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Abstract

Humans are efficient social learners who leverage social in-
formation to rapidly adapt to new environments, but the com-
putations by which we combine social information with prior
knowledge are poorly understood. We study social learning
within the context of multi-armed bandits using a novel “as-
teroid mining” video game where participants learn through
active play and passive observation of expert and novice play-
ers. We simulate human exploration and social learning us-
ing naı̈ve versions of Thompson and Upper Confidence Bound
(UCB) solvers and hybrid models that use Thompson and UCB
solvers for direct learning together with a multi-layer percep-
tron to estimate what should be learned from other players.
Two variants of the hybrid models provide good, parameter-
free fits to human performance across a range of learning con-
ditions. Our work shows a route for integrating social learning
into reinforcement learning models and suggests that human
social learning conforms to the predictions of such models.

Keywords: social learning, multi-armed bandits, reinforce-
ment learning

Introduction
Social learning is fundamental to human cognitive devel-
opment (Harris, 2012). It enables individuals to assimilate
knowledge efficiently through exposure to social information
(Rosenberg & Vieille, 2019) especially when firsthand expe-
rience is costly or when environments are complex. Addi-
tionally, social learning plays a key role in development, skill
acquisition, emotional development, the acquisition of lan-
guage, and the transmission of cultural knowledge (Duranti,
Ochs, & Schieffelin, 2014; Giraldeau, Caraco, & Valone,
1994).

How is socially-learned information integrated with in-
formation learned from direct experience? The experimen-
tal and cognitive neuroscience literature suggests that social
learning is similar to reward-based self-exploratory learn-
ing, with mechanisms for social evaluation that rely on as-
sociative processes to make predictions about social part-
ners, and that these social predictions are integrated with
self-exploration prior to decision making (Behrens, Hunt,
Woolrich, & Rushworth, 2008; Behrens, Hunt, & Rushworth,
2009; Olsson, Knapska, & Lindström, 2020; Charpentier
& O’Doherty, 2018). Moreover, learners evaluate the ex-
pertise of their social partners – even young children can
learn selectively from more accurate and more expert mod-
els (Boorman, O’Doherty, Adolphs, & Rangel, 2013; Har-
ris, 2012). On the other hand, some evidence demonstrates

that humans are disproportionately influenced by social in-
formation (Muthukrishna, Morgan, & Henrich, 2016; Laland,
2004) and that they adjust quantity estimates after receiv-
ing information from social partners (Molleman, Kurvers, &
van den Bos, 2019) despite uncertainty about their partner’s
estimates.

Although there is a rich body of experimental work demon-
strating that humans are indeed social learners and that so-
cial information enables complex behaviors, formal compu-
tational theories for explaining how humans leverage social
information are less well-developed (FeldmanHall & Nas-
sar, 2021). For example, how does the computational pro-
cess of social learning change when your teacher is an ex-
pert compared with a novice, or when the social partner is
operating under uncertainty? Some theories of social cogni-
tion suggest that humans form generative models that allow
them to simulate the mental states of social partners such as
their current world understanding, goals and intentions in or-
der to better interact with and learn from them (Baker, Saxe,
& Tenenbaum, 2009; Vélez & Gweon, 2021; Charpentier &
O’Doherty, 2018).

Inspired by this body of work we choose to study the prob-
lem of social information integration under uncertainty in the
context of multi-armed bandits. Multi-armed bandits are sim-
ple choice problems where a decision maker repeatedly se-
lects one of several choices by selecting a bandit “arm”. In
particular, Bernoulli multi-armed bandits are bandit problems
where each bandit arm i has a payoff probability pi of 1 or 0.
Bernoulli bandits have been studied extensively in humans to
understand how humans search for rewards under uncertainty
(Burtini, Loeppky, & Lawrence, 2015; Schulz, Franklin, &
Gershman, 2020; Schulz, Konstantinidis, & Speekenbrink,
2015; Stojic, Analytis, & Speekenbrink, 2015; Gray, Zhu,
Arigo, Forman, & Ontañón, 2020). In addition, there has
been an extensive body of work on the optimal strategies
for solving multi-armed bandits (Kuleshov & Precup, 2014).
Therefore, they are a good system for investigating the pro-
cess of integrating direct exploration and social learning in
detail.

Prior work has used small-scale bandit problems to study
social learning. In one study using a three-armed bandit task,
learners processed observed outcomes from another player
in a similar manner to their own observations (Adrian, Sid-
dharth, Baquar, Jung, & Deák, 2019). Another study, in-

2619
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



volving a two-armed bandit task with decision cues and ad-
vice from a confederate, found that incorporating both the ad-
vice of the confederate and the true probabilities of the ban-
dit resulted in more accurate predictions of human decisions
(Behrens et al., 2008). These studies suggest a complex in-
terplay between direct experience and social information in
these learning problems.

Our goal in the current work is to use multi-armed bandits
to study the integration of self-exploration knowledge with
observed social information. We create a new bandit-based
game environment and provide a demonstration of how this
environment can be used to test computational theories about
the role of expertise in social learning, allowing for direct
comparisons between humans and computational models at
scale.

For our computational modeling, we begin by using
Thompson sampling, a common probabilistic heuristic for
solving multi-armed bandits, and the Upper Confidence
Bound (UCB) algorithm, a popular Q-value based multi-
armed bandit solver. We chose these solvers due to their ef-
fectiveness in modeling human decision making (Gershman,
2018). We then develop hybrid social learning models by
training a supervised neural network to predict the teacher’s
knowledge and integrate these predictions with the param-
eters of Thompson sampling and UCB. We consider hy-
brid models that have access to information about both the
teacher’s action choices and reward outcome information
as well as a choice-only variant without access to reward
outcomes. We additionally compare to a naı̈ve estimation
baseline, which treats social information as additional self-
observations. To preview our results, we find that – in con-
trast to the baseline model – both hybrid social learning mod-
els succeed in describing human performance in our task by
capturing reward outcomes and decision entropy.

All source code for this work is available on GitHub.1

Experiment
Method
We created an engaging multi-armed bandit game, styled as
an asteroid mining adventure (see Figure 1). In this game,
asteroids serve as the bandit arms, each with its own Bernoulli
payoff parameter that remains unknown to the player. Players
navigate this space-themed game in a starship using the left
and right arrow keys to move and the up arrow or space bar to
shoot. They are free to move left or right as often as they like,
but opportunities to shoot (pull the lever of the bandit arm)
are limited.

Participants 200 adults between the ages of 18 and 45 were
recruited via Prolific and were paid $2.50 for participating.
Our final dataset included 153 participants. Participants were
excluded for colourblindness (N=5) or for refreshing their
page during the experiment (N=42), since reloading the page
reset the condition assignment.

1https://github.com/langcog/social-rl-analysis

Figure 1: A screenshot of our experimental paradigm, show-
ing a multi-armed bandit presented as an asteroid mining ad-
venture. For space, five of a total of 12 asteroids are shown
here.

Design The game was structured into three distinct block
conditions, each representing a specific game-sequence of
play and watch games. The block conditions were: play-play-
play, play-watch-play, and watch-play-play, as illustrated in
Figure 2. In “play” games, participants actively engaged in
the game by moving or shooting, whereas in “watch” games,
they observed a teacher – either a novice or an expert – play.

When a player shoots an asteroid, they either receive a
reward (1) or not (0), based on the asteroid’s underlying
Bernoulli payoff parameter. Successful shots, yielding re-
wards, are visually indicated by a green mark on the aster-
oid and a corresponding green bar filling up in the on-screen
“Mineral Mining Tank”, see Figure 1. Conversely, shots that
do not result in a reward leave a red mark on the asteroid and
add a red bar to the Mineral Mining Tank. A single watch
or play game reaches its conclusion once the Mining Tank
is completely filled, indicated by the absence of any remain-
ing gray bars. This game design allows players to interact in
a multi-armed bandit environment in a visually intuitive and
engaging way.

Each of the three games from every block condition was
designed to last 24 shot trials. After completing 24 shoot ac-
tions, the participant moved to the next game in the game-
sequence of the block condition, at which point the mineral
mining reward tank was reset to all gray bars, and all shot
marks were cleared, indicating the starting state of zero shots
and zero rewards for the new game. This framework was ap-
plied to all three games of the block condition, ensuring a
uniform experience across different sessions.

Two teacher conditions – a novice and an expert – were
defined based on the level of proficiency in playing the bandit
game. The novice teacher follows an exploratory policy with
limited experience in identifying the game’s payoffs, leading
to a lower expected reward. In contrast, the expert teacher
follows a policy developed from a more extensive exploration
of the payoffs, resulting in a higher expected total reward.
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Figure 2: Schematic depiction of experimental conditions.

The teacher is indicated on screen by a separate starship from
the participant’s starship during watch game. However, the
teacher’s skill level (novice or expert) is not indicated.

The experiment was designed to explore five unique com-
binations of block and teacher conditions as shown in Fig-
ure 2. Critically, every time a pair of block and teacher con-
ditions was initiated, a random set of stored payoffs was se-
lected indicated by the “zone” in the game. Thus, each zone
corresponded to a unique set of payoffs that applied to all
games within a block condition. During the watch game,
the corresponding teacher policy (novice or expert) was ran-
domly selected from the set of stored policies. This approach
allowed participants to repeatedly engage with the payoff en-
vironment, either by direct participation or by observing a
teacher’s gameplay.

We generated a sufficiently large set of payoff zones (100)
from which we could randomly sample 10 (one for each set
of conditions, twice) for each participant. Each payoff zone
consisted of a 12-armed bandit, with payoff parameters sam-
pled as follows: 3 arms with payoffs uniformly sampled be-
tween 0 and 0.2, 8 arms uniformly sampled between 0.45 and
0.55, and 1 arm (the optimal arm) uniformly sampled between
0.75 and 1.0. For each of the 100 bandits, we generated a
set of 20 novice and expert teachers by running Thompson
sampling. 72 iterations of Thompson sampling generated a
sequence of arm choices. The first 24 iterations were se-
lected as the novice teacher for the bandit due to their more
exploratory nature. In contrast, the final 24 iterations were
selected as the expert teacher due to their more frequent ex-
ploitation of higher paying arms. A total of 100 candidate
multi-armed bandits were generated for the experiment and
stored. For each bandit, 20 corresponding novice and expert
policies were generated and stored.

Procedure Participants were introduced to the game with a
backstory, setting the stage for their asteroid mining adven-
ture titled “Asteroid Fortune Frontier.” They were briefed on
their mission aboard Proctor One, their virtual starship, where
they would traverse different zones in the galaxy. The narra-
tive established that each asteroid harbored unknown rewards
and that the distinct zones influenced the hidden payoffs.

We created an initial set of 10 unique asteroid designs. We
then varied them through random rotations and hue adjust-
ments, creating a diverse pool of 80 asteroids. In each zone
of the game, 12 of these asteroids were randomly selected
(one for each of the 12 bandit arms), enhancing the game’s
variety and unpredictability. Participants were told that suc-
cessfully mining asteroids would accumulate celestial wealth
in their Mining Tank.

Participants were informed about the possibility of observ-
ing other starships in action, emphasizing the importance of
attention during these observation phases to potentially aid
their own gameplay. Prior to diving into the main part the ex-
periment, participants engaged in a practice run to familiarize
themselves with the game mechanics. They then proceeded
through all 5 condition pairs, each twice, in random order.
Each condition pair was presented as a unique zone, labeled
as Zone 1, Zone 2, etc. on the screen. Participants were not
provided with specific details about the block or teacher con-
dition, or the underlying payoffs in each zone.

Results
Average total reward for each condition and block are shown
in Figure 3. All participants improved their total reward over
the course of each block, but total reward varied by condition.
To quantify variation in learning outcomes, and in particular,
how adding watch games impacts total reward, we created a
linear mixed effects model predicting mean total reward on
the second “play” block for each condition (see Table 1). We
chose this block because it allowed us to compare the effects
of social learning with different teachers to the same amount
of direct exploration without any social learning input.

Full model results are shown in Table 1. Both social learn-
ing conditions with an expert teacher yielded significant in-
creases in total reward over pure self-exploration. To explore
the significance of the contrast of novice teacher conditions
with the self-exploration baseline, we re-parameterized the
model so that novice was the reference level. The watch-play-
play condition with a novice teacher showed a small but sig-
nificant increase over the play-play-play baseline (p < 0.001)
while the play-watch-play condition with a novice teacher
was not significantly different (p = 0.251). There was no sig-
nificant difference between the play-watch-play and watch-
play-play conditions (β =−0.44, p = 0.177).

Social Learning Models
We modeled the participants’ arm choices and rewards using
Thompson sampling-based simulation. We first describe each
model and then how we use them to simulate data from our
experiment.

Models
To model how subjects integrated social information from the
watch games with their own prior knowledge, we used mod-
els based on Thompson sampling and UCB. Each Thompson
sampler is parameterized through a set of Beta-binomial con-
jugate distributions that represent the distribution over reward
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Table 1: Mixed-Effects Model Results
Estimate Std. Error t-value df p-value

(Intercept) block : [play-play-play] 15.63 0.27 58.99 1479.00 <0.001
block : [play-watch-play], teacher : expert 2.37 0.33 7.11 1479.00 <0.001
block : [watch-play-play], teacher : expert 1.92 0.32 6.01 1479.00 <0.001
block : [watch-play-play], teacher : novice -2.49 0.36 -6.98 1479.00 <0.001
block : [play-watch-play], teacher : novice -0.57 0.49 -1.15 1479.00 0.251

play−play−play play−watch−play watch−play−play

0 1 2 0 1 2 0 1 2
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Figure 3: Mean total reward for human participants for each
game, indicated by the block condition index, on all pairs of
block and teacher conditions. Watch scores, overlaid with a
pink hue, represent mean total reward for expert or novice
teacher demonstrations. Error bars represent 95% CI.

probabilities in each arm i of the bandit via a pair of Beta
parameters, αi and βi. Each UCB sampler is parameterized
through a set of counts for the number of times each bandit
arm has been pulled Ni and the total reward ri that has been
generated from each arm i from which Q-values and the num-
ber of time steps can be computed to run UCB.

In Thompson sampling each pair of parameters encodes
the number of times an arm has been pulled, with αi refer-
ring the number of times a reward was generated for arm i,
and βi referring to the number of times there was no reward
outcome. Thus, for additional arm pulls, updating the param-
eters only requires knowing the total number of trials with
the number of times a reward was generated (for each arm).
These parameters are estimated from watch games, denoted
αwatch

i and βwatch
i for each arm i, and then integrated with prior

knowledge via an update rule in 1. We can update UCB pa-
rameters in the samer manner as shown in 2.

αi← αi +α
watch
i βi← βi +β

watch
i (1)

Ni← Ni +Nwatch
i ri← ri + rwatch

i (2)

If there is no previous experience (play or watch), then all
parameters are 0 prior to integration. Thus integration is ac-
complished by an additive combination of the Thompson or
UCB parameters from prior knowledge and those estimated
from watch games. The estimation methods we present next
are methods for estimating the watch parameters. We used
the same additive integration method regardless of how we

estimated the parameters themselves.

Naive Estimation Model In this initial model, we treat ob-
served games as additional self-play observations. We esti-
mate the Beta parameters by following same update rule in
Thompson sampling directly from the observed actions and
reward outcomes. For UCB we simply count number of arms
pulls and rewards for each arm.

Hybrid Choice-Only Model Our next model attempted es-
timating expertise and using it as a basis for information in-
tegration. We trained a supervised neural network to predict
ground truth Thompson parameters. We generated a separate
training dataset of 12 armed bandits with random payoffs to
correspond to the 12 asteroids in the asteroid mining game.
This dataset consisted of 10,000 generated bandit problems
with Thompson sampling repeated 10 times on each bandit
(each for 72 iterations). This generated a training dataset
of 100,000 Thompson action sequences, each of length 72,
along with the resulting Thompson parameters for each step
of every sequence to serve as training targets. We also gener-
ated a validation set, using 1000 additional bandit problems,
for a total of 10,000 Thompson and UCB action sequences of
length 72. Using the training set we trained a Multi-layer Per-
ceptron (MLP), to predict the underlying αis and βis corre-
sponding to the end of the sequence of the observations from
the Thompson sampler simulations. In other words, given an
observation window of 24 actions sequences, each MLP is
supervised to predict the Thompson parameters correspond-
ing to the end of that sequence despite not observing actions
preceding the observation window. We refer to this model –
which does not have access to the reward information – as the
“hybrid choice-only estimator.” Since the αis and βis can be
equivalently transformed to Ni’s and ri’s and vice versa, we
additionally used the same Thompson based hybrid choice-
only model for a UCB hybrid choice-only parameter estima-
tor.

Hybrid Choice-Reward Model In order to probe the im-
pact that observing rewards has on the parameter estimation
and subsequent game play simulation, we additionally fit a
model using predictive estimation but with both choice and
reward observation. To do this we trained the same parameter
estimator but added reward information from the same obser-
vation window to the input during the parameter prediction
step. We call this model “hybrid choice-reward estimator”.
Similar to the hybrid choice-only model, we can use the the
Thompson hybrid choice-reward estimator to define a UCB
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Table 2: Human-Model Correlations (r) and RMSE
Condition Level Participant Level

Criteria Model r p RMSE r p RMSE

Reward

Thompson Naive Estimator 0.703 0.023 1.648 0.191 < 0.001 5.201
Thompson Hybrid Choice-Only 0.974 < 0.001 1.028 0.285 < 0.001 5.017
Thompson Hybrid Choice-Reward 0.976 < 0.001 0.869 0.269 < 0.001 5.063
UCB Naive Estimator 0.617 0.057 2.592 0.219 < 0.001 5.552
UCB Hybrid Choice-Only 0.895 < 0.001 1.864 0.296 < 0.001 5.407
UCB Hybrid Choice-Reward 0.90 < 0.001 2.042 0.316 < 0.001 5.405

Entropy

Thompson Naive Estimator 0.712 0.021 5.703 0.138 < 0.001 8.026
Thompson Hybrid Choice-Only 0.930 < 0.001 5.387 0.153 < 0.001 7.835
Thompson Hybrid Choice-Reward 0.917 < 0.001 5.221 0.161 < 0.001 7.732
UCB Naive Estimator 0.556 0.095 4.968 0.133 < 0.001 7.535
UCB Hybrid Choice-Only 0.789 0.007 4.415 0.150 < 0.001 7.274
UCB Hybrid Choice-Reward 0.785 0.007 4.185 0.163 < 0.001 7.001

hybrid choice-reward parameter estimator as well.

Simulations
To model human data, we used the same bandits, payoffs,
and teacher demonstrations with reward outcomes, shown to
participants. We simulated results for every block and teacher
condition completed by a participant.

The play-play-play block condition did not require hybrid
estimation since there were no watch games. Instead for this
block condition we used standard Thompson sampling and
UCB respectively.

The play-watch-play condition required first a standard
Thompson sampling and UCB run respectively for 24 steps
for the 1st play game, resulting in Thompson and UCB pa-
rameters for each arm, followed by a watch game simu-
lated by running Thompson-based and UCB-based naive es-
timation, hybrid choice-only estimation, and hybrid choice-
reward estimation. After completion of the watch game, the
Thompson and UCB parameters from the first play game and
the watch game were integrated using the update rules from
equations 1 and 2. The second play game was simulated
with Thompson and UCB sampling by first initializing each
model’s respective parameters with the resulting integrated
parameters. The simulation for this block condition resulted
in two sequences of 24 play steps of 24 arm pulls and corre-
sponding rewards for the first and second play for each of the
three estimation methods based on Thompson sampling and
UCB.

The watch-play-play condition started by directly estimat-
ing Thompson and UCB parameters of the teacher foe the
watch game using each of the three Thompson and UCB es-
timators. These parameters were then used to initialize three
separate Thompson and UCB samplers (one for each corre-
sponding estimator), each of which subsequently simulated
24 arm pulls for the first play game. The second play game
followed suit but initializing Thompson and UCB with the
parameters resulting from the end of 1st play game and sub-

sequently simulated another 24 arm pulls.

Comparing models to human performance
We compared models to human performance by computing
Pearson correlation and root mean squared error (RMSE) of
the total reward and entropy over arm choices between hu-
mans and each of the three models (naive estimation, hybrid
choice-only estimation and hybrid choice-reward estimation)
for both Thompson sampling and UCB on the play games.
We computed both condition level comparisons and partic-
ipant level comparisons. Condition level comparisons are
between mean values, of total reward and entropy respec-
tively, across pairs of block and teacher conditions. Partic-
ipant level comparisons are direct human to model compar-
isons, of total reward and entropy receptively, for individual
games. All comparisons between human and model perfor-
mance are parameter-free – no parameters of the models were
fit to the human data.

Each comparison used three weight initialization seeds for
the MLPs in the hybrid models. Furthermore, each of the
models used three unique payoff seeds for the multi-armed
bandit during simulation over which we computed average
reward across seeds with 95% confidence intervals.

We report the comparison results in Table 2. The Thomp-
son hybrid choice-reward model showed the best condition-
level correlation and lowest RMSE for mean reward. Thomp-
son hybrid choice-only showed the best entropy correlation
with the Thompson hybrid choice-reward showing similar
performance. The RMSE values for entropy however were
better performed by the UCB hybrid choice-reward model.
For participant level, reward and entropy correlations were
smaller as expected and best performed by UCB hybrid
choice-reward.

We show our best-fitting model, the Thompson hybrid
choice-reward, alongside other Thompson variants in Fig-
ure 4. This figure displays the average total rewards for the
first and second play games in each block condition for par-
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ticipants and the Thompson models for different teacher con-
ditions. Thompson sampling, showed an increase in total re-
wards from the first to the second play game, similar to hu-
mans, but with a slightly larger increase than participants. In
the play-watch-play and watch-play-play conditions, consis-
tent differences emerged between naive and hybrid estima-
tion. Naive estimation increased in reward between the first
and second play. However, the relative increases in reward
had significant differences compared to humans. Hybrid esti-
mation, on the other hand, strongly resembled participants in
the play-watch-play condition with sharper reward increases
from with an expert teacher, as well in the watch-play-play
condition with better starting reward in the first play after
watching the expert teacher.

General Discussion
This study aimed to provide an environment for studying so-
cial learning within the context of multi-armed bandits. We
used this multi-armed bandit game to test two models of so-
cial learning, naı̈ve estimation – treating social information
as additional actions and outcomes – and hybrid estimation –
in which neural networks were used to infer parameters esti-
mating experience and expertise from observations. Our hu-
man experiment found that participants achieved higher total
rewards when they observe an expert teacher compared to a
novice teacher or no teacher. The hybrid models performed
quite well, especially the Thompson based models, at match-
ing participant data even without any specific fitting to the
human data, especially compared with a baseline model that
treated social observations the same as self-play.

Interestingly, between our two hybrid social learning mod-
els for both Thompson and UCB, the choice-only variant per-
formed nearly as well as the choice-reward variant when com-
paring mean reward and even slightly better correlated when
comparing entropy from bandit arm choices. Hybrid choice-
only models were able to estimate the teacher’s Thompson
parameters from choice data alone with reasonably low er-
ror, suggesting that observing reward outcomes is not al-
ways necessary for estimating experience level and expertise.
This finding raises an interesting question about human social
learning: do humans keep track of teacher payoffs, or do they
instead care more about teachers’ actions? Perhaps actions
themselves are enough for social learners to infer expertise.

A notable limitation of this work is the choice to train
MLPs to predict Beta parameters, an internal parameter of
the Thompson sampler. To the extent they capture inter-
nal belief states, these parameters would not be observable,
which challenges the claim that integration with Thompson
parameter estimation somehow replicates the cognitive pro-
cess of human social learning. Despite this challenge, predic-
tive estimation of Beta parameters showcases the the capabil-
ity to precisely estimate experience level and how this process
might be incorporated with a learner’s own prior knowledge.
Thus, this work underscores a promising direction for future
research based on the premise that humans employ some form
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Figure 4: Mean rewards are shown for first and second play
games on each block condition. First row shows human re-
wards and subsequent rows show Thompson model rewards.
Mean rewards for play-play-play condition are displayed in
black indicating no teacher condition. Blue [red] points indi-
cate results with an expert [novice] teacher. Error bars repre-
sent 95% CIs.

of estimation to approximate teacher experience during social
learning to infer beyond the observations they see.

This study’s scope was deliberately confined to the realm
of multi-armed bandits, which inherently presents a limita-
tion. It is evident that social learning transcends the frame-
work of a bandit game characterized by intermittent observa-
tion cycles. Social learning dynamics are considerably more
complex and dynamic than what our current setup provides.
Nonetheless, this constraint has been instrumental in facilitat-
ing the comparison of humans to models. Moving forward,
we plan to enhance the complexity of our experimental en-
vironment. This includes the possibility of contextual ban-
dits and improving the dynamics between observations and
actions. We hope that this environment will allow future re-
search to capture some of the intricate dynamics of human
social learning.
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