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ABSTRACT OF THE DISSERTATION

State Machine Replication for Wide Area Networks

by

Yanhua Mao

Doctor of Philosophy in Computer Science

University of California, San Diego, 2010

Professor Keith Marzullo, Chair

State machine replication is the most general approach for providing highly

available services with strong consistency guarantees. This dissertation studies proto-

cols for implementing replicated state machines for wide area networks. First it demon-

strates the challenges by comparing two protocols designed for local area networks in a

cluster-based wide-area setting and shows that existing protocols designed for local area

networks do not perform well in wide-area settings. A generic rotating leader protocol

is then designed for wide-area multi-site systems. From this generic protocol, two more

protocols are derived and evaluated: Mencius for crash failures and RAM for Byzantine

(arbitrary) failures. Mencius has low latency because it is based on a rotating leader de-

sign that allows all servers to immediately propose client requests upon receiving them.

It also has high throughput because the rotating leader design helps to balance both the

computation and communication loads. RAM is designed to provide low latency while

handling both uncivil rational and irrational behavior. RAM applies three techniques to

reduce latency: a rotating leader design, Attested Append-only memory (A2M) and a

novel Mutually Suspicious Domains (MSD) trust model. Uncivil rational behavior is a

result of selfish local administrators who try to optimize for local utility. Such behavior
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is discouraged by the protocol so that any divergence from the civil (correct) behavior

only increases the probability of reducing local utility. Irrational behavior can arise from

outside attack that tries to disturb the system. RAM is designed to expose as much of

this kind of behavior as possible. When detection is impossible, RAM resorts to damage

control methods that bound the decrease in system utility.
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Chapter 1

Introduction

The most general approach for providing a highly available service is to use a

replicated state machine architecture [58]. Assuming a deterministic service, the state

and function is replicated across a set of servers, and an unbounded sequence of consen-

sus instances is used to agree upon the commands they execute. This approach provides

strong consistency guarantees, and so is broadly applicable. Advances in efficient con-

sensus protocols have made this approach practical as well for a wide set of system

architectures, from its original application of embedded systems [63] to asynchronous

systems. Depending on the failure model adapted, this approach can also be used to tol-

erate a wide range of failure: from the most restricted crash failures to the most general

Byzantine (arbitrary) failures.

Today, asynchronous system is popular among both researchers and practition-

ers due to its relaxed requirement on timing. Recent examples of services that use

asynchronous replicated state machines include Chubby [13, 15], ZooKeeper [69] and

Boxwood [46]. It is, however, well-known that consensus is unsolvable in a purely

asynchronous environment [26], i.e., no deterministic protocol can guarantee safety and

liveness at the same time. The most popular approach to circumvent this impossibility

result is to use unreliable failure detectors. By taking this approach, one can design

protocols that are always safe despite the unbounded number of mistakes the failure de-

tectors may make. The protocols provide liveness only during a period of synchrony,

i.e., when the failure detector eventually becomes accurate. A large number of proto-

cols [14, 25, 36, 39, 47] have since been designed using failure detectors. Ω, a class of

1
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failures detector that provide eventually accurate leader election functionality, is also

proven to be the weakest failure detector for solving consensus. Leader based protocols,

such as Paxos [36,37] and PBFT [14], later become the de facto standard for implement-

ing replicated state machines: not only do they require the minimal synchrony augment

for solving the problem, they are also efficient due to the use of a single leader to assign

commands to consensus instances.

Despite the large number of existing protocols, most of them are designed for

and deployed in local-area network. Efficiency has been one of most common concern

on wide-area deployment. With the rapid growth of wide-area services such as web

services, grid services, and service-oriented architectures, wide-area replicated state ma-

chine s become more and more appealing due to its strong consistency guarantees. Also,

replication across multiple locations is the only way for tolerating co-location failures

such as fire and power outage that can bring down all the machines in the same location

at the same time. So, a basic research question is how to provide efficient and effective

state machine replication in the wide area – the thesis of this dissertation.

While it is certainly possible for one to pick an application and design efficient

replicated state machine protocols for such an application, doing so, however, would

lose the generality of the replicated state machine approach. By not choosing a specific

application, this dissertation focuses on the most fundamental properties of the problem.

Doing so makes it possible for the solutions in this dissertation to be widely applicable.

Chapter 2 reviews the background materials for this dissertation, such as, asyn-

chronous message passing model, failure model, consensus and replicated state ma-

chine, the aforementioned impossibility result, the concept of failure detectors, and the

lower bounds for asynchronous consensus. We also review two de facto standard leader-

based protocols: Paxos for crash failure and PBFT for Byzantine failure.

Chapter 3 is our first step toward an efficient protocol design. We start the chap-

ter by summarizing our motivation for wide-area replicated state machines and the chal-

lenges we face. To further demonstrate the challenges, we proceed with a comparison of

two protocols, namely Paxos and Fast Paxos, in a wide-area client-server environment.

Our analysis and simulation results show that Fast Paxos, though designed to be faster

than Paxos in a local-area environment, is actually slower in this wide-area environ-
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ment. We conclude the chapter with a summary of important issues, such as contention,

quorum size, and latency variances, that need to be considered when designing new

protocols for wide-area systems.

In chapter 4, we move our focus to wide-area multi-site systems. While tradi-

tional leader-based protocols are efficient, they have inherent disadvantages in a multi-

site system. From the point view of individual sites, the leader has unfair performance

advantages over other sites. From point of view of the whole system, the leader is a

single point bottleneck that limits throughput. To cope with these disadvantages, we

introduce a generic rotating-leader based protocol called R. The core mechanism of R

is a partition of the consensus sequence space so that each site acts the default leader

for a subset of the instances. By doing this, we remove the single leader bottleneck by

spreading of load of being the leader among of sites. We also introduce simple consen-

sus for replacing traditional consensus in the replicated state machine approach. Simple

consensus is a variant of consensus that has restricted initial state: we show that it is

equivalent to consensus in solvability. Together, simple consensus and the rotating-

leader scheme help R avoid contention during a period of stability. Simple consensus

also makes certain operation cheaper to implement. This feature, enhanced with some

further optimizations, helps all sites to enjoy the low latency that was only possible for

the leader in a traditional leader-based design. R was, however, not efficient in term

of message complexity, to optimize which we need to find opportunities in the specific

implementation of simple consensus.

Chapter 5 continues our study of wide-area multi-site system, this time, in a

crash failure environment. The core result of this chapter is Mencius: an efficient crash-

failure rotating-leader protocol that has high throughput under high load and low latency

under low load. The protocol is derived from Paxos and uses the generic rotating-leader

scheme of protocol R. First, we derive Coordinated Paxos from Paxos to implement

simple consensus efficiently. We then apply the rotating-leader scheme of protocol R to

obtain an inefficient intermediate protocol P . Finally, we apply a set of optimizations to

protocol P to obtain Mencius. The derivation of Mencius makes it easier to understand

its correctness and how it works. We also discuss important implementation consider-

ations for Mencius and run experiments to evaluates its latency, throughput, scalability,
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and ability to adapt to changing environment and load.

Chapter 6 extends our study to Byzantine failures. The core result of this section

is a low-latency protocol RAM. RAM is built on three core techniques: (1) the Rotating

leader scheme of R; (2) the use of Attested append-only memory (A2M) for reducing

latency; and (3) the assumption of Mutually suspicious domains (MSD) that allows

processes in the same site to trust each other. The development of RAM is similar

to that of Mencius, and so has similar advantages. First, we introduce Coordinated

Byzantine Paxos as an efficient solution to simple consensus, taking advantages of A2M

and MSD. We then apply the rotating leader scheme of R to obtain an intermediate

protocol Q. Finally we optimize Q to obtain RAM. We also extend the traditional

view of Byzantine failures by introducing uncivil rational and irrational behavior. These

two classes of behavior have different root cause: uncivil rational behavior is caused

by faulty/selfish administrators that try to game the system to improve its own utility;

irrational behavior is a result of outside attack that seek to disrupt the system. Different

methods are warranted to cope with these two classes of behavior. We seek to discourage

uncivil rational behavior by reenforcing the protocol such that any divergence from the

correct behavior can only hurt the utility of a site, so the best strategy for a uncivil

rational site is to follow the correct behavior. The core mechanism for achieving this

goal is revocation against uncivil sites. For irrational behavior, we also seek to expose

them as much as possible through failure detection. However, not all failures can be

pin-pointed. So, when detection is impossible, we resort to damage control techniques

that limit the decrease of system utility. With these goals in the design, RAM is also

a complex protocol. While this chapter has explained the core mechanisms that makes

this approach feasible, future work is warranted for fully understand the policies to make

these mechanisms effective. This chapter makes a first step toward such a goal with a

prototype implementation of RAM. We use the implementation to evaluate not only the

latency, throughput, and scalability of RAM, but also the implication of the revocation

mechanism.

Finally, chapter 7 concludes this dissertation.



Chapter 2

Background

This chapter reviews background materials that are necessary for understanding

this dissertation. Section 2.1 reviews the asynchronous message passing model and in-

troduces both the crash failure model and Byzantine failure model. Based on the model,

section 2.2 and 2.3 further introduce the consensus problem and the replicated state

machine approach. Section 2.4 explains a well-known impossibility result for asyn-

chronous consensus and section 2.5 discusses how to use unreliable failure detectors to

circumvent this impossibility result. Section 2.6 summarizes important lower bounds

that has been established for asynchronous consensus. Finally, section 2.7 and 2.8 re-

view the Paxos consensus protocol for crash failures and the PBFT replicated state ma-

chine protocol for Byzantine failures.

2.1 System Model

For any distributed system, it is important to establish an appropriate system

model for understanding the possible behavior of not only computation nodes but also

the environment within which the nodes run. Basing on a specific model, one can then

design distributed protocols to solve distributed computing problems (e.g., consensus

and replicated state machines for this dissertation). Since system models allow us to ex-

plore all possible behavior of a protocol, it enables us to formally prove the correctness

of a protocol and analyze its efficiency and/or complexity. Moreover, the model also en-

ables us to discuss the solvability of a distributed problem and obtain theoretical bounds

5
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for understanding the minimal resource needed for solving a particular problem. This

dissertation focuses on the asynchronous message passing model, a popular model for

wide-area networks. To model the node behavior, this dissertation uses both the crash

failure model and the Byzantine failure model. The reminder of this section gives a brief

review of these topics.

2.1.1 Asynchronous message passing model

An asynchronous message passing system consists of three main component:

(1) the environment such as the communication channels and adversaries, (2) the pro-

cesses such as client and server computation nodes, (3) and the protocol that solves a

specific distributed problem. In this model, processes are characterized as deterministic

state machines (possibly with infinite states) that can communicate with each other by

exchanging messages via point to point asynchronous channels.

More formally, a message passing system consists a collection of processes.

Each process is characterized as a deterministic state machine that executes in a se-

ries of rounds. In each round, a process p receives a message m (possible empty or

multiple physical messages) that is addressed to p. The protocol specifies the determin-

istic state machine, which takes m and its current state s as input, outputs a new state s′,

and generates messages to be sent to one or more processes as needed.

On top of the message passing model, system synchrony is used to model the

speed of processes and message channels. Synchronous systems make assumptions on

the upper bounds of the processing speed of processes and the deliver delay of messages.

Protocols can be designed around these bounds and take timeouts as additional inputs.

Asynchronous systems do not make such assumptions, and so can not take advantage of

timeouts.

More formally, in asynchronous systems, no assumption is made on the process-

ing speed of a process and how long it takes for a process to complete a round. A process

may also have access to a local clock, but no assumption is made on either the accuracy

or the drift of the clock. Such inaccurate clocks may not be used to guarantee safety

or ensure liveness, but it is common practice to use them to provide liveness when the

system enters a period of synchrony. No assumption is made on how long it takes for
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the message passing channels to deliver messages, i.e., there is no known upper bound

on message delivery delay.

Most wide-area systems and modern operating systems are considered as asyn-

chronous systems, even though known upper bounds do exist in such systems. The

reason behind this classification is because the worst case delay can be orders of magni-

tude higher than the common case. For example, it typically takes a few microseconds

for a process to complete a round on modern operating systems, however, several mil-

liseconds may be needed if the system experiences a context switch or a page miss. As

another example, the typical one way network delay within the North America continent

is on the order of tens of milliseconds. However, when BGP routes are being updated,

it may takes seconds for BGP to be stabilized and message to be delivered in the wide-

area. Should we assume synchronous system and design the protocols around these

extremely large and rarely occurred bounds, we would have to sacrifice the common

case performance of the systems. As a result, people resort to asynchronous model and

design protocols that do not rely on these bounds, as least not in the common case.

Finally, most works in the literature assume the channels only deliver messages

that were sent by the processes, i.e., they do not create message by themselves. How-

ever, different works may assume slightly different other properties. For example, some

works assume reliable channels that do not drop messages whereas some only assume

fairly-lossy channels in which the messages will be delivered eventually if the processes

keep re-sending them. Some works assume an atomic broadcast primitive while others

do not. Moreover, the message channel may or may not have FIFO properties. However,

one can always implement reliable channels on top of fair-lossy channels and/or FIFO

channels on top of non-FIFO channels [8]. Unless otherwise explicitly noted, this disser-

tation assumes that processes do not have atomic broadcast primitive and the channels

are reliable and FIFO, mostly because we study wide-area system in this dissertation

and used TCP as the transportation protocol in our implementation.

So far, we have summarized the asynchronous message passing model, which is

a message passing system running in an asynchronous environment. Figure 2.1 sum-

maries this model. The model is also sometimes referred as the time-free asynchronous

model as the servers either have no access to a clock or the clock is too inaccurate to be
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Figure 2.1: The asynchronous message passing model

of any usefulness. The asynchronous message passing model defines the possible be-

havior of the environment, while the model and the protocol define the possible behavior

of the processes. A process fails when it diverges from this pre-defined behavior. The

next section further explains two widely used failure models: the crash failure model

and Byzantine failure model.

2.1.2 Failure models

A failure is the behavior of a process diverging from its specification defined by

the system model and the protocol. Such a process is said to be faulty. A process is

said to be correct if it is not faulty. Depending on the failure model, restrictions may be

applied to the behavior of faulty processes. Most common failure models are the crash

failure (fail stop) model and the Byzantine (arbitrary) failure model.

With the crash failure model, processes can only fail by stopping to execute any

further asynchronous rounds. Usually, there is no restriction on when the failure can

occur, i.e., a failure can occur in the middle of a round. As a result, a process that fails

when broadcasting a message to all processes may only send the message to a subset of

the recipients.
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By contrast, the Byzantine failure model imposes no restriction on how faulty

processes may behave. An arbitrarily faulty process can stop running, omit some or all

messages, or send arbitrary messages. It can even deliberately collude with other faulty

processes and try to “trick” correct processes in some ways. Byzantine failure model

also often assume the existence of adversaries in the environment. The adversaries can,

for example, generate messages or temporarily disrupt communication to try to disturb

the replicated service.

When dealing with sender failures, cryptographic primitives are often uses. For

example, public/private key infrastructure can be used to authenticate and verify the

messages sent by the processes. In this case, each process holds its own private key and

has knowledge of the public keys of all other processes. Private keys are used to sign the

messages before they are sent out and public keys are used to verify that messages are

indeed sent by claimed sender. If the private key of a process is leaked or compromised,

the server is consider as faulty. This is because the adversaries can now use the leaked

key to assume the identity of the process and engage arbitrary communication with

the rest of the processes. Processes and adversaries are also assumed to have limited

computation power that they cannot subvert the cryptographic primitives. Adversaries

are often assumed to be able to delay the delivery of messages, though, they cannot

cause indefinite long delays.

It is also necessary for systems to restrict the number of failures that can occur

for both crash and Byzantine failure models. This can be done by specify a threshold,

i.e., the maximum number of failures that can occur for certain type of processes, or

a failure pattern, i.e., all possible combinations of faulty processes that can occur. For

simplicity, this dissertation only consider the threshold model, since most results for

threshold model can be translated into their counterparts based on failure patterns.

2.2 Consensus

Consensus is a fundamental coordination problem that requires a group of pro-

cesses to agree on a common output, based on their (possibly conflicting) inputs. A

unique identity is assigned to each server, since consensus is not solvable if the servers
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are indistinguishable [8].

In the context of replicated state machine, consensus input values are typically

requests sent to servers from the clients. The servers then take client request and propose

them as the initial consensus input values. They later decide on one of proposed value

as the output.

More formally, the consensus problem is defined as follows: Each server in a

consensus starts with a initial value to propose and later decides on some proposed

value. A consensus implementation satisfies the following four properties [8].

Definition C.1 (Termination): Every correct server eventually decides on some value.

Definition C.2 (Validity): If all servers propose the same value v, then every correct

server decides on v.

Definition C.3 (Integrity): Every correct server decides on at most one value.

Definition C.4 (Agreement): If a correct server decides on v, then every correct server

that decides decides on v.

Of the four properties above, C.1 (Termination) is a liveness property, i.e., it

requires the processes eventually make progress. The other three are safety property as

they must be hold at all time.

It is possible for the system to enter into a state in which the consensus outcome

is determined but not yet known by any of the servers. Instead of proof such a state

exists, we later show it in example protocols. We say that a value v is chosen when the

system enters into a state in which v is only possible outcome. We say that a server

learns value v when it knows that v is the outcome and decides on v.

Lamport [34, 37] generalize the problem by assigning roles to processes. There

are proposers that propose values, acceptors that accept proposals (if certain conditions

are met) and learners that learn the outcome of consensus. A process can take on all

three roles or any combination of them. The original scenario can be considered as a

special case in which all processes implement exactly all three roles. Consensus defined

in this way requires the same safety and liveness properties except instead of having

servers propose and decide on values, the proposers propose and the learners decided
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on values. Based on this structure, Lamport proved a series of lower bounds for asyn-

chronous consensus [34]. We will briefly review the result in section 2.6.

2.3 Replicated state machine

The replicated state machine approach [58] is one of the most general approach

for providing highly available services. Assuming a deterministic service, this is done,

at a high level, by replicating the state and function of the service across a set of servers,

and by using an unbounded sequence of consensus instances to agree upon the sequence

of commands the replicas execute.

In more detail, a replicated state machine is consist of a set of server that replicate

a deterministic application service and a set of clients that issues requests to the service

by sending them to one or more servers. Each server run an unbounded sequence of

consensus instances. Upon receiving a request from a client, a server submits the request

by assigning it to one of the unused consensus instances, i.e., it proposes the request

as the initial consensus input of that instance. While multiple servers may propose

different values to the same instance, the consensus algorithm ensure that all correct

servers eventually agree on a unique request for each used instance. Once a server

learns the outcome of a consensus instances, it commits the request provided that it has

learned and committed all previous consensus instances. A server commits a request by

having the application service execute it. As a result, replies may be generated and sent

to one or more clients.

It is straightforward to see that all correct servers eventually learn and execute

the same sequence of requests. If the servers do not skip instances when proposing

requests, this sequence also contains no gaps. Thus, if all servers start from the same

initial state and the application service is deterministic, then the service state will always

be consistent across servers and servers will always generate consistent responses.

When running the replicated state machine, care needs to be taken to ensure that

each unique client request will eventually be executed exactly once. We illustrate the

problem using the following example. Consider an execution in which multiple servers

may propose different requests to the same consensus instance. Only one request can be
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chosen as the outcome of that instance. The rest of the requests need to be re-proposed

to other unused instances. The client may also send a request to multiple servers at the

same time in hope that at least some correct servers will receive the request. This may

also cause duplications. When duplication occurs, the replicated state machine must not

execute the same request twice.

More formally, in a replicated state machine, a server submits requests to the

state machine, and later commits a sequence of requests that are submitted by the servers.

Assuming requests are unique, a replicated state machine implementation satisfies the

following liveness and safety properties [58].

Definition R.1 (Validity): If a correct server submits a request r, then all correct servers

will eventually commit r.

Definition R.2 (Agreement): If a correct server commits a request r, then all correct

servers will eventually commit r as well.

Definition R.3 (Integrity): Any given request r is committed by each correct server at

most once, and only if r was previously submitted.

Definition R.4 (Total Order): If two correct servers p and q both commit request r1

and r2, then p commits r1 before r2 if and only if q commits r1 before r2.

Note that R.1 (Validity) and R.2 (Agreement) are liveness properties, whereas

R.3 (Integrity) and R.4 (Total Order) are safety properties.

The most appealing factor of the replicated state machine approach is that it

provides strong consistency guarantees, and so is broadly applicable. Advances in ef-

ficient consensus protocols have made this approach practical as well for a wide set of

system architectures, from its original application of embedded systems [63] to asyn-

chronous systems. Recent examples of services that use replicated state machines in-

clude Chubby [13, 15], ZooKeeper [69] and Boxwood [46].

2.4 FLP impossibility result

While running consensus for the replicated state machine approach is attrac-

tive for achieving fault tolerance and providing strong consistency, it is, however, well-
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known as the FLP impossibility result that consensus is impossible in a purely asyn-

chronous system where even only one process can fail. More formally, Fischer and

Lynch [26] discussed a very weak form of consensus where the only values a process

can propose are 0 and 1. They assumed at most one process can fail and proved that

no algorithm based on the asynchronous message passing model can maintain safety at

all time while also guarantees liveness (Termination) in the presence of the probability

of just a single failure. The intuition behind the result is that the only way a server can

tell if another server has not failed is by receiving messages from it. However, it cannot

distinguish whether a server has failed or just “very slow” when receiving no messages.

This makes it inherently hard for a server to decide on the consensus outcome in the

presence of failure.

The impossibility result may seem discouraging, but fortunately, most practical

systems are not purely asynchronous, and so the FLP result does not apply. As a result,

people make additional assumptions about the system to capture the synchrony charac-

teristic of practical system to circumvent the impossibility result. Protocols designed

with these additional assumptions usually maintain safety at all time and make progress

(provide liveness) when certain synchrony conditions are met. One of the most com-

monly used method is to augment the servers with an inaccurate local failure detector.

We will briefly review this approach in the next section.

There are other ways for circumventing the impossibility result is, for example,

by requiring the system to eventually synchronize. Simply speaking, with crash failure

semantics, this means there is time after which no more process crashes and all messages

are delivered in time. For example, Keidar and Shraer used the eventually synchronous

model to study the overhead of consensus failure recovery [32]. We do not discuss these

alternatives further in this dissertation.

2.5 Failure detectors

Due to its simplicity and modularity, the failure detector approach has gained

popularity among the distributed computing community for circumventing the FLP im-

possibility result. Chandra and Toueg first introduced the concept of unreliable failure
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detectors [17]. They showed that consensus can be solved even with unreliable failure

detectors that may make an unbounded number of mistakes. They further classified

failure detectors based on their completeness and accuracy properties and showed the

hierarchy of failure detector classes. They also identified the weakest failure detector

necessary to solve asynchronous consensus. We review failure detector related materi-

als in this section.

2.5.1 The concept
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Figure 2.2: The asynchronous message passing model enhanced with failure detectors

As we have discussed, the impossibility result for asynchronous systems stem

from the inherent difficulty of determining whether a server has actually failed or only

“very slow”. The failure detector approach augment the asynchronous model with an in-

accurate external failure detection mechanism. Figure 2.2 shows the structure of the fail

detector enhanced asynchronous message passing model. Each failure detector mon-

itors the set of servers in the system and maintains a list of servers that are currently

being suspected as being faulty. The failure detector is allowed to make mistakes by

erroneously adding correct servers to its suspected list; for example, it may suspect that

a server p has crashed even though p is still running. If the failure detector later believes
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that suspecting p was a mistake, it can remove p from its list. A protocol based on

failure detectors should always maintain the safety properties despite the mistakes made

by the failure detectors. Usually such a protocol only guarantees progress if the failure

detectors remain accurate for a sufficient long period of time.

Failure detectors are defined in term of abstract properties as opposed to giving

specific implementations. This enables us to design protocols and prove their correct-

ness relying solely on these properties, without referring to specific implementation or

the low-level network parameters. This also makes the presentation of protocols and

their correctness proof more modular.

2.5.2 Failure detector classes

Chandra and Toueg characterized failure detectors by specifying the complete-

ness and accuracy properties. Roughly speaking, completeness requires that a failure

detector eventually suspects all faulty processes and accuracy restricts the mistakes that

a failure detector can make. They defined two completeness and four accuracy proper-

ties:

Strong completeness: Eventually every process that crashes is permanently suspected

by every correct process.

Weak completeness: Eventually every process that crashes is permanently suspected

by some correct process.

Strong accuracy: No process is suspected before it crashes.

Weak accuracy: Some correct process is never suspected.

Eventually strong accuracy: There is a time after which correct processes are not sus-

pected by any correct process.

Eventually weak accuracy: There is a time after which some correct process is never

suspected by any correct process.

Eventually strong accuracy and eventually weak accuracy are referred as even-

tually accuracy properties; strong accuracy and weak accuracy are referred as perpetual
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Table 2.1: Eight classes of failure detectors defined in term of accuracy and complete-

ness properties.

Completeness
Strong Weak

Accuracy

Strong Perfect P Q

Weak Strong S Weak W

Eventually strong Eventually perfect ♦P ♦Q
Eventually weak Eventually strong ♦S Eventually weak ♦W

accuracy properties. Note that eventually accuracy allows failure detectors to make

an unbounded number of mistakes. This reflects the inherent difficulty of determining

whether a process is just slow or whether is faulty in an asynchronous system. Note

that weakest accuracy property, i.e., eventually weak accuracy, still requires the failure

detectors to not to make certain mistakes after a certain time, which is still difficult to

implement in practice. However, this is not a restriction for most practical systems:

we only need failure detectors to be accurate for a sufficient long period so as that the

correct servers can decide on the outcome of the consensus.

Based on the eight completeness-accuracy pairs, Chandra and Toueg further

classified failure detectors into eight classes as shown in Table 2.1. For example, the

class of failure detectors that have both Strong Completeness and Strong Accuracy is

called the class of Perfect failure detectors (denoted by P).

One can also explore the hierarchy of failure detectors using reduction technique.

More formally, giving two failure detector classes D and D ′, D is said to be reducible

to D ′ (denote as D � D ′) if there exist a reduction algorithm TD→D ′ that uses D to

maintain a variable out putp at every server p such that out putp is a valid output of D ′

at p for every possible execution. Clearly, D is stronger than D ′, as D can emulate the

output of D ′ thus gives at least as much information about failure as D ′. Clearly, the

reducible relationship is transitive. Moreover, two failure detectors D and D ′ are said

to be equivalent (denoted as D � D ′) if and only if D � D ′ and D ′ � D .

It is obvious that any failure detector has strong completeness is reducible to

its weak completeness counterpart, i.e., P � Q, S � W, ♦P � ♦Q, and ♦S � ♦W.

Chandra and Toueg also gave an algorithm to transform any weak completeness failure
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detector to its strong completeness counterpart, making weak completeness and strong

completeness equivalent. Therefore, we have P�Q, S�W, ♦P�♦Q, and ♦S�♦W.

This reduces the number of failure detector classes needs to be studied from eight to

four.

Chandra and Toueg further examined the hierarchy of failure detector classes.

An example algorithm was given to solve crash-failure consensus using W where up

to n− 1 servers can crash. Another algorithm was shown to crash-failure solve con-

sensus using ♦W when the majority of the processes are correct ( f < �n/2�). A lower

bound was proved to show that consensus cannot be solved using ♦P in crash-failure

asynchronous systems with f ≥ �n/2�. Since ♦P is strong than ♦P, ♦P can be used

to solve asynchronous consensus with f < �n/2�, so this lower bound is tight. This

also shows that failure detectors that have perpetual accuracy properties can solve more

problems that failure detectors with only eventually accuracy, therefore failure detectors

with perpetual accuracy are strictly stronger.

2.5.3 The weakest failure detector for solving Consensus

The existence of the failure detector hierarchy raises the natural question: what

is the weakest failure detector for solving consensus? To answer this question Chandra

et al. [16] introduced a new failure detector class Ω. Instead of outputting a list of

suspected servers, each server’s failure detector outputs (trusts) a single server that is

believed to be correct. Ω is a class of failure detector that there is a time after which all

correct servers always trust the same server and the identity of the trusted server does

not change thereafter. Ω is also called the leader election failure detector. On one hand,

protocols, e.g., Paxos, can use Ω to implement crash-failure asynchronous consensus

when the majority of the servers are correct. On the other hand, it is shown that that

for any failure detector that can solve consensus, the consensus protocol can be used to

emulate Ω. Combine these two result, we conclude that Ω is the weakest failure detector

for solving consensus. It is also possible to reduce from Ω to ♦W. So, ♦W is also the

weakest failure detector for solving consensus. The generic reduction from Ω to ♦W
in [16] is complicated. Chu [18] also gave two simpler reductions from Ω to ♦W. Both

Ω and ♦W are widely used in the literature when designing consensus algorithms as
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they are the minimum augments necessary for solving asynchronous consensus. Ω is

particularly popular due to its simple leader-election semantic.

2.6 Lower bounds

So far, we have focused our discussion on the solvability of consensus. In this

section, we further review how fast asynchronous consensus can be achieved.

Lamport studied the speed of crash failure consensus by analyzing the minimal

number of communication steps needed for reaching consensus in the context of pro-

posers, acceptors and learners [34]. The steps are counted from the time a value is

proposed by the proposers to the time a value is learned by the learners. Since asyn-

chrony can prevent any algorithm from reaching consensus for arbitrarily long period

of time, any lower bounds obtained refer only to synchronous runs (in the contexts of

failure detector enabled protocols, this means that failure detectors are accurate during

these runs). Lamport showed that the answer is three, two, or one, depending on how

many acceptors are used, how many acceptors may fail, exactly who take on the role of

proposers and learners, and whether or not proposals are issued concurrently. The result

can be informally summarized as follows. For an algorithm that uses n acceptors, and

that can always make process despite up to f processes failures, and that works with

arbitrary proposers and learners assignment:

• Learning is possible in three messages delays iff n > 2 f

• Learning is possible in two message delays when up to e acceptors can fail, for

0 ≤ e ≤ f and f > 0, iff n > 2e+ f . However, concurrent proposals can prevent

an algorithm from achieving such fast learning.

• Learning is impossible in one message delay.

Note that we have discussed that n > 2 f is the minimal replication required for

solving asynchronous consensus with Ω. The above result can be roughly translated

into: when using Ω and the minimal number of replicas, three communication steps are

needed for reaching consensus.
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Lamport also gave special cases in which none of these bounds holds. However,

those special cases are uninteresting in practice. For example, learning is possible in one

round if there is only one acceptor and the acceptor process also implements a learner.

With this setup, the failure of the single critical acceptor is equivalent to the total failure

of the system.

2.7 Paxos

Paxos [36, 37] is an efficient asynchronous consensus protocol that tolerates up

to f crash failures with 2 f + 1 replicas. Table 2.2 summaries the messages in Paxos.

Processes in Paxos have roles: there are proposers that propose values, acceptors that

accept proposals and learners that learn the consensus outcome based on values accepted

by the acceptors. It is common for a Paxos server to take on all of the three roles.

Table 2.2: Summary of messages in Paxos

Message Meaning
NEW-LEADER New leader starts Phase 1

ACK Replicas acknowledges NEW-LEADER message

REQUEST A request is sent to the leader

PROPOSE The leader propose a request

ACCEPT The replicas accepts the proposed request

LEARN Leader inform the replicas the chosen value

Paxos is a leader-based protocol: a distinguished server (proposer) is acts differ-

ently than the others and is responsible for assigning proposals to consensus instances.

There can be more than one leader at the same time, but during such periods the protocol

may not make progress.

Figure 2.3 illustrates the message flow in a run of a sequence of Paxos instances

during failure free-executions. Although we show the instances executing sequentially,

in practice they can overlap. Each instance of Paxos consists of one or more rounds,

and each round can have three phases. Phase 1 (explained in the next paragraph) is only

run when there is a leader change. Phase 1 can be simultaneously run for an unbounded

number of future instances, which amortizes its cost across all instances that successfully
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Client0

Leader

Replica1

Replica2

Client1

NEW-
LEADER ACK REQUEST PROPOSE ACCEPT REPLY+

LEARN REQUEST REQUEST PROPOSE ACCEPT LEARN REPLY

Phase 1 for
all instances

Instance 0: Client0 sends
a request to the leader

Instance 1: Client1 sends
a request to a follower

Figure 2.3: The message flow of Paxos during failure-free runs

choose a command. During normal execution all client requests go through the leader

either by being sent directly to the leader or by being forwarded to the leader via another

server. Upon receiving the request, it starts Phase 2 by sending PROPOSE messages that

ask the servers (acceptors in Paxos terminology) to accept the value. If there are no

other leaders concurrently proposing requests, then the servers acknowledge the request

with ACCEPT messages. Once the leader receives ACCEPT messages from a majority of

the servers, it learns that the value has been chosen and broadcasts a Phase 3 LEARN

message to inform the other servers of the consensus outcome. Phase 3 can be omitted

by broadcasting ACCEPT messages, which reduces the learning latency for non-leader

servers. Figure 2.5 shows the message flow of this alternative. This option, however,

increases the number of messages significantly and so can lower throughput.

Client0

Leader

Replica1

New Leader

REQUEST PROPOSE NEW-
LEADER ACK PROPOSE ACCEPT REPLY+

LEARN

Instance 2: Leader fails before this instance is completed.
A new leader is elected poll other servers and finish consensus

ACCEPT

Figure 2.4: The message flow of Paxos leader change

When a leader crashes (Figure 2.4), the crash is eventually suspected, and an-
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other server eventually arises as the new leader. The new leader then starts a higher

numbered round and polls the other servers to determine possible commands to propose

by running Phase 1 of the protocol. It does this by sending out NEW-LEADER messages

and collecting ACK messages from a majority of the servers. Upon finishing Phase 1,

the new leader starts Phase 2 to finish any Paxos instances that have been started but not

finished by the old leader before crashing.

Client0

Leader

Replica1

Replica2

Client1

NEW-
LEADER ACK REQUEST PROPOSE ACCEPT REPLY REQUEST REQUEST PROPOSE ACCEPT REPLY

Phase 1 for
all instances

Instance 0: Client0 sends
a request to the leader

Instance 1: Client1 sends
a request to a follower

Figure 2.5: The message flow of Paxos when ACCEPT messages are broadcasted

In the steady state, it takes three communication steps (client → leader →
acceptor → learner) for a learner in Classic Paxos to learn the value if the request

is directly sent to the leader.

2.8 PBFT

Table 2.3: Summary of messages in PBFT

Message Meaning
REQUEST A client sends the request to the leader

PRE-PREPARE The leader proposes the client request

PREPARE The eplicas confirm the request proposed by the leader

COMMIT The replicas accept the confirmed proposal

REPLY The replicas sends the reply to the client

NEW-VIEW The replicas enter a new view
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PBFT [14] is a replicated state machine protocol that tolerates up to f Byzantine

failures with 3 f + 1 replicas. Table 2.3 summarizes the messages in PBFT. PBFT can

be considered as an extension of Paxos from crash failure model to Byzantine failure

model. Indeed, they share many important characteristics: they are both leader (primary

in PBFT terminology) based protocols; they are always safe and are live as long as the

leader is correct; when the leader failures, they relies on leader change (view change in

PBFT terminology) to provide liveness.

Client0

Leader

Replica1

Replica2

Replica3

REQUEST PRE-
PREPARE PREPARE COMMIT REPLY

Figure 2.6: The message flow of PBFT in the steady state.

Figure 2.6 shows the message flow of PBFT in failure-free executions. At a high

level: (a) it starts when the client sends its request to the leader using REQUEST message;

(b) the leader then assigns the request with a consensus sequence number and dissemi-

nates this assignment by broadcasting PRE-PREPARE messages; (c) after that, the servers

exchange PREPARE messages to agree on the assignment the leader has proposed; (d)

if 2 f + 1 matching PREPARE messages are obtained, the servers then exchange COM-

MIT messages to reach consensus, i.e., to guarantee that even if a leader (view) change

occurs the new leader must propose the same value for this sequence number; (e) this

is established when a server gathers 2 f + 1 matching COMMIT messages. Then it can

execute the request and send a REPLY back to the client; (f) the client learns the outcome

of the request once it receives f + 1 matching REPLIES. Note that PRE-PREPARE and

PREPARE in PBFT serve similar function as PROPOSE in Paxos: the goals are to propose

the request to the replicas. Similarly, COMMIT in PBFT and ACCEPT in Paxos are both
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used for replicas to inform each other the values they just accepted. When a quorum of

replicas ( f + 1 for Paxos and 2 f + 1 for PBFT) have accepted the proposal, consensus

is reach and subsequently learned.

Client0

Leader

New leader

Replica2

Replica3

REQUEST VIEW-
CHANGE NEW-VIEW PREPARE COMMIT REPLY

VIEW-
CHANGE-
ACK

Figure 2.7: The message flow of PBFT view change

Figure 2.7 shows the message flow of PBFT when view change occurs. When

the leader in PBFT fails, it is eventually suspected by other replicas since the protocol is

not making progress. Correct servers then abandon the current view v and its leader lv

by changing to view v+1. The servers does this by broadcasting VIEW-CHANGE mes-

sages and then use VIEW-CHANGE-ACK messages to relay VIEW-CHANGE messages

to server lv+1, i.e., the leader of view v+ 1. VIEW-CHANGE and VIEW-CHANGE-ACK

messages serve similar function to the ACK messages in Paxos: to inform the new leader

the current states of the replicas. Based on the information in the VIEW-CHANGE and

VIEW-CHANGE-ACK messages, the new leader then computes the possible consensus

outcome to propose. It does this by sending the NEW-VIEW message, which serves sim-

ilar function to the PRE-PREPARE message. PBFT then proceeds with PREPARE and

COMMIT messages to finish consensus, much like the Paxos resumes Phase 2 after a

leader change.



Chapter 3

Benefits and challenges of wide-area

networks

This chapter explains the motivations of building efficient replicated state ma-

chine protocols for wide-area networks. Section 3.1 discusses the benefits of running

replicated state machine in wide-area networks and section 3.2 explains the challenges

of doing so. Section 3.3 further demonstrates the challenges by comparing two crash

failure replicated state machine protocols in one particular wide-area setting. Section 3.4

concludes this chapter by discussion important factors that need to be taken into consid-

erations when designing a protocol.

3.1 Benefits

The state machine replication approach is an important tool for building highly

available services and providing strong consistency. It has been deployed in local area

networks as an infrastructure for coordinating applications [13,46,69]. While few wide-

area systems have deployed replicated state machine the same principle can be applied

for coordinating wide-area applications. It is even more beneficial to do so in wide-area

networks as larger variance of message latencies in such systems makes it more difficult

to coordinate applications.

Another benefit of running replicated state machine in wide-area networks is

to improve service reliability and availability by increasing independent failures. To

24
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Table 3.1: Four categories of wide-area replicated state machine systems

Distribution of servers
LAN WAN

Distribution of clients LAN {L×L} {L×W}

WAN {W×L} {W×W}

provide highly available services using less reliable replicas, replicated state machine

relies on the assumption that replicas fail independently. Running all the replicas in the

same local-area network, however, makes the system vulnerable to co-located failures

such as fire, power outage, and natural disaster. For example, an electrical explosion and

subsequent fire at a data center caused hours of down time to the whole data center [48].

As a result, thousands of servers in the data center were offline during that period until

power was restored. Any services replicated within a local-area network such as a data

center will be render unavailable in face of the aforementioned failures – all of the

replicas are subject to the same failure at the same time. The only way to deal co-

location failures is to distribute the replicas across multiple locations such that they will

more likely to fail independently in the face of such failures.

3.2 Challenges

Despite the benefits, few systems have deployed replicated state machine in the

wide-area systems. One of the most important concerns is performance. For example,

the PNUTS [21] system has opted to adapt weaker consistency model due to latency

concerns. The increased communication delay and decreased bandwidth of wide-area

network make it more too important to deploy highly efficient protocols.

The complexity of wide-area network is also not making the problem easier.

A wide-area system is more complex than a system that is simply not local-area. To

illustrate that, we roughly classify distributed replicated state machine systems using two

criteria: (1) how are clients distributed? and (2) how are servers distributed? Combining

these two criteria, we can roughly classify systems into four categories as showed in

table 3.1.
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• {L×L}: A system whose clients and servers are all in the same local area net-

work. This is local-area system. Such is a system is not the main focus of this

dissertation.

• {W×L}: A system whose clients are distributed in the wide-area network, but

the servers are in the same local-area network. For example, in such as system, a

service is replicated in a data center and remote clients access the service via wide-

area communication. In section 3.3, we compare two consensus protocols in such

a {W×L} setting to illustrate some of the challenges in designing replicated state

machine protocols for wide-area systems.

• {W×W}: A system whose clients and the servers are both distributed in the wide-

area network. A multi-site system is {W×W}. Such a system is consist of several

sites and each site hosts one server and several clients. In chapter 4,5 and 6, we

design replicated state machine protocols for such multi-site systems.

• {L×W}: A system whose the clients area in the same local area network, but

the servers are distributed in the wide-area network. Though interesting, such a

system is outside the scope of this dissertation.

It is not difficult to imagine that protocols designed primarily for one particular

network setting may not work as efficient when deployed in another setting. To fur-

ther illustrate this idea, in the next section, we compare two protocols: Paxos and Fast

Paxos (a varient of Paxos that is designed to have lower latency than Paxos in local area

networks) in {W×L} settings and show that Fast Paxos is actually slower.

3.3 Paxos vs. Fast Paxos

Paxos and Fast Paxos are two protocols that are the core of efficient implemen-

tations of replicated state machines. In runs with no failures and no conflicts, Fast

Paxos requires fewer communication steps for learners to learn of a request compared to

Paxos. However, there are realistic scenarios in which Paxos has a significant probabil-

ity of having a lower latency. This paper discusses one such scenario with an analytical

comparison of the protocols and simulation results in a {W×L} setting.
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Table 3.2: Summary of Paxos and Fast Paxos protocols.

Paxos Fast Paxos
Communication steps 3 2

Number of replicas 2 f +1 3 f +1

Quorum size f +1 2 f +1

3.3.1 Fast Paxos

We have already explained Paxos, an asynchronous consensus protocol that tol-

erates up to f failures with 2 f +1 replicas. It is also a leader based protocol: the clients

send their requests to the leaders to be proposed. In the steady state, it takes three com-

munication steps (client → leader → acceptor → learner) for a learner in Paxos to

learn the value.

Fast Paxos [39] is a variant of Paoxs that is designed to have lower latency in lo-

cal area networks, hence the name. It saves one communication step by allowing clients

to directly propose values to the acceptors (client → acceptor → learner). However,

to preserve safety, a larger quorum of acceptors is necessary. The quorum size of Fast

Paxos is 2 f + 1, i.e., a learner needs to know that 2 f + 1 acceptors have accepted the

same value for it to know consensus has been reached. This is f replicas larger than the

f + 1 quorum size of Paxos. As a result, Fast Paxos requires at least 3 f + 1 acceptors

while Paxos requires only 2 f + 1 acceptors. In addition, Fast Paxos can suffer from

collisions, which can happen when two or more clients send proposals at nearly the

same time, and acceptors receive these proposals in different orders. Collision causes

additional latency for Fast Paxos and the extra latency can be large in some cases. For

simplicity, we do not consider collisions when comparison Paxos and Fast Paxos. Doing

so favors Fast Paxos. Our result shows that Fast Paxos is slower despite such favoritism.

Table 3.2 summarizes some of the facts about Paxos and Fast Paxos.

3.3.2 Protocol Analysis

Fast Paxos enables a learner to learn a new client request in two communication

steps, whereas Paxos requires three. In this section, we analyze the message latency of
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both flavors of Paxos, and we only discuss the case in which at most one server is faulty

at any time, i.e., f = 1. In this case, Paxos requires a minimal of three servers while

Fast Paxos requires four. We first introduce some notation. Let lt(p1, p2) be the latency

of a message sent from p1 to p2 and pc(p1) be the processing time of an operation in

process p1. We also use smin{A,B,C} to denote the second smallest value among A,B,

and C, and tmin{A,B,C,D} to denote the third smallest value among A,B,C, and D.

We use the expression learning latency to denote the time for a given learner to

learn a new request. For Paxos, the learning latency is given by the following expression:

learnp = lt(Client,Leader)+ pc(Leader)+ smin{A1,A2,A3}

Ai = lt(Leader,Acceptori)+ pc(Acceptori)+ lt(Acceptori,Leanrer), i ∈ {1,2,3}

For Fast Paxos, the equivalent expression is as follows:

learn f p = tmin{A1,A2,A3,A4}

Ai = lt(Client,Acceptori)+ pc(Acceptori)+ lt(Acceptori, learner), i ∈ {1,2,3,4}

If we assume that the processing times are negligible, then we can simplify the

previous equations to the following:

learnp = lt(Client,Leader)+ smin{A1,A2,A3}

Ai = lt(Leader,Acceptori)+ lt(Acceptori,Leanrer), i ∈ {1,2,3}

learn f p = tmin{A1,A2,A3,A4}

Ai = lt(Client,Acceptori)+ lt(Acceptori, learner), i ∈ {1,2,3,4}

To give an example in which Fast Paxos has a significant probability of having

a higher latency compared to Paxos, we consider a {W×L} setting, in which all servers

are in the same site, interconnected through a local-area network, and the clients are in

different networks, connected to the servers through a wide-area network. Figure 3.1

shows the structure of such a system. We can then assume that the network communi-

cation among the servers is negligible compared to the cost of the wide-area latencies.
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WAN

LAN

: Client : Server

Figure 3.1: The structure of a {W×L} system

For Paxos, we then have that the time for a learner to learn that a client request has been

accepted is given by:

learnp = lt(Client,Leader)

For Fast Paxos, it is given by:

learn f p = tmin{lt(Client,Acceptori) : i ∈ {1,2,3,4}}

Theorem 3.1: Suppose that wide-area latency ranges from α to β and follows a con-

tinuous probability density function (PDF) D(x), where x ∈ [α,β ]. Paxos has a fixed

probability of 0.6 for being faster than Fast Paxos.

Proof. The cumulative distribution function (CDF) C(x) of D(x) captures the proba-

bility for a message to be delivered within time x, i.e., C(x) = Pr(latency < x), where

x ∈ [α,β ].

The distribution of the learning latency for Paxos is the same as the wide-area

message latency distribution, as it is dominated by the message from the client to the

leader and the communication among the servers is negligible. The PDF and CDF for

Paxos are then given by Dp(x) = D(x) and Cp(x) =C(x) respectively.

Assuming that the message latencies for Fast Paxos messages are independent,

the CDF of the learning latency for Fast Paxos is as follows:

Cf p(x) = Pr(learn f p < x) = 4C3(x)(1−C(x))+C4(x)
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Recall that the probability of Fast Paxos learning a value by time x is the proba-

bility of at least three out of four messages from the client to the servers being delivered

within time x. The PDF is given by:

Pf p(x) =
dCf p(x)

dx

Now suppose an independent run of both protocols. The probability P that Fast

Paxos is slower than Paxos is:

P = Pr(learn f p > learnp) =
∫ β

x=α
Pf p(x)Cp(x)dx

Noting that C(α)= 0 and C(β )= 1, it is relatively simple to expand this equation

and obtain:

P = 12

∫ 1

C(x)=0
(C3(x)−C4(x))dC(x) =

3

5

This result implies that, independent of the distribution for wide-area message

latencies, Paxos is faster than Fast Paxos for 60% of the time in this particular network

topology. Note that this proof only holds for continuous distributions. For example,

should the message latency is constant, the result clearly does not hold.

We offer the following explanation for the result. Intuitively, Fast Paxos has to

wait for three messages out of four to make progress whereas Paxos only requires one

particular message. Even though the one message for Paxos can be slow, this message

is faster in most cases compared to waiting for three out of four messages.

An alternate way of obtaining this same result, but under different constraints is

the following.

Theorem 3.2: Assume that the probability distribution of network latencies is not con-

centrated on any value. Paxos has a fixed probability of 0.6 for being faster than Fast

Paxos.

Proof. This assumption is weaker than assuming that the PDF is continuous, and it

implies that if we sample the distribution multiple times, then all samples will be distinct

with probability 1. Fast Paxos samples the network latency distribution four times. Let

these samples have values A,B,C,D, where A < B <C < D. Paxos samples the network



31

latency distribution once. Let that sample have value E. By assumption, these five

samples are distinct. There are five possible relations between the value E with respect

to the other four values:

1. E < A;

2. A < E < B;

3. B < E <C;

4. C < E < D;

5. D < E.

Each case has the same probability because we draw A,B,C,D,E from the same

distribution. Thus, the probability of Cases 1, 2 or 3 is 3/5. These are the cases when

Paxos is faster than Fast Paxos.

We can extend Theorem 3.2 to a system that tolerates up to f failures. In such

a system, Paxos requires at least 2 f +1 replicas and Fast Paxos requires at least 3 f +1

replicas.

Theorem 3.3: Assume that the probability distribution of network latencies is not con-

centrated on any value. Paxos with 2 f + 1 replicas has a fixed probability of 2 f+1
3 f+2 for

being faster than Fast Paxos with 3 f +1.

Proof. The proof is similar to that of Theorem 3.2. We draw one variable P for Paxos

and 3 f + 1 variables (F0 to F3 f ) for Fast Paxos. We order P and F0 – F3 f . There are a

total of 3 f +2 cases, in 2 f +1 of which Paxos is faster. Since each of the 3 f +2 cases

also has the same probability, the probability of Paxos bing faster is 2 f+1
3 f+2 .

From Theorem 3.3, as f increases, the probability of Paxos being faster ap-

proaches 2
3 .



32

3.3.3 Simulation

The performance of both variants of the Paxos algorithm depends upon how fast

the network delivers messages to receivers. Their relative performance depends strongly

on the variance of message latency. In many real networks, the variance in message

latency is high due to traffic variations and non-deterministic scheduling of processes in

a single computer. Informally, this observation implies that most of the time messages

are delivered fast, but occasionally messages take one or two orders of magnitude more

to be delivered.

In this section, we present simulation results on the latency of Paxos and Fast

Paxos. The simulator we used assumes that processing time is negligible compared

to message latencies, and consequently the learning latency is the sum of the message

latencies. To simulate message latencies, we considered traces obtained with NWS

(Network Weather Service [65]) in the GrADS testbed [11] over the period between

August and October of 2002. These are traces of TCP connections between pairs of

machines. Each trace contains the time to establish a TCP connection, send four bytes,

receive four bytes, and close the connection.

Our simulator is trace-driven. We associate the history between two computers

in our dataset with a channel of our simulator, and for every message that crosses the

channel, we obtain the latency for this message from the associated history. Also, we

consider failure-free runs only, and we assume no conflicts between different clients.

Failure-free runs should be the common case in many systems, and collisions introduce

extra complexity into our environment not necessary to make our point. In fact, had we

considered collisions for Fast Paxos, the latency for Fast Paxos would have been higher.

The case we present consists of a client and a set of servers implementing Paxos,

where the client is in one site and all the servers are in another site. That is, only the

communication between the client and the servers crosses a wide-area network. For this

scenario, we have selected two different sites A and B from our dataset, and used the

traces between two machines in different sites, one in A and one in B, and between pairs

of machines in site B.

Figures 3.2 and 3.3 shows the cumulative fraction of requests (y-axis) with a

given latency (x-axis). The latency of Figure 3.2 includes the time for a client to send a
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request to the servers implementing Paxos, the time for servers to exchange messages,

and the time for a learner to learn this request by receiving accept messages from a

quorum of acceptors. In addition to the latency mentioned for the case of Figure 3.2, the

latency of Figure 3.3 also includes the time to send a response back to the client.

In these figures, if we draw a vertical line at some value of x0, then the two y

values of the two points in which this line crosses the curves correspond to the fraction

of instances that Paxos and Fast Paxos obtain a latency value x ≤ x0. From the learning

curves, for values of x0 < 90ms, the fraction of instances for which Paxos obtain this

latency is larger compared to the same fraction for Fast Paxos. The curves cross roughly

at 90ms and, for values of x0 > 90ms, the roles change, and the fraction of instances

that have latency x or smaller is higher for Fast Paxos. The intuition for this result is as

follows. Suppose we pick an instance of Paxos as a reference, and consider the latency

for a client request to reach the proposer. If the latency for this message is low, then there

is a high probability that an instance of Fast Paxos using the same latency distribution

is higher. This is due to the variance in message latency. As there are more messages

from the client to the acceptors, the probability that at least two messages have a higher

latency is significant compared to the request message to the proposer in Paxos. If the

request latency in Paxos is high, then there is a high probability that Fast Paxos is faster

because it can discard one message among all four sent to the acceptors if this message

is too slow.

Note also that the difference between Fast Paxos and Paxos is more noticeable

in the learning latency graph. For example, if we pick the value x = 80ms, the difference

between the fraction of instances that have at most this learning latency value is over 0.7.

In the client latency figure, the difference between y fraction values for the same latency

value x is not greater than 0.5. This is due to addition of the latency to respond to the

client in the client latency graph, which takes another wide-area communication step.

This new step increases the variability in the latency of instances as now instances that

are learned fast have a non-negligible probability of having slow wide-area messages on

the way back to the client.

From a different perspective, we can also draw horizontal lines to determine

the latency values for which we obtain a particular fraction of instances. For example, if
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Figure 3.2: Cumulative distribution comparing Paxos and Fast Paxos, learning latency.

y = 0.5, then in the learning latency graph Paxos obtains this fraction with latency 62ms,

whereas Fast Paxos obtains this fraction with 83ms. In general, for values of y < 0.9,

the latency value for such a fraction is smaller for Paxos in both graphs. Paxos and Fast

Paxos swap roles for y > 0.9.

3.3.4 Summary

So far, we have compared Paxos and Fast Paxos in {W×L} settings. Though

we did not consider collisions, which favors Fast Paxos, our analytical and simulation

result showed that Fast Paxos can be significantly slower in term of latency than Paxos.

We also examined that the higher latency with Fast Paxos in this {W×L} setting is due

to its larger quorum size and the variance of message deliver latency in the wide-area.

Our comparison serves as a clear example that protocol (e.g., Fast Paxos) de-

signed to perform well for one particular network setting (e.g., {L×L}) may perform

poorly in another setting (e.g., {W×L}). In the next section, we conclude this chapter

by discussing some of the important design considerations for efficient replicated state
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Figure 3.3: Cumulative distribution comparing Paxos and Fast Paxos, client latency.

machine protocols.

3.4 Design considerations

Theoretically, counting the number of communication steps to learn the value is

a simple way to evaluate the performance of consensus protocols. Indeed, in a system

where system load is low and network delivery variance is small, communication steps

can be an excellent predictor of latency. However, communication steps do not always

translate into practical performance because of the asynchronous nature of the system.

Especially in a wide-area network, there can be a large variance in message latency.

In addition, often theoretical analysis overlooks other factors that can add to latency,

such as available network bandwidth and operating system scheduling. In this section,

we discuss a set of issues to consider when designing a consensus protocol for a given

system.

Message complexity: Message complexity plays an important role in high-load sys-

tems. An increase in the number of messages by a constant factor can have signif-
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icant performance penalty when system load increases. For example, Dobre et al.

propose a new consensus algorithm that performs better under collisions [25], but

requires a larger number of messages by a constant factor. Not surprisingly, their

evaluation results show that this larger number of messages can cause a significant

performance penalty when system load is high.

Quorum size: Larger quorum sizes require higher degrees of replication for the same

degree of fault tolerance. In addition, in systems with significant variance in mes-

sage delay and in operating system scheduling latency, a larger quorum size can

lead to significantly higher latency [31].

Single critical path: The existence of single critical path makes performance vulner-

able to a single performance problem along that path. Increased delay from the

client to the leader in Paxos slows the whole algorithm down. Paxos can achieve

up to 50% performance gain when it is able to dynamically change the leader [56].

Resistance to collision. Fast learning consensus protocols, such as Fast Paxos, rely

on the absence of collisions to achieve high performance, and according to the

Collision-Fast Learning Theorem by Lamport no general consensus algorithm

can be fast learning upon collisions [34]. Collision is inherently hard to avoid in

wide-area environments, in particular when there are multiple clients submitting

requests concurrently. Because of large values and high variance with message

latency in wide-area environments, there is often a higher probability of collisions

when using larger quorums such as the quorums that Fast Paxos requires.

Besides designing new protocols. The following two techniques can be used to

achieving high performance across a wide range of environments, though not without

their respective drawbacks.

1. Run multiple protocols concurrently;

2. Switch between protocols depending on the network conditions.

For example, Fast Paxos outperforms Paxos when both system load and message

delay variance are low, but can do worse otherwise [25]. One can hope to achieve the
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better of two protocols at any time by using both protocols. However, this may not be

ideal in practice. When two protocols are run at the same time, additional care need

to be taken to make sure the two protocols choose consistent value. In addition, more

messages will be sent when running the two at the same time, which may hurt the system

performance as load increases.

Putting aside the policy of deciding when to switch, switching between proto-

cols is straightforward when the consensus protocol is used to support replicated state

machines. Switching can be learned as a proposal in the command sequence of the

replicated state machine. A system is usually designed to have a maximum number

(say α) of concurrent consensus instances, and so if a switching command is learned in

instance i, switching can be achieved in instance i+α . Furthermore, a no-op (a com-

mand that leave the state unchanged and generates no replies) can be used in bulk to fill

the gap from instance i+ 1 to i+α − 1 so as to speed up the switching process. The

less straightforward question is when to make the switch, which usually ties with the

network settings and the goal for which the system tries to optimize.

3.5 Summary

Running replicated state machine s in wide area networks can benefit applica-

tions in the wide-area. It also helps to cope with co-locations failures. Doing so is also

challenging: most existing protocols are designed for local area networks and may not

work well in wide-area systems. Designing an efficient protocol for wide-area system

needs take into account not only the complex system structure but also the high message

deliver variance in the wide area network. In the next three chapters of this dissertation,

we continue studying replicated state machine protocols in one such setting: multi-site

{W×W} systems.
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Chapter 4

Rotating leader design for multi-site

systems

The remainder chapters of this dissertation focuses on state machine replication

for multi-site systems – a kind of {W×W} system. This chapter lays the ground work

for designing efficient replicated state machine protocols for such multi-site systems by

introducing the general design principle of rotating leader based protocols.

Section 4.1 explains the architecture of multi-site system. Section 4.2 introduce

simple consensus, a restricted form of consensus that is later used in section 4.3 to

build protocol R – a generic rotating leader based replicated state machine protocol.

Section 4.4 analyze the performance metrics of R and section 4.5 discusses general

optimizations that can be applied to R.

4.1 Multi-site systems

We model a multi-site system as a collection of n sites interconnected by a wide-

area network. Each site consists of a server and a group of clients. These run on separate

processors and communicate through a local-area network. The servers communicate

with each other through the wide-area network, and they together implement a replicated

state machine. Up to f servers can fail either in a fail-stop or or in a Byzantine manner

depending on the desired failure model. We also allow a server to recover later. A

server serves as the main portal for its local clients, i.e., unless the local server is faulty,

39
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Figure 4.1: A multi-site system

clients access the replicated service by sending requests to their local server via local-

area communication. When a server fails, we either assume it is acceptable for clients in

the same site as a faulty server to stop making progress or for the clients to forward their

requests to some remote site. Communications in the multi-site system, both within

and between sites, is asynchronous, since the servers communicate through wide-area

networks and the servers and clients run on generic modern operating system.

In term of network characteristics, we assume the wide-area network has higher

latency and less bandwidth than the local-area networks, and the latency can have high

variance. We model the wide-area network as a set of links pairwise connecting the

servers (sites). The bandwidth between pairs of servers can be asymmetric and can vary

over time. We do not consider any dependent behavior of these links. For example, we

do not consider issues such as routers that are bottlenecks for communication among

three or more servers. This assumption holds when servers are hosted by data centers

and links between centers are dedicated. It is preferable to design protocols to be adapt-

able to link behaviors.

One interesting application for such multi-site systems is to provide highly avail-

able services that do not suffer from co-location failures, since no two servers are in the

same site. Another application is to coordinate wide-area applications that are spread

across multiple sites, for example, a multi-site resource management/locking system.

Running a single leader based protocol in a multi-site system has a few disad-
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vantages. For example, doing so gives performance advantages to the clients co-located

with the leader over other clients. This is because in a single leader based design, all

client requests are assigned to consensus instances by the leader. The would-be wide-

area communication between the clients and the leader becomes local communication

for clients co-located with the leader. For a system that assume Byzantine failures, such

a performance advantage gives incentive for selfish servers to compete for the leader

role, which in turn may lead to sub-optimal performance for the system as a whole.

Even for crash failure systems, such performance advantage is unfair to the non-leader

sites – it is preferable for all the sites to be able to enjoy such performance advantage, if

possible. The leader may also become a performance bottleneck of the system, since the

leader typically sends, receives and processes more messages than non-leader servers.

To deal with such problems, we use a rotating leader design. The idea is to par-

tition the consensus sequence space so that each server is responsible for an unbounded

number of instances. For example, in a system with three servers, server p0 could be

assigned the consensus instances 0, 3, 6, . . . , server p1 the consensus instances 1, 4,

7, . . . and server p2 the consensus instances 2, 5, 8 . . . This design not only allows the

system to avoid a performance bottleneck but also allows all the sites to share the ad-

vantage of having the leader. However, the rotating leader design only makes sense if it

has no or little overhead compared to (static) leader based protocols. To achieve this we

introduces simple consensus in the next section and use it to implement efficient rotating

leader based replicated state machine protocols.

4.2 Simple Consensus

A traditional replicated state machine runs an unbounded number of instances of

consensus. By design, consensus allow different servers to propose different values to

the same instance of consensus, which can cause contention. To resolve contention dur-

ing normal execution, a single leader is responsible for assigning requests to consensus

instances. Other servers serve as backup and only take actions when they suspect the

leader has failed. We take this concept one step further by introducing simple consensus,

which is a restricted form of consensus.
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Simple consensus is consensus with a restricted initial state. Let no-op to be

the special state machine command that leaves the state unchanged and generates no

response. In simple consensus instance i, only one distinguished server c, which we call

the coordinator or the owner, can propose any command (including no-op); the others,

which we call followers can only propose no-op. Typically, the coordinator is the default

leader for the simple consensus instance.

The simplest form of simple consensus is the one in which the coordinator can

propose either 0 (no-op) or 1 (a value other than no-op) and the followers can only pro-

pose 0. It is straightforward to see that the two form of simple consensus are equivalent,

because the coordinator of the more complex form is bound to propose one specific

value even if it has many values to chose from. We can easily map that value to 1 and

no-op to 0.

More formally, the simple consensus problem is defined as follows: One server

assume the role of coordinator; all the servers agree ahead of time on the identity of the

coordinator. Each server in a simple consensus starts with a initial value to propose. The

coordinator starts with either 0 or 1, and the followers start with 0. They later decides on

some proposed value. A simple consensus implementation satisfies the following five

properties.

Definition SC.1 (Termination): Every correct server eventually decides on some value.

Definition SC.2 (Validity): If all servers propose the same value v, then every correct

server that decides decides on v.

Definition SC.3 (Integrity): Every correct server decides on at most one value.

Definition SC.4 (Agreement): If a correct server decides on v, then every correct server

decides on v.

Definition SC.5 (Non-triviality): In every equivalence class relation ≡ for the failure

detector output, there is a run in which the correct servers decide on 1.

Note that the first four properties (SC.1 – SC.4) is the same as the four properties

of consensus (C.1 – C.4). The equivalence class relation ≡ for the failure detector

was introduced in [16] to define WC.1 (Non-triviality) for weak consensus (see below).
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Here, we use it for preventing a trivial implementation of simple consensus that decides

on 0 regardless of the initial values, or merely decide on a value using the failure detector

as the sole input. Note that there are only two initial state for simple consensus: (1) the

coordinator proposes 0 and (2) the coordinator proposes 1. Note that, if the coordinator

propose 0, the consensus outcome should be 0 according to the Validity property. So,

for Non-triviality, a run that decides on 1 can occur only if the coordinator proposes 1.

It is not difficult to see that simple consensus is a restricted form of consensus

and any protocol that solves consensus can be used to solve simple consensus.

Lemma 4.1: Let P be a protocol that implements consensus, P implement simple

consensus.

Proof. Consensus protocol P can be easily transformed to a simple consensus protocol

P ′ by running P with the simple consensus input. In additional, P ′ decides on the

same value as P .

SC.1 – SC.4: These are trivially satisfied due to C.1 – C.4.

SC.5 (Non-triviality): If the coordinator proposes 0, the outcome of P is 0 because

all servers proposed 0. If the coordinator proposes 1, there exists a run of P such

that 1 is decided because the initial state is bi-valent.

Simple consensus, however, is not simpler than consensus in term of the under-

lying failure detector required.

To explain, we use the weak consensus problem. Weak consensus is the same as

consensus, except that, the Validity property is replaced by the following Non-triviality

property. Assuming the only possible input values to weak consensus are 0 and 1.

Definition WC.1 (Non-triviality): In every equivalence class relation ≡ for the failure

detector output, there is a run in which all correct servers decide on 0 and a run in which

all corrects server decide on 1.

It has been shown that even weak consensus is not deterministically solvable in

asynchronous environment [26]. It is also been shown that if a failure detector D can
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be used to solve weak consensus, it can be used to implement Ω. This makes weak

consensus equivalent to consensus in term of the failure detector class required.

Lemma 4.2: If a failure detector D can be used to solve weak consensus, it can be used

to solve simple consensus.

Proof. If D can be used to solve weak consensus, it can be used to implement Ω, which

in turn can be used to solve consensus, which according to Lemma 4.1 can be used to

solve simple consensus.

Lemma 4.3: If a failure detector D can be used to implement simple consensus using

protocol P , D can be used to implement weak consensus

Proof. We construct a weak consensus protocol P ′ in the following way. Let v be the

consensus input value of the coordinator. With P , the coordinator proposes 1. Let the

coordinator attach v with its proposal. If the simple consensus outcome of P is 1 then

P ′ decides on v, otherwise P ′ decides on 0. P ′ solves weak consensus because:

C.1 (Termination): The termination property of simple consensus guarantees that P

eventually terminates. If the outcome is 0, all servers eventually decides on 0. If

the outcome is 1, since v is attached to the proposal 1, all servers that have decided

know v already. At this point, they can decide on v.

C.3 (Integrity) and C.4 (Agreement): Trivially verified.

WC.1 (Non-triviality): In every equivalence class of relation ≡ for the failure detector

output, there is a run in which P decides on 1. In this run, P ′ decides on v. If v

is 1, then P ′ decides on 1. If v is 0, then P ′ decides on 0.

Theorem 4.4: If D can be used to solve simple consensus if and only if it can be used

to solve consensus.

Proof. From Lemmas 4.1, 4.2 and 4.3.
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Since simple consensus is equivalent to consensus in solvability, one might ask

what is the benefit of introducing it. The primary benefit of simple consensus is that it

allows the servers to learn 0 quickly if the coordinator has proposed 0. This in turn en-

ables the design of efficient replicated state machine based on a rotating leader scheme

by allowing the servers to learn no-op (0) quickly when they confirmed that the coordi-

nator has proposed no-op (0).

Here we introduced a new terminology: the confirmed proposal from the co-

ordinator. Roughly speaking, a server only confirms that a value v is proposed by the

coordinator if and only if it knows that no value other than v can be confirmed at the

correct servers as the value proposed by the coordinator.

Definition 4.1 (Confirmed proposal): A value v is confirmed at a correct server as the

proposal by the coordinator if and only if no value other than v can be confirmed at any

of the correct servers.

Lemma 4.5: In simple consensus, a server learns 0 immediately once it confirms that

the coordinator has proposed 0.

Proof. By the definition of confirmed proposal, no value other 0 can be proposed by the

coordinator. The followers by definition can only propose 0. Since all server can only

propose 0, 0 is the only possible outcome.

Note that confirming the coordinator has proposed a value v has different mean-

ing under different failure models. With crash failure, as long as a server receives v as

a proposal from the coordinator, a follower can confirm the coordinator has proposed v.

This takes only one communication step from the coordinator to the followers. However,

with Byzantine failures, a follower can not simply do so on the first proposal it receives

from the coordinator, since the coordinator may tell some followers that it has proposed

0 and other followers that it has proposed 1. In this case, either 0 or 1 may become

the simple consensus outcome. To deal with this problem, additional communication

steps (e.g., a flooding sub-protocol described in [60]) may be needed to confirm that the

coordinator has proposed value v. We will revisit this when considering the Byzantine

model in chapter 6.
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4.3 R: a rotating leader protocol

In this section, we explain the general design for rotating leader based replicated

state machine protocols that run an unbounded sequence of simple consensus.

The goal of our design is to allow multiple servers to propose values concur-

rently without introducing collisions during a period of stability, which is a period during

which there are no failures or false suspicions. The general idea is to run an unbounded

sequence of simple consensus instances instead of consensus instances and partition the

simple consensus space to allow the servers to take turns to be the coordinator and pro-

pose commands. Since each server always has a future turn to be the coordinator and

propose a command, there is no need for the servers to contend, i.e., if a server p is

acting as the follower for an instance of simple consensus, there is no need for p to pro-

pose no-op when the coordinator has not been suspected. The result is a rotating leader

scheme that has no contention during a period of stability. More formally, the rotating

leader scheme is defined as follows:

Definition 4.2 (Rotating leader scheme): An unbounded number of simple consensus

instances is run to implement a replicated state machine. For each instance, one server is

designated as the coordinator, i.e., the default leader of the instance. Let coordinator(i)

be the coordinator of instance i. The scheme require that: (1) The assignment scheme of

instances to coordinators is known by all servers; (2) ∀n ∈ N0 and for every server p ∈
{0, . . . ,n−1}, ∃i> n such that coordinator(i) = p; (3) for every server p∈ {0, . . . ,n−1}
there is a bounded number of instances assigned to other servers between consecutive

instances that p coordinates.

The first property says there exists an agreed upon and well known assignment

of coordinators. The second property restricts the assignment such that all servers al-

ways have their turn to be the coordinator. Finally, the last property further restrict this

assignment to bound the “waiting time” of a server between turns. A simple round-robin

scheme is an example that satisfies the above definition. This scheme assigns instance

cn+ p to server p, where c ∈ N0 and p ∈ {0, . . . ,n−1}. Without loss of generality, we

assume this scheme for the rest of this dissertation.
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4.3.1 Coordinated Protocols

We have shown that any consensus protocol can be used to solve simple con-

sensus (Lemma 4.1). The benefits of the rotating leader scheme, however, lies in the

use of an efficient implementation of simple consensus (Lemma 4.5). To illustrate, we

introduce a class of protocols that we call coordinated protocols for simple consensus.

In such a protocol, a server may take one of the following actions based on its role in

simple consensus.

Suggest: The coordinator suggests a request v 
= no-op by proposing it to other servers.

Skip: The coordinator skips its turn by proposing no-op to other servers.

Revoke: A follower revokes the coordinator by proposing no-op to other servers. Re-

vocation is usually a result of the coordinator being suspected by a follower.

The actions suggest, skip and revoke specialize mechanisms that already exist

in simple consensus. Making them explicit, however, enables more efficient implemen-

tation in wide-area networks. Examples of coordinated protocols include Coordinated

Paxos (see section 5.3.2) for crash failure and Coordinated Byzantine Paxos (see sec-

tion 6.4 for Byzantine failure. Common optimizations that can be applied to coordinated

protocols include:

Default leader: The identity of the coordinator is well-known. So, the coordinator can

serves as the default leader of the simple consensus instance. This way, the pro-

tocol can start from a state in which the leader status of the coordinator has be

established. The coordinator can then suggest a request immediately after receiv-

ing it from the client. Doing so results in minimal latency for reaching consensus

in the absence of failure and false suspicion. For example, assuming crash failure,

Coordinated Paxos implements simple consensus and allows the coordinator to

learn the value it suggested in just one round-trip delay, which is the theoretical

lower bound.

Fast skipping: We have already explained in Lemma 4.5 that all servers can learn no-

op as soon as it confirms that the coordinator has skipped. This allows skips to
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be learned even faster than suggestions. For example, Coordinated Paxos imple-

ments skips in just one one-way communication delay from the coordinator to the

follower.

4.3.2 A generic rotating leader protocol

Assume the existence of a coordinated simple consensus protocol A . We use A

to construct an intermediate protocol R for implementing replicated state machine. Note

that R captures the essential structure of rotating leader protocols without specifying the

environment in which R runs. By replacing A with appropriate protocol, we can reuse

this structure to build different protocols for different environments. Note that R is

not an efficient protocol by itself: we introduce optimizations to improve its efficiency.

For example, in chapter 5, we introduce optimizations specific to the crash failure model

and build Mencius. Later in chapter 6, we take similar approach for the Byzantine faulty

model and we build protocol RAM. Should we need to implement or optimize replicated

state machines under different assumptions, we can reuse R by selecting an appropriate

protocol A and applying appropriate optimizations.

At a high level, R runs an unbounded sequence of simple consensus in the

scheme defined by Definition 4.2. R commits the value learned in instance i if only

if R has learned and committed all values learned in instances prior to i. R needs to

handle duplicate requests that arise from, for example, the clients sending requests mul-

tiple times due to timeouts. This can be done by using any well-known technique, such

as assuming idempotent requests or by recording committed requests and checking for

duplicates before committing. Without loss of generality, we assume, for the rest of this

dissertation, the latter is used and all duplicate requests are silently dropped

Each instance of simple consensus is solved using a coordinated protocol A .

We describe R using a set of rules that determine the behavior of a server and argue that

R is correct using these rules.

Lemma 4.6: Protocol R satisfies R.2 (Agreement), R.3 (Integrity) and R.4 (Total Or-

der).

Proof. We prove this lemma by arguing that each of the three properties holds.
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R.2 (Agreement): If request r is committed by a correct server p, then the following

holds: (1) r must have been decided by p in some simple consensus instance i;

(2) p must have learned all instances prior to i; and (3) p does not learn r in any

instance smaller than i. For any given correct server q, the Termination property of

simple consensus guarantees that q will eventually learn all instances smaller than

or equal to i as well. According to the Agreement property of simple consensus,

the value learned in instance i is r and no value learned in instances smaller than i

is r. Therefore q commit r once all instances smaller than or equal to i are learned

and committed by q, which happens eventually.

R.3 (Integrity): As we have discussed, duplicate requests are handled by recording

committed requests and discarding for duplicates before committing. Now, sup-

pose a request r is committed by a correct server. Then, r must have been chosen

in some simple consensus instance. The Validity property of simple consensus

guarantees that r was proposed by some server in that instance, i.e., previously

submitted by some server.

R.4 (Total Order): If a correct server p commits r1 before r2, then there must exist i1

and i2 (i1 < i2) such that (1) p has learned all instances smaller than or equal to i2;

(2) p learns r1 in instance i1 and does not learn r1 in instances smaller than i1; and

(3) p learns r2 in instance i2 and does not learn r2 in instances smaller than i2. If

a correct server q commits r2 before r1, then there must exist j1 and j2 ( j1 < j2)

such that (1) q has learned all instances smaller than or equal to j2; (2) p learns r2

in instance j1 and does not learn r2 in instances smaller than j1; and (3) q learns

r1 in instance j2 and does not learn r1 in instances smaller than j2. Without loss

of generality, we assume i2 ≤ j2. Since p learns r1 in instance i1, according to

the Agreement property of simple consensus, q must also learn r1 in instance i1.

Since i1 < i2 ≤ j2, this contradicts with q does not learn r1 in any instance smaller

than j2.

For R.1 (Validity), we use the following Rules RL.1 – RL.4 to ensure that any

client requests sent to a correct server eventually commit.
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As we have discussed, one of the benefits of using the rotating leader design is

the ability to minimize the commit latency. To do that we let a server suggest a value

immediately upon receiving it from a client.

Rule RL.1: Each server p maintains its next simple consensus sequence number Ip. We

call Ip the index of server p. Upon receiving a request from a client, a server p suggests

the request to the simple consensus instance Ip and updates Ip to the next instance it

coordinates, i.e., I′p =min{k : coordinator(k) = p∧k > i}, where I′p is the updated index.

Rule RL.1 by itself performs well only when all servers suggest values at about

the same rate. Otherwise, the index of a server generating requests more rapidly will

increase faster than the index of a slower server. Servers cannot commit requests before

all previous requests are committed, and so Rule RL.1 commits requests at the rate of

the slowest server. In the extreme case that a server suggests no request for a long period

of time, the state machine stalls, preventing a potentially unbounded number of requests

from committing. Rule RL.2 uses a technique similar to logical clocks [35] to overcome

this problem.

Rule RL.2: If server p receives a suggestion for instance i and i > Ip, before proceeding

with protocol A , p updates Ip such that its new index I′p = min{k : coordinator(k) =

p∧ k > i}. p also executes skip actions for each of the instances in the set {i : Ip ≤ i <

I′p ∧ coordinator(i) = p}, i.e., all instances in the range [Ip, I′p) that p coordinates.

With Rule RL.2, slow servers skip their turns. Consequently, the requests that

fast servers suggest do not have to wait for slow servers to have requests to suggest

before committing. However, a faulty server may not skip, for example, because it is

crashed or because it is acting in a Byzantine manner. Such a server can prevent others

from committing. Rule RL.3 overcomes this problem.

Rule RL.3: Let q be a server that another server p suspects has failed, and let Cq be

the smallest instance that is coordinated by q and not learned by p. p revokes q for all

instances in the range [Cq, Ip] that q coordinates.

Rule RL.3 allows the non-faulty servers to fill in the gaps left by faulty servers

with no-op so that the correct servers can make progress. In principle, all non-faulty
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servers can start revocation upon the suspicion of another server. With the crash failure

model, this means any non-faulty server can start revocation against a suspected server

at any time. In practice, however, one non-faulty server is usually elected to lead the

revocation process to avoid wasting resources or causing liveness problems (see sec-

tion 5.4.3). With the Byzantine failure model, in addition to electing a leader to lead the

revocation process, at least f +1 suspicions against the same server are required to start

revocation: since up to f servers can fail in a Byzantine manner, f +1 suspicions ensure

that at least one of them is from a non-faulty server.

Lemma 4.7: When there is no false suspicion, R with Rule RL.1 – RL.3 satisfies R.1

(Validity).

Proof. If any correct server p suggests a value v to instance i, a server updates its index

to a value larger than i upon receiving this suggestion. Thus, according to Rule RL.2,

every correct server r eventually proposes a value (either by skipping or by suggesting)

to every instance smaller than i that r coordinates, and all non-faulty servers eventually

learn the outcome of those instances. For instances that faulty servers coordinate, ac-

cording to Rule RL.3, non-faulty servers eventually revoke them, and non-faulty servers

eventually learn the outcome. When instances prior to i are eventually learned and com-

mitted, the value learned in instance i can then be committed. Since we assume there

is no false suspicion, the followers do not take the revocation action. So, v, the value

suggested by the coordinator, is eventually chosen as the outcome of instance i and

eventually committed.

False suspicions, however, are possible with unreliable failure detectors and can

potentially occur an unbounded number of times. We add Rule RL.4 to allow a server

to suggest a request multiple times upon false suspicions.

Rule RL.4: If server p suggests a value v 
= no-op to instance i, and p learns that no-op

is chosen, then p suggests v again.

Ω has been shown to be the weakest failure detectors to solve consensus, and ♦W
and Ω are equivalent classes of failure detectors [16]. However, they are not sufficient

to implement a replicated state machine with R. For example, ♦W only guarantees
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there is a time after which at least one correct server is never suspected. In other words,

some correct server could be permanently falsely suspected and hence be revoked for

unbounded number of instances in R, keeping this server and its clients from making

progress. There are two ways for dealing with this problem. One way is to use a stronger

failure detector, for example ♦P – the next stronger commonly-used failure detector than

♦W.

Lemma 4.8: Assuming ♦P, R with Rule RL.1 – RL.4 satisfies RSM-Validity.

Proof. If any correct server p suggests a value v. By Rule RL.4, R will continue to

re-suggest v upon false suspicion until v is chosen. By the definition of ♦P, there exist a

time t after which p will not be suspected. If v hasn’t been chosen by t , by Lemma 4.7,

v will be chosen once p re-suggested v after t. Therefore, R satisfies RSM-Validity.

Theorem 4.9: Assuming ♦P, R with Rule RL.1 – RL.4 implements replicated state

machines.

Proof. From Lemma 4.6 and Lemma 4.8.

Note that ♦P is strictly stronger than either ♦W and Ω. In practice, when assum-

ing ♦P a period of no false suspicion only needs to hold long enough for p to re-suggest

v and have it chosen for the protocol to make progress. This is not much more difficult

to implement than ♦W or Ω under the crash failure model. It is, however, consider-

able more difficult when the Byzantine failure model is considered: for example, faulty

servers can trick the correct servers to consider a correct server is being maliciously slow

when the slowness is caused by high network latency. When using ♦P is impossible,

another way to deal with the insufficiency of ♦W or Ω is to allow a server to forward

its request to another server when it is repeated falsely suspected. This way, a server is

able to make progress as long as it can find a correct server to forward its request to. A

server can eventually do so since we assume the existence of Ω failure detector – the

weakest failure detector for solving asynchronous consensus. Note that, forwarding is a

degeneration from the rotating leader design to the single leader design. In the extreme

case, if all but one correct server are being falsely suspected, all other servers forward

their requests to that server: it becomes the same as having a single server to propose
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the request for all servers. So, the single leader design can be viewed as a special case of

the rotating leader design with the forwarding mechanism. We formalize the forwarding

mechanism using Rule RL.5 and prove its correctness with Theorem 4.10.

Rule RL.5: If server p suggests a value v 
= no-op to instance i, and p learns that no-op

is chosen, instead of re-suggesting v, p may opt to forward v to another server r that p

believes is correct. Upon receiving v, r treats it the same as a client request.

Rule RL.5 implies that if p later suspect r has failed and has not learned v yet, it

may forward v to another server r′.

Theorem 4.10: Assuming Ω, R with Rule RL.1 – RL.5 implements replicated state

machines correctly.

Proof. From Lemma 4.6, we know that R always satisfies R.2 (Agreement), R.3 In-

tegrity and R.4 (Total Order). So, we only need to prove R.1 (Validity). From Lemma 4.7,

we know that only the requests sent to falsely suspected servers are not live. Rule RL.5

allow a falsely suspected server p to forward request to another server r and r will sug-

gest the request. p can eventually find a correct server r to forward to request to because

we assume Ω. Since any request suggested by a correct server is guaranteed to be live,

any request submitted to p is also guaranteed to be live. So, R with Rule RL.1 – RL.5

satisfies Validity and hence implements replicated state machines correctly.

4.4 Performance analysis of R

Table 4.1: During a period of stability, the performance metrics of coordinated simple

consensus protocol A derived from consensus protocol C

Protocol type Simple consensus (A ) Consensus (C )

Action Suggest Skip Revoke Propose

Learning Leader/Coordinator Lsc 0
Lr

Lc
latency follower Ls f Lk L f

Message complexity Ns Nk Nr N
Quorum size Qs Qk Qr Q
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Key metrics, such as number of message delays, message complexity and quo-

rum size can be helpful for predicting the performance of a protocol. In this section, we

analyze these metrics for R. Since R is built by running protocol A repeatedly, these

metrics, without any optimization, are mostly determined by the underlying protocol A

that is used. We only analyze these metrics for the common case, i.e., during a period of

stability. This is because during unstable periods, during which there exist new failures

or false suspicions, no protocol can guarantee liveness – it may take arbitrary long com-

munication and arbitrary large number of messages to reach consensus. We also assume

a consensus protocol C is used to derive a coordinated simple consensus protocol A ,

which in turn is use to built R.

Table 4.1 summarizes the performance metrics of A and C . In the table, we use

L to denote learning latency, N to denote message complexity, and Q to denote quorum

size. We also use subscript s to denote the suggestion action, subscript k to denote the

skip action, subscript r to denote the revoke action, subscript c to denote the coordinator

or the leader, and subscript f to denote the followers.

The following relationship between the metrics of A and R can be assumed:

• Lk < Lsc ≤ Ls f < Lr, Nk < Ns < Nr, and Qk < Qs: Lk < Lsc, Nk < Ns, and Qk ≤ Qs

because skipping is a simpler operation than suggesting according to Lemma 4.5.

Lsc ≤ Ls f because the leader always learns no slower than the followers and the

leader can potentially learn faster in some cases due to certain optimizations.

Ls f < Lr and Ns < Nr because the revocation process involves leader change,

which results in higher latency and larger message complexity.

• Lsc ≤ Lc < Lr, Ls f ≤ L f < Lr, and Ns ≤ N: Lsc ≤ Lc, Ls f ≤ L f , and Ns ≤ N

because suggesting in the derived protocol A typically follows the same execution

path as that of leader proposing a value, though some simple consensus specific

optimization may potentially reduce the communication steps for A . Lc < Lr

and L f < Lr because revocation, which typically involves leader change, requires

longer communication chain than the failure-free proposing action of C .

• Qs = Qr = Q. This is because the derived protocol A still needs the same number

of replicas as C to make progress.
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Table 4.2: During a period of stability, the performance metrics of state machine R

compared to consensus protocol C .

State machine R Relation C

No failure

Commit Leader max{Lsc,Lk +1} ≤ Lc
latency Follower max{Ls f ,Lk +1} ≤ L f
Message complexity Ns +(n−1)Nk > N

Quorum size n > Q

f failures

Commit Leader max{Lsc,Lk +1,Lr} > Lc
latency Follower max{Ls f ,Lk +1,Lr} > L f
Message complexity Ns +(n− f −1)Nk + f Nr > N

Quorum size n− f ≥ Q

Using the values in Table 4.1, Table 4.2 summarizes the performance metrics of

R and compares them to those of C . Note that concurrent requests are not considered

in Table 4.2. We offer the following explanations for Table 4.2:

Learning latency (no failures): When no server has failed, the commit latency for R

at the coordinator p is the larger of Lsc and Lk + 1. This is because even it only

takes Lsc steps for the coordinator p to learn the value it suggested, p can not

commit the value until it knows that the other servers have skipped their turns.

This takes Lk + 1 steps, since the other servers starts skipping immediately after

they receives the suggestion from p and it takes additional Lk steps for p to learn

the skips. Assuming A is skip-fast, we know Lk < Lsc. And so, max{Lsc,Lk +

1} = Lsc ≤ Lc. Similar result can be obtained for the followers, as shown in

Figure 4.2.

Learning latency ( f servers failed): Assume f servers have failed and all the other

servers know which are the ones that have failed. When a correct server sug-

gests a value, it also needs to revoke the faulty ones and wait for the result of the

revocation before committing its request. So, the learning latency at the coordi-

nator is max{Lsc,Lk + 1,Lr}. We already know that Lk < Lsc < Lr, and Lr > Lc

so max{Lsc,Lk + 1,Lr} = Lr > Lc. Similar results can also be obtained for the

followers, as shown in Figure 4.2.

Message complexity: When concurrent requests are not considered, n simple consen-
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sus instances are consumed for committing one request: one to choose the request,

f to revoke the f known faulty servers, and n− f −1 are skipped. So, the message

complexity of R is Ns +(n− f − 1)Nk + f Nr, which is considerably higher than

N, considering that Nr > N. When there is no failures, i.e., f = 0, the message

complexity is Ns+(n−1)Nk, which is still higher than N, considering that usually

Ns = N and Nk < N.

Quorum size: For protocol A , Qs and Qr, the quorum size of A for suggestion and

revocation, are usually the same as that of protocol C , which is Q. Qk, the quorum

size for skipping, is no larger than Q because skipping can be optimized in A , but

the coordinator is a critical server in the case of skipping. And since a server in R

needs to wait for all non-faulty servers to skip, it needs to wait for n− f servers

(including itself) before committing a request.

We have not yet considered concurrent requests. When requests are proposed

concurrently by servers, fewer simple consensus instances need to be skipped or re-

voked. So, concurrent requests can help cut down the message complexity of R. As-

suming m requests are concurrently proposed for n consecutive simple consensus in-

stances that coordinated by n distinct servers, the amortized message complexity for

committing one request is (mNs+(n− f −m)Nk + f Nr)/m, which is still higher than N,

unless m = n and f = 0, i.e., there is no failure and all servers propose requests at the

same time.

From the above analysis, we know concurrent requests reduce message complex-

ity. However, concurrent requests also introduces contention, which can cause higher

commit latency for R. We analyze this case in the next subsection.

4.4.1 Delayed commit

While any server of R can commit its request in just Lsc steps when there is

no contention, commits may have to be delayed up for additional steps when there are

concurrent suggestions.

For example, in the scenario illustrated in Figure 4.2, server p0 suggests x to

instance 0 concurrently with p1 suggesting y to instance 1. Lsc steps after proposing
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Figure 4.2: Delayed commit

y, p1 learns that y has been chosen for instance 1, but cannot commit y yet because

instance 0 is still in progress and a value is yet to be learned for instance 0. In this

case, p1 cannot commit y until Ls f steps after p0 suggested x. Then p1 can commit both

x and y at once. We say that y experiences a delayed commit at p1. The extra delay

introduced by delayed commit is bounded by Theorem 4.11. We also discuss a simple

flexible commit mechanism in section 4.5.2 to mitigates the effect of delayed commit.

Theorem 4.11: Assume (1) the coordinator and the followers learns the suggestion

from the coordinator in Lsc and Ls f steps respectively; (2) the servers skip unused

turns immediately after receiving the suggestion from the coordinator; and (3) FIFO

communication channels. Let Ld be the extra delay caused by delayed commit, then

Ls f −Lsc −1 < Ld < Ls f −Lsc +1.

Proof. Without losing generality, we use the example in Figure 4.2. In the example, p0

and p1 suggest x and y to instances 0 and 1 respectively.

For the delayed commit to occur at p1, p1 must receives the suggestion of x in

between point A and C, i.e., after p1 suggests y and before p1 receives the first round-trip

from p0 after the suggestion. The suggestion of x must be received after the p1 suggests

y because p1 would have skipped instance 1 and no delayed commit would happen.

Suppose the suggestion of x is received after the first round trip, i.e., point C. We know

p0 must have suggested x (point B) after receiving the suggestion of y from p1 due to the
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FIFO channels. This would have made p0 skip instance 0, avoiding the delayed commit.

So, the suggestion must be received before point B.

When delayed commit occurs, Ly, the total delay of y, is from point A to E.

From the above argument we know that Ls f − 1 < Ly < Ls f + 1: when the suggestion

of x is received right after point A at p1, Ly is minimized to Ls f −1 steps; when the the

suggestion of x is received right before point c at p1, Ly is maximized to Ls f +1. Since

it takes Lsc steps for y to be learned at p1, we have Ls f −Lsc −1 < Ld < Ls f −Lsc +1.

4.5 Optimizations for R

From the performance analysis in the previous section, it is straightforward to

see that protocol R, without optimizations, offers little advantage over C . The only

case R is better than C is when there are no concurrent requests, R allows all servers to

be able to commit their requests in Lc steps, which is only possible at the leader with C .

However, concurrent requests can make this advantage go away, since delayed commit

adds extra latency to the baseline latency. Other drawback of R includes: high message

complexity, increased latency when one or more server has failed due to revocation, and

the need to receive skips from all correct servers to make progress. It is obvious that

optimizations are necessary for any protocol based on R to be practical. In this section,

we discuss optimizations that are generic to protocol R, i.e., those that do not involve

the specific detail of the simple consensus protocol A used. These include issuing

revocation in large block size and the use of out-of-order commit, a flexible commit

scheme that is unique to rotating leader based protocols because of the properties of

simple consensus. There are also other forms of optimizations that can be applied to

rotating leader based protocols, however, they do involves the details of protocol A , and

so we discuss them later when we introduce the specific protocols for solving replicated

state machine in specific environments.
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4.5.1 Revocation in large blocks

Revocation was introduced in protocol R to ensure liveness in the presence of

faulty servers. Rule RL.3 allows a server p to revoke instances coordinated by faulty

servers prior to Ip, i.e., the index of server p. This introduces a performance bottleneck

when one or more servers have failed: revocation, which has high communication delays

and large message complexity, is executed regularly in the normal execution path. A

simple idea is to revoke all q’s future turns, which irreversibly chooses no-op for all q’s

future turns. However, q may need to suggest values in the future, either because q was

falsely suspected or because it recovers. A better way to reduce the cost of revocation is

to revoke faulty servers in advance of the index of p and in large block as described in

Optimization RL.1.

Optimization RL.1: Let q be a server that another server p suspects has failed, and let

Cq be the smallest instance that is coordinated by q and not learned by p. For some

constant β , p revokes q for all instances in the range [Cq, Ip + 2β ] that q coordinates if

Cq < Ip +β .

Optimization RL.1 allows p to revoke q at least β instances in advance before

p suggests a value to some instance i greater than Cq. The rationale behind Optimiza-

tion RL.1 is that a faulty server should be revoked in the future anyway, revoking it

in advance removes revocation from execution path of normal proposing activities. By

tuning β , we can ensure that by the time p learns the outcome of instance i, all instances

prior to i and coordinated by q are revoked and learned. Thus, p can commit instance

i without further delay. Since Optimization 3 also requires revocations being issued in

large blocks, the amortized message cost is also reduced.

Lemma 4.12: Assuming ♦P, protocol R (RL.1 – RL.4) with Optimization RL.1 imple-

ments replicated state machines correctly.

Proof. Note that Optimization RL.1 can only exclude the actions of a falsely suspected

server for a bounded number of instances. It clearly does not violate any of the safety

properties. Assuming ♦P means that such false suspicions will eventually cease. So,

using Optimization RL.1 does not affect the liveness of the protocol.
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In chapter 5, we use Lemma 4.12 to prove the correctness of protocol Men-

cius. Similarly, Lemma 4.13 can be proved for forwarding based protocol. We use

Lemma 4.13 to prove the correctness of protocol RAM in chapter 6.

Lemma 4.13: Assuming Ω, protocol R (RL.1 – RL.5) with Optimization RL.1 imple-

ments replicated state machines correctly.

Proof. Note that Optimization RL.1 can only exclude the actions of a falsely suspected

server for a bounded number of instances. It clearly does not violate any of the safety

properties. Assuming Ω means that such false suspicion will eventually cease for the

elected leader. Since Optimization RL.1 only extend the false suspicion period of the

leader for a bounded period, the resulting failure detector still satisfies the property of

Ω. So, using Optimization RL.1 does not affect the liveness of the protocol.

4.5.2 Out-of-order commit

In the example shown in Figure 4.2, we can mitigate the effects of delayed com-

mit with a simple and more flexible commit mechanism that allows x and y to be exe-

cuted in any order when they are commutable, i.e., executing x followed by y produces

the same system state as executing y followed by x.

Theorem 4.14: When a request y suggested to instance i and originated from server p1

experiences a delayed commit because of a request x suggested to instance j ( j < i) and

originated from server p0, p1 can commit y immediately if (1) x and y are commutable;

and (2) p1 has confirmed that p0 has suggested value x to instance j.

Proof. Once p1 has confirmed that that x is suggested by p0 to instance j, the outcome

of instance j is narrowed down to two values x or no-op. This is true because p0, the

coordinator of instance j, has proposed x, all the other servers, i.e., the followers, can

only propose no-op by the definition of simple consensus. If x and y are commutable, y

will be commutable with the outcome of instance j regardless which value is eventually

chosen because no-op commutes with any requests. So, y can be committed at p1 as

soon as p1 has confirmed that x was suggested by p0.
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The out-of-order commit mechanism is unique to the rotating leader protocols

and can not easily applied to generic consensus based protocols because out-of-order

commit takes advantages of the definition of simple consensus, which restricts the value

that can be proposed by the followers – the key for R to guarantee safety while allowing

out-of-order commit.

Note that Theorem 4.14 only discusses delayed commit between two instances

of simple consensus. However, it is possible for a request to have multiple dependencies

caused by delayed commit. In this case, the request can not be committed until all

the depended requests are committed or all uncommitted requests are confirmed to be

commutable with itself.

Finally, whether two requests are commutable is application dependent. For

out-of-order commit to work, this means, in additional to the propose and commit in-

terface used by replicated state machine, another interface is need to ask the application

if requests can be commuted. See section 5.5.5 and section 6.8.3 for evaluations of the

effectiveness of out-of-order commit.

4.6 Summary

In this section, we introduced the simple consensus problem, which we later

proved to be equivalent to consensus in term of solvability. We then explained R: a

generic rotating-leader replicated state machine protocol that runs an unbounded se-

quence of simple consensus instead of consensus. This makes R easily satisfies the

Agreement, Integrity and Total Order properties of replicated state machines. The Va-

lidity of the protocol is ensured using a set of rules. Depending on the failure detectors

assumed, four or five rules may be used. In the next chapter, we instantiate and opti-

mize R to obtain an efficient crash-failure replicated state machine protocol that we call

Mencius.



Chapter 5

Crash Failure: Protocol Mencius

In this chapter, we study efficient replicated state machine protocols for multi-

site {W×W} systems under the crash failure model. Our goal is to build a crash failure

protocol that has both high throughput under high client load and low latency under low

client load in the face of changing wide-area network environment and client load.

Existing protocols such as Paxos, Fast Paxos, and CoReFP [25] are not, in gen-

eral, the best consensus protocols for such wide-area applications. For example, Paxos

relies on a single leader to choose the request sequence. Due to its simplicity it has high

throughput, and requests generated by clients in the same site as the leader enjoy low

latency, but clients in other sites have higher latency. In addition, the leader in Paxos is

a bottleneck that limits throughput. Having a single leader also leads to an unbalanced

communication pattern that limits the utilization of bandwidth available in all of the net-

work links connecting the servers. Fast Paxos and CoReFP, on the other hand do not rely

on a single leader. They have low latency under low load, but have lower throughput

under high load due to their higher message complexity.

This chapter presents Mencius1, a rotating-leader replicated state machine proto-

col that derives from Paxos. It is designed to achieve high throughput under high client

load and low latency under low client load, and to adapt to changing network and client

environments.

1Mencius (Chinese: ��; pinyin: �™����) was one of the principal philosophers during the

Warring States Period. During the fourth century BC, Mencius worked on reform among the rulers of the

area that is now China.
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The basic approach of Mencius is to partition the sequence of consensus protocol

instances among the servers, much as protocol R does. Indeed, Mencius is an optimized

version of R that uses Coordinated Paxos, a variant of Paxos, for solving simple con-

sensus. Applying the rotating leader scheme of R amortizes the load of being a leader.

Doing so increases throughput when the system is CPU-bound. When the network is the

bottleneck, a rotating leader scheme is capable of fully utilizing the available bandwidth

to increase throughput. It also reduces latency, because clients can use a local server as

the leader for their requests; and because of the design of R, a client will typically not

have to wait for its server to get its turn.

The idea of partitioning sequence numbers among multiple leaders is not origi-

nal: indeed, it is at the core of a recent patent [40], for the purpose of amortizing server

load. To the best of our knowledge, however, Mencius is novel: not only are sequence

numbers partitioned, key performance problems such as adapting to changing client load

and to asymmetric network bandwidth are addressed. Simple consensus plays a key fac-

tor in the design of Mencius for achieve these performance improvements First, simple

consensus allows servers with low client load to skip their turns without having to have

a majority of the servers agree on it first. Second, by opportunistically piggybacking

SKIP messages on other messages, Mencius allows servers to skip turns with little or no

communication and computation overhead. This allows Mencius to adapt inexpensively

to client and network load variance.

The remainder of the section is as follows. Section 5.1 examines the performance

problems in a crash-failure multi-site environment. Section 5.2 discuss the drawbacks

of existing protocols in multi-site environment. Section 5.3 refines Paxos into Mencius.

Section 5.4 discusses practical implementation considerations for Mencius. Section 5.5

evaluates Mencius, Section 5.6 summarizes related work, and Section 5.7 discusses fu-

ture work and open issues. Section 5.8 summarizes this chapter.

5.1 Performance issues

In this section we brief review the performance issues and system bottleneck in a

multi-site system to better understand how to design an efficient crash failure replicated
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state machine protocol.

In the multi-site system, the clients access the service by issuing requests to the

servers. From the clients’ point of view, the most important performance metric is to

have low request latency, i.e. low delay in time between a request is issued and a reply

is received. In addition to low latency, high throughput is also desirable because the

latency of the requests can increase dramatically in a low throughput system when the

system is under high load: the requests that cannot be processed in time build up queues

at the servers and end up spending more time in queue than being processed [28]. So, it

is our goal to design a protocol with both high throughput and low latency.

For throughput, there are two possible bottlenecks in this systems, depending

upon the average request size:

Wide-area channels: When the average request size is large enough, channels saturate

before the servers reach their CPU limit. Therefore, the throughput is determined

by how efficiently the protocol is able to propagate requests from its originator to

the remaining sites. In this case, we say the system is network-bound.

Server processing power: When the average request size is small enough, the servers

reach their CPU limit first. Therefore, the throughput is determined by the pro-

cessing efficiency at the bottleneck server. In this case, we say the system is

CPU-bound.

As a rule of thumb, lower message complexity leads to higher throughput be-

cause more network bandwidth is available to send actual state machine commands, and

less messages per request are processed. Limiting the use of message broadcasting helps

to reduce the message complexity.

To achieve low latency, it is important to design the protocol that takes advantage

of the multi-site system architecture, i.e., the communication within a site has much

higher throughput and lower latency than that across sites. And so, it is important to have

short chains of wide-area communication steps for the servers to learn the consensus

outcome. However, the number of communication steps may not be the only factor that

impacts latency: high variance on the delivery of message in wide-area networks is also

a major contributor (see section 3.3).
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Finally, besides high throughput and low latency, it is also preferable to design

a protocol that adapts well to the network environment. For example, for inter-site

communication, the link latency have high variance and the link bandwidth may also

change from time to time, an adaptive protocol works well with a wide-range of such

network conditions and adjusts itself when network condition changes.

5.2 Why not existing protocols?

Over the year, a large number of crash failure protocols have been proposed.

Most of them, however, were primarily designed for local area networks. Not surpris-

ingly, even the best existing protocols, such as Paxos, Fast Paxos and CoReFP, have

their respective drawbacks in multi-site systems. In section 3.3, we showed that a pro-

tocol designed for {L×L} settings may not work as well in {W×L} settings. More

specifically, we compared Paxos and Fast Paxos. Table 5.1 extends this comparison to

multi-site {W×W} settings.

Table 5.1: A comparison of Paxos and Fast Paxos in multi-site systems

Paxos Fast Paxos

WAN learning Leader:2
2 (when no collision)

latency Follower: 4

Collision No Yes

Number of replicas 2 f +1 3 f +1

WAN message Leader: 3n−3
n2 −1

complexity Follower: 3n−2

Load balancing No Yes

Fast Paxos has the advantages in two categories: (1) When collision and con-

tention do not occur with Fast Paxos, client requests at all sites have the minimal latency

of two wide-area delays. With Paxos, two-step delay is only possible at the leader site,

while all other sites have a latency of four wide-area delays. (2) In Fast Paxos, all

servers act the same, and so, the protocol is more load-balanced than the leader-based

Paxos. The two advantages, however, likely translate into little real-life performance

advantages for Fast Paxos because (1) concurrent requests result can collide, which not

only nullifies the advantage of reduced latency of Fast Paxos but also adds extra latency
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required for recovery; (2) though more load-balanced, the high message complexity of

Fast Paxos result in lower throughput when the system is CPU-bound: each Fast Paxos

server may end up with higher load than the leader with Paxos. Finally, Fast Paxos also

require more replicas than Paxos to tolerate the same number of failures. This not only

increases the initial hardware cost but also increases the subsequence maintain cost:

more servers means more failures.

CoReFP [25] tries to deal with the collision problem of Fast Paxos by running

Paxos and Fast Paxos concurrently. When there is no contention, it has the minimal two-

step latency at all servers. When concurrent requests result in contention, one more step

is necessary to reach consensus. However, the system has a larger message complexity

than both Paxos and Fast Paxos. As a result, it has lower throughput and a significant

penalty on latency when system load is high.

Though not clear cut, Paxos is in general a better candidate for multi-site systems

than Fast Paxos and CoReFP because of its simplicity and lower wide-area message

complexity. Paxos, however, is still not ideal for multi-site systems due to its single-

leader nature. We examine this next.

L
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Figure 5.1: The communication pattern in Paxos

Unbalanced communication pattern: With Paxos, the leader generates and consumes

more traffic than the other servers. Figure 5.1, shows that there is network traffic

from replicas to the leader, but no traffic between non-leader replicas. Thus, in a

system where sites are pairwise connected, Paxos uses only the channels incident
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upon the leader, which reduces its ability to sustain high throughput. In addition,

during periods of synchrony, only the REQUEST and PROPOSE messages in Paxos

carry significant payload. When the system is network-bound, the volume of these

two messages determines the system throughput. In Paxos, a REQUEST is sent

from the originator to the leader and a PROPOSE is broadcast by the leader. Under

high load, the outgoing bandwidth of the leader is the bottleneck, whereas the

channels between the non-leaders are idle. In contrast, Mencius uses a rotating

leader scheme. Both eliminates the need to send REQUEST messages across wide

area network and gives a more balanced communication pattern, which better

utilizes available bandwidth.

Computational bottleneck at the leader: The leader in Paxos is a potential bottleneck

because it processes more messages than other replicas. When CPU-bound, a

system running Paxos reaches its peak capacity when the leader is at full CPU

utilization. As the leader requires more processing power than the other servers,

the CPU utilization on non-leader servers do not reach their maximum capacity,

thus underutilizing the overall processing capacity of the system. The number

of messages a leader needs to process for every request grows linearly with the

number of servers n, but it remains constant for other replicas. This seriously

impacts the scalability of Paxos as n scales up. By rotating the leader, no single

server is a potential bottleneck when the workload is evenly distributed across the

sites of the system.

Higher learning latency for non-leader servers: While the leader always learns and

commits any value it proposes in two communication steps, any other server needs

two more communication steps to learn and commit the value it proposes due to

the REQUEST and LEARN messages. With a rotating leader scheme, any server

can propose values as a leader. By skipping turns opportunistically when a server

has no value to propose, one can achieve the optimal commit delay of two com-

munication steps for any server when there are no concurrent proposals [34]. Con-

current proposals can result in additional delay to commit, but such delays do not

always occur. When they do, one can take advantage of commutable operations

by having servers execute commands possibly in different, but equivalent orders
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using out-of-order commit.

5.3 Deriving Mencius

Mencius is a rotating-leader protocol designed for crash failure multi-site sys-

tems. In this section, we first explain our assumptions and design decisions. We then

introduce Coordinated Paxos, an efficient variant of Paxos for solving simple consen-

sus. We later use Coordinated Paxos to instantiate the generic rotating-leader protocol

R. Finally, we optimize the instantiated protocol. This last protocol is the one that we

call Mencius.

This development of Mencius has two benefits. First, by deriving Mencius from

Paxos, Coordinated Paxos, and a set of rules, optimizations, and accelerators, it is rela-

tively easy to see that Mencius is correct. Second, one can continue to refine Mencius

or even derive a new version of Mencius to adapt it to a particular environment.

5.3.1 Assumptions

In addition to the crash failure multi-site system model, we make the following

assumptions about the system. Note that it is possible to build a variant of Mencius that

does not rely on these assumptions. However, these assumptions do make the derivation

and analysis of the protocol cleaner.

Recoverable crash-failure process: Like Paxos, Mencius assumes that servers fail by

crashing and can later recover. Servers have access to stable storage, which they

use to recover their states prior to failures. Stable storage simplifies recovery from

failures that only last a short period of time. However, more sophisticated method

need to be considered for recovering from longer failures (see section 5.4.2.

Unreliable failure detector ♦P: We have already explained that R requires ♦P for

liveness. So does Mencius, a protocol derived from R. Though it is possible

for Mencius to use the weaker Ω by using the forwarding mechanism described

in the previous chapter, we do not consider it here.
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Asynchronous FIFO communication channe: Since we use TCP as the underlying

transport protocol, we assume FIFO channels and that messages between two cor-

rect servers are eventually delivered. This is a strictly stronger assumption com-

pared to the one made by Paxos. Had we instead decided to use UDP, we would

have to implement our own message retransmission and flow control at the appli-

cation layer. Assuming FIFO enables the optimizations discussed in section 5.3.4.

These optimizations, however, are applicable only if both parties of a channel are

available and a TCP connection is established. When servers fail and recover after

long periods, implementing FIFO channels is impractical as it may require buffer-

ing a large number of messages. Mencius uses a separate recovery mechanism

that does not depend on FIFO channels (see section 5.4.2).

5.3.2 Coordinated Paxos

Figure 5.2: The message flow of suggest, skip and revoke in Coordinated Paxos.

It is easy to see that Paxos, a consensus protocol, implements simple consensus

as a direct result of Lemma 4.1.

Lemma 5.1: Paxos implements simple consensus.

We use, however, an efficient variant of Paxos to implement simple consensus.

We call it Coordinated Paxos (see Appendix A for the protocol in pseudo code). In each

instance of Coordinated Paxos, all servers agree that the coordinator is the default leader,

and start from the state in which the coordinator had run Phase 1 for some initial round

r0. Such a state consists of a promise not to accept any value for any round smaller than

r0. A server can subsequently initiate the following actions, as shown in Figure 5.2:



70

Suggest: The coordinator suggests a request v by sending PROPOSE messages with pay-

load v in round r0 (Instance 0 in Figure 5.2). We call these PROPOSE messages

SUGGEST messages.

Skip: The coordinator skips its turn by sending PROPOSE messages that proposes no-

op in round r0 (Instance 1 in Figure 5.2). We call these PROPOSE messages SKIP

messages. Note that because all other servers can only propose no-op, when the

coordinator proposes no-op, any server learns that no-op has been chosen as soon

as it receives a SKIP message from the coordinator.

Revoke: When suspecting that the coordinator has failed, some server will eventually

arise as the new leader and revoke the right of the coordinator to propose a value.

The new leader does so by trying to finish the simple consensus instance on behalf

of the coordinator (Instance 2 in Figure 5.2). Just like a new Paxos leader would

do, it starts Phase 1 for some round r′ greater than the current round r. If Phase

1 indicates no value may have been chosen, then the new leader proposes no-op

in Phase 2. Otherwise, it proposes the possible consensus outcome indicated by

Phase 1.

As we described in chapter 4, the actions suggest, skip and revoke specialize

mechanisms that already exist in Paxos. Making them explicit, however, enables more

efficient implementations in wide-area networks. Also, it is straightforward to see that

SUGGEST and SKIP are specialized PROPOSE messages that propose a client request and

no-op to round r0 respectively.

Theorem 5.2: Assuming a failure detector at least as strong as Ω, Coordinated Paxos

implements simple consensus.

Proof. By Lemma 5.1, we know Paxos implements simple consensus. Coordinated

Paxos differs from Paxos in the followings: (1) Coordinated Paxos starts from a specific

(and safe) state; (2) a server learns no-op upon receiving a SKIP message from the coor-

dinator, and can act accordingly; and (3) Coordinated Paxos assumes a failure detector

at least as strong as that assumed by Paxos. None of the three affects Paxos’s safety

and liveness in term of implementing simple consensus, therefore, Coordinated Paxos

implements simple consensus.
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5.3.3 P: A simple state machine

We now construct an intermediate protocol P by using Coordinated Paxos to

instantiate protocol R. The pseudo code of P can be found in Appendix B. Essentially,

P follows the same set of rules that R does (Rule RL.1 – RL.4). For the purpose of

completeness, we restate these rules in the context of Coordinated Paxos.

Rule M.1: Each server p maintains its next simple consensus sequence number Ip. We

call Ip the index of server p. Upon receiving a request from a client, a server p suggests

the request to the simple consensus instance Ip and updates Ip to the next instance it will

coordinate.

Rule M.2: If server p receives a SUGGEST message for instance i and i > Ip, before

accepting the value and sending back an ACCEPT message, p updates Ip such that its

new index I′p = min{k : p coordinates instance k∧ k > i}. p also executes skip actions

for each of the instances in range [Ip, I′p) that p coordinates.

Rule M.3: Let q be a server that another server p suspects has failed, and let Cq be

the smallest instance that is coordinated by q and not learned by p. p revokes q for all

instances in the range [Cq, Ip] that q coordinates.

Rule M.4: If server p suggests a value v 
= no-op to instance i, and p learns that no-op

is chosen, then p suggests v again.

Corollary 5.3: Assuming ♦P, P implements replicated state machines.

Proof. P is instance of R by instantiate A using Coordinated Paxos. So, P imple-

ments replicated state machines, according to Theorem 4.9.

5.3.4 Optimizations

Protocol P is correct but not necessarily efficient. It always achieves the mini-

mal two communication steps for the proposing server to learn the consensus value, but

its message complexity varies depending on the rates at which the servers suggest val-

ues. In the worst case, when there is no failure and only and only one server is proposing

requests, the message complexity of P is (n+2)(n−1): 3n−3 for suggesting the value
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and (n−1)2 for the rest of servers to skip. This is considerably higher than that of Paxos

under the same condition (3n−3). In this section, we optimize P to obtain Mencius.

Consider the case where server p receives a SUGGEST message for instance i

from server q. As a result, p skips all of its unused instances smaller than i (Rule 2).

Let the first instance that p skips be i1 and the last instance p skips be i2. Since p

needs to acknowledge the SUGGEST message of q with an ACCEPT message, p can

piggyback the SKIP messages on the ACCEPT message. Since channels are FIFO, by

the time q receives this ACCEPT message, q has received all the SUGGEST messages p

sent to q before sending the ACCEPT message to q. This means that p does not need

to include i1 in the ACCEPT message: i1 is the first instance coordinated by p that q

does not know about. Similarly, i2 does not need to be included in the ACCEPT message

because i2 is the largest instance smaller than i and coordinated by p. Since both i

and p are already included in the ACCEPT message, there is no need for any additional

information: all we need to do is augment the semantics of the ACCEPT message. In

addition to acknowledging the value suggested by q, this message now implies a promise

from p that it will not suggest any client requests to any instances smaller than i in the

future. This gives us the first optimization:

Optimization M.1: p does not send a separate SKIP message to q. Instead, p uses the

ACCEPT message that replies the SUGGEST to promise not to suggest any client requests

to instances smaller than i in the future.

An alternative to implement Optimization M.1 is to include i1 as an additional

field in the ACCEPT message when FIFO channels are not available. This alternative can

be applied to Optimization M.2 (shown below) as well.

Lemma 5.4: Protocol P with Optimization 1 implements replicated state machines

correctly.

Proof. Optimization M.1 combines multiple messages that P would have sent sepa-

rately into one message. Doing this clearly does not violate any of the safety properties.

It does not affect the liveness properties either, since the combined message is sent with

no additional delay. Therefore, Protocol P with Optimization M.1 is correct.
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We can also apply the same technique to the SKIP messages from p to other

servers. Instead of using ACCEPT messages, we piggyback the SKIP messages on future

SUGGEST messages from p to another server r:

x y

y
Replica0

Replica1

Replica2

x

x x

yx

Replica2 suggests
y to instance 5

Replica2 suggests
x to instance 2

x

: no-op learned

: no value earned : x learned and committedx

x : x learned but not committed

Figure 5.3: Liveness problem can occur when using Optimization M.2 without Accer-

lerator M.1

Optimization M.2: p does not immediately send a SKIP message to r. Instead, p waits

for a future SUGGEST message from p to r to indicate that p has promised not to suggest

any client requests to instances smaller than i.

An alternative way to propagate the SKIP messages from p to other servers is

to have p piggyback them on instance i’s Phase 3 LEARN messages that are broadcast

by p. However, it is less scalable than Optimization M.2 because the number of addi-

tional fields needed grows linearly with the number of server n. We do not discuss this

alternative further in this dissertation.

Note that Optimization M.2 can potentially defer the propagation of SKIP mes-

sages from p to r for an unbounded period of time. Figure 5.3 shows one such example.

Consider three servers p0, p1, p2. Only p0 suggests values for instance 0, 3, 6, and so

on. p0 always learns the result for all instances by means of the ACCEPT messages from

p1 and p2. Server p1, however, learns all values that p0 proposes, and it knows which

instances it is skipping, but it does not learn that p2 skips, such as for instance 2 in this

example. This leaves gaps in the view of p1 of the consensus sequence and prevents p1
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from committing values learned in instance 3, 6, and so on. Similarly, p2 does not learn

that p1 is skipping and prevents p2 from committing values learned in 3, 6, and so on.

This problem only occurs between two idle servers p1 and p2: any value sug-

gested by either server will propagate the SKIP messages in both directions and hence

fill in the gaps. Fortunately, while idle, neither p1 nor p2 is responsible for generating

replies to the clients. This means that, from the client perspective, its individual requests

are still being processed in a timely manner, even if p1 and p2 are stalled. We use a sim-

ple accelerator rule to limit the number of outstanding SKIP messages before p1 and p2

start to catch up:

Accerlerator M.1: A server p propagates SKIP messages to r if the total number of

outstanding SKIP messages to r is larger than some constant α , or the messages have

been deferred for more than some time τ .

Lemma 5.5: Protocol P with Optimization M.2 and Accelerator M.1 implements repli-

cated state machines correctly.

Proof. Optimization M.2 combines multiple messages that P would have sent sepa-

rately into one message. Doing this clearly does not violate any of the safety properties.

Optimization M.2 alone, however, could affect the liveness properties, since it can po-

tentially delay the propagation of SKIP messages for an unbounded amount of time.

Because Accelerator 1 bounds the delay and P only relies on the eventual delivery of

messages for liveness, adding Optimization M.2 and Accelerator M.1 to protocol P

does not affect liveness, and so P still implements replicated state machines.

Given that the number of extra SKIP messages generated by Accelerator M.1 are

negligible over the long run, the amortized wide-area message complexity for Mencius

is 3n− 3 ((n− 1) SUGGEST, ACCEPT and LEARN messages each), the same as Paxos

when REQUEST is not considered.

We can also reduce the extra cost generated by the revocation mechanism. If

server q crashes, revocations need to be issued for every simple consensus instance that

q coordinates. By doing this, we increase both the latency and message complexity due

to the use of the full three phases of Paxos. We have already explained how to reduce
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the cost of revocation using Optimization RL.1 for R. For the purpose of completeness,

we restate it here as Optimization M.3.

Optimization M.3: Let q be a server that another server p suspects has failed, and let

Cq be the smallest instance that is coordinated by q and not learned by p. For some

constant β , p revokes q for all instances in the range [Cq, Ip + 2β ] that q coordinates if

Cq < Ip +β .

Corollary 5.6: Protocol P with Optimization M.3 implements replicated state ma-

chines correctly.

Proof. From Lemma 4.12.

Optimization M.3 addresses the common case where there are no false suspi-

cions. When a false suspicion does occur, it may result in poor performance for those

falsely suspected servers. We consider the poor performance in this case acceptable be-

cause we assume false suspicions occur rarely in practice and the cost of recovery from

a false suspicion is small (see section 5.4.5).

Mencius is P combined with Optimizations M.1 – M.3 and Accelerator M.1.

Appendix C has the pseudo code for Mencius.

Theorem 5.7: Mencius implements replicated state machines correctly.

Proof. From Lemma 5.4, 5.5 and Corollary 5.6.

Mencius, being derived from Paxos, has the same quorum size of f + 1. This

means that up to f servers can fail among a set of 2 f + 1 servers. Paxos incurs tem-

porarily reduced performance when the leader fails. Since all servers in Mencius act as

a leader for an unbounded number of instances, Mencius has this reduced performance

when any server fails. Thus, Mencius has higher performance than Paxos in the failure-

free case at the cost of potentially higher latency upon failures. Note that higher latency

upon failures also depends on other factors such as the stability of the communication

network. Figure 5.4 compares the communication pattern in Paxos and Mencius. The

links between Paxos followers are left idle whereas they are utilized in Mencius. By

distrbuting messages that carry significant payload to all the available links, Mencius is

able to achieve better throughput under network-bound payload (see section 5.5.2).
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Figure 5.4: A comparison of the communication pattern in Paxos and Mencius

5.4 Implementation considerations

In the previous section, we have derived Mencius from Paxos and proved its

correctness. In this section we further address issues towards a practical implementation

for Mencius.

5.4.1 Prototype implementation

We implemented Mencius using C++ and used TCP as the transport protocol.

The same code base was also used to implement Paxos for the performance evaluation

in section 5.5. Here are some of the implementation details:

Single threaded implementation: An asynchronous and single threaded architecture

was used. The architecture allows more meaningful comparison of the peak CPU-

bound throughput of Paxos and Mencius on multi-core machines, since both pro-

tocol would consume a maximum of 100% CPU at peak. A multi-threaded imple-

mentation would, however, consume a maximum of 100% CPU at the bottleneck

thread: the total CPU consumed by the two protocol would be different.

Nagle’s algorithm: Nagle’s algorithm [49] is a technique in TCP for improving the

efficiency of wide-area communication by batching small messages into larger

ones. It does so by delaying sending small messages and waiting for data from
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the application. In our implementation, we can instruct servers to dynamically

turn on or turn off Nagle’s algorithm.

Temporary broken TCP connection: We add an application layer sequence number

to Mencius’s messages for handling temporary broken TCP connection. FIFO

channels are maintained by retransmitting missing messages upon reestablishing

the TCP connection.

5.4.2 Recovery

We have already explained how Mencius recovers from broken TCP connec-

tions. The following outlines how a practical implementation of Mencius deals with

process failures.

Short term failure Like Paxos, Mencius logs its state to stable storage and recovers

from short term failures by replaying the logs and learning recent chosen requests

from other servers.

Long term failure It is impractical for a server to recover from a long period of down

time by simply learning missing sequences from other servers, since this requires

correct servers to maintain an unbounded long log. The best way to handle this,

such as with checkpoints or state transfer [15, 44], is usually application specific.

5.4.3 Revocation

So far, we have assumed that every server can start the revocation process against

a suspected server. Doing so, however, is an inefficient use of resources, and it also cre-

ates a liveness problem. For example, consider three servers p, q and r. Suppose r

crashes and both p and q suspect the failure. If p and q concurrently attempt to re-

voke r — for example, p chooses round a1 and then q chooses round a2 > a1 before

p completes — then no value will be chosen in round a1. This situation can repeat an

unbounded number of times.

This is the same liveness problem that occurs in Paxos, and it can be addressed

in the same way: have a leader elected to revoke the (suspected of being faulty) server
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r. Like in a state machine built with Paxos, care has to be taken in ensuring that all

servers are up to date as to the point that r failed. For example, suppose r crashed after

having learned the outcome of instance 2, but fails after sending LEARN to p and not

to q. When p revokes r, it will start from the next instance – say, instance 5. When p

prepares q to revoke r starting at instance 5, q will note that it doesn’t know the outcome

of instance 2. So, q can prompt p, and p can send a LEARN message that informs q as

to the outcome of instance 2.

5.4.4 Commit delay and out-of-order commit

In Paxos, the leader serializes the requests from all the servers. For purposes of

comparison, assume that Paxos is implemented, like Mencius, using FIFO channels. If

the leader does not crash, then each server learns the requests in order, and can commit

a request as soon as it learns the request. The leader can commit a request as soon as

it collects ACCEPT messages from a quorum of f +1 servers, and any other server will

have an additional round trip delay due to the REQUEST and LEARN messages.

While a Mencius server can commit the request in just one round trip delay

when there is no contention, as we have explained in section 4.4.1, extra communica-

tion delay caused by delayed commit may occur when there are concurrent suggestions.

Figure 5.5 shows one such example, in which y experiences a delayed commit when

it is first learned at p1 and cannot be committed until p1 learns x. According to The-

orem 4.14, delayed commit can be up to two communication steps for Mencius, since

it takes three steps for a follower in Mencius to learn the value suggested by the co-

ordinator. We can reduce the upper bound of delayed commit to one communication

step by broadcasting ACCEPT messages and eliminating LEARN messages. This reduc-

tion gives Mencius an optimal commit delay of three communication steps when there

are concurrent proposals [34] at the cost of higher message complexity and thus lower

throughput.

Because delayed commit arises with concurrent suggestions, it becomes more of

a problem as the number of suggestions grows. In addition, delayed commit impacts the

commit latency but not overall throughput: over a long period of time, the total number

of requests committed is independent of delayed commits.
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Figure 5.5: Delayed commit in Mencius.

In section 4.5.2, we discussed how to use out-of-order commit to mitigate the

effects of delayed commit in protocol R by allowing commutable requests to be com-

mitted in any order at different servers. The same technique applies for Mencius. To

support out-of-order commit, a third API ISCOMMUTE(u,v) was implemented in Men-

cius to allow Mencius to ask the application if two requests are commutable. This is in

addition to the standard APIs PROPOSE(v) and ONCOMMIT(v) used for the application

to issue request to Mencius and for Mencius to notify the application that a request is

ready to commit.

We implement out-of-order commit in Mencius by tracking the dependencies

between the requests and by committing a request as soon as all requests it depends on

have been committed. We evaluate its effectiveness in Section 5.5.5.

5.4.5 Parameters

Accelerator M.1 and Optimization M.3 use three parameters: α , β and τ . We

discuss here strategies for choosing these parameters.

Accelerator M.1 limits the number of outstanding SKIP messages between two

idle server p1 and p2 before they start to catch up. It bounds both the amount of time

(τ) and number of outstanding messages (α).

When choosing τ , it should be large enough so that the cost of SKIP messages

can be amortized. But, a larger τ adds more delay to the propagation of SKIP messages,
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and so results in extra commit delay for requests learned at p1 and p2. Fortunately, when

idle, neither p1 nor p2 generates any replies to the clients, and so such extra delay has

little impact from a client’s point of view. For example, in a system with 50 ms one-way

link delay, we can set τ to the one-way delay. This is a good value because: (1) With

τ = 50 ms, Accelerator M.1 generates at most 20 SKIP messages per second, given a

large enough α . The network resource and CPU power needed to transmit and process

these messages are negligible; and (2) The extra delay added to the propagation of the

SKIP messages is at most 50 ms, which could occur anyway due to network delivery

variance or packet loss.

α limits the number of outstanding SKIP messages before p1 and p2 start to catch

up: if τ is large enough, α SKIP messages are combined into just one SKIP message,

reducing the overhead of SKIP messages by a factor of α . For example, we set α to 20

in our implementation, which reduces the cost of SKIP message by 95%.

β defines an interval of instances: if a server q is crashed and Ip is the index of a

non-faulty server p, then in steady state all instances coordinated by q and in the range

[Ip, Ip+k] for some k : β ≤ k ≤ 2β are revoked. Choosing a large β guarantees that while

crashed, q’s inactivity will not slow down other servers. It, however, forces the indexes

of q and other servers to be more out of synchronization when q recovers from a false

suspicion or a failure. Nonetheless, the overhead of having a large β is negligible. Upon

recovery, q will learn the instances it coordinates that have been revoked. It then updates

its index to the next available slot and suggests the next client request using that instance.

Upon receiving the SUGGEST message, other replicas skip their turns and catch up with

q’s index (Rule M.2). The communication overhead of skipping is small, as discussed in

Optimization M.1 and M.2. The computation overhead of skipping multiple consecutive

instances at once is also small, since an efficient implementation can easily combine

their states and represent them at the cost of just one instance. While setting β too

large could introduce problems with consensus instance sequence number wrapping,

any practical implementation should have plenty of room to choose an appropriate β .

Here is one way to calculate a lower bound for β . Revocation takes up to two

and a half round trip delays. Let i be an instance of server q that is revoked. To avoid

delayed commit of some instance i′> i at a server p, one needs to start revoking i two and
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a half round trips in advance of instance i′ being learned by p. In our implementation

with a round trip delay of 100 ms and with n = 3, the maximum throughput is about

10,000 operations per second. Two and a half round trip delays total 250 ms, which, at

maximum throughput, is 2,500 operations. All of these operations could be proposed

by a single server, and so the instance number may advance by as many as 3×2,500 =

7,500 in any 250 ms interval. Thus, if β ≥ 7,500, then in steady state no instances will

suffer delayed commit arising from q being crashed. Taking network deliver variance

into account, we set β = 100,000, which is a conservative value that is more than ten

times the lower bound, but still reasonably small even for the 32-bit sequence number

space in our implementation.

5.5 Evaluation

We ran controlled experiments in the DETER testbed [10] to evaluate and com-

pare the performance of Mencius and Paxos. Our implementation of Mencius and Paxos

shared the same C++ code base and used TCP as the transport protocol. We set the

parameters that control Accelerator M.1 and Optimization M.3 to α = 20 messages,

τ = 50 ms, and β = 100,000 instances.

5.5.1 Experimental settings

To compare the performance of Mencius and Paxos, we use a simple, low-

overhead application that enables commutable operations. We chose a simple read/write

register service of κ registers. The service implements a read and a write command.

Each command consists of the following fields: (1) operation type – read or write (1 bit);

(2) register name (2 bytes); (3) the request sequence number (4 bytes); and (4) ρ bytes

of dummy payload. All the commands are ordered by the replicated state machine in

our implementation. When a server commits a request, it executes the action, sends a

zero-byte reply to the client and logs the first three fields along with the client’s ID. We

use the logs to verify that all servers learn the same client request sequence; or, when

reordering is allowed, that the servers learned compatible orders. Upon receiving the

reply from the server, the client computes and logs the latency of the request. We use
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the client-side log to analyze experiment results.

We evaluated the protocols using a three-server clique topology for all but the

experiments in Section 5.5.4. This architecture simulated three data centers (A, B and

C) connected by dedicated links. Each site had one server node running the replicated

register service, and one client node that generated all the client requests from that site.

Each node was a 3.0 GHz Dual-Xeon PC with 2.0 GB memory running Fedora 6. Each

client generated requests at either a fixed rate or with inter-request delays chosen ran-

domly from a uniform distribution. The additional payload size ρ was set to be 0 or

4,000 bytes. 50% of the requests were reads and 50% were writes. The register name

was uniformly chosen from the total number of registers the service implemented. A

virtual link was set up between each pair of sites using the DummyNet [54] utility. Each

link had a one-way delay of 50 ms. We also experimented with other delay settings

such as 25 ms and 100 ms, but do not report these results here because we did not

observe significant differences in the findings. The link bandwidth values varied from

5 Mbps to 20 Mbps. When the bandwidths were chosen within this range, the system

was network-bound when ρ = 4,000 and CPU-bound when ρ = 0. Except where noted,

Nagle’s algorithm was enabled.

In this section, we use “Paxos” to denote the register service implemented with

Paxos, “Mencius” to denote the register service using Mencius and with out-of-order

commit disabled, and “Mencius-κ” to denote the service using Mencius with κ total

registers and out-of-order commit enabled (e.g., Mencius-128 corresponds to the service

with 128 registers). Given the read/write ratio, requests in Mencius-κ can be moved up,

on average, 0.75κ slots before reaching an incommutable request. We used κ equal

to 16, 128, or 1,024 registers to represent a service with low, moderate and a high

likelihood of adjacent requests being commutable, respectively.

We first describe, in Section 5.5.2, the throughput of the service both when it

is CPU-bound and when it is network-bound, and we show the impact of asymmetric

channels and variable bandwidth. In both cases, Mencius has higher throughput. We

further evaluate both protocols under failures in Section 5.5.3. In Section 5.5.4 we show

that Mencius is more scalable than Paxos. In Section 5.5.5 we measure latency and

observe the impact of delayed commit. In general, as load increases, the commit latency
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of Mencius degrades from being lower than Paxos to being the same as the one of Paxos.

Reordering requests decreases the commit latency of Mencius. Finally, we show that the

impact of variance in network latency is complex.

5.5.2 Throughput

Figure 5.6: Throughput for 20 Mbps bandwidth

To measure throughput, we use a large number of clients generating requests at a

high rate. Figure 5.6 shows the throughput of the protocols for a fully-connected topol-

ogy with 20 Mbps available for each link, and a total of 120 Mbps available bandwidth

for the whole system.

When ρ = 4,000, the system was network-bound: all four Mencius variants

had a fixed throughput of about 1,550 operations per sec (ops). This corresponds to

99.2 Mbps, or 82.7% utilization of the total bandwidth, not counting the TCP/IP and

MAC header overhead. Paxos had a throughput of about 540 ops, or one third of Men-

cius’s throughput: Paxos is limited by the leader’s outgoing bandwidth.

When ρ = 0, the system is CPU-bound. Paxos presents a throughput of 6,000 ops,

with 100% CPU utilization at the leader and 50% at the other servers. Mencius’s
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throughput under the same condition was 9,000 ops, and all three servers reached 100%

CPU utilization. Note that the throughput improvement for Mencius was in proportion

to the extra CPU processing power available. Mencius with out-of-order commit en-

abled had lower throughput compared to Mencius with this feature disabled because

Mencius had to do the extra work of dependency tracking. The throughput dropped

as the total number of registers decreased because with fewer registers there was more

contention and dependencies to handle.
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Figure 5.7: Mencius with asymmetric bandwidth (ρ = 4,000)

Figure 5.7 demonstrates Mencius’s ability to use available bandwidth even when

channels are asymmetric with respect to bandwidth. Here, we set the bandwidth of the

links A→B and A→C to 20 Mbps, links B→C and B→A to 15 Mbps and links C→B

and C→A to 10 Mbps. We varied the number of clients, ensuring that each site had the

same number of clients. Each client generated requests at a constant rate of 100 ops.

The additional payload size ρ was 4,000 bytes. As we increased the number of clients,

site C eventually saturated its outgoing links first; and from that point on committed

requests at a maximum throughput of 285 ops. In the meanwhile, the throughput at both
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A and B increased until site B saturated its outgoing links at 420 ops. Finally site A

saturated its outgoing links at 530 ops. As expected, the maximum throughput at each

site is proportional to the outgoing bandwidth (in fact, the minimum bandwidth).
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Figure 5.8: Mencius dynamically adapts to changing network bandwidth (ρ = 4,000)

Figure 5.8, shows Mencius’s ability to adapt to changing network bandwidth. We

set the bandwidth of links A→B and A→C to 15 Mbps, links B→A and B→C to 10 Mbps,

and link C→A and C→B to 5 Mbps. Each site had a large number of clients generating

enough requests to saturate the available bandwidth. Site A, B and C initially committed

requests with throughput of about 450 ops, 300 ops, and 150 ops respectively, reflecting

the bandwidth available to them. At time t = 60 seconds, we dynamically increased the

bandwidth of link C→A from 5 Mbps to 10 Mbps. With the exception of a spike, C’s

throughput did not increase because it is limited by the 5 Mbps link from C to B. At

t = 120 seconds, we dynamically increased the bandwidth of link C→B from 5 Mbps

to 10 Mbps. This time, site C’s throughput doubles accordingly. At t = 180 seconds,

we dynamically decreased the bandwidth of link A→C from 15 Mbps to 5 Mbps. The

throughput at site A dropped, as expected, to one third.
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In summary, Mencius achieves higher throughput compared to Paxos under both

CPU-bound and network-bound workload. Mencius also fully utilizes available band-

width and adapts to bandwidth changes.

5.5.3 Throughput under failure

In this section, we show throughput during and after a server failure. We ran

both protocols with three servers under network-bound workload (ρ = 4,000). After 30

seconds, we crashed one server. We implemented a simple failure detector that suspects

a peer when it detects the loss of TCP connection. The suspicion happened quickly, and

so we delayed reporting the failure to the suspecting servers for another five seconds.

Doing so made it clearer what occurs during the interval when a server’s crash has not

yet been suspected.
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Figure 5.9: The throughput of Mencius when a server crashes

Figure 5.9 shows Mencius’s instantaneous throughput observed at server p0

when we crash server p1. The throughput is roughly 850 ops in the beginning, and

quickly drops to zero when p1 crashes. During the period the failure remains unreported,

both p0 and p2 are still able to make progress and learn instances they coordinate, but
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cannot commit these instances because they have to wait for the consensus outcome of

the missing instances coordinated by p1. When the failure detector reports the failure,

p0 starts revocation against p1. At the end of the revocation, p0 and p2 learn of a large

block of no-ops for instances coordinated by p1. This enables p0 to commit all instances

learned during the five second period in which the failure was not reported, which re-

sults in a sharp spike of 3,600 ops. Once these instances are committed, Mencius’s

throughput stabilizes at roughly 580 ops. This is two thirds of the rate before the failure,

because there is a reduction in the available bandwidth (there are fewer outgoing links),

but it is still higher than that of Paxos under the same condition.
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Figure 5.10: The throughput of Paxos when the leader crashes

Figure 5.10 shows Paxos’s instantaneous throughput observed at server p1 when

we crash the leader p0. Throughput is roughly 285 ops before the failure, and it quickly

drops to zero when p0 crashes because the leader serializes all requests. Throughput

remains zero for five seconds until p1 becomes the new leader, which then starts re-

covering previously unfinished instances. Once it finishes recovering such instances,

Paxos’s throughput goes back to 285 ops, which was roughly the throughput before the

failure of p0. Note that at t = 45 seconds, there is a sharp drop in the throughput ob-
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served at p1. This is due to duplicates: upon discovering the crash of p0, both p1 and

p2 need to re-propose requests that have been forwarded to p0 and are still unlearned.

Some of the requests, however, have sequence numbers (assigned by p0) and have been

accepted by either p1 or p2. Upon taking leadership, p1 revokes such instances, hence

resulting in duplicates. In addition, the throughput at p1 has higher variance after the

failure than before. This is consistent with our observation that the Paxos leader sees

higher variance than other servers.
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Figure 5.11: The throughput of Paxos when a follower crashes

Figure 5.11 shows Paxos’s instantaneous throughput of leader p0 when we crash

p1. There is a small transient drop in throughput but since the leader and a majority of

servers remain operational, throughput quickly recovers.

To summarize, Mencius temporarily stalls when any of the servers fails while

Paxos temporarily stalls only when the leader fails. Also, the throughput of Mencius

drops after a failure because of a reduction on available bandwidth, while the throughput

of Paxos does not change since it does not use all available bandwidth.
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5.5.4 Scalability

For both Paxos and Mencius, availability increases by increasing the number of

servers. Given that wide-area systems often target an increasing population of users,

and sites in a wide-area network can periodically disconnect, scalability is an important

property.

We evaluated the scalability of both protocols by running them with a state ma-

chine ensemble of three, five and seven sites. We used a star topology where all sites

connected to a central node: these links had a bandwidth of 10 Mbps and 25 ms one-

way delay. We chose the star topology to represent the Internet cloud as the central node

models the cloud. The 10 Mbps link from a site represents the aggregated bandwidth

from that site to all other sites. We chose 10 Mbps because it is large enough to have a

CPU-bound system when ρ = 0, but small enough so that the system is network-bound

when ρ = 4,000. When n = 7, 10 Mbps for each link gives a maximum demand of

70 Mbps for the central node, which is just under its 100 Mbps capacity. The 25 ms

one-way delay to the central node gives an effective 50 ms one-way delay between any

two sites. Because we only consider throughput in this section, network latency is irrele-

vant. To limit the number of machines we use, we chose to run the clients and the server

on the same physical machine at each site. Doing this takes away some of the CPU pro-

cessing power from the server; this is equivalent to running the experiments on slower

machines under CPU-bound workload (ρ = 0), and has no effect under network-bound

workload (ρ = 4,000).

When the system is network-bound, increasing the number of sites (n) makes

both protocols consume more bandwidth per request: each site sends a request to each

of the remaining n−1 sites. Since Paxos is limited by the leader’s total outgoing band-

width, its throughput is in proportion to 1
n−1 . Mencius, on the other hand, can use the

extra bandwidth provided by the new sites, and so the throughput is in proportion to n
n−1 .

Figure 5.12(a) shows both protocols’ throughput with ρ = 4,000. Mencius started with

a throughput of 430 ops with three sites, approximately three times higher than Paxos’s

150 ops under the same condition. When n increased to five, Mencius’s throughput

drops to 360 ops (84% ≈ (5
4)/(

3
2)), while Paxos’s drops to 75 ops (50% = (1

4)/(
1
2)).

When n increased to seven, Mencius’s throughput dropped to 340 ops (79% ≈ (7
6)/(

3
2))
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(b) ρ = 0

Figure 5.12: The scalability of Paxos and Mencius

while Paxos’s dropped to 50 ops (33% = (1
6)/(

1
2)).

When the system is CPU-bound, increasing n requires the leader to perform

more work for each client request. Since the CPU of the leader is a bottleneck for Paxos,

its throughput drops as n increases. Mencius, by rotating the leader, takes advantage of

the extra processing power. Figure 5.12(b) shows throughput for both protocols with

ρ = 0. As n increases, Paxos’s throughput decreases gradually. Mencius’s throughput

increases gradually because more processing power outweighs the increasing processing

cost for each request. When n = 7, Mencius’s throughput is almost double that of Paxos.

5.5.5 Latency

In this section, we use the three-site clique topology to measure Mencius’s com-

mit latency under low to medium load. We ran the experiments with both Nagle on and

off. Not surprisingly, both Mencius and Paxos with Nagle on show a higher commit

latency due to the extra delay added by Nagle’s algorithm. Having Nagle’s enabled also

adds some variability to the commit latency. For example, with Paxos, instead of a con-

stant commit latency of 100 ms at the leader, the latency varied from 100 to 250 ms with

a concentration around 150 ms. Except for this, Nagle’s algorithm does not affect the

general behavior of commit latency. Therefore, for the sake of clarity, we only present

the results with Nagle off for the first two experiments. With Nagle turned off, all exper-
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iments with Paxos showed a constant latency of 100 ms at the leader and 200 ms for the

other servers. Since we have three servers, Paxos’s average latency was 167 ms. In the

last set of experiments, we increased the load and so turned Nagle on for more efficient

network utilization.
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Figure 5.13: Mencius’s commit latency when client load shifts from one site to another

In a wide-area system, the load of different sites can be different for many rea-

sons, such as time zone. To demonstrate the ability of Mencius to adjust to a changing

client load, we ran a three-minute experiment with one client on site A and one on B.

Site A’s client generated requests during the first two minutes and site B’s client gener-

ated requests during the last two minutes. Both clients generate requests at the same rate

(δ ∈ [100 ms,200 ms]). Figure 5.13 shows that during the first minute when only site

A generated requests, all requests had the minimal 100 ms commit latency. In the next

minute when both sites A and B generated requests, the majority of the requests still had

the minimal 100 ms delay, but some requests experienced extra delayed commits of up

to 100 ms. During the last minute, the latencies return to 100 ms.

To further see the impact of delayed commit, we ran experiments with one

client at each site and all three clients concurrently generating requests. Figure 5.14

plots the CDF of the commit latency under low load (the inter-request delay of δ ∈
[100 ms,200 ms]) and medium load (δ ∈ [10 ms,20 ms]). We show only the low load

distribution for Paxos because the distribution for medium load is indistinguishable from

the one we show. For Paxos, one third of the requests had a commit latency of 100 ms
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Figure 5.14: Commit latency distribution under low and medium load

and two thirds had a 200 ms latency. With low load the contention level was low and de-

layed commit happened less often for Mencius. As a result, about 50% of the Mencius

requests have the minimal 100 ms delay. For those requests that did experience delayed

commits, the extra latency is roughly uniformly distributed in the range (0 ms,100 ms).

Under medium load, the concurrency level goes up and almost all requests experience

delayed commits. The average latency is about 155 ms, which is still better than Paxos’s

average of 167 ms under the same condition.

For the experiments of Figure 5.15 – 5.17, we increased the load by adding more

clients, and we enabled Nagle. All curves show lower latency under higher load. This

is because of the extra delay introduced by Nagle: the higher the client load, the more

often messages are sent, and therefore on average, the less time any individual message

is buffered by Nagle. This effect is much weaker in the ρ = 4,000 cases than the ρ = 0

case because Nagle has more impact on small messages. All experiments also show a

rapid jump in latency as the protocols reach their maximum throughput: at this point,

the queues of client requests start to grow rapidly.

Figure 5.15 shows the result for the network-bound case of ρ = 4,000. Mencius

and Paxos had about the same latency before Paxos reached its maximum throughput.
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Figure 5.15: Commit latency vs offered client load (ρ = 4,000, no network variance)

At this point, delayed commit has become frequent enough that Mencius has the same

latency as Paxos. Lower latency can be obtained by allowing commutable requests to be

reordered. Indeed, Mencius-1024, which has the lowest level of contention, had the low-

est latency. For example, at 340 ops, Paxos and Mencius showed an average latency of

195 ms, Mencius-16 had an average latency of 150 ms, and Mencius-128 and Mencius-

1024 had an average latency of 130 ms, which is an approximate 30% improvement. As

client load increased, Mencius’s latency remained roughly the same, whereas Mencius-

16’s latency increased gradually because the higher client load resulted in fewer oppor-

tunities to take advantage of commutable requests. Finally, Mencius-128 and Mencius-

1024 showed about the same latency as client load increased, with Mencius-1024 being

slightly better. This is because at the maximum client load (1,400 ops) and correspon-

dent latency (130 ms), the maximum number of concurrently running requests is about

180 requests. This gave Mencius-128 and Mencius-1024 about the same opportunity to

reorder requests.
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Figure 5.16: Commit latency vs offered client load (ρ = 0, no network varianc)

Figure 5.16 shows the result for the CPU-bound case of ρ = 0. It shows the

same trends as Figure 5.15. The impact of Nagle on latency is more obvious, and be-

fore reaching 900 ops, the latency of all four variants of Mencius increases as load

goes up. This is because delayed commits happened more often as the load increased.

We see the increase in latency because the penalty from delayed commits outweighed

the benefits gained by being delayed, on average, for less time by Nagle. In addition,

Mencius started with a slightly worse latency than Paxos, and the gap between the two

decreased as throughput goes up. Out-of-order commit helps Mencius to reduces its

latency: Mencius-16 (a high contention level) had about the same latency as Paxos. Fi-

nally, Mencius-128’s latency was between Mencius-16 and Mencius-1024. As client

load increased, the latency for Mencius-128 tended away from Mencius-1024 towards

Mencius-16. This is because the higher load resulted in higher contention: increased

contention gave Mencius-128 less and less flexibility to reorder requests.
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Figure 5.17: Commit latency vs offered client load (ρ = 0, with network variance)

In the experiment of Figure 5.17, we select delivery latencies at random. It is

the same experiment as the one of Figure 5.16, except that we add a Pareto distribution

to each link using the NetEm [29] utility. The average extra latency is 20 ms and the

variance is 20 ms. The time correlation of the latency is 50%, meaning that 50% of the

latency of the next packet depends on the latency of the current packet. Pareto is a heavy

tailed distribution, which models the fact that wide-area links are usually timely but can

present high latency occasionally. Given the 20 ms average and 20 ms variance, we

observe the extra latency range from 0 to 100 ms. This is at least a twofold increase in

latency at the tail. We also experimented with different parameters and distributions, but

we do not report them here as we did not observe significant differences in the general

trend.

The shapes of the curves in Figure 5.17 are similar to those in Figure 5.16,

despite the network variance, except for the following: (1) All protocols have lower
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throughput despite the system being CPU-bound – high network variance results in

packets being delivered out-of-order, and TCP has to reorder and retransmit packets,

since out-of-order delivery of ACK packets triggers TCP fast retransmission. (2) At the

beginning of the curves in figure 5.16, all four Mencius variants show lower latency

under lower load because delayed commit happened less often. There is no such a trend

in Figure 5.17. This happens because with Mencius we wait for both servers to reply

before committing a request, whereas with Paxos we only wait for the fastest server to

reply. The penalty for waiting for the extra reply is an important factor under low load

and results in higher latency for Mencius. For example, at 300 ops, Mencius’s latency is

455 ms compared to Paxos’s 415 ms delay. However, out-of-order commit helps Men-

cius to achieve lower latency: Mencius-16 shows 400 ms delay while both Mencius-128

and Mencius-1024 show 350 ms delay. (3) As load increases, Paxos’s latency becomes

larger than Mencius’s. This is due to the higher latency observed at non-leader servers.

Although with Paxos the leader only waits for the fastest reply to learn a request, the

non-leaders have the extra delay of REQUEST and LEARN messages. Consider two con-

secutive requests u and v assigned to instances i and i+ 1, respectively. If the LEARN

message for u arrives at a non-leader later than the LEARN message for v because of

network variance, the server cannot commit v for instance i+ 1 until it learns u for in-

stance i. If the delay between learning v and learning u is long, then the commit delay

of v is also long. Note that in our implementation, TCP causes this delay as TCP orders

packets that are delivered out of order. Under higher load, the interval between u and

v is shorter, and the penalty instance i+ 1 takes is larger because of the longer relative

delay of the LEARN message for instance i.

In summary, Mencius has lower latency than Paxos when network latency has

little variance. The out-of-order commit mechanism helps Mencius reduce up to 30%

its latency. Non-negligible network variance has negative impact on Mencius’s latency

under low load, but low load also gives Mencius’s out-of-order commit mechanism more

opportunity to reduce latency. And, under higher load, Paxos shows higher latency than

Mencius because of the impact of network variance on non-leader replicas.
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5.5.6 Other possible optimizations

There are other ways one can increase throughput or reduce latency. One idea

is to batch multiple requests into a single request, which increases throughput at the

expense of increased latency. This technique can be applied to both protocols, and

would have the same benefit. We verified this with a simple experiment: we applied a

batching strategy that combined up to five requests that arrive within 50 ms into one.

With small requests (ρ = 0), Paxos throughput increased by 4.9 and Mencius by 4.8;

with large requests the network was the bottleneck and throughput remained unchanged.

An approach to reducing latency consists of eliminating Phase 3 and instead

broadcasting ACCEPT messages. This approach cuts for Paxos the learning delay of

non-leaders by one communication step, and for Mencius it reduces the upper bound

on delayed commit by one communication step. For both protocols, it increases the

message complexity from 3n− 3 to n2 − 1, thus reducing throughput when the system

is CPU-bound. However, doing so has little effect on throughput when the system is

network-bound, because the extra messages are small control messages that are negligi-

ble compared to the payload of the requests.

Another optimization for Paxos is to have the servers broadcast the body of the

requests and reach consensus on a unique identifier for each request. This optimization

allows Paxos, like Mencius, to take full advantage of the available link bandwidth when

the service is network-bound. It is not effective, however, when the service is CPU-

bound. In fact, it might reduce Paxos’s throughput by increasing the wide-area message

complexity.

5.6 Related work

Mencius is derived from Paxos [36, 37]. Fast Paxos, one of the variants of

Paxos [39], has been designed to improve latency. However, it suffers from collisions

(which results in significantly higher latency) when concurrent proposals occur. An-

other protocol, CoReFP [25], deals with collisions by running Paxos and Fast Paxos

concurrently, but has lower throughput due to increased message complexity. General-

ized Paxos [38], on the other hand, avoid collisions by allowing Fast Paxos to commit
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requests in different but equivalent orders. In Mencius, we allow all servers to imme-

diately assign requests to the instances they coordinate to obtain low latency. We avoid

contention by rotating the leader (coordinator), which is called a moving sequencer in

the classification of Défago et al. [24]. We also use the rotating leader scheme to achieve

high throughput by balancing network utilization. Mencius, like Generalized Paxos, can

also commit requests in different but equivalent orders.

Another moving sequencer protocol is Totem [5] which enables any server to

broadcast by passing a token. A process in Totem, however, has to wait for the token

before broadcasting a message, whereas a Mencius server does not have to wait to pro-

pose a request. Lamport’s application of multiple leaders [40] is the closest to Mencius.

It is primarily used to remove the single leader bottleneck of Paxos.However, Lamport

does not discuss in detail how to handle failures or how to prevent a slow leader from

affecting others in a multi-leader setting. The idea of rotating the leader has also been

used for a single consensus instance in the ♦S protocol of Chandra and Toueg [17].

A number of low latency protocols have been proposed in the literature to solve

atomic broadcast, a problem equivalent to the one of implementing a replicated state

machine [17]. For example, Zieliński presents an optimistic generic broadcast protocol

that allows all messages to be delivered in two communication steps if all conflicting

messages are received by different processes in the same order. Compared to Mencius,

this algorithm has the disadvantages of requiring n > 3 f [67]. Zieliński also presents a

protocol that relies on synchronized clocks to deliver messages in two communication

steps [68]. Similar to Mencius, the latter protocol sends empty (equivalent to no-op)

messages when it has no message to send. Unlike Mencius, it suffers from higher la-

tency after one server has failed. The Bias Algorithm deterministically orders messages

from multiple sources, and uses the rates at which sources produce messages to deter-

mine order, with the goal of minimizing the latency to deliver a message [3]. In contrast,

Mencius does not assume knowledge of the message producing rates. It instead skip in-

stances to reduce delivery latency. Schmidt et al. propose the M-Consensus problem for

low latency atomic broadcast and solved it with the Collision-fast Paxos [57]. Instead

of learning a single value for each consensus instance, M-Consensus learns a vector of

values. Collision-fast Paxos works similar to Mencius as it requires a server to propose
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an empty value when it has no value to propose, but different from Mencius, it assigns

rounds of an M-Consensus instance to groups of proposers (collision-fast proposers),

and each instance may have multiple values learned. When used in a solution to atomic

broadcast, Collision-fast Paxos also suffers from a problem similar to the delayed com-

mit problem in Mencius, since it needs to order the multiple values that are assigned to

and learned in a single instance of M-Consensus. Different from Mencius, however, out-

of-order commit is not possible because a slot is re-assigned to a different server upon

a server failure, and different servers can propose two different arbitrary values. Recall

that with Mencius, the value learned for an instance can be only the value proposed by

the coordinator of the instance or no-op.

We are not the first to consider high-throughput consensus and fault-scalability.

For example, FSR [28] is a protocol for high-throughput total-order broadcast for clus-

ters that uses both a fixed sequencer and ring topology. PBFT [14] and Zyzzyva [33]

propose practical protocols for high-throughput consensus when processes can fail arbi-

trarily. Q/U [2] proposes a scalable Byzantine fault-tolerant protocol.

Steward [7] is a hybrid Byzantine fault-tolerant protocol for multi-site systems.

It runs an Byzantine fault-tolerant protocol within a site and benign consensus proto-

col in between sites. Steward could benefit from Mencius by replacing their inter-site

protocol (the main bottleneck of the system) with Mencius.

5.7 Future directions and open issues

We have discussed important implementation considerations for Mencius and

conducted extensive evaluation of the protocol in multi-site settings. The following

issues, however, need yet to be studied in the future.

Mencius for local-area systems: Though design specifically for wide-area multi-site

systems, Mencius is expected to perform well for local-area systems for the fol-

lowing reasons. (1) In local-area systems, the network is no longer the bottleneck,

therefore, system throughput benefits from the rotating-leader design of Mencius,

similarly to those CPU-bound multi-site systems. (2) Network latency has smaller

variance and is more predictable in local-area system. This not only makes ♦P
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failure detector easier to implement but also make it less a disadvantage for Men-

cius to have to wait for ACCEPT messages from all correct servers before com-

mitting a request – the difference between waiting for all correct servers and only

f + 1 servers is now much smaller in local-area systems due to less variance in

message latency. (3) Unless forwarding is used, Mencius in wide-area systems

can only achieve the peak throughput when all sites have high load at the same

time. When running in local area network, it is easy for clients to randomly select

a server to send request to for achieving optimal load balancing. Despite these

promising findings, we have yet to conduct experiments to further evaluate Men-

cius and explore possible optimization in local-area systems.

Coordinator allocation: Mencius’s commit latency is limited by the slowest server. A

solution to this problem is to have coordinators at only the fastest f + 1 servers

and have the slower f servers forward their requests to the other sites.

Sites with faulty servers: We have assumed that while a server is crashed, it is accept-

able that its clients do not make progress. In practice, we can relax this assump-

tion and cope with faulty servers in two ways: (1) have the clients forward their

requests to other sites, or (2) replicate the service within a site such that the servers

can continuously provide service despite the failure of a minority of the servers.

Managing out-of-order commit: Out-of-order commit improves Mencius’s lower la-

tency, but also hurts its throughput. It is not clear, though, which heuristics to use

to decide when to enable this feature.

Managing Nagle’s algorithm: While Nagle’s algorithm increases throughput when the

system has high load, it also adds latency under low load. Nagle’s algorithm, how-

ever, can be turned on and off on a per link basis, but it is not clear how to make

such choices in an optimal way.

5.8 Summary

We have derived, implemented, and evaluated Mencius, a high performance state

machine replication protocol in which clients and servers are spread across a wide-area
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multi-site system. By using a rotating coordinator scheme, Mencius is able to sustain

higher throughput than Paxos, both when the system is network-bound and when it is

CPU-bound. Mencius presents better scalability with more servers compared to Paxos,

which is an important attribute for wide-area applications. Finally, the state machine

commit latency of Mencius is usually no worse, and often much better, than that of

Paxos, although the effect of network variance on both protocols is complex.
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Chapter 6

Byzantine Failure: Protocol RAM

In the previous chapter, we studied replicated state machines for multi-site wide-

area systems under the crash failure model, in which the processes can only fail by

stopping to execute. In this chapter, we extend the study and design a protocol called

RAM for the Byzantine failure model, in which a process may fail in an arbitrary man-

ner. Replicated state machine protocols that tolerate Byzantine failures are often called

Byzantine fault-tolerant protocols, or BFT protocols for short.

Being able to tolerate more general failures makes BFT protocols applicable

to a wider range of applications. For example, crash-failure protocols are most useful

to tolerate benign hardware failures. BFT protocols, on the other hand, can be used

to tolerate unexpected behavior caused by random bit flips, uncivil rational behavior

caused by selfish administrators, or even attacks caused by compromised servers or

clients.

Despite these advantages, BFT protocols are rarely deployed in production. Cost

is one of the many reasons behind their limited use. BFT protocols require at least 3 f +1

replicas to tolerate f failures [41], f more than crash-failure protocols. Moreover, fast-

learning protocols require even higher replication, for example, FaB [47] tolerates f

failures with 5 f +1 replicas. Efforts that uses specialized hardware have been made to

tolerate f Byzantine failures with only 2 f +1 [19,42] replicas, however, these protocols

are vulnerable when the hardware is tampered with and cannot recover from tampering.

We also take advantage of specialized hardware in our own protocol RAM for the pur-

pose of reducing latency. RAM, however, does require 3 f +1 replicas so that such faulty

102
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hardware behavior can be easily detected and any damaged rolled back and repaired.

Performance is another concern. BFT protocols usually use cryptographic prim-

itive for message authentication and are typically more complicated than their crash-

failure counterparts. As a result, they have lower throughput and higher latency even in

the common case, i.e., failure free execution. To counter that, many existing protocols

introduce optimizations for failure-free runs. However, without careful design, such

optimizations can be fragile: a single undetected faulty server can render the protocols

nearly useless [20]. Designing protocols that deliver robust performance with unde-

tected faulty servers is an active research area [6, 20]. One of the objectives of RAM to

be able to deliver robust latency across wide-area multi-site systems.

Moreover, traditional BFT often apply a flat trust model to the whole system,

i.e., no two processes trust each other. Though simple, the flat trust model misses out

practical optimization opportunities. For example, in a multi-site system, processes in

the same site often have the same basic objectives since they are managed by the same

administrator. Local processes are also more likely to have fate-sharing relationships

since they share the same firewall and intrusion detecting system that protect the pro-

cesses from outside attacks. Moreover, when processes are compromised in a site, the

problem is quite severe for that site but less so for other site: masking faulty behavior

only in one service is short sighted. Instead, the system administrators need to under-

stand how widespread the attack is and restore the site’s integrity. So, if desired, it is

reasonable and practical for the processes in the same site to trust each other because

such trust already exists in some scenarios. RAM is designed to take advantage of such

trust model to optimize performance.

Finally, existing BFT protocols do not recognize different classes of failures. In-

deed, BFT is essentially a masking technique: all failures up to a certain threshold are

masked regardless the cause. Detecting failures, however, can improve faulty coverage

and availability through repairing or excluding faulty processes. RAM is designed to ex-

pose at many failures as possible while discourage uncivil rational , selfish, and/or com-

petitive behavior that may hurt system performance. RAM also treats different classes

of failures differently. For example, a masking technique is used to cope with failures

occurred at remote site; processes within a site usually trust each other, external tools is
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used to detect such failures when abnormality is observed; Also, specialized hardware is

usually trusted by both local and remote processes. When the hardware is compromised

or tampered with, a simple mechanism is used to detect such faulty behavior. System

can then be rolled back and any damage repaired after the detection of faulty behavior.

With these goal in mind, we start this chapter with section 6.1, reviewing the

system model and explaining three classes of possible process behavior: correct, uncivil

rational, irrational. We then state our main design goals in section 6.2. Section 6.3

discuss one of these goals: reducing latency. The results are the use of three basic tech-

niques: Rotating-leader design, Attested append-only memory (A2M), and Mutually

Suspicous Domains (MSD) model. In section 6.4, A2M and MSD are then incorporated

into a simple consensus protocol: Coordinated Byzantine Paxos, which is in turn used

to build a rotating leader replicated state machine protocol in section 6.5. The resulting

protocol is called RAM, named after the three basic techniques used. Section 6.6 and

6.7 explain how RAM copes with uncivil rational and irrational behaviors, respectively.

We also implemented a prototype for RAM and report preliminary evaluation results in

section 6.8. Finally, we survey related work in section 6.9 and summarize this chapter

in section 6.11.

6.1 Assumptions

In this chapter, we consider a practical Byzantine failure model for the multi-

site setting, meaning that processes, by default, are assumed to be able to fail arbitrarily.

However, practical assumptions are also made to judiciously restricting the faulty behav-

ior. Details about additional assumption we make can be found in section 6.3.1, 6.3.3,

6.7.1 and 6.7.2. These assumptions allows us to design efficient yet robust protocols.

Because of a well-known impassability result [41], our protocol is designed to

tolerate up to �(n−1)/3� Byzantine failures. We assume minimal replication, n = 3 f +

1 for simplicity. We also assume the availability of standard cryptographic primitives

such as secure hashing [1, 52], message authentication codes (MACs) [9], and digital

signatures [53]. We assume it is computational infeasible to break these primitives. Keys

are assumed to have been deployed in advance, and all servers only process messages
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that are properly signed or authenticated. Unless otherwise noted, we only consider

faulty server behavior. Tolerating faulty client behavior is an orthogonal problem and

can be dealt with using published techniques [23, 43].

We assume the existence of a utility for each server. For example, it could be

providing low request latency for its local clients. Based on the utility, we can roughly

categorize the behavior of a server into the following three broad classes:

Civil behavior: behavior that comply with the protocol specification. Civil behavior is

also correct behavior.

Irrational behavior: an arbitrary behavior that can hurt the utility of a site or of the

system. Irrational behavior is also Byzantine behavior.

Uncivil rational behavior: behavior in which, from an outsider’s point of view appears

correct. However, to seek for higher utility for its own site, the server may exploit

the protocol and reorder or delay message processing. This is possible because

the asynchronous message passing model does not bound the either the message

delivery time or processing time. So, another server cannot tell if the extra delay is

intentionally caused by the server or caused by system asynchrony. Such behavior

is uncivil if it causes the utility of other sites to decrease. Such situations can

arise from deliberate action of a site. For example, under high load conditions, an

uncivil rational site can process messages from a local client in preference to those

from remote clients. Other sites may not be able to determine if the additional

delay is caused by uncivil behavior or network jitter.

It is easy to see that civil behavior is correct and irrational behavior is Byzan-

tine faulty. It is, however, inherently hard to determine if a uncivil rational behavior

is correct. From outsider’s point of view, a uncivil rational server eventually processes

and sends out message as defined by the protocol specification, also it is considered as

correct by other servers. From the point view of the server in question, in which internal

knowledge is available, a uncivil rational server does not comply with the protocol spec-

ification, so, it is should be considered as faulty. Figure 6.1 summarizes the relationship

between correct, Byzantine faulty, civil, uncivil rational, and irrational behavior. Note
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that it is possible to have rational behavior that is civil: such behavior optimizes local

utility but does not hurt the utility of remote sites. Such a behavior is consider as both

correct and civil.

Civil Uncivil
Rational Irrational

Corrrect Byzantine Faulty

Figure 6.1: The relationship between different kinds of server behavior

Uncivil rational and irrational behavior also have different root causes. Irrational

behavior is often caused by a server or a site being compromised by remote attacks

that seek to disrupt the replicated state machine service. Rational behavior is often

caused by faulty (selfish) local administrators that seek to increase local utility possibly

at the cost of the utility of remote sites. The differences in root cause result in different

strategies for coping with these two classes of behavior. The next section discusses these

differences.

6.2 Design goals

In this section, we examine the three main design goals of our protocol: robust

low request latency, discouraging uncivil rational behavior, and exposing irrational be-

havior.

6.2.1 Low latency as a main goal

In the crash failure model, we designed Mencius to have both low latency and

high throughput in multi-site systems. For the weaker Byzantine failure model, we relax

the performance goals to have robust low request latency and robust acceptable system
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throughput.

So, we define the system utility function as low request latency; our main goal is

to provide low request latency for multiple sites. Such low latency should also be robust.

This means not only that RAM has low latency during periods of stability (no untimely

communication, false suspicion, or undetected faulty servers), but also that the latency

does not increase too much even in the presence of false suspicion and/or undetected

faulty servers. We only require low latency when communication is timely because no

protocol can be both safe and live when communication is untimely (i.e., asynchronous).

Reducing latency in the wide area requires protocol redesign; we discuss how to achieve

this goal in section 6.3.

Throughput is a secondary objective in RAM. Indeed, the throughput of RAM

is significantly lower than many existing protocols, such as [14, 33], mainly because

RAM signs critical messages using digital signatures, which is in turn useful in exposing

irrational behavior (see section 6.2.3). Even though throughput was not our primary

goal, the throughput that RAM provides is robust and is in the range that has been

sufficient for practical applications [15]. Additionally, throughput increases as hardware

improves, so, we consider treating throughput as a secondary objective a reasonable

engineering trade-off.

6.2.2 Discouraging uncivil rational behavior

We have discussed uncivil rational behavior, which is behavior that optimizes for

local utility. Examples of such behavior including: competing for the leader role, com-

peting for resources (by for example flooding), issuing irresponsible suspicion, omitting

messages, and untimely behavior. While protocols are usually designed to achieve the

best utility function for the system as a whole, such rational behavior can cause the sys-

tem to diverge from that goal. It is our goal to discourage uncivil rational behavior. To

achieve this goal, we designed RAM in a way such that any divergence from civil be-

havior should only increase the chance of reducing the local utility function. By doing

so, the best strategy for any uncivil rational server is to follow the protocol.
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6.2.3 Exposing irrational behavior

Most existing BFT protocols focus, naturally, on masking Byzantine failures.

By doing so, an undetected faulty server can cause significant reduction to system per-

formance [6, 20]. For example, a faulty leader in PBFT can increase the latency for all

servers significantly by intentionally delaying requests just enough not to trigger time-

outs. While not all failures can be pinpointed, detecting those that can be is useful.

So, we designed RAM to expose as much irrational behavior as possible. For example,

RAM uses digital signature to sign critical messages. Though resulting lower through-

put when comparing to the much cheaper MACs, digital signature does provide the

ability for a server to prove the faulty behavior of another server to a third party, which

is impossible if MACs are used instead.

In addition, RAM also makes practical assumptions that (1) a client trusts its

local server and (2) servers trust each other’s A2M. Should these assumptions be broken

— a sign of site compromise — RAM will temporarily enter an unsafe state, but will

detect the failure quickly. Once detected, more broad site recovery tools can be used to

roll back and repair any damage.

6.3 Reducing latency for PBFT

We have explained Paxos and PBFT in section 2.7 and 2.8 respectively. Since

reducing latency is our primary goal, we uses a variant of Paxos that broadcasts the AC-

CEPT message for reducing latency (see Figure 2.5). When running Paxos in multi-site

systems, the latency of a client request is two wide-area communication steps when the

client is co-located with the leader and three steps when otherwise. PBFT requires two

more steps than Paxos in both cases. This is a result of the following two observations.

(1) With PBFT, to prevent a faulty leader from proposing inconsistent values to differ-

ent servers, two steps (PRE-PREPARE and PREPARE) are required to propose a request.

However, only one step (PROPOSE) is required with Paxos since it assumes crash fail-

ures. (2) A Paxos client learns the outcome of the request as soon as it hears it from its

local server, while a PBFT client must wait for f + 1 matching REPLIES at least f of

which must cross the wide-area network. This is because a PBFT client does not trust its
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local server. Waiting for f +1 matching requests ensures at least one of them is from a

correct server. In the remainder of this section, we explore techniques to reduce latency

for PBFT in multi-site systems.

6.3.1 Mutually Suspicious Domains

PBFT assumes a flat Byzantine model, in which there is no trust between pairs

of processes: both clients and correct servers have to be aware of Byzantine servers. Ap-

plying the flat Byzantine model to a multi-site system means that the clients do not even

trust their local servers. However, in many practical systems, the clients and their local

servers share fate: (1) Clients may rely solely on their local servers to make progress

and the servers have incentives to improve the utility for its local clients. (2) Client and

server machines in the same site are more likely to share vulnerabilities because they are

in the same administrative domain. (3) When a local server is compromised, instead of

simply masking the failure, it is often the case that administrative actions are required to

recover the server and the clients rely on it. We therefore propose the following practical

failure model to recognize the fact that a local server is more trustworthy than remote

ones.

Definition 6.1 (Mutually Suspicious Domains (MSD)): We model each site as an in-

dependent communication domain. While there is trust between the server and clients

within a domain, we assume no trust for inter-domain communication, i.e., a domain

must protect itself from possible uncivil behavior from other domains.

Assuming MSD gives us two advantages in term of reducing latency for BFT

protocols:

Local replies By assuming MSD and trusting its local server, a client can immediately

learn the outcome of a request when it receives the REPLY from its local server,

therefore reducing its latency by one wide-area communication step.

Local reads: Certain read-only requests that do not require linearizability can now be

executed locally without going through wide-area communication.
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Note that local reads may violate real-time precedence ordering thus making the

history of operation not linearizable [30]. However, serializability is still preserved:

clients only perceive that requests are not executing atomically if they communicate

through channels that are external to the replicated state machine. If clients only com-

municate through the state machine, then they perceive the same order of state changes.

6.3.2 Rotating leader design

PBFT, as well as other more recent BFT protocols [20, 33], relies on a single

leader to propose requests. This makes it possible for a Byzantine leader to mount

performance attacks by, for example, delaying to propose requests from remote sites.

With MSD, clients trust their local servers. Consequently, it is natural for a server to

propose requests on behalf of its local clients. This way, the clients do not have to worry

about the server being unfair. Naturally, this leads to the adoption of the rotating leader

design scheme as described by the generic protocol R.

In addition to reducing the risk of being treated unfairly by a server in a remote

site, rotating the leader allows the REQUEST message to be sent as a local area message.

Doing this reduces the latency by one wide-area communication step as compared to

PBFT when clients are not co-located with the leader. When there are no concurrent

client requests, this reduces the latency observed by the client by one step. Concur-

rent requests may cause the delayed commit problem and increase the latency by up to

one step. This extra latency can be reduced by allowing out-of-order commit to safely

commit commutable requests at different servers in different orders. We evaluate effec-

tiveness of out-of-order commit for RAM in section 6.8.3.

Finally, being the leader in RAM is a privilege rather than a right: the leader

status of a server may be revoked if it is acting suspiciously. We designed RAM such

that divergence from the correct behavior only increases the probability of a server being

revoked, which in turn leads to lower local utility. As a result, uncivil rational behavior

is discouraged because the best strategy for a rational server is to follow the correct

behavior.
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6.3.3 A2M for identical Byzantine failure

While it only takes Paxos one step (PROPOSE) for the servers to confirm the

value proposed by the leader, it takes PBFT two steps (PRE-PREPARE and PREPARE)

to confirm the leader’s proposal. The extra step is necessary to expose inconsistent

proposals due to a Byzantine leader, e.g., a Byzantine leader may propose some request

v to one server and no-op to another. By running a flooding sub-protocol using the extra

PREPARE phase, PBFT is able to simulate identical Byzantine failure [8]: if a server has

prepared a value from the leader, all other servers will prepare either the same value or

no value.

Definition 6.2 (Attested append-only memory (A2M)): A tamper-resistent hardware

that function as an append-only log: when asked, A2M appends and digitally signs a

new log entry if and only if it is consistent with previous entries in the log [19].

Conceptually, A2M contains an internal logic that determines consistency and an

unbounded number of log entries. Since any practical implementation of A2M can only

support a bounded number of log entries, an application that uses A2M is also allowed

to discard the entries that are no longer useful. The logic that determines consistency

is usually application specific and can be quite complicated. TrInc [42], a simplified

version of A2M, can be used to offload much of the logic to the application and only

stores a 〈counter,value〉 pair in the log.

A2M has been proposed to design BFT protocols that tolerates f failures with

only 2 f +1 replicas. This is done by pairing each server with an A2M which is treated

as a trusted third party by all servers. Each server is required to record all outgoing

messages into its A2M, which in turn needs to make sure they are consistent with re-

spect to the semantics of the BFT protocol. Such a usage of A2M reduces the degree of

replication, but it has its drawbacks: non-faulty replicas must both log/attest all protocol

messages before sending them and can only handle one request at a time. The logic of

A2M is also complicated, and so prone to error and vulnerability. Relying A2M to tol-

erate f failures with 2 f +1 replicas also makes the system vulnerable to a compromised

A2M. Though highly unlikely, when f A2Ms are compromised, it is impossible to de-

termine the faulty party or to recovery from the damage caused by such compromised

A2Ms.
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We instead opted for a higher degree of replication and simpler design. Requir-

ing 3 f +1 replicas allows us to detect faulty A2Ms and recover from the damage caused

by them. This is useful in environments that cannot fully guarantee the integrity of A2M

devices. We discuss this topic further in section 6.7.1.

Additionally, we only uses A2M to implement identical Byzantine failure with

only one wide-area message delay. Each server is paired with a local A2M. Whenever a

server proposes a value (either no-op or a client request) to a consensus instance, it asks

its local A2M to digitally sign the proposal. The A2M records the last pair of sequence

number and value it has signed and only signs a new proposal if it is immediately suc-

ceed the record sequence: this way the server cannot have the A2M signing inconsistent

proposals or leaving gaps in the consensus sequence space.

We can now reduce PBFT’s proposing phase from two steps to just one step

if each server’s A2M can be trusted: an assumption that is only possible if the A2M

involved is simple enough to be implemented correctly without vulnerabilities. This

assumption might hold in practice because the logic that determines consistency is very

simple and is independent of the specific protocol that uses it: all consensus based repli-

cated state machine protocol needs to propose a request at one point or another.

6.4 Coordinated Byzantine Paxos

RAM is a replicated state machine protocol that executes an unbounded se-

quence of simple consensus instances. Each instance of simple consensus is solved

using Coordinated Byzantine Paxos, which is a Paxos-like protocol that incorporates

MSD and A2M to tolerate f Byzantine failures using 3 f +1 replicas.

Like Paxos, Coordinated Byzantine Paxos operates in rounds. Each replica is

responsible for a unbounded number of rounds and acts as the leader of these rounds.

This implies that no two replicas are responsible for the same round. The goal of the

replicas is to have a value chosen for a round in which it is the leader. A value v is

chosen in a round r if and only if 2 f + 1 replicas accepted v in round r. Coordinated

Byzantine Paxos ensure that once a value v is chosen in round r, the replica responsible

for round r′ (r′ > r) can and will only proposes v for round r′. This ensures that the
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Table 6.1: Summary of messages in Coordinated Byzantine Paxos.

Message Meaning
REQUEST A Client sends a request to a replica

SUGGEST The coordinator proposes a client request

ACCEPT A Replica accepts the proposal

SKIP The coordinator proposes no-op
SU-RELAY A replica relays the SUGGESTmessages

REPLY A replica sends the result of a request

SK-RELAY A replica relays the SKIP messages

O-REPLY Optional reply certificate

NEW-LEADER The new leader initiate the leader change

ACK A replica acknowledges to NEW-LEADER

PRE-PREPARE The new leader proposes a value based on the progress certificate

PREPARE A replica confirms the value proposed by the new leader

protocol is safe.

Coordinated Byzantine Paxos incorporates MSD and A2M. This means that the

clients always trust their local server and all the servers trust the A2M. Critical mes-

sages such as SUGGEST and SKIP (and by extension SU-RELAY and SK-RELAY) must

be signed by one A2M. Like Coordinated Paxos, all servers with Coordinated Byzantine

Paxos start with an initial round r0, in which the coordinator is the leader. Also similar

to Coordinated Paxos, a server with Coordinated Byzantine Paxos can invoke one of the

three actions given below, based on its role. The pseudo code of Coordinated Byzantine

Paxos can be found in Appendix D. We uses the following notation: (1)

• 〈m〉αp: a message m from p authenticated using the shared secret keys between p

and other processes.

• 〈m〉σp: a message m signed by server p.

• 〈m〉ρp : a message m signed by the A2M of server p.

Suggest: The coordinator c can suggest by proposing a client request to the initial

round r0. It does this by broadcasting a 〈SUGGEST,v〉ρc message, which is signed

by its local A2M. Upon receiving the SUGGEST message for the first time, a
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Client0

Coordinator

Replica1

Replica2

Replica3

REQUEST SUGGEST ACCEPT+
SU-RELAY REPLY O-REPLY SKIP SK-RELAY

Coordinator suggests Coordinator skips

Figure 6.2: A space time diagram showing the message flows of the suggest and skip

actions in Coordinated Byzantine Paxos.

server p accepts it unless it previously promised not to do so. It then broad-

casts a 〈ACCEPT,v,r0〉αp message and also relays the SUGGEST message using

SU-RELAY1 as a separate message. A server p learns the outcome when it receives

2 f +1 matching ACCEPT messages. The coordinator c commits and executes the

request to generate the reply R. Then it sends a 〈REPLY,R〉αc message to the client.

The client learns the outcome of the its request once it receives the REPLY from

the coordinator, which is its local server. Instance 0 in Figure 6.2 summarizes the

message flow of suggest. The dotted lines in this figure represent optional REPLY

and O-REPLY messages, which are useful for detecting a faulty local server. We

further explain them in section 6.7.2.

Skip: The coordinator c can skip by proposing no-op. It does this by broadcasting

〈SKIP〉ρc , which is signed by its local A2M. Note that no ACCEPT message is gen-

erated to acknowledge the SKIP message because Coordinated Byzantine Paxos

is skipping fast. Upon receiving the SKIP message for the first time, a server re-

lay the message using SK-RELAY to all other servers and learns no-op has been

chosen. A server can learn no-op immediately because no-op is the only possible

1A SU-RELAY message has exact same fields and content as the SUGGEST message being relayed. We

give it a new name here to distinguish it from the original SUGGEST message. For the same reason, we

later use SK-RELAY to distinguish a relayed SKIP message from the original SKIP
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outcome: the coordinator has proposed no-op and all the other servers can only

propose no-op by the definition of simple consensus. Instance 1 in Figure 6.2

summarizes the message flow of skip.

Revoke: For some protocol parameter α (1 ≤ α ≤ f +1), if f +α servers suspect the

current leader is faulty, then a new leader is elected to revoke the suspected leader.

Figure 6.3 summarizes the message flow of revoke. We further explain the de-

tails for the revocation sub-protocol in section 6.4.1. The new leader does this by

asking all servers to advance to round a higher round r′ and polling all the other

servers using NEW-LEADER message. Upon receiving this the replicas advance

to round r′, promise not to accept any value for round r∗ < r′, and response with

a signed ACK message. The ACK message also includes the value a server has

accepted and the round in which the value was accepted. The new leader then

gathers 2 f + 1 ACK messages to form a progress certificate. If the progress cer-

tificate indicates that some value v might have been chosen, then the new leader

proposes v; otherwise it proposes no-op. The subsequent execution is similar to

that of PBFT.

Coordinator

New leader

Replica2

Replica3

NEW-
LEADER ACK PRE-

PREPARE PREPARE ACCEPT

Figure 6.3: A space time diagram showing the message flow of the revoke action in

Coordinated Byzantine Paxos.

Note that α + f suspicion is required to revoke a server. α ≥ 1 ensures at least

one correct server suspects the current leader, and α ≤ f + 1 because up to f servers

may be faulty: the protocol can not wait for more than 2 f + 1 suspicions. Choosing a
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large α reduces the probability of unnecessary revocation caused by network jitter. We

discuss this in section 6.6.1.

Table 6.1 summaries the messages used in Coordinated Byzantine Paxos. SUG-

GEST and SKIP message are initialed by the coordinator and are in the critical execution

path. So, they are signed by A2M to enable identical Byzantine failure. they are also re-

layed with SU-RELAY and SK-RELAY respectively to cope with faulty servers that omit

the SUGGEST and SKIP message to some of the servers. Relaying ensures that if one

correct servers receive the messages all correct servers will eventually do. This helps to

bound the latency increase that irrational servers can cause (see section 6.7.4).

The ACK messages are digitally signed by the replying servers (and not by the

server’s A2M). A digital signature is required so that a new leader can later prove that the

value it proposes is indeed a valid choice. An alternative is to have the servers broadcast

ACK messages authenticated by MACs. The servers then only accept the new-leader’s

proposal if they have received sufficient number of ACK messages that can be used to

construct a progress certificate and validate the new proposal. Since revocation is usually

not in the critical execution path of Coordinated Byzantine Paxos and RAM, we opt for

the simpler, although more expensive, alternative of using digital signature.

6.4.1 Revocation sub-protocol

We assume an external leader election protocol that is at least as strong as Ω

is used for the revocation sub-protocol. When the leader l of the current round r is

suspected of having failed, a server p sends a 〈SUSPECT, l,r,L〉σp to a newly elected

leader L. L gathers f +α such SUSPECT messages to construct a revocation certificate

rc. L then broadcasts 〈NEW-LEADER,rc,r′〉αL , for some round r′ > r. If a server p

receives a valid NEW-LEADER message and is currently in a round rp that is smaller than

r′, p advances to round r′ and acknowledges with an 〈ACK,r′,vp,σvp ,rp〉σp message. vp

is the value that p is currently accepting in round rp. σvp is the necessary signature

for other servers to validate vp. When rp = r0, σvp is the one signed by the A2M of

the coordinator. Otherwise, it is a collection of 2 f + 1 signatures signed in the prepare

phase of round rp, as described below.

The leader L then collects 2 f + 1 ACK messages to construct a progress certifi-



117

cate pc, based on which, it picks a value v′ to propose for round r′ using the following

rules:

1. If the ACK messages indicate some server has accepted some value, then L picks

the value v with the highest round number in these ACK messages.

2. If the ACK message indicate no server has accepted any value, then L picks no-op.

Once a value v′ is picked, L broadcasts a 〈PRE-PREPARE, pc,v′,r′〉σL . A server p

only processes a PRE-PREPARE message if (1) p is currently in round no larger than r′;

(2) v′ is the valid choice according to pc; and (3) p has not received any other valid PRE-

PREPARE messages for round r′. p acknowledges a valid PRE-PREPARE message by

broadcasting a 〈PREPARE, pc,v′,r′〉σp message. A server p then collects 2 f +1 matching

valid PREPARE message for round r′ before accepting v′. It does so by broadcasting an

〈ACCEPT,v′,r′〉αp . Note that, if no value is chosen in this round and p later needs to

advance to a higher round r′′ upon receiving a NEW-LEADER message from the leader

in round r′′, p responses with an 〈ACK,r′′,v′,σv′ ,r′〉σp message as we described earlier.

σv′ , the signature that vouches for v′, is the signatures of the 2 f +1 matching PREPARE

messages p received in round r′. Upon receiving the ACK message, the new leader in

round r′′ can reconstruct these 2 f +1 PREPARE messages and validate the signatures.

After sending out the ACCEPT messages, server p then collects matching AC-

CEPT messages. Once 2 f +1 matching ACCEPT messages are collected for round r′, p

learns v′ and commit it. A reply is then sent to the client if necessary.

6.4.2 Correctness proof

Lemma 6.1: Assuming A2Ms can be trusted and the MSD model, Coordinated Byzan-

tine Paxos satisfies Validity (SC.2), Integrity (SC.3), and Non-triviality (SC.5).

Proof. Assuming MSD allows the clients to trust their local server, and so it is safe for

the client to commit to a reply upon receiving it from its local server.

Validity (SC.2): The only case in which validity applies is when the coordinator skips,

i.e., proposes no-op. In this case no-op is the only possible consensus outcome

because: (1) All correct servers learns no-op upon receiving the skip message
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from the coordinator; and (2) Any subsequent revocation can only proposes no-

op. This is because the coordinator’s A2M ensures the coordinator cannot submit

any value other than no-op. And so any subsequent progress certificate can only

vouch for no-op or no value. In either case, no-op will be proposed by the new

leader.

Integrity (SC.3): This is trivially satisfied.

Non-triviality (SC.5): This can be verified: (1) When the coordinator proposes a client

request v, v will be the outcome if the coordinator is correct and no server suspects

the coordinator; and (2) We have explained no-op is the only possible outcome if

the coordinator proposes no-op.

Lemma 6.2: Assuming A2Ms can be trusted, no two correct servers p and q learn dif-

ferent values in the same round r.

Proof. We prove the lemma by verifying the following two cases cases:

• r = r0: In round r0 a server can only accept the proposal from the coordinator.

Since the A2M prevents the coordinator from proposing two values, no server can

accept or learn different values.

• r 
= r0: p and q must each receive ACCEPT messages for round r from a quorum

of 2 f + 1 servers. Since we have 3 f + 1 server in total, the two quorums have

at least f + 1 servers in common. At least one of these f + 1 servers is a correct

one, since we have at most f faulty servers. It is impossible for p and q to ac-

cept different values in round r because a correct server does not send conflicting

ACCEPT messages.

Lemma 6.3: Assuming A2Ms can be trusted, Coordinated Byzantine Paxos satisfies

Agreement (SC.4).
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Proof. From Lemma 6.2, we have already ruled out the possibility for two servers to

learn different values in the same round. So, without losing generality, we assume two

server p and q learn distinct value u and v in round r1 and r2 respectively. We also

assume r1 is the smallest round any server learns u; r2 is the smallest round any server

learns v; and r1 < r2.

If r1 = r0 and u = no-op, we already explained that no-op is the only possible

consensus outcome, so, the Agreement property is satisfied.

Otherwise, r1 
= r0 ∨u 
= no-op, p must have received 2 f +1 ACCEPT messages

in round r1 for value u. At least f +1 such ACCEPT messages are from correct servers.

We use S to denote these f +1 correct servers.

Obviously r2 > r1 ≥ r0, q must have learned v through revocation: a server

learns a value in a round larger than r0 only through revocation. This means q has

received matching ACCEPT messages from 2 f + 1 servers. We use T to denote these

f + 1 servers. Since |S| = f + 1 and |T | = 2 f + 1, S and T intersect on at least one

correct server. So, at least one correct server accepted v in round r2. This correct server

must have received matching PREPARE messages for v in round r2 from 2 f +1 servers,

which we denote as T ′. S and T ′ also intersect on at least one correct server. So, there

exists at least one correct server that accepted u in round r1 and later prepared v in round

r2.

Now, let r′ > r, be the smallest round in which a correct server p′ does the

preceding, i.e., p′ accepted u in round r1 and prepared v in round r′. For p′ to have done

this, the leader of round r′ must have constructed a progress certificate that vouched for

v. The progress certificate consists of ACK messages from a set of 2 f + 1 servers, say

T ∗. Since the certificate vouches for v, the ACK message with the highest round number

in the certificate must have the form 〈ACK,r′,v,σv,r∗〉σs , i.e., s, the sender of the ACK

message, claims that it has accepted v in some round r∗.

We argue this is impossible because:

• If r∗< r1, then all correct servers in T ∗ sent ACK messages indicates that they have

not accepted any value in rounds between r∗ and r′. S and T ∗ intersects on at least

one correct server. This correct server must have not accepted any value in round

r1, since r∗ < r1 < r′ and the correct server advances to round r′ before sending
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back the ACK message. This contradicts with the assumption that all servers in S

accepted u in round r1.

• If r∗ = r1, there are two cases:

1. r1 = r0: This means the coordinator has proposed u in round r0. It is impos-

sible for s to collect σv because the trusted A2M would not have signed any

value other than u.

2. r1 > r0: Since u is accepted by f +1 correct servers in round r1, they must

have received 2 f +1 matching PREPARE messages for value u. At least f +1

PREPARE messages are from correct servers. This made it impossible for s

to collect 2 f +1 matching signatures to construct σv for v in round r1: it can

collect at most 2 f signatures since the rest f +1 servers has already prepared

for u.

• If r∗ > r1, then 2 f +1 servers must have sent the PREPARE messages for value v

in round r∗. At least f +1 of these servers are correct, which contradicts with the

assumption that r′ > r∗ is the smallest round for a correct server to do so.

So, we conclude that Coordinated Byzantine Paxos satisfies the agreement prop-

erty.

Lemma 6.4: Assuming faulty coordinator is eventually suspected and a failure detector

that is at least as strong as Ω is used to select the new leader for revocation, Coordinated

Byzantine Paxos satisfies Termination SC.1.

Proof. If the revocation process is not involved, then the coordinator must be correct.

In this case, Coordinated Byzantine Paxos terminates eventually once the coordinator

sends out its proposal to round r0. This is true because every step of the protocol only

need the responses from 2 f + 1 replicas, which a correct server eventually receive be-

cause at most f servers are faulty and the SUGGEST and SKIP messages are relayed.

If the revocation process is involved, eventually exactly one server will lead

the revocation process in round r. The leader can eventually collect the progress cer-

tificate for round r because it eventually receives the ACK messages from the 2 f + 1
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correct servers. After that all correct server will eventually receive 2 f + 1 matching

PRE-PREPARE and PREPARE messages in round r. This will generate 2 f + 1 matching

ACCEPT message for round r because no other server will be elected to start a higher

round since we assume Ω is used to elected the leader. Eventually, every correct server

receives these 2 f +1 matching ACCEPT messages, learns the simple consensus outcome,

and terminates consensus.

Theorem 6.5: Assuming (1) A2Ms can be trusted; (2) the MSD model; (3) faulty coor-

dinator is eventually suspected; and (4) a failure detector that is at least as strong as Ω is

used to select the new leader for revocation, Coordinated Byzantine Paxos implements

simple consensus.

Proof. From Lemma 6.1, 6.3,and 6.4.

6.4.3 Performance metrics

It is not difficult to see that the quorum size for Coordinated Byzantine Paxos

is 2 f + 1. The message complexity of suggest is 2n2 − 4n+ 4: one REQUEST message

from the client to the coordinator, n−1 SUGGEST messages, (n−1)(n−2) SU-RELAY

messages, and (n− 1)n ACCEPT messages. This total does not count either the n− 1

optional REPLY messages from the followers to the coordinator or the O-REPLY message

from the coordinator to the client. The message complexity of the skip action is (n−1)2:

n−1 skip messages and (n−1)(n−2) SK-RELAY messages. The message complexity

of revocation is higher than that of suggest, and depends on whether concurrent leaders

were elected for revocation. Since revocation cost is amortized in the long run (see

section 6.5.3), we do not analyze the message complexity of revocation further.

During failure-free runs, it takes two wide-area communication steps to learn a

suggestion and one step to learn a skip. If the coordinator is faulty and omits SUGGEST

or SKIP messages to some of the servers, then up to one additional step may be needed

for all the servers to learn the outcome: relaying guarantees that all correct server re-

ceives the SUGGEST or SKIP messages two steps after the coordinator sends them to one

correct server. Revocation takes at least five steps: this is the case when no concurrent

leaders are elected for the revocation process.
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6.5 Deriving RAM

We have explained Coordinated Byzantine Paxos, a simple consensus protocol

that assumes A2M and the MSD model. We now apply Coordinated Byzantine Paxos

to the generic rotating leader protocol R to obtain RAM. RAM uses the rotating leader

scheme defined in Definition 4.2 and use Coordinated Byzantine Paxos to solve each

instance of simple consensus. The execution of RAM are defined by a set of rules and

optimizations. As we did with Mencius, we introduce the set of rules for building a

simple yet not efficient called protocol Q. We then discuss the set of optimizations for

obtaining a more efficient protocol. We call this final protocol RAM. Many of the rules

and optimizations are similar to that of R. We restate these rules and optimizations here

for the purpose of completeness and point out the differences.

6.5.1 Revocation in RAM

Revocation is part of core mechanisms of the rotating-leader design. Before

discussing the detail rules for RAM, we explain some of the design decision we made

for the revocation process.

With the rotating leader scheme, faulty servers are revoked to allow correct

servers to make progress, i.e., to ensure liveness. Such a process involves the use of

failure detector. We already know that the weakest failure detector for implementing

consensus is Ω, which provide some sort of eventually accuracy. This is also true for

♦W, a class of failure detector that has been shown to be equivalent to Ω: ♦W provide

eventually weak accuracy. While it is not difficult to implement such classes of failure

detectors, unavoidable false suspicions come with any practical implementation: it is

impossible in an asynchronous system to determine if an unresponsive server has failed

or is just slow. Any rotating leader protocol, e.g., Mencius and RAM, needs to properly

handle false suspicion to be efficient.

When false suspicion happens with Mencius, a server can resume action by

setting its index to be greater than the last instance that was revoked. A falsely sus-

pected server makes other servers update their indexes and skip their unused turns (see

Rule M.2). This quickly synchronizes the indexes of the servers and allow all correct
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servers to make progress. Mencius has no time period associated with revocation be-

cause a revoked servers has either crashed, or has been falsely suspected and so should

leave revocation immediately.

The strategy of Mencius, however, does not work with RAM which considers

Byzantine failures: a Byzantine faulty server can abuse it to nullify the effects of revo-

cation. This is reflected in the additional conditions of Rule R.1 – R.4 (see next section)

that prevent a suspected server from immediately getting out of being revoked, regard-

less if the suspicion is a false positive.

Because RAM, by design, does not allow falsely suspected server to end revo-

cation immediately, revocation in RAM has time period associated with it, i.e., it is set

to expire unless otherwise renewed. This allows falsely suspected server to eventually

resume action. We further discuss this topic in section 6.6.1.

Even though it cannot suggest requests on behalf of its clients, a falsely sus-

pected server can either wait out the revocation period or forward its requests to other

servers expecting that a correct server will propose them on its behalf.

6.5.2 Protocol Q

Rule R.1: Each server p maintains its next available simple consensus instance number

in a variable Ip, which we call p’s index. Upon receiving a new client request r, if server

p is not currently under revocation, p proposes r to Ip and updates Ip by assigning it the

sequence number of the next instance it coordinates.

Rule R.2: When a server p receives a SUGGEST message from server q for an instance

i greater than Ip, if q is not currently being revoked, i.e., if p does not know q is being

revoked, p skips its turns for instances between Ip and i by proposing no-ops and updates

Ip accordingly; otherwise p ignores the SUGGEST message.

Rule R.3: Let q be a server that f +α servers suspects has failed. A non-faulty server

p is elected to revoke q. Let Cq be the smallest instance that is coordinated by q and not

learned by p. p revokes q for all instances in the range [Cq, Ip] that q coordinates.

Rule R.4: When a server p suggests a value v 
= no-op to instance i but it learns no-op

for instance i, then p suggests v again when p is not currently being revoked.
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It is straightforward to see that Rule R.1 – R.4 are similar to Rule RL.1 – RL.4

of R. Indeed, Rule R.1, and R.4 are the same as Rule RL.1 and RL.4 except that the

former exclude server p from action when p is currently being revoked. Rule R.2 is the

same as Rule RL.2, except Rule R.2 requires that a server p only skips its turns when

the SUGGEST message is from a server that is not currently being revoked; Rule R.3 is

the same as Rule RL.3, except Rule R.3 requires f +α suspicion for revocation.

We have explained earlier the additional condition of Rule R.3. The additional

conditions of Rule R.1 and R.4 are in place to prevent a falsely suspected correct server

from ignoring a revocation against itself. This is in place because our protocol, by de-

sign, punishes servers that ignore revocation. Following R.1 and R.4 helps to prevent un-

necessary penalty for falsely suspected servers. We discuss this further in section 6.7.3.

The additional conditions of Rule R.2 is in place to prevent a revoked server from easily

getting out of revocation.

Lemma 6.6: Q with Rule R.1 – R.4 is always safe.

Proof. From Lemma 4.6 we know that Rule R.1 – R.4 without the aforementioned addi-

tional conditions are safe. The additional conditions merely restricts the actions that Q

can take, in other words, the possible behavior of Q is more restricted and is a subset of

the possible behavior without such conditions. So, Q is safe with such conditions.

Lemma 6.7: Assuming ♦P, Q with Rule R.1 – R.4 is live.

Proof. From Lemma 4.8 we know that Rule R.1 – R.4 without the aforementioned ad-

ditional conditions are live. ♦P guarantees that eventually all the and only the crashed

servers are suspected. We prove the liveness of Q by argue that the additional condi-

tions eventually do not apply when assuming ♦P: the eventual execution of the actions

in Rule R.1 – R.4 guarantees the liveness of the protocol.

Rule R.1 and R.4: The additional conditions exclude a revoked server p from suggest-

ing or re-suggesting requests. If p is faulty, then it does not matter, since only

requests sent to the correct server are required to be eventually committed. If p is

correct, then false suspicions of p eventually cease, after which time, p can take

on the action of Rule R.1 and R.4 if necessary.



125

Rule R.2: The additional condition have server p ignore the SUGGEST messages from

a revoked server q. If q is faulty, then it does not matter, since only requests sent

to the correct server are required to be eventually committed. If q is correct, then

false suspicions of q eventually cease, at which time, q can take on the action of

R.4 to re-suggest the request if necessary.

Rule R.3: The additional condition make it less likely to trigger the revocation because

of the additional suspicion required. However, since we assume ♦P, any faulty

server will be eventually suspected by all correct servers, the number of which

is at least 2 f + 1. Since α ≤ f + 1, a faulty server is eventually suspected by

sufficient number of servers, and hence revoked. Since the protocol only relies

on the eventually revocation of faulty servers to provide liveness, the additional

conditions of Rule R.3 does not affect liveness.

Theorem 6.8: Assuming ♦P, Q with Rule R.1 – R.4 implements replicated state ma-

chines.

Proof. From Lemma 6.6 and Lemma 6.7.

We argue that it is not difficult to implement ♦P for Q. ♦P is only required

for liveness, which in turn only requires requests submitted by the correct servers to

be eventually committed. With Q, each correct server is responsible for suggesting

its own requests. A request will eventually be learned in whichever simple consensus

instance it is submitted to, as long as the server is not falsely suspected. This condition

eventually holds because we assume ♦P. So, a faulty server can only prevent learned

request from committing by creating gaps in the consensus sequence. This can be done

in two ways: by not skipping turns or by not suggesting requests. A faulty server can

only do this by not sending the SKIP or SUGGEST message to none of the correct servers

because the relay mechanism ensures if one correct server receives such messages, all

correct server will. This makes it easy to detect such faulty behavior using timeouts.

Eventually accuracy can be obtained by exponentially increasing timeout. To implement

♦P, small timeout values can be used initially. The values can be subsequently increased
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(exponentially) if they are proven to be too short and to generate false positives. Doing

so helps to provide eventual accuracy.

Implementing ♦P in this way, however, may leads to large timeout values. A

faulty server can take advantage of large timeout value to temporarily delay the commit-

ment of learned requests. Though not violating liveness, this make it possible for mali-

cious servers to mount a performance attack [6] that can result in a significant increase

of request latency. So, we use stricter criteria for detecting failures in our protocol. This

may leads to correct but slow servers being permanently falsely suspected. To compen-

sate that we allow a falsely suspected server to forward its requests to another server,

much like Rule RL.5 of protocol R.

Rule R.5: If server p is being revoked, upon receiving a request v from its client or

upon learning no-op for an instance to which it have previously proposed client request

v, instead of suggesting or re-suggesting v, p forward v to another server r that p believes

is correct. When receiving v, r treats it the same as a client request.

Rule R.5 implies that when the forwarder is later suspected to be faulty, a server

may re-forward requests if needed.

Theorem 6.9: Assuming Ω, Q with Rule R.1 – R.5 implements replicated state ma-

chines.

Proof. We already know that Q always satisfies R.2 (Agreement), R.3 (Integrity) and

R.4 (Total Order) from Lemma 4.6. So, we only need to prove R.1 (Validity). From the

proof of Lemma 6.7, we know that only the requests sent to falsely suspected servers are

not live. Rule R.5 allow a falsely suspected server p to forward request to another server

r, and r will suggest the request. Since we assume Ω, p can eventually find a correct

server r to which to forward requests. Since any request suggested by a correct server

is guaranteed to commit eventually, any request submitted to p is also guaranteed to be

live. So, Q with Rule R.1 – R.5 satisfies Validity and hence implements replicated state

machines correctly.
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6.5.3 Optimizations

This message complexity of the basic protocol is high due to the broadcast of

SKIP, ACCEPT, SU-RELAY, and SK-RELAY messages. The ACCEPT messages are broad-

cast by design, the other three class of messages can be piggybacked on other messages

to reduce message complexity.

Recall that Mencicus reduces message complexity by piggybacking SKIP mes-

sages on subsequent ACCEPT and future SUGGEST messages. Mencius must rely on

future SUGGEST messages because it does not broadcast ACCEPT message due to its

goal to improvement throughput. RAM, with its focus on reducing latency, broadcast

ACCEPT messages. Doing so is useful not only for dealing with faulty servers that omit

messages to a fraction of the servers (see section 6.4), but also for making piggybacking

eaiser: SKIP and SU-RELAY are always generated at the same time as ACCEPT messages.

Optimization R.1: SKIP and SU-RELAY are always piggybacked on ACCEPT messages.

Note that Mencius also overloads the semantics of ACCEPT and SUGGEST mes-

sages to further reduce the number of fields required in the piggybacked messages. Be-

cause of the crash-failure semantics, all fields of the skip message can be inferred from

the overloaded ACCEPT or SUGGEST messages, and so no additional field is added to

the piggybacked messages. This technique is, however, not effective with Optimiza-

tion R.1. This is due to the use of digital signature under the Byzantine failure model:

the signature fields must present in the piggybacked messages.

SK-RELAY messages can also be piggybacked or combined using the following

optimization:

Optimization R.2: SK-RELAY are buffered to be piggybacked on other messages. A

protocol parameter ζ specifies the maximum number of seconds an SK-RELAY message

can be buffered. Once ζ seconds is reached, all outstanding SK-RELAY message are sent

out immediately.

RAM can afford the extra latency introduced by Optimization R.2 because SK-

RELAY message are not time critical. For example, a simple way to select ζ is to set it to

1/10 of the estimated one-way delay. In our evaluation environment, one-way delay is
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50 ms, and so ζ is set to 5 ms, resulting in at most 200 combined SK-RELAY messages

being sent out every second. This helps to reduce the message complexity at the cost of

relatively low extra latency.

Lemma 6.10: Protocol Q with Optimization R.1 and R.2 implements replicated state

machines correctly.

Proof. Optimization R.1 merely combines multiple messages that Q would have sent

separately into one message. Optimization R.2 delays the SK-RELAY messages for

bounded time. Doing this clearly does not violate any of the safety properties. It does

not violate any of the liveness properties either because Q only relies on the eventual

delivery of messages for liveness: up to ζ seconds are added to the message latency.

Like R, Q can also reduce the overhead of revocation by revoking suspected

servers in large block. This results in the following optimization:

Optimization R.3: Let q be server that f +α servers suspects has failed, and let p be

a non-faulty server that is elected to revoke q. and let Cq be the smallest instance that

is coordinated by q and not learned by p. For some constant β , p revokes q for all

instances in the range [Cq, Ip +2β ] that q coordinates if Cq < Ip +β .

Corollary 6.11: Protocol Q with Optimization M.3 implements replicated state ma-

chines correctly.

Proof. From Lemma 4.13

Definition 6.3 (RAM): RAM is Q (Rule R.1 – R.5) combined with Optimizations R.1

– R.3.

Theorem 6.12: RAM implements replicated state machines correctly.

Proof. From Lemma 6.10 and Corollary 6.11.

6.6 Discourage uncivil rational behavior

We have explained the basic structure of RAM. In this section, we discuss how

RAM discourages uncivil rational behavior. The root cause of rational behavior is faulty
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and/or selfish administrators who exploit the protocol to improve local utility possibly at

the cost of the utility of remote sites. Such behavior can be discouraged by reinforcing

the protocol so that any divergence from the correct behavior only increase the chance

of lowing local utility. The core mechanism for RAM to accomplish this revocation.

With the rotating leader design of RAM, all servers have the opportunity to make

requests directly for their clients. Revocation means that being a coordinator is a privi-

lege rather than a right. Since RAM, by design, prevents a server from bypassing revoca-

tion, a revoked server can only forward its clients’ requests to other servers. Forwarding

has two obvious drawbacks: it adds to the latency of client requests and it requires the

revoked server to find a correct server to be the forwarder.

Thus, it is in the best interest of any rational server to avoid being revoked. In

fact, in some cases it would make sense to sacrifice a bit on latency for local requests

to avoid the higher latency that revocation would induce. Thus, revocation constitutes a

fundamental tool in RAM to discourage uncivil rational behavior. The rest of the section

explains RAM’s revocation policy as well as the implications of using revocation.

6.6.1 Failure detection under network jitter

RAM is designed to revoke servers that are suspected to be faulty. Any practical

implementation of a failure detector is likely to produce false suspicions due network

jitter. But, a falsely suspected (and therefore revoked) server can not recover quickly.

This means – not surprisingly – that, in addition to eventual accuracy, the underlying

failure detector should avoid false positives. A simple approach to do this is to have the

failure detector report three possible values: correct, suspicious, or faulty.

Correct: A server is detected as correct if it is timely and no misbehavior is detected.

Faulty: A server is faulty if definite misbehavior is detected, e.g., proposing incon-

sistent requests to the same consensus instance because of a faulty A2M. Upon

detecting faulty behavior, a correct server raises a verifiable suspicion (discussed

in section 6.6.4) for this class of failures, and a faulty server is repeatedly revoked

until it has been repaired via human intervention.
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Suspicious: Finally, a server is considered suspicious if it is not acting fairly or in a

timely fashion. Examples of such behaviors are failing to batch when it has a high

client load, failing to accept suggestions from other servers in time, or failing

to skip its turns in time. Such a conduct is classified as suspicious because, in

practice, it is difficult to tell whether it is because of environmental issues like

network jitter, or if the actions are deliberate. Upon detecting such a behavior, a

correct server raises an unverifiable suspicion (see section 6.6.3).

The protocol has a parameter α such that f +α unverifiable suspicions are re-

quired to start revocation. Ideally, a practical failure detection implementation has a

low false positive rate resulting from network jitter. A larger value of α makes revoca-

tion triggered by network jitter less likely: up to α − 1 correct servers can experience

untimely behavior without triggering revocation even in the presence of f Byzantine

servers. As a consequence, a rational server should avoid being unnecessarily suspected,

since it would take fewer servers noting jitter for it to be revoked.

Since revocation is used as a punishment for uncivil behavior, the time period

associated with those revocation triggered by unverifiable suspicion should, at least ini-

tially, be small because of occasional false suspicions arising from bad environmental

conditions. If a server continues to be suspected frequently enough, then the time period

can be increased.

6.6.2 Turnaround time advertisement

At the core of RAM’s failure detection is a turnaround time advertisement mech-

anism. Similar mechanism has been used by others to select a fast leader for BFT pro-

tocols [6]. Under this mechanism, a server p is required to periodically advertise a

turnaround time Lp→q between itself and each other server q. This value is an upper

bound on the amount of time q will need to wait to get a response from p concerning a

message that requires immediate response (such as a SUGGEST message). Missing this

deadline may cause q to suspect p.

To give this kind of advertisement, p needs to predict round-trip latency. Pre-

dicting round-trip latency for wide-area network has been an active research topic in the
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Grid community and promising results have been obtained [12, 45, 59]. Once signed

and advertised, these promises are collected and fed into each server’s failure detector

module as dynamic input to produce a list of up to f suspected servers. As we will

discuss later it is in the best interest of any rational server to provide a promise that is as

accurate as possible.

6.6.3 Unverifiable suspicion

Suspicion in RAM can be roughly categorized into two classes: verifiable and

unverifiable suspicions. A server p raises an unverifiable suspicion against server q

based on information that is collected locally and can not be verified globally. For ex-

ample, p may suspect q because q is slow, but p cannot prove this to a third party;

perhaps q is timely and p is attacking q deliberately. In the following, we give a list of

conditions that lead to an unverifiable suspicion. This list covers some important and

generic conditions for unverifiable suspicions, but it is not meant to be comprehensive.

Specific environments or system performance requirement will introduce other condi-

tions as well.

Untimely behavior

When a server p sends a message (such as SUGGEST) to q that requires q’s

immediately response, p raises an unverifiable suspicion against q if q’s response time

does not meet q’s latency promise Lq→p. This revocation condition gives incentive for a

server to not to advertise latency promises that it cannot deliver, as well as to get reply

to other servers as soon as possible to avoid untimely behaviors caused by unexpectedly

large network jitter.

We have discussed that network jitter makes it difficult to distinguish a deliber-

ately slow server and a server whose messages happen to have jitter. It is interesting

to note that by using the turn-around time and revocation mechanism, network jitter is

turned from something a uncivil rational server can take advantage of into something

encourage rational server to act civilly.
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Flooding

One type of uncivil behavior is for a server to flood the system with local requests

when it is experiencing high loads from its client. This behavior can potentially improve

throughput and latency for its local clients at the risk of overloading the system and

reducing the over all utility of the system as a whole. To discourage such a behavior,

a server is required to either batch or traffic shape its local requests so that it does not

exceed a predefined throughput threshold. Failing to comply results in suspicion and

hence revocation.

A simple strategy to select throughput threshold is to set it to 80% of through-

put a server can handle. For example, each server in our prototype implementation can

handle approximate 200 ops (operations per second) (see section 6.8.4) – largely inde-

pendent of the request size. In a system with a total of four servers, setting the threshold

to 160 ops would allow a total of 640 ops before batching kicks in. The extra latency

caused by batching is no larger than 1/160 second or 6.25 ms, which is quite small

compared to the 100 ms round-trip latency in our experiments.

Forwarding omission

When a server p is under revocation, it cannot directly propose requests; it has

to forward its local requests to another server q. To prevent p from overloading q,

RAM allows q to buffer such forwarded requests for a short period of time ρ to seek

for opportunities to batch requets. An uncivil server may pretend it has not received the

forwarded message and delay proposing them for a long period of time. To mediate this

behavior, p signs and broadcasts the request to all servers with a designation that q is to

propose it. Upon receiving the request from p, a third party r may also relay the request

to q, expecting to receive a SUGGEST from q within ρ +Lq→r. r suspects q if such an

expectation is not met. A server r decides to do this based on a random variable, set

so the expected number of servers forwarding the request is larger than f . While this

mechanism does not completely prevent q from sitting on forwarded requests, it does

put a upper bound on how long it can do so.

Note that ρ should be set to be no less than the inverse of a server’s throughput

threshold. For example, if the threshold is set to 160 ops, ρ should be at least 6.25 ms
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to make sure p cannot force q to exceed the throughput threshold.

Finally p is free to designate whichever server to propose its requests; it can

therefore try multiple servers and decide on the one that gives the best response time,

making forwarding omission less a threat.

Handling forwarded requests requires a server to do extra work: (1) the server

needs to buffer and handles batching; and (2) A2M needs to sign the batched and hence

larger requests. One potential problem is handling forward can hurt the ability of a server

to handle requests from its own clients. The cost of buffering and batching is relatively

small and negligible comparing to the A2M signing cost, and so, is not a issue. From

the evaluation result in section 6.8.4, we can see that the number of requests the A2M

thread can sign is roughly the same regardless the size of the requests. So handling

larger requests would not significantly hurt the ability of a server to handle requests for

its own clients.

Reciprocal suspicion

In section 6.6.4 we define a policy that determines which servers should be sus-

pected because they are slow. This policy suspects no more than f servers. Because of

this, a uncivil rational server may attempt to reduce the chances of itself being suspected

by increasing the chances of other servers being suspected. A rational server can do this

by simply suspecting other servers for no valid reason in hopes that network jitter will

result in enough suspicions. To discourage this behavior, we allow a server to raise a

reciprocal suspicion. For example, q can raise a reciprocal suspicion against p should p

suspect q is untimely but q has been timely and has not recently experience network jitter

between p and q. The rationale behind a reciprocal suspicion is that suspecting a correct

server is itself a suspicious behavior since there is nothing preventing a faulty server

from suspecting any server. Suspicion retaliation gives incentive for rational servers not

to abuse suspicions, since they come at a cost.

6.6.4 Verifiable suspicion

Verifiable suspicions are those that can be verified by any server. A correct server

q becomes suspicious of r upon receiving a verifiable suspicion against r, and so one



134

verifiable suspicion from server p against server r is sufficient to initiate revocation

against r. Most verifiable suspicions are raised as a result of definite Byzantine behavior.

For example, if p’s A2M is compromised, p may tell server q that it has suggested v 
=
no-op to instance i and tell server r it has skipped instance i. By exchanging SU-RELAY

and SK-RELAY messages, q and r can easily detect this failure and raise a verifiable

suspicion. Verifiable suspicions can also be raised when a server violates the definition

of simple consensus, i.e., when a follower uses its A2M to suggest v 
= no-op. The rest

of the section discusses another class of verifiable suspicions and describe how they are

used to discourage a server from advertising inaccurate turnaround times.

We noted in section 6.6 that it is in the best interest of a rational server to adver-

tise a turn-around time that it can deliver. Without further restriction, this gives incentive

to rational servers to advertise promises that are higher than what they can actually de-

liver; doing so makes it easier to meet their promise and avoid being revoked. The

drawback of this is that uncivil rational servers could use this additional slack time to

prioritize its own requests without risking itself being suspected and revoked. RAM uses

the follow mechanism to discourage this behavior by increasing a server’s probability

of being revoked if it reports an abnormally large turn-around time.

The combined turn-around promises can be represented as a graph with vertices

as servers and promises as edges. Each server r collects the advertised turn-around time

between each pair of servers, i.e., Lp→q and Lq→p are collected for each pair of servers

p and q. Let Lp↔q = max{Lp→q,Lq→p}. r constructs a fully connected graph G of the

servers using the values of Lp↔q. Note that the larger of Lp→q and Lq→p is used to

construct G because, were the lower of the two is used, it would allow p to provide a

high turn-around time promise without being observed in G as long as q has a lower

promise.

Let Π be the set of all servers. We define a utility function U(G,S, p) that,

given G and a set S (S ⊆ Π) of revoked servers, estimates the utility of server p. Then

a deterministic policy P is used to decide if a server q is too slow, i.e., if revoking q

would result in a better global utility. If so, then server q is suspected and revoked. One

requirement of U(G,S, p) and P is that increasing Lp↔q increases the chance of p and q

being considered slow; a server that reports a large turnaround promise is consequently
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more likely to be revoked.

The exact utility function U(G,S, p) and policy P to be used depends on the

specific system and should try to optimize the global utility function of the system.

While the exact details on selecting U and P are outside the scope of this dissertation,

we present the following examples:

Definition 6.4 (Utility function U1): We define U1(G,S, p) to estimate the expected

latency of server p: Note that the higher U1(G,S, p) is, the lower utility server p is

expect to have.

U1 =

⎧⎨
⎩max{Lp↔q : q /∈ S}, if p /∈ S

min{1
2Lp↔q +

1
2 max{Lq↔r +Lr↔q : r /∈ S}}, if p ∈ S

We used the above definition for the following reasons:

• When p is not revoked, the expected latency of p is the highest expect round-trip

latency between p and any server q that is not revoked. This is because p needs

to receive an acknowledgment from all the servers that are not currently being

revoked to commit its proposal.

• When p is revoked, p uses a server q that is not currently being revoked to forward

its requests. The expected latency of p via q consists of three parts: (1) one

way delay between from p to q for p to forward the request to q; (2) one way

delay from p to all non-revoked servers for q to propose the request; and (3) one

way delay from all non-revoked servers to q for sending the ACCEPT and SKIP

messages. After enough ACCEPT and SKIP messages are collected, p and execute

the request and send a reply to the client via local communication. Assuming link

latencies are symmetric, the first part is then estimated as 1
2Lp↔q. The second

and third parts of the latency need to be considered together. They are the highest

one-latency from q to p via a non-revoked server r, since p needs to know that

all non-revoked server has skipped before committing the request. So, they are

estimated as 1
2 max{Lq↔r +Lr↔q}. We then estimate the expected latency of p as

the lowest latency possible using any of the servers that is not being revoked2.

2By using the lowest latency possible, we do not consider faulty servers. This gives a low bound of
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We have defined U1(G,S, p) to estimate the expected latency of server p when

the servers in S are revoked. Given G, we now define policy P1 that uses U1 to decide

whether a set of servers S is too slow, i.e., whether revoking the servers in S would result

in better utility for the system as a whole. First, we introduce two supportive definitions:

Definition 6.5 (Expected bottom-line latency): Given a set of non-revoked servers T

(i.e., T ∩ S = φ ), we define the expected bottom-line latency of T as: Û1(G,S,T ) =

max{U1(G,S, p) : p ∈ T}. This is the highest expected latency of all servers in T .

Definition 6.6 (Valid revocation set): We say a set of servers S is a valid revocation set

under policy P1 iff |S| ≤ f ∧ 3
2Û1(G,S,Π \ S) ≤ Û1(G,φ ,Π \ S), i.e., a set of no more

than f servers are considered as a valid revocation set if revoking the servers in S would

reduce the bottom-line latency of the rest of the servers to reduce by at least 1/3.

The threshold 1/3 is somewhat arbitrary. The goal is to avoid making revocation

too aggressive: servers are only revoked if they are consider as too slow and revoking

them would benefit the rest of the servers enough to outweight the increased latency that

would occur for servers in S.

Definition 6.7 (Policy P1): Policy P1 uses Algorithm A1 to compute a minimal-sized

valid revocation set that would result in the best possible bottom-line latency for the

servers that are not revoked. A1 returns either φ or a set of servers sets, all of the same

size. With P1, no server is revoked if A1 returns φ ; all servers in the set are revoked

if A1 returns a single set of servers; when A1 returns multiple sets, one set is chosen

deterministically and those servers are revoked.

It is straightforward to see that U1 and P1 meet the requirement that increasing

Lp↔q increases the chance of p and q of being considered as too slow, i.e., p or q could

be revoked if all the other servers advertise low latencies among themselves.

Therefore, it is in the best interest of a rational server p to advertise Lp→q as low

as possible – advertising unnecessarily high Lp→q results in unnecessarily high Lp↔q,

which in turn unnecessarily increases the chance of p being revoked. We have already

the utility of server p. If it is desired, one can always estimate the utility of a server by using the ( f +1)th

smallest latency, which guarantees a correct server is used for forwarding. Doing so gives an upper bound

of the utility of server p.
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1: procedure A1(G)

2: SS ←{S : S is a valid revocation set in G}
3: if SS = φ then

4: return φ

5: end if

6: m ← min{Û1(G,S,Π\S) : S ∈ SS}
7: SM ←{S : Û1(G,S,Π\S) = m∧S ∈ SS}
8: ms ← min{|S| : S ∈ SM}
9: return {S : |S|= ms∧S ∈ SM}

10: end procedure

Figure 6.4: Algorithm A1

discussed that p has incentive to not advertise Lp→q to be lower than that it can deliver.

Combining the two results, we have that a rational server p has the incentive to advertise

Lp→q to be as accurate as possible.

We introduced U1 and P1 here to demonstrate how to use them to discourage un-

necessary high latency promise advertisement. However, it is likely more sophisticated

policy should be considered for practical deployment. Also the complexity of algorithm

A1 used by P1 is exponential in n, the total number of servers. While we do not expect

the complexity to be an issue for small n, should it becomes one, an approximate algo-

rithm can be used instead. For example, we can start with an empty revocation set and

adds the slowest server to the revocation set until adding such a server would result in

an invalid revocation set under P1 or the size the revocation set reaches f .

We also report a latency upper bound obtained using U1 and P1 in section 6.7.4

and evaluate the latency of the servers under U1 and P1 in 6.8.5.

6.7 Combating irrational behavior

In the previous section, we have discussed how to use incentive to discourage un-

civil rational behavior. Irrational behavior is less restricting – a compromised server may

become untrustworthy to its local client or cooperate with other compromised servers
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in an attempt to mislead other servers to enter into an unsafe state. Although it is im-

possible to implement a perfect failure detector for Byzantine failures (or even for crash

failures [17]), we wish to expose as many Byzantine behaviors as possible so that correct

servers can exclude faulty servers.

This section discusses the Byzantine failures that attack system assumptions:

trustworthy A2Ms and the MSD model (clients trust the local server). Other Byzantine

failures pose no risk to the safety of the system assuming that no more than f servers

are faulty. This is because Coordinated Byzantine Paxos is derived from PBFT, which

masks up to f Byzantine failures. Detecting and removing Byzantine servers, however,

is a good idea – doing so is a well-known technique for improving fault coverage.

When detection of faulty behavior is impossible, RAM resorts to damage control

methods that prevent a significant drop of system utility: RAM impose an upper bound

on the extra latency a Byzantine servers can cause regardless their faulty behavior is

detectable or not. We discuss this in section 6.7.4.

6.7.1 Compromised A2M

We have so far assumed A2M is a trustworthy third party and used it to remove

one wide-area communication step. If a server p and its local A2M are both compro-

mised, then, for a consensus instance i, it is possible for p to suggest a value v 
= no-op

to server q and propose no-op to server r. Server r might go to an unsafe state by im-

mediately learning no-op for instance i upon receipt of the proposal. Note that q does

not enter an unsafe state because it still requires a quorum of the servers to accept the

request for it to learn the outcome. As discussed in section 6.6.4, this behavior can be

detected by exchanging SK-RELAY and SU-RELAY messages. Once detected, server r

and its clients could roll back their states and recover using some rollback methods such

as transactions [27]. Doing so also requires that a client does not send output to users

until it knows the state machine command has committed [64]. Note that even in face of

faulty A2M, r can confirm no-op is the consensus outcome for instance i once it receives

additional 2 f matching SK-RELAY messages; doing this only takes one extra wide-area

communication step. Such a short speculative time frame enables an efficient manage-

ment of speculative states – for example, not allowing output commit – and make it
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possible to commit stable states quickly.

The way RAM deals with faulty A2M can also be used to enable RAM when

A2M hardware is not available. In this scenario, a RAM server simply signs a pro-

posal when suggesting values or skipping turns. The signed proposal is treated as if it

is signed by the A2M. If inconsistent proposals are later discovered, servers rollback

their states to recover. Essentially, we use untrustworthy software to simulate hardware

A2M and rely on recovery mechanism for correctness. Doing so does not introduce

new mechanism but does make RAM more vulnerable when one or more servers are

compromised. Fortunately, such faulty behavior is easily detectable and is verifiable at

all servers. Once detected, the faulty server is excluded from further action to prevent

further disruption of the replicated state machine.

6.7.2 Untrustworthy local servers

So far we have assumed the MSD model, in which a client trusts its local server

and consequently learns the outcome of its requests as soon as it receives a reply from

its local server. Trusting its local server saves one wide-area delay to a client for ev-

ery request. We have also assumed in the MSD model that the servers have incentives

to reduce latency for its clients, and therefore propose the local requests and send cor-

rect reply back to a client as soon as possible. A compromised server can violate this

assumption by, for example, delaying proposals or sending incorrect replies.

RAM uses the following technique to expose such servers. For a server that de-

liberately delays the processing of local requests, a RAM client raises an alert against

its local server if the request latency is unacceptably high. For a server that sends fabri-

cated replies, a server is required to collect replies from other servers and forward them

to the client using O-REPLY messages 3. If the client does not get f additional O-REPLY

messages that match the original reply within a reasonable time, it raises an alert against

the local server.

Note that raising an alert against a local server does not lead to the server being

revoked. Instead, it alerts local administrator that either (1) the client is compromised,

3Since it is a client that eventually verify the O-REPLY messages, when MACs are used to authenticate

messages, a remote server authenticates the reply sent to the local server using the shared secret key

between the client and the remote server



140

(2) the server is compromised, or (3) the site is experiencing unexpected network prob-

lems. Since the client and the server are under the same administrative domain, admin-

istrators can use support systems (e.g., intrusion detection systems [55,66]) and forensic

tools [51] to determine the culprit. If neither the server nor the client is deemed as faulty,

then the alert means this is a good time for local administrators to investigate what is the

cause of the underlying network problem.

6.7.3 Ignoring revocation

One possible Byzantine behavior is for a server to ignore its own revocation.

A server q can pretend it is not aware of its own revocation and continue to suggest

requests even though q knows other servers would ignore these suggestions. Doing

so does not help q’s latency but can slightly increase the load on the system. We use

the following mechanism to combat this behavior. Upon first learning that q is being

revoked, a server p sends a revocation certificate to q and expect q to confirm within

time γ ·Lq→p for some protocol parameter γ . Failing to confirm in time or suggesting

requests after confirmation will result q being more seriously suspected and revoked for

longer period of time. γ should be chosen to allow reasonable network jitter so that with

high probability q is able to confirm with in γ ·Lq→p seconds.

6.7.4 Latency upper bound

In this section we explain why a Byzantine server can only cause a limited in-

crease in the latency to requests proposed by other servers without the risk of being

revoked. We consider a period of synchrony in which communication is timely and the

revoked set is stable. We assume this because it is well known that consensus is im-

possible during period of asynchrony [26], and so no upper bound can be obtained. We

first obtain this upper bound in term of number of communication steps. We then apply

utility function U1 and policy P1 to obtain an upper bound in term of the communication

delay between correct servers. For simplicity, we ignore the latency introduced by de-

layed commit, which can add up to one more one-way message delay when concurrent

requests are proposed by the servers.
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Upper-bound on communication steps

A RAM server participates in the state machine in two ways: it acts both as the

proposer for instances coordinated by itself and as an acceptor for instances coordinated

by other servers. Up to f Byzantine server can only cause a limited increase in latency

for servers that are not currently under revocation because:

1. As an acceptor, a Byzantine server can not keep requests proposed by a correct

server from being chosen: Coordinated Byzantine Paxos only needs the 2 f + 1

responses from the correct servers to make progress.

2. f Byzantine servers can not keep requests proposed by a correct server from being

chosen by revoking that server: f +α servers are required to revoke a server.

3. As a proposer, a Byzantine server can not introduce gaps in the consensus se-

quence by not skipping its turn when required. When a correct server has sug-

gested a value, all other servers must either skip or suggest values for their turns.

Failing to do so will result the server being suspected and revoked, and hence the

gap being filled. In the worst case scenario, a Byzantine server does not have to

respond until it receives the ( f +α − 1)th SU-RELAY messages. Doing so adds

one wide-area message delay at most. After receiving the ( f +α−1)th SU-RELAY

message, a Byzantine server does not have to send SUGGEST or SKIP messages

for its unused turns to all servers: it can omit the messages to up to f +α − 1

correct servers without being revoked. The other correct servers, however, relay

messages, which ensures that the extra latency is at most one wide-area message

delay.

Thus, the total extra delay a Byzantine server can induce to a server that is not

currently under revocation is two wide-area message delays, i.e., four steps is the upper

bound of the total delay.

For a server r that is currently being revoked, one more delay is added to the

upper bound, i.e., five steps is the total, if r can find a correct server to forward requests

to. Otherwise, yet another step is added to the upper bound, bring the total to six steps,

because a Byzantine server can refuse to forward a request for up to one step without

being revoked (discussed in section 6.6.3).
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We summarize the above result with the following theorem.

Theorem 6.13: The extra delay L in communication steps that Byzantine servers can

induce to a server p is:

L =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2, if p is not being revoked

3, if p is being revoked and a correct server is used for forwarding

4, if p is being revoked and a faulty server is used for forwarding

Upper-bound on communication delays

In this section, we apply the utility function U1 and policy P1 that we discussed

in Theorem 6.13 to the upper-bound obtained in the previous section. First, we discuss

the model and introduce a few supportive definitions:

Let Dp→q be the one-way delay from server p to q. For simplicity, we consider a

simple model where Dp→q = Dq→p, i.e., the link latencies are symmetric between each

pair of servers.

Definition 6.8 (Correct quorum): Let C (|C | ≥ 2 f +1) be the set of all correct servers.

A set of servers C is called a quorum of correct servers iff C ⊆ C ∧|C|= 2 f +1.

Definition 6.9 (Intra-quorum latency): The intra-quorum latency of a quorum of cor-

rect servers is defined as tC = max{Dp→q : p,q ∈C}.

Definition 6.10 (Fastest correct quorum): A quorum of correct server Ĉ is called a

fastest correct quorum if Ĉ has the lowest intra-quorum latency among all possible cor-

rect quorums.

Note that, it is possible to have more than one fastest correct quorums, for exam-

ple, if all the servers are correct and have the same inter-server latency, then any 2 f +1

servers make up a fastest correct quorum.

Lemma 6.14: Let Ĉ be a fastest correct quorum and denote tĈ with τ . A server p will

be revoked under U1 and P1, if ∀q ∈ Ĉ : Dp→q ≥ 1.5τ .
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Proof. Let Π be the set of all servers, it is not difficult to verify that Π \ Ĉ is a valid

revocation set: |Π\Ĉ|= f , Û1(G,φ ,Ĉ)≥ 3τ , and Û1(G,Π\Ĉ,Ĉ) = 2τ .

Now assume p is not revoked under U1 and P1. There must exist a revocation

set S such that p /∈ S∧ Û1(G,Π \ S,S) ≤ 2τ . Thus, ∀s, t ∈ Π \ S : Ds→t ≤ τ . This is

impossible because at least f + 1 servers in Π \ S are also in Ĉ, the one-way latency

between p and these f +1 servers is at least 1.5τ .

If a server p is revoked, p need to forward its requests to another server. By

assumption, the set of revoked servers does not change during a period of synchrony.

p knows which servers are revoked: revocation certificates are broadcast and no-op is

chosen for turns coordinated by the revoked servers. To avoid a forwarding chain that

adds further latency to its request, p only forwards requests to those are not currently

being revoked.

Theorem 6.15: Let Ĉ be a fastest correct quorum and denote tĈ with τ . Let p be a

correct server and lp = max{Dp→q : q ∈ Ĉ}. Let Lp be the latency at server p, we obtain

the following upper bound:

1. If p is not being revoked, Lp ≤ 3τ +2lp;

2. If p is being revoked and a correct server in Ĉ is used for forwarding, then Lp ≤
4τ +2lp;

3. If p is revoked and a server not in Ĉ is used for forwarding, then Lp ≤ 5.5τ +2lp.

Proof. If p is not being revoked, p’s proposal commits when p receives the acknowl-

edgement to its SUGGEST message from all servers that are not being revoked. The relay

mechanism in RAM ensures that, lp+1.5τ seconds after p suggests its request, all unre-

voked servers receives at least 2 f +1 copies of the SUGGEST message from the servers

in Ĉ. The unrevoked servers, correct or Byzantine, must have generated acknowledge-

ment and sent it to one of the servers in Ĉ – a correct server does so when it receives

the first copy of the SUGGEST message; a Byzantine server does so upon receiving the

( f +α)th copy to avoid being suspected by f +α servers. The acknowledgement takes

at most 1.5τ + lp to reach p: at most 1.5τ to reach a correct server c in Ĉ and at most lp

from c to p. Therefore, p can commit its proposal by 3τ +2lp.
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Similarly, if p is being revoked and a correct server c in Ĉ is used for forwarding.

p’s requests arrives at c in lp seconds. p immediately propose the request. a Byzantine

server does not have to acknowledge until it receives the ( f +α −1)th SU-RELAY mes-

sage, which takes at most 2.5τ . The acknowledgement then takes at most 1.5τ + lp to

arrive at p. Therefore, the upper bound of this case is 4τ +2lp.

Finally, if p is revoked and a server q not in Ĉ is used for forwarding. By 1.5τ+ lp

seconds, q must have received at least 2 f + 1 copies of p’s request from the servers in

Ĉ. By this time, q, correct or Byzantine, must have proposed the forwarded request.

This introduce an additional 1.5τ seconds delay, bringing the upper bound to a total of

5.5τ +2lp.

6.8 Evaluation

In this section we report the results of experiments in the DETER testbed [10]

to evaluate RAM. We also compare RAM’s performance with PBFT’s baseline perfor-

mance obtained from other sources [14, 33]. First we summarize our prototype imple-

mentation and explains our experimental setup. We then evaluate RAM’s latency and

throughput. Finally, we presents a setup in which revocation is in action as a first step

to understand the implication of revocation.

6.8.1 Prototype

We implemented RAM in Java 1.6 and used Sun’s implementation of crypto-

graphic primitives. We used TCP as the transport protocol and disabled Nagle’s algo-

rithm [49] to reduce latency. Out-of-order commit was implemented as an option that

can be dynamically turn on or off.

Like Mencius, RAM implements an API with three calls: The application calls

PROPOSE(v) to issue a request, and the state machine calls back the application us-

ing ONCOMMIT(v) once the request is ready to commit. We use a second callback

ISCOMMUTE(u,v) to ask the application if two requests are commutable when out-of-

order commit is enabled.

For evaluation, we used the read/write register service that the evaluation of
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Mencius used. Such a service is attractive because it is simple and allows out-of-order

commit operations. In more detail, this service implements a total of κ registers, a

read command, and a write command. Each command consists of the following fields:

(1) operation type – read or write (1 bit); (2) register name (2 bytes); (3) the request

sequence number (4 bytes); and (4) ρ bytes of payload (this payload is ignored for read

operations and is only used to simulate read operations of specific size).

6.8.2 Experimental setup

Unless otherwise stated, we use a four-site fully-connected topology. We set up

a virtual link between each pair of sites, and each link had, by default, 50 ms one-way

delay and 20 Mbps bandwidth. Due to hardware constraints, we used one node for each

site – clients and the server of the same site are running on the same machine. The

configuration of each node is the following: 2.13 GHz Quad-Xeon PC, 2.0 GB memory,

running Ubuntu 8.

Table 6.2: Micro benchmark on security primitives

Hash function MD5 SHA1

Data size (byte) 64 2048 64 2048

Hash MAC (×104ops) 513 311 82.3 48.1

RSA Sign (ops) 221 219 222 221

RSA Verification (ops) 4210 4195 4035 3879

A micro benchmark of the throughput of the primitives measured in ops (opera-

tion per second) is given in table 6.2. 1024-bit keys were used for all RSA operations.

As expected, Hash MAC is significantly faster than RSA. In addition, the throughput of

RSA operations are nearly independent of the hash function used and the data length.

Since PBFT uses MD5, we only present RAM’s performance measured operations that

use MD5 as the hash function. A multiple thread implementation was used to take ad-

vantage of the availability of multi-core machines. A2M was implemented in a separated

thread and was the single bottleneck of the system as we show later.

We verified that running clients and the server on the same machine had minimal

impact on the performance of the servers – each client used less than 1% CPU, whereas
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Figure 6.5: Commit latency vs. offered client load

servers used 170%4 CPU at peak utilization. An A2M signature cache was implemented

at the servers to more efficiently verify SU-RELAY and SK-RELAY. Using a cache re-

duced the CPU utilization from 170% to 125% at the peak. However, it did not improve

throughput significantly, since the cache did not improve the system bottleneck, which

was the A2M signing thread.

Clients submit operations at a fixed rate. Each operation is either a read or a write

operation, selected randomly, to a register uniformly chosen from the set of registers

with a fixed payload of ρ bytes. For the following experiments, we did not enable local

processing of read operations, so all operations go through the replication protocol.

6.8.3 Latency

In this section, we measure RAM’s latency under different offered client loads.

RAM denotes RAM with out-of-order commit disabled, and RAM−κ denotes RAM with

out-of-order commit enabled and κ registers. For example, RAM-16 implements 16

4The CPU utilization is over 100% due to the use of multi-core machines.
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registers. As we have discussed in section 5.5.5 having more registers in the service

implies a higher chance that two commands are commutable, which causes the out-of-

order commit technique to be exercised more often.

Four RAM variants were used in the experiment: RAM, RAM-16, RAM-256,

and RAM-1024. Figure 6.5 shows the average delay of a 10-second period for each

data point.

The expected minimal delay for RAM is 109 ms, i.e., the round-trip delay (100

ms) plus the delay of two RSA sign operations, one for signing SUGGEST and one for

signing SKIP (4.5 ms each). Indeed, all four variants started with a delay of approxi-

mately 110 ms. For RAM, latency gradually increases to about 160 ms and ramps up

before reaching the maximum throughput at around 800 ops. This extra delay was

caused by the delayed-commit problem, which adds up to one way delay (50 ms) de-

pending on the level of contention – higher load causes more contention, and increases

latency. All three out-of-order enabled variants showed noticeable latency improvement

over RAM. RAM-1024 achieves the maximal latency improvement: approximate 15%.

This value is significantly smaller than the 35% that Mencius achieves, but that is due

to RAM using broadcast to reduce the upper-bound of delayed commit from two steps

to one step. Up to 320 ops, all three variants show latency close to the minimal. As

the throughput ramps up, the difference between the variants with out-of-order commit

enabled increased: RAM-1024 had better latency than RAM-256, which in turn had

better latency than RAM-16. As expected, all three variants always have better latency

than RAM.

For comparison, from a communication pattern analysis [14], PBFT would have

at least 200 ms delay at the primary and at least 250 ms at the followers, resulting in

an average of 237.5 ms. This is significantly higher than that of any of the four RAM

variants.

6.8.4 Throughput

This section evaluates RAM’s throughput, which was measured by running a

large number of clients to overload the servers. The result is shown in figure 6.6. Note

that error bars are not shown in the figure as they are small. Table 6.2 shows that the
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Figure 6.6: The throughput of RAM

A2M thread can sign approximate 220 messages per second. In the ideal case in which

no skip messages are generated and signed at the any of the servers, the system should

have maximal throughput of 880 ops. Indeed, RAM had a peak throughput of approxi-

mately 820 ops with four sites and ρ = 8 (black bars). Increasing ρ to 2,000 bytes did

not show a significant throughput drop, which falls approximately 700 ops (gray bars).

We also ran experiments with seven sites, but due to hardware constraints, we

used a star topology: each node had a 20 Mbps link to a central node with 25 ms one

way delay. We only showed result for ρ = 8, since ρ = 2000 would have exceeded the

20 Mbps link bandwidth. The shaded bars showed 1320 ops throughput: a nearly linear

scale from the four sites configuration (1320/830 = 1.61 ≈ 7/4 = 1.75).

We have already seen in figure 6.5 that out-order-commit had little impact on

throughput because the A2M is the bottleneck. Figure 6.6 confirms this result under

different configurations.

Kotla et al. has reported 20 Kops throughput for PBFT and even higher through-

put for Zyzzyva with comparable machine configuration in a LAN [33]. While RAM’s

throughput is significantly lower due to the more expensive signature operations, a lower

throughput has been deemed sufficient in practical settings by others [15]. We see two
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techniques that can be used to improve RAM’s throughput: (1) use multi-threaded A2M

implementation to take advantage of the availability of multi-core machines; and (2)

batch small requests to amortize the cost of signatures at relatively low cost of increase

in latency. For example, we project RAM to have 700×10= 7,000 ops if a batch size of

10 is used for an average of 200 bytes client load. At the projected throughput, a client

request would be buffered for at most 1000/(700/4) = 5.8 ms before being proposed

– which is small compared to the 100 ms round-trip latency, which is also the minimal

latency for committing a request.

6.8.5 Revocation
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Figure 6.7: Increasing one site’s latency leading to revocation.

Revocation has been used extensively in RAM. Understanding the implications

of revocation is essential in selecting a good utility function U and a revocation policy

P. In this section, we take a first step toward such a goal by implementing policy U1

and P1 and evaluating them under the following scenario. In a fully connected four-site

setting (site A - D), we run one client at each site and configure each link to have 50
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ms one-way delay. We then gradually add δ ms extra one-way delay to all links that

connect to site D. When δ reaches 25 ms, D is considered too slow and hence revoked.

While revoked, D uses A to forward its requests. Figure 6.7 shows the measured latency

after the system stabilizes.

Before revocation occurred, the latency at all sites grew linearly with δ . During

this period, if D had been revoked, sites A - C would have achieved a latency close to

the lower bound. Revoking D, however, also increased the latency of D by an additional

50 ms. During this initial period, the amount of latency reduction that could be obtained

by site A - C might not justify the latency increase at D. As δ continued to grow, D

was revoked. Although D’s latency grows considerably larger, the revocation is justified

because: (1) D’s latency was primarily due to the slow links incident on D, and (2) the

other three sites were able to achieve the best possible latency and so the average latency

of the system did not increase significantly as a result of the slow links to and from D. In

fact, in this particular scenario, the average latency never grew over 150 ms even though

the latency of D was almost doubled.

6.9 Related work

Fault-tolerant protocols. We have explained Paxos [37], Mencius, and PBFT [14].

FaB [47] reduces PBFT’s proposing phase from two steps to one. The improved latency,

however, comes at the cost of more replicas: 5 f +1 are required to tolerate f failures.

A technique to improve the latency for BFT protocols is to use speculative exe-

cution. Speculative execution can improve the latency for both PBFT and FaB by one

round. Speculation often requires the replicated state machine to tentatively executes a

request and roll back its state if necessary. Client speculation has also being used to both

improve latency [64]. Doing so though requires the clients being able to rollback their

states and do not output any unstable result to the user. The way RAM handles faulty

A2M is similar to such an approach. Finally, when properly used speculation can also be

used to improve throughput. For example, Zyzzyva [33] improves system throughput by

letting the clients handle tentatively executed result and decide if rollback is necessary.

Doing so requires the clients being able to talk directly to all servers, which may not be
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realistic for multi-site wide-area system due to security concerns.

A common disadvantage of speculative execution is that a carefully crafted faulty

client or server can dramatically reduce the performance of such protocols by forcing an

expensive recovery path [20].

Amir et al. [6] observe that a slow primary can reduce throughput or increase

latency significantly. To deal with the problem, Amir et al. proposed a protocol Prime

that uses a pre-agreement protocol that requires all-to-all communication and signatures.

Spin is also a protocol that rotates the leader [62]. However, instead of pre-assigning

instances (as is done with RAM), Spin uses a different leader upon every new batch of

requests. One drawback of Prime and Spin is that they increase the latency observed

by the clients even when there is no failure or false suspicion. RAM, on the other

hand, does not sacrifices normal execution latency while still providing robust latency

in the face of uncivil behavior. Aardvark [20] is a robust BFT protocol that provides

usable throughput during both failure-free and uncivil runs. It accomplishes this goal by

frequently changing the primary (using performance metrics), by signing client requests,

and by isolating resources.

Steward [7] is the only BFT protocol we are aware that was designed specifically

for multi-site systems. It is a hybrid protocol that replicates servers within a site to

provide the illusion of crash-failure semantic for wide-area networks. It is, however,

vulnerable when a site is corrupted or behaving selfishly. RAM is specifically designed

to tolerate such scenarios by assuming remote processes are untrustworthy.

Other notable BFT protocols in the literature are Q/U [2] and HQ [23], both

of which use quorum update protocols. Q/U uses a state-machine replication protocol

based on quorum agreement that is more scalable than traditional state-machine replica-

tion protocols, but Q/U only not requires a higher degree of replication but also performs

poorly in the presence of contention. HQ is a hybrid protocol that uses quorum agree-

ment in the absence of contention, and uses PBFT to order contending operations. RAM

already achieves low latency by design (clients receive a response in one WAN round-

trip latency), and using quorum agreement to speed up the execution of operations is

unnecessary.

RAM is also built to discourage uncivil rational behaviors. Similar philosophy
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has been used to design applications under a different context [4].

Finally, RAM focuses on tolerating and detecting faulty servers. Tolerating

faulty client behavior is an orthogonal problem and there has been solutions proposed

in the literature to cope with Byzantine clients [23, 43].

Trusted components. The Wormholes model of Veríssimo [61] is a hybrid system

model that defines a system comprising a subsystem with stronger guarantees (a privi-

leged artifact) along with main functional component that provides weaker guarantees.

Correia et al. discuss the design of the TTCB security kernel, which is a simple sub-

system that provides a set of basic security services [22]. Neves et al. show how to

use TTCB to solve vector consensus in an asynchronous system with Byzantine fail-

ures [50].

A2M [19] and TrInc [42] are trusted devices that prevent equivocation and enable

more efficient protocols. With A2M, Chun et al. have shown that it is possible to

implement a variant of PBFT that requires only 2 f +1 replicas. RAM also uses A2M,

but requires 3 f + 1 replicas. We opted for a higher degree of replication because it

leads to a simpler and more efficient implementation of the protocol, and enables the

detection of faulty A2M devices. TrInc is a simpler device that implements essentially

a set of trusted counters and is shown can be used to implement A2M. The way TrInc

and RAM use trusted hardware component shares the same philosophy: simplify the

semantic to make implementing such trust devices more realistic.

Performance prediction. Performance prediction is an critical aspect of our approach

as deviating from the expected performance may cause the revocation of a server. There

has been work in the area of predicting performance of communication for wide-area

systems. Schulz et al. propose an algorithm for predicting the performance of commu-

nication in wide-area parallel computing applications. SyncProbe provides applications

with a real-time estimate of the maximum expected message delay [59]. Lu et al. with

DualPats exploits the strong correlation between TCP throughput and flow size, and the

statistical stability of Internet path characteristics to accurately predict the TCP through-

put of large transfers using active probing [45]. On the performance of services, Quorum

uses response monitoring among other mechanisms at the border of an Internet site to
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ensure throughput and response time guarantees [12].

6.10 Future direction

We have explained the core mechanisms that enables RAM. The preliminary

evaluation on our prototype implementation also demonstrates promising results. The

following issues, however, need yet to be studied in the future.

Improving throughput: While we have demonstrated that RAM can provide realis-

tic throughput and has the potential to improve by using multi-threading and/or

batching, we need yet to fully investigate the effectiveness of such techniques.

Having improved throughput makes RAM suitable for a wider range of applica-

tions.

Separating policy and mechanism: We have explain several rules for detecting un-

civil rational and irrational behavior. These rules are, however, not mean to be

complete. Different systems are also likely to have different rule for achieving

their specific performance goals. So, additional rules need to be provided as poli-

cies so that RAM can be changed while deployed. Doing so needs to further

sperate the mechanisms of RAM from policies both in protocol design and in

implementation.

Utility functions and revocation policies: We have introduced example utility func-

tion and revocation policy to optimize system utility. A more comprehensive

study is needed to further understand the potential, limitation, and tradeoff for

choosing such functions and policies.

Checkpoint and recovery: RAM is designed to work well with checkpoint and recov-

ery tools to protect against the tampering of A2Ms. We need yet to fully investi-

gate the integration of RAM with such tools.
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6.11 Summary

RAM is an efficient Byzantine fault-tolerant protocol for wide-area replication.

There are three core concepts that RAM builds upon: a Rotating leader design, the use

of A2M devices to prevent equivocation, and a trust model based on Mutually suspicious

domains (MSD). Together, these concepts enable a protocol that provides low latency

in wide-area systems. To prevent uncivil rational and irrational servers from disrupting

the protocol execution for extended periods of time, RAM relies upon revocation, which

removes the privilege of a server to directly propose new requests. Revocation, however,

can be a double-edge sword, and can also harm civil servers if not used correctly. We

have consequently crafted a mechanism based on performance estimates and suspicion

certificates that strives to maximize system utilization. Our evaluation shows that RAM

obtains excellent latency performance compared to PBFT, and realistic throughput. It

also shows that servers are able to make appropriate decisions with respect to revocation.
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Chapter 7

Conclusion

This dissertation studied protocols that implement state machine replication for

wide area networks, specifically for multi-site wide area networks.

State machine replication is the most general approach for providing highly

available stateful services. By replicating deterministic services across a few replicas,

the service being replicated is available as long as the total number of failures does not

exceed a certain threshold. If the replicas fail independently, then this approach can

significantly increase the availability and reliability of the service by replicating less

available and reliable servers.

State machine replication is also widely applicable because it provides strong

consistency, which guarantees that the clients that use the replicated service always ob-

serve the same sequence of state change. Doing so greatly simplifies the design and

implementation of clients: the replication layer is transparent to the core client logic, so,

the clients do not have to deal with concurrency themselves.

The core building block of state machine replication is consensus, which, despite

the possibility of contention and failures, solves the problem of how replicas agree on

a unique command from those sent by clients. By running an unbounded sequence of

instances of consensus, it is possible to select a consistent sequence of commands across

all the correct replicas.

Like many other distributed computing problems, both consensus and replicated

state machine are defined using a set of safety and liveness properties. The safety prop-

erties state the conditions that an implementation must satisfy at all time: they allow

155
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one to verify that nothing bad has happened yet. The liveness properties, on the other

hand, state the condition that an implementation must eventually satisfy: they require

that something good eventually happens.

Consensus is a well-studied problem: many protocols have been proposed to

solve consensus under different system models, failure models and/or assumptions. The

asynchronous message passing model, in which there is no upper bound on either the

message deliver delays or the message processing delays, is popular due to its general-

ity: most modern operating systems and communication networks are modeled as asyn-

chronous. It is, however, well-known that consensus cannot be both safe and live in an

asynchronous system with the possibility of just a single failure. This is because of the

inherent difficulty to distinguish a faulty replica from a slow replica in an asynchronous

system.

There are many ways to circumvent this impossibility result. The most popular

approach is to use unreliable failure detectors, which are classified in term of their ac-

curacy and completeness properties. Despite the possibility of an unbounded number

of mistakes made by the failure detector, one can design protocols that satisfy safety at

all time and provide liveness when the failure detector becomes accurate. The leader

electron failure detector class, denoted as Ω, has been shown to be the weakest failure

detector for providing both safety and liveness for consensus. Many existing consen-

sus protocols, such as Paxos and PBFT, are designed to work with Ω due to its simple

semantics.

Despite the advantages of wide-area deployment, such as the ability to cope with

co-located failures and to facilitate wide-area applications, replicated state machines are

usually deployed in local area environments. Most existing protocols for consensus and

replicated state machine are also designed with local area networks in mind, making

them less efficient in the wide area. To make the replicated state machine approach

more practical and applicable in the wide area, this dissertation focused on designing

protocols that works both efficiently and effectively in such environments.

Following a brief review of background materials in chapter 2, this dissertation

started the investigation with the crash failure model, in which the replicas may fail by

stopping to execute.
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To understand the challenges of designing efficient protocols, chapter 3 com-

pared two crash failure protocols: Paxos and Fast Paxos. Paxos is a leader-based proto-

col that tolerates up to f failures with 2 f +1 replicas. It is popular due to its simplicity.

Fast Paxos is a varient of Paxos that tolerates up to f failures with 3 f + 1 replicas. It

is a fast learning protocol that is designed to have lower latency in local area networks

than Paxos. In the comparison, we considered a simple cluster-based wide-area system,

in which all the servers are in the same local area network while the clients are in a

remote network. Simply putting the clients in a remote network yields surprising an-

alytic result: Paxos has a fixed probability of 60% of being faster in latency than Fast

Paxos if (1) the local-area communication is negligible comparing to that of wide area

and (2) the wide-area communication follows a distribution that is not concentrate on

any value, e.g., continuous. Our simulation results also confirmed that Paxos is faster

in latency. This motivated us to examine the characteristics of the network architecture

and to design new protocols based on them.

The remainder of the dissertation focused on multi-site wide-area systems. Such

a system is consist of a small number of sites. Each site implements one server replica

and multiple clients. Together, the servers implements a replicated state machine ser-

vice. The clients access the service through their local servers. Chapter 4 presented

R, a generic rotating leader protocol for such multi-site systems. First, we introduce

simple consensus, a variant of consensus that restricts the value a server can propose:

a well-known server, called the coordinator, can propose any command while all other

servers can only propose the special no-op command. We proved that simple consen-

sus is equivalent to consensus in term of solvability: Ω is the weakest failure detector

for solving both problems. We gave special names to the actions of a server can take:

the coordinator suggests by proposing a command other than no-op; the coordinator

skips by proposing the no-op command; and the followers (non-coordinators) revokes

by proposing no-op on behave of the coordinator that is being suspected to have failed.

We then solved the replicated state machine problem by running an unbounded

instances of simple consensus instead of consensus. We used a rotating-leader design.

The idea is to partition the simple consensus sequence space so that each server is the

coordinator for a sub-set of an unbounded number of the instances. For example, they
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may be simply assigned in a round-robin manner.

Each instances of simple consensus is then implemented with A , a coordinated

simple consensus protocol that takes advantage of the more restricted definition of sim-

ple consensus. For example, A may assign the coordinator as the default leader of the

instance. The details of protocol A depend on the failure model and system assump-

tion. It has, though, one key characteristic – fast skipping, which allows all servers to

immediately learn that no-op is the simple consensus outcome as soon as they confirm

the coordinator has skipped. Fast skipping is a unique feature enabled by the more

restricted definition of simple consensus.

With A implementing simple consensus, the generic protocol R works as fol-

lows: (1) Upon receiving commands from clients, a server immediately submit them to

the next available simple consensus instances it coordinates; (2) A server skips its un-

used simple consensus instances when it observes other servers are consuming instances

faster than itself; (3) A server revokes the coordinator when it suspect the coordinator

has failed; (4) If the eventually perfect failure detector ♦P is available, to provide live-

ness, a server re-suggests outstanding requests when it recovers from a false suspicion

or a failure; (5) If only the weaker Ω is available, to provide liveness, a server forwards

outstanding requests to other servers when under a prolonged period of false suspicion.

The resulting generic protocol R is not efficient by itself. To improve its ef-

ficiency, we studied optimizations that are generic to the rotating leader design of R:

revocation in large block and out-of-order commit. Additional optimizations can also be

applied to rotating leader protocols derived from R, but usually depend on the specific

protocol A that is used.

First, due to the expensive revocation process, R has both high message com-

plexity and high latency when one or more servers have failed. To improve, we apply

an optimization to allow revocation to be issued ahead of time and in large block size.

Issuing revocation for future turns helps to improve the commit latency for non-faulty

servers: learned commands can commit without having to wait for the revocation pro-

cess to finish. Issuing revocation in large block size amortize the message complexity:

the message exchanged for revocation becomes negligible in the long run.

The rotating leader design allows R to achieve minimal commit latency at all
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servers when there are no concurrent requests. With concurrent requests, the delayed

commit problem can occur: to commit, a learned command in a simple consensus in-

stance has to wait until all prior instances have been learned and committed. The extra

delay caused by delayed commit does not grow indefinitely: we prove an upper bound

based on the latency metrics of A . Such delay can also be mitigated using out-of order

commit: a flexible commit mechanism that allows commutable requests to commit in

any orders. Out-order-commit is another benefit of using simple consensus: restrict-

ing the value the followers can propose makes it easier to allow such flexible commit

mechanism.

In chapter 5, we change our focus to designing an efficient protocol for crash-

failure multi-site systems. We make little assumptions about the network characteristics

or the system load for such a system. Indeed, we only assume that wide-area commu-

nications have higher latency and lower bandwidth than that of local area; system load

may change from time to time and/or site to site; and wide-area bandwidth may vary

over time and may not be symmetric. Our goal is to design a protocol that adapts well

in such an environment and can deliver both high throughput under high load and low

latency under low load.

The first step of our study is to compare existing protocols, such as Paxos, Fast

Paxos and CoReFP, in multi-site systems. Not surprisingly, none of the protocols works

perfectly. But Paxos has more advantages than others. This motivates us to derive our

own protocol from Paoxs.

The idea is to apply Paxos to the generic rotating leader protocol R. First, we

derive Coordinated Paxos from Paxos to efficiently implement simple consensus. We

then instantiate R using Coordinated Paxos. To improve efficiency, besides the general

optimizations for R, additional optimizations are applied to opportunistically piggy-

backing messages for skipping to other messages. Doing so makes it possible for the

servers to skip at effectively no extra cost. The resulting protocol is called Mencius.

We evaluate the performance of Mencius by comparing it to that of Paxos. In

a basic three-site configuration, the throughput of Mencius is 200% higher than that of

Paxos under a network-bound load and 50% higher than that of Paxos under a CPU-

bound load. Mencius also have better scalability than Paxos. With seven sites, the
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throughput of Mencius is seven times that of Paxos under a network-bound load and

two times that of Paxos under a CPU-bound load. We also showed that Mencius is able

to automatically adapt to changing network bandwidth and use all available bandwidth

for provide throughput. Mencius has lower latency than Paxos when there is little or

no contention. Under high contention, the latency of Mencius is no worse than that of

Paxos. Enabling out-of-order commit helps Mencius reduce latency by up to 30% when

under high contention. The only case in which Mencius performances worse than Paxos

is when a failure is not detected: Mencius temporarily loses liveness when any server

has crashed but not yet been detected; Paxos temporarily loses liveness only when the

leader has crashed but not yet been detected.

In chapter 6, we continue studying multi-site systems but under the more general

Byzantine failure model, in which a server may fail in an arbitrary manner.

Performance wise, we seeked a design that provides low latency for all sites

and realistic throughput. First, we compared PBFT, the de facto standard protocol for

the Byzantine failure model, with Paxos and identify three main causes of the higher

latency of PBFT. Next, we proposed three techniques for reducing latency for each of

three causes. First, the rotating-leader design of R can be used to reduce the extra

latency at the non-leader sites. Second, the Attested Append-only Memory (A2M), a

specialized hardware, can be used to reduce the proposing phase of PBFT from two

steps to just one step. Finally, the Mutually Suspicious Domains (MSD) model, which

allows clients to trust their local servers, can be used to address the extra latency caused

by the traditional flat Byzantine model, in which there is no trust between any pair of

processes.

These three techniques make up the core building block of our protocol RAM.

First we used A2M and MSD to implement Coordinated Byzantine Paxos, which in turn

implements simple consensus. We then used Coordinated Byzantine Paxos to instantiate

the generic rotating leader protocol R. Finally, we obtained the protocol RAM By

applying optimizations to improve efficiency.

Assuming the Byzantine failure model not only allows the applications to toler-

ate a wider range of failures but also shift our design goals. Instead of only providing

good performance with the benign crash failure, we need to design protocols that can
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cope with potential uncivil and/or malicious behavior. We roughly classified the be-

havior of a server into three categories: civil, uncivil rational and irrational. A civil

behavior is consider as correct while both uncivil rational and irrational behavior are

faulty. Uncivil rational and irrational behavior have different root causes: uncivil ratio-

nal behavior is caused by selfish/faulty administrators that try to improve local utility

(in our case, the latency of local requests) by gaming the system; irrational behavior can

arise due to remote attack that tries to disturb the system. Differences in root causes

result in different strategies for cope with such behavior.

For uncivil rational behavior, we discouraged it by designing the protocol such

that any divergence from the correct behavior will only increase the chance of lowering

local utility. This way, the best strategy for a rational server is to follow the protocol. We

did this with revocation, which penalizes uncivil behavior by removing a server’s ability

to propose commands directly. Doing this increases the server’s latency. We demon-

strated how to use revocation to discourage a wide range of uncivil rational behavior,

such as untimely behavior, forwarding omission, flooding and irresponsible suspicion.

For irrational behavior, we designed RAM to identify as much faulty behavior as

possible. We demonstrated how irrational behavior such as compromised A2M, faulty

local server and ignoring revocation can be detected. When detecting is impossible,

we resort to damage control method that bound the latency increase that can be caused

by undetected Byzantine servers. By providing example utility estimation function and

revocation policy, we proved upper bounds for request commit delays.

Finally we evaluated the performance of RAM with our prototype implementa-

tion. Our results showed that RAM has a latency by up to 50% lower than that of PBFT.

RAM does, though, have lower throughput than PBFT due to its use of digital signa-

tures for failure-detecting purpose. The throughput of RAM is, however, still higher

than that have claimed as being sufficient for practical applications. Adding additional

replicas also helps to improve the system throughput. Finally, we showed the use of a

utility estimation function and corresponding policy in preserving high system utility

(low latency) in the face of a server that becomes unusually slow.

There are several future directions of research, primarily in the context of RAM.

These include:
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• Improving throughput performance through batching and multi-core A2M imple-

mentation.

• Integrating RAM with a checkpoint and recovery mechanism to cope with faulty

A2M and irrational local servers.

• Separating the policy RAM uses for utility and for failure detection from the

mechanisms of RAM. This would allow RAM to be dynamically tunable based

on a changing environment.

• Running RAM in collaboration with a broader security environment, such as a

firewall rule manager or a network intrusion detection system.
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Appendix A

Pseudo code of Coordinated Paxos

/* Pseudo code of Coordinated Paxos at server p.

Each round of Coordinated Paxos is assigned to one of the servers. The round number is

also called ballot number.

Function owner(r) returns the server ID of the owner of round (ballot number) r.

Note that this is only the pseudo code for one instance of Coordinated Paxos.

PREPARE(b): PREPARE message for ballot number b.

ACK(b,ab,av): to acknowledge PREPARE(b): ab is the highest ballot the sending server has

accepted a value, and av is the value accepted for ballot ab.

PROPOSE(b,v): to propose a value v with ballot number b.

ACCEPT(b,v): to acknowledge PROPOSE(b,v) that the sending server has accepted v for ballot

number b.

LEARN(v): to inform other servers that value v has been chosen for this instance of simple

consensus. */

/* learner states: */

variable learned ←⊥; // No value is learned initially.

variable learner_history ←{} // No peer has accepted any value.

/* proposer states: */

variable prepared_history ←{} // No prepared history initially.

/* acceptor states: */

variable prepared_ballot ← 0 // All servers are initially prepared for ballot number

0.
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variable accepted_ballot ←−1 // Initially, no ballot is accepted.

variable accepted_value ←⊥ // Initially, no value is accepted.

/* Coordinator can call either SUGGEST or SKIP. */

procedure SUGGEST(v) // Coordinator proposes value v.

Broadcast PROPOSE(0,v)

end procedure

procedure SKIP // Coordinator proposes no-op.

Broadcast PROPOSE(0,no-op)

end procedure

procedure REVOKE // Non-coordinator starts to propose no-op.

ballot ←Choose b : owner(b) = p∧b> prepared_ballot∧b> accepted_ballot

/* Choose a ballot that is owned by p and greater than other ballot p has ever seen. */

Broadcast PREPARE(ballot) // Start phase 1 with a higher ballot number.

end procedure

OnMessage ANY From q OnCondition learned 
=⊥
Begin

if the incoming message is not a LEARN message then

Send LEARN(learned) To q

end if

End

OnMessage PREPARE(b) From q OnCondition learned =⊥
Begin

if b > prepared_ballot then

prepared_ballot ← b

Send ACK(b,accepted_ballot,accepted_value) To q

end if
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End

OnMessage LEARN(v) From q OnCondition learned =⊥
Begin

learned ← v

ONLEARNED(v)

End

OnMessage ACCEPT(b,v) From q OnCondition learned =⊥
Begin

if b = 0 then

/* This ACCEPT message acknowledges a SUGGEST message. */

ONACCEPTSUGGESTION(q) // An upcall interface for Mencius.

end if

learner_history ← learner_history∪{〈b,v,q〉}
LSet ←{〈e1,e2,e3,〉 : e1 = b∧〈e1,e2,e3〉 ∈ learner_history}
if size(LSet) = �(n+1)/2� then

/* a quorum has accepted the value, the value is chosen. */

Broadcast LEARN(v)

end if

End

OnMessage ACK(b,a,v) From q OnCondition learned =⊥
Begin

prepared_history ← prepared_history∪{〈b,a,v,q〉}
PSet ←{〈e1,e2,e3,e4〉 : e1 = b∧〈e1,e2,e3,e4〉 ∈ prepared_history}
if size(PSet) = �(n+1)/2� then

/* A quorum of peers have been prepared, ready to propose. */

ha ← max{a : 〈−,a,−,−〉 ∈ PSet}
hvset ←{v : 〈−,ha,v,−〉 ∈ PSet}
hv ← Choose v : v ∈ hvset
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/* hv is set to the only element in hvset, since hvset must have one unique element. */

if hv =⊥ then

/* No value has been chosen yet, propose no-op. */

Broadcast PROPOSE(b,no-op)

else

/* Must propose hv. */

BroadcastPROPOSE(b,hv)

end if

end if

End

OnMessage PROPOSE(b,v) From q OnCondition learned =⊥
Begin

if b = 0∧ v = no-op then

/* Coordinator skips, p learns no-op immediately */

learned ← no-op

ONLEARNED(no-op)

else if prepared_ballot ≤ b∧accepted_ballot < b then // p accepts (b,v).

if b = 0 then

/* this is a SUGGEST message. */

ONSUGGESTION // An upcall interface for protocol P and Mencius.

end if

accepted_ballot ← b

accepted_value ← v

Send ACCEPT(b,v) To q

end if

End
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Pseudo code of Protocol P

/* Pseudo code of Protocol P at server p.

Protocol P runs a series of Coordinated Paxos. It commits a value learned in instance i once

all instances prior to i have been learned and committed. The following code handles dupli-

cation by checking for duplications before committing. Other techniques, such as assuming

idempotent requests, can also be used.

Note that besides the original arguments, all upcalls/downcalls from/to Coordinated Paxos

also have an additional argument i that specifies the simple consensus instance number.

Protocol P provides two APIs to its applications. The applications downcalls ONCLIEN-

TREQUEST to submit a request to the state machine. When a value is chosen, P upcalls

ONCOMMIT to notify the application.

Function owner(i) returns the coordinator of instance i.

Function learned(i) returns a reference to the learned variable of the ith simple consensus

instance. */

variable proposed[ ] // An array records the value that the coordinator initially sug-

gested to an instance. It maps an instance number to a value. Every key is initially mapped

to ⊥.

variable index ← min{i : owner(i) = p} // The next instance to suggest a value

to.

variable expected ← 0 // The next instance number to commit a value, i.e., the

smallest instance whose value is not learned.

procedure ONCLIENTREQUEST(v) SUGGEST(index,v) // Rule 1: p suggests v

to instance index.
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proposed[index]← v

index ← min{i : owner(i) = p∧ i > index}
end procedure

/* Rule 2: on receiving a SUGGEST message for instance i, p skips all unused instances prior

to i. */

procedure ONSUGGESTION(i)

SkipSet ←{k : k ≥ index∧ k < i∧owner(k) = p}
for all k in SkipSet do

SKIP(k) // Skip instance k

index ← min{k : owner(k) = p∧ k > i}
end for

end procedure

/* Rule 3: When suspecting q has failed, p revoke all instances that are smaller than index

and are coordinated by q. */

procedure ONSUSPECT(q)

RevokeSet ←{i : owner(i) = q∧ i < index∧ learned(i) =⊥}
for all k in RevokeSet do

REVOKE(k) // Revoke instance k.

end for

end procedure

procedure CHECKCOMMIT // Check if a new value can be committed.

while learned(expected) 
=⊥ do

v ← learned(expected)

if v 
= no-op∧ v /∈ {learned(i) : 0 ≤ i < expected} then

/* Commit value v only if it is not a no-op and is not a duplication. */

ONCOMMIT(v)

end if

expected ← expected +1
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end while

end procedure

procedure ONLEARNED(i,v) // Upon instance i learns value v.

if owner(i) = p∧ proposed[i] 
= v then

/* Rule 4: v must be no-op and proposed[i] must be re-suggested. */

ONCLIENTREQUEST(proposed[i])

end if

CHECKCOMMIT

end procedure
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Pseudo code of Mencius

/* Pseudo code of Mencius at server p. Mencius runs a series of Coordinated Paxos. It

commits a value learned in instance i once all instances smaller than i have been learned

and committed. The following code handles duplication by checking for duplications before

committing. Other techniques, such as assuming idempotent requests, can also be used.

Mencius provides two APIs to its applications. The applications downcalls ONCLIENTRE-

QUEST to submit a request to the state machine. When a value is chosen, Mencius upcalls

ONCOMMIT to notify the application.

Note that besides the original arguments, all upcalls/downcalls from/to Coordinated Paxos

also have an additional argument i that specifies the simple consensus instance number.

Function owner(i) returns the coordinator of instance i.

Function learned(i) returns a reference to the learned variable of the ith simple consensus

instance. Mencius also uses n timers for Accelerator 1. */

variable proposed[ ] // An array records the value that the coordinator initially sug-

gested to an instance. It maps an instance number to a value. Every key is initially mapped

to ⊥.

variable expected ← 0 // The next instance number to commit a value, i.e., the

smallest instance whose value is not learned.

variable index ← min{i : owner(i) = p} // The next instance to suggest a value

to.

variable est_index[ ] // An array records the estimated index of other servers. It

maps a server ID to an instance number. Initially, est_index[q]← min{i : owner(i) = q}.

variable need_to_skip[ ] // An array records the set of outstanding SKIP messages
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need to be sent to a server. It maps a server ID to a set of instance numbers. Every key is

initially mapped to an empty set.

procedure ONCLIENTREQUEST(v)

/* By Optimization 2, SKIP messages will be piggybacked on SUGGEST messages. So,

we cancel the timers that were previously set for Accelerator 1 and reset the records of the

outstanding SKIP messages. */

for all q in {0, . . . ,n−1} do

CANCELTIMER(q) // Cancel the qth timer.

need_to_skip[q]←{}
end for

SUGGEST(index,v) // Rule 1: p suggests v to instance index.

proposed[index]← v

index ← min{i : owner(i) = p∧ i > index}
end procedure

procedure ONACCEPTSUGGESTION(i,q) // Upon receiving an ACCEPT mes-

sage that acknowledges a previous SUGGEST message.

QSkipSet ←{ j : est_index[q]≤ j < i∧owner( j) = q} // By Optimization 1:

SKIP messages are piggybacked on this ACCEPT message. QSkipSet is the set of instances q

has skipped.

for all j in QSkipSet do

learned( j)← no-op

CHECKCOMMIT

end for

est_index[q]← min{ j : j > i∧owner( j) = q}
end procedure

procedure ONSUGGESTION(i)

/* Upon receiving a SUGGEST message for instance i. */

q ← owner(i) // q is the sender of the SUGGEST message.
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QSkipSet ←{ j : est_index[q]≤ j < i∧owner( j) = q} // By Optimization 2,

SKIP messages are piggybacked on this SUGGEST message. QSkipSet is the set of instances

q has skipped.

for all j in QSkipSet do

learned( j)← no-op

end for

CHECKCOMMIT

est_index[q]← min{ j : j > i∧owner( j) = q}

SkipSet ←{ j : j ≥ index∧ j < i∧owner( j) = p} // By Rule 2, server p skips

all unused instances smaller than i. SkipSet is the set of instances p needs to skip.

for all k in SkipSet do learned[k]← no-op

end for

CHECKCOMMIT

// p does not send SKIP messages to other servers immediately. Optimization 1:

p piggyback the SKIP message to q on the ACCEPT message.

for all k in {r : 0 ≤ r < n− 1∧ r 
= p∧ r 
= q} do // Optimization 2: For

all other servers, SKIP messages are not sent immediately, instead they wait for a future

SUGGEST message.

if need_to_skip[k] = {} then // Set timer for Accelerator 1.

need_to_skip[k]← SkipSet

SETTIMER((k,τ)) // Set the kth timer to trigger at τ unit time from now.

else

need_to_skip[k]← need_to_skip[k]∪SkipSet

end if // Check if the number of outstanding SKIP is greater than α.

if size(need_to_skip[k])> α then // By Accelerator 1, need to propagate

the SKIP messages when the outstanding SKIP messages is larger than α.

SENDSKIP(k) // propagate the SKIP messages to server k.

end if

end for

index ← min{ j : owner( j) = p∧ j > i}
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end procedure

procedure ONSUSPECT(q)

/* Rule 3 and Optimization 3: p revokes q for large block of instances, when suspecting

server q has failed. */

Cq = min{i : owner(i) = q∧ learned(i) =⊥}
if Cq < index+β then

RevokeSet ←{i : Cq ≤ i ≤ index+2β ∧owner(i) = q∧ learned(i) =⊥}
for all k in RevokeSet do

REVOKE(k) // Revoke instance k.

end for

end if

end procedure

procedure ONLEARNED(i,v)

/* Upon instance i learns value v. */

if owner(i) = p∧ proposed[i] 
= v then

/* Rule 4: v must be no-op and proposed[i] must be re-suggested. */

ONCLIENTREQUEST(proposed[i])

end if

CHECKCOMMIT;

end procedure

procedure ONTIMEOUT(k) // The kth timer times out.

SENDSKIP(k) // propagate the SKIP messages to server k.

end procedure

procedure SENDSKIP(k)

CANCELTIMER(k) // Cancel the kth timer.

for all q ∈ need_to_skip[k] in

doSKIP(q)
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end for

need_to_skip[k]←{}
end procedure

procedure CHECKCOMMIT // Check if a new value can be committed.

while learned(expected) 
=⊥ do

v ← learned(expected)

if v 
= no-op∧v /∈ {learned(i) : 0 ≤ i < expected} then // Commit value

v only if it is not a no-op and is not a duplication.

ONCOMMIT(v)

end if

expected ← expected +1

end while

end procedure



Appendix D

Pseudo code of Coordinated Byzantine

Paxos

/* Pseudo code of Coordinated Byzantine Paxos at server p.

Note that this is only the pseudo code for one instance of Coordinated Byzantine Paxos.

Each round of Coordinated Byzantine Paxos is assigned to one of the servers.

Function owner(r) returns the server ID of the owner of round r.

〈m〉αp : a message m from p authenticated using the shared secret keys between p and other

processes.

〈m〉σp : a message m signed by server p.

〈m〉ρp : a message m signed by the A2M of server p.

〈SUGGEST,v〉ρp : the coordinator p suggests v, i.e., proposing v 
= no-op to round 0.

〈SKIP〉ρp : the coordinator p skips, i.e., proposing no-op to round 0.

〈NEW-LEADER,rc,r〉αp : a new leader of round r is elected to revoke the current leader. rc is

the revocation certificate.

〈ACCEPT,v,r〉αp : a value v is accepted in round r by server p.

〈ACK,r′,v,s,r〉σp : p has accepted value v in round r. s is a set of signatures that verifies v. p

also promises not to accept any value in a round smaller than r′ in the future.

〈PRE-PREPARE, pc,v,r〉σp : the new leader p informs other servers the proposal v for round r.

pc is the progress certificate that vouches for v.

〈PREPARE,v,r〉σp : server p has prepared v in round r. */

/* learner states: */

variable learned ←⊥ // No value is learned initially.

variable historylearner ←{} // Not peer has accepted any value
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/* proposer states: */

variable historyprepare ←{} // No prepare history

variable roundrevoking ←−1 // Current revocation round

/* acceptor states: */

variable round ← 0 // current round, initially 0: No value will be accepted for a

round smaller than the current round.

variable acceptedvalue ←⊥ // Initially, no value is accepted.

variable acceptedround ←−1 // The round in which a value, if any, is accepted.

variable acceptedsignature ← {} // A set of signatures that verifies the accepted

value

variable preprepared ←−1 // The highest round in which a value is prepared

procedure SUGGEST(v) // The coordinator proposes value v

Broadcast 〈SUGGEST,v〉ρp // SUGGEST messages are relayed.

end procedure

procedure SKIP // The coordinator proposes no-op.

Broadcast 〈SKIP〉ρp // SKIP messages are relayed.

end procedure

procedure REVOKE(rc) // Non-coordinator starts to revoke once a revocation cer-

tificate rc is acquired.

/* Choose a round that is owned by p and is greater than any round p has ever seen. */

r ← Choose b : onwer(b) = p∧b > round ∧b > acceptedround

roundrevoking ← r

Broadcast 〈NEW-LEADER,rc,r〉αp

end procedure

OnMessage 〈SKIP〉ρq From q OnCondition q is the coordinator

Begin
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learned ← no-op

ONLEARNED(no-op)

End

OnMessage 〈SUGGEST,v〉ρq From q OnCondition q is the coordinator

Begin

if acceptedround < 0 then

acceptedvalue ← v

acceptedround ← 0

acceptedsignature ←{ρq}
Broadcast 〈ACCEPT,v,0〉αp

end if

End

OnMessage 〈ACCEPT,v,r〉αq From q

Begin

historylearner ← historylearner ∪{r,v,q}
LSet ←{〈e1,e2,e3〉 : e1 = r∧〈e1,e2,e3〉 ∈ historylearner}
/* A value is learned if 2 f +1 matching accept messages are collected. */

if size(LSet) = 2 f +1 then

learned ← v

ONLEARNED(v)

end if

End

OnMessage 〈NEW-LEADER,rc,r〉αq From q

Begin

if r > round then

round ← r

Send 〈ACK,r,acceptedvalue,acceptedsignature,acceptedround〉σp To q

end if
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End

OnMessage 〈ACK,r,v,s,vr〉αq From q

Begin

if r = roundrevoking then

historyack ← historyack ∪{〈r,v,s,vr〉}
pc ←{〈e1,e2,e3,e4〉 : e1 = r∧〈e1,e2,e3,e4〉 ∈ historyack}
/* 2 f +1 ACK messages are needs to construct a progress certificate */

if Size(pc) = 2 f +1 then

pc′ ← {〈e1,e2,e3,e4〉 : e2 
=⊥∧〈e1,e2,e3,e4〉 ∈ pc}
/* if no value has been accepted in pc, the new proposal is no-op. */

vv ← no-op

if pc′ 
= φ then

/* otherwise choose the value with the highest round number */

m ← max{vr : 〈−,−,−,vr〉 ∈ pc′}
vv ← Choose {e2 : e3 = m∧〈e1,e2,e3,e4〉 ∈ pc′}

end if

Broadcast 〈PRE-PREPARE, pc,vv,r〉σp

end if

end if

End

OnMessage 〈PRE-PREPARE, pc,v,r〉σq From q

Begin

/* A server prepares for at most one value in each round */

if preprepared < r∧ ISVALID(pc,v,r) then

round ← r

preprepared ← r

Broadcast 〈PREPARE,v,r〉σp

end if

End
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OnMessage 〈PREPARE,v,r〉σq From q

Begin

historyprepare ← historyprepare ∪{〈v,r,q,σq〉}
PSet ←{〈e1,e2,e3,e4〉 : e1 = r∧〈e1,e2,e3,e4〉 ∈ historyprepare}
/* A value is accepted if 2 f +1 matching PREPARE messages are collected. */

if Size(PSet) = 2 f +1 then

Broadcast 〈ACCEPT,v,r〉αp

acceptedvalue ← v

acceptedround ← r

acceptedsignature ←{σ : 〈−,−,−,σ〉 ∈ PSet}
end if

End




