from −84 to −25‰). The inconsis-
tency in δ13C between the carbonates and the seeping CO2

was resolved by discovering pockets of gas trapped near the
base of the sediment column with δ13C-CO2 values ranging
from −26.9 to −11.6‰. A mechanism of carbonate
formation is proposed in which carbonates form near the
sediment–bedrock interface during times of sufficient
sediment coverage, in which anaerobic oxidation of
methane is favored. Precipitation occurs at a sufficient
distance from active venting for the molecular and isotopic
composition of seep gas to be masked by the generation of
carbonate alkalinity from anaerobic methane oxidation.

Introduction

Marine hydrocarbon seeps are seafloor environments with a
focused hydrocarbon flux to the overlying waters, and
occur along continental margins worldwide (Hovland et al.
1993). Gas seeps are defined by the source and composition
of the gas feeding the seep, with biologically generated gas
consisting almost entirely of methane, and thermally
generated gas often consisting of methane with moderate
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levels of carbon dioxide, ethane, propane, and butane.
Hydrocarbon seeps have been the subject of intense recent
study, particularly on account of their interesting ecology,
and their role in the marine methane and carbon cycle
(Orphan et al. 2002; Sahling et al. 2002; Boetius and Suess
2004; Levin 2005; Reeburgh 2007). The amount of fossil,
radiocarbon-free methane in the atmosphere suggests that
natural emission from geological sources (seeps) is signif-
icant and possibly underestimated (Etiope et al. 2008).
Despite the growing interest in hydrocarbon seep systems,
important factors modulating hydrocarbon flux are not well
established. For seeps located in deep water and containing
dissolved hydrocarbons, important factors include the
advective flux of pore fluid through the subsurface (Tryon
et al. 2002), the formation of gas hydrate in the subsurface
(Suess et al. 1999), and the efficiency of anaerobic,
methane-oxidizing communities (Boetius and Suess 2004).
Factors known to impact gas seeps in shallow water include
the pressure of the underlying gas reservoir (Quigley et al.
1999), blockages or constrictions in fractures and subse-
quent large “blow-out” events (Leifer et al. 2004), and an
imprint of tides on seepage rates (Boles et al. 2001).

The occurrence and formation of carbonate minerals
depleted in 13C is common among marine methane seeps
(Stakes et al. 1999; Luff and Wallmann 2003; Gieskes et al.
2005; Naehr et al. 2007; Paull et al. 2007), and is used as an
indicator of seepage occurrence in the geologic record
(Peckmann et al. 1999; Schwartz et al. 2003; Campbell
2006; Gontharet et al. 2007). Carbonate minerals precipitate
because of the high carbonate alkalinity associated with
vigorous sulfate reduction common to methane seeps.
These carbonate minerals are typically depleted in 13C
because much of the ambient inorganic carbon is derived
from 13C-depleted methane, by way of anaerobic oxida-
tion. Molecular fossils of methane-oxidizing archaea and
sulfate-reducing bacteria within 13C-depleted carbonates
have a high potential to be preserved (e.g., Peckmann and
Thiel 2004). Only recently, molecular fossils of anaerobic
methane-oxidizers and their syntrophic partners, sulfate-
reducing bacteria, have been described in Late Pennsyl-
vanian seep limestones, showing the syngenicity of
molecular fossils and enclosing carbonates (Birgel et al.
2008a). These processes are given in the following
equations:

CH4 þ SO4
2� ! HCO3

� þ HS� þ H2O ð1Þ

HCO3
� þ Ca2þ ! CaCO3 þ Hþ ð2Þ

or

2HCO3
� þ Ca2þ ! CaCO3 þ CO2 þ H2O ð3Þ

Methane-derived carbonate minerals appear to be rare in
seeps with elevated concentrations of CO2, on account that
CO2 is acidic and tends to cause dissolution of carbonate
minerals:

CaCO3 þ CO2 þ H2O ! 2HCO3
� þ Ca2þ ð4Þ

For example, methane-derived carbonates have not
previously been described in association with the thermo-
genic gas and oil seeps located near Coal Oil Point,
offshore Santa Barbara, CA—arguably the world’s most
studied.

In this work we describe results from a series of studies
conducted at a small seep of thermogenic natural gas
located near the Coal Oil Point seep field, offshore Santa
Barbara, CA. The magnitude and variability of gas flux are
described first, based on measurements made during 80
SCUBA dives to the site. The geochemistry of seep gas and
associated carbonate concretions discovered at the site are
then described, and finally a hypothesis is developed to
better define the conditions enabling formation of these
carbonates.

Materials and methods

Study site

The study site for this work was an area of active gas
seepage located at 10 m water depth off Campus Point (34°
24.109′N, 119°49.917′W), at the University of California,
Santa Barbara (UCSB; Fig. 1a). Known as Brian Seep, this
seep encompasses an area of approximately 200 m2, and
spans across two large pipes that transport seawater from
farther offshore to the campus. The sediment at Brian Seep is
composed primarily of sand, and unlike the sediments in the
heart of the nearby Coal Oil Point seeps (Bauer et al. 1988)
contains only finely disseminated bits of tar. Previous studies
at this site include investigations of aerobic microbial
oxidation of natural gas in the sediments (Kinnaman et al.
2007), and methanotrophic microbial mats associated with
gas vents (Ding and Valentine 2008).

Gas vent survey

A single comprehensive estimate of the total gas flux for
the entirety of Brian Seep was made over the course of ∼5 h
on 12 September 2004. Seven teams of divers were
deployed in succession. Each dive team located a gas vent,
quantified the gas flux from the vent, left a numbered
marker at the vent, and moved on to the closest unmarked
vent. In total, 68 persistent vents were identified and their
fluxes quantified. An additional 23 vents were identified,
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but with a gas flux too low and inconsistent to quantify.
On the final dive, only one persistent vent was identified,
and a survey of the entire seep revealed that every active
vent was marked. In order to quantify temporal variability
of gas flux from Brian Seep, a series of 33 repeat surveys
were conducted between 12 July 2005 and 29 November
2005. These surveys focused on quantifying flux from
eight persistent vents using the technique described above,
but with measurements made in triplicate. The relative
spatial distribution for the eight vents is illustrated in
Fig. 1b. On several occasions water conditions or safety
concerns did not allow for fluxes to be quantified from all
active vents.

Gas flux measurements

Gas flux rate was determined by timing the fill rate for a
bottle of defined volume (between 70 and 120 cm3,
depending on the apparent voracity of the vent), using an
inverted funnel to quantitatively capture the gas in the
bottle. Because of safety limitations, only single flux

measurements were made for each vent. However,
triplicate analyses of individual vents performed in
succession on several other occasions yield an error
of ±11% for this method. In situ volumes determined by
this method were corrected for hydrostatic pressure,
temperature, and gas composition to determine the flux
of methane. Tide heights ranged from 1.7 to 0.5 m above
the mean lower low water for the start and finish of the
survey, respectively.

Sediment coverage

During the gas flux surveys, variations were observed in the
extent of bedrock exposure at the seafloor. To better
quantify the extent of sediment coverage and sediment
depth, a series of five repeat surveys were conducted
between 26 January 2007 and 3 May 2007. Each survey
consisted of three transect lines spaced 10 m apart from
each other, with ten measurements per line spaced 1 m
apart. The locations of the transects were established to the
north of the seawater intake pipes in the vicinity of seeps 2,
5, 6, and 7, and were perpendicular to the pipes. At each
station the divers inserted a metal rod into the sediment
until bedrock was encountered. The depth of penetration
was read from a scale on the metal rod, and the divers then
moved to the next station located 1 m further from the
intake pipes. The lack of permanent markers for each
measurement site likely caused some variations in location
between sample dates, and in conjunction with an uncertain
bottom topography, impinges on the treatment of the data as
a time series.

Sample collection

Samples of gas, sediment, and carbonate were collected
from Brian Seep on several occasions during the survey
periods. Gas samples were collected from vents as
described above for the flux measurements, except that a
stopper was inserted in the sample bottle and the bottle was
crimp sealed at the seafloor. Carbonate crusts found on the
seafloor were collected by SCUBA diver during the
wintertime, when sediment burden was low due to offshore
sediment transport that is common in the region. Samples
were collected throughout the area specified in Fig. 1b,
specifically near vents 6, 3, and 8. Samples of the carbonate
concretions were removed from the seafloor with a hammer
and chisel. A sediment core was collected to quantify depth
distributions of dissolved Ca2+ in the vicinity of vent 7.
Pockets of gas trapped near the base of the sediment
column were sampled by probing sediments with a metal
rod at 10–20 cm depth, and collecting the displaced gas in a
similar manner to seep gas, albeit in smaller (5 mL) glass
vials.

Santa
 Barbara

Brian Seep

34 N, 30’

34 N, 24’

34 N, 18’

34 N, 12’

120 W, 9’ 120 W 119 W, 51’ 119 W, 42’ 119 W, 33’

3 m

a

b

Sand
Exposed bed rock

Fig. 1 a Area map of the study site. The Coal Oil Point (COP) seep
field is located within the marked box, with Brian Seep at the
northeast periphery as indicated. b Relative locations of the eight
vents investigated during the time-series flux study. The single pipe
illustrated in the diagram represents the two seawater intake pipes
described in the text
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Biogeochemical analyses

Gases

Seep gases were analyzed by gas chromatography as
previously described by Duffy et al. (2007). Error
associated with the concentration measurements was ±4%.
All values for δ13C were referenced to VPDB with an error
of ±0.3‰.

Calcium

Calcium analyses were conducted using a Finnigan
Element 2 double focusing sector inductively coupled
plasma mass spectrometer (ICPMS). The calcium deter-
mination was done by measuring the 43Ca isotope and
using 45Sc as the internal standard; magnesium determi-
nation used a method of isotope dilution by spiking with
an enriched 25Mg standard, and measuring 24Mg and 25Mg
isotopes (Lea and Martin 1996). Precision of the
measurements was based on the Ca and Mg reproduc-
ibility of the CS5-B consistency standard. Calcium had
a precision estimate of 0.22% rsd and the accuracy was
within 1.0% of expected. Magnesium had a precision of
0.33% rsd and the accuracy was within 2.1% of
expected.

Carbonates

The mineral composition of the carbonate concretion was
estimated by point counting of several thin sections. Point
counting was performed on a Zeiss microscope at an
interval of 15µm with an overall count of 600. A polished
block of the carbonate was mounted in epoxy and examined
using scanning electron microscopy. In the electronic
supplementary material available online to authorized users,
supplemental Fig. 1 displays an example of a microscope
image used in point counting, and an image of carbonates at
Brian Seep.

Carbon isotope analysis was performed by dissolving pieces
of the concretion in H3PO4 (103%, σ=1.92 gml−1), and
then analyzing the resulting CO2 by isotope ratio mass
spectrometry (IRMS). Samples were carefully chipped
from individual visible layers within the carbonate rock.
CO2 gas was analyzed on a Finnigan Delta XP isotope
ratio mass spectrometer coupled with a Finnigan Gas-
Bench II at UCSB, within 1 week of preparation.
Precision for this measurement was ±0.2‰. Calibration
and accuracy of the measurements were assured by
running samples of the standards NBS-19 and SM 92
that were prepared in the exact same manner as the
carbonate samples. All carbon samples are expressed
relative to VPDB.

Lipid biomarkers

Lipids were extracted from subsamples of the carbonate
concretion by first dissolving the concretion in HCl (6 M),
and extracting the residue after carbonate dissolution. Only
inner portions of the rock were used in analysis. Fatty acid
extraction and analysis, including quantification, identifica-
tion, and isotope analysis of individual lipids, were
performed on the dissolved carbonate as described in Ding
and Valentine (2008). A sample of carbonate was also used
to extract polar lipids, neutral lipids, and hydrocarbons for
subsequent analysis by GC-IRMS, as described by Birgel et
al. (2006, 2008b).

Results

Gas flux

Molecular and isotopic composition of gas samples
collected at the seafloor indicated that Brian Seep gas was
primarily thermogenic (Table 1), though no oil was emitted
at the site. The gas consisted of 91.2% methane and 6.7%
CO2. A subset of data from Table 1 is reposted in this issue
by Mau et al. (2010).

Based on the single comprehensive estimate of the total
gas flux for the entirety of Brian Seep, and based on a
methane content of 91.2%, we estimate a daily methane
flux of 435 mol, equivalent to 2.54 tons (t) per year of
methane emanating from persistent vents for a 200-m2 area.
The contribution of intermittent vents can also be estimated
by assuming a flux equal to half the slowest rate measured
during the survey, an assumption supported by diver
observations. Based on this assumption, the 23 observed
intermittent vents would contribute an additional 0.065 t
per year, bringing the total flux for Brian Seep to 2.60 t
CH4 per year (or 448 mol day−1). A frequency distribution
of vent seepage intensity is shown in Fig. 2, with an
average venting rate of 6.4 mol CH4 day

−1 and a maximum
observed flux of 30 mol CH4 day−1 for a single vent. The
frequency distribution of flux for persistent vents approx-
imately follows a log normal distribution, based on these 68
measurements.

Eight vents were initially chosen for repeat flux
measurements in order to better understand the temporal
variability associated with gas seeps. Two of these vents (1
and 4) went dormant after a period of ∼1 month, and two
additional vents were inconsistent (2 and 3) and often found
to have no gas flux. Vents with zero flux on a given day
were excluded for that day, for all calculations. Summary
statistics for each vent, including average flux and the
number of times each vent was sampled, are displayed in
Table 2. The total number of measurements conducted for

358 Geo-Mar Lett (2010) 30:355–365



all eight vents over the 33 sampling trips was 152. Figure 3
displays the full time series for all vents. Figure 3a contains
the three most consistently sampled vents (5, 7, and 8),
which have overlapping measurements for 21 days.
Figure 3b shows the full time series for the other five
vents. Similar patterns of flux are apparent for vents 5 and 7
(Fig. 3a), which are closely spaced and relatively vigorous,
whereas the weaker vent ∼10 m away (seep 8) shows less
similarity. The data resolution for the other seeps is
insufficient to assess any potential trends. Tidal influences
were not apparent. Regressions of gas flux versus tide
height for the two most vigorous vents (5 and 7) resulted in
a coefficient of determination (R2) of only 0.15. The time-
series data presented in Fig. 3a provided an opportunity to
generate an error estimate for the methane flux determined
for all of Brian Seep. This was achieved by determining the

Fig. 2 Histogram displaying the frequency distribution of gas flux for
all 68 active vents at Brian Seep measured during the single
comprehensive survey. Bin size = 0.75 mol CH4 day−1. The
extrapolated annual flux from these measurements equals 2.5±0.3 t

Compound δ13C (‰) Range Comment

Free gas

CH4 −42.3 −41.9 to −42.6 91.2% of seep gas, n=2

CO2 3.5 −1.0 to +7.8 6.7% of seep gas, n=2

C2H6 −30.0 −27.8 to −32.1 1.0% of seep gas, n=2

C3H8 −21.9 −18.3 to −27.1 0.2% of seep gas, n=2

Trapped gas

CH4 −41.0±0.8 −40.5 to −42.5 n=5

CO2 −20.3±7.0 −11.6 to −26.9 n=5

Carbonates

Concretion 1 −27.8±2.8 −13.2 to −30.9 n=8

Concretion 2 −29.1±1.6 −25.7 to −31.0 n=8

Concretion 3 −29.7±1.5 −26.5 to −33.1 n=31

Select biomarkers

Archaeol −84 Methanotrophic archaea

sn-2 OH-Archaeol −74 Methanotrophic archaea

sn-3 OH-Archaeol −83 Methanotrophic archaea

PMI −73 Methanotrophic archaea

Biphytanic diacid (acyclic) −57 Methanotrophic archaea

Biphytanic diacid (monocyclic) Trace levels Methanotrophic archaea

Biphytanic acid (bicyclic) −80 Methanotrophic archaea

i-C15:0 −46 Sulfate-reducing bacteria

a-C15:0 −47 Sulfate-reducing bacteria

C16:0MAGE −46 Sulfate-reducing bacteria

C30:0DAGE (ai-C15/ai-C15) −61 Sulfate-reducing bacteria

bisnor-Hopane −27 Seep oils

nor-Hopane −27 Seep oils

Hopane −27 Seep oils

n-C16:0 −28 Broadly sourced

n-C18:0 −27 Broadly sourced

Other organics present

Monterey oil −22.5 −21.8 to −23.3 Orr (1986)

Regional organic matter −21.5 −20 to −24 See refs. in text

Table 1 δ13C values of the free
gas (collected at the sediment–
water column interface), trapped
gas (displaced from within sed-
iment), carbonates, and selected
biomarker compoundsa

a The full range of biomarkers
analyzed is available in supple-
mental Table 3
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relative standard deviation of the average flux summed
from seeps 5, 7, and 8 (Fig. 3a), for the full time series (n=
21). The error on the flux estimate from Brian Seep is
therefore conservatively estimated at ±25%, yielding a flux
estimate of 2.7±0.7 t CH4 year

−1 for the entire seep.
The variability of gas flux from individual vents can also

be analyzed for Brian Seep using the results of the time-
series flux study. The frequency distribution for gas flux
from all seeps is displayed in Fig. 4a, and suggests a log
normal trend for overall flux. The variation in flux for all
seeps, with individual seeps normalized to the maximum
observed for that seep, is displayed in Fig. 4b, and reveals
an approximately normal distribution. Visual observations
from this site also revealed potential “blow-out” structures
that may arise from periodic release of significantly greater
amounts of gas, a phenomenon observed previously in the
Coal Oil Point (COP) seep field (Leifer et al. 2004).

Sediment processes

Carbonates

All carbonate samples were a matrix of calcite and
aragonite, as well as small crystals of other minerals.
Carbonate concretions sampled from the seafloor were

Fig. 4 a Histogram displaying the frequency distribution of gas flux
including all measurements from all vents during the time-series
experiment. Bin size = 2 mol CH4 day

−1. b Histogram displaying the
frequency distribution for the variation in flux for all vents during the
time-series experiment. All flux measurements from each vent were
normalized to the maximum observed for that vent, and data from all
eight vents aggregated. Bin size = 5% mol CH4 day
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Fig. 3 Results from the time-series flux measurements for eight vents
at Brian Seep. a Seeps 5, 7, and 8 are displayed together, as they share
a large number of common sampling days (21). b Seeps 1, 2, 3, 4, and
6 are displayed together, but all share only one common sampling day.
Error bars represent one standard deviation from the mean (n=3).
Symbols without error bars denote a lack of replicate measurements.
The lines are present only for purposes of visual tracking of each seep,
and do not imply that flux was continually increasing or decreasing
between data points

Table 2 Average flux rates for the eight vents investigated during the
time-series study

Seep Average
(mol CH4 day

−1)
±SD n Min. Max.

1 5.0 4.1 7 2.4 11.1

2 7.4 3.2 21 3.1 15.8

3 6.0 3.3 14 1.8 14.7

4 7.0 3.1 8 2.5 10.8

5 13.8 4.4 30 2.3 22.9

6 6.0 2.4 22 1.8 11.0

7 21.2 8.2 29 7.8 39.4

8 4.9 1.9 21 2.1 9.9

Σ5, 7, and 8 41.4 10.6 19 18.0 60.5
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found to be consistently depleted in 13C, with an average
δ13C value of −29.2±2.8‰ (values for individual samples
are presented in Table 1). ICP-MS analyses found that Ca
contents averaged 4.1 mass% of the concretion, and Mg
contents 0.83 mass%, a ratio of 5:1. Elemental analyses
before and after acidification denote an inorganic carbon
content of 1.48 mass%. Although there is likely a minor
amount of plagioclase feldspar in the rock that would
contribute some Ca and Mg, these results indicate
that ∼90% is associated with the carbonate cement. Point
counting of carbonates established the sampled rocks as
quartz-carbonate concretions, with 47.1% of points as
quartz mineral, 29.6% calcite cement, 1.5% aragonite,
9.3% pore space, and 12.3% of points found to have
small crystals of other minerals. The apparent overrepre-
sentation of calcite cement by point counting is reason-
able, as it is likely a matrix of carbonate mixed with
small crystals of quartz and other minerals. It is unlikely
that much of the carbonate is in the form of dolomite, as
it reacted violently with acid. The carbonate cement is
most likely a high-magnesium calcite, with some vari-
ability in composition throughout the rock. Supplemental
Fig. 2 displays an image of a carbonate sample taken with
scanning electron microscopy, showing small rosette-
shaped crystals of high-Mg calcite growing on a quartz
grain.

Sediment coverage

Surveys indicate fluctuations in sediment cover over a 3-
month time period in the winter and spring of 2007, with
average sediment cover ranging from a low of 11 cm to
a high of 22 cm (n=30 at each time point), with rare
pockets extending to depths as great as 50 cm. Supplemen-
tal Table 1 provides these results. No surveys were
conducted in the summer for logistical reasons, but
evidence from coring and other investigations at this site
indicates a greater sediment burden from late spring
through fall, consistent with regional patterns (Patsch and
Griggs 2006).

Calcium

One core was collected from the shallow sediments within
Brian Seep and used to assess whether Ca2+ was being
released or precipitated in the sediments, at least for the one
site. Relative to overlying seawater, concentrations of Ca2+

in the pore fluids were substantially elevated throughout the
core, by as much as 38% (supplemental Table 2). Elevated
levels of Ca2+ are likely due to carbonate dissolution in the
presence of carbonic acid, an expected feature of carbonate
speciation in porewaters around seeps with a consistent
input of gaseous CO2.

Lipid biomarkers

In order to determine if anaerobic oxidation of methane
(AOM) was involved in formation of the carbonates,
organic biomarkers were extracted from two separate
samples and analyzed for their δ13C. Only fatty acids were
analyzed from the first sample, but the presence of fatty
acids such as C17:0, iso-C15:0, and anteiso-C15:0 with δ13C
values ranging from −47 to −39‰ suggests the presence of
sulfate-reducing bacteria associated with AOM. The second
carbonate underwent a more exhaustive extraction allowing
for the separation and identification of other compounds (all
data presented in Table 1 and supplemental Table 3).
Biomarkers typically associated with seep oils from COP
were present in the chromatograms along with a broad
unresolved complex mixture, as is typical of the Monterey-
derived oils at COP (Orr 1986; Wardlaw et al. 2008; Farwell
et al. 2009). Dozens of other compounds were resolved but
co-eluted with the unresolved complex mixture (UCM),
which likely impacts the accuracy of assigned δ13C values.
Still, archaeal biomarkers of anaerobic methanotrophs such
as archaeol, sn-2 and sn-3 hydroxyarcheol, and 2, 6, 10, 15,
19-pentamethylicosane (PMI) were identified in the sample
with δ13C values ranging from −84 to −73‰. Further
archaeal compounds are biphytanic diacids with 0, 1, and 2
pentacylic rings. The bicyclic biphytanic diacid was found
with a δ13C value of −80‰, whereas the acylic form was
found with −57‰. The monocyclic biphytanic diacid was
found only in trace amounts.

Gases

The discrepancy in 13C content between seep gas CO2

(−1.0 to +7.8‰) and the carbonates (−29.3±2.8‰) led us
to search for isolated gas pockets that might reveal the
biogeochemical conditions allowing these carbonates to
form. Probing of sediments with a metal rod released
trapped gases from near the base of the sediment with δ13C-
CO2 values ranging from −11.6 to −26.9‰ (summarized in
Table 1).

Discussion

Gas flux

Anecdotal evidence has long suggested that gas seeps are
highly dynamic environments, but little evidence has been
provided to constrain variability in gas flux. Studies on the
amount of seep gas captured by two large steel tents open
to the seafloor at 80 m depth ∼1 km offshore in the COP
seep field suggested a long-term influence of offshore oil
production (Quigley et al. 1999), and an imprint of tidal
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patterns (Boles et al. 2001). These studies demonstrated
that the seepage rate varied by a factor of 3 over a 17-year
collection period. Evidence from hourly monitoring of the
seep tent over a 9-month period by the latter study
suggested a variation of only 6% in seepage. A several
hour-long study at a shallower seep observed sporadic gas
ejection events, and proposed temporary blockages or
constrictions in subsurface migration pathways (Leifer et
al. 2004). Although Brian Seep is a minor seep constituting
only ∼0.01% of the total gas flux for the COP seeps, the
processes recorded there are likely to occur throughout the
seep field. The time-series flux study did not reveal any
marked relationship between gas flux and tide or wave
height. Short- and long-term variations in flux rate could be
responsible for this feature of the dataset. Despite taking
triplicate measurements of vent flux when possible, the
short sampling time of minutes for each bottle could yield
fluxes different from the hour or daylong averages. Long-
term changes in gas flux rate are evident in Fig. 3, and
could easily overwhelm tidal imprints on flux rate. The
observed variability appeared more randomly distributed,
suggesting that subsurface plumbing and interplay between
active vents may prove a greater cause of variability for the
flux of individual vents on weekly to monthly time scales.
When viewed collectively, gas flux from all of the vents
during the single comprehensive 1-day study (Fig. 2) and
the months-long time series (Fig. 4a) was log normal in
frequency distribution. Shifting gas flux between select
vents could cause this narrow distribution, while individual
gas vents display a wider flow range (Fig. 4b). It is possible
that flux for individual vents is evenly distributed around an
average value based on the subsurface properties of the
individual vent, and that net flux is relatively constant.
These observations do not constrain previously proposed
mechanisms of seep behavior (Tryon et al. 2002; Leifer et
al. 2004), or the variability in overall flux from Brian Seep,
which could well have remained constant over the entire
observation period despite the observed fluctuations in gas
flux for specific vents recorded in this study.

Lipid biomarkers

In various ancient seep sites, biphytanic diacids have been
described with light δ13C values and have been suggested
as synthetic products of as yet unknown methane-oxidizing
archaea (Birgel et al. 2008b). In addition, signals of sulfate-
reducing bacteria were identified, such as iso-C15:0 and
anteiso-C15:0 (−46 and −47‰, respectively). The presence
of abundant C30-dialkylglycerolether (DAGE) with two
anteiso-C15:0 alkyl chains and a δ13C value as low as −61‰
further confirms the presence of sulfate-reducing bacteria
(see also Hinrichs et al. 2000; Pancost et al. 2001).
Although these biomarkers are not as depleted as at other

seep sites (Elvert et al. 2005), most likely due to the 13C-
enriched thermogenic methane source, these results indicate
that AOM was a prevalent process in the sediment that gave
rise to the carbonate concretion.

Subsurface gas pockets

The more 13C depleted of the CO2 samples from the
subsurface gas pockets (listed as “trapped gas” in Table 1)
are similar in isotopic composition to the carbonates, and
this observation provides insight into how the appropriate
conditions are created to enable carbonate formation in
these thermogenic gas seeps. Importantly, the five gas
samples collected came from between gas vents, away from
the immediate impact of gas seepage.

Carbonates

Methane-derived carbonate minerals have not been previ-
ously observed in the COP seep field. The carbonates are
more depleted than several potential source materials
including seawater (−0.3‰ at Brian Seep; Ding and
Valentine 2008), seep gas CO2 (−1.0 to +7.8‰; Table 1),
regional organic matter (approx. −20 to −24‰; Silverberg
et al. 2004; Ramirez-Alvarez et al. 2007; Li et al. 2009),
and local seep oils (−23.4 to −22.7‰; Wardlaw et al. 2008),
which strongly suggests that methane was a significant
source of carbon, and that anaerobic oxidation of methane
(AOM) was important. Subsequent investigations focused
on the composition of the carbonates and the biogeochem-
istry facilitating their formation. Their presence at the base
of the sediment column at Brian Seep was unexpected
because of the high concentration of isotopically enriched
CO2 present in the seep gas. Based on their composition
and pattern of occurrence, we have formulated a hypothesis
as to how they form and persist at Brian Seep, a schematic
for which is given in Fig. 5. As with other seep environ-
ments, carbonate formation is linked with AOM in the
shallow subsurface (Stakes et al. 1999; Michaelis et al.
2002; Luff and Wallmann 2003; Formolo et al. 2004;
Sassen et al. 2004; Reitner et al. 2005), but several
processes distinguish carbonate formation at Brian Seep.

First, carbonate alkalinity must overcome the elevated PCO2
associated with the seep gas, which reaches ∼15 kPa at Brian
Seep. This is presumably accomplished by vigorous sulfate
reduction coupled to AOM, though the flux of CO2 is likely
far greater than the capacity of the microbial community to
oxidize methane. Spatial segregation of seeping CO2 and
methane is also therefore likely to play an important role.
Because CO2 dissolves rapidly in alkaline solutions, the
lateral migration of vent gas near the base of the sediment
column may act to “scrub” CO2 from the gas. At some
distance from the main vent, the PCO2 may be sufficiently low
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that, combined with active AOM, sufficient alkalinity could
be generated to enable carbonate precipitation.

Second, sufficient methane must be oxidized anaerobically
to draw the δ13C of dissolved inorganic carbon (DIC) from as
much as +8‰ in the seep gas to −30‰ in the trapped gas
(Table 1). While a simple mass balance calculation would
suggest that more than half of the carbonate carbon is
derived from methane with a δ13C of −42‰, the actual
proportion may be somewhat lower on account of undeter-
mined contributions from sediment organic matter, other
trace seep gases or seawater DIC, and because of carbon
isotope fractionation during AOM.

Third, the discovery of distinct δ13C-CO2 in trapped
gases was fortuitous, and suggests that trapping of gas near
the base of the sediment column may provide an important
mechanism to supply sufficient methane to drive AOM.
The locations of trapped gas were on the order of a meter or
more from any individual vent, suggesting that lateral
migration or a discontinuous underlying source supplied the
gas. The slight enrichment in δ13C-CH4 and depletion in
δ13C-CO2 suggest that these gases may be trapped for
extended periods of time, and serve as reservoirs of
methane to microbial communities performing AOM.
Anaerobic oxidation of methane typically leads to an
enrichment in δ13C of CH4 and a depletion in δ13C of
CO2 (Alperin et al. 1988). The observation of enriched
δ13C-CH4 and depleted δ13C-CO2 in the trapped gas
strongly suggests that these bubbles serve as a reservoir,
and equilibrate with dissolved CH4 and DIC. Also, CO2

was present only at trace levels in the trapped gas, further
consistent with the high alkalinities typical of environments
harboring AOM. While the data presented here are
insufficient to distinguish the location where CO2 is
removed along the migratory pathway, the elevated con-
centrations of Ca2+ in pore fluids from one core suggest that
in some areas of the seep field net dissolution of carbonate

is likely, presumably related to PCO2 as high as 15 kPa. The
carbonate-rich areas of the seep field are obviously not
dominated by dissolution, however, suggesting strong PCO2
gradients near active gas vents.

Fourth, the seasonal loss of sediment from Brian Seep
likely alters the biogeochemical conditions that enable
carbonate formation. AOM seemingly requires strictly
anoxic conditions (Valentine and Reeburgh 2000), but also
requires fluxes of both methane and sulfate, typically
limiting this process to the shallow marine subsurface
where these conditions occur. Therefore, we sought to
constrain the extent of sediment habitable to anaerobic
methanotrophs at Brian Seep by quantifying sediment
burden. In areas of complete sediment removal, AOM
may shift into the harder rocks and gravel below the
sediments. However, we predict that AOM facilitates
carbonate formation primarily when sediment is present in
summer and fall after sufficient time has elapsed for slow-
growing methanotrophic communities to reestablish them-
selves after being physically removed in the wintertime,
and a build-up of alkalinity in the interstitial porewater
occurs. This scenario is supported by the presence of
multiple and clearly distinct layers in the carbonate
concretion (supplemental Fig. 3). These layers likely
represent changing environmental conditions that favor
carbonate precipitation, and could well be seasonal.

Lastly, the carbonate concretions formed at Brian Seep
consist primarily of quartz sand held together by calcite.
These concretions appear to form at the interface of the
sediment and underlying bedrock, and thus take on the
appearance of exposed bedrock. This mode of occurrence is
distinct from methane-derived carbonates from other seep
environments (Bohrmann et al. 1998; Michaelis et al. 2002;
Gieskes et al. 2005; Niemann et al. 2006), where sulfate
penetration and AOM are limited to the upper sediment
column. The occurrence of quartz sand cemented by 13C-

Winter

~15cm

increased aeration,
less AOM

Summer

~30cm

more AOM,
carbonate formation

trapped gas,
carbonate precipitation

Carbonate Carbonate

carbonate
dissolution

Bedrock Bedrock

Water column Water column

SedimentSediment

Fig. 5 Schematic diagram highlighting the processes modulating carbonate formation at Brian Seep during times of high and low sediment burden
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depleted carbonates may serve as a distinguishing feature of
shallow water gas seeps in the appropriate geologic context.

Conclusions

This study demonstrates the dynamic nature of a shallow
seep environment in which gas flux from vents consistently
varies, and where seasonal changes directly impact the
biogeochemistry of the shallow subsurface. Inundation by
sediment seemingly facilitates the precipitation of carbonate
minerals at the base of the sediment column, despite the
presence of elevated CO2 concentrations in seep gas.
Trapped pockets of free gas are suggested as important
reservoirs feeding AOM. Removal of sediments exposes
methane-derived carbonates, and presumably removes the
communities mediating the anaerobic oxidation of methane.
These factors appear to modulate carbonate formation and
dissolution in the vicinity of Brian Seep. These observa-
tions provide a useful baseline for the behavior of shallow
gas seeps in terms of their flux variability, biogeochemistry,
and the associated mineralogy.
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