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RESEARCH ARTICLE

A novel Filamentous Flower mutant suppresses

brevipedicellus developmental defects and
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Abstract

BREVIPEDICELLUS (BP) encodes a class-I KNOTTED1-like homeobox (KNOX) transcrip-

tion factor that plays a critical role in conditioning a replication competent state in the apical

meristem, and it also governs growth and cellular differentiation in internodes and pedicels.

To search for factors that modify BP signaling, we conducted a suppressor screen on bp er

(erecta) plants and identified a mutant that ameliorates many of the pleiotropic defects of the

parent line. Map based cloning and complementation studies revealed that the defect lies in

the FILAMENTOUS FLOWER (FIL) gene, a member of the YABBY family of transcriptional

regulators that contribute to meristem organization and function, phyllotaxy, leaf and floral

organ growth and polarity, and are also known to repress KNOX gene expression. Genetic

and cytological analyses of the fil-10 suppressor line indicate that the role of FIL in promoting

growth is independent of its previously characterized influences on meristem identity and

lateral organ polarity, and likely occurs non-cell-autonomously from superior floral organs.

Transcription profiling of inflorescences revealed that FIL downregulates numerous tran-

scription factors which in turn may subordinately regulate inflorescence architecture. In

addition, FIL, directly or indirectly, activates over a dozen genes involved in glucosinolate

production in part by activating MYB28, a known activator of many aliphatic glucosinolate

biosynthesis genes. In the bp er fil-10 suppressor mutant background, enhanced expression

of CYP71A13, AMIDASE1 (AMI) and NITRILASE genes suggest that auxin levels can be

modulated by shunting glucosinolate metabolites into the IAA biosynthetic pathway, and

increased IAA levels in the bp er fil-10 suppressor accompany enhanced internode and ped-

icel elongation. We propose that FIL acts to oppose KNOX1 gene function through a com-

plex regulatory network that involves changes in secondary metabolites and auxin.
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Introduction

Growth and development of terrestrial plants is guided by events occurring at meristems,

zones where pluripotent stem cells perpetuate themselves and generate raw material for organ

production. For aerial development, the shoot apical meristem (SAM) elaborates leaf, stem

and flower anlagen at specific regions depending on complex temporal and spatial interactions

between proteins, microRNAs and hormones [1,2]. The SAM shares common mechanisms

of regulation with floral meristems, which form during the reproductive phase to generate

sepals, petals, stamens and carpels, with an important difference being that floral meristems

are determinate.

Genes affecting SAM and floral meristem patterning, maintenance, and function have

been identified by both forward and reverse genetic screens. One family of genes that plays a

prominent role in promoting meristem function throughout the plant life cycle is the class

I=KNOTTED-like homeobox (KNOX1) genes, which were named for the founding member,

KNOTTED1 (KN1) from maize (reviewed in [3]). Leaf blades of the kn1 dominant mutant dis-

play knots of undifferentiated cells around lateral veins due to ectopic expression of the KN1
gene product [4,5]. In numerous monocot and dicot species, the expression of a variety of

KNOX1 proteins in leaves conditions the production of ectopic meristems, implicating the fac-

tors as critical regulators of meristem function in a diverse array of plants [6–8].

In addition to their role in meristems, KNOX1 genes promote growth in aerial organs such

as leaves, flowers and stems. For example, compound leaves of tomato are observed to branch

and form supercompound leaves if either the LeT6 KNOX gene or the maize KN1 gene is

ectopically expressed [9]. In tobacco, maize and Arabidopsis, ectopic expression of KNOX1
genes also results in alterations in leaf architecture [6, 8–13]. In rice and Arabidopsis, KNOX1
genes are known to promote both longitudinal and radial growth of stems [14–16].

A large number of factors interact with KNOX1 genes to influence meristem and organ

growth and morphology (reviewed in [17]). KNOX1 proteins promote cytokinin biosynthesis

to sponsor meristematic activity and cell division [18–20] and conversely, repress gibberellin

function in meristems to support meristem maintenance [12, 21–22]. In many cases, KNOX1
genes are expressed in meristems but are downregulated as lateral organs are initiated, but

they can be reactivated in compound leaf species [23]. Families of genes that encode the

adaxializing factors ASYMMETRIC LEAVES1 (AS1) and ASYMMETRIC LEAVES2 (AS2)
in Arabidopsis [24–26], PHANTASTICA in Antirhinnum and other species [27–28], and

ROUGHSHEATH2 in maize [29–30] repress KNOX genes as well as genes encoding some of

the abaxializing factors of the YABBY and KANADI families in leaf primordia (reviewed in

[31]). In addition, some YABBY proteins play roles in negatively regulating KNOX genes in lat-

eral organs [32]. Collectively, these antagonistic interactions assist in establishing distinct

domains of gene expression that promote proper lateral organ polarity. In contrast to these

well-established examples of hierarchical controls that pattern leaves, little is known of the fac-

tors that act coordinately with KNOX1 genes in stems to control morphogenesis.

We have previously characterized the expression and function of the Arabidopsis KNOX1
gene BREVIPEDICELLUS (BP), which is required to promote elongation and radial expan-

sion of inflorescence stems and pedicels, short stems that orient flowers and siliques at an

upright angle along inflorescences [15]. BP acts in a partially redundant manner with the

ERECTA (ER) receptor protein kinase, as double mutant bp er pedicels develop downward

bends that are due to growth suppression on the abaxial side. Pedicel abnormalities of the bp
er mutant are spatially linked to the patterning of underlying vascular bundles that are con-

tinuous with associated floral organs, and nodal identity is translated downwards into sub-

tending internodes [33]. This stimulated the hypothesis that BP and ER promote growth
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along pedicels and internodes at least in part by counteracting growth-repressive signals that

originate from superior organs and are borne by the vasculature. To explore this further, we

conducted a suppressor screen of bp er, and identified a point mutation in the FILAMEN-
TOUS FLOWER (FIL) gene that suppresses many of the bp er pleiotropic phenotypes. FIL is a

member of the YABBY family of transcriptional regulators, which play roles in leaf and floral

organ polarity, organ growth, phyllotaxy and shoot apical meristem organization and func-

tion [34–43]. Our analyses indicate that the effect of the fil-10 suppressor mutation on pedi-

cel development is also due to mobile signaling from the flower, and is not linked to the role

of FIL in promoting abaxial organ fate. Subsequent microarray analyses revealed that numer-

ous genes encoding glucosinolate (GSL) biosynthetic enzymes are repressed in the fil-10 sup-

pressor, and the levels of many glucosinolate metabolites are significantly reduced. These

changes in GSL levels are correlated with elevated auxin levels that likely influence inflores-

cence architecture.

Materials and methods

Biological materials

Unless otherwise stated the parent background was bp-2 er, for which extensive phenotypic

and molecular analyses have been conducted [15, 33]. The fil-2, fil-3, fil-4 and fil-5 alleles were

obtained from Dr. Gary Drews. The mutant alleles for ap1-1 (CS28), as2-101 (CS16274), and

lug-1 (CS3081) were obtained from the Arabidopsis Biological Resource Center. Wildtype

Landsberg Lan (La-1) was obtained from Dr. Detlef Weigel. Seeds of kan1-2, kan2-1, las-11
and yab3-2 mutants were obtained from Dr. John Bowman. Double and higher order mutants

were constructed by crosses and validated by either visual phenotypes conferred by the

mutant, and/or molecular genotyping (CAPS analysis where possible; direct sequencing for

others as is described in S1 Table).

EMS mutagenesis and plant growth conditions

Approximately 10,000 bp-2 er seeds were placed in 50ml of 0.2% EMS (Aldrich) for 16h. Seeds

were washed extensively with water and planted in 20cm plastic pots in Premier Promix PGX

at a density of approximately 200 seeds per pot. M1 plants were grown under natural lighting

conditions in a greenhouse. M2 seeds were regrown in Conviron growth chambers at 22˚C

under fluorescent lighting (125μE/m2) with a 16hr day:8hr night photoperiod.

Microscopy and morphometric analyses

Light, SEM and fluorescence microscopy were carried out as previously described [33]. Mor-

phometric measurements were conducted with mature plants and as previously described

[33]. For pedicel measurements, samples were taken from the lower nodes of the plant to

ensure the acropetal gradient of development was not a complicating issue. In situ hybridiza-

tions were performed as described in Lincoln et al. [44]. For confocal microscopy of

FIL::GFP plants, buds of 0.3 to 0.5mm were dissected and embedded in 4% agarose. The

blocks were affixed to a sectioning plate with superglue and 80-120um sections cut using a

Leica VT1000S vibratome. Sections were mounted in cold water and imaged using a Zeiss

510 Meta laser scanning confocal microscope with an excitation wavelength of 488nm and a

pinhole adjustment of 1.74–1.81 Airy units. An emission bandpass filter of 510-530nm was

used to collect GFP fluorescence. Images were edited using LSM image Browser software,

version 3 (Zeiss).
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Mapping of the fil-10 suppressor mutant

bp er fil-10, backcrossed twice to bp er, was crossed with Columbia harboring a mutation in the

ER gene (Cer) to establish a mapping population. DNA from F2 plants displaying a bp er fil-10
or er fil-10 phenotype was used for simple sequence length polymorphisms (SSLPs) or dCAPS

analyses [45]. For additional experiments involving microarray analysis and glucosinolate/

auxin profiling, two additional backcrosses to the bp er parent line were performed.

Identification of the lesion in fil-10

The FIL gene was amplified by PCR from bp er fil-10 and bp er genomic DNA using FIL FOR:

5’ AAAAGATGTCTATGTCGTCTATGTCCTCC3’ and FIL BACK: 5’ GAATCGGTTATATGCG
GATGGGACTC3’ primers. PCR products were gel purified (Qiagen) and both strands were

sequenced using the FIL F/B primers (S1 Table). To validate sequencing results, the procedure

was repeated on a second series of plants, and gave identical results.

Transgenic construction and analysis

To examine FIL protein localization, a GFP tagged version was generated by amplifying the

FIL promoter (2.7kb) and coding region with the primers: FIL/GFP FOR 5’TCGGAGCTCGA
TTCTTCATATGTTAAGTTATGCTGA 3’ and FIL/GFP BACK 5’TAACCGGTGCAGGAGCGTA
GAACCCTTCTTTCATCACC3’ using Phusion (New England Biolabs) polymerase. These

primers engineer 5’ Sac I and 3’ Age I sites to facilitate cloning into pEGAD. Sequencing con-

firmed an in-frame fusion of FIL with GFP, where the last eight amino acids of FIL are missing.

The construct was mobilized into Agrobacterium strain GV3101, and used to transform bp fil-
10 er plants via the floral dip procedure [46]. Transgenics were selected on 0.5X MS media

containing 10μg/ml BASTA (Crescent Chemicals).

Microarray analyses and QRT-PCR

Inflorescences from five-week old plants were used as a source of total RNA for both microar-

ray analyses and QRT-PCR. Older flowers were culled from the periphery of the inflorescence

such that no buds of later than stage 13 (bud opening defined by Smyth et al. [47] were used.

For microarray analysis, total RNA was prepared from inflorescences of bp er and bp er fil-10
plants in triplicate, using the Qiagen RNeasy system. RNA was reverse transcribed into cDNA

pools using oligo dT, and the cDNA was amplified by in vitro transcription with biotinylated

CTP to generate probes. Affymetrix ATH1 arrays were employed, and hybridization and wash-

ing conditions were carried out as described by the manufacturer. Detection/quantitation was

facilitated by using an Affymetrix GeneChip scanner 3000. Raw data was subjected to GCOS/

MAS normalization and a linear scaling factor was applied to set the TGT value to 500. The list

was culled by discarding genes for which values were low and hence were called ‘absent’. Lists

of UP/DOWN regulated genes were then obtained by sorting the Excel spreadsheet. Individual

values from the triplicate samples were then examined and genes were removed from the list if

the average value was skewed by an anomalous signal. Cutoff values were arbitrarily set at 2.5

fold and 1.9 fold to generate short and extended lists of genes influenced by FIL. Raw data and

additional information can be accessed through the GEO accession number GSE86643. Analy-

ses are presented in S2 and S3 Tables.

For QRT-PCR, total RNA was prepared as described above, and on-column DNAse diges-

tion was undertaken, using RNAse free DNAse I (Invitrogen). cDNA pools were generated by

reverse transcription of 1ug of total RNA, employing oligo dT as a primer and Superscript III

reverse transcriptase (Invitrogen). An MJ Research instrument was used to amplify cDNAs to
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validate the microarray results and to test other putative target genes, using Sensifast SYBR

mix (Bioline). Primers were designed by employing the open source Primer3 software. Primer

efficiency tests were performed on dilutions of cDNA, and melting curves and gel analysis

used to confirm primer specificity. Several potential reference genes were tested with both bp
er and bp er fil cDNAs to determine the most reliable set. PP2a (At4g15415) and ACT7

(At5g09810) exhibited minimal variation and their primer efficiencies (E) and ΔCT values

were averaged for normalization of target gene data. The relative expression ratio was calcu-

lated as described by Pfaffl [48], and pairwise type three Student’s t-tests conducted by trans-

forming ΔCT values to linear terms by the equation (1+E)− ΔCT as described by Livak and

Schmittgen [49]. Two independent biological experiments that employed three to four techni-

cal replicates were carried out for each primer set. The independent experiment is summarized

in S1 Fig. A list of primers is provided in S1 Table.

Glucosinolate and auxin profiling

Inflorescences were dissected from five week old plants, their fresh weights recorded, and then

placed in either 100% methanol (for glucosinolate profiling), or a solution of 80% methanol,

1% acetic acid (for IAA determination). Glucosinolate metabolites were identified and quanti-

tated by HPLC as described by Kliebenstein et al. [50], and IAA levels were determined as

described by Stokes et al. [51]. For IAA measurements, two independent experiments were

carried out and revealed similar trends, and three experiments were conducted to profile glu-

cosinolate metabolites, which also showed similar trends.

DR5::GUS analysis in bp er and bp er fil-10 genetic backgrounds

The DR5::GUS cassette was resected from a pBIN19 derivative with Sal I and EcoRI, and

recloned into the Xho I/ EcoRI sites of pEGAD-link in order to use BASTA as a selectable

marker. Following validation of primary transformants, T2 seeds were surface sterilized and

germinated on media containing 0.5XMS salts, 5mM MES pH 5.7, 1% sucrose, and 10μg/ml

BASTA. Ten day old seedlings were fixed in 90% acetone for 30 minutes on ice, followed by

one wash each in cold water and x-gluc buffer (50mM phosphate buffer, pH7.2, 0.2% Triton

X-100, 2mM potassium ferrocyanide, 2mM potassium ferricyanide). X-gluc buffer containing

1mM x-gluc (BioShop Canada) was added and seedlings were incubated in the dark at room

temperature for 8 hours, then fixed/decolorized with an ethanol series. The alcohol was

exchanged for 8:2:1 chloral hydrate:glycerol:water and following overnight incubation at 4˚C,

slides of individual seedlings were prepared, coverslipped, and photographed using a Nikon

SMZ1500 stereomicroscope with a digital imaging system (Nikon Digital Sight D5 Fi1). To

investigate DR5 copy number in the transgenic lines, multiplex PCR was employed using the

primers EGADjunctionFOR/GUS genotype back to screen for DR5::GUS insertions, and

AMIgenotypeFOR/AMIgenotypeBACK as a single copy gene control. Primer sequences and

PCR conditions are given in S1 Table.

Results

Identification of fil-10 as a suppressor of bp er phenotypes

Wild-type Arabidopsis pedicels elongate as straight stems to support flowers and siliques at an

upright angle along inflorescence axes. In bp er mutants, pedicel elongation is compromised

and pedicels acquire bends that orient flowers at a downward angle (Fig 1A). To identify other

genes controlling pedicel development, bp er seeds were mutagenized with EMS, and an M2

plant with elongated, perpendicular pedicels was identified (Fig 1B) and backcrossed to bp er.

Filamentous Flower inflorescence transcriptome
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Fig 1. Suppression of bp er pedicel phenotypes by the fil-10 mutation. A bp er plant showing short

pedicels that bend downwards. (B) bp er fil-10 plant exhibiting enhanced internode growth and elongated

pedicels perpendicular to the stem axis. The acute pedicel angle defect is partially ameliorated. (C) bp er

inflorescence cluster with closed floral buds. (D) Young bp er fil-10 flowers with visible inner whorl organs due

to aberrant sepal development. (E) Hand section of a bp er pedicel. Note the lack of chlorenchyma

development on the abaxial side (arrow). (F) Hand section of a bp er fil-10 pedicel, revealing a continuous ring

of chlorenchyma tissue. (G) The bp er pedicels display files of short cells on their abaxial sides and

differentiation of guard cells is repressed. (H) In bp er fil-10, the pedicel stripe is confined to a narrow band of

stomata free tissue on lateral sides, but abaxial cells are larger and assume the irregular shapes found in wild

type. Differentiation of stomata is also observed (arrows) (I-K) Receptacles of bp er fil-10 (I), fil-10 er (J) and

Ler (K). Note expansion in fil-10 er and Ler but lack of enlargement in bp er fil-10 (arrow). Bars in panels G and

H are 50 μM.

https://doi.org/10.1371/journal.pone.0177045.g001
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F2 plants segregated the suppressed phenotype in a 3:1 ratio, demonstrating that the novel phe-

notype is due to a recessive mutation at a single locus. Examination of unopened flowers with

a dissecting microscope revealed narrow sepals that failed to fully conceal developing inner

reproductive organs (Fig 1C and 1D). Further genetic and molecular characterization (see

below) demonstrated allelism between the suppressor mutant and the FILAMENTOUS
FLOWER (FIL) gene, and hereafter we refer to the mutant as fil-10.

Light microscopy of hand sections of pedicels showed that, in contrast to the disruptions of

chlorenchyma tissue associated with the abaxial side of bp er pedicels (Fig 1E; [33]), bp er fil-10
pedicels displayed a continuous ring of chlorenchyma (Fig 1F). Similarly, while the epidermis

of bp er pedicels exhibits files of short cells that lack stomata on abaxial and lateral sides (Fig

1G), this feature is strongly suppressed in bp er fil-10, which exhibits a relatively indistinct

stripe of undifferentiated cells along the lateral sides, and a more wild-type array of irregularly

shaped cells on other sides. In contrast to the bp er line, the pedicels of the suppressor line also

differentiate guard cells on all sides (Fig 1H). Our previous work demonstrated that BP plays a

role in receptacle enlargement as gauged by a constriction of tissue at the distal end of the pedi-

cel in bp mutants [33]. However, unlike the suppression of other defects, the bp er fil-10 recep-

tacles did not enlarge as they did the fil-10 er or Ler plants (Fig 1I–1K). Receptacle growth is

enhanced by overexpression of BP [33] and our results indicate that the mechanism control-

ling pedicel morphogenesis is genetically separable from that regulating receptacle growth.

While FIL contributes to growth and patterning of stems, pedicels and floral organs, it appar-

ently does not play a role in receptacle enlargement.

Developmental analyses of bp er fil-10 plants showed that bp er pedicel phenotypes are

increasingly suppressed as development progresses (2.5mm ± 0.1mm pedicel length (pl);

108˚ ± 2˚ pedicel angle (pa) for flowers 1–5 and 2.9mm ± 0.1mm pl; 98˚ ± 2˚ pa for flowers

6–10). To examine interactions between fil-10, bp and er, height, pedicel length and pedicel

projection angle comparisons were made between all possible genotypes. Relative to the base-

line genotype Landsberg, mutations in both BP and ER result in compromised internode elon-

gation, while fil-10 enhances growth (Fig 2A). These relationships are supported by the double

mutant phenotypes in which either bp or er in combination with fil-10 conditions less robust

growth than fil-10 alone. The effect on plant height is less pronounced when bp er is compared

with the triple bp er fil mutant. Pedicel growth is also affected by the three genes in a manner

similar to internode elongation (Fig 2B). The bp mutation significantly alters the pedicel angle

and the angle becomes more pronounced by combining bp with er. The fil-10 mutation sup-

presses this effect, giving rise to perpendicular pedicels in the triple mutant (Fig 2C). In sum-

mary, the fil-10 suppressor partially ameliorates the bp er defects in internode and pedicel

elongation, and conditions differential growth and development of pedicels to alter plant

architecture.

Characterization of fil-10 floral phenotypes

The fil-10 suppressor line exhibits reduced fecundity, producing short siliques with fewer via-

ble seeds that may be due to reduced levels or viability of pollen. We assessed female viability

by crossing Ler pollen into fil-10 er gynoecia. Siliques elongated and set seed, indicating that

either an anther or male gametophyte defect underlies reduced fil-10 fertility. To distinguish

between sporophytic and gametophytic possibilities, fil-10/+ er pollen was crossed into Ler
gynoecia. The F1 plants appeared normal and were fully fertile. Genotyping revealed that 27/

62 = 43.5% of plants were heterozygous for fil-10, consistent with the 50% value expected if fil-
10 and wild-type pollen grains are equally viable. Thus, reduced seed set is due to a sporophytic

defect probably related to low pollen yield.
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Fig 2. Morphometric analyses and differential effects of mutations in bp, er, and/or fil. Crosses were

used to generate all combinations of single, double and triple mutants in a Landsberg (Lan) background. (A)

Plant height was measured from the rosette to the inflorescence tip in six week old plants. (B-C) Mature,

senescing plants were used to measure pedicel length (B) and angle (C). The error bars represent standard

error of the mean. Data were compared by one way ANOVA using Tukey’s Honest Significant Differences

method. Letters above the bars indicate significance categories where p< 0.01. For all measurements,

n = 15–150. Similar trends were observed in two independent experiments.

https://doi.org/10.1371/journal.pone.0177045.g002
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The fil-10 mutation also conditions floral morphological phenotypes when combined with

er, but these are typically much less severe than those that have been reported for strong fil
alleles [34–36,42]. fil-10 er floral meristems initiate normally and generally produce four sym-

metrically arranged sepals (Fig 3A) that do not elaborate bract-like organs. In accordance with

the phenotype of older flowers, the margins of young sepals are often separated by gaps that

expose inner whorl organs (Fig 3B). Partial sepal-to-carpel homeotic transformations occa-

sionally manifest as stigmatic tissue formed at the tips of medial first whorl organs (Fig 3C). In

other cases, first or third whorl organs develop as radial filaments (Fig 3D). In the fourth

whorl, gynoecia are often crooked or bent (Fig 3E), likely due to contact of the gynoecium tip

with the inner face of a sepal (Fig 3F) and protruding stylar tissue is observed on medial sides

(Fig 3G). We also examined the effect of a stronger fil allele in the bp er background. While the

fil-4 allele suppresses bp er in a similar fashion to fil-10 (Fig 4), bp er fil-4 plants display more

Fig 3. fil-10 conditions floral organ abnormalities. (A-G) fil-10 er flowers. (A) Early inflorescences showing

symmetrically located sepal primordia. (B) An early bud with a gap (arrow) between two sepals. (C) A flower

formed late in development with stigmatic tissue (arrow) on the tip of a sepal. (D) A flower with a third whorl

filament lacking an anther. (E) A gynoecium with a bend. (F) A gynoecium in the midst of bending due to

sustained contact with the inner face of a lateral sepal. (G) Medial region of a gynoecium showing a bulge of

style tissue (arrow) under the stigma. (H) fil-10 ap1-1 er flower showing transformation of medial sepals

(arrows) into carpelloid organs.

https://doi.org/10.1371/journal.pone.0177045.g003
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Fig 4. Mutations in FIL and LAS affect inflorescence architecture in a similar fashion. (A-C) bp er fil-4

plants showing elongated pedicels (A), upward-oriented floral buds with gaps between sepals (arrow; B) and

bends in pedicels at filamentous organs (C). (D) Locations of characterized mutations in the FIL gene. The

nature of each mutation is shown in parentheses: I = insertional mutant, S = splice junction mutant; the

asterisk represents a stop codon. (E-F) In situ hybridization with a FIL probe showing expression in sepal
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severe stem and floral phenotypes that include phyllotaxy defects, the reduced floral cluster

bearing type B flowers, and in many instances floral organ identity is severely compromised,

manifested as filamentous organs (see S2 Fig). These defects mimic those of strong fil alleles.

In summary, broad morphological defects in fil-10 er flowers support others’ findings that FIL
plays an important role as a general regulator of floral organogenesis [34–36, 42], but define

fil-10 as a weak allele that impinges upon both BP and ER signaling.

fil-10 does not influence floral meristem identity

Previously we demonstrated that reduced floral meristem identity in leafy (lfy) mutants sup-

presses bp er pedicel phenotypes [33]. Reduced floral fate results in increased numbers of

axillary stems and less prominent receptacles. Unlike lfy, our observations indicate that suppres-

sion of bp er pedicel phenotypes in fil-10 is not due to changes to floral identity. First, axillary

branch number is similar between bp fil-10 er (1.9 ± 0.2) and bp er (2.1 ± 0.1). Second, fil-10 and

fil-10 er receptacles enlarge (Fig 1J), but this feature is compromised when lfy is also mutant (in

bp er lfy-5 [33]). Third, we crossed bp er fil-10 to ap1-1 er to examine the effect of fil-10 in

another known floral identity mutant. Similar to the effect of lfy-5, ap1-1 suppressed the bp er
pedicel phenotypes, but we also observed a novel floral phenotype that is not present in ap1-1
or fil-10 plants. In bp fil-10 ap1-1 er and fil-10 ap1-1 er flowers, medial first whorl organs of all

flowers displayed carpel-like features that included stigmatic tissue at tips and along margins,

style-like tissue adjacent to margins, ovules along margins and an overall hooded morphology

(Fig 3H). Importantly, secondary flowers evident in axils of first-whorl organs in ap1-1 were

never observed in fil-10 backgrounds, suggesting that fil-10 flowers are fully determinate. Col-

lectively, these results indicate that fil-10 does not compromise floral identity as is the case for

stronger fil alleles [34, 36], (and S2 Fig). Thus, FIL may interact with BP and ER to influence flo-

ral architecture and pedicel growth downstream of floral meristem fate specification.

fil-10 does not impact pedicel development through its effect on organ

polarity

It is well established that FIL contributes to the emergence of organ polarity by specifying

abaxial identity of lateral organs [35]. To determine whether a reduction in abaxial organ iden-

tity contributes to suppression in bp er fil-10, we crossed bp er with kanadi-1 and kanadi-2,

which show abaxial-to-adaxial transformations in leaves and floral organs [38, 52–56]. We saw

no evidence of suppression of bp er pedicel phenotypes in bp-4 kan1-2 er, bp-4 kan2-1 er or bp-
4 kan1-2 kan2-1/+ er, suggesting that lateral organ polarity per se does not significantly influ-

ence pedicel morphology. Because the KAN genes are expressed in stem tissue where they play

a role in vascular patterning [55] we also tested the relationship between organ polarity and

pedicel development by removing the function of ASYMMETRIC LEAVES2 (AS2) from bp er
fil-10 plants. KAN exerts its function in part by repressing AS2 [57], an adaxial regulator that

is expressed in leaves and floral organs but not in internodes or pedicels [25, 58]. Because

removal of AS2 from an er background increases abaxial fate in lateral organs [58], we rea-

soned that this could counteract the loss of abaxial identity due to the fil-10 mutation,

primordia (central bud) and in floral organs of older, peripheral buds (E), and gynoecium valve expression in a

stage 9 pedicel (F). Note the absence of FIL expression in pedicel tissue (arrows) at stages that precede the

period of pedicel elongation [59]. (G-I) A collage of a stage 9 bud from a transgenic plant expressing a FILpro::

FIL::GFP transgene. The left panel shows FIL::GFP expression on the abaxial side of floral organs; the middle

panel is the chlorophyll autofluorescence (red channel) and the right panel is the merged image. (J) Mature

flower illustrating FIL::GFP in floral organs only. (K) The bp er las-11 triple mutant exhibits a phenotype nearly

identical to that of bp er fil-10.

https://doi.org/10.1371/journal.pone.0177045.g004
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phenocopying the bp er pedicel phenotypes. However, although quadruple bp er fil-10 as2-101
mutants gave rise to shorter pedicels, removal of AS2 did not affect pedicel angle (Table 1),

consistent with the kan data suggesting that organ polarity does not significantly impact pedi-

cel morphology.

Identification and molecular characterization of fil-10

The original bp er suppressor mutation (termed sup2) was mapped to a 660kbp region on

chromosome 2 between the T8M12 and GBF3 markers. Scanning annotation units in this

chromosomal region showed that the YABBY gene FILAMENTOUSFLOWER (FIL) is located

approximately halfway between the two markers. Similarities between fil and sup2 phenotypes,

including compromised fecundity, filamentous organs, and style defects prompted us to test

whether other fil alleles could suppress bp er. Crossing the intermediate fil-4 allele into bp er
produced plants with elongated pedicels, although pedicels often bend down at filamentous

structures formed on abaxial sides (Fig 4A–4C). We next crossed bp er fil-4 with bp er sup2 in a

complementation test. Progeny plants exhibited a suppressed bp er phenotype, indicating that

the lines contain mutations in the same gene. To confirm that FIL is mutated in sup2, FIL
cDNA and genomic fragments isolated from bp er sup-2 plants were cloned and sequenced,

revealing a P16L mutation located upstream from the Zn finger domain (Fig 4D). Taken

together, these experiments indicate that the sup2 phenotype is due to a mutation in the FIL
gene and we propose fil-10 as the allele designator.

FIL is expressed in leaves and floral organs and acts to specify abaxial organ fates and pro-

mote blade outgrown, in part by repressing KNOX1 genes [32]. In addition, the finding that fil
mutations suppress the bp er phenotype suggested that in this background, FIL might be ectop-

ically expressed in pedicels to modulate their development. However, in situ hybridization

with a FIL probe failed to detect FIL transcripts in bp er pedicel or internode tissue at all floral

stages tested (Fig 4E and 4F), suggesting that FIL may function non-cell-autonomously from

flowers to impact pedicel development. To more specifically test this hypothesis at the protein

level, we constructed a FILpro::FIL::GFP transgene and generated transgenic lines in both wild-

type and bp er plants. Examination of young buds revealed the characteristic abaxial domain

expression of FIL, but in no case, at any stage of floral development, did we observe GFP fluo-

rescence in developing pedicels (Fig 4G–4J). Moreover, pedicel angle defects begin to be mani-

fest after about stage 11 of floral development [33], and the bulk of pedicel elongation also

takes place after stage 11 [59], suggesting that pedicel development is spatially (and temporally)

separated from FIL expression domains in floral organs. Finally, the introgression of the lateral
suppressor (las-11) mutant into bp er confers a phenotype that is nearly identical to that of bp er
fil-10 (Fig 4K). Recognizing that LAS regulates axillary meristem activity [60], and has been

implicated in transducing the FIL non-cell-autonomous signal from peripheral domains of the

meristem to the CZ [39], we reason that FIL’s effect on stem and pedicel development is likely

Table 1. The influence AS2 on pedicel architecture.

Genotypea Pedicel Length (mm) Pedicel Angle (degrees)b

bp er fil-10 2.75 ± 0.05 93.1 ± 0.9

bp er fil-10 as2-101 1.75 ± 0.09 95.9 ± 1.3

aFor bp er fil-10, n = 189. For bp er fil-10 as2-101, n = 55.
bAngle between the inflorescence axis and the adaxial face of the pedicel.

Pairwise T-tests revealed that the change in pedicel length is statistically significant (p<0.005), while the

change in pedicel angle is not (p = 0.34).

https://doi.org/10.1371/journal.pone.0177045.t001
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mediated in a similar fashion. That the origin of the signal is superior to the pedicel is inferred

by amelioration of the stripes of undifferentiated abaxial tissue that originate and are broadest

at the receptacle in bp er, and trace the path of the vasculature down the inflorescence stem

[15, 33], but which are suppressed in bp er fil mutants.

LEUNIG and YAB3 mutations differentially suppress the bp er

phenotype

YABBY proteins are known to form complexes with Gro/Tup1 co-repressors such as LEUNIG

(LUG) [40]. LUG is ubiquitously expressed and lug mutants show homeotic transformations

in the flower [61]. In addition, LUG and its interacting partner protein SEUSS (SEU) act to

control organ polarity and other aspects of plant development [62–64]. Upon crossing bp er
and lug, we found that bp er lug-1 plants also exhibited suppressed pedicel phenotypes

(Table 2) wherein pedicels are elaborated perpendicular to the stem axis and elongate to

some extent (Fig 5A). The stomata-free stripe of cells on the abaxial side of bp er pedicels is

also ameliorated, giving rise to normal epidermal patterning that includes stomatal develop-

ment (Fig 5B).

Given that some YABBY proteins are expressed in overlapping domains, interact physically

with one another, and can rescue mutations in other YAB genes [40, 65, 66], we reasoned that

mutations in YAB3, a close FIL relative, also might be able to suppress the bp er phenotype. We

generated the bp er yab3 triple mutant but found that yab3 was ineffective in suppressing the

bp er phenotype (Fig 5C). In very rare instances, secondary branches displayed some degree of

suppression on plants that were otherwise bp er-like. Thus, the fil-10 suppression phenomenon

generally cannot be phenocopied by yab3, although the two genes are functionally redundant

in other contexts (e.g. vegetative development; [32, 35]).

Transcription profiling reveals possible mechanisms of FIL action

Our previous studies provided evidence for the existence of a vascular-borne signaling mole-

cule whose synthesis, activation, or trafficking influences inflorescence architecture [33]. We

therefore undertook transcription profiling experiments with bp er and bp er fil-10 inflores-

cences as a strategy to identify genes whose regulation is governed by FIL, anticipating that the

identities of putative targets might suggest the nature of this signaling pathway. Triplicate sam-

ples of inflorescence RNA from the two genotypes were analyzed, and genes that exhibited

more than a 2.5 fold change were functionally classified using both MapMan and Gene Ontog-

eny (GO) algorithms (S2/S3 Tables). The two lists are referred to hereafter as the UP list (genes

upregulated in bp er fil-10, implying that FIL directly or indirectly represses these genes in

Table 2. Effects of BP and LUG on pedicel morphology.

Genotype Pedicel Length (mm)a Pedicel Angle (degrees)a,b

Ler 3.7 ± 0.1 55 ± 2

lug-1 er 2.8 ± 0.2 48 ± 7

bp er 0.41 ± 0.03 143 ± 2

bp er lug-1 0.99 ± 0.07* 84 ± 3*

a n>20. Each value represents the mean ± standard error.
bAngle between the inflorescence axis and the adaxial face of the pedicel.

* Pairwise T-tests reveal significant differences for both pedicel length and angle for bp er vs bp er lug-1

(p<0.05).

https://doi.org/10.1371/journal.pone.0177045.t002
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bp er) and the DOWN list (genes downregulated in bp er fil-10, implying that FIL directly or

indirectly activates these genes in bp er).
The UP list contains 71 genes. By normalizing these genes to their frequency in the func-

tional classification groups, only the genes involved in RNA metabolism/transcription factor

activity are over represented (p-value = 5.673−4). Twelve genes encode validated or putative

transcription factors, including four Zn finger proteins, three AP2/EREBP domain factors, two

homeobox domain proteins, one B3 domain protein, 1 JUMONJI family member, and one

GeBP domain protein. A second category is a group of genes whose products are involved in

regulated proteolysis. Lastly, there are 25 genes that encode products of unknown function,

but in general there are no obvious patterns that implicate specific signaling pathways or other

commonalities that inform how FIL executes its function. Rather, it appears likely that FIL

may act in numerous processes by regulating a group of subordinate transcription factors.

The DOWN list of 63 genes was parsed into several categories that are statistically overrep-

resented. Trends are observed for members of the miscellaneous and secondary metabolism

category, and normalization to the reference set of all genes reveals these classes are overrepre-

sented by 7 and 18 fold (p-values are 4.82 x 10−13 and 3.4 x 10−15, respectively). Ten of the

secondary metabolism genes are known to be involved in the synthesis or modification of

glucosinolates (GSLs) and an additional four are suspected to play roles in GSL metabolism

based on the biochemical steps involved and the predicted enzymatic function (e.g. glutathione

transferases). In a similar vein, several of the transcription factors on the UP list belong to

families whose members are known to be physically associated with GSL gene promoters to

Fig 5. Suppressive effects of mutations in leunig and yabby3. (A) bp er lug plant showing suppressed

pedicel angles. (B) bp er lug abaxial pedicel showing enlarged cells and stomata (arrows). (C) bp er yab-3

plant. In rare cases, we observed pedicel suppression effects (arrow) of some axillary branches on plants

which otherwise exhibited the bp er-like habit.

https://doi.org/10.1371/journal.pone.0177045.g005
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Fig 6. Aliphatic glucosinolate biosynthesis genes are down-regulated by fil10. (A) Schematic representation of the aliphatic

glucosinolate biosynthetic pathway showing genes involved in various steps. The numbers beside the AGI identifiers indicate the

change in expression of these genes in bp er fil-10 suppressor vs. the parent bp er line as gauged by microarray analysis.

Question marks indicate uncertainly about the involvement of these genes in the indicated steps. The green text identifies specific

glucosinolate metabolites that are products of the enzymatic steps and for which quantitative analysis was performed (see

Table 3). (B) QRT-PCR analyses of selected GSL biosynthetic genes, confirming down regulation of these genes in bp er fil-10

verses the bp er parent. The GSTF11 gene (At3g03190) was selected for analysis as its expression pattern is very similar to that

of FIL (eFP browser data) and the gene has been implicated in GSL biosynthesis. The relative expression ratio of the bp er fil-10

mutant is shown and error bars are the standard error of the mean. Pair-wise t-tests on linear transformed ΔCT values revealed

that all differences are statistically significant (p<0.034).

https://doi.org/10.1371/journal.pone.0177045.g006
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modulate their expression [67]. Fig 6 shows a schematic of the aliphatic glucosinolate biosyn-

thetic pathway, overlaid with genes whose expression is down regulated in bp er fil-10.

Glucosinolate biosynthesis is initiated from tryptophan, phenylalanine, methionine or chain-

elongated methionine derivatives [68]. The chain elongation cycle involves MAM1, IPMI iso-

zymes, and BCAT4, whose collective function is to extend the amino acid derived substrates.

These products feed into the central pathway that utilizes several cytochrome P450 monooxy-

genases, glutathione addition, and sulfotransferase and oxygenase activities to generate

methylsulfinylalkyl glucosinolates. To validate the transcription profiling results we conducted

QRT-PCR on several of the targets: MAM1, BCAT4, IPMI1, CYP83A1, SOT17, GS-OX1,

GS-OX3 and GSTF11 (Fig 6B). QRT-PCR experiments revealed that all of the target genes

tested are indeed downregulated in the fil-10 background, though generally not to the extent

reported by the microarray analyses. In addition, the MYB28 gene, a known activator of ali-

phatic glucosinolate biosynthesis is also downregulated [69, 70]. Control of MYB28 by FIL

may explain the wide-ranging changes in GSL gene expression.

Downregulation of GSL biosynthetic genes led us to hypothesize that there is an altered glu-

cosinolate metabolite pool in bp er fil-10 plants. To assess this, we conducted glucosinolate pro-

filing on the single Ler mutant, the bp er double mutant and the bp er fil-10 suppressor. For

many of the metabolites measured, mutations in either bp or fil led to significant changes in

GSL metabolite levels (Table 3 and S2 Fig). The levels of several GSLs, including 3OHP,

4OHB, 4MSO, 7MSO, and 8MSO, were altered in the fil mutants in comparison to bp er
but these were not consistent between fil-4 and fil-10 suggesting that, unlike the suppression

phenotype, the GSL profiles are allele specific. Interestingly, the level of 3-indolyl methylgluco-

sinolate (I3M) is elevated in both suppressor lines relative to the bp er parent, and this pheno-

type could be linked to the suppression ability of these alleles (S2 Fig). Indolic glucosinolates

are derived from tryptophan, which also contributes the indole ring to auxins such as IAA.

Given that mutations in several genes encoding enzymes involved in both aliphatic and aro-

matic GSL synthesis impact auxin metabolism [71–80], we reasoned that auxin levels might be

altered in these plants. To investigate this hypothesis, we examined IAA levels in inflorescences

from the three genotypes (Fig 7A). Ler inflorescences contain on average about 3ng/g FW of

IAA. The dwarf-like double mutant bp er has lower levels of IAA (40% of Ler level), which may

contribute to its diminutive stature. The bp er fil-10 suppressor line essentially restores IAA

levels to that of Ler, and we postulate that elevated auxin levels are in part responsible for more

robust growth of the suppressor line. The enhancement of auxin levels is corroborated by

examining independent DR5::GUS transformants of bp er and bp er fil-10. In the bp er

Table 3. Glucosinolate metabolites in Ler, bp er and bp er fil-10.

Genotype/ 3OHP1 4OHB 3MSO 4MSO 7MSO 8MSO I3M 4OHI3M NMO

Ler 5.90±0.67 0.165 ± 0.02 0.069 ± 0.013 0.032 ± 0.003 0.113 ± 0.016 1.24 ± 0.18 0.16 ± 0.016 0.014 ± 0.004 0.022 ± 0.005

bper 6.0 ± 0.76 0.200 ± 0.04 0.123 ± 0.026 0.030 ± 0.003 0.135 ± 0.021 1.38 ± 0.29 0.08 ± 0.015 0.011 ± 0.004 0.013 ± 0.005

bperfil 4.59 ± 0.67 0.11 ± 0.03 0.179 ± 0.078 0.026 ± 0.01 0.106 ± 0.019 0.81 ± 0.10 0.09 ± 0.019 0.006 ± 0.004 0.012 ± 0.003

T-tests2

Ler vs. bper 0.7948348 0.05654988 0.000333266 0.241202909 0.058579013 0.2900458 4.31E-07 0.183791614 0.00650812

bper vs bperfil 0.0294717 0.00058607 0.100847632 0.406288507 0.029228242 0.0007679 0.0906205 0.097505342 0.787914392

1Abbreviations: 3OHP: 3-hydroxypropyl; 4OHB: 4-hydroxybutyl; 3MSO: 3-methysulfinyloctyl; 4MSO: 4-methysulfinyloctyl; 7MSO: 7- methysulfinyloctyl;

8MSO: 8-methysulfinyloctyl; I3M: indol-3-ylmethyl; 4OHI3M: 4-hydroxy-indol-3-ylmethyl; NMO: N-methoxy-indol-3-ylmethylglucosinolate.
2Student’s T-test was carried out for the pairwise comparisons of Ler vs bp er and bp er vs bp er fil. P-values are shown; confidence intervals of p< 0.05 are

highlighted

https://doi.org/10.1371/journal.pone.0177045.t003
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Fig 7. Auxin levels are altered in bp and fil mutants. (A) Auxin levels in Ler, bp er and bp er fil-10. Wildtype

FIL is required for the bp er phenotype and is associated with lower auxin levels. Pairwise T-tests revealed

significant differences between Ler and bp er (p < 0.001), and between bp er and bp er fil-10 (p = 0.01). (B)

Multiplex PCR on four independent transformants of both bp er or bp er fil-10 harboring the auxin reporter

DR5::GUS. The lower band represents a single copy control gene (AMI) while the upper band assesses the

presence/level of the DR5::GUS reporter gene. The bp lane is a non-transformed control, (-) is no DNA

template. Lower left panels: X-gluc stained seedlings of four independent bp er transformants. Lower right

panels: X-gluc stained seedlings of four independent bp er fil-10 transformants. In all cases, the bp er fil-10

suppressor lines exhibited broader and more intense staining than the bp er lines, despite the fact that the

copy number of the auxin reporter gene was similar or even lower in the bp er fil-10 lines (panel B).

https://doi.org/10.1371/journal.pone.0177045.g007
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background, DR5::GUS signals mimic the wildtype pattern for auxin maxima [81], showing

staining foci at leaf tips, hydathodes, young leaf primordial/stipules, root tips, and vascular tis-

sues. In the bp er fil-10 suppressor background, the qualitative GUS staining pattern is mostly

unchanged, but intensity is greater in all cases. This is particularly evident at the shoot apex

and within the vascular tissues, and in most transformants, numerous cells within the leaf

blade also display staining.

Despite a wealth of data on GSL biosynthetic mutants that influence auxin levels, the mech-

anistic connection between GSL biosynthesis and IAA production has not been elucidated.

However, an aromatic pathway intermediate, IAOx, can be converted to IAA by reactions

involving the intermediates IAN or IAM (reviewed in [82–83]), and in addition, IAA can be

produced indirectly through GSL degradation by myrosinases (Fig 8A). To investigate these

possibilities we conducted QRT-PCR on genes involved in indolic GSL biosynthesis and IAA

biosynthesis. In general, the expression of most of these genes was either downregulated or

unchanged, but changes in the expression of several genes are intriguing. First, direct IAA pro-

duction through TAA and the YUCCA enzymes is likely reduced as TAA1, YUC1, and YUC6
were found to be downregulated in bp er fil-10 (Fig 8B). Importantly, the expression of

CYP71A13 and an indole-3-actamide hydrolase (AMI1) are upregulated, which may provide a

shunt to partition GSL metabolites into auxin biosynthesis. In addition, elevated expression of

nitrilases may also convert IAN to IAA, though in an independent experiment, the nitrilases

were found to be downregulated (see S1 Fig). As similar trends were observed for the other

genes investigated, it is unclear why the nitrilases displayed this variation. QRT-PCR analysis

of these genes in the bp er fil-4 background revealed higher levels of myrosinase mRNA, which

may contribute to shunting indole-3-glucosinolate into the auxin biosynthesis pathway (S2

Fig). In addition, elevated levels of CYP71A13 mRNA may also contribute to conversion of

GSL metabolites to IAA. We infer that in inflorescences, both the fil-4 and fil-10 suppressors
orchestrate changes in the levels and shuttling of GLS metabolites that influence local auxin

concentrations, conditioning changes in gene expression that affect shoot architecture. It is

also likely that some of the uncharacterized genes, and/or those encoding enzymatic functions

implicated in metabolite interconversions (e.g. cytochrome P450s) may provide a heretofore

unrecognized means to alter auxin biology.

Discussion

Distinct plant species elaborate organs in genetically defined patterns, giving rise to the species’

characteristic inflorescence architecture and general plant habit. Mutant screens have identi-

fied a large number of genes that influence aspects of meristem specification and maintenance,

boundary formation, phyllotaxy, organ identity, and hormone synthesis, transport and percep-

tion (reviewed in [84]). Class 1 KNOX genes play integral roles in many of these processes, and

their expression is subject to activation or repression, spatially and/or temporally, by several

well-characterized factors and auxin [3]. In general, the KNOX1 proteins condition a replica-

tion competent state and prevent differentiation in the meristem, and their expression is

downregulated as cells are recruited into lateral organ primorida, yet other studies have

revealed that reactivation of KNOX genes occurs in leaves of compound leaf species [23]. One

class of negative regulators is the YABBY family of transcriptional repressors, which play roles

in SAM activity, floral development, leaf lamina growth control, promotion of abaxial cell fate,

and inflorescence phyllotaxy [34–36, 42].

Our studies reveal that mutant alleles of the YABBY family member FILAMENTOUS
FLOWER suppress many of the developmental aberrations conditioned by the class 1 KNOX
gene brevipedicellus. Previous studies have implicated FIL in downregulating KNOX genes in
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lateral organ primordia, and in higher order fil/yab mutants, ectopic meristem formation in

leaves may be due to KNOX gene derepression [32]. It is thus possible that fil-10 mediated sup-

pression of bp er phenotypes might be related to changes in the expression of other KNOX
genes. In this regard, while our microarray data indicated that KNAT2 is upregulated by nearly

3 fold, QRT-PCR experiments revealed that the magnitude of this change is only 1.4 fold

(S3 Fig). Moreover, the expression of KNAT6 and STM, known modulators of meristematic

Fig 8. Changes in the expression of indolic glucosinolate and auxin biosynthesis genes in bp er fil-

10. (A) Inferred and speculative intersections of auxin and glucosinolate biosynthetic pathways. Some

pathway steps are embellished with gene designations where empirical data implicate specific associations

(red text). The green text identifies specific glucosinolate metabolites that are products of the enzymatic steps

and for which quantitative analysis was performed (see Table 3). (B) QRT-PCR data on selected genes

implicated in indolic glucosinolate and auxin metabolism. The relative level of transcripts in bp er fil-10 vs bp er

is shown. Error bars represent standard error of the mean. Pairwise t-tests on linear transformed ΔCt revealed

all differences to be statistically significant (p<0.02) except YUC1 (p = 0.069) and YUC6 (p = 0.55).

https://doi.org/10.1371/journal.pone.0177045.g008
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activity, are unchanged [85–88]. It therefore seems unlikely that KNOX gene reactivation plays

a prominent role in rescuing the bp er phenotype. In all likelihood, the large number of genes

that are affected by the fil-10 mutation, which includes more than twelve transcription factors,

specify a complex network affecting numerous cellular processes that will be difficult to dissect.

Two of these genes encode proteins with sequence similarity to the PLETHORA family that

regulates inflorescence phyllotaxy by modulating local PIN1 activity [89], and our analyses of

auxin in the bp er and the fil-10 suppressor lines, together with the phenotypic alterations they

display, are consistent with localized changes to growth regulating molecules.

FIL acts non-cell autonomously to modulate development

FIL contributes to several aspects of inflorescence architecture. In vegetative development, FIL
is expressed in young leaf primordia, along the abaxial sides of leaves, and in the peripheral

zone of the SAM [34–36]. During early floral development, FIL expression is confined to cryp-

tic bracts/sepals and later is found on abaxial sides of floral organs [35, 39]. Finally, during

fruit development FIL is expressed in valve and presumptive valve margin cells where it con-

tributes to the activation of genes required for valve margin development [35, 90]. In both

developing leaves and fruit, FIL influences tissue identity in part by repressing KNOX genes,

but apparently does so in a non-cell autonomous fashion. In leaf primordia, interruption of

peripheral YAB1 (FIL or FIL/YAB3) expression alters meristem central zone activity to produce

phyllotaxy defects, and in situ hybridization and reporter gene activities indicate that FIL is

not expressed in the affected domains [39]. A suppressor screen identified LATERAL SUP-

PRESSOR (LAS) as a transducer of this mobile signal. Our introgression of the las-11 mutation

into the bp er background resulted in architectural changes to plants that generally mimic the

bp er fil phenotypes. Together with the in situ hybridization and FILpro::FIL::GFP reporter

expression patterns (Fig 4), this observation indicates that the non-cell autonomous signalling

that operates between PZ/CZ in leaf development is also employed to regulate pedicel and

internode elongation and patterning. Finally, this regulatory module likely is key to repressing

BP in the replum during fruit development. In fil and fil/yab3 mutant backgrounds, BP expres-

sion is enhanced in replum tissues, which are larger and differentiate stomata [91], a pheno-

type that is similar to stripe suppression and stomatal differentiation in bp er fil-10 pedicels

(Fig 1). In fruits, the non overlapping expression patterns of medial (BP) and lateral (FIL) fac-

tors support the contention that FIL signals non autonomously from the adjacent lateral tissue

to the medial (replum) tissue to influence replum morphogenesis [91]. Whether LAS is

involved in this context is unknown, but it is clear that FIL employs one or more mobile signals

to dictate multiple aspects of plant development in Arabidopsis.

Changes in auxin and glucosinolate profiles modulates meristem activity

BP expression is linked to auxin metabolism, as exemplified by its ectopic expression in leaves

of axr1 and pin1 mutants, and in leaves of plants treated with auxin transport inhibitors [92].

Such studies implicate auxin as a negative regulator of some KNOX1 genes, possibly acting

through ARF6/ARF8 [93]. Conversely, chromatin immunoprecipitation of maize KNOTTED1
target loci, coupled with RNAseq, revealed that genes involved in auxin biosynthesis, transport

and signaling are upregulated in dominant Kn1-N mutants [94]. Although we have not per-

formed similar studies on bp mutant plants, we found a reciprocal relationship in which loss of

KNOX1 (bp) function is correlated with reduced IAA levels in inflorescences (Figs 7 and 8).

This in turn is associated with reductions in internode and pedicel elongation, and other devel-

opmental/tissue identity phenotypes. These data are consistent with the existence of a negative
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regulatory loop by which KNOX1 genes could attenuate their own expression by enhancing

auxin biosynthesis, transport and/or signaling.

Auxin is implicated in many facets of plant development and in responses to external sti-

muli. We propose that changes in auxin levels underpin the growth habit differences between

bp er and the bp er fil suppressor lines. There are numerous literature reports that support this

contention. For example, in arf6/arf8 auxin response mutants of both Arabidopsis and tomato,

internode and/or floral organ elongation is compromised [93,95]. Second, in crm/big/tir3
mutants that exhibit shortened internodes and pedicels, the basis of this defect is linked to

aberrant polar auxin transport [96–99]. Indeed DR5 reporter signals in crm1-1 and big-j588
mutants is very much attenuated relative to wildtype [98, 100], suggesting lower auxin levels in

this background, and pCYCB1;1::CYCB1;1-GUS signals were also reduced [99], implying that

one role of CRM/BIG/TIR3 is to promote cell division. These authors also conducted morpho-

metric analyses of well characterized auxin signaling mutants, axr1-12, arf1-3 arf2-6, and

nph4-1 arf19-1, and showed that in all cases, shorter pedicels and internodes are due to defects

in both cell size and cell number [99]. We previously reported that bp conditions similar cellu-

lar and tissue defects versus the Ler parent line [15], and herein we demonstrate that auxin lev-

els in seedlings and/or inflorescences are significantly lower in bp er than in either Ler or bp er
fil-10. Taken together, the data support the hypothesis that lower auxin levels are related to the

stunted growth of bp er plants and that the molecular mechanisms that restore auxin levels

serve to promote more robust growth in bp er fil-10 plants.

A remaining question is how might fil-10 influence auxin levels? The microarray data

revealed no substantial changes in known auxin biosynthetic genes and QRT-PCR experi-

ments indicate that the auxin-related genes tested (TAA, YUC1, YUC6, which in wildtype are

most highly expressed at the shoot apex and/or in young floral buds [101]) are significantly

downregulated. Although other pathways exist to synthesize IAA [82,83] the microarray data

implicated downregulation of MYB28 and altered regulation of a number of glucosinolate

metabolism genes as potentially creating a metabolic shunt from GSL pathways into those that

produce IAA. MYB28 is part of a group of R2R3 MYB genes that activates aliphatic GSL bio-

synthetic genes [68–70, 102]. Loss and gain-of-function studies of MYB28 reveal that perturb-

ing GLS can give rise to developmental defects and uncovers a reciprocal relationship between

aliphatic glucosinolates and indolic glucosinolates (particularly I3M; [68–70]. Interestingly,

mutant analysis of other GSL biosynthetic genes also reveals crosstalk between the aliphatic

and indolic pathways [66, 75, 103, 104], but the intersections of these two pathways are not

entirely clear. It is possible that the enzymes involved could utilize both aliphatic and indolic

substrates, but the enzymology data is sparse (e.g. there is a 50 fold higher affinity for IAoX by

CYP83B, vs CYP83A, [72]). Thus, while pathway intermediates have been determined by feed-

ing experiments, the flux of metabolites is not linear and in all likelihood there are multiple

points where shunts and feedback steps exist.

Although MYB28 is downregulated in fil-10, the GSL biosynthetic genes that are affected

are only a subset (three of ten affected genes) of those known to be altered by 35S::MYB28

overexpression [70]. It is therefore likely that the influence of FIL on other genes is a major

contributing factor to the elevated IAA levels we observe. In the fil-10 suppressor, up-

regulation of both CYP71A13 [105] and AMI [106] could provide a means to channel

IAoX to IAA, and in the fil-4 suppressor, CYP71A13, AMI, and myrosinase activity

could contribute to this shunt. Feeding experiments with radiolabelled TRP showed that

labeled IAN enrichment is lower than that of labeled IAA, implying that IAN is not a direct

product of IAoX [107, 108], and therefore there are likely to be other yet-to-be-defined reac-

tions by which IAA is synthesized. In this regard, our microarray data reveal altered regula-

tion of numerous genes encoding proteins of unknown function, including at least six
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cytochrome P450s. Functional analysis of these genes may further refine our knowledge of

auxin metabolism.

Lastly, FIL physically interacts with the LEUNIG/SEUSS co-repressor complex [40, 109],

which also has been shown to interact with other regulators of floral development and inflores-

cence architecture (e.g. AP1 and SEP3; [110]). Mutations in SEUSS (seu) and the SEUSS-LIKE
(slk) genes condition auxin resistant growth phenotypes and exhibit reduced sensitivity to

auxin [63, 111, 112]. Conversely, in gynoecia, lug and seu mutants exhibit increased sensitivity

to inhibitors of polar auxin transport [113], and in Antirrhinum, mutations in the LUG homo-

log STYLOSA are associated with altered vascular development in leaves, hypersensitivity

towards auxin and polar auxin transport inhibitors, and reduced polar auxin transport [109].

The lug-1 mutant conditions a suppressed bp er phenotype that is similar to that of the fil-10
suppressor (Figs 1B and 6A), suggesting that the two proteins may act cooperatively to coordi-

nate inflorescence architecture through their influences on auxin biosynthesis, transport and

perception.

Glucosinolate metabolites can influence development and physiological

processes

Our previous studies led us to postulate that BP acts to countermand the action of a vascular-

borne growth repressor, but the nature of this signalling molecule has been elusive. Our obser-

vations that both bp and fil mutants alter glucosinolate profiles led us to consider the possibility

that this repressor is linked to GSL metabolism. Evidence for this hypothesis is circumstantial

but multifaceted. First, many genes involved in glucosinolate metabolism are predominantly

expressed in vascular tissues and glucosinolates are known to be transported via the vascula-

ture [114–116]. Second, indole-3-carbinol (I3C), a GSL breakdown product, has been shown

to be an auxin antagonist, inhibiting auxin signalling and inducing growth arrest by interact-

ing with the TIR1 auxin receptor [117, 118]. Third, although some molecules such as I3C are

induced by herbivory, other GSL by-products are produced in unchallenged plants [119], and

some are known to have growth inhibitory effects. Raphanusanin, generated from some GSL

molecules by myrosinase action, is known to underpin blue light induced phototropism by

inhibiting growth on the illuminated side of radish seedlings [120, 121], and exogenous appli-

cation of raphanusanin in pea seedlings inhibits hypocotyl elongation and releases lateral buds

from apical dominance [120, 122]. Our array analyses show that some hypothetical myrosi-

nases are differentially expressed and could contribute to the generation of such inhibitory

molecules. These genes represent intriguing targets for future functional genomics studies.

Fourth, it is clear that glucosinolate metabolite levels can influence gene expression [123], as

well as physiological processes such as flowering time [124–126]. Lastly, in seedlings treated

with individually purified GLS molecules, changes in the transcriptome and developmental

aberrations were observed (Kliebenstein lab, unpublished results). Collectively, these observa-

tions point to glucosinolate metabolites as contributors involved in fine tuning growth and

development in addition to their well-established roles in orchestrating responses to biotic and

abiotic stimuli.

Supporting information

S1 Fig. QRT-PCR analysis of GSL and auxin related genes in bp er fil-10. RNA from inflo-

rescences of bp er and bp er fil-10 was isolated and subjected to QRT-PCR. The fold change in

bp er fil-10 is shown. This is an independent experiment relative to the data presented in Figs 6

and 8.

(TIF)
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S2 Fig. Characterization of bp er fil-4. (A.) Inflorescence stem exhibiting a reduced floral

cluster, consisting of type B flowerless pedicels (arrows). (B.) bp er fil-4 inflorescence revealing

the conversion of floral organs to filamentous structures. (C.) PCR analysis of RNA splicing.

gDNA represents genomic Ler DNA, (-) is no DNA template reaction, and bp er, bp er fil-4,

and bp er fil-10 are cDNAs amplified from the relevant genotypes. DNA sequencing revealed

that the fil-4 mutation is due to a G to A base change at the exon 6 splice donor sequence. Note

the congruence of the bper and bperfil10 bands (337bp amplicon indicative of proper splicing

of exon 5), and the larger 756bp amplicon in bp er fil-4, due to missplicing and the inclusion of

intron 5 in the final mRNA. (D.) QRT-PCR analysis of glucosinolate metabolism genes. The

expression pattern of these genes in the fil-4 suppressor is different from that of the fil-10 sup-

pressor (see Figs 6 and 8), and the magnitude of the differences vs. the bp er parent line is

much reduced. Elevated expression of myrosinases and CYP71A13 (CYP71) may provide ave-

nues to shunt glucosinolate intermediates to IAA biosynthesis. (E-G.) Glucosinolate profiling

of Ler, bp er, bp er fil-4 and bp er fil-10. Graphs showing comparisons where Student’s T-tests

reveal statistical significance are shown. (H.) T-test values for all pair-wise comparisons. Those

with p-values of less than 0.05 are highlighted in grey. Note that I3M, which can be converted

to IAA via myrosinase/nitrilase activities, is elevated (see Fig 8 for pathway).

(TIF)

S3 Fig. Expression of STM, KNAT2 and KNAT6 is unchanged in bp er fil-10. QRT-PCR of

bp er and bp er fil-10 inflorescence RNA reveals no significant changes in the expression of

these KNOX genes in the two genotypes.

(TIF)

S1 Table. List of primer sequences and information.

(PDF)

S2 Table. Genes up-regulated in bp er fil-10.

(XLSX)

S3 Table. Genes down-regulated in bp er fil-10.

(XLSX)
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