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Abstract
Vegetation composition shifts, and in particular, shrub expansion across the Arctic tundra are
some of the most important and widely observed responses of high-latitude ecosystems to rapid
climate warming. These changes in vegetation potentially alter ecosystem carbon balances by
affecting a complex set of soil–plant–atmosphere interactions. In this review, we synthesize the
literature on (a) observed shrub expansion, (b) key climatic and environmental controls and
mechanisms that affect shrub expansion, (c) impacts of shrub expansion on ecosystem carbon
balance, and (d) research gaps and future directions to improve process representations in land
models. A broad range of evidence, including in-situ observations, warming experiments, and
remotely sensed vegetation indices have shown increases in growth and abundance of woody
plants, particularly tall deciduous shrubs, and advancing shrublines across the circumpolar Arctic.
This recent shrub expansion is affected by several interacting factors including climate warming,
accelerated nutrient cycling, changing disturbance regimes, and local variation in topography and
hydrology. Under warmer conditions, tall deciduous shrubs can be more competitive than other
plant functional types in tundra ecosystems because of their taller maximum canopy heights and
often dense canopy structure. Competitive abilities of tall deciduous shrubs vs herbaceous plants
are also controlled by variation in traits that affect carbon and nutrient investments and retention
strategies in leaves, stems, and roots. Overall, shrub expansion may affect tundra carbon balances
by enhancing ecosystem carbon uptake and altering ecosystem respiration, and through complex
feedback mechanisms that affect snowpack dynamics, permafrost degradation, surface energy
balance, and litter inputs. Observed and projected tall deciduous shrub expansion and the
subsequent effects on surface energy and carbon balances may alter feedbacks to the climate
system. Land models, including those integrated in Earth System Models, need to account for
differences in plant traits that control competitive interactions to accurately predict decadal- to
centennial-scale tundra vegetation and carbon dynamics.

1. Introduction

Northern high-latitude regions have experienced
rapid warming in recent decades (Berner and Heal

2005, IPCC 2013). Ecosystems are responding to this
warming in ways that may exacerbate or slow climate
change, through changes in vegetation and processes
influencing the thaw of permafrost, which stores
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about twice asmuch carbon as does the current atmo-
sphere (Ping et al 2008, Schuur et al 2008, Hugelius
et al 2014). Several lines of observational evidence
indicate that rapid climate warming over the past
few decades has resulted in (a) shifts in phenology
(Myneni et al 1997, Tucker et al 2001, Verbyla 2008,
McManus et al 2012, Prevéy et al 2019); (b) thawing
of permafrost (Brown and Romanovsky 2008, Schuur
et al 2015,Hugelius et al 2020); (c) thermokarst devel-
opment (Schuur et al 2007, Jones et al 2015, Turetsky
et al 2020); (d) more frequent and intense wildfire
events (Flannigan et al 2009, IPCC 2013); and (e)
alteration of landscape thermal dynamics, hydrolo-
gical (Liljedahl et al 2016, Teufel and Sushama 2019),
and nutrient cycling (Xue et al 2016, Sarneel et al
2020). These changes all contribute to a complex
set of soil–plant–atmosphere interactions, potentially
altering ecosystem carbon balances (Weintraub and
Schimel 2005, Hudson et al 2011, Sistla et al 2013,
Ravn et al 2020).

Rapid climate warming in northern ecosystems
may also drive changes in competitive interactions
and thereby alter plant species composition and
abundance (Shaver et al 2000, Pieper et al 2011,
Cahoon et al 2012, Elmendorf et al 2012a). In this
review, we focus on the Arctic tundra, which is
an ecosystem with diverse plant functional types
(PFTs, plant groups with similar function and forms,
e.g. evergreen shrubs, deciduous shrubs, graminoids,
forbs, non-vascular vegetation) co-existing across
several bioclimatic subzones (Walker et al 2005). His-
torical vegetation distributions reconstructed from
paleo-records indicate a higher relative abundance
of shrubs in the High Arctic and a more northern
treeline during a warmer mid-Holocene compared
to the present (Bigelow et al 2003). Across much of
this region, recent changes in vegetation composi-
tion (e.g. observed increases in woody plant (mainly
tall deciduous shrubs) growth, distribution, and rel-
ative abundance; also known as Arctic shrubifica-
tion) have been reported (Myers-Smith et al 2011a,
Elmendorf et al 2012b, García Criado et al 2020).
We note that most observations of recent tundra
shrub expansion mainly refer to the expansion of
tall deciduous shrubs. Shrub abundance and changes
inferred from remote sensing were shown to exhibit
spatial heterogeneity, with greater observed increases
in the Low Arctic (Lantz et al 2010, Berner et al 2020;
figure 2).

Shrub growth has been shown to be climate sens-
itive (Forbes et al 2010, Myers-Smith et al 2015),
and shrub increases are thought to be in response
to climate warming (Cornelissen et al 2001, Wahren
et al 2005, Walker et al 2006, Elmendorf et al 2012b,
García Criado et al 2020), with other drivers (e.g.
soil moisture, snow dynamics, disturbance, and herb-
ivory) also playing roles (Martin et al 2017, Niittynen
et al 2020). Increases in shrub growth have often
occurred at the expense of non-vascular vegetation

(e.g. lichens and bryophytes) (Cornelissen et al 2001,
Elmendorf et al 2012a, Hollister et al 2015). These
responses have been corroborated by a broad range
of evidence, including in-situ observations (Hudson
and Henry 2009, Callaghan et al 2011, Elmendorf
et al 2012b), warming experiments (Walker et al 2006,
Elmendorf et al 2012a), dendroecology (Forbes et al
2010, Myers-Smith et al 2015), repeat photography
(Tape et al 2006), and satellite remote sensing (For-
bes et al 2010, McManus et al 2012). This evidence
strongly suggests that with recent climate warming
shrubs have becomemore competitive across the Arc-
tic tundra.

Under changing environmental and climatic con-
ditions, several interacting processes affect Arctic
tundra vegetation composition and carbon andnutri-
ent cycling (figure 1). Competitive abilities of tun-
dra plants are strongly controlled by differences in
traits that control carbon and nutrient investments
and retention strategies in leaves, stems, and roots;
for example leaf nutrients and optical traits, root
traits, plant hydraulics, morphological and phenolo-
gical traits (Bjorkman et al 2018, Myers-Smith et al
2019a). Growth and expansion of shrubs affect the
tundra carbon balance by enhancing ecosystem car-
bon uptake (Walker et al 2006, Forbes et al 2010,
Elmendorf et al 2012a, Tremblay et al 2012) and by
altering ecosystem respiration, which affects soil car-
bon stocks (Sistla et al 2013, DeMarco et al 2014a,
Lynch et al 2018, Gagnon et al 2019, Ravn et al
2020) and nutrient cycling (DeMarco et al 2014b,
Christiansen et al 2018a, Wang et al 2018, Prager et al
2020). Changes in net ecosystem carbon exchange
driven by shrub expansion are also affected by com-
plex feedback mechanisms, such as alteration of sur-
face energy budgets (Chapin et al 2000, Blok et al
2010, Bonfils et al 2012, Lafleur and Humphreys
2018), snowpack dynamics (Liston et al 2002, Sturm
et al 2005a, Marsh et al 2010, Myers-Smith and Hik
2013), and permafrost degradation (Blok et al 2010,
Lawrence and Swenson 2011, Nauta et al 2015).Many
of these shrub-driven changes, for example in energy
balance and snowpack, may also affect climate; but in
this review, we focus on the carbon-mediated feed-
back processes.

Alteration of surface energy and carbon bal-
ance driven by changes in the abundance of woody
shrubs may have important ecological and cli-
matic implications. For instance, these implica-
tions include alteration of ecosystem structure, func-
tion, and feedbacks to climate (Loranty and Goetz
2012), fire fuel (Camac et al 2017), animal habitat
(Tape et al 2016), and traditional gathering activ-
ities (Henry et al 2012). However, the mechanisms
through which changes in climatic and environ-
mental controls alter the composition of Arctic eco-
logical communities remain unclear and the rep-
resentations of these mechanisms in models remain
incomplete.
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Figure 1. Schematic diagram that shows key climatic and environmental controls on tundra shrub expansion. The figure shows a
complex set of soil–plant–atmosphere interactions driven by (1) climate change (increase in surface air temperature, precipitation
and atmospheric (CO2)), (2) soil moisture and snow dynamics, (3) topography, (4) permafrost thaw, (5) nutrient dynamics, (6)
disturbance (e.g. wildfire), and (7) herbivory, and interactions among these factors. These drivers may alter vegetation
composition and lead to the expansion of shrubs. Shrub expansion and its effects on snowpack dynamics, litter inputs, permafrost
degradation, and surface energy budgets may also affect net ecosystem carbon exchanges. Signs (±) on the arrows represent
increases or decreases.

Important goals in this review are to explore
information from the literature using the Pre-
ferred Reporting Items for Systematic Reviews and
Meta-Analyses approach (supplementary methods
(available online at stacks.iop.org/ERL/16/053001/
mmedia)) and to facilitate improved representations
of tundra shrub processes in models used to assess
carbon-climate feedbacks (Jones et al 2016). For
example, land models are just beginning to include
wildfire and its impacts on shrubs; the ability for
shrub ranges to shift; and interactions among decom-
position, nutrients, and shrub growth. Further, these
land models do not include the effects of topograph-
ical changes due to permafrost thaw and thermokarst.
As a result, models predict a wide range of carbon
cycle responses over the 21st century, including posit-
ive (Qian et al 2010) and negative (Zhuang et al 2006)
effects of future climate on ecosystem carbon stocks.
Thus, predictions of the magnitude and direction
of carbon-climate feedbacks associated with tundra
shrub expansion remain uncertain in land models
(Bonfils et al 2012, Druel et al 2019, Mekonnen et al
2018a, 2018b).

Decadal- to centennial-scale prediction of tun-
dra carbon cycle dynamics requires land models that
consider the wide array of ecological processes and
their interactions and are robustly evaluated against
observations. The paper is therefore organized into
sections discussing (a) observed shrub expansion, (b)

key climatic and environmental controls and mech-
anisms that affect the vegetation composition of Arc-
tic tundra ecosystem, (c) overall impacts of shrub
expansion and interacting feedback mechanisms that
affect ecosystems carbon exchanges, and (d) obser-
vational research gaps and future directions for land
models. Below we explore the literature and highlight
the processes that are most relevant to each section.

2. Observed shrub expansion across the
Arctic tundra

2.1. Satellite observations of Arctic greening
Multiple Earth-observing satellites provide evid-
ence that summer normalized difference vegetation
index (NDVI) widely increased (spectral greening)
and locally decreased (spectral browning) during
recent decades across the Arctic. Circum-Arctic spec-
tral greening and browning trends have primarily
been assessed during recent decades using coarse-
resolution (∼8 km) summer NDVI derived from
the Advanced Very High Resolution Radiometer
(AVHRR) sensor (Myneni et al 1997, Bhatt et al 2010,
Beck and Goetz 2011, Guay et al 2014, Andersen
and Andreassen 2020, Myers-Smith et al 2020). How-
ever, higher-resolution NDVI data sets from the
(500 m) MODIS (Guay et al 2014, Jenkins et al 2020,
Myers-Smith et al 2020) and (30 m) Landsat (Berner
et al 2020) satellites have been increasingly used for
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Figure 2.Observed changes in tundra greenness and shrub dynamics across the Arctic tundra biome. Changes in tundra greenness
are based on trends in maximum summer NDVI (NDVImax) from 2000 to 2020 derived from Landsat satellite observations.
Specifically, the map shows the percent change in mean NDVImax among sampling sites (n= 41 341) stratified by ecological land
units (n= 186) with similar vegetation, soil, and climate. The trend map was modified and updated from Berner et al (2020).
Observed changes in shrub cover, growth, biomass, and reproduction were based on a systematic literature review updated from
García Criado et al (2020). Observed changes in shrub dynamics were based on field data (e.g. ecological monitoring,
dendroecology), high-resolution remote sensing data (e.g. repeat photography, aerial photos), or both. Sites with mixed shrub
dynamics typically had some species or species groups that were stable along with others that increased. Note that individual
studies assessed changes in shrub dynamics during different time periods that do not fully overlap with observed changes in
tundra greenness derived using the Landsat satellites. Background topographic data is from NOAA. Adapted by permission from
Springer Nature Customer Service Centre GmbH: Springer Nature, Nature Communications, Summer warming explains
widespread but not uniform greening in the Arctic tundra biome, Berner et al, Copyright © 2020, The Author(s). CC BY 4.0.

circum-Arctic assessments. A recent AVHRR NDVI
analysis found spectral greening and browning across
38% and 3%, respectively, of the Arctic from 1982
to 2014, with greening evident over large parts of
the eastern Eurasian and North American Low Arc-
tic (Park et al 2016). Xu et al (2019) used AVHRR
NDVI to assess controls on spring greenup and com-
pared these controls with those inferred fromMODIS
(Xu et al 2018). Here we update the Landsat NDVI
trend analysis from Berner et al (2020) to extend
from 2000 to 2020 (instead of to 2016; supplement-
ary material). We find spectral greening and brown-
ing across 27% and 8% of the Arctic from 2000 to
2020, respectively, alongwith a 3.9% increase inmean
ArcticNDVIduring this period (Mann–Kendall trend
test: p= 6.6× 10−6, τ = 0.65, n= 21 years; figure 2).
While the magnitude and spatial patterns of spec-
tral greening and browning differ somewhat among
satellite NDVI data sets (Guay et al 2014), these
products nevertheless show overall spectral green-
ing of the Arctic during recent decades (Berner et al
2020, Jenkins et al 2020,Myers-Smith et al 2020). Arc-
tic spectral greening has been linked with increasing
summer air and soil temperatures, permafrost thaw,

and loss of sea ice (Bhatt et al 2010, Keenan and Riley
2018, Berner et al 2020, Peng et al 2020), and with
increasing cover and growth of shrubs and other vas-
cular plants (e.g. Forbes et al 2010, Fraser et al 2011,
Frost et al 2014, Andreu-Hayles et al 2020).

In tundra ecosystems, summer NDVI tracks
broad spatial patterns of plant productivity (Boelman
et al 2003, Street et al 2007, Kushida et al 2015, Sweet
et al 2015, Berner et al 2020) and aboveground bio-
mass (Boelman et al 2003, Walker 2003, Jia et al
2006, Raynolds et al 2012, Johansen and Tømmervik
2014, Berner et al 2018). The leafy canopies of tall
deciduous shrubs can strongly affect summer NDVI
(Riedel et al 2005), and thus tundra with greater
deciduous shrub cover (Boelman et al 2011, Blok
et al 2011b, Pattison et al 2015) and aboveground
biomass (Jia et al 2003, Riedel et al 2005, Kushida
et al 2009, 2015, Greaves et al 2016, Berner et al
2018) tends to have higher summer NDVI. Never-
theless, aboveground biomass corresponded much
more strongly with drone-derived canopy height than
NDVI in a shrub tundra landscape. These results
indicate that shrub dynamicsmay not entirely be cap-
tured by NDVI records at landscape scales (Cunliffe
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et al 2020). Moreover, some tundra systems (e.g. wet-
lands) can have high summer NDVI despite few, if
any, shrubs (Bartsch et al 2020), and relationships
between summer NDVI and tundra biophysical char-
acteristics are typically non-linear and scale depend-
ent (Cunliffe et al 2020, Myers-Smith et al 2020).

2.2. Links between Arctic greening and observed
shrub dynamics
Satellite-observed spectral greening relates to increas-
ing shrub cover and growth in parts of the Arc-
tic. Spectral greening has been directly linked in
several studies with increasing shrub cover mapped
using repeat high-resolution aerial photos and satel-
lite imagery. For example, Landsat NDVI strongly
increased from 1984 to 2014 in Siberian alder (Alnus
viridis) patches that established since the 1960s across
five tundra landscapes in northwestern Siberia (Frost
et al 2014). Similarly, Landsat NDVI increased from
1985 to 2011 widely across a study area in the
Western Canadian Arctic and was linked to increas-
ing cover of mountain alder (Alnus crispa) and
dwarf birch (Betula nana and B. glandulosa) (Fraser
et al 2014). Historical reliance on coarse-resolution
AVHRR NDVI datasets for spectral greening ana-
lyses has hindered direct comparisons with shrub
expansionmappedwith high-resolution aerial photos
or satellite imagery. However, moderate- and high-
resolution satellite NDVI time series are increasingly
being used to assess Arctic tundra vegetation pro-
ductivity changes (e.g. Arndt et al 2019, Berner et al
2020) and hold considerable promise to further elu-
cidate how changes in shrub cover contribute to spec-
tral greening in the Arctic.

Satellite-derived summer NDVI time series have
also been linked with interannual variability in shrub
growth at locations across the Arctic. For instance,
summer NDVI time series have been shown to cov-
ary with annual shoot elongation of an evergreen
shrub, Arctic bell-heather (Cassiope tetragona), and
with annual radial growth of three deciduous shrub
genera that are widespread in the Low Arctic: wil-
low (Salix spp.), alder (Alnus spp.), and birch (Betula
spp.) (e.g. Weijers et al 2018b, Andreu-Hayles et al
2020, Berner et al 2020). AVHRR NDVI time series
strongly correlated with annual growth of Woolly
willow (Salix lanata) from 1981 to 2005 across
a tundra landscape in northwestern Russia (For-
bes et al 2010). Subsequent studies linked AVHRR
NDVI time series with annual shrub growth across
other tundra landscapes in Russia (Blok et al 2011a,
Macias-Fauria et al 2012), Alaska (Andreu-Hayles
et al 2020), and Canada (Ropars et al 2015, Weijers
et al 2018a). Comparisons between Landsat NDVImax

and 22 shrub growth chronologies synthesized from
six Arctic countries revealed moderate correlations
(median Spearman correlation (rs) = 0.42) (Berner
et al 2020). Several studies also documented posit-
ive trends in annual shrub growth concurrent with

remotely sensed spectral greening trends (Forbes et al
2010, Ropars et al 2015, Andreu-Hayles et al 2020).

Nevertheless, neither AVHRR, MODIS, nor
Landsat NDVI correspond with shrub growth in all
tundra landscapes (Blok et al 2011a, Andreu-Hayles
et al 2020, Berner et al 2020, Myers-Smith et al 2020),
potentially because shrubs are but one component
of varying dominance in plant communities that are
typically intermixed within a mosaic of land cover
types (Forbes et al 2010, Myers-Smith et al 2020).
It also remains unclear how shrub radial growth or
shoot elongation relates to changes in shrub leaf area,
biomass, or landscape productivity (Andreu-Hayles
et al 2020, Myers-Smith et al 2020). As a result, cov-
ariation between remotely sensed NDVI and shrub
growth suggests increasing shrub growth could con-
tribute to spectral greening, but the overall contribu-
tion of increasing shrub growth to greening remains
uncertain relative to contributions from other PFTs
in the Arctic.

2.3. Evidence for increasing shrub cover, growth,
and biomass in the Arctic
Tundra shrubs have undergone conspicuous increases
in cover, abundance, height, and growth concur-
rent with warming trends during the past decades
in parts of the Arctic (Tape et al 2006, Rundqvist
et al 2011, Myers-Smith et al 2011b, Normand et al
2013, Frost and Epstein 2014, Andreu-Hayles et al
2020, García Criado et al 2020). Species undergo-
ing these increases include birch (Betula spp.), alder
(Alnus spp.) and willow (Salix spp.) (Myers-Smith
et al 2011a, Lantz et al 2013, Frost and Epstein 2014,
Andruko et al 2020), dwarf evergreen shrubs includ-
ing Arctic bell-heather (C. tetragona) and cowberry
(Vaccinium vitis-idaea), and semi-deciduous shrubs
such as Arctic avens (Dryas integrifolia) (Wilson
and Nilsson 2009, Vowles et al 2017). Shrubification
occurs through infilling of existing patches, increas-
ing growth, and advancing shrublines (Myers-Smith
et al 2011a).

These ecological changes have been documented
in many parts of the Arctic (figure 2) through ecolo-
gical monitoring (Rundqvist et al 2011), dendroeco-
logy (Boulanger-Lapointe et al 2014, Andreu-Hayles
et al 2020), repeat oblique photography (Tape et al
2006, Lantz et al 2013), and high-resolution air-
borne and satellite remote sensing (Frost et al 2013,
Moffat et al 2016). Site-level studies have reported
substantial increases in shrub cover across Arctic sites,
includingAlaska, USA (Hollister et al 2005), northern
Canada (Hill andHenry 2011), Greenland (Callaghan
et al 2011), and Sweden (Becher et al 2018), among
many others. While there have been many studies
that reported recent shrub expansion, we note that
there may be publication bias in reporting findings
that exhibit changes in shrub cover. For instance,
stable or decreasing shrub cover or growth has been
found using ecological monitoring at many sites in
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the International Tundra Experiment dataset (Elmen-
dorf et al 2012a, Bjorkman et al 2018) and reported
in sites in northern Alaska and southeast Greenland
(Daniëls and deMolenaar 2011, Villarreal et al 2012),
among many others.

Repeat oblique photography has revealed tundra
shrubification in Alaska (Sturm et al 2001b, Tape
et al 2006, 2012, Brodie et al 2019), western Canada
(Danby et al 2011,Mackay andBurn 2011,Moffat et al
2016), eastern Canada (Fraser et al 2011, Tremblay
et al 2012), and southwest Greenland (Jørgensen et al
2013). Most of these studies relied on ground-based
oblique photographs. Tape et al (2006), from an ana-
lysis of 202 pairs of oblique aerial photographs col-
lected between∼1950 and∼2000, found widespread
expansion of alder, willow, and dwarf birch along
hillslopes and valley bottoms on the Alaskan North
Slope.

For example, analysis of aerial photos from 1980
to 2013 showed tall shrub and dwarf shrub cover
increased at 55% and 74%, respectively, of 38 study
sites across the Tuktoyaktuk Coastlands in the North-
west Territories, Canada (Moffat et al 2016). On the
other side of the Arctic, shrub cover change was eval-
uated at ten study sites spanning northern Siberia
using high-resolution photographs from Cold-war
era spy satellites (1965–1969) and recent (2009–2011)
high-resolution commercial satellite imagery (Frost
and Epstein 2014, Frost et al 2014). Shrub cover
exhibited little net change (−0.8%) at one study
site but increased 5%–26% (mean = 13%) across
the other nine study sites, particularly in land-
scape positions with active disturbance regimes
(e.g. permafrost-related patterned-ground, flood-
plains, hillslopes) (Frost and Epstein 2014). While
attention is often paid to areas with shrub expan-
sion, aerial photos also reveal areas with little to no
change in shrub cover during recent decades (e.g.
Plante et al 2014, Jorgenson et al 2018). Overall, high-
resolution remote sensing analyses illustrate extens-
ive increases in shrub cover during the last four to
seven decades in the Arctic, while also underscoring
that change did not uniformly occur across tundra
landscapes.

3. Environmental and climatic drivers,
interactions, andmechanisms of shrub
expansion

3.1. Climate warming
Warming temperatures have been reported at biome-
wide scales across the tundra (IPCC 2013, AMAP
2017) and are associated with increasing shrub cover
across the Arctic (Myers-Smith et al 2015). While
Arctic plant communities are generally sensitive to
warming, the responses are site-dependent and het-
erogeneous (Hollister et al 2005a, Bjorkman et al
2020, García Criado et al 2020, Myers-Smith et al
2020). Shrub species differ substantially in their

responses to climate change because of a variety of
factors other than warming (e.g. site conditions, soil
moisture, snow-dynamics, plant-specific responses)
(García Criado et al 2020, Myers-Smith et al 2020).
Patterns of plant community responses to warm-
ing are consistent between monitoring and experi-
mental warming methods, although space-for-time
approaches do not appear to be appropriate for quan-
tifying the rate or magnitude of change (Elmendorf
et al 2012a, 2012b, 2015) and short- and long-term
responses are expected to differ (Bouskill et al 2020).
The most apparent link between climate and shrub
expansion is the correlation of temperature with
shrub growth, abundance, and recruitment. Obser-
vational studies, based on remote or ground surveys
over time or space and onwarming experiments, have
found higher shrub growth and recruitment with
warmer temperatures. The trend of warmer summers
correlates with shrub expansion across the Arctic tun-
dra (Myers-Smith and Hik 2018, Weijers et al 2018b,
Berner et al 2020).

The response of shrub growth to warming is
spatially heterogeneous, however, with higher tem-
perature sensitivity in the European Arctic than in
North America and at sites with greater soil mois-
ture and taller shrubs (Myers-Smith et al 2015). Plant
and ring width growth that correlate with summer
NDVI (section 2.2) have also been found to correl-
ate with summer temperatures (Myers-Smith et al
2015). Annual growth of alder and willows have been
found to be climate sensitive around the circum-
polar Arctic (Myers-Smith et al 2015) including in
Arctic Alaska (Tape et al 2012, Andreu-Hayles et al
2020), northwest Russia (Forbes et al 2010), Arctic
Canada (Boulanger-Lapointe et al 2014,Myers-Smith
and Hik 2018, Weijers et al 2018a), and Greenland,
Norway and Svalbard (Jørgensen et al 2015, Weijers
et al 2018a). These trends are corroborated by large-
scale dendroecological syntheses (Myers-Smith et al
2015).

Temperature manipulation experiments allow
more controlled investigation of warming impacts on
shrub productivity. Meta-analyses and most experi-
ments report that warming promotes growth (Walker
et al 2006) and germination (i.e. seed biomass,
cumulative germination, germination rate, peak ger-
mination (Klady et al 2011)) unless moisture or
other conditions are limiting. Experimental warm-
ing can also increase seedling mortality, resulting
in no net effect on establishment (Milbau et al
2017). Biome-wide remote sensing and modeling
also confirm that warming is leading to more
favorable conditions for shrubs. For example, the
extent of Arctic areas where vegetation is limited
by temperature declined over the past three decades
(Keenan and Riley 2018). Although warming tends
to expand shrub ranges into currently colder loca-
tions, it can also cause contraction at the warmer
or southern edge of current shrub ranges (Bokhorst
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et al 2018), due to population-level variation in tem-
perature optima (Kueppers et al 2017) or due to
treeline advance, as seen between 1900 and 2008
(Harsch et al 2009).

3.2. Soil moisture and snow dynamics
Soil moisture, snow dynamics, and other climate-
related factors can also influence shrub growth and
establishment (Martin et al 2017). Furthermore,
air temperature often covaries with soil moisture,
snow dynamics, active layer depth, nutrient availab-
ility, and other environmental conditions that affect
shrub success (figure 1). These co-varying factors
are difficult to control in observational studies and
receive less assessment compared to air temperat-
ure (Martin et al 2017, Myers-Smith et al 2019a).
When these factors have been investigated, their
interactions with the warming effect were variable.
Multiple studies have reported greater shrub expan-
sion in more moist sites. For example, Naito and
Cairns (2011) found that shrubs expand more into
areas with higher topographic wetness index and
closer to the riverbank in the North Slope of Alaska.
Boulanger-Lapointe et al (2014) found willow cover
and seedling density was high in sites with elev-
ated soil moisture but limited by water availability
in dry sites in the High Arctic of Greenland and
Canada. García Criado et al (2020) found that tun-
dra woody cover changed more rapidly in wetter
sites. Higher temperature sensitivity of shrub growth
was found for wetter vs drier sites (Myers-Smith
et al 2015, Ackerman et al 2017). Field surveys and
warming experiments indicate that moisture limit-
ation can reduce shrub growth, recruitment, and
abundance (Elmendorf et al 2012a, Myers-Smith et al
2015, Li et al 2016, Ackerman et al 2017). Across
all of these studies, the availability of soil mois-
ture strongly interacts with warming. Soil mois-
ture also plays a critical role in determining the
trajectory of vegetation under warming (Elmendorf
et al 2012b, Ackerman et al 2017, Bjorkman et al
2018). Bjorkman et al (2018), in a large-scale ana-
lysis of the relationships between plant traits, warm-
ing, and soil moisture, highlighted the importance
of soil moisture and concluded that the traject-
ory of changes in plant traits and ecosystem func-
tion under future warming would depend on soil
moisture.

As glaciers retreat and permanent snow cover
shrinks, reduced melt-water supply in the growing
season might induce moisture limitation in exten-
ded regions (Boulanger-Lapointe et al 2014). Warm-
ing can lead to earlier snowmelt, which can affect
soil moisture and lengthen the growing season, which
have been found to promote shrub growth in some
studies (Hill and Henry 2011, Wilcox et al 2019).
However, because snowpack protects shrub shoots
and seedlings from damage caused by fungal and
insect attacks and frost, earlier snowmelt due to

warming has also been found to offset some posit-
ive impacts of warming (Bokhorst et al 2009,Wheeler
et al 2016).

3.3. Topography
Topography is an important distal controller of veget-
ation growth inmany ecosystems. Themore proximal
vegetation growth controllers influenced by topo-
graphy include soil moisture, snowpack redistribu-
tions, lateral nutrient and oxygen fluxes, relatively
static soil properties (e.g. texture (perhaps affected
by erosion), depth), soil redox and nutrient states,
snow cover and properties, disturbance, and light
(figure 1). Although these factors affect all ecosys-
tems, the conditions in tundra systems (e.g. perma-
frost, patterned ground, thermokarst) lead to unique
controls on shrub growth. The three observed cat-
egories of recent shrub increases (i.e. infilling, growth
increases, and range spread) identified by Myers-
Smith et al (2011a) will each be affected by different
combinations of these mechanisms. However, there
are relatively fewer observational studies that quantify
the relative importance of these mechanistic controls
than in, e.g. temperate forests.

Observations of relationships between tundra
shrub cover change and topographically driven pro-
cesses have been used to infer mechanisms affect-
ing these interactions. Many studies (Chapin et al
1988, Epstein et al 2004, Naito and Cairns 2011,
Myers-Smith et al 2015, Lara et al 2018, Campbell
et al 2020) indicate that tundra plant productiv-
ity is strongly affected by topographically driven
hydrology. Additional observed factors associated
with topography that affect shrub growth include
snow properties (Boulanger-Lapointe et al 2016),
thermokarst in patterned ground (Frost et al 2013,
Huebner and Bret-Harte 2019), soil properties, and
cryoturbation (Ropars and Boudreau 2012, Frost et al
2014, Swanson 2015).

A number of land models have been applied to
analyze tundra shrub dynamics (Epstein et al 2000,
Euskirchen et al 2009, Lawrence and Swenson 2011,
Bonfils et al 2012, Miller and Smith 2012, Zhang
et al 2013, Druel et al 2019), but none of these
models explicitly represent topographical variation
at the relevant spatial scales. We identified only a
few studies that have applied land models resolv-
ing topographic gradients that evaluated the effects
on vegetation. Mekonnen et al (2021b) showed that
hillslope topography and thereby hydrology strongly
controlled historical and future shrub growth. At the
hill crest, canopy water stress and low plant nitro-
gen uptake led to low modeled shrub biomass. In
the mid-slope position, intermediate soil water con-
tent reduced shrub water and nitrogen stress, lead-
ing to higher shrub biomass. In the lower-slope pos-
ition, saturated soil conditions reduced soil oxygen
concentrations, nutrient availability and uptake, and
plant biomass. An analysis with simulations that
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ignored topographical gradients and gridcell inter-
connectivity underestimated mean shrub biomass
and over- or under-estimated shrub productivity at
the various hillslope positions.

The emergent patterns of shrub expansion
responses to climate warming and changes in soil
moisture summarized above interact with a range of
processes, including permafrost thaw, nutrient cyc-
ling, and disturbance, as discussed in the following
sections.

3.4. Permafrost thaw
Thawing of permafrost (Brown and Romanovsky
2008, Schuur et al 2015, Hugelius et al 2020,
Mekonnen et al 2021a) and thermokarst develop-
ment (Schuur et al 2007, Jones et al 2015) may
alter soil moisture and thermal regimes and thus
affect nutrient availability. Evidence from many Arc-
tic sites suggests that a deeper active layer promotes
shrub expansion (Martin et al 2017). Recent and pro-
jected warming are expected to deepen the active
layer heterogeneously depending on climate and soil
properties, and thereby increase nutrient availability
(Mekonnen et al 2018b). These environmental condi-
tions, though connected to air temperature through
ecosystem and climate feedbacks, directly influence
shrub growth and establishment.

Thawing of ice-rich permafrost or the melting
of massive ice may lead to a landscape deforma-
tion process resulting in thermokarst development
(van Everdingen 2005). Alterations of the ground
surface, such as ground temperature, thaw depth,
and soil moisture could provide favorable condi-
tions for shrub growth (Schuur et al 2007, Lantz
et al 2010, Frost et al 2013). Thermokarst disturb-
ances of tundra surfaces will increase access to bare
soils initially covered by a thick organic mat and
could increase germination of shrub species (Lloyd
et al 2003, Lantz 2017, Mikhailov 2020). Observa-
tional studies have reported increased soil temperat-
ure, thaw depth, nutrient availability, and snowpack
in sites associated with thermokarst subsidence and
landform deformation, and concurrent increases in
shrub growth (Lloyd et al 2003), but the effects vary
with thermokarst type and process (supplementary
material). In thermokarst depressions on tundra hills
with harsher conditions, protection from wind and
frost burnmay play essential roles in shrub expansion
(Lantz 2017).

3.5. Nutrient cycling
As high-latitude soils warm, availability of plant
nutrients (i.e. nitrogen and phosphorus) is expec-
ted to increase (figure 3). This increase stems from
kinetically controlled mineralization rates, which
are strong functions of temperature (Nadelhoffer
et al 1991, Blok et al 2018), and deepening active-
layer exposing previously frozen organic matter

(Salmon et al 2018) for decomposition, nutrient
mineralization, and plant assimilation (Keuper et al
2017, Blume-Werry et al 2019, Hewitt et al 2020).
Furthermore, observations of increasing wintertime
respiration, particularly under deeper snowpack,
could play an important role in releasing nutrients
over the 21st century (Schimel et al 2004, Natali
et al 2019). However, whether nutrients released dur-
ing subnivean activity are assimilated by plants or
lost hydrologically during snowmelt remains an open
question (Grogan and Jonasson 2003, Edwards et al
2006, Koven et al 2015, Riley et al 2018).

How higher nutrient availability shapes veget-
ation composition and productivity has been
examined directly through nutrient manipulation
experiments (Mack et al 2004, DeMarco et al 2014b,
Prager et al 2020) and indirectly through long-term
observations across spatial gradients (Pelletier et al
2019). In general, increased nutrient availability
enhances shrub productivity, coverage, and biomass
(Shaver and Chapin 1980, Mack et al 2004), which
can lead to taller shrubs with higher leaf nitrogen
content (Bjorkman et al 2018, Prager et al 2020). A
feedback loop may subsequently emerge (figure 3)
whereby increased shrub biomass and height under
warmer temperatures and elevated nutrient availab-
ility can lead to a deepening snowpack, insulating
the under-snow soil, and further increasing nutri-
ent mineralization rates and nutrient availability into
the summer (Chapin et al 2005, Sturm et al 2005b,
Bjorkman et al 2018, Hicks et al 2020). However,
interactions between snow depth and belowground
activity are complex. A controlledmanipulation study
showed no impact on nutrient cycling of a deepening
snowpack (Myers-Smith and Hik 2013), while lit-
ter quantity and quality were likely more significant
factors driving decomposition (DeMarco et al 2014a).

Traits that control shrub-ectomycorrhizal (ECM)
associations may also provide mechanistic insight
into the competitive dynamics of tundra vegeta-
tion. For instance, mycorrhizal networks exist in tun-
dra and facilitate belowground inter-plant carbon
transfers, and thus may alter competitive abilities
(Deslippe et al 2011, Deslippe and Simard 2011).
Tundra shrubs, and associated ECM fungi, have
been shown to have higher maximum uptake rates
(VMAX) than graminoids (Zhu et al 2016), and alloc-
ate significant resources towards fine root biomass
and therefore nutrient uptake capacity (Vamerali
et al 2003, Iversen et al 2015). Such competit-
iveness for nutrients could explain consistent trait
responses across nutrient-manipulation studies. For
example, in a recent study examining plant traits
under nutrient fertilization, Prager et al (2020) found
that only deciduous shrubs had significantly greater
leaf N at high levels of nutrient addition. Further-
more, under similar nutrient-enrichment conditions,
deciduous shrubs, but not graminoids, increased
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Figure 3. The schematic depicts the changes to belowground ecosystems and nutrient cycling potentially occurring under
increased shrub growth and cover. Each circular panel represents the soil environment underneath the shrubs during different
periods of the year: under wintertime snowpack, and during summer. Broadly, from present day to a future date the figure shows
increased shrub height, cover, nutrient cycling, and availability, as described in the text. (i) Exoenzyme production hydrolyzes
complex soil organic matter releasing simple organic compounds (monomers) and nutrients (organic and inorganic) that are (ii)
available for rapid assimilation by shrub roots, associated mycorrhizae, and microorganisms. As winter transitions to summer,
plant activity increases, playing a critical role in belowground nutrient cycling: plant litterfall (iii) can be decomposed by soil
fauna, yielding soil organic matter (SOM), and contributing to the cycling of soil nutrients. Furthermore, plant exudation (iv) can
stimulate the microbial community, and encourage mining of existing SOM to yield inorganic nitrogen and phosphorus.
Free-living and symbiotic nitrogen-fixing bacteria (v) can further increase soil nitrogen stocks through fixation of atmospheric
nitrogen. Under future climate scenarios, elevated shrub growth, deeper rooting depths, and deeper snowpacks are predicted to
increase subsurface wintertime activity, leading to higher nutrient availability for assimilation by plants and microbes, and
increased wintertime respiration. Transitioning to summertime leads to a higher litterfall associated with a larger and denser
canopy. The litter associated with shrubs has a higher C:N ratio, which increases the fungal to bacterial ratios, as conditions
encourage the growth and colonization of fungi. However, the fate of diazotrophic microorganisms over time is generally
uncertain. For example, an increase in soil nitrogen availability through other mechanisms could reduce the requirement for
atmospheric nitrogen fixation. Signs (±) on soil panels 3 and 4 represent increases or decreases in processes over time, relative to
the corresponding panels 1 and 2.

foliar N (Heskel et al 2012). Similarly, Bret-Harte
et al (2001) noted that elevated nutrient availab-
ility increased shrub leaf area index and canopy
density, resulting in light limitation of understory
species. These relationships imply that high foliar
nutrient levels and the ability to acquire soil nutri-
ents are beneficial traits in high-latitude environ-
ments. However, Bjorkman et al (2018) noted that
traits such as leaf nitrogen content generally decreased
with warming in dry sites, while increasing in wetter
conditions in analyses at the community-level.

Finally, the importance of post-growing season
nutrient uptake has become increasingly clear in
recent years (Riley et al 2018). Belowground plant
activity (e.g. root growth) continues after the cessa-
tion of photosynthetic activity (Iversen et al 2015,
Blume-Werry et al 2016), while nutrient uptake con-
tinues into the winter (Chapin and Bloom 1976,
Andresen and Michelsen 2005). Shrubs have been

noted to be particularly active during spring, relat-
ive to other tundra plants (Weih 2000, Larsen et al
2012), which could lead shifts in phenology under a
warmer climate (Mekonnen et al 2018b, Oberbauer et
al 2013).

3.6. Wildfire
Wildfires can burn and remove shrubs, and thus
reduce post-fire shrub populations in the short-term.
Wildfires often alter soil temperature (Jiang et al
2015), surface litter and soil organic carbon stocks
(Grosse et al 2011, Mack et al 2011, Chen et al 2021),
and seedbed quality, thus affecting regeneration and
shrub establishment (Lantz et al 2010, Bret-Harte
et al 2013). Removal of an insulating surface litter
layer increases the active layer depth (Iwahana et al
2016, Michaelides et al 2019). These factors may alter
soil organic carbon stocks, soil moisture, and nutri-
ent dynamics and thus affect post-fire competition

9



Environ. Res. Lett. 16 (2021) 053001 Z A Mekonnen et al

and successional trajectories in the tundra. Fire may
also impact shrub performance by altering mycor-
rhizal symbionts. Hewitt et al (2013) concluded that
the resprouting strategy of tundra shrubs makes the
dominant mycorrhizal fungi more resilient to fire
by maintaining an inoculum source on the land-
scape after fire. As a result, resprouting shrubs may
facilitate post-fire vegetation regeneration and poten-
tially shrub expansion under future warming and fire
regimes.

Wildfires increase shrub expansion in tundra
regions over multi-decadal timescales, although
short-term observations of disturbed tundra indic-
ate negative influences of wildfires on shrubs. Based
on paleoecological studies (e.g. Higuera et al 2008,
Hu et al 2010) and model simulations (Rupp et al
2000, Mekonnen et al 2019, Bouskill et al 2020), the
predicted frequent and larger wildfires in the Arctic
under future climate are expected to increase Arctic
shrub expansion. Several studies across the tundra
reported increases in shrub growth and distribution
in older burn scars, although post-fire shrub recov-
ery may last for more than ten years. For instance,
graminoid biomass was shown to recover four years
after the Anaktuvuk River Fire (ARF) on the North
Slope, Alaska (Bret-Harte et al 2013). However,
shrubs did not recover to pre-fire conditions (Jandt
et al 2012, Bret-Harte et al 2013) or were recovering
slowly by the fourth year after the ARF (Jandt et al
2012). Narita et al (2015) and Iwahana et al (2016)
observed vegetation and thaw depth changes five to
ten years after a 2002 tundra fire on the Seward Pen-
insula, Alaska. They found evergreen shrub cover was
still substantially lower five years after the fire and
had not recovered ten years after the fire. In contrast,
graminoid and deciduous shrub cover had increased
over the same period. The long-term increase in
shrubs following fire was also shown in other stud-
ies on the Seward Peninsula, Alaska and in Western
Siberia (Racine et al 2004, Heim et al 2019). These
studies show that fire promotes shrub growth and
expansion and thus alters ecosystem carbon balance,
although fire may reduce shrub growth in the short
term.

Short-term increases in active layer depth are a
common feature following tundra wildfires. Depend-
ing on site conditions, post-fire thaw depth may
recover to the level of unburned sites in about ten
years (Iwahana et al 2016), or persist longer (Rocha
et al 2012), while increased shrub growth and expan-
sion may continue for decades. Spatial variation of
active layer depth may also be related to plant com-
munity composition, with deeper thaw correspond-
ing to graminoid-rich areas and shallower thaw cor-
responding to shrub-rich areas (Narita et al 2015).
The active layer depth returned to pre-fire levels ten
years after the 2002 Kougarok fire, Seward Peninsula,
Alaska (Narita et al 2015, Iwahana et al 2016). Active
layer was deepest (52.3 cm) 10–11 years following

a fire and gradually returned to unburned levels
thereafter.

Some areas burned in recent Kougarok fires
experienced thermokarst, especially polygonal
depressions along lines of ice-wedges (Iwahana
et al 2016, Tsuyuzaki et al 2018). Frost et al (2020)
studied vegetation changes after 1971–1972, 1985,
2006–2007, and 2015 tundra fires on the Yukon-
Kuskokwim Delta, Alaska. Shrub cover was lower in
younger fire scars (one to three years) than adjacent
unburned areas, but higher shrub cover occurred at
sites with older fires (10–46 years). Using radiocarbon
dating, aerial photography, and climate proxy data,
Jones et al (2013) identified tundra fires that likely
occurred between AD 1880 and 1920 on the North
Slope, Alaska. They found degradation of ice-rich
permafrost and increased shrub vegetation with taller
canopy height than surrounding unburned areas.
In the Mackenzie Delta Uplands, Lantz et al (2013)
also found the highest shrub coverages (92%–99%)
in old-burned (about 40 years) tundra among their
studied tundra areas. These results suggest changes
in recovery times of thaw depth and shrub bio-
mass following fire may subsequently alter post-
fire successional trajectories and ecosystem carbon
balance.

3.7. Herbivory and grazing
Herbivory is an important factor that affects shrub
growth in the tundra (Olofsson et al 2004, Post
and Pedersen 2008, Tape 2011). Several exclosure
experiments have demonstrated that herbivory may
alter vegetation composition (Pajunen et al 2008,
Ravolainen et al 2011) and reduce climate-driven
shrub expansion (Olofsson et al 2009). For instance,
in a ten year field experiment with permanent plots
with treatments of reindeer only vs all mammalian
(small mammals and reindeer) exclosures at four
forest–tundra ecotone locations in northern Fenno-
scandia, shrub abundance was generally shown to
increase with herbivore exclusions (Olofsson et al
2009). In a three year exclosure experiment in a Low
Arctic site in Norway, the biomass of forbs, deciduous
shrubs, and herbaceous plants were shown to increase
by 40%–50% in the absence of herbivory (Ravolainen
et al 2011). The effects on different tundra PFTs
may also vary with herbivores. For instance, rodents
may prefer mosses and dwarf shrubs (Moen et al
1993, Dahlgren et al 2007), while reindeer and wild
caribou were shown to prefer deciduous shrubs and
lichens (Herder et al 2003, Post and Pedersen 2008).
Herbivores can also affect seedbed quality, seedling
establishment, and growth of tundra plants (Munier
et al 2010). These processes can strongly alter tundra
PFT prevalence, suggesting that herbivore abundance
and distribution may have a direct impact on shrub
expansion across the tundra.

Climate warming may have direct and indirect
effects on plant–herbivore interactions (Olofsson et al
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2009) and on changes in the abundance of herb-
ivores and their predators (Ims and Fuglei 2005).
Shrub expansion and shifts in vegetation composition
driven by climate warming can alter the composition
and quality of forage for herbivores (Kitti et al 2006,
Doiron et al 2014). Increases in shrub cover may also
increase snowpack height that may affect timing of
snowmelt, growing season length, and forage access
to herbivores (Berg et al 2008). Indirectly, climate
warming may also alter predator–prey interactions,
thus altering herbivore populations (Legagneux et al
2014) and their impact on shrubs.

3.8. Plant traits and competition
Warmer climate, enhanced nutrient cycling (which
will lead to increased nutrient availability), and dis-
turbance modify competitive interactions of tundra
plants and thereby may result in changes in relat-
ive shrub abundance (Mack et al 2004, DeMarco
et al 2014b, Zamin et al 2014, Prager et al 2020).
Competitive interactions among PFTs, as mediated
through functional traits, strongly affect community
assembly through competition for light, water, and
nutrients under changing climate (Soudzilovskaia
et al 2013, Myers-Smith et al 2019b). Several plant
traits (e.g. plant height, leaf nutrients and optical
properties, phenology, morphology, root traits, and
axial hydraulic resistance) are known to differ among
tundra PFTs (Chapin et al 1996a, Iversen et al 2015,
Bjorkman et al 2018, Myers-Smith et al 2019b,
Thomas et al 2019). As a result, tundra PFTs dif-
fer in their abilities to acquire and retain resources.
Across ecosystems, carbon and nutrient investment
and retention strategies in leaves, stems, and roots
partly explain PFTs’ competitive abilities under chan-
ging climate (Chapin et al 1996a, Westoby et al 2002,
Wright et al 2004, Soudzilovskaia et al 2013). Differ-
ences in traits may also affect emergent PFT variation
in phenology, irradiance, CO2 fixation rate, andwater
uptake and thereby each PFT’s competitive growth.
Structural traits such as plant height respond strongly
to changes in growing conditions in tundra ecosys-
tems (Bjorkman et al 2018), yet do not differ strongly
among PFTs in tundra plants (Thomas et al 2019).

With increases in nutrient availability, such as
those expected over the 21st century (Mekonnen et al
2018b), shrubs may grow faster leading to greater
carbon gains per N investment, resulting in higher
woody carbon stocks (Sistla et al 2013), with longer
turnover times and higher plant carbon to nitrogen
(C:N) ratios (Weintraub and Schimel 2005). Shrubs
associated with symbiotic N2 fixation (Densmore
2005, Salmon et al 2019) may also compete more
effectively due to their independent supply of N.

The rapid growth of shrubs with greater height
and leaf area (e.g. Hudson et al 2011, Elmendorf et al
2012a) have led to the competitive exclusion of shade-
intolerant species, such as lichens and mosses (Cor-
nelissen et al 2001, Walker et al 2006, Pajunen et al

2011, Elmendorf et al 2012a, Fraser et al 2014) at
some warming experiment sites, further increasing
shrubs’ ability to compete. While exclusion via light
has not been observed at all sites (e.g. Elmendorf et al
2012a), light competition can impact plant functional
diversity and community structure. Plant etiolation
responses to light attenuation is an important trait
that controls their ability to effectively compete under
shading (Havström et al 1993, Chapin et al 1996b).
Thus, traits that control maximum canopy height
and greater carbon uptake may result in shrubs being
more competitive than other PFTs in tundra ecosys-
tems in a warmer climate (Mekonnen et al 2018b).

4. Impacts of shrub expansion on
ecosystem carbon balance

Recent changes in vegetation composition, particu-
larly shrub expansion, may alter the tundra ecosys-
tem carbon balance directly through effects on (a)
ecosystemnet primary productivity and thus biomass
and (b) surface litter inputs, and thus soil organic
carbon and respiration. Shrub expansion can also
indirectly affect ecosystem carbon cycling through (a)
snow–shrub interactions (Liston et al 2002, Sturm
et al 2005a, Myers-Smith and Hik 2013, Marsh et al
2010), (b) permafrost degradation (Blok et al 2010,
Lawrence and Swenson 2011, Nauta et al 2015), (c)
surface energy balance (Chapin et al 2000, Bonfils et al
2012, Lafleur andHumphreys 2018), (d) nutrient cyc-
ling (DeMarco et al 2014a, Christiansen et al 2018a,
Wang et al 2018, Prager et al 2020), and (e) ecosys-
tem carbon turnover time (Parker et al 2015, Ravn
et al 2020). The overall impacts of shrub expansion on
ecosystem carbon balance depend on complex inter-
acting and rapidly changing climatic and environ-
mental factors.

4.1. Ecosystem productivity and carbon balance
Several studies reported increases in plant carbon
uptake inferred from Arctic greening and increases
in shrub biomass (section 2). Circum-Arctic trends
inferred based on multi-decadal changes in remote
sensing observations (Rouse et al 1974) indicate
increases in plant productivity (Tucker et al 2001,
Olthof et al 2008, Verbyla 2008) and shrub growth
and biomass (Frost et al 2013, Moffat et al 2016)
across much of the Arctic tundra biome during
the past decades (sections 2.2 and 2.3; figure 2).
Observed increases in carbon uptake and thus shrub
growth and biomass were also shown based on a
systematic literature review updated from García
Criado et al (2020) (figure 2). These results have
been supported with a shrub ring width chrono-
logy analysis (Blok et al 2011b) that showed increases
in shrub growth. Dendroecological measurements
indicate changes in shrub radial growth and estab-
lishment at sites across the Arctic (Myers-Smith et al
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2015). Shrub radial growth has been found to com-
monly relate to above-ground biomass Moullec et al
2019 and remotely sensed NDVI (Forbes et al 2010,
Ropars et al 2015, Andreu-Hayles et al 2020, Berner
et al 2020,Myers-Smith et al 2020), though not always
(Weijers et al 2018b).

Further, results from field and remote sensing
observations were corroborated by several natural
and artificial warming experiments. Most of these
experiments have shown an increase in shrub
net primary production. For instance, long-term
plot observations from 46 sites across the tundra
(Elmendorf et al 2012b) showed overall increases in
height and abundance of shrubs, although responses
varied with site conditions (Myers-Smith et al 2015).
In other warming experiments across the tundra,
increases in height and biomass of tall decidu-
ous shrubs were shown (van Wijk et al 2004,
Walker et al 2006, Zamin and Grogan 2012, Sis-
tla et al 2013). Gains in net primary productivity
that led to shrub growth were primarily driven by
enhanced CO2 fixation via higher N mineraliza-
tion, deeper thaw depth, and thus increased nutri-
ent availability (Campioli et al 2013, DeMarco et al
2014b). Nutrient availability and plant productivity
may further be enhanced by biological N2 fixation
through symbiotic associations with bacteria (e.g.
Alder), and primed by increased root carbon alloc-
ation (Rhoades et al 2001, Densmore 2005). This
robust range of observations and warming experi-
ments suggest enhanced plant carbon uptake that
led to increased biomass of shrubs in response to
warming.

Expansion of shrubs also increases carbon losses
through ecosystem respiration (Parker et al 2015,
Phillips and Wurzburger 2019) by increasing litter
inputs (Liston et al 2002, Myers-Smith and Hik 2013,
Christiansen et al 2018b, Kropp et al 2018) and act-
ive layer depths (Blok et al 2010, Frost et al 2018,
Wilcox et al 2019). The net ecosystem carbon bal-
ance in a shrub-dominated site depends on contrast-
ing responses of ecosystem carbon uptake vs res-
piration. Several meta-analyses of long-term ecosys-
tem warming experiments (Arft et al 1999, Dormann
and Woodin 2002, Rustad et al 2001, Walker et al
2006, Elmendorf et al 2012a) have shown that eco-
system responses to warming are spatially hetero-
geneous and dependent on the climate zone, site
conditions (e.g. local topography, soil properties, sur-
face and subsurface hydrology), and PFT compos-
ition (via litter inputs). Since woody shrubs have
the highest C:N ratio among tundra PFTs and their
woody litter decomposes relatively slowly, their rel-
ative increase across the Arctic may enhance ecosys-
tem carbon storage (Weintraub and Schimel 2005,
Heskel et al 2013). However, increases in net carbon
uptake from shrub expansion may be offset by con-
current increases in ecosystem respiration (Biasi et al

2008). In-situ measurements in shrub-dominated
sites indicate contrasting responses of shrub biomass
and soil organic carbon. Shrub expansion and the
subsequent increase in biomass (Berner et al 2018,
García Criado et al 2020) and litter inputs (Elmend-
orf et al 2012b) may alter decomposition rates of soil
organic carbon (Myers-Smith and Hik 2013, Sistla
et al 2013, Parker et al 2015, Lynch et al 2018, Gagnon
et al 2019, Christiansen et al 2018a). Flux data from
21 sites across the Arctic and boreal ecosystems have
shown a strong ecosystem carbon sink for sites dom-
inated by shrubs vs herbaceous plants (Cahoon et al
2012). However, sites with greater summer soil tem-
peratures were shown to be carbon sources. These
results suggest that shrub expansion impacts on net
ecosystem exchange is site specific, and dependent
on changes in biomass vs soil organic carbon stocks.
We note that, although several studies in the liter-
ature reported effects of shrub expansion on bio-
mass and decomposition of soil organic carbon (e.g.
Christiansen et al 2018a, Gagnon et al 2019, Lynch et
al 2018), the effects on net biome productivity have
not been widely measured.

4.2. Albedo, surface energy budgets
Shrubs affect ecosystem carbon balances indirectly
through effects on the surface energy balance and
snowpack accumulation (Liston et al 2002, Marsh
et al 2010, Nowinski et al 2010, Myers-Smith and
Hik 2013). Increases in tall shrubs that grow above
the snowpack reduce albedo, altering the energy bal-
ance and thus snowmelt timing (Marsh et al 2010).
Sturm et al (2005a) showed from measurements at
five tundra sites in Alaska that sites dominated by tall
shrubs resulted in a 30% reduction in winter time
albedo, compared to sites with dwarf shrubs under-
neath the snowpack. Increases in canopy net radiation
from reduced albedo by tall shrubs may alter seasonal
carbon uptake (Livensperger et al 2016, Lafleur and
Humphreys 2018). Changes in spring albedomay also
affect snowmelt timing (Sturm et al 2005a,Marsh et al
2010), thus resulting in earlier leaf-out and carbon
uptake (Bonfils et al 2012, Livensperger et al 2016).
While earlier snow-melt results in more spring snow-
free days and greening (Livensperger et al 2016), it
may also reduce dwarf-shrub growth, likely related
to adverse effects of temperature on the early grow-
ing season (Wheeler et al 2016). Thus, reduced albedo
that leads to earlier snowmelt may have a contrasting
impact on spring carbon uptake.

4.3. Snow–shrub interactions
Tall deciduous shrubs can accumulate snow redistrib-
uted by wind across a landscape (Liston et al 2002,
Pomeroy et al 2006). Snow fence experiments at Arc-
tic tundra sites show that deeper snowpack promotes
winter soil warming (Nobrega and Grogan 2007,
Joshua Leffler and Welker 2013). Deeper snowpack
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insulates the soil surface, resulting inwarmer soil dur-
ing winter (Paradis et al 2016) and thus increased soil
organic matter (SOM) decomposition (Sturm et al
2001a). Warmer soil may accelerate wintertime eco-
system respiration that may substantially contribute
to non-growing season carbon loss (Natali et al 2019),
but may also increase nutrient availability to plants
and facilitate higher growing season biomass gains
(Riley et al 2018). Deeper snow may also deepen the
active layer (Nowinski et al 2010) and increase soil
wetness and thus methane production (Blanc-Betes
et al 2016). While snow accumulation may enhance
winter soil warming (Myers-Smith andHik 2013) and
active layer depth (Nowinski et al 2010), shrub expan-
sion was also reported to cool soils (Myers-Smith and
Hik 2013) and reduce summer permafrost thaw (Blok
et al 2010) from shading of the soil surface by the
greater canopy cover. These interactions may result
in lower summer soil temperatures, decomposition
rates, and summertime nutrient availability (Myers-
Smith and Hik 2013). Thus, alteration of snowpack
dynamics affects seasonal soil temperature, nutrient
dynamics, and rates of ecosystem respiration.

4.4. Litter inputs to soils and decomposition
Long-term plots show increases in tall decidu-
ous shrub growth leading to greater litter inputs
(Elmendorf et al 2012b). However, increased shrub
litter inputs have contrasting effects on net ecosys-
temcarbon exchange. Shrub growthmay be enhanced
from greater litter inputs, which can accelerate SOM
decomposition, thus increasing nutrient availability
(Buckeridge et al 2010). Rapid decomposition of
shrub litter may also increase SOM carbon losses
through heterotrophic respiration (Nielsen et al 2019,
Phillips and Wurzburger 2019). Wintertime shrub
litter decomposition was shown to be accelerated
from deeper snowpack that resulted in warmer soil,
although spring warming, under drier conditions,
was reported to reduce litter decomposition rates
(Blok et al 2016). The net effect of increased shrub
litter on ecosystem carbon balances depends on litter
quality and quantity. For instance, Christiansen et al
(2018b) reported greater litter carbon losses in tall vs
lowbirch shrubs atDaring Lake, amesicArctic tundra
site in Canada. Changes in litter decomposition rates
and the subsequent effects on carbonuptakemay alter
ecosystem carbon residence times (Parker et al 2015,
Ravn et al 2020).

5. Observational, theoretical, and
modeling research gaps and future
directions

5.1. Research gap: climate change effects on shrub
expansion
We highlight two major gaps in the observational lit-
erature of climate controls on shrub expansion. First,

while shrub expansion is controlled by multiple cli-
matic and environmental conditions, most studies
have focused on the direct impacts of warming or
soil moisture. Yet research also suggests that warming
may not be the dominant control on growth or estab-
lishment when other factors such as soil moisture,
snow dynamics, permafrost thaw, nutrient cycling,
and biotic activity are also considered or controlled
(Martin et al 2017, Lett and Dorrepaal 2018, Myers-
Smith et al 2019b). As such, there is a need for multi-
factorial experiments and observational analysis. Dis-
entangling impacts of multiple factors will contribute
to a better assessment of the relative influences of pos-
itive and negative feedbacks under warming, which
are key to projecting future rates of shrub expansion
(Myers-Smith et al 2011a, 2015). Second, most ana-
lyses are based on relatively short-term observations
(<25 years) or substitute spatial patterns for longit-
udinal studies to quantify temporal responses. The
limited time range and reliance on space-for-time
approaches pose challenges in addressing time lags in
shrub response to variation in environmental condi-
tions (Büntgen et al 2015) and to adequately repres-
enting long-term responses (Elmendorf et al 2012a,
Martin et al 2017, Bouskill et al 2020).

5.2. Research gap: influence of changing microbial
communities on nutrient cycling
The strong interplay between shrub expansion and
nutrient availability underscores a critical role for
soil microbes (figure 3). Microbial communities can
promote shrub expansion through, for example, the
mining of nitrogen from organic compounds in
response to rhizodeposition (Hicks et al 2020, Street
et al 2020). However, shifts in tundra vegetation,
including shrub expansion, can alter the composi-
tion and abundance of microbial functional guilds
(Wallenstein et al 2007, Eskelinen et al 2009, Shi
et al 2015). Shrub expansion canmodify the quantity,
quality, and chemical composition of SOM (McLaren
et al 2017) due to increased root (Brüggemann
et al 2011) and litter production (Cornelissen et al
2007), and rhizodeposition (Street et al 2020). Des-
pite strong functional redundancy (Louca et al
2018), shifts in microbial community composition
within the tundra can lead to changes in metabolic
function, including, for example, increased carbo-
hydrate utilization (Johnston et al 2019).Nonetheless,
impacts on the tundra carbon cycle remain uncer-
tain, with evidence for and against the priming of
existing SOM under higher rhizodeposition and lit-
ter production (Lynch et al 2018, Hicks et al 2020,
Street et al 2020).

Of particular significance to tundra carbon and
nutrient cycling is the potential change in fungal–
plant interactions that could emerge under shrub
expansion (Clemmensen et al 2006, Bennett and
Classen 2020). ECM and ericoid mycorrhizal fungi,
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typically partnered with deciduous and evergreen
shrubs respectively (Deslippe et al 2011, Deslippe and
Simard 2011, Vowles and Björk 2019, Hicks et al
2020), play an important role in the acquisition and
transfer of nutrients and water to the plant (Read and
Perez-Moreno 2003, Fernandez and Kennedy 2016,
Hewitt et al 2020). However, the feedback to soil car-
bon stability remains uncertain, with evidence both
for and against increased decomposition rates attrib-
utable to changes in the abundance and composi-
tion of mycorrhizal fungal (Fernandez and Kennedy
2016).

5.3. Research gap: recruitment effects on shrub
expansion
By definition, shrub reproduction and establishment
refer to range shifts or infilling, but controls on these
processes are not well-described in the literature.
It is less clear how seed germination and seedling
establishment, potential bottlenecks for Arctic shrub
expansion, will respond to a warmer climate (Bünt-
gen et al 2015, Milbau et al 2017, Myers-Smith and
Hik 2018). Factors controlling the recruitment of new
shrub individuals need further study to predict shrub-
line advance and changes in PFTs driven by climate
and disturbance. More studies are needed that evalu-
ate site-specific controls on regeneration, such as seed
production, suitable microsite availability, recruit-
ment, seedling survival, and establishment (Šenfeldr
andTreml 2020). The conditions that control seedling
survivorship are not always the same as those that con-
trol growth of mature shrubs, yet there is little overlap
among studies of these two processes (Büntgen et al
2015, Angers-Blondin et al 2018, Myers-Smith and
Hik 2018). It is relatively easy to conduct manipula-
tion experiments with seeds and seedlings to exam-
ine the controls on germination and seedling surviv-
orship (Angers-Blondin et al 2018). It is also easy,
at the other end of the demographic spectrum, to
conduct field and aerial surveys of mature or emer-
gent shrub biomass and abundance (Tape et al 2006,
Lantz et al 2013,Myers-Smith andHik 2018) to exam-
ine correlations with disturbance and climate. Pulses
of recruitment can be determined from age distribu-
tions of adult shrubs derived from dendroecological
approaches (Boulanger-Lapointe et al 2014, Büntgen
et al 2015,Myers-Smith andHik 2018, Andreu-Hayles
et al 2020). However, there remains a demographic
gap, and difference in outcome metrics, among stud-
ies, between seedling survivorship on the one hand
and growth of mature shrubs on the other. Thus,
we suggest there is a need for future research on
seed dispersal, and processes that control shrub suc-
cess between initial establishment (i.e. <5 years) and
reaching mature individuals, such as seedling com-
petition for light and nutrients, all of which may
limit long-term shrub establishment success as well
as growth.

5.4. Research gap: wildfire effects on shrub
expansion
While the literature clearly documents effects of wild-
fire on shrub biomass, litter layer, and active layer
depth (see section 3.6), many gaps remain in under-
standing and predicting the impacts of wildfire and
other disturbances on shrub expansion. Recent severe
fires and repeated burns in theArctic prompt the need
to further study the effects of fire intensity and fre-
quency on shrub expansion. For example, the effects
of more severe fires on soil fungi reduced seedling
performance in an Alaskan site, raising the possibil-
ity that fire–fungal–plant interactionsmay counteract
positive aspects of fire on establishment in tundra
(Hewitt et al 2016).

Ecosystem interactions can reduce or amplify the
effects of fires on shrubification. For example, shrub
densitymay be increased bywildfire and in turn shrub
biomass provides fuel for fires which can promote
further shrub colonization (Higuera et al 2008, Bret-
Harte et al 2013). Likewise, interactions among shrub
canopy, the moss layer, and permafrost thaw can
dampen or exacerbate the effect of fire on active layer
depth perturbations, leading to more or less shrub
colonization and growth. One consequence of the
importance of these internal interactions is that tun-
dra fires may have opposite influences on shrubifica-
tion depending on antecedent conditions, hydrology
(e.g. drainage and slope), and nitrogen availability.

It is difficult to conduct whole-system manipu-
lation or observational studies to determine the ulti-
mate net effect of fire on shrubs because of the long
time scales andmultiple processes involved, and diffi-
culty maintaining adequate control or untreated sys-
tems (Bouskill et al 2020). An alternative approach
is to conduct more narrowly-aimed experiments to
quantify the response or effect size for separate com-
ponents of the ecosystem response (such as effect
of fire on seed viability or seedling survival), and
integrate what is learned in process-rich models.
Ideally, these experimental approaches would allow
for replication and evaluation in different landscapes.
Moreover, model sensitivity analyses could help pri-
oritize which processes to study.

5.5. Neededmodel processes, parameters,
and benchmarking
In this section, we describe modeling needs most rel-
evant to simulate changes in vegetation composition
that lead to tundra shrub expansion and alter the
ecosystem carbon balance. Although models vary in
structure and parameterization, we highlight below
the key process representations and modeling needs
such as (a) tundra PFT traits, (b) topography, hydro-
logy, and thermal dynamics, and snow–shrub inter-
actions, and (c) synthesized observations for model
benchmarking.
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5.5.1. Model representation of tundra PFT traits
and mechanisms
We advocate that competition among PFTs should be
modeled from differences in key plant traits known to
vary among species. The relevant traits that control
tundra PFT competition for light, water, and nutri-
ents are critical to accurately represent vegetation
dynamics in land models. For example, light com-
petition in many models include a light extinction
coefficient and apply Beer’s Law, and/or an estim-
ate of foliar percent cover, applied to each PFT in
an ecosystem (Euskirchen et al 2009, Druel et al
2019). Some Earth System Model (ESM) ‘big leaf ’
land models (e.g. CLM (Lawrence et al 2019), ELM
(Zhu et al 2019)) ignore light competition between
PFTs. The light extinction coefficients are typically
static in models due largely to a lack of field meas-
urements (Zhang et al 2014). However, these coeffi-
cients may in fact change over time, particularly in
expanding shrub tundra ecosystems. Consequently,
for these types of models, additional data on this
model parameter may be needed to more accurately
simulate changing competitive interactions among
PFTs for light in Arctic tundra. Other models (e.g.
ecosys (e.g. Grant et al 2019a), ELM-FATES (Holm
et al 2020)) explicitly represent leaf areas aggregated
from those of all PFTs and resolved into multiple
canopy layers. Leaf areas within each layer are then
used to calculate interception of direct and diffuse
irradiance by each PFT (Grant et al 2017a). In this
type of model, observations of leaf reflectance, trans-
mittance, angles, LMA, and clumping are needed for
parameterization.

Traits for nutrient acquisition include, for
example, maximum rooting depth, nutrient uptake
kinetics that control root nutrient acquisition, and
root growth that can lead to asynchrony with above-
ground growth (Zhu et al 2016). This type of inform-
ation is scarce and current ESM land models often do
not represent the relevant wide range of PFT-specific
root structural and functional properties (Warren
et al 2015), although some progress is being made
(Riley et al 2018, Zhu et al 2019). These distinctions
may be important, for example, since more product-
ive species, such as shrubs, use the most abundant
nitrogen forms, while less productive species use
the less abundant forms (McKane et al 2002). Some
models may integrate these observations directly,
while others may explicitly account for the underly-
ing mechanisms and use the observations as bench-
marks (Mekonnen et al 2016). Tundra field studies
are improving understanding of tundra root func-
tional traits, including, for example, luxury consump-
tion of nutrients in fertilized tundra (van Wijk et al
2003), root nitrogen uptake under the stress ofmicro-
bial competition (Zhu et al 2016), and differences
in nitrogen uptake strategies between graminoids
and shrubs (Wang et al 2017), thereby developing
empirically based datasets of root functional traits

(McCormack et al 2017) that can be used to formu-
late and parameterize models.

Below we highlight nine groups of PFT traits
known to affect shrub growth and expansion via
resource acquisition and allocation that drive growth,
internal plant carbon and nutrient cycling and reten-
tion, litterfall, and light capture. We note that identi-
fying relevant traits is important, but models must
apply these traits in a robust numerical framework
that allows for the effects of these traits to be expressed
in plant and microbial function (Tang and Riley
2018). Our descriptions here are derived from pro-
cesses included in several existing models (e.g. ecosys,
ED2 (Medvigy et al 2019)).

5.5.1.1. Leaf mass: area ratio (LMA)
Leaf mass per area (LMA) is an emergent PFT prop-
erty arising from changes in leaf area vs changes in
leaf mass during leaf growth. To represent PFT com-
petition for light, vertical profiles of canopy leaf area
for each PFT need to be calculated, preferably from
plant nonstructural C, N, and P allocation to each
organ. A tractable approach to prognose direct and
diffuse irradiance interception is to aggregate PFT leaf
areas in each canopy layer for each model time step
(Grant et al 2019b,Medvigy et al 2019). An important
trait in this regard is the relationship between changes
in leaf area and changes in leaf mass. For example,
needleleaf PFTs have greater LMA than do broadleaf
PFTs (Wright et al 2004, Serbin et al 2019). Models
should represent traits that control leaf morphology
and phenology to accurately simulate canopy light
interception and thus PFT competition for light.

5.5.1.2. Vertical growth
PFTs differ in their allocation to vertical growth,
and these distinctions are needed to represent the
competitive light environment (Fisher et al 2018).
For example, tall woody plants often have a larger
investment in vertical growth per mass allocated than
low-lying vegetation (Klein and Hoch 2015). Ver-
tical biomass accumulation also raises maintenance
respiration requirements, gradually reducing respir-
ation available for growth (Ryan and Waring 1992).
Higher vertical growth of shrubs, and longer sheaths
or petioles and internodes in graminoids and forbs
may enable these PFTs to gradually dominate bry-
ophytes (Elmendorf et al 2012a). Therefore, mod-
els should include traits that control mechanisms
of belowground and aboveground resource alloca-
tion and vertical elongation to accurately model PFT
height and thus competition for light.

5.5.1.3. Leaf N and P contents
Needleleaf vs broadleaf shrubs have smaller leaf
structural N:C and P:C ratios (Wright et al 2004,
Knyazikhin et al 2013), requiring a lower para-
meter value for maximum leaf structural N:C and
P:C ratios. This lower value is associated with the
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lower parameter value for leaf area growth vs leaf
mass growth that causes larger LMA, as observed
in the meta-analysis by Wright et al (2004). Des-
pite larger needleleaf LMA, lower structural N:C and
P:C ratios reduce their N and P densities per unit
ground area relative to those of deciduous shrubs and
herbaceous plants, reducing their ability to develop
rapid photosynthetic rates under favorable growing
conditions (Aerts 1995, Walker et al 2014). Con-
sequently needleleaf shrubs are less competitive in
warmer climates in which rapid photosynthetic rates
are sustained by more rapid nutrient mineraliza-
tion and uptake in warmer soils. Therefore, models
should include PFT traits that control leaf nutrient
concentrations, demand, and rates of uptake to accur-
ately represent photosynthetic and respiration rates.

5.5.1.4. Leaf photosynthetic and respiration rates
Leaf carboxylation rates are driven by light and dark
reactions that depend on specific activities and sur-
ficial densities of rubisco and chlorophyll (Farquhar
et al 1980). Models represent these rates in differ-
ent ways. In ecosys, e.g. specific activities of rubisco
and chlorophyll are calculated from maximum val-
ues which can be reduced using prognosed nonstruc-
tural N:C and P:C ratios (Grant et al 2017b). Inform-
ation on these maximum activities of rubisco and
chlorophyll, their sensitivity to stoichiometry, and
how they vary across PFTs are therefore important
(e.g. Farquhar et al 1980b). Leaf maintenance respir-
ation is affected by leaf N content, and leaf growth
respiration is driven by nonstructural C, N, and P,
so that PFTs with higher leaf N content have higher
leaf respiration rates (Wright et al 2004, Walker et al
2014). Similarly, stem and root maintenance respira-
tion are affected by stem and root N contents, impos-
ing a greatermaintenance respiration requirement on
PFTswith large stems and roots (Stockfors and Linder
1998). Given the dynamic nature of plant organ stoi-
chiometry, models should prognose dynamic struc-
tural and nonstructural C:N:P ratios using CO2 fixa-
tion, root N and P uptake, and allocation within the
plant. In this context, traits of rubisco and chloro-
phyll densities and structural stoichiometry are also
needed.

5.5.1.5. Leaf lifespan and turnover
Litterfall allows each PFT to carry only the leaf mass
maintainable under the environmental conditions in
which it is growing (Reich et al 1997). For instance,
in ecosys leaf litterfall may occur whenever require-
ments for maintenance respiration exceed respira-
tion of nonstructural carbon (Grant et al 2019a). In
deciduous PFTs, models should also consider phen-
ologically driven litterfall (Grant et al 2009, Grant
et al 2012a, Oberbauer et al 2013), although drivers
that trigger leaf emergence and leaf senescence in
tundra ecosystems remain uncertain (Myers-Smith
et al 2019b). Models should also represent the greater

nutrient conservation of evergreen PFTs, which bene-
fits them in nutrient limited environments such as the
tundra (Aerts 1995). In general, models should rep-
resent traits that control internal carbon and nutrient
cycling and retention, and litterfall.

5.5.1.6. Leaf clumping
Models should consider PFT variation in leaf clump-
ing, since it is important in canopy radiation cap-
ture (Jiao et al 2018). Needleleaf PFTs generally have
lower clumping indices (greater self-shading) than do
broadleaf PFTs (He et al 2016). These indices determ-
ine the fraction of leaf area index exposed to dir-
ect and diffuse irradiance by each PFT in each can-
opy layer and hence relative dominance of taller over
shorter canopies.

5.5.1.7. Root growth
Models should represent PFT-specific dynamic root
length and density since these traits affect nutri-
ent and water uptake (Grant 1993, Zhu et al 2016).
PFTs with large populations and hence small indi-
vidual size (e.g. bryophytes) have smaller primary
root extension and hence more shallow root systems,
while PFTs with small populations and hence larger
individual size (e.g. shrubs) have greater primary root
extension and hence deeper root systems, although
the depth may be constrained by permafrost. Deeper
root profiles improve competitive access to deeper
water and nutrients, but may reduce root density at
shallower depths, reducing competitive access to shal-
lower water and nutrients (Schimel et al 1996, Wang
et al 2018, Hewitt et al 2019). These differences in
root profiles affect competition for soil water and
nutrients among shallow- vs deep-rooted PFTs.Mod-
els should represent traits that control root morpho-
logy, phenology, and growth to accurately predict
root length, radius, and density and thus nutrient and
water uptakes.

5.5.1.8. Root hydraulic resistance
Root axial resistivity governs water uptake along soil–
root–canopy hydraulic gradients (Welegedara et al
2020). Needleleaf PFTs have higher root axial resistiv-
ity than deciduous PFTs (Larcher 2003, Maherali et al
2004, Anderegg 2015). Higher root axial resistivity
results in slower water uptake and hence lower can-
opy water potential and stomatal conductance, while
lower stem and root axial resistivities improve water
uptake, and thus increase water potential and sto-
matal conductance. Slower water uptake conserves
water, providing protection from cavitation, making
ecosystems dominated by needleleaf PFTs less sensit-
ive to short-term droughts (Wang et al 2002, Grant
et al 2009), but may disadvantage needleleaf PFTs in
warmer climates with greater transpiration demands
and hence more rapid water uptake needs. Increased
stem resistance forces lower canopy water potentials
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and hence stomatal conductance, reducing CO2 fixa-
tion and hence dominance (Grant et al 2017). Thus,
traits that affect root and stem hydraulic resistances
need to be considered in models to simulate differ-
ences in rates of water uptakes among PFTs.

5.5.1.9. Root porosity
PFTs adapted to saturated soil moisture conditions,
such as sedges, have larger aerenchyma and hence
can transfer O2 more rapidly to root respiration sites
when gaseous O2 diffusion through soil is limited by
low air-filled porosity (Grant 1993, Pan et al 2019,
2020). Therefore, larger aerenchyma fractions allow
for increased root respiration, growth, and nutrient
and water uptake under saturated conditions (Grant
et al 2012b, Pan et al 2019, 2020). Smaller root poros-
ity fractions of shrubs therefore reduce their compet-
itive ability in wetlands. Thus, models need to repres-
ent PFT-specific root porosity traits.

5.5.2. Research gap: model representation of tundra
PFTs
To capture how shrub expansion may influence
other tundra PFTs and ecosystem function, mod-
els of shrub expansion need to consider shrubs and
other vascular and non-vascular vegetation. Early
PFT classifications, such as those proposed by Chapin
et al (1996a), recommend the use of several tundra-
specific PFTs, including deciduous shrubs, ever-
green shrubs, sedges, grasses, forbs, Sphagnummoss,
non-Sphagnum moss, and lichens. Models that have
included PFT groupings similar to those recommen-
ded by Chapin et al (1996a) have simulated how pro-
jected shrub expansion may influence other PFTs.
For example, shrub expansion reduced moss growth
due to shading effects (Epstein et al 2000, 2001,
Mekonnen et al 2018b), which then has implications
for changes in the soil thermal regime and active layer
thickness (Lawrence and Swenson 2011). However,
these PFT groupings were shown to explain variation
in traits related to resource-economic but not size-
related traits (Wullschleger et al 2014, Fisher et al
2018), suggesting the need for a new classification and
representation of tundra plants in land models.

Models may also need to consider several types of
deciduous shrubs, including tall shrubs such as alder
(e.g. A. viridis spp.), birch (Betula spp.) and willow
(e.g. Salix spp.). For instance, tall willow and alder
shrubs, typically found along hillslopes and stream
beds, may trap more snow, resulting in the devel-
opment of taliks (perennially thawed ground within
permafrost; Pomeroy et al 2006). Tall alder shrubs
may also decrease diversity of other tundra plant
species through modification of the local environ-
ment by capturing snow, high rates of transpiration,
and nitrogen fixation (Wallace and Baltzer 2020).
The inclusion of birch vs willow shrubs is import-
ant since it has implications for animal habitat of
some large herbivores. For example, in tundra, moose

preferentially browse willow shrubs, and in particu-
lar, in winter, browse willow shrubs taller than 1 m
since these taller willows typically remain exposed
above the snow (Tape et al 2016). Other animals (e.g.
reindeer) also feed on non-vascular vegetation, affect-
ing competitions with shrubs.

5.5.3. Model representation of tundra topography,
hydrology, and thermal dynamics, and snow–shrub
interactions.
Most land models (including those in ESMs) do
not account for the underlying mechanisms for
three-dimensional landscape hydrological dynam-
ics; fine-spatial scale topographically driven surface
and sub-surface nutrients and energy flows; ther-
mokarst and subsidence (Nelson et al 2001, Turetsky
et al 2019); and the effects of microtopographic
and sub-gridcell scale soil heterogeneity (Grant et al
2017c, Bisht et al 2018). As a result, widely observed
shrub growth and expansion hotspots (e.g. hillslopes
and terraces (Naito and Cairns 2011, Ropars and
Boudreau 2012)) may not be accurately represented.
Therefore, land models need to account for coupling
of surface and sub-surface lateral interconnectivity in
topographically diverse tundra landscapes to predict
current and future distributions of shrubs across the
Arctic.

To accurately simulate seasonal nutrient and
energy cycles, landmodels should also account for the
effects of topography and wind on snowpack redis-
tributions across a landscape (Essery and Pomeroy
2004). Multi-scale field natural and manipulation
(e.g. snow-fence) experiments (Wipf and Rixen 2010)
are required to better understand, inform, and test
models regarding the impacts of shrubs on snow
accumulation, albedo, timing of snowmelt, pheno-
logy, soil temperature, and litter decomposition rates.
Models should also represent processes following
wildfire such as effects on permafrost thaw and ther-
mokarst development (Schuur et al 2007, Jones et al
2015) and its subsequent effects on soil moisture and
thermal regimes, nutrient cycling, recovery patterns,
and carbon cycling.

5.5.4. Development of synthesized observations for
model benchmarking
The wide range of processes affecting shrub dynamics
(figure 1) imply that multiple combinations of pro-
cesses could lead to comparable (i.e. within observa-
tional error) emergent shrub biomass, complicating
model evaluation. Therefore, observations for model
testing are needed to test individual processes in addi-
tion to emergent responses. We suggest the mech-
anisms discussed in section 3 be used to develop
individual-process and emergent benchmarks. The
role of nutrient dynamics or warming can be quan-
tified using fertilization experiments (e.g. Shaver
and Chapin 1980, Mack et al 2004, Bouskill et al
2014). Plant–plant competition benchmarks can be
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developed from exclusion experiments (e.g. Hobbie
et al 1999, Rixen and Mulder 2009). Hydrological
benchmarks can be developed from rain exclusion or
watering experiments (e.g. Keuper et al 2012). Dis-
turbance benchmarks can be developed from inten-
tional manipulations (e.g. Schadel et al 2018) or nat-
ural disturbances (e.g. Mack et al 2011, Iwahana et al
2016). Further, since short- and long-term ecosys-
tem responses can differ substantially (Bouskill et al
2020), we advocate for model benchmarks that expli-
citly account for time. Finally, valuable benchmarks
include those that consider perturbation responses,
either to experimental manipulation or other for-
cing changes (e.g. precipitation, fire). Benchmarking
can augment the traditional approach of evaluating a
model against observations of an emergent response
that depends on many competing, and difficult to
measure, factors (Collier et al 2018).

6. Conclusions

Rapid climate warming is causing substantial changes
in ecosystem structure and function of northern eco-
systems. Results from in-situ observations, warming
experiments, and remote-sensing vegetation indices
have shown that woody shrubs are expanding across
the circumpolar Arctic (Cornelissen et al 2001, Tape
et al 2006, Myers-Smith et al 2011, Elmendorf et al
2012b, García Criado et al 2020). Modeling studies
also show that this recent shrub expansion will con-
tinue under the projected warmer Arctic (Euskirchen
et al 2009, Mekonnen et al 2018b). A shift in veget-
ation composition that results in a woodier Arctic
will alter the ecosystem carbon balance by affecting
a complex set of soil–plant–atmosphere interactions
(Elmendorf et al 2012a, Loranty and Goetz 2012,
Mack et al 2004, Weintraub and Schimel 2005, Parker
et al 2021). Much of the tundra is underlain by per-
mafrost that stores large amounts of frozen carbon
(Brown and Romanovsky 2008, IPCC 2013, Hugelius
et al 2020, Turetsky et al 2020). Shrub expansion
can alter the seasonal surface energy balances lead-
ing to deeper active layers and thus expose this per-
mafrost carbon to microbial decomposition (Blok
et al 2010, Lawrence and Swenson 2011, Nauta et al
2015). These processes have a wide range of implica-
tions for net ecosystem carbon exchange and associ-
ated feedback to the climate system (Blok et al 2010,
Bonfils et al 2012, Loranty and Goetz 2012, Lafleur
and Humphreys 2018).

Our review indicates that the dominant con-
trolling mechanisms for shrub biomass increases
include: (a) climate warming, (b) soil moisture and
snow dynamics, (c) topography, (d) permafrost thaw,
(e) nutrient dynamics, (f) disturbance (e.g. wild-
fire), and (g) herbivory and grazing, and interactions
among these factors. We showed that the mechan-
isms through which Arctic shrub expansion alters
ecosystem carbon balance are complex and involve

interactions among several biotic and abiotic factors
(figure 1) such as warming, surface energy bal-
ances, snow–shrub interactions, permafrost degrad-
ation, litter inputs, and nutrient cycling (Cornelissen
et al 2001, Sturm et al 2005a,Myers-Smith et al 2011a,
Elmendorf et al 2012a, DeMarco et al 2014a, Martin
et al 2017). Our review motivated our recommend-
ations for model mechanisms required to accurately
predict future shrub expansion rates. Although there
have been a number of field experiments to character-
ize the impacts of climatic drivers (e.g. air- and soil-
warming experiments) on shrub expansion, warming
often covaries with soilmoisture, snowdynamics, act-
ive layer depth, nutrient availability, and other envir-
onmental controls that directly or indirectly affect
shrub growth and establishment (Elmendorf et al
2012a, Martin et al 2017). Thus, multifactorial field
experiments and multi-scale observations, designed
to disentangle the relative impacts of multiple drivers
and their interactions, are needed to better under-
stand the mechanisms of tundra shrub expansion
under changing climate. Model process represent-
ations should be informed by and tested against
field experiments and observational studies spanning
multi-spatiotemporal scales.
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