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Abstract 

Presented is an extension of the simple recurrent network 
(SRN), termed the sequence encoder, which learns fixed-
width representations of variable-length sequences.  This 
architecture was used to learn orthographic representations 
for nearly 75,000 English words, of which nearly 69,000 
were multisyllabic.  Analyses showed that sequence encoder 
representations are shaped by the dependencies among 
letters in English word forms that reflect orthographic 
structure.  The model was used to predict participant ratings 
of the orthographic legality of pseudowords, and results 
showed that the model accounted for a substantial amount 
of variance in the ratings.  
 

Introduction 
Orthographic structure in English word forms is reflected 
in complex dependencies among letters and positions 
within each word.  The probability of a given letter being 
present in a word may depend upon the presence of other 
letters, resulting in common clusters like GH. The 
probability of finding a given letter may vary by position; 
for instance, the letter Z is rarely found at the end of 
English words. A representational scheme intended to 
capture the structure of English word forms must be 
sensitive to these as well as other kinds of dependencies.  
Ideally, a representational scheme should be sufficiently 
sensitive to the structure in its corpus to differentiate word 
forms by their legality, where legality is determined by a 
word form’s conformity to standard English dependencies. 

Representational schemes have been used to build 
models that capture the structure of English word forms, 
notably those used in Plaut, McClelland, Seidenberg, and 
Patterson (PMSP) and the dual route cascaded (DRC) 
models of lexical processing (Plaut et al., 1996; Coltheart 
et al., 2001).  From the representational schemes used in 
these two models it was possible to extract a substantial 
amount of information about the structure in English word 
forms.  However, these representational schemes have 
restricted models to processing only monosyllabic word 
forms.  This is due to difficulties inherent in representing 
the position of letters in multisyllabic word forms, arising 
from the increased variability in length of multisyllabic 
word forms. 

The difficulty with variable-length word forms can be 
described as a problem of alignment.  Choosing how to 
align word forms of variable-length involves defining how 

the positions in one word relate to the positions in another.  
A good alignment scheme should capture information 
about the similarities between a pair of word forms.  To 
illustrate the problem, if the two orthographically similar 
sequences JUMP and JUMPS are aligned by their first 
letter then they share four of the same letters in the same 
positions; thus for these two sequences, alignment by the 
first letter suggests they are very similar. However, when 
aligned by their first letter the two orthographically similar 
sequences BACK and ABACK share 0 letters in the same 
position.  If BACK and ABACK are instead aligned by 
their last letter, they share four letters in the same position. 
However, when aligned by their last letter, JUMP and 
JUMPS share no letters. Essentially, aligning word forms 
by either their first or last letter, or even around vowels 
(Daugherty & Seidenberg, 1992), fails to represent the 
similarities in various word forms.   

The desire to represent multisyllabic word forms 
motivated our efforts to develop a mechanism for learning 
representations of sequences that is based on the well-
known Serial Recurrent Network (SRN) architecture 
(Elman, 1990; Jordan, 1986).  The sequence encoder 
(Kello et al., 2004) learns such representations in the 
service of learning to encode and decode sequences of 
variable-length.  By virtue of being based on the SRN 
architecture, the sequence encoder representations are 
shaped by dependencies (e.g., conditional probabilities) 
that exist in its training corpus of sequences. Thus the 
sequence encoder may be used to learn representations of 
both mono- and multisyllabic word forms.  

The sequence encoder, shown in Figure 1, is created by 
conjoining two SRNs.  The first, called the encoding SRN, 
receives a sequence of input letters and encodes them into 
a single distributed representation, called the bridge 
representation. The second, called the decoding SRN, 
decodes the bridge representation into a sequence of output 
letters.  

By conjoining these two SRNs, the sequence encoder 
can be trained to code all the letters of a word in order.  By 
contrast, a standard SRN that is presented with letters one 
at a time and trained to simply predict each subsequent 
letter will learn to code only the information necessary to 
minimize the prediction error.  For many kinds of lexical 
corpora, it is either not necessary or not useful for the SRN 
to code information about all, or even many, of the letters 
in order to minimize the prediction error.  The consequence 
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is that the learned representations will not be shaped to 
code all the letters and their positions. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The sequence encoder architecture 
Most generally, the sequence encoder can be trained to 

learn bridge representations for any variable-length 
input/output mapping.  In other words, input sequences do 
not have to match output sequences in length or content.  
However, the task of learning word forms is most directly 
implemented by training the sequence encoder to 
reproduce verbatim each input sequence as an output 
sequence.  This “auto-encoding” task forces the bridge 
representations to code each letter in its position.  It has 
also been shown that connectionist auto-encoder models 
exploit the statistical structure of their inputs (Bishop, 
1995).   

The remainder of this paper examines the sequence 
encoder’s ability to learn representations that are sensitive 
to the structure of both mono- and multisyllabic word 
forms.  To this end, a sequence encoder was trained on 
75,265 English orthographic word forms, varying in length 
from 1 to 18 letters.  The model’s sensitivity to the 
dependencies in English word forms was assessed by 
testing its ability to account for participants’ ratings of the 
orthographic legality of pseudowords.  

Modeling Method 
Training corpus.  Representations were learned for 
74,265 English words, 68,945 of which were multisyllabic.  
These words were chosen by intersecting the CMU 
pronunciation dictionary (available at 
http://www.speech.cs.cmu.edu/cgi-bin/cmudict) and the 
Wall Street Journal Corpus (Marcus et al., 1993), then 
discarding homographs (for purposes outside the scope of 
the work discussed here) and words with more than 18 
letters.   
Input and output representations. Each letter in a 
sequence was coded by activating a single unit in two 
different banks of nodes. The first bank consisted of 26 
units, each representing a single letter (A through Z) with 
one additional unit representing the end of a sequence. The 

second bank consisted of two units which denoted whether 
the current letter was a consonant or vowel (the vowel 
letters were A, E, I, O, U and Y).  
 
Model architecture.  The sequence encoder, as shown in 
Figure 1, was built from 7 layers of connectionist units.  
The first layer received an input sequence on a set of 29 
localist nodes.  Activation for each letter in the sequence 
was propagated to hidden and context layers, producing 
distributed representations along each layers’ 500 nodes. 
Activation flowed from these representations to the Bridge 
layer, where they were accumulated to generate a single 
500 dimension distributed representation for the entire 
input sequence.  Activation was then propagated thorough 
a set of hidden and context layers each having 500 nodes, 
to produce a sequence of localist representations along the 
29 localist nodes of the output layer.  

The representational layers of the sequence encoder were 
connected as shown in Figure 1.  Any two layers linked by 
a solid arrow were fully connected; an independent 
connection weight extended from each unit in the sending 
layer to each unit in the receiving layer. Before training, 
these weights were initialized to small random values.  The 
dashed arrows represent a copy function; the activation 
pattern on the sending layer is copied onto the receiving 
layer at the end of each time step.  

The sequence encoder processed each sequence as a 
number of discrete time steps, first encoding then decoding 
a sequence.  On each encoding time step, the input units 
representing a single letter were activated and the encoding 
SRN run.  Upon completion of the last encoding time step, 
a final bridge representation was generated.   Then, for 
each decoding time step the bridge representation was run 
through the decoding SRN, producing a pattern of 
activation on the output layer.  On each decoding time step, 
the most active letter unit and consonant/vowel unit was 
taken as the model’s response.  For a sequence to be 
correct, every letter and consonant/vowel value had to be 
produced in the proper order. 

The net input to each hidden and output unit was 
calculated as the dot product of the incoming weight and 
activation vectors.  The activation of each hidden unit was 
computed as the hyperbolic tangent of its net input.  This 
function is sigmoidal with asymptotes at -1 and 1.  The 
activation of each output unit was computed as the 
exponential of its net input, normalized across the bank of 
output units.  This normalized exponential function is 
appropriate because letters were coded as localist 
representations and so could be interpreted as the 
probability of the output of each letter (Rumelhart, 1995). 

Weight updates were made after every batch of 50 
training examples chosen at random from the corpus.  For 
each element of each sequence, error derivatives were 
calculated and back-propagated up to the bridge 
representation. This error signal was used to train the 
decoding SRN, with a learning rate of 0.00005.  Next, the 
error signal accumulated on the bridge layer, for the entire 
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length of the sequence, was back-propagated through time 
while the sequence was reset onto the input layer. Weight 
updates were then made on the encoding SRN with a 
learning rate of 0.00000001.  A smaller learning rate was 
needed for the encoding SRN because of the accumulation 
of error derivatives on the bridge units.  Learning appeared 
to reach asymptote after 250,000 epochs of training, and 
was halted.  

 
Training and testing the sequence encoder.  A coarse 
test of the sequence encoder’s sensitivity to structure was 
achieved by examining the model’s ability to auto-encode 
3 different types of sequences.  These three types of 
sequences embody 3 different levels of legality, so a model 
sensitive to the structure of English word forms should 
process these different sequences with different degrees of 
success.  

First, sensitivity to the structure of English should result 
in correct auto-encoding of the trained words.  Second, to 
demonstrate that the model discovered general structure 
instead of memorizing the specific sequences in the 
training corpus, the model was assessed for its ability to 
correctly auto-encode “Legal Nonwords”.  A legal 
nonword is a sequence of letters that conform to the 
structure of English word forms, but are not in the training 
corpus (i.e., pseudowords).  Correct performance of these 
items required the model to generalize information about 
the dependencies in the training corpus.  Third, to test 
whether the model learned about the structure of English 
word forms and not how to auto-encode arbitrary 
sequences, we assessed its performance on sequences of 
letters that did not conform to the structure of English, here 
called “illegal nonwords”.  To achieve this analysis, we 
needed to generate legal nonwords and illegal nonwords. 

To create legal nonwords, we took each trained word 
form and replaced one of its letters.  These replacements 
yielded new sequences which were not in the training 
corpus.  To make the new sequences legal, each 
replacement letter was chosen from a word that shared the 
letters surrounding the replaced letter.  To illustrate, the 
word SPORTY could be changed into SPARTY by 
replacing the sequence SPORT with SPART, where 
SPART occurs in the word SPARTAN.  In this example, a 
letter is replaced by a new legal letter, determined by 
matching the 4 flanking letters.  For each of the 
replacements used to create a legal nonword, a single letter 
was chosen at random and replaced with another letter of 
the same class, vowel or consonant.  Three letters to either 
side were matched unless the beginning or end of the 
sequence was encountered.   

To create illegal nonwords, the letters in each of the 
legal nonwords were scrambled. An inspection of the 
resulting illegal nonwords revealed that this method 
generally produced sequences that violated the structure of 
English word forms. 

Model Results 
The sequence encoder correctly processed 89% of the 
words in its training corpus, including 88% of the 68,945 
multisyllabic words. This performance demonstrated the 
sequence encoder’s ability to generate representations in 
the service of auto-encoding both monosyllabic and 
multisyllabic word forms. The sequence encoder correctly 
processed 76% of the legal nonwords, including 75% of 
the multisyllabic legal nonwords.  Finally, the model 
correctly auto-encoded only 24% of the illegal nonwords.  
The poor performance of the model on illegal nonwords 
relative to legal nonwords is clear evidence that the auto-
encoding task drove the model to discover and exploit 
dependencies among letters that reflect the structure of 
English word forms.  

The results of this simulation show that the sequence 
encoder provides a viable means of learning 
representations for large numbers of monosyllabic and 
multisyllabic word forms.  Representations were shaped by 
the structure of English word forms, as evidenced by the 
selective generalization to legal but not illegal nonwords.  
This shaping occurred through the learning of 
dependencies among letters and positions within the 
sequences.  This sensitivity to dependencies enabled the 
model to differentiate between words based on their 
legality, despite never having been explicitly trained to 
perform this task. 

Pseudoword Legality Ratings 
The previous analysis suggests that the sequence encoder   
was able to learn some amount of structure in both 
monosyllabic and multisyllabic word forms.  However, the 
analysis provided little information about the extent to 
which the bridge representations became sensitive to 
different sorts of dependencies.  Further, it did not show 
whether the dependencies captured by the sequence 
encoder corresponded to those to which real language users 
are sensitive.  These questions were addressed by 
evaluating the model’s sensitivity to orthographic structure 
relative to behavioral data.  In particular, we tested whether 
the model’s success at processing novel word forms 
predicted participants’ judgments about the legality of a 
sequence of letters.  We then examined the dependencies to 
determine which might give rise to the sequence encoder’s 
predictive power.  

The sequence encoder’s sensitivity to the structure of 
English word forms can be assessed by the model’s ability 
to auto-encode novel sequences.  Successful auto-encoding 
of a novel word form requires the model to generalize 
information about the structure of the learned word forms.  
A failure to auto-encode a novel sequence reflects the 
model’s inability to represent the novel sequence using the 
information it acquired about the structure of English.  As 
such, the model’s success in processing each novel 
sequence should reflect the legality of the sequence.  The 
following analysis tested the extent to which the sequence 
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encoder’s performance predicted participants’ judgments 
of orthographic legality.  

The comparison of the model and behavioral data was 
performed with word forms within a restricted range of 
legality; none of the sequences in this analysis were either 
typical words (like FOOTBALL) or completely illegal 
nonwords (like TLLBAOOF).  Because of the restricted 
range of legality, the model needed to differentiate 
between subtle differences in legality, in order to account 
for any variance in behavioral responses.  This produced a 
more rigorous test of the sequence encoder’s abilities.  

Method 
The sequence encoder’s ability to generalize was compared 
to participants’ judgments about the legality of 600 
nonwords.  The nonwords for this analysis were developed 
using the previously described method for generating legal 
nonwords.  To generate word forms distinct from real 
English, the procedure previously discussed was run 
iteratively, 5 times on each word.  This resulted in 600 
relatively legal nonwords, each of which corresponded to a 
real word with up to 5 of its letters replaced. 

As would be expected, the nonwords created by 
replacing up to 5 letters in each word tended to be less 
legal than those produced by replacing a single letter.  This 
resulted in decreased performance on these new legal 
nonwords relative to those previously discussed - 71% 
instead of 76% correct, respectively.  Also, the shorter 
word forms created by this procedure tended to be more 
legal than the longer word forms.  The final 600 sequences 
were chosen by randomly selecting 150 of the new legal 
nonwords from the 4 most frequent lengths; 5, 6, 7, and 8 
letters.  Length was restricted to this range to reduce any 
confounding length effects introduced by the procedure 
used to make nonwords.  This was necessary because 
iteratively replacing 5 letters would have a different effect 
on a word form composed of 3 letters than one composed 
of 13 letters.  Of the final 600 new legal nonwords, 571 
were multisyllabic.  A representative sample of the word 
forms used in this analysis is shown in Table 1. 
Worst performance               Best performance  
   0          1          2         3        4 

sriteanf roadham wingins broins roins 

voruranc baclater ronte shiriner teres 

aterkan dertlee prare macee lanter 

mislerl naintira battly barss cears 

crultie crerley tonkies bardey stors 

dexcuges bencham hantend gaged funter 

debsane overetle dleised cerel lired 

lotingke gertisos stadio penscs panen 

echoc corleder boalans jurded rones 

intail tatzir mause sloners beins 

 
Table 1: Legal nonwords for which P, a measure of the 

sequence encoder’s performance, was closest to each of the 
integers; 0, 1, 2, 3, and 4. 

To formulate a more sensitive measure of the model’s 
generalization it was necessary to measure the model’s 
performance beyond a binary (correct or incorrect) 
distinction.  Instead, a continuous measure of the sequence 
encoder’s performance was generated for each of the 600 
words.  This was possible because the model tended to 
activate target nodes less than the maximum allowed.   

One conceptual interpretation of a connectionist model’s 
output is that the activation of each output node reflects the 
probability (nodes assume a value between 0 and 1) of 
producing the represented feature.  So the probability of 
producing a fully correct sequence could be calculated as 
the product of the activation on each of the target nodes.  
However, because many of the model’s outputs were 
asymptotically correct, a logarithmic transform was used to 
provide a more sensitive measure.  A continuous measure 
of the model’s performance was created  

log(1 ( ))iP a= − − Π , 
where P represents the model’s performance on a given 
sequence and ai is the activity on target node i in the 
sequence (the activation on a perfectly produced target 
node was 1).  For the nonwords used in this analysis, P 
assumed a value between 0 and 4, (for all but 3 discarded 
outliers) with 0 being the worst produced word form and 4 
being the best produced.   

Nine participants judged each of the 600 legal nonwords 
for their conformity to the structure of English word forms.  
Participants were instructed to consider the likelihood that 
each sequence was an English word they were unfamiliar 
with.  Legality judgments for each of the 600 word forms 
were made on a 5 point scale.   

Results 
Table 1 shows the 10 word forms for which P was closest 
to each of the integers; 0, 1, 2, 3, and 4.  Inspection of this 
table yields two observations, which are corroborated by 
later analysis.  First, the model generated a reasonable 
estimation of the legality of nonwords.  That is, word 
forms in the left most column were less regular than those 
in the right most column.  Second, the length of a sequence 
interacted with the model’s proxy for legality - sequence 
length accounted for 17.2% of the variance in P.  However, 
sequence length also accounted for 5.1% of the variance in 
the participants’ average responses.  Because the model 
and participants responded differentially to items of 
different length, we can partially attribute the length by 
legality interaction to an anomaly in the procedure used to 
generate the legal nonwords.    
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Figure 2: The sequence encoder’s performance on word 

forms receiving different legality ratings from participants 
 
To check the experimental paradigm, Cronbach’s alpha 

was calculated for the 9 participants’ responses.  At 0.87, it 
shows the participants’ judgments were largely internally 
consistent.  We then tested the correspondence between the 
model’s performance on novel sequences (P) and the 
participants’ ratings for each word form.  This was 
achieved by calculating the model’s average performance 
on each of the 5 ratings provided by each participant.  
Figure 2 was created by averaging this quantity across 
participants.  As depicted in this figure, each of the 5 
different ratings provided by a participant tended to be 
associated with the production of a different response 
pattern from the model, F (4, 32) = 38.64, p <.001.  This 
statistically significant capacity of the sequence encoder to 
account for behavioral data suggests it has developed a 
sensitivity to the structure of mono and multisyllabic 
English word forms.  Further, the sequence encoder’s 
sensitivity to dependencies is in some way similar to the 
sensitivity of native English readers.   

To depict the model’s ability to predict human behavior, 
we used a regression analysis to compare the model’s 
performance on each of the legal nonwords with the 
average of the 9 participants’ response to each item.  
Figure 3 is a scatter plot showing the relationship between 
the sequence encoder’s proxy for legality and the average 
of the participants’ judgments of legality, by item.  As 
depicted, the model predicted 14.5% of the variance in the 
participants’ judgments.  This demonstrates that the model 
became sensitive to some dependencies to which the 
participants were also sensitive.  This suggests that the 
sequence encoder discovered some structure in English 
orthography similar to that discovered by a skilled English 
reader. 

  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Scatter plot of participant and model responses 
 

Conclusions 
The present work examines the sequence encoder’s ability 
to generate representations that are sensitive to the 
structure of orthographic word forms.  The sequence 
encoder learned representations for more than 75,000 
English words, varying in length from 1 to 18 letters, with 
nearly 69,000 of the learned words being multisyllabic.   

In processing multisyllabic words, the sequence encoder 
overcame problems associated with representing positions 
in variable-length sequences.  While other connectionist 
systems have been used to process sequences, this 
sequence encoder is particularly suited to learning 
representations of lexical stimuli, an ability which may be 
useful in future models of lexical processing.  To elaborate 
on this point, we will briefly contrast the sequence encoder 
with three related connectionist systems. 

The sequence encoder is an extension of the SRN, which 
was designed to process sequences while performing the 
prediction task (Elman, 1990; Jordan, 1986).  These SRNs 
maintain a representation of prior elements in order to 
predict an upcoming element.  Prediction is accomplished 
by using whatever conditional probabilities exist in the 
trained sequences (Elman, 1995).  The sequence encoder 
inherits the SRN’s sensitivity to conditional probabilities, 
but goes beyond the standard SRN by creating a task that 
explicitly forces representations to code all the elements of 
a sequence along with their positions.  The sequence 
encoder thus becomes sensitive to conditional probabilities 
among all the letters of a word, which is also generally true 
of skilled readers (see McClelland & Rumelhart, 1981).   

Another connectionist system for processing variable-
length sequences is the recurrent auto-associative memory 
(RAAM; Pollack, 1990).  In RAAMs, connectionist units 
are trained to pack and unpack representations in a strictly 
recursive fashion.  By varying the number of recursive 
steps, the model can input or output a variable-length 
sequence.  However, the strictly recursive nature of this 
process makes it ill-suited to the problem of learning word 
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forms.  The RAAM architecture imposes a fixed 
hierarchical structure on each sequence, while English 
words are characterized by a more rough hierarchical 
organization that is free to vary from one word to the next 
(Andrews et al., 2004). 

A recently-developed connectionist system uses fully 
recurrent networks to learn representations of variable-
length sequences (Botvinick & Plaut, in press).  In this 
architecture, a sequence is input to the model one element 
at a time, much like the sequence encoder, until an output 
cue triggers the model to reproduce the sequence. This 
architecture was developed as a model of serial recall, a 
task with notable differences from lexical processing, and 
is therefore not well-suited to our current needs.  In 
particular, the model requires extensive training, and it is 
unclear how well it would scale and generalize in much 
larger linguistic domains like the one discussed here.   

Current models of the lexical system incorporate only 
monosyllabic words, because their representational 
schemes cannot easily incorporate multisyllabic words 
(Coltheart et al., 2001; Plaut et al., 1996).  The sequence 
encoder’s ability to learn representations for large numbers 
of multisyllabic words could be exploited to develop new 
models of impaired and unimpaired lexical processing (see 
Kello, in press).  These models could process a number of 
words approaching an adult’s vocabulary and could 
address large quantities of behavioral data regarding 
multisyllabic words (Balota et al., 2002). These are some 
of the directions that are currently being pursued with the 
sequence encoder. 
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