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ABSTRACT OF THE DISSERTATION

Essays on Over-the-Counter Financial Markets

by

Shuo Liu

Doctor of Philosophy in Economics

University of California, Los Angeles, 2020

Professor Pierre-Olivier Weill, Chair

This dissertation consists of three chapters that study dealer’s endogenous search effort

in over-the-counter (OTC) financial markets and its effect on asset’s liquidity risk in U.S.

corporate bond markets. In Chapter 1, I study dealer’s search intensity using a transaction-

level data set on U.S. corporate bonds. The main target of this chapter is to test whether

dealer’s search intensity is endogenously determined by their idiosyncratic states and how

search intensity affects market efficiency. Existing literatures commonly do not consider

dealer’s continuous adjustment of search intensity in search-and-match models and there

is no paper using transaction-level data to estimate the dealer-level state-dependent search

intensity. In this paper, I propose a search-and-match model with dealers’ endogeneous

and state-dependent search intensity and estimate it using the TRACE data for the U.S.

corporate bond market. I find that: [1] if we rank all dealers by their private valuations for

holding the bond, the dealer of the middle-level private valuation will choose the highest level

of search intensity, and she works as the “dealer of dealers” to reallocate bond positions from

the low-type dealers to the high-type dealers; [2] the estimated model gives us a quantitative

evaluation of the inefficiency due to the decentralized market structure. At the average level
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across all sub-markets in our sample, the model estimates that dealers’ search cost is 0.75%

of bond’s face value, and there is on average 8.64% of bond positions being misallocated,

comparing with a counterfactual frictionless market. In conclusion, the decentralized market

structure generates 8.96% welfare loss relative to the frictionless one.

In Chapter 2, I study the correlation between corporate bond’s misallocation among

dealers and liquidity risk. This chapter bridges the literature on search-and-match mod-

els and the literature on explaining the non-default component of corporate bond’s credit

spread variations. In this paper, I propose a measure of bond’s misallocation among dealers.

This measure is based on a structural search-and-match model, and is defined as the cross-

sectional covariance of dealers’ idiosyncratic private valuations for holding the bond and

their actual inventory positions in the bond. Using the TRACE data for the U.S. corporate

bond market, I construct a panel data which contains yearly series of empirical estimates of

bond’s misallocation and liquidity risk, and verify that: at the bond level, a higher magni-

tude of misallocation among the dealers is associated with a higher magnitude of liquidity

risk. This finding gives a preliminary market microstructural evidence supporting that: the

distribution of market maker’s states correlates with the magnitude of asset’s liquidity risk.

In Chapter 3, I theoretically study the social optimal policy function of dealer’s meeting

technology in over-the-counter markets. This chapter contributes to the existing literature

by considering the dealer-level state-dependent meeting technology in a random search model

and obtaining explicit-form solutions of the social optimal policy functions. In the model,

I allow the agents (dealers) to freely adjust their meeting technologies based on two types

of idiosyncratic states: asset position and liquidity need. I find that in the social optimal

policy functions, there is no intermediation in the sense that no dealer will choose to search

simultaneously on both the buy side and sell side of the market. This result applies for a

general form of search-cost function.
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CHAPTER 1

Dealers’ Search Intensity in U.S. Corporate Bond

Markets

1.1 Introduction

In the U.S. corporate bonds markets, dealers manage bond inventories to provide liquid-

ity to customers. Inventory management is facilitated by a decentralized over-the-counter

(OTC) interdealer market subject to search frictions: dealers need to locate other dealer-

counterparties with whom to trade. To overcome search frictions, dealers need to decide how

much time and how many resource to spend in building connections with other dealers or to

hire how many traders to staff their trading desks. Empirical papers on trading structures of

decentralized financial markets show that dealers exhibit persistently heterogeneous trading

frequencies1. Does this market structure emerge from dealers’ heterogeneous search efforts?

How does dealers’ choice of search efforts affect market efficiency? Examing these questions

will help provide a framework to study how search frictions affect the welfare of market

participants through affecting dealers’ trading activities and asset liquidity.

In this paper, we propose and estimate a search-based model for the U.S. corporate

bond market, extending Hugonnier, Lester, and Weill (2018). There are two aspects of

1The recent empirical studies on OTC markets commonly use a conceptual framework inherited from the
analysis of static networks to document a “core-periphery” trading structure within the interdealer market.
Such market structure is documented by Di Maggio, Kerman, and Song (2017) for the U.S. corporate bond
market, Li and Schürhoff (2014) for the U.S. treasury bond market, Hollifield, Neklyudov, and Spatt (2017)
for the U.S. securitizations market, and Bech and Atalay (2010) for the fed funds market.
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contribution: on the theory side, the innovation is to consider dealers’ endogeneous and

state-dependent choice of search intensity based on dealers’ idiosyncratic states (holding

position and private valuation2 for each bond). Dealers’ endogeneous search intensity drives

heterogeneous frequency of trade and ultimately determines the impact of search costs on

equilibrium liquidity yield spread3; on the empirical side, we offer a structural estimation

of dealers’ search intensities and search model parameters by using the academic version

of TRACE data. This dataset includes the information on the identities of the dealer-

counterparties in each transaction. Using the estimated search intensities, we validate the

theoretical predictions on dealers’ heterogeneous roles in the intermediation process. Using

the estimated search model, we further quantify the over-the-counter inefficiencies in terms

of welfare per capita and bond misallocation in U.S corporate bond markets.

This model has the following features that distinguish it from the other search-based

models which also explain dealers’ heterogeneous frequency of trade:

First, dealers’ heterogeneous search intensities can be identified from transaction-level

data. The identification depends on the “separation” of the dealer sector from the customer

sector and the assumed matching technology in the model: [1] the separation of the dealer

sector from the customer sector allows us to identify the relative level of search intensities

across the dealers separately on the buy and sell sides of the market. If moving across dealers

on the same side, all the dealers have the same probability of meeting and trading with a

customer. This implies that, on either side of the market, dealers’ number of completed

transactions with customers are proportional to their search intensities. This allows us to

identify the relative trend of searching activity across the dealers on the same side; [2] the

matching technology allows us to use the realized transactions between two specific dealers,

2In the spirit of Duffie, Gârleanu, and Pedersen (2005), market participants have idiosyncratic private
valuation type (preference) for the target asset which is modelled as a “consol”. By holding the asset, market
participants obtain flow utility, the level of which equals the level of their valuation for the asset.

3Recent empirical analyses show that the interdealer search frictions drive the large unexplained common
factor in bond-level yield spread changes (see Friewald and Nagler (2018), Bao, O’Hara, and Zhou (2016)).
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dealers with the maximum and the minimum private valuations, to identify the ratio of the

dealer-sector’s aggregate buying-search intensity over its aggregate selling-search intensity,

because the matching technology assumes for each dealer, the probability of contacting (being

contacted by) a trading counterparty is proportional to the counterparty’s (the dealer’s)

search intensity4. This ratio is further equal to the ratio of the conditional5 probability of

trading with a customer on the buy side over that on the sell side, for every dealer. Then

using this identified ratio, we further exclude the effect of “conditional probability of trading

with customers” from the difference in realized dealer-customer transactions between the

buy and sell sides, and we identify the remaining part as being from the difference between

each dealer’s buying- and selling- search intensities6. Then we finally identify each dealer’s

total searching activity by summing over her buying- and selling- search intensities.

Second, the model characterizes the shape of the distribution of search intensity among

dealers, and connects it with dealers’ heterogeneous roles in the intermediation of bonds. My

model generates the following two predictions that can both be empirically verified: [1] deal-

ers’ total search intensity is a hump-shaped function of dealers’ private valuation. Within

each cross section, dealers of intermediate private valuations choose higher total search in-

tensities and dealers of extreme (either low or high) private valuations choose relatively

lower total search intensities. Moreover, the lower total search intensities of the low(high)-

type dealers are mainly driven by lower selling(buying) intensities. This prediction implies

that the intermediate-type dealers behave as the intermediary and they trade actively on

both sides of the market to intermediate the bond from low-type dealers to high-type ones.

Empirically verifying this prediction makes my model complement the results of the other

4This matching technology is discussed and used by Mortensen (1982), Shimer and Smith (2001), and
Üslü (2019)

5Here by “conditional”, we mean conditional on searching on the buy or sell side of the market, a dealer
has a realized trade with a customer instead of another dealer.

6Another key assumption in my model is that dealers on either side of the market follow a unique policy
function to decide on their search intensity, and dealers change their search intensities whenever they switch
from one side of the market to the other.
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search-based models; and [2]: dealers play heterogeneous roles in the intermediation pro-

cess by specializating in transactions of different directions. Low-type dealers spend more

resources searching on the buy side and specialize in buying the bond from customers and

selling to other dealers; high-type dealers spend more resources searching on the sell side

and specialize in selling the bond to customers and buying from other dealers. Intermediate-

type dealers on average invest in equal amounts of average buying and selling intensities,

and contribute most to intermediating the bond from low-type dealers and/or customers to

high-type ones.

Finally, state-dependent search intensity allows the model to be used as a framework to

study how search frictions affect the welfare of market participants through driving dealers’

trading activities. The estimates of model parameters indicate nontrivial market inefficiencies

compared with frictionless markets in terms of welfare per capita and bond misallocation.7

In this paper, we define each market as a combination of bond j and quarter q, and con-

duct counterfactual analysis as in Gavazza (2016) for each Market(j, q). The main findings

include: [1] search frictions generate on average an 8.96% welfare loss across all markets,

compared to corresponding frictionless markets. For each market, we calculate welfare as the

difference between the total utility flow and the total search costs spent by all the dealers.

For each counterfactual frictionless market, welfare is equal to the total utility flow but with

no bond misallocation; [2] for each bond, there is on average 8.64% of total shares being

mis-allocated, in the sense of being held by customers and/or dealers with private valuations

lower than the marginal investor in a frictionless market; and [3] The levels of these two

dimensions of inefficiencies exhibit high variations across bonds and over time.

7Bond misallocation means the proportion of amount of bond that is being held by agents (either dealers
or customers) with valuation types lower than that of the marginal agent.
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Related literature

The model with state-dependent search intensity contributes to the theoretical literature

initiated by Duffie, Gârleanu, and Pedersen (2005) that uses a search-and-match model to

study asset price and liquidity in over-the-counter markets. My model studies fully de-

centralized market structure by setting a random search environment, which is similar to

one strand of the literature developed by Duffie, Gârleanu, and Pedersen (2007), Vayanos

and Wang (2007), Vayanos and Weill (2008), Weill (2008), Afonso (2011), Gavazza (2011),

Praz (2014), Trejos and Wright (2016), Afonso and Lagos (2015), Atkeson, Eisfeldt, and

Weill (2015). Another strand of literature focuses on semi-decentralized market structure

in which dealers trade in a frictionless centralized interdealer market which allows them to

immediately offload inventories through trading with other dealers, as in Weill (2007), La-

gos and Rocheteau (2009), Feldhütter (2011), Pagnotta and Philippon (2018a), and Lester,

Rocheteau, and Weill (2015).

My model is most related to Hugonnier, Lester, and Weill (2018) in the setting of deal-

ers’ heterogeneous valuation types and the incorporation of both dealer and customer sec-

tors. The main difference in my model is that we consider dealers’ explicit choice of state-

dependent search intensity based on their idiosyncratic states. In Hugonnier, Lester, and

Weill (2018), dealers are endowed with homogeneous search intensities.

My model is different from Shen, Wei, and Yan (2018) who is the first to consider the

search intensity decision. They discuss the endogenous entry and exit of investors into an

over-the-counter market based on investors’ idiosyncratic trading needs and a common search

cost, which focuses more on the extensive margin of choosing whether to search or not. Once

entering the market, investors will adopt the same level of search intensity. My paper instead

considers dealers’ intensive margin of choosing how fast to search within the market, based

on dealers’ idiosyncratic trading needs and bond positions. The empirical identification of

dealers’ heterogeneous search intensities shows that the intensive margin of choosing the
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search speed is significant within the dealer sector.

There is a contemporaneous strand of literature that also considers heterogeneous search

intensity as the main mechanism of endogeneous intermediation under a random search en-

vironment: Neklyudov (2012) considers exogeneously heterogeneous search intensity among

dealers and two discrete valuation types; Üslü (2019) introduces ex-ante heterogeneity in

meeting rates into a fully decentralized market model with unrestricted asset holdings; Far-

boodi, Jarosch, and Shimer (2017b) consider ex-ante choice of (distribution of ) search

intensity at the initial time, after which each agent maintains a fixed level of search intensity

even though their private valuations may change, but my model allows dealers to change

their search intensities as long as their state variables change.8

Moreover, my model relates to papers with alternative, other than search intensity, mech-

nisms of endogeneous intermediation, including Farboodi (2014) on bank heterogeneous risk

exposure, Neklyudov and Sambalaibat (2015) on dealers’ serving clients with different liquid-

ity needs, Wang (2016) on the trade-off between trade competition and inventory efficiency,

Farboodi, Jarosch, and Menzio (2017a) on dealers’ heterogeneous bargaining power, and

Bethune, Sultanum, and Trachter (2018) on private information and heterogeneous screen-

ing ability, among others.

This paper fills the gap in empirical analysis on heterogeneous search intensity/frequency

of trade in the search-based literature. In current papers, heterogeneity in dealers’ frequency

of trade is mostly motivated by the documented core-periphery structure based on the net-

work approach, as in Li and Schürhoff (2014) for the U.S. treasury bond market, Di Maggio,

Kerman, and Song (2017) for the U.S. corporate bond market, Hollifield, Neklyudov, and

Spatt (2017) for the U.S. securitizations market, and Bech and Atalay (2010) for the fed

funds market. By using transaction-level data on corporate bonds, this paper quantifies this

8There exist other related papers that consider other mechnisms, other than heterogeneous search inten-
sity, to generate heterogeneous frequency of trade among market participants. For example, in Farboodi,
Jarosch, and Menzio (2017a), dealers’ frequency of trade is driven by heterogeneous bargaining power instead
of their search intensity.
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interdealer core-periphery structure by a search-based approach. From the search perspec-

tive, the core dealers are the ones choosing higher total search intensity over both sides of

the market and the periphery ones choose relatively lower total search intensity.

Finally, my paper empirically identifies dealers’ search intensity in an over-the-counter

financial market, based on which dealers’ search cost and financial asset misallocation are

quantified. In terms of estimation, my paper is most related to Gavazza (2016), who esti-

mates a search-and-bargaining model of a decentralized market by using transaction data on

business aircraft, and quantifies the effects of trading frictions and the existence of dealers

on asset price, allocation and social welfare. Hendershott, Li, Livdan, and Schürhoff (2017)

also do structural estimation for a one-to-many search-and-match model with endogeneous

network size and transaction prices, and quantify the effects of client-dealer relations on

execution quality in the OTC market for corporate bonds. Other papers that structually es-

timate search models focus mostly on labor markets, including Eckstein and Wolpin (1990),

and Eckstein and Van den Berg (2007), among others.

1.2 Model

The model is an extension of Hugonnier, Lester, and Weill (2018), but with state dependent

dealer search intensity.

1.2.1 Environment

Market participants and preferences Market participants include a continuum of cus-

tomers with measure normalized to 1 and a continuum of dealers with measure m ≤ 1.

Dealers and customers trade a long-lived indivisible bond in fixed supply s < 1 + m, and

each participant’s holding a is assumed to be either zero or one.9 Market participants are

9This {0, 1} assumption for bond holding and the indivisibility of bonds determine that the trading
volume in each transaction equals one.
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all risk neutral and discount future utility flow at rate r. By holding one unit of bond, each

participant obtains a utility flow per unit time, which is equal to her idiosyncratic private

valuation type.10

Customers’ private valuation type takes two possible values, either low or high, denoted

by y ∈ {y`, yh} with y` < yh. Each customer draws a new private valuation with intensity α.

Private valuation processes are independent across customers and independent of everything

else. Customers’ new private valuation y′ follows a discrete distribution with P (y′ = yc) = πc,

c = `, h. In a stationary equilibrium, πc is equal to the measure of customers with type c.

Dealers’ private valuation type δ ∈ [δ`, δh] follows an arbitrary continuous distribution

with pdf f(δ). As in Hugonnier, Lester, and Weill (2018), we assume dealers’ private valua-

tions are stable over time.11

Search, matching, and trade All market participants randomly search and trade in the

market. Each dealer chooses the optimal search intensity λ∗a(δ) as a function of her current

asset position a ∈ {0, 1} and private valuation type δ ∈ [δ`, δh]. The flow cost of choosing

λ∗a(δ) is given by c × λ∗a(δ)2 with c > 0. The value of c captures the market level of search

friction. Customers have constant search intensity ρ > 0. We assume dealers search to meet

and trade with both other dealers and customers, while customers search to meet and trade

only with dealers.

We adopt the matching technology discussed by Mortensen (1982), Shimer and Smith

(2001), and Üslü (2019). The intensity with which a dealer with search intensity λ contacts

or is contacted by another dealer with search intensity λ′ equals m(λ, λ′) = 2 × m
1+m
× λλ′

Λ
,

where m
1+m

is the probability of meeting a dealer conditional on a meeting and Λ is the

aggregate level of all dealers’ search intensities. Therefore the intensity of meeting a specific

10The private valuation can be determined by dealers’ idiosyncratic liquidity needs, financing costs, hedging
needs, and etc. Within each cross section, dealers can be ranked by their private valuation types.

11In the data, dealers’ trading behavior (total trading volume, fractions of trading volume with different
directions, and centrality, etc) is much more stable than customers’.
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trading counterparty is not only proportional to the corresponding physical measure but

also proportional to the counterparty’s search intensity. Similarly, the intensity with which

a dealer with search intensity λ contacts or is contacted by a customer equals m(λ, ρ) =

λ×
(

1
1+m

+ ρ
mΛ

)
.

Once two participants meet, trade only happens when there exist positive gains from

trade, and transaction price is determined by Nash bargaining. We assume a dealer’s bar-

gaining power with other dealers is equal to 1
2
. Dealers’ bargaining power with customers is

equal to θ s.t. 0 < θ < 1.

1.2.2 Model solutions and stationary equilibrium

Within each group of dealers of the same private valuation type δ ∈ [δ`, δh], there exist

dealer-owners and dealer-non-owners. We denote the density of dealer-owners of type δ by

φ1(δ) and that of dealer-non-owners of the same type by φ0(δ). Dealer-owners hold one unit

of bond and search to sell the bond to other dealers or customers. Once a sale is completed,

they become dealer-non-owners and search to buy one unit of bond from other dealers or

customers. There are four groups of customers: high- and low-type owners and non-owners.

We denote the corresponding measures by µh1, µh0, µ`1, µ`0.

A dealer/customer’s willingness to pay for the bond is determined by her reservation

value, which is equal to the difference between the values of holding and not-holding the

bond. Therefore, if Va(δ) is the value of a dealer with type δ ∈ [δ`, δh] and holding position

a ∈ {0, 1}, then the reservation value is 4V (δ) = V1(δ) − V0(δ). Similarly, the value and

reservation value of a customer with type y ∈ {y`, yh} and holding position a ∈ {0, 1} are

denoted by Wa(y) and 4W (y) = W1(y)−W0(y).
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1.2.2.1 Dealers’ reservation value

As is standard, Va(δ), with a ∈ {0, 1} and δ ∈ [δ`, δh], satisfies the HJB equation:

rVa(δ) = max
λ

{
−cλ2 + aδ

+
∑

c∈{`,h}

λ

(
1

1 +m
+

ρ

mΛ

)
µc,1−aθ ((2a− 1)(4W (yc)−4V (δ)))+

+

∫ δh

δ`

2λ
m

1 +m

λ∗1−a(δ
′)

Λ
φ1−a(δ

′)
((2a− 1)(4V (δ′)−4V (δ)))+

2
dδ′
}
(1.1)

where x+ = max{0, x}, λ∗0(δ) is the optimal search intensity of a dealer non-owner with type

δ, λ∗1(δ) is the optimal search intensity of a dealer owner with type δ, and Λ is the aggregate

level of all dealers’ search intensities Λ =
∫ δh
δ`
λ∗0(δ)φ0(δ)dδ +

∫ δh
δ`
λ∗1(δ)φ1(δ)dδ.

According to (1.1), by choosing search intensity λ, a dealer of type δ who holds a = 1

unit of bond pays flow cost cλ2 and enjoys the utility flow δ until one of following two events

occur: first, with intensity 2λ m
1+m

the dealer owner contacts or is contacted by a dealer non-

owner of higher private valuation type and receives half of the trade surplus; second, with

intensity λ
(

1
1+m

+ ρ
mΛ

)
the dealer owner contacts or is contacted by a customer non-owner

with type yh and receives θ of the trade surplus. Similar interpretations work for dealer

non-owners with holding position a = 0 and not enjoying any utility flow.

Given distributions, reservation values, and all other dealers’ optimal search intensities,

by FOCs of the HJB equation (1.1), the optimal search intensities λ∗1(δ) and λ∗0(δ) satisfy

the following conditions:

2cλ∗1(δ) =

(
ρ

mΛ
+

1

1 +m

)
µh0θ(4W (yh)−4V (δ))

+
m

1 +m

∫ δh

δ

λ∗0(δ′)φ0(δ′)

Λ
(4V (δ′)−4V (δ))dδ′ (1.2)
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2cλ∗0(δ) =

(
ρ

mΛ
+

1

1 +m

)
µ`1θ(4V (δ)−4W (y`))

+
m

1 +m

∫ δ

δ`

λ∗1(δ′)φ1(δ′)

Λ
(4V (δ)−4V (δ′))dδ′ (1.3)

∀δ ∈ [δ`, δh]. Then the HJB equation for the reservation value function 4V (δ) is:

r4V (δ) = −cλ∗1
2(δ) + cλ∗0

2(δ) + δ + 2λ∗1(δ)
m

1 +m

∫ δh

δ

λ∗0(δ′)

Λ
φ0(δ′)

4V (δ′)−4V (δ)

2
dδ′

+ λ∗1(δ)

(
1

1 +m
+

ρ

mΛ

)
µh0θ(4W (yh)−4V (δ))

− 2λ∗0(δ)
m

1 +m

∫ δ

δ`

λ∗1(δ′)

Λ
φ1(δ′)

4V (δ)−4V (δ′)

2
dδ′

− λ∗0(δ)

(
1

1 +m
+

ρ

mΛ

)
µ`1θ(4V (δ)−4W (y`)) (1.4)

The equations (1.2)-(1.4) presume the monotonicity of reservation value function4V (δ) and

that dealers always want to buy from low-type customers and sell to high-type customers.12

1.2.2.2 Customers’ reservation value

The reservation value of a customer with private valuation type y ∈ {y`, yh} satisfies the

following HJB equation by similar steps:

r4W (y) = y +
∑

j∈{`,h}

απj (4W (yj)−4W (y))+ (1.5)

+

(
ρ

mΛ
+

1

1 +m

)
(1− θ)

∫ δh

δ`

λ∗0(δ)φ0(δ)(4V (δ)−4W (y))+dδ

−
(

ρ

mΛ
+

1

1 +m

)
(1− θ)

∫ δh

δ`

λ∗1(δ)φ1(δ)(4W (y)−4V (δ))+dδ

12The presumption of monotonicity of 4V (δ) is a guess and will be verified in the proof of Proposition
1. The presumptions that dealers always want to buy from (sell to) low-type (high-type) customers require
a parametric restriction, as in Hugonnier, Lester, and Weill (2018). We will verify numerically that these
restrictions hold in the numerical examples.
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The difference in a customer’s reservation value from that of a dealer is: with intensity α, a

customer switches her private valuation type. Again, equation (1.5) presumes that dealers

always want to buy from low-type customers and sell to high-type customers.

1.2.2.3 Distribution of dealers and customers

The densities of dealer owner φ1(δ) satisfy the following inflow-outflow equations in equilib-

rium:
2m

1 +m
φ1(δ)λ∗1(δ)

∫ δh

δ

λ∗0(δ′)

Λ
φ0(δ′)dδ′ +

(
ρ

mΛ
+

1

1 +m

)
φ1(δ)λ∗1(δ)µh0 (1.6)

=
2m

1 +m
φ0(δ)λ∗0(δ)

∫ δ

δ`

λ∗1(δ′)

Λ
φ1(δ′)dδ′ +

(
ρ

mΛ
+

1

1 +m

)
φ0(δ)λ∗0(δ)µ`1

∀δ ∈ [δ`, δh]. In (1.6), the left-hand side is the outflow due to trading with dealer non-owners

with higher types and high-type customer non-owners. The right-hand side is the inflow

due to trading with dealer owners with lower types and low-type customer owners. Given

the condition φ1(δ) + φ0(δ) = f(δ), ∀δ ∈ [δ`, δh], the inflow-outflow equation of φ0(δ) is

redundant.

The measures of high-type customer non-owner µh0 and low-type customer owner µ`1

satisfy the following inflow-outflow equations:

αµ`0πh = µh0

(
ρ

mΛ
+

1

1 +m

)∫ δh

δ`

λ∗1(δ)φ1(δ)dδ + αµh0π` (1.7)

αµh1π` = µ`1

(
ρ

mΛ
+

1

1 +m

)∫ δh

δ`

λ∗0(δ)φ0(δ)dδ + αµ`1πh (1.8)

In both (1.7) and (1.8), the left-hand side represents the inflow due to type switch and

the right-hand side represent the outflow due to switching type and trading with dealers.

Given the measures of high-type customer πh and low-type customer π`, the inflow-outflow

equations of µh1 and µ`0 are also redundant.

Then we define stationary equilibrium as follows:
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Definition 1.2.1: A stationary equilibrium contains 4V (δ), φ0(δ), φ1(δ), λ∗0(δ), λ∗1(δ) and

4W (y`), 4W (yh), µ`0, µ`1, µh0, µh1, such that

1. Given distributions φ0(δ), φ1(δ), µ`0, µ`1, µh0, µh1, and f(δ), δ ∈ [δ`, δh]:

– 4V (δ), λ∗0(δ), λ∗1(δ) solve dealers’ HJB equation (1.4) and first-order conditions

for search intensities (1.2)-(1.3);

– 4W (y`), 4W (yh) solve customers’ HJB equation (1.5).

2. Given λ∗0(δ), λ∗1(δ), ρ, the endogeneous distributions φ0(δ), φ1(δ), µ`0, µ`1, µh0, µh1

satisfy:

– φ0(δ) + φ1(δ) = f(δ),∀δ ∈ [δ`, δh] where
∫ δh
δ`
f(δ)dδ = m;

– µ`1 + µ`0 = π`, µh1 + µh0 = πh where π` + πh = 1;

– the inflow-outflow equations (1.6)-(1.8).

3. Market clears:

–
∫ δh
δ`
φ1(δ)dδ + µ`1 + µh1 = s

For the existence of such a stationary equilibrium, we consider a continuous and compact

mapping based on a system of equations. This system of equations includes dealers’ and

customers’ HJB equations, the first-order conditions for search intensities, the evolution

equation of the asset-owner density function φ1(δ), the evolution equation of the high-type

customer-nonowner density µh0, and the evolution equation of the low-type customer-owner

µ`1.13 A proof of existence will not be included in this paper, and a similar proof based on

Schauder’s fixed-point theorem can be referred in Liu (2018).14

13All the evolution equations are based on the inflow-outflow equations that at each time the net change
in the density of a specific group of agents is obtained by subtracting the outflow from the inflow of that
group.

14In the numerical algorithm, we obtain the other equilibrium components φ0, µh1, and µ`0 by equilibrium
conditions φ0(δ) + φ1(δ) = f(δ), µ`1 + µ`0 = π`, and µh1 + µh0 = πh. The market clear condition is used for
checking whether the model solution converges to a fixed point.
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1.2.3 Model predictions

Compared with models with either constant or exogeneous search intensity, this model allows

us to study how search intensity varies as a function of private valuation types and also varies

between owners and non-owners within each type, since search intensity is dealers’ state-

dependent choice. The distribution of search intensity determines that of trading volume

across dealers, which further implies the role played by dealers in the intermediation process.

1.2.3.1 Dealers’ heterogeneous search intensities

We define the total search intensity for a dealer of type δ ∈ [δ`, δh] as follows:

λ̄(δ) = φ1(δ)× λ∗1(δ) + φ0(δ)× λ∗0(δ)

where φ1(δ) × λ∗1(δ) is interpreated as the selling intensity of a dealer with type δ, and

φ0(δ) × λ∗0(δ) is the buying intensity of a dealer with type δ. Total search intensity is

empirically relevant such that it can be regarded as a measure of a dealer’s search behavior

over both buy and sell sides at medium frequency. Alternatively, it measures a dealer’s

instantaneous search behavior with many traders. Formally, we can imagine a dealer is a

continuum coalition of traders with identical type but idiosyncratic trading histories. The

size of the coalition of type-δ traders is equal to f(δ), where a fraction φ1(δ) of the traders

own the bond and a fraction φ0(δ) of the traders do not own the bond.

As for the distribution of total search intensity λ̄(δ) among the cross section of dealers,

we have the following proposition:

Proposition 1: In any stationary equilibrium with 4W (y`) < 4V (δ) < 4W (yh), ∀δ ∈

[δ`, δh]:

1. λ∗1(δ) is strictly decreasing in δ, λ∗0(δ) is strictly increasing in δ;
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Figure 1.1: Policy functions and total search intensity

(s = πh = 0.5, y` = 0.5, yh = 1.7, δ` = 0.6, δh = 1.6, α = ρ = m = θ = 0.5, c = r = 0.05)

2. If the distribution of private valuation f(δ) is a uniform distribution on [δ`, δh], there

exists a symmetric equilibrium s.t. φ1(δ) = φ0(δ` + δh− δ) and λ∗1(δ) = λ∗0(δ` + δh− δ),

∀δ ∈ [δ`, δh]. In this symmetric equilibrium, ∃c∗ > 0 s.t. for any c < c∗, λ̄(δ) is

hump-shaped and attains its maximum at intermediate type δ`+δh
2

.

All proofs are in the Appendix 1.A.1.1. The condition c < c∗ implies that the hump-shaped

property applies for the not very high level of search friction. When c > c∗, this property may

fail. Specifically, for a very high level of c, the function of λ̄(δ) may switch to be u-shaped.

For a single dealer owner holding one unit of bond, the lower the dealer’s private valuation,

the more willing she is to search fast (on the sell side) to sell the bond, due to the higher

marginal gains of searching. Similarly, for a single dealer non-owner, the higher the dealer’s

private valuation, the higher the gains from searching (on the buy side) to buy the bond.

Dealers’ total search intensity is hump-shaped with private valuation δ ∈ [δ`, δh], which is

driven by a composition effect in a market with a low enough level of search friction. Dealers

with extreme valuations (either very high or very low) choose lower total search intensities

than the dealer with middle valuation. To understand this finding, consider a dealer with
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a very high valuation. When this dealer is on the buy side, she chooses very high search

intensity because she values the bond more than most other dealers (on the buy side), she

has incentive to search quickly to acquire the bond from the dealers on the sell side. Once

she acquires the bond, she switches to the sell side and chooses a very low search intensity,

since there are very few dealers on the sell side with private valuations that are higher than

hers. As a result, in stationary equilibrium, this high-valuation dealer buys very quickly and,

is more likely to be on the sell side of the market, with a low search intensity. The key that

this high-valuation dealer is able to buy quickly and spends more time on the sell side is the

low level of search friction which enables her to quickly acquires the bond. So in terms of

total value with densities φ0(δ) and φ1(δ) being as weights, her total search intensity is at a

low level. Similar result works for the low-valuation dealer, she sells very quickly and is more

likely to be on the buy side, also with a low search intensity, which makes her total search

intensity at a low level. By contrast, the dealer with middle valuation has equal weights to

be on the buy and the sell sides of the market, with relatively high search intensity on both

sides. So considering both sides of the market, she searches more actively than other dealers.

Another way to interprete the hump-shaped property of total search intensity λ̄(δ) is

it depends on the gap between the absolute changes in the buying and selling intensi-

ties, for per unit change in private valuation type within the cross section of dealers.

For example, as type varies from low to high in the lower range, for per unit increase,

the decrease in probability of trade happening conditional on a meet for dealer owners

| d
dδ

(∫ δh
δ

λ∗0(δ′)

Λ
φ0(δ′)dδ′

)
| = λ∗0(δ)φ0(δ)

Λ
is always larger than the increase in that for dealer non-

owners | d
dδ

(∫ δ
δ`

λ∗1(δ′)

Λ
φ1(δ′)dδ′

)
| = λ∗1(δ)φ1(δ)

Λ
, because the buying intensity is always above the

selling intensity in the neighbourhood of each δ ∈ [δ`, δ̄]. This drives the amount by which

the selling intensity λ∗1(δ)φ1(δ) curve increases to be larger than that by which the buying

intensity λ∗0(δ)φ0(δ) curve decreases, for per unit increase in δ, to maintain that the total

number of selling transactions equals that of buying transactions. This further determines

that λ̄(δ) increases with δ in the lower range. Similiar explanations apply for the decreasing
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of λ̄(δ) in the higher range.

1.2.3.2 Dealers’ heterogeneous roles in the intermediation process

In this section, we further characterize the implication of endogeneous and state-dependent

search intensity on dealers’ heterogeneous roles in the intermediation process.

For each dealer of private valuation type δ, we calculate volumes of four types of trans-

actions: sell-to-customer VS2C(δ), buy-from-customer VBfC(δ), sell-to-dealer VS2D(δ), and

buy-from-dealer VBfD(δ). Figure 1.2 compares the levels of these four types of transactions

among dealers. Figure 1.3 shows how the proportion of each type in dealers’ total trading

volume varies with private valuation types. Both examples are under the symmetry restric-

tions. We also construct the gross, intermediation and net trading volumes, similarly defined

in Atkeson, Eisfeldt, and Weill (2015), Hugonnier, Lester, and Weill (2018), and Üslü (2019),

separately for the interdealer and dealer-customer markets. Equations of all types of volumes

are in Appendix 1.A.3.

The distribution of endogeneous search intensity and the distribution of various types

of trading moments jointly imply that: [1] lower-type dealers, on average, invest in higher

buying intensity and contribute most to buying the bond from (low-type) customer owners

and selling to higher-type dealer non-owners. Therefore, low-type dealers are net buyers

in the dealer-customer market and net sellers in the interdealer market; [2] intermediate-

type dealers, on average, invest in equal amounts15 of average buying and selling intensities

and contribute most to intermediating the bond from lower-type participants to higher-

type ones in both the interdealer and dealer-customer markets. In the interdealer market,

the intermediate-type dealers behave as the dealer of dealers and tend to lie in the mid-

dle of intermediation chains defined in Hugonnier, Lester, and Weill (2018); Meanwhile in

the dealer-customer market, these dealers also directly buy and sell to customers at equal

15The result that it is the intermediate-type dealers that invest in equal average buying and selling inten-
sities is based on the symmetry restriction on stationary equilibrium.
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Figure 1.2: Model implied levels of different transaction types

(s = πh = 0.5, y` = 0.5, yh = 1.7, δ` = 0.6, δh = 1.6, α = ρ = m = θ = 0.5, c = r = 0.05)

amounts16; [3] higher-type dealers, which are closer to the high-type customer buyers, on

average invest in higher selling intensity and contribute most to selling the bond to (high-

type) customers and buying from lower-type dealer owners. Therefore, they are net sellers

in the dealer-customer market and net buyers in the interdealer market.

1.3 Identification

Testing the model’s predictions creates two key challenges: the first is to identify dealers’

private valuations, the second is to measure dealers’ search intensities. In this section, by

using bond transaction-level data with assigned dealer identities, we construct a measure of

16Interpreting by intermediation chains, the intermediate-type dealers also contribute most to constructing
chains with only one dealer (themselves) to connect customer sellers and buyers.
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Figure 1.3: Model implied proportions of different transaction types

(s = πh = 0.5, y` = 0.5, yh = 1.7, δ` = 0.6, δh = 1.6, α = ρ = m = θ = 0.5, c = r = 0.05)

dealers’ private valuation based on the Nash bargaining assumption and separately identify

dealers’ buying- and selling intensities using a group of transaction-related moments.

1.3.1 Data description

We use the Academic Corporate Bond TRACE Data set provided by the Financial Industry

Regulatory Authority (FINRA). This data set contains dealers’ reports to the Trade Re-

porting and Compliance Engine (TRACE) which disclose information on all transactions in

corporate bonds. One advantage of the data is we can observe identities of the dealers in all

transactions. This allows us to track how the bonds are transacted between the dealers, so

that we can characterize how actively each dealer trades with the other dealers and/or the

outside bond investors.17

17In the analysis, we define all registered members of FINRA as dealers and all non-registered outside trad-
ing counterparties as customers. The main registered firm members of FINRA include broker-dealer firms,
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We filtered the data following the procedure in Dick-Nielsen (2014), and we recover

the trading counterparties in locked-in and give-up trades18.We merge the cleaned data

with the Mergent Fixed Income Securities Database (FISD) and Wharton Research Data

Services (WRDS) Bonds Return Database to obtain bond fundamental characteristics and

credit ratings. We construct a monthly panel containing both dealer-wise and bond-wise

variables19.

Following the academic literature using the same data set, we further filtered the data

by excluding some “unusual bonds” and some specific types of transactions: [1] We exclude

bonds with optional characteristics, such as variable coupon, convertiable, exchangable, and

puttable, etc, and we also exclude asset-backed securities and private placed instruments; [2]

To faciliate measuring each dealer’s search intensity for each single bond, we further drop the

inactively traded bonds, defined as those traded in fewer than 25 months throught the whole

sample period; [3] Finally, we exclude the “on-the-run” transactions which happened within

three months since bonds’ offering dates, to only consider secondary market transactions.

funding portals, and capital acquisition brokers, etc, which are all dealer-like firms. The ID numbers assigned
by FINRA to registered members are all virtual IDs. In the data, non-registered trading counterparties are
assigned with the ID of “C” by FINRA.

18By the user guide of FINRA, a “Give Up” trade report is reported by one FINRA member on behalf of
another FINRA member who is the real one to buy or sell the bonds and thus has a reporting responsibility.
For such reports, we call the FINRA members, who asked other members to submit reports for them, the true
trading counterparties; Locked-in report is a trade report representing both sides of a transaction. FINRA
members such as Alternative Trading Systems (ATSs), Electronic Communications Networks (ECNs), and
clearing firms have the ability to match buy and sell orders, and therefore to report on behalf of multiple
parties using a single trade report submitted to FINRA and indicate that the trade is locked-in. Similarly, we
call the FINRA members who submit the buy or sell orders, instead of those clearing platforms, as the true
trading counterparties. In the error filters, for these two types of trades, we use the IDs of the true trading
counterparties as dealers’ IDs and we adjust the reported prices accordingly to account for the agency fees
charged by reporting firms and clearing platforms (ATSs, ECNs, and clearing firms).

19The raw data is high-frequency data that records the time of each transaction in seconds. In empirical
literature using TRACE data to analyze U.S. corporate bond market liquidity, it is common practice to
process the data to monthly frequency as corporate bonds are relatively illiquid compared with stock markets,
see Bao, Pan, and Wang (2011), Crotty (2013), Friewald and Nagler (2016), and Friewald and Nagler (2018),
etc. Specifically, An (2019) documents that dealers’ average inventory duration in the U.S. corporate bond
market is around three weeks by using the same data, which implies that the average frequency dealers
adjust their inventories is around one month.
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The final sample ranges from Jan 2005 to Sep 2015, and contains 10760 bonds traded by

3050 dealers. The total outstanding amount of all bonds in our sample is $5.37 trillion. The

average bond rating is BBB by the S&P rating categories. Among these bonds, around 84%

are investment grade and the remaining ones are high-yield or non-rated.20 The Panel A in

Table 1.1 reports additional bond fundamentals.

The summary statistics in the Panel B of Table 1.1 suggests that we can possibly ignore

the different values of transaction size since the standard deviation of trading volume is much

lower than its average level. Then we can assume all transactions have the same size as the

average level, and use the number of realized transactions to calculate the transaction-related

moments to estimate the model.

1.3.2 Identifying dealers’ private valuation

In the model with a continuum of dealers, for a dealer with type δ ∈ [δ`, δh], her transaction

price with another dealer with type δ′ ∈ [δ`, δh] is:

P (δ, δ′) =
4V (δ) +4V (δ′)

2

On the sell side of a dealer with type δ, since 4V (δ′) > 4V (δ), so the lowest selling price is

exactly equal to4V (δ) for continuum of dealers. Vice versa, on the buy side of a dealer with

type δ, since 4V (δ′) < 4V (δ), the highest buying price is exactly equal to 4V (δ). Again

based on monotonicity of 4V (δ), in data, we construct the following consistent estimator21

20By the S&P rating categories, investment grade are S&P BBB or higher; and high-yield(junk) are below
or equal to S&P BBB-.

21In finite samples, on the buy side of each dealer, the maximum purchasing price is a downward biased
estimate for the dealer’s marginal valuation; on the sell side, the minimum selling price is an upward biased
estimate for the dealer’s marginal valuation. Taking the average of the sample maximum purchasing price and
the sample minimum selling price will make the bias cancel out. In small samples with dealers’ unbalanced
buy and sell trades, the levels of the upward bias and the downward bias may not be equal. Then to make
the bias cancel out completely, the weights assigned on the two extreme prices can be adjusted according to
the realized number of buy and sell trades.
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Table 1.1: Descriptive Statistics on the Final Sample of TRACE Data (Jan 2005 - Sep 2015)

Panel A: bond fundamental characteristics (10760 bonds)

Mean Std. dev. Q5 Q50 Q95

Offering amount ($million) 458.97 577.99 5.74 300.00 1500.00

Coupon(%) 5.72 1.88 2.50 5.65 9.00

Maturity (years) 11.29 7.61 3.28 9.99 30.03

Amount outstanding($million) 499.35 615.95 6.88 350.00 1750.00

Credit rating 8.53 (BBB) 3.94 3.00 (AA) 8.00 (BBB+) 16.00 (B-)

Age (years) 3.70 2.55 0.48 3.17 8.72

Month turnover (%) 6.92 11.42 0.39 3.57 23.76

Note: [1] For variables “Offering amount ($million),” “Coupon(%),” and “Maturity (years),” we
calculate summary statistics based on bond-wise observations; for variables “Amount outstand-
ing($million),” “Credit rating,” “Age (years),” and “Month turnover (%),” we calculate summary
statistics based on bond-month observations as these variables change over time; [2] Month turnover
is calculated using bonds’ monthly total trading volumes (par amounts) and dividing by bonds’
average amount outstanding for that month.

Panel B: dealer trading activity (3050 dealers)

All Sale to customer Buy from customer Interdealer

Num of trades (million) 57.62 20.88 15.43 21.31

Total par value($trillion) 27.80 10.57 10.52 6.70

Average par value ($million) 0.48 0.51 0.68 0.31

Average vol (thousand) 482.41 506.25 681.86 314.59

Std. vol (thousand, all bonds) 4.47 5.47 4.46 3.22

Std. vol (thousand, within bond) 1.58 1.62 1.89 0.87

Note: [1] Total par value ($ trillion) is calculated by summing up the par values of all transactions.
Average par ($million) is calculated through dividing “Total par value ($trillion)” by “Num trades.”
[2] Trading volume (“trade vol”) is in unit of share of bonds. “Std. vol (thousand, all bonds)” is
the standard deviation of all trading volumes (unit: share) by pooling all dealers transactions for
all bonds in corresponding markets (customer-dealer or interdealer market). “Std. vol (thousand,
within bonds)” is the average standard deviation of trading volumes within each bond. “Std. vol
(thousand, within bonds)” measures whether volume per trade has a large dispersion among the
cross section of dealers within each bond.
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as a proxy for dealers’ private valuation type δ:

δ̂ji,t =
max{Buyj

i,nj,Bi,t
}+min{Sellj

i,nj,Si,t
}

2

where {Buyj
i,nj,Bi,t
} ({Sellj

i,nj,Si,t
}) is the collection of all buying (selling) prices by dealer i for

bond j within month t and nj,Bi,t (nj,Si,t ) is the correspondinng number of total buying (selling)

transactions (including both dealer-customer and interdealer transactions) within month t.

22

1.3.3 Identifying dealers’ search intensity

We identify dealers’ heterogeneous search intensities separately on the buy- and sell-side of

the market using the following transaction-related moments,23 where variables with a hat

are obtained directly from the data:

1. expected number of selling transactions for each dealer of type δ ∈ [δ`, δh]:

T̂ radeS(δ) = φ1(δ)λ∗1(δ)


(

1

1 +m
+

ρ

mΛ

)
µh0︸ ︷︷ ︸

trading with customers

+
2m

1 +m

∫ δh

δ

λ∗0(δ′)

Λ
φ0(δ′)dδ′︸ ︷︷ ︸

trading with higher-type dealer non-owners


(1.9)

2. expected number of buying transactions for each dealer of type δ ∈ [δ`, δh]:

T̂ radeB(δ) = φ0(δ)λ∗0(δ)


(

1

1 +m
+

ρ

mΛ

)
µ`1︸ ︷︷ ︸

trading with customers

+
2m

1 +m

∫ δ

δ`

λ∗1(δ′)

Λ
φ1(δ′)dδ′︸ ︷︷ ︸

trading with lower-type dealer owners

 (1.10)

22In quantitative analysis, we define each market by one bond j and one quarter q. Each dealer i’s private
valuation for bond j in quarter q is calculated as the weighted average of all monthly private valuations δ̂ji,t
in quarter q weighted by dealer i’s monthly total trading volume in bond j.

23We calculate the moments at the bond and month/quarter level.
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3. for each selling transaction made by a dealer of type δ ∈ [δ`, δh], the probability that

the dealer δ’s trading counterparty is another dealer rather than a customer:

P̂ r [SellToDealers|Sell] (δ) =
2m

1+m

∫ δh
δ

λ∗0(δ′)

Λ
φ0(δ′)dδ′(

1
1+m

+ ρ
mΛ

)
µh0 + 2m

1+m

∫ δh
δ

λ∗0(δ′)

Λ
φ0(δ′)dδ′

(1.11)

4. for each buying transaction made by a dealer of type δ ∈ [δ`, δh], the probability that

the dealer δ’s trading counterparty is another dealer rather than a customer:

P̂ r [BuyFromDealers|Buy] (δ) =
2m

1+m

∫ δ
δ`

λ∗1(δ′)

Λ
φ1(δ′)dδ′(

1
1+m

+ ρ
mΛ

)
µ`1 + 2m

1+m

∫ δ
δ`

λ∗1(δ′)

Λ
φ1(δ′)dδ′

(1.12)

where T̂ rade and P̂ r are the number of transactions and probability of trading with dealers

conditional on a trade happening, for each dealer on either the buy- or sell-side of the market.

We show how to identify the total-selling-intensity function φ1(δ)λ∗1(δ) and total-buying-

intensity function φ0(δ)λ∗0(δ) both up to a constant. For notational simplicity, we define

the following measures based on data moments T̂ rade and P̂ r for each dealer with type

δ ∈ [δ`, δh]:

f̂1(δ) =
(

1− P̂ r [SellToDealers|Sell] (δ)
)
× T̂ radeS(δ) (1.13)

f̂2(δ) =
(

1− P̂ r [BuyFromDealers|Buy] (δ)
)
× T̂ radeB(δ)

f̂3(δ) = P̂ r [SellToDealers|Sell] (δ)× T̂ radeS(δ)

f̂4(δ) = P̂ r [BuyFromDealers|Buy] (δ)× T̂ radeB(δ) (1.14)

where f̂1(δ) is the number of selling-to-customer transactions for a dealer with type δ and

f̂2(δ) is the corresponding number of buying-from-customer transactions.

The following Proposition 2 gives the identification results of the selling- and buying

intensities up to a same constant relating to the measure of all dealersm. Proof of Proposition
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2 is in Appendix 1.A.1.2.

Proposition 2: Assuming that the selling intensity of the minimum-type dealer-owner equals

the buying intensity of the maximum-type dealer non-owner:

φ1(δ`)λ
∗
1(δ`) = φ0(δh)λ

∗
0(δh)

the following functions of private valuation type and the ratio of aggregate buying intensity

versus aggregate selling intensity Λ0

Λ1
are identified by:

2m

1 +m
φ1(δ)λ∗1(δ) =

f̂3(δ`) + f̂4(δh)

f̂1(δ`)
× f̂1(δ)

2m

1 +m
φ0(δ)λ∗0(δ) =

f̂3(δ`) + f̂4(δh)

f̂2(δh)
× f̂2(δ)

Λ0

Λ1

=
f̂3(δ`)

f̂4(δh)

where f̂1(δ)− f̂4(δ) are defined by (1.13)-(1.14).

The key to the identification results is: the intensities of trading with customers con-

ditional on the choice of selling/buying intensities are constant across dealers of different

private valuation types, on either the sell- or buy side of the market. Therefore f̂1(δ) (f̂2(δ))

is equal to φ1(δ)λ∗1(δ) (φ0(δ)λ∗0(δ)) multiplied by a constant that equals the intensity of

selling to (buying from) customers. However, the value of the intensity of trading with

customers on the sell side is different from that on the buy side. To identify φ1(δ)λ∗1(δ)

and φ0(δ)λ∗0(δ) up to a same constant, we focus on different types of transactions only for

dealers of the minimum and maximum private valuation types. The reason we specifically

focus on these two extreme private valuation types, δ` and δh, is that there always exists a

positive trading surplus between the δ`-type dealer-owner (δh-type dealer-nonowner) and all

other dealer nonowners (owners), which reduces the intensity of trading with dealers to be
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only proportional to the probability of meeting a dealer 2m
1+m

and aggregate buying intensity

Λ0 (aggregate selling intensity Λ1) for the δ`-type dealer-owner (δh-type dealer-nonowner).

Additionally, the assumption in Proposition 2 helps to identify the ratio Λ0

Λ1
by only using

interdealer transactions for δ`- and δh-type dealers. Therefore we can further disentangle the

probability of meeting a dealer 2m
1+m

from either Λ0 or Λ1. The final step is to compare the

number of dealer-customer transactions with the number of interdealer transactions sepa-

rately for δ`- and δh-type dealers, which allows us to replace the intensities of trading with

customers (different between the two sides) with the same constant 2m
1+m

.

1.3.4 Identifying other parameters

System of equations to identify parameters except for c and θ With identified

search intensity functions by the group of transaction-related moments above, we use the

following system of equations to identify the model parameters except for c and θ:

µh0

µ`1
=

Λ0

Λ1

(1.15)

αµ`0πh = αµh0π` + µh0

(
1

1 +m
+

ρ

mΛ

)∫ δh

δ`

λ∗1(δ)φ1(δ)dδ (1.16)

αµh1π` = αµ`1πh + µ`1

(
1

1 +m
+

ρ

mΛ

)∫ δh

δ`

λ∗0(δ)φ0(δ)dδ (1.17)

πh = µh0 + µh1

π` = µ`0 + µ`1
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πh + π` = 1

s = µh1 + µ`1 +m1 (1.18)

[
1

1 +m
+

ρ

mΛ

] ∫ δh

δ`

φ0(δ)λ∗0(δ)dδ = ContactC2D (1.19)

(
1 +

(1 +m)ρ

mΛ

)
µh0

m
=

2f̂1(δ`)

f̂3(δ`) + f̂4(δh)
(1.20)

(
1 +

(1 +m)ρ

mΛ

)
µ`1
m

=
2f̂2(δh)

f̂3(δ`) + f̂4(δh)
(1.21)

where (1.15)-(1.18) are equilibrium conditions, ContactC2D in (1.19) is the intensity with

which customers meet dealer-buyers similarly defined in Hugonnier, Lester, and Weill (2018),

(1.20)-(1.21) are based on the identification results of Proposition 2, and f̂1(δ) − f̂4(δ) are

defined by (1.13)-(1.14). Details of the identification are in Appendix 1.A.2.1.

Calibration The identification of parameters from the system of equations (1.15)-(1.21)

depends on calibrating bond supply per capita s, and also targeting on intensity ContactC2D

and the fraction of shares of a bond that held by dealers m1

s
.

Our calibration works as follows: [1] we calibrate the bond supply per capita s through

dividing the amount outstanding variable from the FISD database by the average trading

volume across all transactions which is a measure of average trade size, then by the number

of customers N . For the value of N , we follow the approach in Hugonnier, Lester, and

Weill (2018) assuming half of the household population from the U.S. Census is directly or

indirectly investing in financial market in general,24 and then applying the average ratio of

24This assumption in Hugonnier, Lester, and Weill (2018) is also motivated by data from the Survey of
Consumer Finance (SCF) and Bricker and et al (2017).
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shares of corporate bonds in household holdings of liquidity assets relative to that of mu-

nicipal bonds throughout 2002 to 2015 by the factbook of the SIFMA. Our calibration of

the number of customers per bond is then around N = 35896; [2] the intensity with which

customers meet dealer-buyers
[

1
1+mj

+ ρj

mjΛ
j

] ∫ δjh
δj`
φ0(δ)λ∗0(δ)dδ is derived from the average

trading delay for customers to contact dealers through voice-based OTC trading in corpo-

rate bonds, which is calibrated by an approach similar to that of Pagnotta and Philippon

(2018a). Since we mainly report estimated model parameters at bond and quarter levels,

and also corporate bond market is relatively more liquid than the municipal bond market,

we calibrate the average trading delay as one business day for a customer to meet a dealer-

buyer. Therefore, ContactC2D equals 60 per quarter; and [3] we calibrate the (average)

fraction of shares of a bond held by dealers based on the data on security broker-dealers’

holding positions of corporate bonds from Flow of Funds. The average fraction over the

sample period 2005-2015 is around 2.82%. Details of calculation are in Appendix 1.A.2.2.

The identification of the measure of dealers per capita m depends on the former identifi-

cations of aggregate buying/selling intensities, the calibration of the fraction held by dealers

and also the following assumption: 25

Assumption 1: Dealer-owners’ average selling intensity is equal to dealer-non-owners’ av-

erage buying intensity:

∫ δh

δ`

λ∗1(δ′)
φ1(δ′)

m1

dδ′ =

∫ δh

δ`

λ∗0(δ′)
φ0(δ′)

m0

dδ′

Therefore m can be identified as m1 × f̂3(δ`)+f̂4(δh)

f̂4(δh)
.

25We also alternatively identify m by using a calibrated number of customers N and the number of dealers
that ever provide liquidity within each month, quarter or throughout the whole sample period, since TRACE
data allows us to identify dealer counterparties for each completed transaction. The main concern of this
identification approach other than relying on Assumption 1 is that the physical size of dealers will highly
depend on choosing the length of unit period since the corporate bond market is illiquid relative to equity
markets and dealers may not complete any transactions if the length of the unit period is too short.
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Price-related moments for estimating c and θ Based on identified search intensi-

ties and model parameters above, we use the following group of price-related conditions to

estimate search cost coefficient c and dealers’ bargaining power to customers θ:

1. average interdealer transaction price:

m1 : E(PDD) =

∫ δh
δ`
λ∗1(δ)φ1(δ)

∫ δh
δ

λ∗0(δ′)φ0(δ′)

Λ
(4V (δ′)+4V (δ))

2
dδ′dδ∫ δh

δ`
λ∗1(δ)φ1(δ)

∫ δh
δ

λ∗0(δ′)φ0(δ′)

Λ
dδ′dδ

(1.22)

2. average price of transactions that customers sell to dealers within bond j:

m2 : E(PCD) =

∫ δh

δ`

λ∗0(δ)φ0(δ)

Λ0

[(1− θ)4V (δ) + θ4W (y`)]dδ

3. average price of transactions that dealers sell to customers within bond j:

m3 : E(PDC) =

∫ δh

δ`

λ∗1(δ)φ1(δ)

Λ1

[(1− θ)4V (δ) + θ4W (yh)]dδ (1.23)

1.4 Quantitative analysis

1.4.1 Estimation procedure

The estimation contains two main steps. In the first step, we construct B-spline nonpara-

metric estimators26 of unknown functions f̂1(δ)-f̂4(δ) and obtain fitted values. Then we plug

in fitted unknown functions back to the group of moment conditions (1.9)-(1.10) and use

the generalized method of moments (GMM) to estimate the two following constant terms:(
1 + (1+m)ρ

mΛ

)
µh0

m
and

(
1 + (1+m)ρ

mΛ

)
µ`1
m

, subject to constraints (1.15)-(1.19). In the second

step, we follow Hansen (1982) and Gavazza (2016) to use the two-step simulated method

26Expressions of estimators are in Appendix 1.A.2.3.
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of moments (SMM) approach to estimate the unknown parameters ψ =
[
c θ

]T
by plug-

ging estimated parameters in the first step into moment conditions (1.22)-(1.23). By similar

notations, the two-step estimator takes the form

ψ̂ = argmin
ψ∈Ψ

(m(ψ)−ms)
′

ms

Ω(ψ̃)
(m(ψ)−ms)

ms

where m(ψ) =
[
m1(ψ) m2(ψ) m3(ψ)

]T
is the vector of price-related moments that com-

puted from the model stationary equilibrium solutions which are evaluated at the parameter

vector ψ; ms =
[
m1,s m2,s m3,s

]T
is the vector of sample moments; Ψ is the parameter

space. We firstly use identity matrix as the weight matrix to calculate the preliminary con-

sistent estimate ψ̃ of ψ, then we use the consistent estimate of the inverse of asymptotic

variance-covariance matrix Ω(ψ̃) as the weight matrix in the second step. We minimize the

percentage deviation of model-implied moments from sample moments.

Estimates We define each market by one bond j and one quarter q and denote it as

Market(j, q). We further restrict that there are at least 25 observations within each market,

and each observation is defined by one dealer i in Market(j, q) who trades on both sides of

the market. This restriction further shrinks our sample 27 used for estimation to include 6301

bonds and 47634 markets. For each dealer i’s state variables in Market(j, q), we construct

the dealer’s private valuation for bond j by calculating the volume-weighted average of dealer

i’s monthly private valuations δ̂ji,t within quarter q.

For each Market(j, q), we estimate the dealers’ search intensity functions and model

27The reason we choose one quarter as the time period for each market is that for each market, we would
like to have a relatively large size of cross section of observations, which allows us to obtain more accurate
estimates. The median size of cross section (number of dealers) across all markets is 38 dealers for quarterly
data, compared with 12 dealers for monthly data. For robustness check, we re-do all quantitative analysis
for markets defined by monthly data, i.e., each market is defined as a bond j and month t, and the results
are qualitatively same, except that there is quite a proportion of dealers only trading on one side (only buy
or only sell) within one month, which could generate negative estimated search intensities for the direction
with no transaction.
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Figure 1.4: Average estimated search intensities across bond grades

parameters using the moments and equilibrium conditions in the previous section. Figure

1.4 shows quarterly average search intensities separately for investment grade and speculative

grade bonds by S&P ratings. Search intensities are generally more volatile for lower-rated

bonds and manifest a decreasing trend after the financial crisis. Moreover, selling intensities

are on average higher than buying intensities, which is consistent with the fact that the

estimated measure of high-type customers is lower than that of low-type customers. This

requires the whole dealer sector to search more actively on the sell side.

Most estimates of parameters exhibit large variation across markets and are right-skewed.

Specifically, the estimate of the measure of high-type customer πh has a very close distribution

to that of bond supply per capita s, which indicates that the marginal investors in most

frictionless markets have private valuation types equal or close to that of the high-type

customer yh. This is shown in Table 1.10 and Figure 1.5. The calibration of bond supply per
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Table 1.2: Estimated and Calibrated Parameters for 47634 markets (6301 bonds)

Estimates

Parameter Description Mean Median Std. dev.

ρ customer search intensity (per quarter) 3.23 1.92 3.53

α customer intensity of switching type (per quarter) 1.46 0.89 1.63

m measure of dealers 0.006 0.005 0.004

πh measure of high-type customers 0.08 0.06 0.06

π` measure of low-type customers 0.92 0.94 0.06

c coefficient of search cost function c× λ2 0.83 0.85 0.17

θ dealers’ bargaining power to customers 0.73 0.65 0.27

Calibration

s bond supply (per capita) 0.09 0.06 0.07

Note: “Mean” and “Median” are calculated over all markets, with each market defined by one
bond and one quarter.

customer s is calculated by firstly dividing each bond’s amount outstanding by the bond’s

average trading volume (among all market participants) within each Market(j, q), and then

dividing the result further by the calibrated number of customers per bond N = 35896,

as explained in Section 1.3.4. The estimated model parameters and corresponding model

implied components (both on a quarterly basis) in Table 1.2 and Table 1.3 will be used for

welfare analysis in Section 1.4.3. Table ?? in Appendix 1.A.2.4 compares the fitted values

of model-implied moments with empirical moments calculated from data.
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Table 1.3: Model-implied endogeneous components for 47634 markets (6301 bonds)

Measures Description Mean Median Std. dev.

µh0 measure of high-type customer-non-owner 0.0078 0.0044 0.0095

µ`1 measure of low-type customer-owner 0.0029 0.0021 0.0024

Λ1 aggregate dealer-sector selling intensity 15.95 7.00 23.97

Λ0 aggregate dealer-sector buying intensity 21.78 14.05 22.10

Λ aggregate dealer-sector total search intensity 38.48 22.83 43.75

m1 measure of all dealer-owners 0.0025 0.0017 0.0020

m0 measure of all dealer-non-owners 0.0034 0.0034 0.0043

Note: “Mean” and “Median” are calculated over all markets, with each market defined by
one bond and one quarter.
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Figure 1.5: Summary of estimate of πh and bond supply per capita s
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1.4.2 Results about search intensity and trading roles

Distribution of search intensity among dealers We give examples of two sub-markets

to intuitively show how (identified) search intensities are distributed among dealers, as in Fig-

ure 1.6. Market-1 has the maximum number of dealers among all sub-markets, and Market-2

has the median number of dealers. In both markets, the distributions of search intensities

are “hump-shaped”. This is consistent with the theoretical predictions of the model with

endogeneous search efforts. Moreover, the distribution of search intensity deviates from that

of dealers’ private valuations. This implies that it is more likely dealers choose heterogeneous

search intensities.
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Market-1: 155 dealers
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Market-2: 48 dealers

Figure 1.6: Examples of two markets

(Market-1: bond 013817AP6, 2010-Q3, BBB-, terms to maturity 8.6 years, 750k shares; Market-2:
bond 803111AM5, 2010-Q3, BBB, terms to maturity 22.2 years, 500k shares.)

Using data on all the markets, we fit search intensities as a quadratic function of dealers’

scaled private valuation δ̂jS,i,q, which is computed through dividing quarterly private valuation

δ̂ji,q by cross-dealer mean level δ̂
j

q for each Market(j, q) 28. The quardratic fitting has the

28The scaled private valuation is expressed in percentage of the cross-dealer mean level, thus being a
measure of the distance of dealers’ private valuation to the cross-dealer mean level. The reason we divide
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following form:

λ̂
j

i,q = β0 + β1 × δ̂jS,i,q + β2 × (δ̂jS,i,q)
2 + Γ1X

j
q + Γ2Yi,q + τi + φj + ηy + εji,q (1.24)

where the vector Xj
q includes as bond-related controls bond j’s credit rating, bond j’s HHI

(Herfindahl index) calculated by using market shares of all dealers to measure whether

transactions are concentrated to a specific group of dealers, bond j’s previous-three-month

turnover, amount outstanding, time to maturity and coupon rate; the vector Yi,q includes as

dealer-related controls dealer i’s quarterly eigenvector centrality29 in the interdealer network,

dealer i’s “HHI for bonds” calculated by using her trade shares of all bonds, and dealer i’s

“HHI for trade types” calculated by using her trade shares of different trading directions

(customer-to-dealer, dealer-to-customer or dealer-to-dealer). These two HHI indices are to

measure whether a dealer specializes in a specific bond or trading direction; fixed effects by

dealer τi, bond φj and year ηy are also controlled. We also include selling intensity λ̂
S,j

i,q and

buying intensity λ̂
B,j

i,q as dependent variables. In Table 1.4, we mainly report estimates of

β1 and β2. Regression results of (1.24) verify that, within each Market(j, q), total search

intensity λ̂
j

i,q is hump-shaped over dealers’ private valuation. Specifically, the composition

effect implied by the model is consistently verified by the fact that the increasing total

search intensity in the lower range of private valuation is driven by faster increase in selling

intensity λ̂
S,j

i,q than decrease in buying intensity λ̂
B,j

i,q , which is shown in Figure 1.7; similarly,

the decreasing total search intensity in the higher range of private valuation is driven by

the raw private valuations by cross-dealer mean level is to control for unobserved factors that drive bonds
to be traded at a discount or premium.

29“Eigenvector centrality” is one measure of vertices’ network centralities. By using all the interdealer
transactions, we construct an interdealer network in which we regard each dealer as one “vertice” and
each transaction record as a link connecting two vertices. The advantage of using eigenvector centrality
is it incorporates not only direct but also indirect trading counterparties for each dealer and thus more
accurately measures each dealer’s importance in the network by assigning scores to them. The higher the
value of eigenvector centrality, the more central and important the dealer is in the interdealer network. We
calculate daily values of eigenvector centrality on a rolling basis. Specifically, for each day, we use all the
previous-90-day transactions of each dealer to calculate her eigenvector centrality for the current day. Then
we calculate the quarterly average by using daily values.
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Table 1.4: Distribution of search intensity among dealers
(quadratic form)

Depji,q λ̂
j

i,q λ̂
S,j

i,q λ̂
B,j

i,q

δ̂jS,i,q (%) 1788.54*** 968.84*** 466.04***
(36.92) (35.77) (28.12)

(δ̂jS,i,q)
2 -8.93*** -4.54*** -2.57***

(-36.89) (-33.65) (-30.97)
# of obs 1,500,047 1,500,047 1,500,047
Adj R2 0.1547 0.1241 0.1689
Dealer×Bond×Year FE YES YES YES

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors are
clustered in dealer#bond#year.
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Figure 1.7: Distribution of search intensity among dealers (quadratic form)

faster decrease in buying intensity λ̂
B,j

i,q than increase in selling intensity λ̂
S,j

i,q .
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Dealers’ heterogeneous trading roles We verify the model predictions on dealers’ het-

erogeneous roles in the intermediation process by replacing the dependent variables in (1.24)

with the following empirical moments30: number of sell-to-customer transactions V j
S2C,i,q,

number of buy-from-customer transactions V j
BfC,i,q, number of sell-to-dealer transactions

V j
S2D,i,q, and number of buy-from-dealer transactions V j

BfD,i,q. As in the theoretical part,

we also construct the gross number of transactions and proportion of intermediation trans-

actions, separately for the interdealer and dealer-customer markets. Regression results in

Appendix 1.A.3 are also consistent with model predictions.

Table 1.5: Distribution of transactions of different directions

Depji,q V j
S2C,i,q V j

BfC,i,q V j
S2D,i,q V j

BfD,i,q

δ̂jS,i,q (%) 2.29*** 1.02*** 2.08*** 1.99***
(28.56) (21.68) (21.76) (28.09)

(δ̂jS,i,q)
2 -0.0111*** -0.0054*** -0.0111*** -0.0094***

(-27.41) (-23.06) (-23.37) (-26.52)
# of obs 1,500,090 1,500,090 1,500,090 1,500,090
Adj R2 0.1731 0.2278 0.2193 0.2249
Dealer×Bond×Year FE YES YES YES YES

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors are clustered in
dealer#bond#year.

Regression results in Table 1.5 and Figure 1.8 verify that as private valuation ranges

from low to high, dealers switch from “buying from customers and selling to dealers” to

“buying from dealers and selling to customers.” Dealers with private valuations closer to the

mean level, by composition effect, on aggregate trade more actively than other dealers in

both the dealer-customer and interdealer markets, which is further shown by the curve of

the gross number of transactions in Appendix 1.A.3. Moreover, those dealers trade closer

30Here we mainly show the results for dependent variables as the number of transactions of different
directions, which is consistent with the low standard deviation of trading volume in Panel B of Table 1.1,
and also consistent with the measures of search intensities which are also identified using the number of
transactions. In the Appendix, we show the results for dependent variables as the volume of transactions of
different directions for the robustness check.
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Figure 1.8: Distribution of transactions of different directions (quadratic form)

amounts in the buy- and sell side of the market to intermediate shares of bonds from low-

type customers/dealers to high-type ones. We further characterize how dealers’ specializing

in transactions of different directions correlates with the signed distance31 of dealers’ private

valuations relative to the mean level across all dealers. Figure 1.9 shows how the proportions

of different types of transactions vary with the signed distance. We also characterize the

relationship separately for each subperiod in Appendix 1.A.5.2.

Figure 1.9 indicates that: [1] for dealers of each level of private valuation, the aggregate

proportion of selling transactions (either to customer or to other dealers) is close to that

31The signed distance is defined as
δ̂ji,q−

ˆ
δ
j

q

| ˆ
δjh,q−

ˆ
δjl,q|

, i.e., the normalized distance in (1.50) without absolute value

on the numerator. The signed distance measures not only how far each dealer’s private valuation is to the
corresponding cross-dealer mean level, but also indicates whether the value is below or above the mean level.
The difference in the scaled private valuation is that it also controls for the dispersion of all dealers’ private
valuations for the same bond and same month.
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Figure 1.9: Dealer’s private valuation and proportions of transactions in different directions

(values are averages taken over all bonds and all quarters)

of buying transactions; [2] as private valuation ranges from low to high, on the buy side,

dealers switch from “buying mainly from customers” to “buying mainly from other dealers.”

Similarly on the sell side, dealers switch from “selling mainly to other dealers” to “selling

mainly to customers”; [3] dealers in the lower range of private valuations take the main roles

to buy from low-type customers and sell to higher-type dealers, and similarly, dealers in the

higher range of private valuations take the main roles to buy from lower-type dealers and

sell to high-type customers; [4] dealers with private valuations close to the mean level trade

equally on either of the four types.

1.4.3 Market inefficiencies compared to a frictionless market

In terms of market inefficiency, we conduct a counterfactual analysis to evaluate how search

frictions between customers and/or dealers affect bond prices and misallocation, based on

39



estimated model parameters in Section 1.4.1. Here search frictions refers to frictions to

contact/locate potential counterparties caused by the decentralized structures in both the

dealer-customer market and the interdealer market. The counterfactual scenarios would be

Walrasian markets of the same model parameters but with centralized exchanges to which

both customers and dealers have frictionless access.

Walrasian price Consider the corresponding Walrasian (frictionless) market in which

there is a central exchange where customers and dealers can buy or sell the target bond

immediately at equilibrium price P , which is unique within each stationary equilibrium (or

Market(j, q) for bond j and quarter q).

As is standard, the Walrasian price P = u∗

r
where u∗ is the private valuation (utility

flow) of the marginal investor which is defined as the asset owner with the lowest private

valuation type in a frictionless market:

u∗ =


yh if s <= πh;

{u ∈ [δ`, δh] : πh +
∫ δh
u∗
f(δ)dδ = s} if πh < s < πh +m;

y` if s >= πh +m.

For most markets, the marginal investor in corresponding frictionless markets are high-

type customers or high-type dealers.32 Based on estimates of parameters in Section 1.4.1,

there are 10.2% of markets with s ≤ πh and 89.8% with πh < s < πh + m. Therefore, in

the remaining section, we only consider the two cases of s ≤ πh and πh < s < πh + m. In

the latter case, we denote the marginal-investor private valuation type as δ∗. The derivation

32In the TRACE data for the U.S. corporate bond market, since we are not able (or allowed by FINRA)
to uncover the true identities of registered members (or dealers), some of the registered members may be
actually customers based on their trading behavior, for example, they may mostly trade on one side of the
market, but under regulation of FINRA. Since in our sample, we exclude the dealers that only trade on one
side of the market, this may lead to an under-estimation of the measure of high-type customers πh, and thus
the proportion of markets with the marginal investor as high-type customers in corresponding frictionless
markets.
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and estimation of Walrasian price P are in Appendix 1.A.4.

We report the Walrasian prices and average OTC transaction prices P (and all other mea-

sures of interest) in Table 1.6, separately for markets with the frictionless-market marginal

investor as high-type customers (s ≤ πh) and markets with the marginal investor as dealers

(s > πh). In the first group of markets, the average Walrasian price is higher than the re-

alized average transaction price, which is consistent with similar counterfactual analysis on

over-the-counter markets as in Gavazza (2016). However, in the second group of markets, the

average Walrasian price is lower than the realized transaction price. The possible reason is

that,33 for most markets, total search costs on the sell side are higher than those on the buy

side, which requires the average transaction price to be higher to compensate for the dealers

on the sell side. Additionally, since the private valuation of the marginal investor is lower

than that of the high-type customers, for dealers with private valuations in between, there

still exist positive gains from intermediation, which makes it possible for the transaction

price to be higher than the Walrasian price.

Bond misallocation In this paper, bond misallocation is defined as the proportion of bond

amount outstanding being held by low-type customers and/or dealers with private valuation

types lower than that of the marginal investor in a corresponding frictionless market.

The ratio of bond misallocation Rmis is correspondingly defined as below:

Rmis =


s−µh1

s
or µ`1+m1

s
if s ≤ πh;

µ`1+
∫ δ∗
δ`

φ1(δ)dδ

s
if s > πh.

The average misallocation ratio over all markets is 8.64% with standard deviation as

2.93%. Moreover, there is a significant different misallocation ratio between markets with

the marginal investor as high-type customers (i.e., s ≤ πh) and markets with the marginal

33This is indicated by formula of Walrasian price (1.49) in Appendix 1.A.4.
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investor as dealers (i.e., s > πh). In the former case, the average misallocation ratio is

17.11%, which is more than twice that of the latter case, 7.96%. Therefore, the effect of

search frictions on bond misallocation is larger for markets with the marginal investor as

high-type customers. For a robustness check, we also calculated the value of
µh0+

∫ δh
δ∗ φ0(δ)dδ

s

for the latter case, which is very close to that of
µ`1+

∫ δ∗
δ`

φ1(δ)dδ

s
.34

Total flow utility Total flow utility is defined as the summation of all bond-owners’ utility

flows in stationary equilibrium:

Tot utility =

∫ δh

δ`

φ1(δ)δdδ + µh1yh + µ`1y`

Total flow utility measures the total benefits of all market participants by holding the

bond and positively contributes to the total welfare of each market. In Table 1.6, total flow

utility is in percentage of bond face value and further scaled by the number of customers per

bond. The gap between Walrasian markets with s ≤ πh and s > πh is mainly driven by the

gap in the supply of bond per capita s.

Dealers’ search costs The average search cost per contact for the whole dealer sector is

calculated by dividing total search cost by the aggregate level of all dealers’ search intensities

Λ.

Ave SearchCost = c×
∫ δh

δ`

(
λ∗1

2(δ)φ1(δ) + λ∗0
2(δ)φ0(δ)

Λ

)
dδ

where Λ =
∫ δh
δ`

(λ∗1(δ)φ1(δ) + λ∗0(δ)φ0(δ))dδ. In Table 1.6, the total search cost is also scaled

by the number of customers per bond.

In Table 1.6, total search costs are larger for OTC markets with s ≤ πh, which is due

to limited supply of bonds, higher bond misallocation, and thus higher gains from interme-

34The mean of the difference is 0.02% with standard deviation as 0.4%. To estimate φ1(δ), we assume φ1(δ)

is proportionate to dealers’ standardized inventory position, subject to φ1(δ`) = 0 and
∫ δh
δ`
φ1(δ)dδ = m1.
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diation that motivate more dealers to spend on searching. Over all markets in our sample,

the mean level of search cost per contact is 0.75% of face value, with standard deviation as

1.48%. With conjecture that search cost per contact is compensated by bond price (yield),

using the approximated relationship35 between bond price and yield, we calculate that the

search cost per contact 0.75% corresponds to approximately 22.7 basis points of bond yield.

Finally, we calculate the welfare (per customer) as the gap between total flow utility and

total search costs. Compared with Walrasian markets, OTC markets exhibit a close level of

total flow utility (per capita) but nontrivial total search costs (per capita), which on average

reduces the welfare by about 8.96% relative to Walrasian markets.

1.5 Conclusion

In this paper, we propose a search-based model for the U.S. corporate bond market with

dealers’ endogeneous and state-dependent search intensity. The model generates the follow-

ing implications that can be empirically verified: [1] endogeneous intermediation: dealers

with intermediate private valuation type choose higher search intensities than others and

intermediate shares of bonds from low-type to high-type dealers. Low-type dealers mainly

trade on the buy side to buy bonds from customer-sellers. High-type dealers mainly trade on

the sell side to sell bonds to customer-buyers; [2] over-the-counter efficiencies: the estimated

model indicates nontrivial market inefficiency that, taking the average over all markets in

our sample, dealers’ search cost per contact is 0.75% of the bond’s face value, which gen-

erates an 8.96% welfare loss relative to corresponding frictionless markets, and there is on

average 8.64% of bond misallocation. Moreover, the level of market inefficiency exhibits

large variation across different bonds and over time.

35The approximated formula is: ApproxY TM =
C+F−P

n
F+P

2

where C is bond coupon/interest payment, F is

face value, P is transaction price, and n is years to maturity. See https://financeformulas.net/Yield_

to_Maturity.html.

43

https://financeformulas.net/Yield_to_Maturity.html
https://financeformulas.net/Yield_to_Maturity.html


Table 1.6: Comparison with corresponding frictionless markets for 47634 markets (6301 bonds)

Markets with s ≤ πh
OTC market Walrasian market

(mean/std.dev of all markets) (mean/std.dev of all markets)
µ`1+m1

s (%) 17.11% 0

(6.85%)

Tot flow utility (% of face value) 4.73% 4.77%

(4.03%) (4.04%)

Tot search costs (% of face value) 0.99% 0

(2.76%)

Welfare (per customer) 3.74% 4.77%

(3.71%) (4.04%)

P 99.58% 102.34%

(average transaction price) (8.06%) (6.95%)

Markets with s > πh

OTC market Walrasian market

(mean/std.dev of all markets) (mean/std.dev of all markets)

µ`1+
∫ δ∗
δ`

φ1(δ)dδ

s (%) 7.96% 0

(2.13%)

Tot flow utility (% of face value) 10.24% 10.27%

(8.91%) (8.96%)

Tot search costs (% of face value) 0.49% 0

(1.56%)

Welfare (per customer) 9.75% 10.27%

(7.68%) (8.96%)

P (% of face value) 103.02% 101.88%

(average transaction price) (7.08%) (9.64%)
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Appendix 1.A Appendix of Chapter 1

1.A.1 Proof of propositions

1.A.1.1 Proof of proposition 1

In this proof, we assume stationary equilibrium exists.36

[1] λ∗1
′(δ) < 0 and λ∗0

′(δ) > 0:

By (1.2)-(1.4), we obtain:

r4V (δ) = δ + cλ∗21 (δ)− cλ∗20 (δ) (1.25)

λ∗1
′(δ) = (−4V ′(δ)) 1

2c

[(
ρ

mΛ
+

1

1 +m

)
µh0θ +

m

1 +m

∫ δh

δ

λ∗0(δ′)φ0(δ′)

Λ
dδ′
]

(1.26)

λ∗0
′(δ) = 4V ′(δ) 1

2c

[(
ρ

mΛ
+

1

1 +m

)
µ`1θ +

m

1 +m

∫ δ

δ`

λ∗1(δ′)φ1(δ′)

Λ
dδ′
]

(1.27)

(1.25)-(1.27) =⇒

r4V ′(δ) = 1 + 2c× λ∗1(δ)λ∗1
′(δ)− 2c× λ∗0(δ)λ∗0

′(δ) (1.28)

= 1 + (−4V ′(δ))
(
λ∗1(δ)

[(
ρ

mΛ
+

1

1 +m

)
µh0θ +

m

1 +m

∫ δh

δ

λ∗0(δ′)φ0(δ′)

Λ
dδ′
]

+λ∗0(δ)

[(
ρ

mΛ
+

1

1 +m

)
µ`1θ +

m

1 +m

∫ δ

δ`

λ∗1(δ′)φ1(δ′)

Λ
dδ′
])

36The proof of existance of stationary equilibrium is similar as in Liu (2018) and Hugonnier, Lester, and
Weill (2018).
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(1.28) =⇒

4V ′(δ)

=
1

r + λ∗1(δ)X1(δ) + λ∗0(δ)X0(δ)
(1.29)

> 0

where

X1(δ) =

(
ρ

mΛ
+

1

1 +m

)
µh0θ +

m

1 +m

∫ δh

δ

λ∗0(δ′)φ0(δ′)

Λ
dδ′

X0(δ) =

(
ρ

mΛ
+

1

1 +m

)
µ`1θ +

m

1 +m

∫ δ

δ`

λ∗1(δ′)φ1(δ′)

Λ
dδ′

(1.26)-(1.27) and (1.29) =⇒

λ∗1
′(δ) < 0 and λ∗0

′(δ) > 0

[2] If symmetric restrictions apply and the distribution f(δ) is uniform distribution, then

∃c∗ > 0, s.t. for any c < c∗:

λ̄′(δ) > 0, ∀δ ∈ [δ`,
δ` + δh

2
] and λ̄′(δ) < 0, ∀δ ∈ [

δ` + δh
2

, δh]

Proof: When symmetric restrictions apply and f(δ) ≡ U , such that U = 1
δh−δ`

, search

intensity policy functions and density functions trivally satisfy the following conditions:

λ∗1(
δ` + δh

2
) = λ∗0(

δ` + δh
2

) (1.30)

λ∗1(δ) > λ∗0(δ) and φ1(δ) < φ0(δ), ∀δ ∈ [δ`,
δ` + δh

2
) (1.31)
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λ∗1(δ) < λ∗0(δ) and φ1(δ) > φ0(δ), ∀δ ∈ (
δ` + δh

2
, δh]

φ′1(δ) > 0 and φ′0(δ) < 0, ∀δ ∈ [δ`, δh]

λ∗1
′(δ) = −λ∗0

′(δh + δ` − δ) and φ′1(δ) = −φ′0(δh + δ` − δ), ∀δ ∈ [δ`, δh]

µh0 = µ`1 and Λ0 = Λ1 (1.32)

where µh0 = µ`1 is obtained by inflow-outflow equations (1.7)-(1.8) and also Λ0 = Λ1.

Then by definition,

λ̄′(δ) = φ′1(δ)λ∗1(δ) + φ1(δ)λ∗1
′(δ) + φ′0(δ)λ∗0(δ) + φ0(δ)λ∗0

′(δ) (1.33)

= φ′1(δ)(λ∗1(δ)− λ∗0(δ))︸ ︷︷ ︸
*

+
1

2c
4V ′(δ)

(φ0(δ)µ`1 − φ1(δ)µh0)

(
ρ

mΛ
+

1

1 +m

)
θ︸ ︷︷ ︸

**

+(φ0(δ)a(δ)− φ1(δ)b(δ))
m

1 +m


where

a(δ) =

∫ δ

δ`

λ∗1(δ′)φ1(δ′)

Λ
dδ′

b(δ) =

∫ δh

δ

λ∗0(δ′)φ0(δ′)

Λ
dδ′

By (1.30)-(1.32), both terms ∗ and ∗∗ in (1.33) are positive for ∀δ ∈ [δ`,
δ`+δh

2
). To charac-

terize the sign of φ0(δ)a(δ) − φ1(δ)b(δ) in the range of [δ`,
δ`+δh

2
), we use the inflow-outflow

equation (1.6) for φ1(δ):

47



2m

1 +m
φ1(δ)λ∗1(δ)

∫ δh

δ

λ∗0(δ′)

Λ
φ0(δ′)dδ′ +

(
ρ

mΛ
+

1

1 +m

)
φ1(δ)λ∗1(δ)µh0

=
2m

1 +m
φ0(δ)λ∗0(δ)

∫ δ

δ`

λ∗1(δ′)

Λ
φ1(δ′)dδ′ +

(
ρ

mΛ
+

1

1 +m

)
φ0(δ)λ∗0(δ)µ`1

=⇒

φ0(δ)

φ1(δ)
=
λ∗1(δ)

λ∗0(δ)

2m
1+m

∫ δh
δ

λ∗0(δ′)

Λ
φ0(δ′)dδ′ +

(
ρ
mΛ

+ 1
1+m

)
µh0

2m
1+m

∫ δ
δ`

λ∗1(δ′)

Λ
φ1(δ′)dδ′ +

(
ρ
mΛ

+ 1
1+m

)
µ`1

(1.34)

=
λ∗1(δ)

λ∗0(δ)

2m
1+m

b(δ) +
(

ρ
mΛ

+ 1
1+m

)
µh0

2m
1+m

a(δ) +
(

ρ
mΛ

+ 1
1+m

)
µ`1

By inflow-outflow equations of measures of high-type customer-non-owner and low-type

customer-owner (1.7)-(1.8),

µh0 =
αµ`0πh(

ρ
mΛ

+ 1
1+m

)
Λ1 + απ`

µ`1 =
αµh1π`(

ρ
mΛ

+ 1
1+m

)
Λ0 + απh

Since µ`0 < π` ≤ 1, µh1 < πh ≤ 1, Λ0 = Λ1 = Λ
2
, also Λ1 → ∞ and Λ0 → ∞ as c → 0, we

have:

lim
c→0

µh0 = lim
c→0

µ`1 = 0 (1.35)

Then by (1.31) and (1.34)-(1.35), we have:

lim
c→0

φ0(δ)

φ1(δ)
=
λ∗1(δ)

λ∗0(δ)

2m
1+m

b(δ)
2m

1+m
a(δ)

>
b(δ)

a(δ)
, ∀δ ∈ [δ`,

δ` + δh
2

)
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=⇒

lim
c→0

(φ0(δ)a(δ)− φ1(δ)b(δ)) > 0, ∀δ ∈ [δ`,
δ` + δh

2
)

Then in (1.33), we have for ∀δ ∈ [δ`,
δ`+δh

2
):

lim
c→0

λ̄′(δ) >
1

2c
4V ′(δ) m

1 +m
lim
c→0

(φ0(δ)a(δ)− φ1(δ)b(δ)) > 0

by 4V ′(δ) > 0, and both terms ∗ and ∗∗ in (1.33) are positive for ∀δ ∈ [δ`,
δ`+δh

2
).

Finally, by symmetry conditions,

λ̄′(δ) = −λ̄′(δh + δ` − δ) ∀δ ∈ [δ`, δh]

=⇒ ∀δ ∈ ( δ`+δh
2
, δh]:

lim
c→0

λ̄′(δ) < 0

�

1.A.1.2 Proof of proposition 2

We use P to denote the intensity of trading at different directions conditional on the choice

of selling/buying intensity for each individual dealer, and use Pr to denote the conditional

probability that trading counterparty is a dealer or customer conditional on that transac-

tion of specific direction happens. Notations with hat refer to identified data moments.

Specifically, for each dealer with type δ ∈ [δ`, δh], we denote:

P (S2D|δ) =
2m

1 +m

∫ δh

δ

λ∗0(δ′)

Λ
φ0(δ′)dδ′

P (BfD|δ) =
2m

1 +m

∫ δ

δ`

λ∗1(δ′)

Λ
φ1(δ′)dδ′
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P (S2C) =

(
1

1 +m
+

ρ

mΛ

)
µh0

P (BfC) =

(
1

1 +m
+

ρ

mΛ

)
µ`1

In (1.9)-(1.10), replace P (S2D|δ) and P (BfD|δ) by (1.11)-(1.12), the following two functions

are identified:

f̂1(δ) =
(

1− P̂ r [SellToDealers|Sell] (δ)
)
× T̂ radeS(δ) = φ1(δ)λ∗1(δ)× P (S2C) (1.36)

f̂2(δ) =
(

1− P̂ r [BuyFromDealers|Buy] (δ)
)
× T̂ radeB(δ) = φ0(δ)λ∗0(δ)×P (BfC) (1.37)

In (1.9)-(1.10), replace P (S2C) and P (BfC) with P (S2D|δ) and P (BfD|δ) by (1.11)-(1.12),

the following two functions are identified:

f̂3(δ) = P̂ r [SellToDealers|Sell] (δ)× T̂ radeS(δ) =
2m

1 +m
φ1(δ)λ∗1(δ)

∫ δh

δ

λ∗0(δ′)

Λ
φ0(δ′)dδ′

(1.38)

f̂4(δ) = P̂ r [BuyFromDealers|Buy] (δ)× T̂ radeB(δ) =
2m

1 +m
φ0(δ)λ∗0(δ)

∫ δ

δ`

λ∗1(δ′)

Λ
φ1(δ′)dδ′

(1.39)

Plug in δ` in (1.38) and plug in δh in (1.39), obtain:

f̂3(δ`) =
2m

1 +m
φ1(δ`)λ

∗
1(δ`)

Λ0

Λ
(1.40)

f̂4(δh) =
2m

1 +m
φ0(δh)λ

∗
0(δh)

Λ1

Λ
(1.41)
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by assumption φ1(δ`)λ
∗
1(δ`) = φ0(δh)λ

∗
0(δh), we obtain:

f̂3(δ`)

f̂4(δh)
=

Λ0

Λ1

,

f̂3(δ`)

f̂4(δh)

1 + f̂3(δ`)

f̂4(δh)

=
Λ0

Λ
,

1

1 + f̂3(δ`)

f̂4(δh)

=
Λ1

Λ
(1.42)

then plug (1.42) into (1.40)-(1.41), we obtain:

f̂3(δ`) + f̂4(δh) =
2m

1 +m
φ1(δ`)λ

∗
1(δ`) =

2m

1 +m
φ0(δh)λ

∗
0(δh) (1.43)

Plug in δ` in (1.36) and plug in δh in (1.37), obtain:

f̂1(δ`) = φ1(δ`)λ
∗
1(δ`)× P (S2C)

f̂2(δh) = φ0(δh)λ
∗
0(δh)× P (BfC) (1.44)

Since 2m
1+m

, P (S2C) and P (BfC) are all constants (within each market), by (1.43)-(1.44),

we obtain:
f̂1(δ`)

f̂3(δ`) + f̂4(δh)
=
P (S2C)

2m
1+m

(1.45)

f̂2(δh)

f̂3(δ`) + f̂4(δh)
=
P (BfC)

2m
1+m

(1.46)

The (1.45)-(1.46) allow us to replace trading intensities P (S2C) and P (BfC) in (1.36)-

(1.37), obtain:

f̂1(δ) = φ1(δ)λ∗1(δ)× f̂1(δ`)

f̂3(δ`) + f̂4(δh)
× 2m

1 +m

f̂2(δ) = φ0(δ)λ∗0(δ)× f̂2(δh)

f̂3(δ`) + f̂4(δh)
× 2m

1 +m
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then 2m
1+m

φ1(δ)λ∗1(δ) and 2m
1+m

φ0(δ)λ∗0(δ) can be identified as:

2m

1 +m
φ1(δ)λ∗1(δ) =

f̂3(δ`) + f̂4(δh)

f̂1(δ`)
× f̂1(δ)

2m

1 +m
φ0(δ)λ∗0(δ) =

f̂3(δ`) + f̂4(δh)

f̂2(δh)
× f̂2(δ)

and then 2mΛ1

1+m
and 2mΛ0

1+m
can also be identified by calculating the full integral over [δ`, δh]. �

1.A.2 Identification and estimation

1.A.2.1 Identy parameters except for c and θ

Based on the second group of restrictions as (1.15)-(1.19), rewrite (1.45) as:

f̂1(δ`)

f̂3(δ`) + f̂4(δh)
=
P (S2C)

2m
1+m

=
1 +m

2m

(
1

1 +m
+

ρ

mΛ

)
µh0 (1.47)

By (1.47), (1.15), (1.19) and identification of 2mΛ0

1+m
, we identify:

µh0 =

f̂1(δ`)

f̂3(δ`)+f̂4(δh)

ContactC2D
× 2mΛ0

1 +m
(1.48)

then plug (1.48) in (1.15), we identify:

µ`1 =

f̂1(δ`)

f̂3(δ`)+f̂4(δh)

ContactC2D
× 2mΛ0

1+m
Λ0

Λ1
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After identifying µh0 and µ`1, by (1.18), we identify:

µh1 = s−m1 − µ`1 = s−m1 −

f̂1(δ`)

f̂3(δ`)+f̂4(δh)

ContactC2D
× 2mΛ0

1+m
Λ0

Λ1

then πh, πl and µ`0 are identified as:

πh = µh0 + µh1 =

f̂1(δ`)

f̂3(δ`)+f̂4(δh)

ContactC2D
× 2mΛ0

1 +m
+ s−m1 − µ`1

= s−m1 +

f̂1(δ`)

f̂3(δ`)+f̂4(δh)

ContactC2D
× 2mΛ0

1 +m
× Λ0 − Λ1

Λ0

πl = 1− s+m1 +

f̂1(δ`)

f̂3(δ`)+f̂4(δh)

ContactC2D
× 2mΛ0

1 +m
× Λ1 − Λ0

Λ0

µ`0 = πl − µ`1 = 1− s+m1 +

f̂1(δ`)

f̂3(δ`)+f̂4(δh)

ContactC2D
× 2mΛ0

1 +m
× Λ1 − Λ0

Λ0

−

f̂1(δ`)

f̂3(δ`)+f̂4(δh)

ContactC2D
× 2mΛ0

1+m
Λ0

Λ1

= 1− s+m1 −
f̂1(δ`)

f̂3(δ`)+f̂4(δh)

ContactC2D
× 2mΛ0

1 +m

By assumption
∫ δh
δ`
λ∗1(δ′)φ1(δ′)

m1
dδ′ =

∫ δh
δ`
λ∗0(δ′)φ0(δ′)

m0
dδ′, m0 is trivally identified as:

m0 = m1 ×
Λ0

Λ1

and also

m = m0 +m1 = m1 ×
Λ

Λ1

Given identification of 2m
1+m

φ1(δ)λ∗1(δ), 2m
1+m

φ0(δ)λ∗0(δ), 2mΛ0

1+m
and 2mΛ1

1+m
: Λ0, Λ1, Λ and two

functions φ1(δ)λ∗1(δ), φ0(δ)λ∗0(δ) are then also identified.
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Plug identified m, Λ and µh0 back into (1.47), we can identify ρ:

ρ =

(
ContactC2D

Λ0

− 1

1 +m1 × Λ
Λ1

)
×m1 ×

Λ

Λ1

× Λ

the condition (1.47) comes from (1.45), and ρ is overidentified by conditions (1.45) and

(1.46), so we can estimate ρ separately in each of the two conditions and then take average.

Finally, we turn to conditions (1.16) and (1.17) (these two conditions are same and can

be reduced to one condition) to identify α.

1.A.2.2 Calibration of average fraction of positions held by broker-dealer sector

Table 1.7: Holding positions on corporate and foreign bonds ($billion) by different
sectors

Year Ratio of Broker-dealer (%) Broker-dealer (asset+liability) Total assets

2005 4.59 378.1 8236.1

2006 4.57 424.3 9275.2

2007 4.20 447.6 10653.5

2008 2.17 220.9 10167.1

2009 2.36 247.3 10477.4

2010 3.06 319.2 10441.2

2011 1.87 196.3 10502.5

2012 2.09 230.2 10995.8

2013 2.17 241.3 11134.7

2014 2.06 239.4 11600

2015 1.91 223.4 11722.2

Average 2.82 288 10473.3

Sources: Flow of Funds L.213, Federal Reserve Board.
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1.A.2.3 B-spline nonparametric estimator of unknown functions

The B-spline nonparametric estimator of unknown functions f̂i(δ), i = 1, 2, 3, 4. in (1.36)-

(1.39) have the following forms:

f̂i(δ) =
5∑

k=1

βjk,iB
j
k(δ)

where Bj
k(δ), k = 1, 2, 3, 4, 5 are B-spline basis functions of dealers’ type δ for bond j, for a

natural cubic spline with degree of freedom equals 5 (4 intercept knots).

1.A.2.4 Model fits

For model fitting results, please refer to ? and ?.

1.A.3 Dealers’ gross, net and intermediation trading volumes

1.A.3.1 Model prediction

In both the dealer-customer market DC and the interdealer market DD, for each dealer of private

valuation type δ, GM (δ) denotes the gross trading volume over both sides of the interdealer market,

NM (δ) denotes the net trading volume which equals to the absolute level of difference in the amount

of bond between buying and selling transactions by dealer δ with other dealers, and IM (δ) denotes

the intermediation volume which equals gross trading volume minus net trading volume and it

represents the magnitude of intermediation service that dealer δ provides to all other dealers in

market M ∈ {DC,DD}.

GDD(δ) =
2m

1 +m
φ1(δ)λ∗1(δ)

∫ δh

δ

λ∗0(δ′)

Λ
φ0(δ′)dδ′ +

2m

1 +m
φ0(δ)λ∗0(δ)

∫ δ

δ`

λ∗1(δ′)

Λ
φ1(δ′)dδ′

NDD(δ) =

∣∣∣∣ 2m

1 +m
φ1(δ)λ∗1(δ)

∫ δh

δ

λ∗0(δ′)

Λ
φ0(δ′)dδ′ − 2m

1 +m
φ0(δ)λ∗0(δ)

∫ δ

δ`

λ∗1(δ′)

Λ
φ1(δ′)dδ′

∣∣∣∣
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Table 1.8: Model Fit (Part A) for 47634 markets (6301 bonds)

Theoretical Moment Empirical Value Fitted Value
(1) (2) (3)

∫ δjh
δj`

φj1(δ)λj∗1 (δ)

mj

[(
1

1+mj
+ ρj

mjΛ
j

)
µjh0

]
dδ 2.401 2.364

(1.255) (4.643)

∫ δjh
δj`

φj0(δ)λj∗0 (δ)

mj

[(
1

1+mj
+ ρj

mjΛ
j

)
µj`1

]
dδ 1.914 1.877

(0.985) (3.443)

∫ δj
h

δ
j
`

λj∗1 (δ)φj1(δ)
∫ δj
h

δ

λ
j∗
0 (δ′)φj0(δ′)

Λj
(4V j(δ′)+4V j(δ))

2
dδ′dδ

∫ δj
h

δ
j
`

λj∗1 (δ)φj1(δ)
∫ δj
h

δ

λ
j∗
0 (δ′)φj0(δ′)

Λj
dδ′dδ

96.986 93.264

(10.121) (15.291)

∫ δjh
δj`

λj∗0 (δ)φj0(δ)

Λj0
[(1− θj)4V j(δ) + θj4W j(yj` )]dδ 96.475 84.014

(10.087) (14.891)

∫ δjh
δj`

λj∗1 (δ)φj1(δ)

Λj1
[(1− θj)4V j(δ) + θj4W j(yjh)]dδ 97.689 94.054

(9.521) (14.899)

Note: The expectation operator is over all dealers within each bond j. For both
Empirical Value and Fitted Value, the mean level and standard deviation across all
markets are reported.

IDD(δ) = GDD(δ)−NDD(δ)

=
4m

1 +m
×min

{
φ1(δ)λ∗1(δ)

∫ δh

δ

λ∗0(δ′)

Λ
φ0(δ′)dδ′, φ0(δ)λ∗0(δ)

∫ δ

δ`

λ∗1(δ′)

Λ
φ1(δ′)dδ′

}

Both gross and intermediation trading volumes manifest the ability/incentive of dealers to re-
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Table 1.9: Model Fit (Part B) Mapping between Theoretical and
Empirical Moments

Theoretical Moment Empirical Moment
(1) (2)

∫ δjh
δj`

φj1(δ)λj∗1 (δ)

mj

[(
1

1+mj
+ ρj

mjΛ
j

)
µjh0

]
dδ E

(
TradejS×

Prj [SellToDealers|Sell]
)

∫ δjh
δj`

φj0(δ)λj∗0 (δ)

mj

[(
1

1+mj
+ ρj

mjΛ
j

)
µj`1

]
dδ E

(
TradejB×

Prj [BuyFromDealers|Buy]
)

∫ δj
h

δ
j
`

λj∗1 (δ)φj1(δ)
∫ δj
h

δ

λ
j∗
0 (δ′)φj0(δ′)

Λj
(4V j(δ′)+4V j(δ))

2
dδ′dδ

∫ δj
h

δ
j
`

λj∗1 (δ)φj1(δ)
∫ δj
h

δ

λ
j∗
0 (δ′)φj0(δ′)

Λj
dδ′dδ

E(P jDD)

∫ δjh
δj`

λj∗0 (δ)φj0(δ)

Λj0
[(1− θj)4V j(δ) + θj4W j(yj` )]dδ E(P jCD)

∫ δjh
δj`

λj∗1 (δ)φj1(δ)

Λj1
[(1− θj)4V j(δ) + θj4W j(yjh)]dδ E(P jDC)

Note: The expectation operator is over all dealers within each bond j.
For both Empirical Value and Fitted Value, the mean level and standard
deviation across all markets are reported.

allocate the bond within the interdealer market. Figure 1.10 shows that dealers of intermediate

private valuation type search and trade most actively on both sides of the market, and thus provide

the highest level of intermediation service compared with other dealers.
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Table 1.10: Summary of estimate of πh and bond supply per capita s

Variable Mean Std dev Min Q25 Q50 Q75 Max
πh 0.0814 0.0660 0.0095 0.0347 0.0603 0.1061 0.3845
s 0.0882 0.0725 0.0101 0.0369 0.0650 0.1152 0.4251

Note: πh is the measure of high-type customers; s is the bond supply (per
capita).
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Figure 1.10: Distribution of dealers’ trading moments within the interdealer market

1.A.3.2 Empirical validation

Table 1.11: Distribution of trading moments among dealers (quadratic form)

Depji,t Gross V olji,t Inter V olji,t(%) Net V olji,t(%) Std Invji,t
δ̂jS,i,t (%) 23906.38*** 0.5849*** -0.5849*** 0.0056***

(3.73) (3.53) (-3.53) (2.31)

(δ̂jS,i,t)
2 -116.1845*** -0.0029*** 0.0029*** -4.51e-05***

(-3.76) (-3.66) (3.66) (-3.34)
# of obs 11,606,655 11,606,655 11,606,655 5,964,679
Adj R2 0.0779 0.4031 0.4031 0.1073
Dealer×Bond×Year FE YES YES YES YES

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors are clustered in dealer#bond#year.
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Figure 1.11: Distribution of trading moments among dealers (quadratic form)

Regression results in Table 1.11 verifie that the slopes of gross volume, intermediation volume

and volatility of inventory positions are consistent with that of total search intensity. The impli-

cation for endogeneous intermediation is: dealers with higher total search intensities trade actively

on both sides of the market to intermediate bonds from low-type dealers to high-type ones, through

maintaining more volatile inventory positions and lower net trading volume.

1.A.4 Market inefficiency

As in the earlier version of Hugonnier, Lester, and Weill (2018), the objectives of both customers

and dealers are to choose an asset-holding process at ∈ {0, 1}, subject to their utility-type process,

to maximize the following objective function:

E0,u

[∫ ∞
0

utate
−rtdt−

∫ ∞
0

Pe−rtdat

]
= E0,u

[∫ ∞
0

utate
−rtdt− Pe−rtat

∣∣∣∞
0

+

∫ ∞
0

Pate
−rt(−r)dt

]

= E0,u

[∫ ∞
0

utate
−rtdt+ Pa0 +

∫ ∞
0

Pate
−rt(−r)dt

]
= Pa0 + E0,u

[∫ ∞
0

ate
−rt(ut − rP )dt

]
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where ut denotes customers’ or dealers’ utility-type process, yt ∈ {y`, yh} or δt ∈ [δ`, δh], the

expectation operator E0,u is conditional on initial time and initial utiltiy type u, a0 is initial

holding position, and dat ∈ {1,−1}.

The optimal asset-holding process for both customers and dealers are:

at =


1 if ut > rP ;

1 or 0 if ut = rP ;

0 if ut < rP .

By market clear condition, there exists ∃!u∗ ∈ [δ`, δh] ∪ {y`, yh} s.t. P = u∗

r and u∗ has the

expression:

u∗ =


yh if s <= πh;

inf{u ∈ [δ`, δh] : πh +m−
∫ u
δ`
f(δ)dδ ≤ s} if πh < s < πh +m;

y` if s >= πh +m.

Based on estimation results, we calculate the corresponding Walrasian prices based on reservation

values of the marginal investors in OTC markets which solve (1.2)-(1.5):

For πh < s < πh +m: P =
δ∗

r
= 4V (δ∗)− cλ∗21 (δ∗)− cλ∗20 (δ∗)

r
(1.49)

For s ≤ πh: P =
yh
r

= 4W (yh)

1 +
απ` +

(
ρ
mΛ + 1

1+m

)
(1− θ)Λ1

r



−
απ`4W (y`) +

∫ δh
δ`

(
ρ
mΛ + 1

1+m

)
(1− θ)λ∗1(δ)φ1(δ)4V (δ)dδ

r
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1.A.5 Robustness check

1.A.5.1 Distribution of search intensity among dealers by monthly data

Fit search intensities as quardratic function of private valuation The quardratic

fitting using monthly data has the following form:

λ̂
j

i,t = β0 + β1 × δ̂jS,i,t + β2 × (δ̂jS,i,t)
2 + Γ1X

j
t + Γ2Yi,t + τi + φj + ηy + εji,t

where the controls are similarly defined except for monthly basis. In Table 1.12, the results verify

that total search intensity is still a hump-shaped function of dealers’ (scaled) private valuation. In

the lower range of private valuation, the upwards slope of total search intensity is driven by the

increase in average selling intensity; and in the higher range, the downwards slope of total search

intensity is driven by the decrease in average buying intensity.

Use measure of distance to mean-level private valuation as control For each dealer

i, we calculate
|δ̂ji,t−δ̂

j

t |

| ˆ
δjh,t−

ˆ
δjl,t|

as the measure of distance of dealer i’s private valuation type δ̂ji,t to the

cross-dealer mean level δ̂
j

t among the cross section of dealers within each bond j, which is further

normalized by the difference between the maximum and minimum private valuations. To verify the

model prediction about the shape of total search intensity among each cross section of dealers, we

run the following regression:

λ̂
j

i,t = β0 + β1 ×
|δ̂ji,t − δ̂

j

t |

| ˆ
δjh,t −

ˆ
δjl,t|

+ Γ1X
j
t + Γ2Yi,t + τi + φj + ηt + εji,t (1.50)

where all the other controls are same as (1.24).

Regression results are in Table 1.13. where we also include Tradeji,t, λ̂
S,j

i,t and λ̂
B,j

i,t as dependent

variables. The results indicate that average selling intensity always increases with private valuation

on both sides of the cross-dealer mean level, and average buying intensity increases on the left side

of the mean level and decreases on the right side. By composition effect, total search intensity
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Table 1.12: Distribution of search intensity among dealers
(quadratic form)

Depji,t λ̂
j

i,t λ̂
S,j

i,t λ̂
B,j

i,t

δ̂jS,i,t (%) 8.2698*** 5.4695*** 3.3484***
(6.30) (8.97) (3.58)

(δ̂jS,i,t)
2 -0.0423*** -0.0172*** -0.0279***

(-5.91) (-6.33) (-5.23)
HHIbondi,t (thousands) 1.9031 3.0577*** -1.2108**

(1.64) (2.78) (-2.46)
HHI typei,t (thousands) -6.9322*** -5.8018*** -0.6129

(-4.27) (-3.81) (-0.83)

HHIj,concent (thousands) -17.097*** -9.7139*** -7.6099***
(-19.44) (-12.42) (-17.36)

EVi,t 110.0916*** 46.4680** 64.4953***
(4.85) (2.13) (9.55)

Ratingjt 2.0028*** 3.1608*** -1.1348***
(5.05) (8.12) (1.11)

Pre3Mturnoverjt (%) 0.2300*** 0.1108*** 0.1211***
(6.31) (5.89) (5.6)

amtoutjt (million) (%) -0.022*** 0.0019 -0.0248***
(-9.96) (1.56) (-13.81)

TTM j
t (days) 1.1006*** 0.9427*** 0.2178*

(3.57) (3.25) (1.84)
Couponj (%) -0.7678** -2.9136 -10.8165

(-2.28) (-0.56) (-1.54)

# of obs 11,606,655 11,434,333 11,406,360
Adj R2 0.0593 0.0493 0.1241
Dealer×Bond×Year FE YES YES YES

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors are clustered
in dealer#bond#year.

increases on the left side of the mean level and decreases on the right side, which is mainly driven

by decrease in buying intensity.
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Table 1.13: Distribution of search intensity among dealers

Depji,t λ̂
j

i,t Tradeji,t λ̂
S,j

i,t λ̂
B,j

i,t

|δ̂ji,t−δ̂
j

t |

| ˆ
δjh,t−

ˆ
δjl,t|

-136.2285*** -6.1430*** -85.3014*** -54.3122***

(-24.77) (-384.71) (-13.58) (-21.63)

|δ̂ji,t−δ̂
j

t |

| ˆ
δjh,t−

ˆ
δjl,t|
× 1(δ̂ji,t > δ̂

j

t) 46.9200*** -40.2532***

(7.27) (-16.51)
HHIbondi,t (thousand) 1.9887 * 2.82e-04 3.1318*** -1.1766***

(1.71) (0.05) (2.86) (-2.39)
HHI typei,t (thousand) -4.9329*** -0.0344*** -5.155*** 0.2775

(-3.04) (-7.04) (-3.39) (0.37)

HHIj,concent (thousand) -15.9301*** -0.446*** -9.1246*** -7.0549***
(-18.12) (-182.23) (-11.68) (-16.14)

EVi,t 107.2886*** 2.7191** 9.2142*** 63.1459***
(4.73) (54.23) (1.57) (9.36)

Ratingjt 1.5266*** 0.0056*** 2.2030*** -0.6837***
(4.34) (4.13) (6.44) (-6.45)

Pre3Mturnoverjt (%) 0.0022*** 7.31e-05*** 0.0010*** 0.0013***
(6.25) (7.18) (5.62) (5.54)

amtoutjt (million) -0.024*** -3.22e-04** 0.0028** -0.0281***
(-11.25) (-2.52) (2.40) (-15.75)

TTM j
t (days) 1.0714*** 0.0067*** 0.9386*** 0.1920***

(3.47) (7.89) (3.23) (1.62)
Couponj (%) -0.6868** -0.0459** 9.2142 -21.8105***

(-2.19) (-2.22) (1.57) (-3.08)
# of obs 11,606,655 11,606,655 11,434,333 11,406,360
Adj R2 0.0593 0.1168 0.1241 0.1241
Dealer×Bond×Year FE YES YES YES YES

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors are clustered in
dealer#bond#year.

1.A.5.2 Proportions of different types of transactions in subperiods

We look at the relationship between the distribution of transactions of different types with distance

of dealers’ private valuations to cross-dealer mean level within each subperiod. Similar as Bessem-

binder, Jacobsen, Maxwell, and Venkataraman (2016), we divide the whole sample period into five
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Figure 1.12: Dealer’s private valuation and proportions of transactions in different directions
(by subperiod)

subperiods: Pre-crisis (Jan 2006-Jun 2007), Crisis (Jul 2007-Apr 2009), Post-crisis (May 2009-Jun

2010), Regulation (Jul 2010-Mar 2014), Volcker (post April 1, 2014).
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CHAPTER 2

Bond Misallocation and Liquidity Risk

2.1 Introduction

U.S. corporate bonds trade in decentralized over-the-counter (OTC) markets, in which deal-

ers provide liquidity to customer investors. Empirical studies starting from Collin-Dufresn,

Goldstein, and Martin (2001) document that there is a common non-default component in

the variations of all corporate bonds’ yield spreads over time. This component can not

be captured by bond fundamentals, firm-level fundamentals or macroeconomic variables.

Later studies show that this common component is closely related to a market-level liquid-

ity factor. Motivated by the theoretical rationalization on that OTC market frictions drive

the liquidity-related part of transaction price in decentralized markets, Friewald and Nagler

(2018) empirically show that OTC market frictions, namely systemic inventory, search and

bargaining frictions, jointly explain a large proportion of the common component. However,

to my best knowledge, there have not been papers talking about whether those common

frictions drive different bonds’ yield spreads by different magnitudes, and which market

microstructural factors can explain this heterogeneity.

In this paper, we construct a measure of “bond’s misallocation among dealers” and we

find that this measure is closely correlated with bonds’ heterogeneous yield spread loadings

on the common OTC search friction. The measure of bond’s misallocation is based on a

search-and-match model with dealers endogenously choosing search intensities based on their

idiosyncratic states. Specifically, we define this measure as the cross-sectional covariance of
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dealers’ private valuations for holding the bond and their actual inventory positions in the

bond. So it can further be regarded as a summary statistic on the joint distribution of

dealers’ idiosyncratic states. At a lower level of the cross-sectional covariance, there will

be more dealers of lower-type private valuations holding bond positions, comparing with a

counterfactual frictionless market. In this case, we regard the bond positions as being more

misallocated among the dealers, because in a frictionless market all bond positions are held

by dealers of the highest private valuations. Correspondingly, a higher level of the cross-

sectional covariance implies a lower level of bond’s misallocation. This measure is motivated

by the fact that in U.S. corporate bond markets, transactions happen bilaterally and the

reallocations of bond positions rely on dealers’ market-making and searching efforts. The

common OTC search friction, together with the distribution of dealers’ idiosyncratic states,

drives dealers’ market-making and searching decisions over time. The latter will further drive

the distribution of realized transaction prices and thus the average yield spread variations

over time.

Firstly, we use the TRACE data for the U.S. corporate bond market to test whether bonds

have significantly heterogeneous factor loadings of yield spread on the common OTC search

friction. Since the search friction is a market-level liquidity factor, in this paper, we also

call the factor loading as “bond’s liquidity risk attributed to search frictions”. Specifically,

it measures how much a bond’s yield spread changes in response to one unit change in the

common OTC search friction. Similar as Friewald and Nagler (2018), we use the length of

intermediation chain as a measure of the OTC search friction. By theoretical rationalization

in Hugonnier, Lester, and Weill (2018), the expected length of intermediation chain decreases

with the level of search friction. Then we follow the procedures in the literature to estimate

bonds’ heterogeneous liquidity risk attributed to search frictions in a reduced-form multi-

factor model. Our estimation results are consistent with Friewald and Nagler (2018) and we

further show that there is a high variation in the magnitude of liquidity risk across different

bonds. The standard deviation of the liquidity risk is more than three times of the mean
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level.

Secondly, we estimate the series of dealers’ idiosyncratic states, namely dealers’ private

valuations for holding each bond and their inventory positions in each bond, following the

procedures in Liu (2020) and Hansch, Naik, and Viswanathan (1998). With the estimated

series, we construct a panel data which contains yearly series of empirical estimates of bond’s

misallocation and liquidity risk. By estimating a panel data model, we verify that: at the

bond level, a higher magnitude of misallocation among the dealers is associated with a higher

magnitude of liquidity risk. This finding gives a preliminary market microstructural evidence

which supports that: in decentralized financial markets, the distribution of market maker’s

idiosyncratic states correlates with the magnitude of the asset’s liquidity risk.

Finally, we give a simple numerical explanation on the verified correlation between bond’s

misallocation and liquidity risk, by solving the search-and-match model with dealers’ endo-

geneous search efforts. The numerical solutions show that in a stationary equilibrium where

the cross-sectional covariance of dealers’ private valuation and inventory position is at a

lower level, the higher level of bond misallocation motivates more dealers to choose a higher

search intensity to buy or sell to adjust their holding positions. As a result, the average

level of all dealers’ search intensities is also high. With a qudratic-form search cost, the

average level of marginal search cost in the dealer sector is monotonically increasing with

the dealers’ average search intensity. Since this average marginal cost will be compensated

by bond’s average yield spread, in equilibrium the bond has its average yield-spread being

more exposed to shocks to OTC search frictions.

Related literature

This paper firstly contributes to the empirical literature initiated by Collin-Dufresn, Gold-

stein, and Martin (2001) that uncovers fundamental factors to explain U.S. corporate bonds’

yield spread variations over time. In this literature, Collin-Dufresn, Goldstein, and Mar-

tin (2001) establish that there is an unexplained single common factor in corporate bonds’
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yield spreads after controlling for commonly used explanatory variables; Longstaff, Mithal,

and Neis (2005) measure the size of the default and non-default components in corporate

spreads, and show that the non-default component is related to bond-specific as well as

macroeconomic measures of liquidity. Latter papers add other liquidity factors to improve

the explanation, see Bao, Pan, and Wang (2011), De Jong and Driessen (2012), Bongaerts,

De Jong, and Driessen (2017), Crotty (2013), Friewald and Nagler (2016), and He, Khor-

rami, and Song (2019), among others. Specifically, Friewald and Nagler (2018) attribute the

unexplained part of the non-default component to over-the-counter (OTC) market frictions.

In this paper, we specifically focus on bond’s yield spread loading on search frictions. Using

similar measures, we further document that there is a high variation in the magnitude of

yield spread loading on OTC search frictions across different bonds. And we further con-

struct a measure of bond’s misallocation and correlates it with the magnitude of the yield

spread loading.

The search-and-match model in this paper also belongs a theoretical literature initiated

by Duffie, Gârleanu, and Pedersen (2005) that uses a search-and-match model to study

asset price and liquidity in over-the-counter markets. My model studies fully decentralized

market structure by setting a random search environment, which is similar to one strand

of the literature developed by Duffie, Gârleanu, and Pedersen (2007), Vayanos and Wang

(2007), Vayanos and Weill (2008), Weill (2008), Afonso (2011), Gavazza (2011), Praz (2014),

Trejos and Wright (2016), Afonso and Lagos (2015), Atkeson, Eisfeldt, and Weill (2015).

My model is most related to Hugonnier, Lester, and Weill (2018) in the setting of dealers’

heterogeneous private valuation types and the incorporation of both dealer and customer

sectors. The main difference in my model is that we consider dealers’ explicit choice of state-

dependent search intensity based on their idiosyncratic states. In Hugonnier, Lester, and

Weill (2018), dealers are endowed with homogeneous search intensities. Based on my model,

we construct the cross-sectional covariance of dealers’ private valuations and bond holding

positions as the measure of bond’s misallocation among the dealers. Papers in this literature
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which also consider endogenous and/or heterogeneous search intensity include Shen, Wei, and

Yan (2018), Neklyudov (2012), Üslü (2019), and Farboodi, Jarosch, and Shimer (2017b), etc.

This paper connects the empirical literature on explaining corporate bond’s yield spread

variations and the theoretical literature on studying OTC market structure using the struc-

tural search-and-match framework. Most papers in the theoretical literature focus mainly

on how searching and trading activities determine the transaction price and volume between

each pair of two trading counterparties. This paper instead focuses on giving a more struc-

tual explanation on bond-level yield spread patterns, rather than only bilateral-based terms

of trade. Also this paper considers dealer-level market-making and searching behavior as

a channel that connects the change in OTC search friction and the bond-level yield spread

variations. The empirical verification also motivates future theoretical research.

2.2 Data description

We use the Academic Corporate Bond TRACE Data set provided by the Financial Industry

Regulatory Authority (FINRA). This data set contains dealers’ reports to the Trade Re-

porting and Compliance Engine (TRACE) which disclose information on all transactions in

corporate bonds. One advantage of the data is we can observe identities of the dealers in all

transactions. This allows us to track how the bonds are transacted between the dealers, so

that we can construct intermediation chains, and also construct the measure of bond misallo-

cation within the dealer sector. 1 We filtered the data following the procedure in Dick-Nielsen

(2014), and we recover the trading counterparties in locked-in and give-up trades2.We merge

1In the analysis, we define all registered members of FINRA as dealers and all non-registered outside
trading counterparties as customers. Main registered firm of FINRA include broker-dealer firms, crowd-
funding portals, and capital acquisition brokers, etc, which are all dealer-like firms. The ID numbers assigned
by FINRA to registered members are all virtual IDs. In the data, non-registered trading counterparties are
assigned with the ID of “C” by FINRA.

2By the user guide of FINRA, a “Give Up” trade report is reported by one FINRA member on behalf of
another FINRA member who is the real one to buy or sell the bonds and thus has a reporting responsibility.
For such reports, we call the FINRA members, who asked other members to submit reports for them, the true

69



the cleaned data with the Mergent Fixed Income Securities Database (FISD) and Wharton

Research Data Services (WRDS) Bonds Return Database to obtain bond fundamental char-

acteristics and credit ratings. We construct a monthly panel containing both dealer-wise and

bond-wise variables3.

Following the academic literature using the same data set, we further filtered the data

by excluding some “unusual bonds” and some specific types of transactions: [1] We exclude

bonds with optional characteristics, such as variable coupon, convertiable, exchangable, and

puttable, etc, and we also exclude asset-backed securities and private placed instruments; [2]

To estimate bonds’ factor loadings on OTC search frictions, we further drop the inactively

traded bonds, defined as those traded in fewer than 25 months throught the whole sample

period; [3] Finally, we exclude the “on-the-run” transactions which happened within three

months since bonds’ offering dates, to only consider secondary market transactions.

The final sample ranges from Jan 2005 to Sep 2015, and contains 10760 bonds traded

by 3050 dealers. The total outstanding amount of all bonds in our sample is $5.37 trillion.

The average bond rating is BBB by the S&P rating categories. Among these bonds, around

84% are investment grade and the remaining ones are high-yield or non-rated.4 Bonds on

trading counterparties; Locked-in report is a trade report representing both sides of a transaction. FINRA
members such as Alternative Trading Systems (ATSs), Electronic Communications Networks (ECNs), and
clearing firms have the ability to match buy and sell orders, and therefore to report on behalf of multiple
parties using a single trade report submitted to FINRA and indicate that the trade is locked-in. Similarly, we
call the FINRA members who submit the buy or sell orders, instead of those clearing platforms, as the true
trading counterparties. In the error filters, for these two types of trades, we use the IDs of the true trading
counterparties as dealers’ IDs and we adjust the reported prices accordingly to account for the agency fees
charged by reporting firms and clearing platforms (ATSs, ECNs, and clearing firms).

3The raw data is high-frequency data that records the time of each transaction in seconds. In empirical
literature using TRACE data to analyze U.S. corporate bond market liquidity, it is common practice to
process the data to monthly frequency as corporate bonds are relatively illiquid compared with stock markets,
see Bao, Pan, and Wang (2011), Crotty (2013), Friewald and Nagler (2016), and Friewald and Nagler (2018),
etc. Specifically, An (2019) documents that dealers’ average inventory duration in the U.S. corporate bond
market is around three weeks by using the same data, which implies that the average frequency dealers
adjust their inventories is around one month.

4By the S&P rating categories, investment grade are S&P BBB or higher; and high-yield(junk) are below
or equal to S&P BBB-.
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average have time to maturity as 7.6 years. There are 57,623,804 transactions with total par

amount as $27.8 trillion. The average trade size is $482.41 thousand with standard deviation

as $4.47 thousand.

2.3 Liquidity risk attributed to search frictions

In this paper, we specifically focus on bonds’ liquidity risk attributed to over-the-counter

(OTC) search frictions (henceforth “liquidity risk” for short). Friewald and Nagler (2018)

show that changes in OTC market frictions can explain a large portion of variations in bond

yield spreads, by fitting a multi-factor model using the same data set. The OTC market

frictions they consider include search frictions, inventory frictions, and bargaining frictions,

etc. Specifically, we follow the similar procedure to use the weighted average length of

intermediation chain as a measure of OTC search friction5, and we regard the factor loading

of bond yield spread6 on the average chain length as a measure of the bond liquidity risk

attributed to OTC search frictions. We will show that the magnitude of this measure of

liquidity risk varies across different groups of bonds.

2.3.1 Length of intermediation chain

Intermediation chains were firstly constructed in Li and Schürhoff (2014) and Hollifield,

Neklyudov, and Spatt (2017) to track how municipal bonds and securitization instruments

are reallocated from a customer-seller to a customer-buyer through a series of dealers in the

interdealer market. The length of an intermediation chain is defined as the number of dealers,

5The weighted average length of intermediation chains is equal to the average number of dealers being
involved in the intermediation process. Details about this measure are discussed in Appendix 2.A.2.2.

6Yield spread is defined as the difference between corporate bond yield and the treasury yield whose
term equals the corporate bond duration. Similar as in Crotty (2013), Friewald and Nagler (2018), etc, we
calculate treasury yields of different terms through linearly interpolating between points on the treasury
curve.
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through which the assets passed during the reallocation process. By Hugonnier, Lester, and

Weill (2018), the expected length of intermediation chain decreases with the level of search

frictions in the interdealer market. Specifically, in a more frictional interdealer market, it

is more difficult for dealers to meet and trade with each other, so that there will be fewer

dealers being involved in each reallocation of assets between customers, then the average

length of intermediation chain will be shorter.7

We calculate the average length of intermediation chain across all bonds for each month,

using volumes of reallocation as weights. Figure 2.1 shows that the average chain length

is relatively higher before the 2008 great financial crisis (GFS) when search frictions are

relatively low in corporate bond secondary market. Then it decreases by as large as 6%

during the crisis period when secondary market liquidity nearly dried up. Although the

average chain length recovers slightly in the post-crisis period.8, after Dodd-Frank act was

signed into law in July, 2010, it further decreases by nearly 8% till the third quarter of 2015.

This is consistent with the effects of Dodd-Frank act on restricting both dealers’ proprietary

tradings and dealers’ liquidity provision to customers.

To verify that the average chain length is negatively correlated with the level of search

frictions, we also plot the ratio of pre-arranged transactions among all transactions for each

month. This ratio tends to be higher when market is more frictional so that dealers are less

willing to commit their capital to liquidity provision, but more willing to pre-arrange trades

between buyers and sellers. In Figure 2.1, the ratio of pre-arranged trades is negatively

correlated with the average length of intermediation chain.

7As market-level search frictions increase, although intermediation chains will on average be shorter, it
does not necessarily mean the reallocations of assets between customers take shorter time.

8Similar as Bessembinder, Jacobsen, Maxwell, and Venkataraman (2016), we divide the whole sample
period into five subperiods: Pre-crisis (Jan 2006-Jun 2007), Crisis (Jul 2007-Apr 2009), Post-crisis (May
2009-Jun 2010), Regulation (Jul 2010-Mar 2014), Volcker (post April 1, 2014).
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Figure 2.1: The value-weighted average length of intermediation chain (Jun 2004 - Sep 2015)

2.3.2 Bond liquidity risk

We estimate bonds’ heterogeneous yield spread loadings on OTC search frictions using

monthly panel data, and we use this factor loading as a measure of bond’s liquidity risk

attributed to search frictions. We calculate yield spread as the gap between bond yield and

the same-maturity treasury yield. Then we regress the change in yield spread on multi-

ple regressors, including the regressors about the change in other OTC market frictions in

Friewald and Nagler (2018), regressors about the change in market fundamental factors (e.g.

equity pricing factors, market volatility, etc) in Fama and French (1993), Carhart (1997),

Crotty (2013), and bond fundamentals. The yield spread loading on OTC search frictions is

the estimate of bond-wise coefficient on the regressor “average length of intermediation chain

across all bonds”. This coefficient measures how sensitively the non-default component of
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credit spread responds to the change in OTC search frictions. The model is as follows:

4(Y ieldSpread)j,t = βjSysSearch4SystemChainLengtht + βjSysNetConcen4SysNetConcent

+βjMKTRMKT,t + βjSMBRSMB,t + βjHMLRHML,t + βjUMDRUMD,t

+γγγj14It + γγγj24Bt + γγγj34X
(j)
t + εj,t

where 4SystemChainLengtht is the change in the average length of intermediation chain,

which is a proxy for shocks to OTC search frictions. Therefore, βjSysSearch is the defined bond

j’s liquidity risk, and our main focus is to discuss how market structural factors (specifically,

bond’s misallocation among dealers) determine the magnitude of βjSysSearch. In Appendix

2.A.2.4, we show that the factor loading βjSysSearch is significantly priced in bonds’ yield

spreads.

The multi-factor model includes other controls as follows: [1] change in interdealer net-

work concentration 4SysNetConcent, which is measured by the summation of all dealers’

average degree centralities9 in month t; [2] returns on factor-portfolios RMKT,t, RSMB,t,

RHML,t and RUMD,t, namely market portfolio (S&P 500 portfolio), small-minus-big(SMB)

portfolio, high-minus-low(HML) portfolio and up-minus-down(UMD) momentum-factor port-

folio; [3] change in OTC inventory-related frictions4It = (4invt−1;4amtoutt;4prearranget),

in which 4invt−1 is the one-month-lagged change in all dealers’ inventories in all bonds,

4amtoutt is the change in all bonds’ amount outstanding, 4prearranget is the change

in pre-arranged ratio of all transactions; [4] change in OTC bargaining frictions 4Bt =

(4blocktradet;4HHIdealert), in which 4blocktradet is the change in ratio of block trades

9Degree centrality is another measure of vertices’ centralities in a network. Unlike eigenvector centrality,
degree centrality only takes into account all direct links directed from or to each vertice. For a network with
n vertices, the theoretical maximum value of the summation of all vertices’ degree centralities is n(n − 1).
Therefore, summation of all dealers’ degree centralities in the interdealer network is a better measure of the
concentration of the network. The closer the summation is to n(n − 1), where n is the number of dealers,
the less concentrated the interdealer network is.
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and4HHIdealert is the change in average value of all bonds’ HHI indices10; [4] all the other

bond-wise and market-aggregate controls

4Xt = (4(Y ieldSpread)j,t−1,4RFt; (4RFt)2;4SLOPEt;4turnoverjt ;Rating
j
t ;TTM

j
t ) in

Collin-Dufresn, Goldstein, and Martin (2001) and Friewald and Nagler (2018), in which

4(Y ieldSpread)j,t−1 is the lagged term of change in yield spread, 4RFt is the change in

10-year treasury rate, (4RFt)2 is the square value to capture potential non-linear effect,

4SLOPEt is the change in the slope of yield curve, 4turnoverjt is the change in bond j’s

current-month turnover rate, Ratingjt is bond j’s credit rating in month t and TTM j
t is bond

j’s time to maturity in month t.

The mean value of βjSysSearch across all bonds is significantly negative, as shown in Table

2.1. This indicates that, when intermediation chains are longer (in other words, OTC search

frictions decrease), bond’s yield spread will decrease. The signs of other reported average

coefficients in Table 2.1 are consistent with those in Friewald and Nagler (2018). The full

regression results are in 2.4 in Appendix 2.A.2.1.

However, the average magnitude of βjSysSearch is significantly heterogeneous among dif-

ferent groups of bonds. We divide the whole sample of bonds into different groups based on

bonds’ credit rating and time to maturity. Table 2.2 shows that the factor loading βjSysSearch

has higher absolute value for high-yield bonds and/or bonds with longer time to maturity.

The higher the absolute value of βjSysSearch is, the more sensitively bond j’s yield spread

responds to shocks to OTC search frictions. Our next focus is to construct a new market

microstructural variable, “bond’s misallocation among dealers”, and use it to explain why

different bonds have different magnitudes of liquidity risk attributed to OTC search frictions.

10Block trades are defined as trades with trading volume being larger than $1, 000, 000. Each bond’s HHI
index is calculated by using all dealers’ market shares in that bond. Both variables are proxy for systemic
bargaining frictions in the U.S. corporate bond market: the higher the ratio of block trades is, the more
bargaining power the corporate bond customers (investors) have, and the higher the average value of all
bonds’ HHI indices is, the more concentrated are bonds’ transactions to a subset of dealers, therefore, the
lower bargaining power of the customers (investors) have
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Table 2.1: Bond-level liquidity risk

4(Y ieldSpread)j,t (%) (1) (2) (3)

4SystemChainLengtht -2.32*** -1.67*** -1.55***
(-32.80) (-21.38) (-21.38)

4SysNetConcent (thousand) -9.83e-03*** -4.77e-03*** -4.43e-03***
(-48.16) (-22.30) (-20.10)

4invt−1 ($trillion) 7.55*** 5.55*** 5.74***
(24.07) (16.39) (17.51)

4prearranget (%) 0.26*** 1.28*** 1.08***
(3.43) (15.87) (13.43)

4blocktradet (%) -66.67*** -29.29*** -28.65***
(-50.94) (-22.37) (-22.15)

4amtoutt ($trillion) -0.32*** -0.47*** -0.38***
(-6.17) (-8.12) (-6.54)

4HHIdealert (thousand) -1.04*** -0.67*** -0.67***
(-46.70) (-28.99) (-30.82)

Mean Adj R2 0.18 0.35 0.37
#ofBonds 11176 11176 9595

#ofObs 515514 515514 479146
market aggregates and FFC 4 factors NO YES YES

bond liquidity and fundamentals NO NO YES

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. In Panel A, we exclude bonds with total
number of observations smaller or equal to 19 for model (1)-(2) and smaller or equal to
25 for model (4). The reported estimated coefficients are average values taken across all
bonds. The corresponding t-statistics are calculated by dividing each reported (average)
coefficient value by the standard deviation of the estimates and scaling by the square
root of the number of bonds.

2.4 Correlation between bond misallocation and liquidity risk

In this section, we construct a measure of bond’s misallocation among dealers, and show

that this measure is closely correlated with the magnitude of bond’s liquidity risk. The main

takeaway is: a bond which is more misallocated among the dealers has its yield spread being

more exposed to shocks to OTC search frictions, because the dealers are more willing to re-

allocate the bond between themselves and a larger portion of the bond price will compensate

the dealers for paying the search costs.
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Table 2.2: Group-level liquidity risk

4(Y ieldSpread)j,t (%) (1) (2) (3)

4SystemChainLengtht -0.38*** -0.32*** -0.15*
(-8.99) (-6.29) (-1.92)

4SystemChainLengtht × 1 (HY bonds) -0.19*
(-2.34)

4SystemChainLengtht × 1 (TTM 2nd) -0.57***
(-5.20)

4SystemChainLengtht × 1 (TTM 3rd) -0.43***
(-3.98)

Adj R2 0.1307 0.1307 0.1308
#ofBonds 11703 11703 11703

#ofObs 523586 523586 523586
market aggregates and FFC 4 factors YES YES YES

bond liquidity and fundamentals YES YES YES
OTC inventory and bargaining friction YES YES YES

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. In Panel A, we exclude bonds
with total number of observations smaller or equal to 19 for model (1)-(2)
and smaller or equal to 25 for model (4). The reported estimated coefficients
are average values taken across all bonds. The corresponding t-statistics are
calculated by dividing each reported (average) coefficient value by the stan-
dard deviation of the estimates and scaling by the square root of the number
of bonds. In Panel B: TTM 1st: 13 days∼3 years, TTM 2nd: 3∼6 years,
TTM 3rd: > 6 years.

2.4.1 Bond misallocation among dealers

For each bond, we define its misallocation among dealers as the cross-sectional covariance

of dealers’ idiosyncratic private valuations11 for holding the bond and their actual inventory

positions in the bond. In the dealer sector, if there are more (less) low(high)-private-valuation

dealers holding the bond, the level of this covariance will be lower, then we regard the bond

as being “more misallocated” among the dealers.

11In the spirit of Duffie, Gârleanu, and Pedersen (2005), dealers’ idiosyncratic private valuations can
be understood as their idiosyncratic preferences in holding the bond, which can be determined by their
idiosyncratic liquidity needs, financing costs, and hedging needs, etc. Within each bond, dealers can be
ranked by their private valuation types. For example, a dealer who has a higher liquidity need or financing
cost than other dealers will manifest a lower private valuation for holding the bond than others.
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Theoretical counterpart of bond misallocation The measure of bond misallocation

is based on a structural search model in Liu (2020). In this section, we give a review on the

model environment and a simple numerical example to show that a higher (lower) level of

the cross-sectional covariance of dealers’ private valuations and bond inventories implies a

lower (higher) magnitude of bond misallocation among dealers.

The model environment is: there are two sectors of agents in the market, a continuum of

customers with physical measure normalized to 1 and a continuum of dealers with physical

measure as m ≤ 1. Dealers and customers search and trade a single bond with fixed supply

s. Each participant’s bond position a is assumed to be either zero or one.12 Each participant

has a private valuation for the bond: customers’ private valuation takes two possible values,

either low or high, denoted by y ∈ {y`, yh} with y` < yh, and follows a discrete distribution

P (y′ = yc) = πc, c = `, h; dealers’ private valuations δ ∈ [δ`, δh] lie in between customers’

low type and high type, and follow a continuous distribution fD(δ). The two types of

customers cannot directly trade with each other, so the bond needs to be intermediated

through the dealer sector. One position of the bond can be sold from a low-type customer to a

dealer, and transacted between several dealers, and then finally sold to a high-type customer.

Each customer periodically receives an idiosyncratic shock with Poisson intensity α, which

makes her valuation switch between the high type and low type. This shock generates the

fundamental trading needs in the market. Dealers do not receive such valuation shock, so

their relative valuations remain fixed over time. Dealers endogeneously choose their search

efforts λ(a, δ) based on their idiosyncratic states (a, δ), and pay a search cost c× λ2(a, δ) at

each time, where c > 0 is a proxy for the market-level OTC search frictions.

The model generates a stationary equilibrium which includes a density function φ1(δ).

The value of φ1(δ) on each δ ∈ [δl, δh] is the probability that a dealer with private val-

uation δ holds one position of the bond, i.e. this dealer is a dealer-owner in stationary

12This {0, 1} assumption for bond holding and the indivisibility of bonds determine that the trading
volume in each transaction equals one.
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equilibrium. Correspondingly, the probability that this dealer with private valuation δ is a

dealer-nonowner is denoted as φ0(δ) = fD(δ) − φ1(δ). As a result, the shape of the density

function φ1(δ) determines how the bond is allocated among dealers, and it uniquely maps to

the level of the cross-sectional covariance Cov(δ, a) of dealers’ private valuations and bond

positions. The covariance has the following form:

Cov(δ, a) =
∑

a∈{0,1}

∫ δh

δ`

(a− ad)(δ − δd)
φa(δ)

m
dδ =

∫ δh

δ`

(δ − δd)
φ1(δ)

m
dδ (2.1)

where δd is the average value of dealer’s private valuation and has an expression as∑
a∈{0,1}

∫ δh
δ`
δφa(δ)dδ =

∫ δh
δ`
δfD(δ)dδ. Based on the final expression

∫ δh
δ`

(δ − δd)
φ1(δ)
m
dδ in

(2.1), we can regard the cross-sectional covariance Cov(δ, a) as a weighted average of (δ−δd),

with the values of the density function φ1(δ) as weights.

The value of Cov(δ, a) is negatively correlated with the level of the bond’s misallocation

among dealers. For example, if there is a larger proportion of the bond positions being held

by low-private-valuation dealers, in the term
∫ δh
δ`

(δ−δd)φ1(δ)
m
dδ larger weights will be imposed

on lower δ, which leads to a lower value of Cov(δ, a).

A numerical example of this model is shown in Figure 2.2. The area below the density

function φ1(δ) is equal to the total amount of bond positions being held by dealers. Suppose

in Walrasian (frictionless) market, the minimum private valuation among all the dealer-

owners is the middle level δl+δh
2

, then we call the dealer of this level of private valuation as the

“marginal investor”. Since in Walrasian market all of the bond positions are held by dealers

of the highest private valuations, we assume there is no bond misallocation among dealers

in this case. Then in any over-the-counter (OTC) market with search frictions, we regard

any bond positions which are held by dealers with private valuations lower than this middle

level δl+δh
2

as “being misallocated”. In the right graph of Figure 2.2, there are two OTC

markets with the same level of search frictions but different levels of bond misallocations.

Market-1 has relatively lower amount of bond positions being misallocated than market-
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Figure 2.2: Numerical example of dealer owner density function and bond misallocation

(Walrasian market: Cov(δ, a) = 0.130, µh1 = πh = 0.5, µl1 = 0. market-1: Cov(δ, a) = 0.103,
µh1 = 0.4969 < πh, µl1 = 0.0031, c = 0.07. market-2: Cov(δ, a) = 0.092, µh1 = 0.2563 < πh,

µl1 = 0.2437, c = 0.07.)

2. Correspondingly, the cross-sectional covariance Cov(δ, a) is higher in market-1 than in

market-2.

Data estimate of bond misallocation We follow the procedure in Liu (2020) to esti-

mate the monthly series of dealers’ idiosyncratic private valuations using realized transaction

prices. Detailed explanations on the estimator is in Appendix 2.A.1. For each bond-month

pair, each dealer’s private valuation is the simple average of the dealer’s maximum buying

price and minimum selling price for that bond-month pair. The estimator of a dealer’s
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private valuation type δ is as follows13:

δ̂ji,t =
max{Buyj

i,nj,Bi,t
}+min{Sellj

i,nj,Si,t
}

2

where {Buyj
i,nj,Bi,t
} ({Sellj

i,nj,Si,t
}) is the collection of all buying (selling) prices by dealer i for

bond j in month t, and nj,Bi,t (nj,Si,t ) is the correspondinng number of total buying (selling)

transactions (including both dealer-customer and interdealer transactions) in month t.

We follow the procedure in Hansch, Naik, and Viswanathan (1998) to estimate the

monthly series of dealers’ inventory positions. We use Qj
i,t to denote the (unobservable)

dealer i’s inventory position in bond j and month t, s.t. 0 ≤ t ≤ T , where T is the last

month of our sample. We use qji,t to denote the corresponding observable signed net trad-

ing volume, which is positive (negative) when the dealer i increases (shrinks) her inventory

position of bond j in month t. With unobservable initial inventory Qj
i,0, Qj

i,t satisfies:

Qj
i,t = Qj

i,0 +
t∑

s=1

qji,s

Then we construct the standardized inventory for each dealer i, bond j and month t:

Iji,t =
Qj
i,t − Q̄

j
i

σji

where Q̄j
i,t =

∑T
s=0Q

j
i,s

T+1
and σji =

√∑T
s=0(Qji,s−Q̄

j
i,t)

2

T
are the sample mean and standard deviation

of the monthly series.14

13In finite samples, on the buy side of each dealer, the maximum buying price is a downward biased
estimate for the dealer’s marginal valuation; on the sell side, the minimum selling price is an upward biased
estimate for the dealer’s marginal valuation. Taking the average of the sample maximum buying price and
the sample minimum selling price will make the bias cancel out. In small samples with dealers’ unbalanced
buy and sell trades, the levels of the upward bias and the downward bias may not be equal. Then to make
the bias cancel out completely, the weights assigned on the two extreme prices can be adjusted according to
the realized number of buy and sell trades.

14For a robustness check, we also follow Friewald and Nagler (2016) to calculate Q̄ji,t and σji,t only using

81



The standardized inventory Iji,t essentially measures by how much the current inventory

Qj
i,t deviates from the unobserved target level Q̄j

i,t, and the deviation is scaled by the volatility

of the series within each pair of dealer i and bond j. By similar derivation in Hansch,

Naik, and Viswanathan (1998), this standardization [1] excludes the effect of unobserved

initial inventory position Qj
i,0 after issuance15, and writes standardized inventory as a linear

combination of a series of signed net trading volumes {qji,s}; and [2] controls for differences

in risk aversion to guarantee the comparability of inventories across dealers (see Friewald

and Nagler (2016)).

With the estimated monthly series {δ̂ji,t} and {Iji,t}, we calculate the cross-sectional co-

variance for each year by the following two steps: firstly, for each pair of dealer i and bond

j in year y, we separately calculate the dealer’s yearly weighted average of private valuation

δ̂ji,y and yearly weighted average of inventory position Iji,y, using the dealer’s monthly trading

volumes in year y as weights; secondly, for bond j and year y, we pool all dealers’ yearly

private valuations {δ̂ji,y}i∈Dy and inventory positions {Iji,y}i∈Dy together, and calculate the

cross-sectional covariance as follows:

Ĉov(δ̂ji,y, I
j
i,y) =

1

Ny
d

∑
i∈Dy

(
δ̂ji,y − δ̂

j

y

)
∗
(
Iji,y − I

j

y

)

where Dy is the collection of all the dealers who completed at least one transaction in bond

j on both the buy and sell sides of the market in year y, and Ny
d is the number of dealers

in group Dy; δ̂
j

y and I
j

y are the simple cross-dealer means of private valuation and inventory

position in year y.

series of signed trading volumes within the fixed rolling time window [t, t−R]. We obtain similar results for
our quantitative analysis.

15We calculate the series of standardized inventory {Iji,t} before dropping bond transactions during a
3-month on-the-run period following issuance.
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2.4.2 Correlation between bond misallocation and bond liquidity risk

In this section, we show that bonds with a lower level of cross-sectional covariance of dealers’

private valuation and inventory position (i.e. a higher magnitude of misallocation) will have

its yield spread more exposed to shocks to OTC search frictions (i.e. a higher magnitude of

liquidity risk). This finding gives a preliminary market microstructural evidence which shows

that: the distribution of market maker’s states correlates with the magnitude of corporate

bond’s liquidity risk.

To verify this correlation, we construct a yearly panel data on corporate bonds’ factor

loadings on OTC search frictions βjSysSearch,y and within-bond average cross-sectional covari-

ance Ĉovy(δ̂
j
i,ey, I

j
i,ey). Specifically, βjSysSearch,y is estimated for bond j which has transactions

completed in year y, using bond j’s all transactions within the time window [1, y]. Corre-

spondingly, Ĉovy(δ̂
j
i,ey, I

j
i,ey) is constructed as a weighted average of bond j’s yearly cross-

sectional covariance throughout all years ey ∈ [1, y]. Therefore, to construct each point

(βjSysSearch,y, Ĉovy(δ̂
j
i,ey, I

j
i,ey)) in the yearly panel data, we make use of all the cumulative

information until year y on bond transactions, market microstructure, bond fundamentals,

and market aggregates, etc.

We estimate the following reduced-form model to verify the correlation between bond’s

misallocation Ĉovy(δ̂
j
i,ey, I

j
i,ey) and liquidity risk βjSysSearch,y:

βjSysSearch,y = α0 + α1 ∗ Ĉovy(δ̂ji,ey, I
j
i,ey) +ααα2F

j
y + ηy + εjy

where the vector F j
y includes the weighted averages of bond fundamentals, proportions of

interdealer and dealer-customer transactions, liquidity measures, etc, and the year fixed effect

ηy controls the time window of cumulative information used to construct the data points.

The regression results in Table 2.3 indicate that, at the bond level, a higher magnitude

of misallocation among the dealers (a lower level of Ĉovy(δ̂
j
i,ey, I

j
i,ey)) is associated with a
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higher magnitude of liquidity risk (a higher absolute magnitude of βjSysSearch,y).

Table 2.3: Correlation of bond misallocation and liquidity risk

βjSysSearch,y (< 0) (1) (2) (3) (4)

Ĉovy(δ̂
j
i,ey, I

j
i,ey) (1, 000×%) 0.25*** 0.25*** 0.25*** 0.22***

(6.00) (6.00) (5.99) (5.14)
turnoverjy (%) 0.06 0.09 0.06

(0.78) (1.07) (0.50)
Num DDj

y (thousand) -0.64*** -0.47**
(-4.23) (-3.07)

Num DCjy (thousand) 0.26** 0.20*
(2.92) (2.11)

Amtoutjy ($trillion) -17.81
(-0.24)

TTM j
y (thousand days) 0.06***

(5.47)
Ratingjy 0.06***

(4.56)
Adj R2 0.02 0.02 0.03 0.03
F statistics 52.11 47.82 43.12 38.26
# of Bonds 4754 4754 4754 4754
# of Obs 22359 22359 22359 22359
Year FE YES YES YES YES

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. All the following variables
are weighted averages within the time window [1, y]: turnoverjy is turnover
rate which is the ratio of total trading volume to total outstanding amount;
Num DDj

y and Num DCjy are numbers of interdealer- and dealer-customer
transactions; bond fundamentals include outstanding amount Amtoutjy,
time to maturity TTM j

y , and credit rating Ratingjy.

Finally, in Table 2.7 of Appendix 2.A.2.4, we show that the bond-level liquidity risk

attributed to OTC search frictions is on average compensated by 8 bps yield spread across

all bonds. We extend the yearly panel data by adding the cumulative weighted average yield

spread for each point in the data. As a result, the value of compensated yield spread is also

at a weighted aveage level on a cumulative basis. It also varies across different bonds with

a maximum value as high as 66 bps. An increase in liquidity risk of one standard deviation
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is associated with around 18 bps.

2.5 Numerical explanation by search-and-match model

In this section, we apply the numerical solutions of the model in Section 2.4.1 under different

sets of parameters to give an explanation for the correlation between bond’s misallocation

among dealers and liquidity risk. The numerical solutions imply that dealers’ endogeneous

and state-dependent search intensity works as an important channel which connects bond’s

misallocation and liquidity risk.

The mechnism is: in equilibrium where the covariance of dealers’ private valuation and

inventory position is at a lower level, there are more dealers holding bond positions that

are less aligned with their private valuation types. Specifically, there is a larger proportion

of dealers who hold higher(lower)-than-average inventory positions but have lower(higher)-

than-average private valuation types. This motivates more dealers in the market to choose

a higher level of search effort to buy or sell to adjust their holding positions. We denote

the average level of search effort in the dealer sector as Λ
m

, where Λ
m

=
∫ δh
δ`
λ(1, δ)φ1(δ)

m
dδ +∫ δh

δ`
λ(0, δ)φ0(δ)

m
dδ. With a qudratic-form search cost c×

(
Λ
m

)2
, the average level of marginal

search cost in the dealer sector can be approximated by 2c× Λ
m

. Since this average marginal

cost will be compensated by bond’s average price (yield), those bonds with a higher level of

dealers’ average search effort Λ
m

will have their average transaction price (yield) more exposed

to shocks to OTC search frictions c.16

In Figure 2.3, we draw the numerical solutions of the stationary equilibria in six markets

with different levels of bond misallocation Cov(δ, a). We focus on how bond’s liquidity risk

attributed to OTC search friction c varies across different markets at the each level of c.

Specifically, we vary the Poisson intensity α at which customers’ private valuation types

16There also exists a second-order effect of change in search friction c on the aggregate search intensity
Λ, but the magnitude of this effect is dominated by the first-order effect when equilibrium aggregate search
intensity is at a high level.
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switch between low and high values, to generate the varying level of bond misallocation

Cov(δ, a) across the markets.17 In this figure, bond’s average transaction price P is defined as

the weighted average price across all transactions, and bond’s price sensitivity to OTC search

frictions is then defined as the corresponding derivative ∂P
∂c

. This derivative has negative

values since a higher level of search friction implies a lower level of average transaction price

to compensate dealers and customers with a higher yield. Since bond’s price fully determines

its yield spread under fixed risk-free rate, ∂P
∂c

can also be regarded as a theoretical counterpart

of the bond liquidity risk βSysSearch as estimated in data. In subgraph-D of Figure 2.3, we

further construct the derivative of bond’s yield with respect to search frictions c, which

approximates the negative of the factor loading βSysSearch.
18

The numerical solutions verify that: at each fixed level of search frictions c, when we

move from the market with the highest magnitude of bond misallocation (α = 0.75) to the

market with the lowest magnitude of bond misallocation (α = 0.25), the absolute magnitude

of bond’s liquidity risk attributed OTC search frictions ∂Y TM
∂c

will increase across markets.

Specifically, in the market with the highest bond misallocation ((α = 0.75)), as OTC search

friction c increaes by one unit, the bond’s yield spread will increase by the largest value

among all the markets.

17Intuitively, for a bond with a higher α, customers receive i.i.d. shocks on their private valuation types
at a higher intensity which drives customers to more frequently search to trade with randomly selected
dealers. This increases the likelihood that a low-type dealer-nonowner or a high-type dealer-owner meets
and trades with customers, because there always exists a positive trading surplus between a high-type
customer-nonowner (low-type customer-owner) and any dealer-owners (dealer-nonowners). Therefore there
will be a larger proportion of dealers holding inventory positions which are not well-aligned with their private
valuation types and the value of Cov(δ, a) will be lower.

18Bond’s yield is approximated by the formula ApproxY TM =
C+F−P

n
F+P

2

where we choose time to maturity

n = 5, face value F = 100, and coupon rate C = 0.
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Figure 2.3: Aggregate trading incentive and bond price sensitivity to search friction

(s = πh = 0.5, y` = 0.5, yh = 1.7, δ` = 0.6, δh = 1.6, ρ = m = θ = 0.5, r = 0.05, c ∈ [0.05, 0.1] and
α ∈ [0.25, 0.75])

2.6 Conclusion

In this paper, we propose a measure of corporate bond’s misallocation among dealers and doc-

ument that this measure is closely correlated with corporate bond’s liquidity risk attributed

to OTC search frictions. This measure of bond’s misallocation is based on a structural

search-and-match model with dealers’ endogeneous search efforts, and it is defined as the

cross-sectional covariance of dealers’ private valuations for holding the bond and their actual
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inventory positions in the bond. Using the TRACE data for the U.S. corporate bond mar-

ket, we construct a panel data which contains yearly series of empirical estimates of bond’s

misallocation and liquidity risk, and we verify that: at the bond level, a higher magnitude of

misallocation among the dealers (or a lower level of the cross-sectional covariance of dealers’

private valuations and inventory positions) is associated with a higher magnitude of liquidity

risk. This finding gives a preliminary market microstructural evidence which shows that:

the distribution of market maker’s states correlates with the magnitude of corporate bond’s

liquidity risk. The numerical solutions of the search-and-match model gives a preliminary

explanation on how the bond’s misallocation affects bond’s liquidity risk attributed to OTC

search frictions, through driving dealers’ investment in search efforts.
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Appendix 2.A Appendix of Chapter 2

2.A.1 Estimate of dealers’ private valuation

In the search-and-match model, we denote dealer-owners’ value function as V1(δ) and dealer-

nonowners’ value function as V0(δ), for δ ∈ [δl, δh]. Then we define dealers’ reservation value

function for the bond is 4V (δ) = V1(δ) − V0(δ), for δ ∈ [δl, δh], which measures how much

compensation each dealer requires for giving up holding one position of the bond. In the

bilateral search environment, when two dealers (suppose one holds one position of the bond

and the other does not hold any position) with different private valuations meet, trading

only happens when the dealer-owner’s private valuation is lower than that of the dealer-

nonowner. The realized transaction price is determined by a symmetric Nash bargaining

process. Specifically, for a dealer with a type δ ∈ [δ`, δh], her transaction price with another

dealer with a type δ′ ∈ [δ`, δh] is:

P (δ, δ′) =
4V (δ) +4V (δ′)

2

where whether P (δ, δ′) is a selling or buying price depends on whether the dealer δ “holds

the bond and search on her sell side” or “does not hold the bond and search on her buy

side”.

For transactions happening on the sell side of the dealer δ, since 4V (δ′) > 4V (δ)(or the

transaction would not happen), if it is possible for dealer δ to meet a continuum of other

dealers, the lowest selling price is exactly equal to 4V (δ). Vice versa, on the buy side of the

dealer δ, since 4V (δ′) < 4V (δ), the highest buying price is exactly equal to 4V (δ). Again

based on monotonicity of 4V (δ), in data, we construct the following consistent estimator19

19In finite samples, on the buy side of each dealer, the maximum buying price is a downward biased
estimate for the dealer’s marginal valuation; on the sell side, the minimum selling price is an upward biased
estimate for the dealer’s marginal valuation. Taking the average of the sample maximum buying price and
the sample minimum selling price will make the bias cancel out. In small samples with dealers’ unbalanced
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as a proxy for dealers’ private valuation type δ:

δ̂ji,t =
max{Buyj

i,nj,Bi,t
}+min{Sellj

i,nj,Si,t
}

2

where {Buyj
i,nj,Bi,t
} ({Sellj

i,nj,Si,t
}) is the collection of all buying (selling) prices by dealer i for

bond j within month t and nj,Bi,t (nj,Si,t ) is the correspondinng number of total buying (selling)

transactions (including both dealer-customer and interdealer transactions) within month t.

20

2.A.2 Bond liquidity risk attributed to search frictions

2.A.2.1 Factors driving yield spread change

The full regression results are in Table 2.4.

2.A.2.2 Intermediation chain

The matching algorithm to construct intermediation chains is an extension of the algorithms in

Hollifield, Neklyudov, and Spatt (2017) and Li and Schürhoff (2014). Similarly, the intermediation

chains start from customer-sell-to-dealer trades and end at dealer-sell-to-customer trades. We also

use the first-in-first-out(FIFO) matching algorithm to look for the next trades for each incomplete

chain. The main difference is, we only allow the split matching in the first round of the loop. After

the first round, we track a fixed par amount of a bond until finding the final customer buyer.

Each intermediation chain starts from a trade that a customer Cs sells some amount of a bond

to a dealer D1. We then look for the next trade completed by dealer D1 selling to a customer

buy and sell trades, the levels of the upward bias and the downward bias may not be equal. Then to make
the bias cancel out completely, the weights assigned on the two extreme prices can be adjusted according to
the realized number of buy and sell trades.

20In quantitative analysis, we define each market by one bond j and one quarter q. Each dealer i’s private
valuation for bond j in quarter q is calculated as the weighted average of all monthly private valuations δ̂ji,t
in quarter q weighted by dealer i’s monthly total trading volume in bond j.
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or another dealer within a calendar time window from -1 day to +30 days around the initial Cs-

sells-to-D1 trade. The initial trade is then followed by a trade that the dealer D1 sells the same

amount (of the same bond) either to a customer Ce or to another dealer D2. In the first case of

selling-to-Ce, the current intermediation chain ends and it is recorded as a CDC chain, that is,

there is one dealer on the chain; In the second case of selling-to-D1, the current intermediation

chain is not ended and is temporarily recorded as an incomplete chain CDD. We continue looking

for trades completed by dealer D2 selling to a customer or another dealer within the same calendar

time window. This process will continue until finding a dealer-sell-to-customer trade of the same

bond in same par amount.

We only consider “split matching” in the first round of loop in the sense that, given the initial

Cs-sell-to-D1 trade, we look for a trade with D1 as the seller of the same bond and with the shortest

time gap to the initial trade. Suppose the initial trade has par amount Q1 and the next closest

trade is “dealer D1 sells Q2 of the same bond to a dealer D2”. Then if Q1 > Q2, that is, the initial

trade has larger par amount than the second trade, we split Q1 into two pieces Q2 and Q1−Q2, and

we record a new incomplete chain CDD with par amount Q2 and put the remaining par amount

Q1−Q2 (sold by Cs to D1) back to the pile of initial customer-to-dealer trades to be used to initiate

new intermediation chains; If Q1 < Q2, similarly, we split Q2 into two pieces Q1 and Q2 −Q1, and

we record a new incomplete chain CDD with par amount Q1 and put the remaining par amount

Q2 − Q1 (sold by D1 to D2) back to the pile of candidate interdealer trades that will be used to

generate more intermediation chains. After the first round of the loop, for all incomplete chains

CDD, we restrict that all matched trades on the same intermediation chain after the first round

need to have exacty the same par amounts. Same as Li and Schürhoff (2014), we allow for up to 7

dealers on an intermediation chain. Figure 2.4 shows the “split matching” in the first round.

The matching algorithm matches a total of 6.7 million of complete intermediation chains. Table

2.5 reports the average trading information of intermediation chains of each length. The average

trading size is generally lower for longer chains, which implies that it is more difficult for a larger

amount of bond to be reallocated from the initial customer seller to the final customer buyer

through too many dealers, since dealers may tend to split the large amount into smaller pieces

when they trade with each other in the interdealer market. The total markup increases with the
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Figure 2.4: Split matching in constructing intermediation chains

chain length, because dealers on average buy at lower prices and sell at higher prices to gain the

intermediation profit. The total time gap also increases with the chain length, which is consistent

with our expectation that in an interdealer market with the level of search frictions fixed, it takes

a longer time for dealers to implement more trades with each other to form longer chains.

Table 2.6 reports the average bond information of intermediation chains for each length, which

implies that dealers’ search dynamics are heterogeneous across different bonds. This also motivates

the extension of my preliminary model to consider the case of multiple assets.

2.A.2.3 Heterogeneous bond-level liquidity risk

Figure 2.5 shows that for individual bonds, although the mean and median of βjSysSearch are both

negative, there exist quite a portion of bonds with positive βjSysSearch. Moreover, within the bonds

of negative βjSysSearch, the absolute level of βjSysSearch is heterogeneous across individual bonds.

The more negative βjSysSearch is, the more sensitively that bond j’s yield responds to innovation in

OTC search frictions. In Section 2.A.2.4, we verify that the factor loading βjSysSearch is significantly

priced in corporate bond yield spread, in the sense that bonds with more negative βjSysSearch will

on average exhibit a higher level of yield spread.
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Figure 2.5: Distribution of yield loading on systemic search friction

(bond-level yield spread loadings for 11176 bonds)

2.A.2.4 Bond liquidity risk and level of yield spread

In this section, we test whether corporate bond’s liquidity risk is priced in cumulative weighted

average yield spread. Again, we estimate a reduced-form panel data model using the yearly panel

data. We extend the data by adding a cumulative weighted average yield spread Y ieldSpreadj,y

for each point in the data. The model is:

Y ieldSpreadj,y = λSysSearch ∗ βjSysSearch,y + λSysNetConcen ∗ βjSysNetConcen,y

+λprearrange ∗ γj1,prearrange,y + λinv ∗ γj1,inv,y

+λblocktrade ∗ γj2,blocktrade,y + λHHIdealer ∗ γj2,HHIdealer,y +BF
j
y + ηy + εjy
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where BF
j

is a collection of bond-specific factors that are also important determinants of bond’s

yield spread, including bonds’ liquidities measured by Amihud21, trade concentration (among deal-

ers), credit rating, bond-specific search frictions22 and number of trades in segmented markets

(interdealer market and dealer-customer market). All the points in the data are calculated by the

time window [1, y].

Table 2.7 shows that, nearly all of bond’s exposures to OTC market frictions are consis-

tently compensated by bond’s yield spread. Specifically, since the estimated bond’s liquidity risk

βjSysSearch,y is on average negative, the estimation results establish that a higher magnitude of liq-

uidity risk (more negative βjSysSearch,y) implies a higher yield spread level. The regression results

are robust when adding a collection of bond-specific factors or using truncated sample in which the

max and min values of βjSysSearch,y are both within three standard deviations from the mean level.

21Amihudjy is a liquidity measure proposed by Amihud (2002), which is calculated as the average absolute

value of daily return divided by daily par dollar volume. Specifically, Amihudjt = 1
dj,t

∑dj,t
τ=1

|rj,τ |
V olumej,τ

, where

dj,t is the number of days with observed returns in month t for bond j, rj,τ is the return for bond j on day
τ , and V olumej,t is the par dollar volume traded on day τ .

22Bond-specific search frictions refer to the average time interval between consecutive trades on each
intermediation chain, excluding the head and tail trades. The reason we exclude the head and tail segments
of intermediation chains is that these trades are more likely to be pre-arranged or more likely imply directed
search of investors instead of the random search we focus on.
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Table 2.4: Bond yield loadings on multiple factors

4(Y ieldSpread)j,t (%) (1) (2) (3)

4SystemChainLengtht -2.32*** -1.67*** -1.55***
(-32.80) (-21.38) (-21.38)

4SysNetConcent (thousand) -9.83e-03*** -4.77e-03*** -4.43e-03***
(-48.16) (-22.30) (-20.10)

4invt−1 ($trillion) 7.55*** 5.55*** 5.74***
(24.07) (16.39) (17.51)

4prearranget (%) 0.26*** 1.28*** 1.08***
(3.43) (15.87) (13.43)

4blocktradet (%) -66.67*** -29.29*** -28.65***
(-50.94) (-22.37) (-22.15)

4amtoutt ($trillion) -0.32*** -0.47*** -0.38***
(-6.17) (-8.12) (-6.54)

4HHIdealert (thousand) -1.04*** -0.67*** -0.67***
(-46.70) (-28.99) (-30.82)

4RFt -2.72*** -2.68***
(-41.53) (-22.15)

(4RFt)2 -8.61*** -1.13***
(-9.66) (-14.96)

RMKT,t 6.35*** 6.31***
(60.26) (61.05)

4SLOPEt 0.24*** 0.27***
(19.93) (22.67)

RSMB,t 0.53*** 0.44***
(5.53) (4.70)

RHML,t 0.22** 0.08
(2.05) (0.75)

RUMD,t -2.58*** -2.60***
(-34.07) (-34.74)

4turnoverjt -1.45e-03 ***
(-3.10)

Ratingjt 6.41e-03 ***
(3.41)

TTM j
t 1.20e-05 *

(1.96)

Mean Adj R2 0.18 0.35 0.37
#ofBonds 11176 11176 9595

#ofObs 515514 515514 479146

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Reported estimated coefficients are
average values taken across all bonds. Similar to Friewald and Nagler (2018),
the t-statistics are calculated by dividing each reported (average) coefficient
value by the standard deviation of the estimates and scaling by the square root
of the number of bonds.
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Table 2.5: Chain Length and Trade Information (Jan 2005 - Sep 2015)

Num (thousands) Vol($1,000) Markup(%) Total time(mins) Pre-arranged(%)

CDC 3982.47 1092.33 0.999 10591.89 21.26
C(2)DC 1180.52 181.57 1.317 15192.10 2.37
C(3)DC 1028.50 155.09 2.102 16253.38 1.73
C(4)DC 351.85 55.57 2.334 19404.53 0.52
C(5)DC 104.86 112.42 2.112 25066.72 0.07
C(6)DC 32.57 64.68 2.374 34231.25 0.03
C(7)DC 12.69 125.46 2.272 40545.61 0.03

Note: C(i)DC means there are i dealers on the chain; Vol($1,000) is the average trading volume
per chain calculated for each length throughout the whole sample period; Markup(%) is the
average total markup per chain calculated for each length throughout the whole sample period.
For each chain, the total markup is calculated by using the last dealer-sell-to-customer price on
the chain minus the initial customer-sell-to-dealer price, then dividing the difference by the initial
customer-sell-to-dealer price; Total time(mins) is the average total time gap per chain calculated
for each length throughout the whole sample period. For each chain, the total time gap (in
minutes) is the length of time between the time point at which the last dealer-sell-to-customer
trade happens and the time point at which the initial customer-sell-to-dealer trade happens; We
record an intermediation chain as being pre-arranged if its total time is shorter than 1 minute.

Table 2.6: Chain Length and Bond Information (Jan 2005 - Sep 2015)

Investment-grade(%) Amount out($million) Maturity(years) TTM/TTO

CDC 68.21 881.92 10.85 22.54
C(2)DC 81.53 1169.34 10.54 4.89
C(3)DC 71.81 961.74 10.84 5.58
C(4)DC 68.99 964.9 11.30 3.46
C(5)DC 61.42 1042.67 11.24 4.72
C(6)DC 54.63 1370.50 11.27 4.04
C(7)DC 50.42 1490.65 11.20 5.26

Note: The higher the value of “Credit rating” is, the lower the credit rating of the bonds
under an S&P rating scheme; Investment-grade(%) is the proportion of bonds that are in-
vestment grade ones with S&P credit ratings as BBB- or higher; Amount out($million) is the
bonds’ amount outstandings; Maturity(years) is the bonds’ whole maturities; TTM/TTO
is a calculated ratio of time to maturity versus time to offering, which is used to measure
whether a bond is relatively young or not.
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Table 2.7: Level of yield spread and factor loadings on systemic OTC market
frictions

Y ieldSpreadj,y (%) (1) (2) (3) (4)

βjSysSearch,y -0.02*** -0.01*** -0.08*** -0.05***

(-12.92) (-10.81) (-18.83) (-13.53)

βjSysNetConcen,y 0.40 0.10 1.23* 2.08***

(1.55) (0.52) (2.21) (4.74)

γj1,prearrange,y 226.8*** 114.7*** 738.8*** 385.1***

(23.56) (15.76) (41.13) (26.82)

γj1,inv,y 4.78e-03*** 2.36e-03*** 12.48e-03*** 6.82e-03***

(24.04) (15.72) (34.08) (23.43)

γj2,blocktrade,y -24.73*** -10.81*** -58.19*** -28.91***

(-40.18) (-22.98) (-54.17) (-33.15)

γj2,HHIdealer,y -0.03*** -0.02*** -0.13*** -0.08***

(-9.44) (-8.91) (-22.81) (-19.16)

Amihudjy 212.4*** 399.2***
(6.35) (7.44)

Ratingjy 0.47*** 0.37***
(173.79) (130.01)

HHIdealerjy (1,000) -0.10*** -0.11***
(-12.16) (-14.23)

ChainT imeGapjy (mins) 9.91e-05*** 9.50e-05***
(15.81) (15.57)

Num DDj
y (1,000) 0.42*** 0.42***

(10.61) (11.30)

Num DCjy (1,000) -0.24*** -0.17***
(-11.15) (-7.93)

Adj R2 0.08 0.48 0.20 0.51
Year FE YES YES YES YES
# of Obs 41332 41332 28932 28932
# of Bonds 11176 11176 8803 8803

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. Regression (1) and (2) use all the bonds
(obs). Regression (3) and (4) use the truncated sample which is obtained by dropping
the bonds with βjSysSearch ranked within the top and bottom 15% of the whole range
of all the bonds, to eliminate the possible effect from extreme values. The reason we
choose 15% as the cutoff is, by doing this, in the truncated sample, the max and min
values are both within three standard deviations away from the mean.
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CHAPTER 3

Agent’s Social Optimal Meeting Technology in

Over-the-Counter Markets

3.1 Introduction

Over-the-counter (OTC) market played an important role in the 2008 financial crisis. Nearly

all of the securities and derivatives involved in the financial turmoil that began with a 2007

breakdown in the U.S. mortgage market were traded in OTC markets. 1 There have been

some common stylized facts in OTC markets documented by a series of papers, one of which

is the stable core-periphery interdealer network. For example, Li and Schürhoff (2014)

documents the structure of dealer network in the municipal bonds market and concludes

that the dealership exhibits a stable core-periphery structure based on measures such as the

number of trading connections and the order flow between dealers; Hollifield, Neklyudov,

and Spatt (2017) also documents the core-periphery network structure of the market for the

144a and registered instruments; Bech and Atalay (2010) uses federal fund loans data to

analyze the topology of the daily networks and documents the similar pattern.

Existence of the core-periphery interdealer network can be attributed to dealers’ het-

erogeneity in meeting technologies as in Farboodi, Jarosch, and Shimer (2017b). Dealers

choosing more advanced meeting technology behave more active and have larger central-

ity in the interdealer network. Dealers choosing less advanced one behave less active and

1Randall Dodd, Markets: Exchange or Over-the-Counter, International Monetary Fund. https://www.

imf.org/external/pubs/ft/fandd/basics/markets.htm
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lie closer to the periphery of the network. In Neklyudov (2012), meeting technology is in-

terpreted as trading frequency which is a result of costly investment in customer-relations

capital (also highly correlated with interdealer activeness) and also legal support and extent

of in-house expertise.

In this paper, we construct a search-and-bargain model with dealers being free2 to choose

and change their meeting technology (or the search intensity in the model) based on their

own asset position and liquidity need, which is new to the current literature, to explain

the formation of core-periphery interdealer network in different market environments. Then

the model is applied to evaluate the effectiveness of policy responses targeting at different

groups of dealers in response to an unexpected aggregate liquidity shock. Then we further

discuss whether intermediation service is necessary in social optimal solution and its policy

implication. In our model, the trading motive between two randomly matched counterpar-

ties comes from the difference in their current holding positions and private valuations for

the target asset, which determines the current flow utility received from holding the asset.3

Our model is closest to Hugonnier, Lester, and Weill (2018) and Farboodi, Jarosch, and

Shimer (2017b). Hugonnier, Lester, and Weill (2018) contributes to the literature by firstly

analyzing the microstructure and trading patterns in OTC market through the heterogene-

ity in trader’s private valuation on the target asset. And they maintain the assumption of

homogeneous search intensity among all traders. Farboodi, Jarosch, and Shimer (2017b)

contributes to firstly discussing the formation and welfare consequences of endogenous het-

erogeneity in trader’s search intensity (also interpreted as meeting technology) more from a

social planner perspective. Based on their model setup, the meeting technology is invariant

2Here the “being free” means dealers are allowed to have time varying meeting technology or the adjust-
ment cost of meeting technology can be regarded as zero, but dealers are still subject to investment cost of
meeting technology. This mainly contrasts our model with that in Farboodi, Jarosch, and Shimer (2017b)
in which they assume agents’ meeting technologies, once initially chosen, will be time invariant, which is
equally like assuming infinite adjustment cost.

3This setting of trading motive is consistent with a long and fast growing literature following Duffie,
Gârleanu, and Pedersen (2005), which will be discussed more in Section 1.1.
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once it is determined for each individual trader. While our model discusses the endogenous

heterogeneity in trading frequency more from a competitive equilibrium perspective: agents

choose their current search intensity based on their current utility type4 and asset position,

and we allow agents to adjust their search intensities once their utility types shift up or

down, or their asset positions change through trading with others. In other words, there

exists a one-to-one mapping between the two-dimensional state variable “utility type and

asset position” and “search intensity” in our model.

In this paper, we mainly focus on the stationary equilibria in the interdealer market

where the distribution of dealers’ utility type is convex and symmetric with respect to the

intermediate-level utility type. Such equilibria can give us equilibrium components which

are more interesting and consistent with the economic intuition. We characterize the sta-

tionary equilibria and show that asset owner’s optimal meeting technology is monotonically

decreasing with respect to his valuation on the asset and asset nonowner’s optimal tech-

nology is monotonically increasing with respect to his valuation, which is consistent with

the general intuition that, for a nonowner (owner) with extremely high (low) valuation on

the asset, he has very strong incentive to search inside the market to correct his misaligned

asset position through trading with his potential counterparties. Then we characterize the

weighted average optimal meeting technology for each group of agents with a certain level of

utility type. We find that, in less-frictional market environments, which is mainly character-

ized by a lower searching cost and a lower Poisson intensity of idiosyncratic liquidity shock,

the intermediate-utility-type agents will behave most active thus becoming the core-dealers;

while in more-frictional market environments, where there is a higher searching cost and a

higher intensity of idiosyncratic liquidity shock, the extreme-utility-type agents will behave

relatively more active (or even most active) thus playing the role of core-dealers and the

4Since this paper mainly focuses on the interdealer market, we use “agents”, “investors”, “intermediators”,
“market makers” and “dealers” interchangably, but they all refer to the dealers in the OTC market in
this paper. Also, in this paper, we use “search intensity”, “trading frequency” and “meeting technology”
interchangably, and we use “utility type”, “liquidity needs” and “valuation on the asset” interchangably.
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intermediate-utility-type agents will instead behave like periphery-dealers. Then we char-

acterize each agent’s contribution to different measures of market liquidity, e.g. expected

instantaneous gross and intermediation trading volume, total intermediation profit, interme-

diation profit per trade, and etc. We find that, the magnitude of gross trading volume is

consistent with agent’s activeness but for the intermediation profit, which is also proxy for

dealers’ bid-ask spread, intermediate-utility-type agents always contribute the highest level

of aggregate bid-ask spread and the lowest level of bid-ask spread per trade.

Besides the implication for the formation of core-periphery interdealer network, we discuss

the effects of different rescue policies in response to a certain form of aggregate liquidity

shock, where we assume a certain proportion of both asset owners and nonowners of higher-

than-intermediate utility types will have their types shifted down by a certain amount, thus

suddenly changing the distribution of dealers’ utility type. We simply define the form of

rescue policy to be that, policy targetting at a certain group of agents will maintain those

agents’ liquidity needs as their pre-shock levels right after the aggregate liquidity shock

occurs. In reality, this policy is implemented through directly injecting liquidity into the

dealers. We conclude that, in all the market environments, policy that targets on dealers

of higher-than-intermediate utility types dominates the other ones in terms of recovering

the whole market’s liquidity level. Since such group of agents will choose different meeting

technologies in different market environments and it is easier for regulatory institutions to

identify dealers by their trading frequency and trading volume per unit of time, then our

model gives the policy implication that in less-frictional market, it will be better to firstly

inject liquidity into those less active (more periphery) dealers while in more frictional market,

it will be better to firstly save those more active dealers.

Finally, we discuss the policy function of social optimal meeting technologies. We find

that, it is always optimal for asset owners with higher-than-intermediate utility types to

remain silent (not search to sell) and correspondingly, asset nonowners with lower-than-

intermediate utility types to remain silent (not search to buy). In other words, there is no
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intermediation in our social optimal solution, since there does not exist any single agent

being assigned with positive meeting technologies in both asset-owner and asset-nonowner

densities. Moreover, agents with extremely mis-aligned asset positions will be assigned with

higher level of meeting technologies compared with competitive equilibrium solution. These

results, which are counterintuitive to the results in current literature, possibly come from the

setting of our social welfare objective function. If we define the asset owners with higher-than-

intermediate utility types and the asset nonowners with lower-than-intermediate utility types

as well-aligned agents, then the social level of well-alignement will be the unique part that

positively contributes to the social welfare. And the social level of investment cost in meeting

technologies will be the other part that negatively contributes to the social welfare. Then it

is intuitive that, for well-aligned agents, it is optimal to make them remain silent to save the

investment cost and maintain their current asset holdings, unless they become mis-aligned

ones due to idiosyncratic liquidity shocks; for extremely-misaligned agents, it is optimal

to make them more actively search to trade to reduce the social level of misalignement.5

Based on these key results, we can further solve out the explicit solution to the social

welfare problem and it coincides exactly with the numerical ones searched out by MatLab.

Specifically, in the case of linear cost function, we can obtain the one-dimention policy

measure that social planner only needs to identify a marginal utility type for asset owners

which is smaller than the intermediate utility type, and assign all asset owners lower than

this marginal type with the maximum meeting technology; correspondingly, identify the

symmetric marginal utility type for asset nonowners which is higher than the intermediate

utility type, and assign all asset nonowners higher than this marginal type with the same

maximum meeting technology.

5The conclusion that there is no intermediation in the social optimal solution is robust to several cost
functions. We discuss this in appendix.
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Related literature

There has been a fast-growing literature on documenting and modeling the stylized facts in

the OTC asset markets. Besides the core-periphery interdealer network, Li and Schürhoff

(2014) also documents the positive correlation between dealers’ centrality and spreads they

earn in municipal bond market, which is also termed as “centrality premium”. The cor-

relation of centrality with other statistics such as inventory, trading cost and difference in

bargaining power, etc are also discussed. While in securities market for 144a and registered

instruments, Hollifield, Neklyudov, and Spatt (2017) documents the negative correlation

between dealers’ centrality and spread, which is termed as “centrality discount”. Afonso

and Schoar (2013) researches the interbank lending market and documents that most banks

inside the market form long-term stable lending relationships, which will affect how liquidity

shocks are transmitted across the whole market, e.g. banks connected with concentrated

lenders will be less affected by the shocks. Moreover, they discover other facts in interbank

lending market, such as banks which borrow from a more concentrated and stable set of

lenders tend to have smaller sizes, the observed concentration of relationships more likely

reflects the need for liquidity hedging among all the market participants, etc. Siriwardane

(2015) uses credit default swap (CDS) data to document that the market is dominated by

only a handful of market makers (or net sellers) and such concentration of sellers increase

the fragility of the market.

For model setup, Duffie, Gârleanu, and Pedersen (2005) firstly constructs a search-and-

bargain model with investors of only two utility types and explicit market markers in an

OTC market for a “consol”. And the interdealer market structure is simplified to be a perfect

competitive one which generates a unique interdealer market price. There are papers focus-

ing only on pure dealer markets, e.g., Gârleanu (2009), Lagos, Rocheteau, and Weill (2011),

Feldhütter (2011), Pagnotta and Philippon (2018b) and Lester, Rocheteau, and Weill (2015).

Specifically, Lagos and Rocheteau (2009) develops a model of liquidity without restricting on
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asset positions of investors. For papers that model the whole decentralized market and en-

dogenously generate dealers and customers from random searching and bilateral bargaining

process, several versions of models are constructed. Duffie, Gârleanu, and Pedersen (2007)

considers markets for both asset paying riskless dividend and asset paying risky dividend.

Asset position support is restricted to be {0, 1} and there are only two utility types (high and

low). Weill (2008) extends by constructing a multi-asset model and maintain the restriction

on asset positions of investors to be {0, 1}. Afonso and Lagos (2015) focuses on the market

for federal funds and assumes the loan sizes (asset positions) are elements of a countable

set. Other related papers are e.g. Vayanos and Wang (2007), Vayanos and Weill (2008),

Afonso (2011), Gavazza (2011), Gavazza (2016) and Trejos and Wright (2016). Most of these

papers restrict two utility types of the investors, which may potentially prevent the frame-

work from characterizing the stylized core-periphery interdealer network documented in the

empirical papers above and analyzing its policy implication. Hugonnier, Lester, and Weill

(2018) contributes by allowing arbitrary i.i.d distribution of preference shock to investors and

endogenously generate intermediation chains and core-periphery trading networks, which is

consistent with the empirical findings. But they maintain the homogeneous search intensity

in their model setup. Üslü (2019) constructs model combining unrestricted asset positions

and exogenous heterogeneity in search intensities among investors, and he also contributes

by using Fourier transformation to generate moments of stationary distributions of vari-

ables of interest. Besides Üslü (2019), there are other but not too many papers explicitly

assuming heterogeneity in search intensity, e.g. Neklyudov (2012), Farboodi, Jarosch, and

Shimer (2017b). The latter, as discussed above, evaluates the distribution of meeting tech-

nologies and further allows all agents to endogenously choose their meeting technologies to

analyze how distribution of search intensity is generated. They also model investors with

only two utility types thus there is no one-to-one mapping between utility type and meeting

technology.

Another strand of literature mainly uses explicit network approach to model the formation
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of links and process of bargaining between traders in the OTC markets, instead of using

search-and-bargain model to endogenously generate network characteristics. Related work

includes Babus and Kondor (2018), Malamud and Rostek (2017), Alvarez and Barlevy (2015),

Farboodi (2014), Gofman (2014), Chang and Zhang (2018). And there are also some papers

(including some papers listed above) combing search and network characteristics, including

Hugonnier, Lester, and Weill (2018), Farboodi, Jarosch, and Shimer (2017b), Neklyudov

(2012), and Shen, Wei, and Yan (2015). Specifically, Atkeson, Eisfeldt, and Weill (2015)

develops hybrid model to analyze entry and exit equilibrium conditions in the OTC market

for credit default swap. With traders with homogeneous search intensity, they conclude that

banks with intermediate risk exposure per trader (essentially like intermediate utility type)

and large sizes endogenously enter the OTC market behaving like market maker to gain

intermediation profit.

Besides strands of literatures above, there are also some other papers departing from

search-and-bargain and network methods and research the OTC market from other perspec-

tives. For example, Acharya and Bisin (2009), Duffie and Lubke (2010).

3.2 Model

We consider the OTC interdealer market for asset in the form of “consol” which pays one

unit of dividend per unit of time. This asset is in fixed supply s = 1
2
.6 There exists a

continuum of agents (dealers) [0, 1] who have heterogeneous utility type δ ∈ [0, 1] following

arbitrary distribution Fδ(δ) (with PDF as fδ(δ))
7. Utility type δ can be interpreted as

the current flow utility that agents can receive from holding one unit of such asset. There

6In this paper, we will mainly focus on the symmetric equilibria which are more tractable. Similar to
Neklyudov(2015), since the switching rates between any two possible utility types are constantly equal to α,
the fixed asset supply s = 1

2 asssumption ensures that the mass of asset owners will be equal to that of asset
owners in the steady state dynamic equilibria.

7We firstly consider symmetric case that fδ(δ) is convex and symmetric with respect to δ = 1
2 . In

numerical example, we specifically consider the uniform case that fδ(δ) = 1 ∀δ ∈ [0, 1]
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is an idiosyncratic Poisson utility type shock arriving at intensity α. Based on their own

characteristics (including current utility type, wealth level and asset holding), agents are free

to choose their search intensity λ ∈ [0, λ̄], where λ̄ is the upper bound of level of meeting

technology that agents can choose8. Agents spend C(λ) = c1λ
2 as flow cost to invest in and

maintain their current search intensity λ.

In later analysis, we use the coefficient of flow cost c1 as a measure of the magnitude of

friction on the OTC market. The key difference in microstructure between OTC market and

frictionless exchange (Walrasian) market is how fast/advanced meeting technology agents

can choose to trade with each other, which can also be equally attributed to how large the

c1 is. Also, the Poisson intensity of idiosyncratic liquidity shock α will be used as a measure

of the number of the misaligned agents in the market. Intuitively, higher α makes it easier

for agents of high(low) utility types shift to low(high) utility types with their asset position

unchanged before trading with others through searching and bargaining. We will talk more

about this in Corollary 2 below.

We assume agents have CARA instantaneous utility as u(c) = −e−γc with risk aversion

coefficient γ. Agent’s wealth is denoted by W and asset holding9 is restricted to belong to

{0, 1}. Other parameters are risk free interest rate r and agent’s discount rate β.

3.2.1 HJB equation for reservation value

Let U(W, δ, a) be the value function of an agent with wealth level as W , utility type δ and

asset holding a, where a ∈ {0, 1}. Then as in Duffie, Gârleanu, and Pedersen (2007), the

8λ̄ can be ex-post proved to be finite.

9It can be proved expost that in the current model setup, once two counterparties are matched, since
their reservation value is strictly increasing in utility type δ, they will either sell or buy as much as possible
to obtain gains from trade, thus the asset holding can always be normalized to be either 0 or 1. And we
implicitly assume here that short selling is allowed.
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agent’s problem is:

U(W, δ, a) = sup
c,λ
Et[−

∫ ∞
t

e−β(s−t)e−γcsds|Wt = W, δt = δ, at = a]

s.t.

dWt = (rWt − ct + atδt − C(λt))dt− P [(W, δt, at), (W
′, δ′t, a

′
t)]dat

lim
T→∞

e−β(T−t)Et[e
−rγWT ] = 0

C(λt) = c1λ
2
t (c1 > 0)10

where P [(W, δt, at), (W
′, δ′t, a

′
t)] is a bilaterally bargained price from symmetric (each agent

has same bargaining power) Nash bargaining game between two randomly matched coun-

terparties with state variables as (W, δt, at) and (W ′, δ′t, a
′
t). dat is bilateral trading quantity

and dat ∈ {−1, 1}.

Using notations U(W, δ, 1) = U1(W, δ) and U(W, δ, 0) = U0(W, δ) as value functions for

asset owners and asset nonowners, as in Duffie, Gârleanu, and Pedersen (2007), we can guess

and verify the form of U1(W, δ) and U0(W, δ), and we can get HJB equation for simplified

value functions without state variable W as follows. It is important to note that, in this

paper, we focus on the rational expectation competitive equilibrium in the sense that, all

asset owners and asset nonowners adopt the common policy rule λ∗1(δ) and λ∗0(δ) to choose

their optimal meeting technology. And the matching technology is constant return to scale.

rV1(δ) = max
λ1(δ)
{δ − C(λ1(δ)) + α

∫ 1

0

(V1(δ′)− V1(δ))dFδ(δ
′)

+ λ1(δ)

∫ λ̄

0

∫ 1

0

λ′

Λ0

max{4V (δ′)−4V (δ), 0}Φ0(dδ′, dλ′)} (3.1)

10It can be proved expost that if C(λ) is linear form, then by F.O.C of λ, optimal λ(δ) will be either 0
or λ̄. And for the simpliest version of model, we assume C(λ) is convex with C(0) = 0 and C ′(0) = 0, i.e.
there is no fixed flow entry cost.
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rV0(δ) = max
λ0(δ)
{−C(λ0(δ)) + α

∫ 1

0

(V0(δ′)− V0(δ))dFδ(δ
′)

+ λ0(δ)

∫ λ̄

0

∫ 1

0

λ′

Λ1

max{4V (δ)−4V (δ′), 0}Φ1(dδ′, dλ′)} (3.2)

s.t.

4V (δ) = V1(δ)− V0(δ)

Λ1 = 2

∫ λ̄

0

∫ 1

0

λ′Φ1(dδ′, dλ′)

Λ0 = 2

∫ λ̄

0

∫ 1

0

λ′Φ0(dδ′, dλ′)

then we get,

λ∗1(δ) =

∫ λ̄
0

∫ 1

δ
λ′

Λ0
(4V (δ′)−4V (δ))Φ0(dδ′, dλ′)

2c1

(3.3)

λ∗0(δ) =

∫ λ̄
0

∫ δ
0

λ′

Λ1
(4V (δ)−4V (δ′))Φ1(dδ′, dλ′)

2c1

(3.4)

where λ∗1(δ) and λ∗0(δ) are optimal (instantaneous) search intensity chosen by asset owner

and asset nonowner of utility type (liquidity need) δ. 4V (δ) is the reservation value for

agent of utility type δ. Φ0(δ′, λ′) is cumulative joint measure of utility type and (optimally)

chosen search intensity for asset nonowners. Φ1(δ′, λ′) is cumulative joint measure of utility

type and (optimally) chosen search intensity for asset owners. Λ1 is the weighted average

search intensity chosen by asset owners. Λ0 is the weighted average search intensity chosen

by asset nonowners.

Proposition 1 Given the distribution of utility type Fδ(δ) with symmetric PDF fδ(δ)

and the cumulative joint measures Φ0(δ′, λ′) and Φ1(δ′, λ′): the optimal meeting technology

chosen by asset owners λ∗1(δ) is a decreasing function of utility type δ; the optimal meeting

technology chosen by asset nonowners λ∗0(δ) is an increasing function of utility type δ; the
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reservation value 4V (δ) is a strictly increasing and positive function of utility type δ. Proof

is in Appendix 3.A.1.

For an asset owner, if his utility type is relatively low (or he has higher liquidity need so

he has relatively lower valuation for holding the asset), he will have strong incentive to sell

his current asset as quickly as possible given his expectation on the joint distribution of asset

nonowner’s utility type and meeting technology, which means he will (at least temporarily)

choose relatively more advanced meeting technology to increase his trading frequency. If

asset owner’s utility type is relatively high, which means he has lower liquidity need and he

is more willing to hold the asset, then such asset owner will behave less active in the market

since he has a relatively well-aligned asset position. Similar interpretation works for the

optimal meeting technology chosen by asset nonowners. Asset nonowners of relatively high

utility types will invest in more advanced technology to eagerly search for potential asset

sellers in the market. And asset nonowners of relatively low utility types will have weak

incentive to increase their trading frequencies, thus remaining relatively less active.

The increasing property of reservation value function 4V (δ) guarantees that once a

lower-type owner and a higher-type nonowner are randomly matched, there will always be

gains from trade, thus the bilateral trading quantity will never be zero. And the probability

that one agent being matched with another one of the same utility type will approximately

be zero.

Based on Proposition 1 and by assuming all agents in the market adopt the same policy

rules λ∗1(δ) and λ∗0(δ), we can further simplify the HJB equations (3.1) and (3.2), and get

the HJB equation for reservation value function as follows:

r4V (δ) = δ + C(λ∗0(δ))− C(λ∗1(δ)) + α

∫ 1

0

(4V (δ′)−4V (δ))dFδ(δ
′) (3.5)

+λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

(4V (δ′)−4V (δ))φ0(δ′)dδ′ − λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

(4V (δ)−4V (δ′))φ1(δ′)dδ′
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s.t.

λ∗1(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0
(4V (δ′)−4V (δ))φ0(δ′)dδ′

2c1

(3.6)

λ∗0(δ) =

∫ δ
0

λ∗1(δ′)

Λ1
(4V (δ)−4V (δ′))φ1(δ′)dδ′

2c1

(3.7)

Λ0 = 2

∫ 1

0

λ∗0(δ′)φ0(δ′)dδ′

Λ1 = 2

∫ 1

0

λ∗1(δ′)φ1(δ′)dδ′ (3.8)

φ0(δ) =

∫ λ̄

0

Φ0(dδ, dλ′)

φ1(δ) =

∫ λ̄

0

Φ1(dδ, dλ′)

Individual agent’s expectation on the joint distribution of asset position (either 0 or 1), utility

type δ and adopted search intensity λ can be simplified to the joint densities of asset position

and utility type which are denoted by φ0(δ) and φ1(δ), since optimal meeting technology is

monotonic with respect to utility type by Proposition 1.

3.2.2 Joint densities of utility type and asset holding

To further discuss the stationary equilibrium in next section, we need to characterize the law

of motion for densities of asset owners φ1(δ) and nonowners φ0(δ) of each utility type δ. Let

f̂δ(δ) be the distribution of new utility type in response to idiosyncratic liquidity shock and

fδ(δ) = φ0(δ) + φ1(δ) be the current distribution of utility type for the whole population.

For simplicity, we only consider the case f̂δ(δ) = fδ(δ) = 1 in stationary equilibrium11, we

have:

11In Section 5, we will consider one form of aggregate liquidity shock with the refinancing channel defined
similar as in Duffie et al (2006). The refinancing channel means f̂δ(δ) 6= fδ(δ) = φ0(δ) + φ1(δ), in which the

distribution of utiltiy type fδ(δ) can gradually recover to the pre-shock scenario due to the function of f̂δ(δ).
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φ̇1(δ) = −αφ1(δ) +
α

2
f̂δ(δ)− 2φ1(δ)λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′

+ 2φ0(δ)λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′ = 0 (3.9)

φ̇0(δ) = −αφ0(δ) +
α

2
f̂δ(δ)− 2φ0(δ)λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′

+ 2φ1(δ)λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′ = 0 (3.10)

In both equation (3.9) and (3.10), the first term is the outflow from asset owners (nonowners)

of utility type δ due to idiosyncratic liquidity shock. The second term is the inflow due to

idiosyncratic liquidity shock. For example in equation (3.9), it is the inflow of asset owners,

originally with other utility types, having their types shifted exactly to δ due to liquidity

shock. The third term is the outflow due to the implemented bilateral trades based on

random searching and bargaining. For example in equation (3.9), asset owners of type δ are

matched with asset nonowners of higher utility types, then this subgroup of asset owners

will sell their assets to their counterparties and become asset nonowners. The fourth term

is correspondingly the inflow due to implemented bilateral trades.

Moreover, φ0(δ) and φ1(δ) at each time point should also satisfy the following conditions12:

φ0(δ) + φ1(δ) = fδ(δ) (3.11)

∫ 1

0

φ1(δ)dδ =

∫ 1

0

φ0(δ)dδ =
1

2
(3.12)

Equation (3.11) is based on the definition of pdf fδ(δ) and joint densities φ0(δ) and φ1(δ),

which shows that each group of agents of the same utility type contains both asset owners

12Here we ignore the time subscripts for simplicity since we will discuss the stationary equilibrium in next
section.
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and nonowners. Equation (3.12) is the market clear condition for the asset in fixed supply

s = 1
2
.

3.3 Stationary equilibrium characterization

Definition 1 A stationary equilibrium contains a reservation value function 4V (δ), joint

densities of asset position and utility type φ0(δ) and φ1(δ), and optimal meeting technology

functions of asset owners and nonowners λ∗1(δ) and λ∗0(δ) such that:

1. joint measures φ0(δ) and φ1(δ) satisfy (3.9)-(3.12) for ∀δ ∈ [0, 1];

2. reservation value function 4V (δ) satisfies (3.5) subject to (3.6)-(3.8), given stationary

distribution Fδ(δ) and joint densities φ0(δ) and φ1(δ);

3. optimal meeting technologies satisfy (3.6)-(3.7), given stationary joint densities φ0(δ)

and φ1(δ), distribution Fδ(δ) and optimal reservation value function 4V (δ).

Proposition 2 There exists stationary equilibrium given uniform distribution of utility

type fδ(δ) ≡ 1, ∀δ ∈ [0, 1] for any r > 0, α > 0 and c1 > 0. Proof is in Appendix 3.A.2.

Based on (3.9)(3.10), the distribution of utility type seems to be totally exogeneous,

since ḟ(δ) = φ̇1(δ) + φ̇0(δ) = 0, ∀δ ∈ [0, 1]. In other words, our model does not exclude the

possibility of multiple equilibria characterized by different distributions of utility type. To

discuss stationary equilibria, we implicitly assume the distribution of idiosyncratic liquidity

shock is the same as the steady-state distribution of utility type in the market.13 In Section

3.5, when there comes an aggregate liquidity shock, we abandon the above assumption and

still maintain the distribution of idiosyncratic liquidity shock same as before, specifically

we focus on the case f̂δ(δ) = 1 ∀δ ∈ [0, 1], which departs from the immediate post-shock

distribution of utility type.

13It can be ex-post shown that the stationary equilibrium distribution of utility type will eventually
converge to that of new utility types from idiosyncratic shock.
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3.3.1 The frictionless benchmark

To understand the effect of OTC market search friction on market efficiency and welfare, we

firstly characterize the frictionless benchmark, i.e. the Walrasian market. Upon receiving

idiosyncratic liquidity shock at intensity α, every agent can adjust his asset position imme-

diately to accommodate his new utility type at the unique price p on the market at each

time point.

Assume one agent’s current asset position is a ∈ {0, 1} and his immediately adjusted new

asset position is a′ ∈ {0, 1}, V f
a (δ) is the value function of agent with asset position a and

utility type δ, then we have the HJB equation for frictionless market as:

rV f
a (δ) = δ ∗ a+ α

∫ 1

0

max
a′

[
V f
a′(δ

′)− V f
a (δ)− p(a′ − a)

]
dFδ(δ

′) (3.13)

By first order condition of a′, we get:

a′ =


1 if 4V f (δ′) > p;

1 or 0 if 4V f (δ′) = p;

0 if 4V f (δ′) < p.

Given fixed asset price p, since 4V f (δ) is strictly increasing on δ by (3.13), ∃!δ∗ ∈ [0, 1] s.t.

4V f (δ∗) = p. Since p is market clearing price, as in Hugonnier et al (2016), we have the

following market clear condition:

δ∗ = inf{δ ∈ [0, 1] : 1− Fδ(δ) ≤
1

2
}

which means for all agents with utility δ > δ∗, they will hold the asset and for all agents

with utility δ < δ∗, they will not hold the asset. In other words, φf1(δ) = f(δ), ∀δ ∈ [δ∗, 1]

and φf0(δ) = f(δ), ∀δ ∈ [0, δ∗]. In the case of fixed asset supply s = 1
2
, δ∗ = 1

2
.
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By (3.13), we have the reservation value function for frictionless market as:

r4V f (δ) = δ + α(p−4V f (δ))

Then for δ∗ = 1
2
:

4V f (δ∗) =
δ∗

r
=

1

2r
= p

Since upon receiving the idiosyncratic liquidity shock, every agent can immediately adjust

her asset position. Let af (δ) be the instantaneously adjusted asset position for δ ∈ [0, 1],

at each time point, the expected instantaneous total trading volume in the market can be

expressed as:

TV f = α

∫ 1

0

∫ 1

0

|af (δ′)− af (δ)|dFδ(δ′)dFδ(δ)

= 2α

∫ δ∗

0

∫ 1

δ∗
|af (δ′)− af (δ)|dFδ(δ′)dFδ(δ)

= 2α(1− Fδ(δ∗))Fδ(δ∗)

= 2αs(1− s)

=
α

2

Intuitively, in frictionless market, all the tradings happen due to the idiosyncratic shock

and all the tradings are completed between agents and the Walrasian auctioner. As in

Gârleanu(2009) and Üslu(2015), if we sum over all agents’ continuation utilities, we can
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obtain the measure of the social welfare with fδ(δ) ≡ 1,∀δ ∈ [0, 1]:

W f =

∫ +∞

0

e−rt
(∫ 1

0

δφf1(δ)dδ

)
dt

=
1

r

∫ 1

δ∗
δfδ(δ)dδ

=
E[δ; δ > δ∗]

r

=
3

8r

In the following sections, we will calculate the instantaneous trading volume and maxi-

mized social welfare in OTC market with search friction, and compare them with the fric-

tionless benchmark above. Also, the agents with mis-aligned asset positions contain both

asset owners with δ ∈ [0, δ∗] and asset nonowners with δ ∈ [δ∗, 1].

3.3.2 Equilibrium with symmetric fδ(δ)

We firstly consider the case of symmetric and convex distribution of utility type, that is, fδ(δ)

is symmetric with respect to δ = 1
2

and decreasing in δ ∈ [0, 1
2
] and increasing in δ ∈ [1

2
, 1].

The reason we consider such exogenous distribution is, when fδ(δ) is convex, we can obtain

the equilibrium solutions where φ1(δ)(φ0(δ)) is monotonically increasing(decreasing). Such

equilibria are more interesting as being consistent with the intuition that within the group

of agents with lower(higher) liquidity needs, there should exist a larger proportion of asset

owners(nonowners). Moreover, we are more interested in the financial stability of the sym-

metric stationary equilibria characterized by Definition 2 under an aggregate liquidity shock

to the whole market (details in Section 3.5).

Definition 2 For symmetric fδ(δ)(with respect to δ = 1
2
), the symmetric stationary equi-
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librium is defined as follows:

φ0(δ) = φ1(1− δ) ∀δ ∈ [0, 1] (3.14)

λ∗0(δ) = λ∗1(1− δ) ∀δ ∈ [0, 1] (3.15)

and all the components also satisfy Definition 1.

By (3.14)(3.15), reservation value 4V (δ) satisfies:

4V (0) +4V (1) = 4V (δ) +4V (1− δ) ∀δ ∈ [0, 1]

and
d24V (δ)

dδ2
> 0,∀δ ∈ [0,

1

2
);

d24V (δ)

dδ2
< 0,∀δ ∈ (

1

2
, 1];

d24V (1
2
)

dδ2
= 0.

Proof is in Appendix 3.A.3.

3.3.2.1 Joint densities φ1(δ) and φ0(δ) under symmetric fδ(δ)

Proposition 3 For equilibrium with symmetric (either convex or concave) distribution of

utility type fδ(δ), if the following condition is satisfied, we will obtain φ′0(δ) < 0 < φ′1(δ),

∀δ ∈ [0, 1]: For fδ(δ), 6 ∃ δ∗ ∈ [0, 1]14 s.t.

(α
2

+ 2λ∗0(δ)a(δ∗)
)
f ′δ(δ

∗) +
1

c1

d4V (δ∗)

dδ

(
a(δ∗)2φ0(δ∗) + b(δ∗)2φ1(δ∗)

)
(3.16)

+2λ∗1(δ∗)λ∗0(δ∗)φ1(δ∗)φ0(δ∗)

(
1

Λ0

+
1

Λ1

)
= 0

where λ∗0(δ), λ∗1(δ), Λ0, Λ1 and 4V (δ) follow (3.5)-(3.8). And notations a(δ) and b(δ) follow

the Appendix 3.A.1. Proof is in Appendix 3.A.4.

When fδ(δ) is convex, the intuition behind condition (3.16) is, if we want to guarantee

14Actually, we just need the condition to be satisfied over δ ∈ [0, 12 ]
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φ′1(δ) > 0 on δ ∈ [0, 1
2
] (equally φ′0(δ) < 0 on δ ∈ [1

2
, 1]), we require fδ(δ) not to drop too

quickly within δ ∈ [0, 1
2
]. If fδ(δ) drops too quickly, although higher-utility-type group tends

to have a larger proportion of agents as asset owners, the density of the asset owners may

still shrink. Similarly, when fδ(δ) is concave, if we want to guarantee φ′1(δ) > 0 on δ ∈ [1
2
, 1]

(equally φ′0(δ) < 0 on δ ∈ [0, 1
2
]), we require fδ(δ) not to drop too quickly within δ ∈ [1

2
, 1].

Specifically, if fδ(δ) ≡ 1 ∀δ ∈ [0, 1], then the condition (3.16) in Proposition 3 is automat-

ically satisfied since the first term in (3.16) is zero and the sum of the following two terms is

always strictly positive by Proposition 1. For the following part of the paper, unless otherwise

specified, we automatically assume fδ(δ) ≡ 1 ∀δ ∈ [0, 1]. By symmetry, φ0(1
2
) = φ1(1

2
) = 1

2

and |φ′0(1
2
)| = |φ′1(1

2
)|. The reason that we focus on such equilibria is that, such equilibria are

interesting and more consistent with the intuition that high-utility-type agents tend to have

larger density to be an asset owner. The next proposition gives some comparative statics for

stationary measures φ1(δ) and φ0(δ).

Proposition 4 For symmetric equilibrium with uniform distribution of utility type fδ(δ) ≡ 1

∀δ ∈ [0, 1]: as c1 and/or α increases, if λ∗1(0) decreases15, then φ1(δ)(φ0(δ)) increases(decreases)

for each δ ∈ [0, 1
2
) and decreases(increases) for each δ ∈ (1

2
, 1], and the magnitude of change

shrinks as δ converges to 1
2
. Proof is in Appendix 3.A.5.

The intuition behind Proposition 4 is: when α increases, every agent’s utility type be-

comes more unstable, then in each unit time, there will be more agents with mis-aligned asset

positions when the magnitude of market friction c1 does not change. Then for each specific

15The reason we need the condition “λ∗1(0) decreases” is that: by increasing the cost coefficient c1, for
asset owner with utility type δ = 0, there will be two counteractive effects that there will be more asset
nonowners with utility type higher than zero which potentially increases the benefit from searching but it
will also be more expensive for asset owner of type zero to search. “λ∗1(0) decreases” will guarantee that
the latter effect dominates. And this will determine the shape of the asset-owner density function since as
search is discouraged, there will be more mis-aligned agents in the market; by increasing the parameter α,
although the first effect above will encourage the asset owner of type zero to search but there will be more
competitors of the same type also with mis-aligned asset positions, which potentially discourages the search
at the same time, so it is also reasonable to assume that “λ∗1(0) decreases”.
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δ ∈ [0, 1
2
) (δ ∈ (1

2
, 1]), now there will be a larger proportion of asset owners(nonowners),

although the majority group is still asset nonowner; when the magnitude of market friction

c1 increases, it is more expensive to search inside the market, which discourages potential

intermediation activities. Then there will also be a larger proportion of misaligned-asset-

position agents for each δ ∈ [0, 1]16. In a nutshell, higher Poisson intensity of idiosyncratic

liquidity shock and/or more expensive searching will raise the level of market friction. Figure

3.1 gives a numerical example of the asset-owner density φ1(δ) where fδ(δ) ≡ 1, ∀δ ∈ [0, 1]

and we vary the values of α and c1 at the same time, leaving the risk free rate r fixed. We

let α change from 0.005 to 0.75 and c1 change from 1 to 2. We can see, as the α and/or c1

shrinks, the shape of asset-owner density will be closer to a centralized (Walrasian) case.
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asset owner φ
1
(δ): c

1
*α=1.5

Figure 3.1: Equilibrium joint densities in Walrasian market and OTC markets

16In our model with fixed asset supply s = 1
2 , if the market is frictionless (i.e. Walrasian market),

φ0(δ) = fδ(δ) = 1 (φ1(δ) = 0) for all δ ∈ [0, 12 ) and φ1(δ) = fδ(δ) = 1 (φ0(δ) = 0) for all δ ∈ [ 12 , 1],
that is, asset is allocated to the agents who currently values it most. In OTC market, we will call all the
asset owners with utility type δ ∈ [0, 12 ) and all the asset nonowners with utility type δ ∈ [ 12 , 1] as the
mismatched-asset-position agent.
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3.3.2.2 Weighted average meeting technology λ̄(δ)

Before defining the weighted average meeting technology λ̄(δ), we firstly characterize the

properties of marginal investor δ∗ = s = 1
2

defined in Section 3.3.1 inside the OTC market.

Corollary 1 In symmetric equilibria, the marginal investor δ∗ = s = 1
2

satisfies:

λ∗1(δ∗) = λ∗0(δ∗)

and

4V (δ∗) =
δ∗ + αEδ(4V (δ))

α + r
=
δ∗

r
= p

where p is the unique market clearing price in Walrasian market benchmark.

Intuitively, agent of utility type δ∗ is indifferent to becoming either asset owner or asset

nonowner. In his reservation value function, this agent weights more his current and future

utility types relative to his current asset position. Then his main incentive to enter the

market is to provide intermediation service, that is, to purchase at lower prices and sell at

higher prices, instead of adjusting his own asset position to become well-aligned agent. We

will call this agent as pure intermediator. Intuitively, the pure intermediator’s investment

in meeting technology should be most elastic with respect to the market environment since

this agent has no “‘inelastic’ hedging purpose” to be either a net buyer or a net seller.

Given equilibrium components φ0(δ) and φ1(δ), we can define the proportions of asset

owners and nonowners within each group of agents of utility type δ ∈ [0, 1] as follows:

S0(δ) =
φ0(δ)

fδ(δ)

S1(δ) =
φ1(δ)

fδ(δ)
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Then we can further define the weighted average meeting technology λ̄(δ):

λ̄(δ) = S1(δ)λ∗1(δ) + S0(δ)λ∗0(δ) =
φ1(δ)

fδ(δ)
λ∗1(δ) +

φ0(δ)

fδ(δ)
λ∗0(δ)

where λ̄(δ) can also be understood as people’s expectation on the optimal meeting technology

chosen by an individual agent (dealer) of utility type δ.

Specifically, when fδ(δ) ≡ 1 ∀δ ∈ [0, 1], the proportions of asset owners and nonowners

are just equal to densities φ1(δ) and φ0(δ). If condition (3.16) in Proposition 3 is satisfied, we

have φ′0(δ) < 0 < φ′1(δ), which is consistent with the intuition that generally in a normal/less

frictional OTC market, agents of lower liquidity needs more likely become asset owners and

agents of higher liquidity needs more likely sell their assets to hold more cash thus becoming

asset nonowners. Next we need to characterize the shape of λ̄(δ) to figure out which group

of agents will more likely choose more advanced meeting technology, thus behaving more

active (closer to the core inside the interdealer network) and which group of agents will

more likely behave less active. And how will the distribution of optimal meeting technol-

ogy change with different market environments, which can jointly be determined by c1 and α.

Proposition 5 For symmetric equilibrium with fδ(δ) ≡ 1 ∀δ ∈ [0, 1], the weighted average

search intensity function λ̄(δ) maintains the following properties in the range of reasonable

parameter values17:

1. λ̄′(1
2
) = 0, λ̄′(0) < 0, λ̄′(1) > 0;

2. For each α > 0 (c1 > 0), ∃c∗1(α) > 0 (∃α∗(c1) > 0), s.t. if c1 > c∗1(α) (α > α∗(c1)):

• λ̄′(δ) < 0 ∀δ ∈ [0, 1
2
);

• λ̄(0) > λ̄(1
2
);

17Here “reasonable” values mainly refer to r > 0, c1 > 0 and α > 0 in Proposition 2, which guarantees the
existence of stationary equilibrium.
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• λ̄′′(1
2
) > 0;

3. For each α > 0 (c1 > 0), ∃c∗∗1 (α) > 0 (∃α∗∗(c1) > 0), s.t. if c1 < c∗∗1 (α) (α < α∗∗(c1)):

• ∃δ̂ ∈ (0, 1
2
) s.t. λ̄′(δ̂) > 0;

• λ̄(0) < λ̄(1
2
);

• λ̄′′(1
2
) < 0;

Proof is in Appendix 3.A.6.

By Proposition 5, we know δ = 1
2

is always a stationary point. Since it always applies

that λ̄′(0) < 0, if δ = 1
2

is a local maximum point in relatively smaller c1, by Mean Value

Theorem, there must exist a utility type δ′ ∈ (0, 1
2
) (symmetrically 1 − δ′ ∈ (1

2
, 1)) which

is a local minimum point. For specific α, when c1 changes from being small (< c∗∗1 (α)) to

being large (> c∗1(α)), this local minimum point will intuitively shifts from being close to

δ = 0 to being close to δ = 1
2

for the left part of λ̄(δ). Similar idea works for given specific

c1 and α changes from being small (< α∗∗(c1)) to being large (> α∗(c1)). While this local

minimum point is difficult to be technically identified in a general model setup and the main

topic of our paper is to discuss how dealers switch their roles to behave either active or

inactive in different market environments, then in the following sections we will ignore this

local minimum point and mainly compare the expected optimal meeting technology between

the intermediate utility type agent (δ = 1
2
) and the extreme utility type agents (δ = 0 and 1)

in symmetric stationary equilibria in different market environments, to discuss which agent

will behave as the core dealer and which agent will behave as the periphery one.

3.3.3 Quantitative example

In Figure 3.2-3.4, we give three groups of stationary equilibrium solutions. The value of c1

is used as a measure of market friction and the value of α is used as a measure of market

mis-alignment. By Proposition 5, as c1 increases, extreme-value agents, who initially invest
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Figure 3.2: Stationary equilibrium solutions with c1 = 2, α = 0.05

in less advanced weighted average meeting technology than intermediate-value agents, will

behave more active than the intermediate ones in more frictional market. By the graph of

measures of asset owners and nonowners, as α increases, there are more mis-aligned agents

in the market.
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Figure 3.3: Stationary equilibrium solutions with c1 = 5, α = 0.25

3.4 Core-periphery interdealer network

Our analytical results have implications for the formation and evolution of the core-periphery

interdealer network, which is documented to commonly exist in several OTC markets, includ-

ing municipal bond market, securities market for 144a and registered instruments, federal

funds market, and etc. The centrality of dealers in the interdealer network is mainly mea-

sured by the number of completed trades (larger than a certain scale) per unit time, which

also represents the activeness of dealers. If one dealer behaves more active in the OTC
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Figure 3.4: Stationary equilibrium solutions with c1 = 10, α = 0.5

market, i.e. searches more frequently for potential counterparties to trade with, he will have

larger centrality and lie closer to the core of the network.

3.4.1 Trading frequency

We use the weighted average search intensity λ̄(δ) as a measure of the trading frequency

or centrality of the dealer of utility type δ. In unit time, the number of effective trades

completed by an individual agent also equals his (expected instantaneous) gross trading

volume (denoted as G(δ) below), since the trading quantity between any two matched agents
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has been normalized to be either +1 or −1. As a result, both λ̄(δ) and G(δ) can be used

as a measure of dealers’ centrality. The question is, which dealers will averagely choose

higher λ̄(δ) and which dealers will averagely choose the lower one? It turns out that, the

market environment determines the shape of λ̄(δ) thus the distribution of optimal meeting

technology. Referring to our baseline model, we can use the product c1 ∗ α as a measure of

the market environment. As interpreted in the model setup, higher α means more misaligned

agents in the market and higher c1 means more expensive meeting technology investment,

thus more frictional market.

For simplicity, we only focus on the extreme-value agent with δ = 0 (or δ = 1) and

intermediate-value agent with δ = 1
2
, although δ = 0 (or δ = 1) agent will never be the least

active agent inside the market due to λ̄′(0) < 0 by Proposition 5. Another reason is, we

want to emphasize the motive of these two groups of agents to “switch” their positions in

the interdealer network.

The former analytical result implies the key for the fact that “the less active agent in less

frictional market becomes (relatively) more active in more frictional market” is, the former

less active agent’s trading motivation is more robust to the market environment. For agents

with δ = 0 (δ = 1), their more robust weighted average meeting technology is mainly driven

by the investment of asset owners (nonowenrs) in the group. The latter are highly motivated

to search to hedge their highly mis-aligned asset positions instead of just waiting for their

utility type to shift up or down. While for agent with δ = 1
2
, since they are indifferent

between holding the asset or not by Corrolary 1, their motivation to hedge their mis-aligned

asset positions is the least among all agents. Then their trading motivation is mainly to gain

intermediation profit through buying low and selling high at the cost of searching, which will

be more affected by the level of market friction c1. They can also be regarded as the most

pure intermediator.

125



3.4.2 Measures of liquidity

3.4.2.1 Trading volumes

To evaluate the effect of core-periphery interdealer network on the liquidity level of the

whole market, we use agent’s trading volumes and profit gained from providing interme-

diation service18 as measures of market liquidity. The intermediation service refers to the

activity that dealers buy certain amount of asset from someone and sell the same amount

of asset to the others inside the interdealer market. Correspondingly the trading volumes

include expected instantaneous gross trading volume G(δ), net trading volume N(δ) and

intermediation trading volume I(δ) of agents of utility type δ ∈ [0, 1], which are defined as

follows:

G(δ) = 2φ1(δ)λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′ + 2φ0(δ)λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′

N(δ) =

∣∣∣∣2φ1(δ)λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′ − 2φ0(δ)λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′
∣∣∣∣

I(δ) = G(δ)−N(δ) = 4∗min
{
φ1(δ)λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′, φ0(δ)λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′
}

where intermediation volume equals gross volume subtracts net volume and it represents the

magnitude of intermediation service that each agent provides to the whole market. Both gross

and intermediation trading volumes are manifestation of the ability of agents to reallocate

assets among investors.

Similar to the formation of core-periphery interdealer network, the levels of friction and

mis-alignment in the OTC market also determines which group of agents will make the main

contribution to the market liquidity. Here we give an quantitative example to compare gross,

18The “intermediation profit” can be regarded as proxy for bid-ask spread gained by each agent, which
comes from buying certain amount of asset at lower price and selling the same amount of asset at higher
price.
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Figure 3.5: Trading volumes in different markets

net and intermediation trading volumes in three markets with different levels of friction.

Figure 3.5 verifies the former conclusion that intermediate-type agents behave as the

most pure intermediator inside the market since they maintain the highest intermediation

trading volume in all three markets with different levels of friction. Also, in less frictional

market (c1 = 0.5, α = 0.05), the intermediate-type agents behave most active in the sense

that they contribute the highest gross trading volume. While as market becomes more and

more frictional, they behave relatively less and less active than the extreme-type agents.

Moreover, based on the magnitudes of trading volumes: as agent’s utility type becomes

more and more extreme (closer to δ = 1 (or δ = 1)), most part of his gross trading volume
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comes from hedging his own mis-aligned asset position; as agent’s utility type becomes more

and more intermediate (closer to δ = 1
2
), most part of his gross trading volume comes from

providing intermediation service to the whole market.

3.4.2.2 Centrality profit per trade

To measure the main transaction cost in an illiquid market, former literatures mainly use

intermediation profit per trade, which corresponds to dealers’ bid-ask spread per trade in

data. Since customers, as a whole, need to pay dealers bid-ask spreads to reallocate assets

among themselves, the magnitude of bid-ask spread per trade can measure how easy it is for

customers to buy from/sell to the dealers on average. Thus it can be used as one measure

of market liquidity/illiquidity.

Intermediation profit per trade for each utility type IPp(δ) is defined as:

IPp(δ) = P̄s(δ)− P̄b(δ) ∀δ ∈ (0, 1)

where

P̄s(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0

4V (δ)+4V (δ′)
2

φ0(δ′)dδ′∫ 1

δ

λ∗0(δ′)

Λ0
φ0(δ′)dδ′

and

P̄b(δ) =

∫ δ
0

λ∗1(δ′)

Λ1

4V (δ)+4V (δ′)
2

φ1(δ′)dδ′∫ δ
0

λ∗1(δ′)

Λ1
φ1(δ′)dδ′

Intuitively, P̄s(δ) and P̄b(δ) are agent δ’s average selling price and average buying price19.

In former literatures, Li and Schürhoff (2014) documents the positive correlation be-

tween centrality and bid-ask spread per trade (i.e. centrality premium) in municipal bond

market while Hollifield, Neklyudov, and Spatt (2017) documents the negative correlation

19Since agents with δ = 0 (δ = 1) either remain silent or search to sell (buy), they do not provide
intermediation service to the whole interdealer market. So we ignore these two utility types when discussing
intermediation profit per trade.
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Figure 3.6: Correlation between centrality and intermediation profit per trade

(i.e.centrality discount) in asset-backed-securities market. Üslü (2019) attributes the corre-

lation between centrality and bid-ask spread per trade to the level of market friction and

the sign of correlation is also consistent with our model. Here we also give a quantitative

example to analyze the sign of such correlation in three markets with different levels of fric-

tion and mis-alignment. In this example, we use weighted average meeting technology as a

measure of dealers’ centrality. Figure 3.6 shows that the intermediation profit per trade is

always minimized at δ = 1
2

due to our assumption of heterogeneous valuation among all the

dealers and the Nash bargaining process. Since there are different patterns of investment

in meeting technologies across different markets, “centrality premium” will appear in more
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frictional market and “centrality discount” will appear in less frictional market. In other

words, if the assumptions and the mechanism in our model are correct, we may conclude

that: the core dealers in ABS market should on average have the liquidity needs closest to

the social average level, and the core dealers in municipal bond market should on average

have either the highest or the lowest liquidity needs among all the dealers.

3.5 Aggregate liquidity shock

We consider the aggregate liquidity shock in similar form as in Duffie, Gârleanu, and Pedersen

(2007). In their paper, upon each aggregate liquidity shock, a randomly chosen fraction of

agents will suffer a sudden jump of their current utility types from high state to low state.

The aggregate liquidity shock is expected to occur following a Poisson process, which is newly

added into the HJB equations of value functions. Yet in our model, since the distribution

of utility type fδ(δ) has continuous support [0, 1], we consider the aggregate liquidity shock

in a new form that, for each agent whose utility type is δ ∈ [1
2
, 1], his utility type shifts to

δ − 1
2
, i.e. 1

2
lower than his current type, with probability π. The shifts of utility types are

independent among all the agents in δ ∈ [1
2
, 1], thus we can apply the Law of Large Numbers.

Figure 3.7 gives an example of aggregate liquidity shock with π = 0.5.

Additionally we maintain the self-refinancing channel as in Duffie, Gârleanu, and Ped-

ersen (2007) so that, for each agent, the distribution of new utility type in response to

idiosyncratic liquidity shock is assumed to be always uniform on [0, 1] and the distribu-

tion of utility type can recover to the pre-shock scenario through this channel. Since this

aggregate shock is not a permanent one, it is more reasonable to assume that agents will

expect a Poisson arrival of such aggregate liquidity shock in the future, thus generating the

“permanent price effect”20.

20In our paper, the “permanent price effect” refers to the effect of expectation on future aggregate liquidity
shock on the social (purchase/sale) price level. If agents expect that there is a high probability that there will
be an aggregate liquidity shock in next period, the social valuation on the asset will decrease thus making
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Figure 3.7: Measures of agents before and after the aggregate liquidity shock

Assuming t is the length of time after the most recent aggregate liquidity shock, we obtain

the new HJB equations for agents indirectly affected δ ∈ [0, 1
2
) and agents directly affected

δ ∈ [1
2
, 1]:

the social (purchase/sale) price decrease.
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For ∀δ ∈ [0, 1
2
],

4V̇ (δ, t) = r4V (δ, t)− δ + c1λ
∗
1

2(δ, t)− c1λ
∗
0

2(δ, t)− α
∫ 1

0

(4V (δ′, t)−4V (δ, t))dδ′

− λ∗1(δ, t)

∫ 1

0

λ∗0(δ′, t)

Λ0,t

(4V (δ′, t)−4V (δ, t))φ0(δ′, t)dδ′

+ λ∗0(δ, t)

∫ δ

0

λ∗1(δ′, t)

Λ1,t

(4V (δ, t)−4V (δ′, t))φ1(δ′, t)dδ′

− η(4V (δ, 0)−4V (δ, t))

For ∀δ ∈ [1
2
, 1],

4V̇ (δ, t) = r4V (δ, t)− δ + c1λ
∗
1

2(δ, t)− c1λ
∗
0

2(δ, t)− α
∫ 1

0

(4V (δ′, t)−4V (δ, t))dδ′

− λ∗1(δ, t)

∫ 1

0

λ∗0(δ′, t)

Λ0,t

(4V (δ′, t)−4V (δ, t))φ0(δ′, t)dδ′

+ λ∗0(δ, t)

∫ δ

0

λ∗1(δ′, t)

Λ1,t

(4V (δ, t)−4V (δ′, t))φ1(δ′, t)dδ′

− η [π(4V (δ − 0.5, 0)−4V (δ, t)) + (1− π)(4V (δ, 0)−4V (δ, t))]

where η is the expected Poisson intensity of future aggregate liquidity shock.

The evolution equation and market clear condition for densities φ1(δ, t) and φ0(δ, t) after

the aggregate liquidity shock are as follows:

For ∀t > 0 and ∀δ ∈ [0, 1],

φ̇1(δ, t) = −αφ1(δ, t) +
α

2
f̂δ(δ)− 2φ1(δ, t)λ∗1(δ, t)

∫ 1

δ

λ∗0(δ′, t)

Λ0,t

φ0(δ′, t)dδ′

+2φ0(δ, t)λ∗0(δ, t)

∫ δ

0

λ∗1(δ′, t)

Λ1,t

φ1(δ′, t)dδ′

φ̇0(δ, t) = −αφ0(δ, t) +
α

2
f̂δ(δ) + 2φ1(δ, t)λ∗1(δ, t)

∫ 1

δ

λ∗0(δ′, t)

Λ0,t

φ0(δ′, t)dδ′

132



−2φ0(δ, t)λ∗0(δ, t)

∫ δ

0

λ∗1(δ′, t)

Λ1,t

φ1(δ′, t)dδ′

where f̂δ(δ) ≡ 1 ∀δ ∈ [0, 1] and

φ0(δ, t) + φ1(δ, t) = fδ(δ, t)

∫ 1

0

φ0(δ, t)dδ =

∫ 1

0

φ1(δ, t)dδ =
1

2

Figure 3.8 and 3.9 show the trends of market average purchase and sale prices and

different measures of market liquidity before and after the aggregate liquidity shock.

We can see both the average purchase and sale prices will drop hugely right after the

unexpected aggregate liquidity shock and then recover up. Due to agent’s expectation on

future aggregate liquidity shock, the new stationary equilibrium price levels will be perma-

nently shifted down relative to the original ones. For different measures of market liquidity,

there are immediate increases in market gross trading volume and intermediation trading

volume, and immediate decrease in average bid-ask spread per trade right after the aggregate

liquidity shock. Then as time goes by, the former two measures will go down until reaching a

new lower-level stationary equilibrium. The reason for the immediate increases may be, right

after the start of crisis, agents with their utility types suddenly shifted down will have strong

incentives to sell the asset thus making all the agents to reallocate the fixed supply of asset

among themselves. This will hugely increase the total trading volume inside the market.

Then both trading volumes will go down since those agents will reach better-aligned asset

positions. Eventually, due to expectation on future aggregate liquidity shock, the market

liquidity measured by both trading volumes will also be permanently shifted down in the

new stationary equilibrium, where agents become more conservative to search to trade with

others. For average intermediation profit per trade, the reason for the immediate decrease

is the decline in the average valuation among all dealers in the market. Although it mainly

measures the average trading cost of customers, it does not necessarily mean the immediate
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Figure 3.8: Market average prices with α = 0.25, c1 = 1 and η = 0.1

increase in market liquidity since dealers may trade off between lower average intermediation

profit per trade and higher trading delay, which is beyond the discussion of this paper.

Policy choice targeting at different groups of dealers

We define the rescue policies as the actions taken by the monetary authority, to make

the directly affected dealers’ liquidity needs recover to their pre-shock levels, through, for

example, directly injecting liquidity into the targeted dealers. Due to limited resources,

rescue policies usually target on specific group of dealers with priority, that is, firstly inject
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Figure 3.9: Measures of market liquidity with α = 0.25, c1 = 1 and η = 0.1

liquidity into the specific group of dealers.

We consider two policy choices separately targeting at both asset owners and nonowners

with δ ∈ [1
2
, 3

4
] (Policy 1) and both asset owners and nonowners with δ ∈ [3

4
, 1] (Policy 2).

By the changes in different measures of market liquidity under these two policies, we can

determine which group of dealers are more important in the sense that maintaining their

pre-shock utility types more helps maintaining the market liquidity.

Figure 3.10 shows the effects of different policies (“no policy”, “Policy 1” and “Policy

2”) in response to unexpected aggregate liquidity shock, under different levels of market
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Figure 3.10: Net changes in new stationary equilibrium

(net changes are expressed as a percentage of the corresponding values in the old equilibrium)

friction. The effect is measured by changes in different measures of market liquidity in the

new stationary equilibrium as a percentage of the initial stationary equilibrium. Figure 3.11

instead focuses on the dynamic process and shows the effects on the cumulative change in

market liquidity before achieving the new stationary equilibrium.

By Figure 3.10 and 3.11, Policy 2 uniformly dominates Policy 1 and “no policy response”

across different measures of market liquidity and different levels of market friction. Intu-

itively, higher-type agents contribute more to maintaining the market liquidity. While the
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Figure 3.11: Cumulative changes before achieving new stationary equilibrium

(cumulative changes are expressed as a percentage of the corresponding values in the old
equilibrium)

key implication of the model is, such higher-type agents may become core dealers in more

frictional market and become periphery dealers in less frictional market. Then we conclude

that the core dealers may not always be the most important ones that should be given pri-

ority to receive liquidity after the aggregate liquidity shock. To better maintain the level of

market liquidity, policy makers need to firstly identify the market environment (either more

frictional or less frictional), and attach more importance to the core dealers in market with

higher level of friction and attach more importance to periphery dealers in market with lower
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level of friction.

3.6 Efficiency analysis

3.6.1 Social optimal choice of meeting technologies

As in the case of frictionless market, we use the sum of discounted instantaneous utility

flows to measure the positive part of social welfare. The difference is, in frictional market,

all agents are burdened with instantaneous investment costs of meeting technologies. In this

section, we assume the investment cost is in quadratic form.

W =

∫ +∞

0

e−rt
∫ 1

0

δφ1(δ)dδdt−
∫ +∞

0

e−rt
∫ 1

0

c1λ
∗
1

2(δ)φ1(δ)dδdt

−
∫ +∞

0

e−rt
∫ 1

0

c1λ
∗
0

2(δ)φ0(δ)dδdt

=
1

r

(∫ 1

0

δφ1(δ)dδ −
∫ 1

0

c1λ
∗
1

2(δ)φ1(δ)dδ −
∫ 1

0

c1λ
∗
0

2(δ)φ0(δ)dδ

)

If we specifically focus on symmetric equilibria, the last two terms are equal, then social

welfare is simplified to be:

W =
1

r

(∫ 1

0

δφ1(δ)dδ − 2

∫ 1

0

c1λ
∗
1

2(δ)φ1(δ)dδ

)

Then we discuss in fixed market environment (characterized by fixed r, c1 and α) and

given the uniform distribution of utility type fδ(δ) ≡ 1 ∀δ ∈ [0, 1], what is the social optimal

assignment of meeting technology to asset owners and nonowners of different utility types

and how it is different from the competitive equilibrium one that optimally chosen by the

agents. For simplicity, we only focus on symmetric assignment between asset owners and

nonowners and we regard the density of asset owners φS1 (δ) as the second control variable
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(function) that connected with λS∗1 (δ) through the equilibrium constraint (3.17) below.21

Define the following normed linear spaces: ΛS1 = {λS1 (δ) : λS1 (δ) ∈ C1[0, 1];λS1 (δ) ≥

0 and λS
′

1 (δ) ≤ 0,∀δ ∈ [0, 1]},22 ΦS1 = {φS1 (δ) : φS1 (δ) ∈ C1[0, 1]; 0 ≤ φS1 (δ) ≤ 1 and φS1
′
(δ) ≥

0,∀δ ∈ [0, 1];
∫ 1

0
φS1 (δ)dδ = 1

2
}, all with the norm ‖f‖ = max

0≤δ≤1
|f(δ)|. The simplified social

planner problem [SP ] is:

max
λS1 (δ)∈ΛS1,φ

S
1 (δ)∈ΦS1

W =

∫ 1

0

(δ − 2c1λ
S
1

2
(δ))φS1 (δ)dδ

s.t.

φS1 (δ) =
1

1 +
α
2

+2λS1 (δ)
∫ 1−δ
0

λS1 (δ′)
Λ1

φS1 (δ′)dδ′

α
2

+2λS1 (1−δ)
∫ δ
0

λS1 (δ′)
Λ1

φS1 (δ′)dδ′

∀δ ∈ [0, 1] (3.17)

and

Λ1 = 2

∫ 1

0

λS1 (δ′)φS1 (δ′)dδ′

the constraint (3.17) is by the symmetry of λS1 (δ) and λS0 (δ) with respect to δ = 1
2
, i.e.

λS0 (δ) = λS1 (1− δ),∀δ ∈ [0, 1].

The key to explicitly solve the above social planner problem is to firstly obtain Proposi-

tion 6 that guarantees λS1
∗
(δ) ≡ 0 on the higher half of utility space [1

2
, 1].

Proposition 6 If λS∗1 (δ) and φS∗1 (δ) solve the social planner problem [SP ], λS∗1 (δ) ≡ 0

for ∀δ ∈ [1
2
, 1]. Proof is in Appendix 3.A.7.

21The original social planner problem has λS∗1 (δ) as its unique control variable. Given any λS∗1 (δ), by the
evolution equation of densities at stationary equilibrium, we can obtain one corresponding density function
φS1 (δ) through fixed point convergence.

22It is intuitive that the social optimal meeting technology of asset owners λS1 (δ) is a decreasing function.
Suppose the social optimal function λS1

∗
(δ) has two points δ1 < δ2 with λS1

∗
(δ1) < λS1

∗
(δ2), then we can

switch the meeting technologies of these two agents without increasing the total investment cost. Then the
agent with lower utility type will be assigned with higher meeting technology thus having more oppotunities
to sell his asset. Since lower-type asset owners are more likely to be mis-aligned agents, the above switching
help improve the alignment of the whole market. Or for simplicity, we can just guess and verify later that
the social optimal λS1

∗
(δ) is a decreasing function on [0, 1].
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The intuition behind Proposition 6 is, it is optimal to make only mis-aligned agents

to actively search in the market to trade with others if the searching is not free and is

in quadratic form. The unique positive part
∫ 1

0
δφS1 (δ)dδ in social objective function is

maximized at φS1 (δ) ≡ fδ(δ) ≡ 1 on [1
2
, 1] and zero elsewhere, which is also the frictionless

case in Walrasian market. Then the level of social objective function is consistent with the

magnitude of alignment of the whole market (or negatively correlated with the mis-alignment

of the whole market). For already-well-aligned agents, it is optimal to make them silent and

only assign positive meeting technologies to those mis-aligned agents.

By Proposition 6, we can explicitly obtain the expression of the social optimal meeting

technology (details are in Appendix 3.A.9):

λS∗1 (δ) =


−2c1α2+

√
4c21α

4+4c1α2( 1
2
−δ)

2c1α
δ ∈ [0, 1

2
);

0 δ ∈ [1
2
, 1].

(3.18)

We also give a quantitative example with r = 0.05, α = 0.1, c1 = 1 to compare the social

optimal and competitive equilibrium meeting technologies and densities for both asset owners

and nonowners. The weighted average meeting technology for asset owners (or nonowners)

is ΛC = 0.0766 in competitive equilibrium and ΛS = 0.0376 in social optimal solution,

which means the latter assignment costs less and is more efficient. The social welfare is

WC = 6.5764 in competitive equilibrium, which is lower than that of social optimal solution

W S = 6.7820.

Figure 3.12 compares the symmetric social optimal and competitive equilibrium meeting

technologies. The solution λS∗1 (δ) numerically searched out by MatLab exactly follows the

explicit solution (3.18). Intuitively, more searching resources (meeting technologies) are

assigned to extremely mis-aligned agents, for example, λS∗1 (0) > λ∗1(0). Figure 3.13 compares

the densities generated by competitive equilibrium and social optimal assignment of meeting

technologies. We can see, the densities generated by social optimal assignment are closer to

the Walrasian case which is the most efficient one.
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Figure 3.12: Competitive equilibrium and social optimal meeting technologies

Then Figure 3.14 shows that in social optimal solution, for each utility type, the ex-

pected instantaneous gross trading volume is equal to the net trading volume, which in-

tuitively shows that the intermediation trading volume is constantly zero across all utility

types. As a result, in social optimal solution, the profit per trade is essentially the expected

revenue(cost) per trade for asset owners(non-owners) with utility type lower(higher) than 1
2
,

the magnitudes of which are much larger than that of intermediation profit in competitive

equilibrium solution (the right y axis in sub-figure “profit per trade(c1 = 1, α = 0.1)). The

social optimal gross trading volume for the whole market is 1.54 compared with that of the

competitive equilibrium solution which is 2.33. This possibly implies that individual traders

do not internalize the social externality into their decisions and there exist large part(in this

case, approximately 34%) of inefficient tradings in the sense that they do not contribute to

the well-alignment of target asset in the market.
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Figure 3.13: Competitive equilibrium and social optimal densities

3.6.2 Robustness of the optimality of “no intermediation”

Section 3.6.1 essentially concludes that in social optimal solution, there is “no intermedi-

ation” in interdealer market, since no agent will be assigned positive meeting technologies

both when being asset owner and when being asset nonowner. To check the robustness, we

give Proposition 7 below to show which forms of searching cost function will guarantee the

optimality of “no intermediation”.
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Figure 3.14: Liquidity measures between social optimal and competitive equilibrium solu-
tions

Proposition 7 For any cost function C(λ) that satisfies the following condition2324

C ′(λ)

 ≥ 0 δ = 0;

> 0 ∀δ ∈ (0, λub].
(3.19)

the social optimal meeting technology λS∗1 (δ) ≡ 0 for ∀δ ∈ [1
2
, 1]. Proof is in Appendix 3.A.8.

Condition (3.19) applies for most cost functions including quadratic form C(λ) = c1λ
2,

linear form C(λ) = c1λ, concave form C(λ) = c1λ
p p ∈ (0, 1) and etc, where the coefficient

c1 > 0. Then we conclude that the optimality of “no intermediation” is robust to the cost

function form.

The key to this result is our assumption that agents are allowed to and also willing

23In condition (3.19), C ′(0) ≥ 0 includes the case that C ′(0) = +∞
24λub is the upper bound of meeting technology for either asset owners or nonowners. If there is no upper

bound, it is equal that λub = +∞.
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to shift to new meeting technologies in response to idiosyncratic liquidity shock through

a uniform policy rule. Compared with Farboodi, Jarosch, and Shimer (2017b), in their

paper, each agent is endowed with/chooses a certain level of meeting technology, which,

once chosen, cannot be changed forever. This can equally be regarded as the case that the

adjustment cost of meeting technology is infinity. So there is no one-to-one mapping from

agent’s utility type to their meeting technology. Meanwhile, with some other reasonable

assumptions, the main trading incentive comes from the difference in meeting technologies

between every two matched agents, and the agents with more advanced meeting technologies

will automatically play the role of intermediator. While in our paper, agents are free to adjust

their meeting technologies without any adjustment cost, then agents of each specific utility

type will either purely search to sell or purely search to buy at every time point. So the

meaning of intermediation in our paper is a little bit different from that in Farboodi, Jarosch,

and Shimer (2017b).

Next we will show, for the general cost function C(λ) that satisfies the condition in Propo-

sition 7, how to obtain the explicit expression of λS∗1 (δ). By Proposition 7 and substituting

λS∗1 (δ) ≡ 0,∀δ ∈ [1
2
, 1] into the equilibrium constraint to obtain the expression of φS1 (δ), we

can get the reduced-form social planner problem [RP ]:

max
λS1 (δ)∈ΛS1

W ∗(λS1 (δ)) =

∫ 1
2

0

(δ − 2C(λS1 (δ)))
1

1 +
α
2

+λS1 (δ)
α
2

dδ +

∫ 1

1
2

δ
1

1 +
α
2

α
2

+λS1 (1−δ)

dδ

=

∫ 1
2

0

(−αC(λS1 (δ)) + α
2

+ (1− δ)λS1 (δ)

α + λS1 (δ)

)
dδ

=

∫ 1
2

0

fC(λS1 (δ), δ)dδ

s.t.

K 1
2

=

∫ 1
2

0

α
2
λS1 (δ)

α + λS1 (δ)
dδ ≤ Λ (3.20)
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where in (3.20), Λ is the restricted maximum meeting technology of the whole market.25

By Hamiltonian approach,

L(δ, λS1 (δ)) = H(δ,Kδ) + µ(Λ−K 1
2
)

=
−αC(λS1 (δ)) + α

2
+ (1− δ)λS1 (δ)

α + λS1 (δ)
+mδ

α
2
λS1 (δ)

α + λS1 (δ)
+ µ(Λ−K 1

2
)

where

Kδ =

∫ δ

0

α
2
λS1 (δ′)

α + λS1 (δ′)
dδ′ and K̇δ =

α
2
λS1 (δ)

α + λS1 (δ)

The necessary conditions for λS1
∗
(δ) : [0, 1

2
)→ R+ to be optimal are:

ṁδ = −∂H(δ,Kδ)

∂Kδ

= 0

m̄ = m 1
2

=


0 if µ = 0;

−∂W ∗(λS1 (δ))

∂K 1
2

if µ > 0.

For simplicity, we consider the case Λ = λub, i.e. budget constraint is always not binding,

then µ = 0 and m̄ = 0. Then we have:

∂L(δ, λS1 (δ))

∂λS1 (δ)
=

∂

∂λS1 (δ)

(−αC(λS1 (δ)) + α
2

+ (1− δ)λS1 (δ)

α + λS1 (δ)

)
=

α
2
− αδ + αC(λS1 (δ))− α(α + λS1 (δ))C ′(λS1 (δ))

(α + λS1 (δ))2

25For simplicity, usually we consider the case that Λ is equal to the upper bound of λ1(δ), λub, i.e. budget
constraint (3.20) is always not binding, then the corresponding Lagrangian multipliers satisfy µ = 0 and
m̄ = 0.
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and

∂2L(δ, λS1 (δ))

∂λS1
2
(δ)

=
−αC ′′(λS1 (δ))(α + λS1 (δ))2

(α + λS1 (δ))3

− (α− 2αδ + 2αC(λS1 (δ))− 2α(α + λS1 (δ))C
′
(λS1 (δ)))

(α + λS1 (δ))3

Then for each δ ∈ [0, 1
2
), the optimal λS1

∗
(δ) needs to satisfy one of the following condi-

tions:

1.
∂L(δ,λS1 (δ))

∂λS1 (δ)
|λS1 (δ)=λS1

∗
(δ) = 0 and

∂2L(δ,λS1 (δ))

∂λS1
2
(δ)
|λS1 (δ)=λS1

∗
(δ) ≤ 0, then 0 < λS1

∗
(δ) < λub;

2.
∂L(δ,λS1 (δ))

∂λS1 (δ)
> 0 for ∀λ1(δ) ∈ [0, λub], then λS1

∗
(δ) = λub;

3.
∂L(δ,λS1 (δ))

∂λS1 (δ)
< 0 for ∀λ1(δ) ∈ [0, λub], then λS1

∗
(δ) = 0;

4. For every δ ∈ [0, 1
2
), @λS1 (δ) ∈ [0, λub] s.t.

∂L(δ,λS1 (δ))

∂λS1 (δ)
= 0 and

∂2L(δ,λS1 (δ))

∂λS1
2
(δ)

≤ 0, and

W (λS1 (δ) ≡ 0) > W (λS1 (δ) ≡ λub), then λS1
∗
(δ) ≡ 0 ∀δ ∈ [0, 1

2
);

5. For every δ ∈ [0, 1
2
), @λS1 (δ) ∈ [0, λub] s.t.

∂L(δ,λS1 (δ))

∂λS1 (δ)
= 0 and

∂2L(δ,λS1 (δ))

∂λS1
2
(δ)

≤ 0, and

W (λS1 (δ) ≡ 0) < W (λS1 (δ) ≡ λub), then λS1
∗
(δ) ≡ λub ∀δ ∈ [0, 1

2
).

In Appendix 3.A.9, we specifically solve the explicit expressions of λS∗1 (δ) with cost func-

tions of quadratic forms C(λ) = c1λ
2 and C(λ) = c2λ

2 + c3λ(c2 < 0, c3 > 0), linear form

C(λ) = c1λ and concave form C(λ) = c1λ
p p ∈ (0, 1), where in all cases c1 > 0.

3.6.3 Unidimentional policy measure with linear investment cost

In this section, we specifically focus on the case of linear cost function C(λ) = c1λ, which

generates the unidimentional policy measure. In this case, social planner only needs to iden-

tify the marginal asset-owner utility type, and the policy will be to assign all the asset owners

with utility types lower than the marginal one with the most advanced meeting technology

λub and make all the asset owners with utility types larger than the marginal one silent in the
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market. Symmetrically, we can obtain the marginal asset-nonowner utility type accordingly

and assign all asset nonowners with utility types larger than this marginal type with the

most advanced meeting technology and make those lower than this marginal type silent.

Proposition 8 In social planner problem, when C(λ) = c1λ (c1 > 0), the social opti-

mal meeting technology of asset owner λS1
∗
(δ) satisfies:

1. If c1α <
1
2
,

λS1
∗
(δ) =

 λub if δ ≤ δ∗1;

0 if δ > δ∗1.

where δ∗1 = 1
2
− c1α is the marginal asset-owner utility type;

2. If c1α ≥ 1
2
,

λS1
∗
(δ) ≡ 0 ∀δ ∈ [0, 1]

Details are in Appendix 3.A.9.

Finally we give a quantitative example to compare the competitive equilibrium and the

social optimal solutions. In the example, we set r = 0.05, c1 = 0.05, α = 0.35, λub = 1.4 and

obtain the competitive equilibrium welfare is 6.2031 and the social optimal welfare is 6.8953.

Figure 3.15 compares the meeting technologies. It is straight forward to see that there is no

intermediation in the social optimal solution, since the optimal meeting technologies do not

overlap at the upper bound.

3.7 Conclusion

This paper develops a search-and-bargain model to evaluate the policy responses in different

OTC market environments in response to a certain form of aggregate liquidity shock, which

affects dealers’ valuation on the target asset. In the model setup, dealers are free to choose

and change their optimal meeting technology based on their characteristics: asset position
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Figure 3.15: Social optimal and competitive equilibrium meeting technologies for linear cost
(λub = 1.4)

and liquidity need, which is new to the current literature. The model can generate the core-

periphery interdealer network which is one of the common stylized facts of OTC markets that

documented in former papers. We find that, dealers of intermediate utility types become the

core dealers in less frictional market where meeting technology is relatively cheap and fre-

quency of idiosyncratic liquidity shock is relatively low; while in the opposite more frictional

market environment, dealers with extreme utility types will become the core ones and dealers

with intermediate utility types will behave much less active than before. And these different

relationships between dealers’ liquidity needs and optimal meeting technologies have differ-

ent potential implications for policy choice in response to the aggregate liquidity shock. In

more frictional market, monetary authority with limited funding should firstly inject liquid-

ity into the core dealers; while in less frictional market, monetary authority should firstly

inject liquidity into the periphery ones. We also conclude that in the social optimal assign-

ment of meeting technologies among all dealers, there is no intermediation in the sense that

no dealer will be assigned positive meeting technologies both when being asset owner and

when being asset nonowner. Specifically, we discuss the case of linear cost function, which

generates the unidimentional policy measure.
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In this paper, we implicitly assume that there is perfect information in the market since

every agent has rational expectation on the distribution of utility types. As a result, the

main searching motive in our model is to trade with others to either gain intermediation

profit or hedge mis-aligned asset position. While the two most significant characteristics

of OTC market are accessibility/searching friction and imperfect information. The future

research direction may be to incorporate private information into the model and thus gen-

erates alternative searching motive to learn (e.g. the quality of target asset or the matched

counterparty’s expected valuation) from trading.
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Appendix 3.A Appendix of Chapter 3

3.A.1 Proposition 1

We use guess and verify approach to prove the monotonicity of reservation value function

4V (δ). Suppose 4V (δ) is strictly increasing, then the subtraction “(3.1) minus (3.2)” will

reduce to (3.5):

r4V (δ) = δ + C(λ∗0(δ))− C(λ∗1(δ)) + α

∫ 1

0

(4V (δ′)−4V (δ))dFδ(δ
′)

+λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0

(4V (δ′)−4V (δ))φ0(δ′)dδ′ − λ∗0(δ)

∫ δ

0

λ∗1(δ′)

Λ1

(4V (δ)−4V (δ′))φ1(δ′)dδ′

and expressions of individual and aggregate levels of optimal meeting technologies will reduce

to (3.6)-(3.8). By (3.5)-(3.8), we obtain that for ∀δ

(4V (δ))2

(
a(δ)2 − b(δ)2

4c1

)
+4V (δ)

(
r + α +

B(δ)b(δ)− A(δ)a(δ)

2c1

)
− δ − αE[4V ]− B(δ)2 − A(δ)2

4c1

= 0 (3.21)

with the notations as:

A(δ) =

∫ δ

0

λ∗1(δ′)

Λ1

4V (δ′)φ1(δ′)dδ′

B(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0

4V (δ′)φ0(δ′)dδ′

a(δ) =

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′

b(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′ (3.22)

E[4V ] =

∫ 1

0

4V (δ′)fδ(δ
′)dδ′ (3.23)
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Then denote LHS of equation (3.21) as F , by Implicit Function Theorem, we verify that

d4V (δ)

dδ
= − ∂F/∂δ

∂F/∂4V (δ)
=

1

r + α + λ∗1(δ)b(δ) + λ∗0(δ)a(δ)
> 0 ∀δ ∈ [0, 1]

By first order conditions (3.3)(3.4), it is trival that

λ∗1(1) = λ∗0(0) = 0 (3.24)

and by plugging the first order conditions into the HJB equations, the optimal meeting

technology functions λ∗1(δ) and λ∗0(δ) satisfy

(α + r)V1(δ) = δ + c1λ
∗
1

2(δ) + αE[V1(δ)] (3.25)

(α + r)V0(δ) = c1λ
∗
0

2(δ) + αE[V0(δ)] (3.26)

where the expectation E[·] is using the symmetric PDF fδ(δ),

(3.25)-(3.26) =⇒

(α + r)4V (δ) = δ + c1λ
∗
1

2(δ)− c1λ
∗
0

2(δ) + αE[4V (δ)] (3.27)

apply E[·] on both sides =⇒

(α+ r)E[4V (δ)] = E[δ] + c1

(∫ 1

0

λ∗1
2(δ)fδ(δ)dδ −

∫ 1

0

λ∗0
2(δ)fδ(δ)dδ

)
+ αE[4V (δ)] (3.28)

Later by Corrollary 1, we will prove that if distribution of utility type (fδ(δ)) is symmetric

with respect to δ = 1
2
, then the equilibrium optimal meeting technology functions λ∗1(δ) and

λ∗0(δ) are symmetric to each other with respect to δ = 1
2
, i.e. λ∗0(δ) = λ∗1(1−δ) for ∀δ ∈ [0, 1].
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Here we just take this conclusion as given and then we can get:

∫ 1

0

λ∗1
2(δ)fδ(δ)dδ =

∫ 1

0

λ∗0
2(δ)fδ(δ)dδ

Together with (3.28), we obtain:

E[4V (δ)] =
E(δ)

r
> 0

Then by (3.24)(3.27),

(α + r)4V (0) = c1λ
∗
1

2(0) + αE[4V (δ)] > 0

Together with d4V (δ)
dδ

> 0 ∀δ ∈ [0, 1], we obtain

4V (δ) > 0 ∀δ ∈ [0, 1]

By (3.6)(3.7), we obtain:

dλ∗1(δ)

dδ
=
−d4V (δ)

dδ

∫ 1

δ

λ∗0(δ′)

Λ0
φ0(δ′)dδ′

2c1

< 0 ∀δ ∈ [0, 1]

dλ∗0(δ)

dδ
=

d4V (δ)
dδ

∫ δ
0

λ∗1(δ′)

Λ1
φ1(δ′)dδ′

2c1

> 0 ∀δ ∈ [0, 1]

3.A.2 Proposition 2

Based on properties of the competitive equilibrium components 4V (δ), λ∗1(δ) and φ1(δ),

under fδ(δ) ≡ 1, define the following normed linear spaces: 4VS = {4V (δ) : 4V (δ) ∈

C1[0, 1];4V (δ) ≥ 0 and 4V ′(δ) > 0,∀δ ∈ [0, 1];E(4V (δ)) =
∫ 1

0
4V (δ)dδ = 1

2r
}, ΛS1 =

{λ∗1(δ) : λ∗1(δ) ∈ C1[0, 1];λ∗1(δ) ≥ 0 and λ∗
′

1 (δ) < 0,∀δ ∈ [0, 1]}, ΦS1 = {φ1(δ) : φ1(δ) ∈

C1[0, 1]; 0 ≤ φ1(δ) ≤ 1 and φ′1(δ) > 0,∀δ ∈ [0, 1];
∫ 1

0
φ1(δ)dδ = 1

2
}, all with the norm ‖f‖ =
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max
0≤δ≤1

|f(δ)|.

Vector of stationary equilibrium components (4V (δ) λ∗1(δ) λ∗0(δ) φ1(δ) φ0(δ))T , by

symmetry between λ∗1(δ) and λ∗0(δ) and symmetry between φ1(δ) and φ0(δ), is a fixed point

of the following transformation T : 4VS × ΛS1 × ΦS1 −→ 4VS × ΛS1 × ΦS1:26

T


4V (δ)

λ∗1(δ)

φ1(δ)

 =


T1(4V (δ))

T2(λ∗1(δ))

T3(φ1(δ))


where

T1(4V (δ)) =
δ + c1λ

∗
0

2(δ)− c1λ
∗
1

2(δ) + α
∫ 1

0
4V (δ′)dFδ(δ

′)

r + α + λ∗1(δ)
∫ 1

δ

λ∗0(δ′)

Λ0
φ0(δ′)dδ′ + λ∗0(δ)

∫ δ
0

λ∗1(δ′)

Λ1
φ1(δ′)dδ′

+
λ∗1(δ)

∫ 1

δ

λ∗0(δ′)

Λ0
4V (δ′)φ0(δ′)dδ′ + λ∗0(δ)

∫ δ
0

λ∗1(δ′)

Λ1
4V (δ′)φ1(δ′)dδ′

r + α + λ∗1(δ)
∫ 1

δ

λ∗0(δ′)

Λ0
φ0(δ′)dδ′ + λ∗0(δ)

∫ δ
0

λ∗1(δ′)

Λ1
φ1(δ′)dδ′

=
1

α + r

(
δ + c1λ

∗
1

2(δ)− c1λ
∗
1

2(1− δ) +
α

2r

)

T2(λ∗1(δ)) =
1

2c1

∫ 1

δ

λ∗0(δ′)

Λ0

4V (δ′)φ0(δ′)dδ′

=
1

2c1

∫ 1−δ

0

λ∗1(δ′)

Λ1

(4V (1− δ′)−4V (δ))φ1(δ′)dδ′

s.t. Λ1 = 2

∫ 1

0

λ∗1(δ′)φ1(δ′)dδ′

26For each “component mapping” (T1 − T3), we assume all the other equilibrium components are given
and may/may not be the corresponding “fixed points”.
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T3(φ1(δ)) =

α
∫ 1

0
λ∗1(δ′)φ1(δ′)dδ′ + 2λ∗1(1− δ)

∫ δ
0
λ∗1(δ′)φ1(δ′)dδ′

2α
∫ 1

0
λ∗1(δ′)φ1(δ′)dδ′ + 2λ∗1(1− δ)

∫ δ
0
λ∗1(δ′)φ1(δ′)dδ′ + 2λ∗1(δ)

∫ 1−δ
0

λ∗1(δ′)φ1(δ′)dδ′

Use (4V (δ), λ∗1(δ), φ1(δ)) as notations of fixed points of 4V (δ), λ∗1(δ) and φ1(δ).

(1) Given fixed point λ∗1(δ), by transformation T1,

4V (δ) = 1
α+r

(
δ + c1λ∗1

2
(δ)− c1λ∗1

2
(1− δ) + α

2r

)
is a fixed point of 4V (δ).

(2) Given fixed points 4V (δ) and φ1(δ), plug them into transformation T2 which is trivally

continuous, we can prove this T2 works on normed linear space ΛS1 which is nonempty

(trivally), convex and compact.

Convexity

For ∀λ1∗
1 (δ), λ2∗

1 (δ) ∈ ΛS1 and ∀λ ∈ (0, 1), define the new function λ̂(δ) = λ∗λ1∗
1 (δ)+(1−λ)∗

λ2∗
1 (δ), it is trival that λ̂(δ) ∈ C1[0, 1], λ̂(δ) ≥ 0 and λ̂′(δ) = λ∗λ1∗

1
′
(δ)+ (1−λ)∗λ2∗

1
′
(δ) < 0.

So λ̂(δ) ∈ ΛS1 for ∀λ ∈ (0, 1).

Boundedness

For ∀λ∗1(δ) ∈ ΛS1,

T2(λ∗1(δ)) =
1

2c1

∫ 1−δ

0

λ∗1(δ′)

Λ1

(4V (1− δ′)−4V (δ))φ1(δ′)dδ′

≤ (4V (1)−4V (0))
1

2c1

∫ 1−δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′

≤ (4V (1)−4V (0))
1

2c1

∫ 1

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′

=
(4V (1)−4V (0))

2c1
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By Proposition 1, ∀4V (δ) ∈ 4VS is strictly increasing on [0, 1]. We have,

0 < 4V (1)−4V (0) =
1− 2c1λ

∗
1

2(0)

α + r
<

1

α + r
(3.29)

then

T2(λ∗1(δ)) <
1

2c1(α + r)

Equicontinuity

Firstly we need to prove the boundedness of d4V (δ)
dδ

for ∀4V (δ) ∈ 4VS.

d4V (δ)

dδ
=

1

r + α + λ∗1(δ)b(δ) + λ∗0(δ)a(δ)

where 0 ≤ a(δ) =
∫ δ

0

λ∗1(δ′)

Λ1
φ1(δ′)dδ′ ≤ 1

2
and 0 ≤ b(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0
φ0(δ′)dδ′ ≤ 1

2
.

Also by (3.29), 0 < λ∗1(0) = max
δ∈[0,1]

λ∗1(δ) < 1√
2c1

, then we get

1

r + α + 1√
2c1

<
d4V (δ)

dδ
<

1

r + α
= BdV

Then for ∀λ∗1(δ) ∈ ΛS1 and ∀δ ∈ [0, 1]: given ∀ε > 0, we can always choose small enough

4̂ = 2c1ε
BdV

> 0, such that, by (3.6)-(3.8),

|λ∗1(δ + 4̂)− λ∗1(δ)| =

∣∣∣∣∣−4̂2c1

d4V (δ)

dδ

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′ + o(4̂)

∣∣∣∣∣ ≤ 2 ∗ 1

2c1

2c1ε

BdV

BdV
1

2
= ε.

Since 4̂ does not relate to specific value of δ, then any sequence of functions in normed linear

space ΛS1 is uniform equicontinuous on [0, 1]. Based on boundedness and equicontinuity

above, and refer to Arzelä-Ascoli theorem, we prove the continuous transformation T2, under

given fixed points 4V (δ) and φ1(δ), maps ΛS1 to ΛS1, where the normed linear space ΛS1

is nonempty, convex and compact. By Schauder’s fixed point theorem, given fixed points

4V (δ) and φ1(δ), there exists fixed point λ∗1(δ) of λ∗1(δ).
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(3) Given fixed points λ∗1(δ) and 4V (δ), plug λ∗1(δ) into transformation T3 which is trivally

continuous, we can prove this T3 works on normed linear space ΦS1 which is nonempty

(trivally), convex and compact.

Convexity

For ∀φ1
1(δ), φ2

1(δ) ∈ ΦS1 and ∀λ ∈ (0, 1), define the new function φ̂(δ) = λ ∗ φ1
1(δ) +

(1 − λ) ∗ φ2
1(δ), it is trival that φ̂(δ) ∈ C1[0, 1], 0 ≤ φ̂(δ) ≤ λ + 1 − λ = 1 and φ̂′(δ) =

λ ∗ φ1
1
′
(δ) + (1− λ) ∗ φ2

1
′
(δ) > 0. So φ̂(δ) ∈ ΦS1 for ∀λ ∈ (0, 1).

Boundedness

By definition of normed linear space ΦS1, it is trival that ΦS1 is bounded.

Equicontinuity

We already proved the boundedness of d4V (δ)
dδ

and thus the boundedness of λ∗1
′
(δ) =

dλ∗1(δ)

dδ
=

−1
2c1

d4V (δ)
dδ

∫ 1−δ
0

λ∗1(δ′)

Λ1
φ1(δ′)dδ′. Next we need to prove the boundedness of dφ1(δ)

dδ
.

dφ1(δ)

dδ

=
d

dδ

[
α
∫ 1

0
λ∗1(δ′)φ1(δ′)dδ′ + 2λ∗1(1− δ)

∫ δ
0
λ∗1(δ′)φ1(δ′)dδ′

2α
∫ 1

0
λ∗1(δ′)φ1(δ′)dδ′ + 2λ∗1(1− δ)

∫ δ
0
λ∗1(δ′)φ1(δ′)dδ′ + 2λ∗1(δ)

∫ 1−δ
0

λ∗1(δ′)φ1(δ′)dδ′

]

=

[
λ∗1(1−δ)λ∗1(δ)φ1(δ)

Λ1
− λ∗1′(1− δ)a(δ)

] [
α
2

+ 2λ∗1(δ)b(δ)
]

(α + 2λ∗1(1− δ)a(δ) + 2λ∗1(δ)b(δ))2

−

[
λ∗1
′(δ)b(δ)− λ∗1(1−δ)λ∗1(δ)φ1(1−δ)

Λ1

] [
α
2

+ 2λ∗1(1− δ)a(δ)
]

(α + 2λ∗1(1− δ)a(δ) + 2λ∗1(δ)b(δ))2

We already proved the boundedness of λ∗1(δ), λ∗1
′(δ), a(δ), b(δ), and ∃ε̂ > 0 s.t. ε̂ ≤ Λ1 ≤

2λ∗1(0), then if we plug in the given fixed points λ∗1(δ) and 4V (δ) into the above equation,

we will obtain the boundedness of dφ1(δ)
dδ

, denote max
δ∈[0,1]

|dφ1(δ)
dδ
| = Bdφ1 .

Then for ∀φ1(δ) ∈ ΦS1 and ∀δ ∈ [0, 1]: given ∀ε > 0, we can always choose small enough
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4̂ = ε
2Bdφ1

> 0, such that,

|φ1(δ + 4̂)− φ1(δ)| =
∣∣∣∣dφ1(δ)

dδ
4̂+ o(|4̂|)

∣∣∣∣ ≤ 2 ∗ 4̂ ∗
∣∣∣∣dφ1(δ)

dδ

∣∣∣∣ ≤ 2 ∗ ε

2Bdφ1

∗Bdφ1 = ε.

Since 4̂ does not relate to specific value of δ, then any sequence of functions in normed linear

space ΦS1 is uniform equicontinuous on [0, 1]. Based on boundedness and equicontinuity

above, and refer to Arzelä-Ascoli theorem, we prove the continuous transformation T3, under

given fixed points λ∗1(δ) and 4V (δ), maps ΦS1 to ΦS1, where the normed linear space ΦS1 is

nonempty, convex and compact. By Schauder’s fixed point theorem, given fixed points λ∗1(δ)

and 4V (δ), there exists fixed point φ1(δ) of φ1(δ).

By (1)-(3) above, we prove that there exists fixed points 4V (δ), λ∗1(δ), φ1(δ) for the trans-

formation T : 4VS × ΛS1 × ΦS1 −→ 4VS × ΛS1 × ΦS1 defined above, given any parameters

r > 0, α > 0 and c1 > 0.

3.A.3 Definition 2

By

φ0(δ) = φ1(1− δ) ∀δ ∈ [0, 1]

λ∗0(δ) = λ∗1(1− δ) ∀δ ∈ [0, 1]

we can obtain the following equalities:

Λ1 =

∫ 1

0

λ∗1(δ′)φ1(δ′)dδ′ =

∫ 0

1

λ∗1(1− t)φ1(1− t)d(1− t) =

∫ 1

0

λ∗0(t)φ0(t)dt = Λ0
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a(δ) =

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′ =

∫ 1−δ

1

λ∗1(1− t)
Λ0

φ1(1− t)d(1− t)

=

∫ 1

1−δ

λ∗0(t)

Λ0

φ0(t)dt = b(1− δ) (by (3.22)(3.23))

=⇒

d4V (δ)

dδ

=
1

r + α + λ∗1(δ)b(δ) + λ∗0(δ)a(δ)
=

1

r + α + λ∗0(1− δ)a(1− δ) + λ∗1(1− δ)b(1− δ)

=
d4V (1− δ)
d(1− δ)

=⇒

4V (δ)−4V (0) =

∫ δ

0

d4V (t)

dt
dt =

∫ δ

0

d4V (1− t)
d(1− t)

dt = 4V (1)−4V (1− δ)

=⇒

4V (0) +4V (1) = 4V (δ) +4V (1− δ) ∀δ ∈ [0, 1]

Also, with same notations in Appendix 3.A.1, in any stationary equilibrium,

d24V (δ)

dδ2
=

−1

(r + α + λ∗1(δ)b(δ) + λ∗0(δ)a(δ))2
(λ∗1(δ)b(δ) + λ∗0(δ)a(δ))′

where

(λ∗1(δ)b(δ) + λ∗0(δ)a(δ))′

=
1

2c1

d4V (δ)

dδ

[(∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′
)2

−
(∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′
)2
]

+
λ∗0(δ)λ∗1(δ)

Λ0

(φ1(δ)− φ0(δ))
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Specifically, in symmetric stationary equilibrium characterized in Definition 2,

(∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′
)2

−
(∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′
)2


< 0 ∀δ ∈ [0, 1

2
);

= 0 δ = 1
2
;

> 0 ∀δ ∈ (1
2
, 1].

φ1(δ)− φ0(δ)


< 0 ∀δ ∈ [0, 1

2
);

= 0 δ = 1
2
;

> 0 ∀δ ∈ (1
2
, 1].

=⇒

d24V (δ)

dδ2


> 0 ∀δ ∈ [0, 1

2
);

= 0 δ = 1
2
;

< 0 ∀δ ∈ (1
2
, 1].

3.A.4 Proposition 3

We firstly consider symmetric and convex fδ(δ):

f ′δ(δ)


< 0 ∀δ ∈ [0, 1

2
);

= 0 δ = 1
2
;

> 0 ∀δ ∈ (1
2
, 1].

and

fδ(δ) = fδ(1− δ), ∀δ ∈ [0, 1]

fδ(δ) = φ1(δ) + φ0(δ), ∀δ ∈ [0, 1]
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By equilibrium condition (3.9) with f̂δ(δ) = fδ(δ),

we obtain (using the notations A(δ), B(δ), a(δ), b(δ) in Appendix 3.A.1):

dφ̇1(δ)

dδ

= 0

= −αφ′1(δ) +
α

2
f ′δ(δ)− 2λ∗

′

1 (δ)φ1(δ)b(δ)− 2λ∗1(δ)φ′1(δ)b(δ) + 2
λ∗1(δ)φ1(δ)λ∗0(δ)φ0(δ)

Λ0

+ 2λ∗
′

0 (δ)φ0(δ)a(δ) + 2λ∗0(δ)(f ′δ(δ)− φ′1(δ))a(δ) + 2
λ∗1(δ)φ1(δ)λ∗0(δ)φ0(δ)

Λ1

,

∀δ ∈ [0, 1] (3.30)

since the sum of all the terms not including f ′δ(δ) or φ′1(δ) is positive, then

− (α + 2λ∗1(δ)b(δ) + 2λ∗0(δ)a(δ))φ′1(δ) +
(α

2
+ 2λ∗0(δ)a(δ)

)
f ′δ(δ) < 0, ∀δ ∈ [0, 1]

By the definition and sign of f ′δ(δ), we obtain

φ′0(δ) < 0 ∀δ ∈ [0,
1

2
)

φ′1(δ) > 0 ∀δ ∈ (
1

2
, 1](α

2
+ 2λ∗0(δ)a(δ)

)
φ′0(δ) <

(α
2

+ 2λ∗1(δ)b(δ)
)
φ′1(δ) ∀δ ∈ [0, 1]

and since f ′δ(
1
2
) = 0

φ′1(
1

2
) = −φ′0(

1

2
) > 0

Suppose ∃δ∗1 ∈ [0, 1
2
), s.t. φ′1(δ∗1) < 0 and 6 ∃δ∗ ∈ [0, 1] s.t.

(α
2

+ 2λ∗0(δ∗)a(δ∗)
)
f ′δ(δ

∗) +
1

c1

d4V (δ∗)

dδ

(
a(δ∗)2φ0(δ∗) + b(δ∗)2φ1(δ∗)

)
(3.31)
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+2λ∗1(δ∗)λ∗0(δ∗)φ1(δ∗)φ0(δ∗)

(
1

Λ0

+
1

Λ1

)
= 0

Suppose all equilibrium components are smooth, by Mean Value Theorem, ∃δ∗2 ∈ (δ∗1,
1
2
) s.t.

φ′1(δ∗2) = 0. By (3.30), we obtain

(α
2

+ 2λ∗0(δ∗2)a(δ∗2)
)
f ′δ(δ

∗
2) +

1

c1

d4V (δ∗2)

dδ

(
a(δ∗2)2φ0(δ∗2) + b(δ∗2)2φ1(δ∗2)

)

+2λ∗1(δ∗2)λ∗0(δ∗2)φ1(δ∗2)φ0(δ∗2)

(
1

Λ0

+
1

Λ1

)
= 0

which contradicts with condition (3.31). Then we conclude 6 ∃δ∗1 ∈ [0, 1
2
), s.t. φ′1(δ∗1) < 0. So

if condition (3.31) is satisfied,

φ′1(δ) > 0 ∀δ ∈ [0, 1]

Similar idea works for the sign of φ′0(δ) on δ ∈ (1
2
, 1]. Then we conclude as long as condition

(3.31) applies,

φ′0(δ) < 0 < φ′1(δ) ∀δ ∈ [0, 1]

And the same conclusion applies when fδ(δ) is symmetric but concave.

3.A.5 Proposition 4

We use the Implicit Function Theorem to show the effects of α and c1 on all the competitive

equilibrium components 4V (δ), λ∗1(δ) and φ1(δ) on δ ∈ [0, 1]. Since we only focus on

symmetric equilibrium defined in Definition 2, we have the other two components as λ∗0(δ) =

λ∗1(1− δ) and φ0(δ) = φ1(1− δ) for ∀δ ∈ [0, 1].

We write the three competitive equilibrium conditions collectively as follows:

H(4V (δ), λ∗1(δ), φ1(δ);α, c1) =


H1(4V (δ), λ∗1(δ), φ1(δ);α, c1)

H2(4V (δ), λ∗1(δ), φ1(δ);α, c1)

H3(4V (δ), λ∗1(δ), φ1(δ);α, c1)

 ≡ 03×1
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where

H1(4V (δ), λ∗1(δ), φ1(δ);α, c1)

= 2αφ1(δ)

∫ 1

0

λ∗1(δ)φ1(δ)dδ + 2φ1(δ)λ∗1(δ)

∫ 1−δ

0

λ∗1(δ′)φ1(δ′)dδ′

+ 2φ1(δ)λ∗1(1− δ)
∫ δ

0

λ∗1(δ′)φ1(δ′)dδ′ − α
∫ 1

0

λ∗1(δ)φ1(δ)dδ − 2λ∗1(1− δ)
∫ δ

0

λ∗1(δ′)φ1(δ′)dδ′

≡ 0

H2(4V (δ), λ∗1(δ), φ1(δ);α, c1)

= (α + r)4V (δ)− δ − c1λ
∗
1

2(δ) + c1λ
∗
1

2(1− δ)− αE[4V (δ)]

= (α + r)4V (δ)− δ − c1λ
∗
1

2(δ) + c1λ
∗
1

2(1− δ)− α

2r

≡ 0

H3(4V (δ), λ∗1(δ), φ1(δ);α, c1)

= 2c1λ
∗
1(δ)− (4V (0) +4V (1)−4V (δ))

∫ 1−δ

0

λ∗1(δ′)φ1(δ′)

Λ1

dδ′

+

∫ 1−δ

0

λ∗1(δ′)φ1(δ′)4V (δ′)

Λ1

dδ′

= 2c1λ
∗
1(δ)− (4V (0) +4V (1)−4V (δ))

∫ 1−δ

0

F (δ′)dδ′ +

∫ 1−δ

0

F (δ′)4V (δ′)dδ′

≡ 0

In the last but one equality, we use the notation F (δ) =
λ∗1(δ)φ1(δ)

Λ1
for simplicity.

By Implicit Function Theorem, we have the following general relation:
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For any i = 1, 2, 3, any δ ∈ [0, 1] and any incrementals 27 h4V (δ), hλ∗1(δ), hφ1(δ),

∂Hi

∂4V (δ)
h4V (δ) +

∂Hi

∂λ∗1(δ)
hλ∗1(δ) +

∂Hi

∂φ1(δ)
hφ1(δ) +

∂Hi

∂c1

4c1 ≡ 0 (3.32)

∂Hi

∂4V (δ)
h4V (δ) +

∂Hi

∂λ∗1(δ)
hλ∗1(δ) +

∂Hi

∂φ1(δ)
hφ1(δ) +

∂Hi

∂α
4α ≡ 0 (3.33)

Specifically for i = 1, we have:
∂H1

∂4V (δ)
h4V (δ) ≡ 0

∂H1

∂φ1(δ)
hφ1(δ) +

∂H1

∂λ∗1(δ)
hλ∗1(δ)

= lim
m→0

{
H1(λ∗1(δ), φ1(δ) +mhφ1(δ))−H1(λ∗1(δ), φ1(δ))

m

+
H1(λ∗1(δ) +mhλ∗1(δ), φ1(δ))−H1(λ∗1(δ), φ1(δ))

m

}
= 2αφ1(δ)

∫ 1

0

λ∗1(δ)hφ1(δ)dδ + 2αhφ1(δ)

∫ 1

0

λ∗1(δ)φ1(δ)dδ + 2φ1(δ)λ∗1(δ)

∫ 1−δ

0

λ∗1(δ′)hφ1(δ′)dδ′

+ 2hφ1(δ)λ∗1(δ)

∫ 1−δ

0

λ∗1(δ′)φ1(δ′)dδ′ + 2φ1(δ)λ∗1(1− δ)
∫ δ

0

λ∗1(δ′)hφ1(δ′)dδ′

+ 2hφ1(δ)λ∗1(1− δ)
∫ δ

0

λ∗1(δ′)φ1(δ′)dδ′ − α
∫ 1

0

λ∗1(δ)hφ1(δ)dδ − 2λ∗1(1− δ)
∫ δ

0

λ∗1(δ′)hφ1(δ′)dδ′

+ 2αφ1(δ)

∫ 1

0

hλ∗1(δ)φ1(δ)dδ + 2φ1(δ)hλ∗1(δ)

∫ 1−δ

0

λ∗1(δ′)φ1(δ′)dδ′

+ 2φ1(δ)λ∗1(δ)

∫ 1−δ

0

hλ∗1(δ′)φ1(δ′)dδ′ + 2φ1(δ)λ∗1(1− δ)
∫ δ

0

hλ∗1(δ′)φ1(δ′)dδ′

+ 2φ1(δ)hλ∗1(1− δ)
∫ δ

0

λ∗1(δ′)φ1(δ′)dδ′ − α
∫ 1

0

hλ∗1(δ)φ1(δ)dδ

− 2λ∗1(1− δ)
∫ δ

0

hλ∗1(δ′)φ1(δ′)dδ′ − 2hλ∗1(1− δ)
∫ δ

0

λ∗1(δ′)φ1(δ′)dδ′

≡ 0 on δ ∈ [0, 1]

27We will define the incrementals more formally in Section 3.A.7.
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∂H1

∂c1

(δ)4c1 ≡ 0 and
∂H1

∂α
(δ)4α =

(
2φ1(δ)

∫ 1

0

λ∗1(δ)φ1(δ)dδ −
∫ 1

0

λ∗1(δ)φ1(δ)dδ

)
4α

(3.34)

Since by (3.34),
∂H1

∂α
(δ)4α +

∂H1

∂α
(1− δ)4α = 0

and by (3.32)(3.33),

∂H

∂φ1(δ)
hφ1(δ) +

∂H

∂λ∗1(δ)
hλ∗1(δ) +

∂H

∂φ1(δ)
hφ1(1− δ) +

∂H

∂λ∗1(δ)
hλ∗1(1− δ)

= 2(hφ1(δ) + hφ1(1− δ))
(
α

∫ 1

0

λ∗1(δ′)φ1(δ′)dδ′ + λ∗1(δ)

∫ 1−δ

0

λ∗1(δ′)φ1(δ′)dδ′

+λ∗1(1− δ)
∫ δ

0

λ∗1(δ′)φ1(δ′)dδ′
)

≡ 0 (3.35)

we obtain that for either changing α or changing c1:

hφ1(δ) + hφ1(1− δ) ≡ 0, ∀δ ∈ [0, 1] (3.36)

Specifically for i = 2:

(α + r)h4V (δ) + 2c1

(
λ∗1(1− δ)hλ∗1(1− δ)− λ∗1(δ)hλ∗1(δ)

)
+4c1

(
λ∗1

2(1− δ)− λ∗1
2(δ)

)
≡ 0, ∀δ ∈ [0, 1] (3.37)

and

(α + r)h4V (δ) + 2c1

(
λ∗1(1− δ)hλ∗1(1− δ)− λ∗1(δ)hλ∗1(δ)

)
+4α

(
4V (δ)− 1

2r

)
≡ 0, ∀δ ∈ [0, 1] (3.38)
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By (3.37)(3.38), we can also plug in 1− δ without changing the equalities. Then we obtain

that for either changing α or changing c1:

h4V (δ) + h4V (1− δ) ≡ 0, ∀δ ∈ [0, 1] (3.39)

(3.36)(3.39) further give us:

h′φ1
(δ) = h′φ1

(1− δ), ∀δ ∈ [0, 1] (3.40)

h′4V (δ) = h′4V (1− δ), ∀δ ∈ [0, 1]

h4V (
1

2
) = hφ1(

1

2
) = 0 (3.41)

Then as long as we can identify the sign of h′φ1
(δ) (or h′4V (δ)) for any δ ∈ [0, 1], then it will

be sufficient to characterize the change in the shape of asset-owner density hφ1(δ) on the

whole interval. Here we specifically focus on the utility type δ = 0, by condition H1:

φ1(0) =
α
2

α + λ∗1(0)
(3.42)

By condition that if c1 increases, hλ∗1(0) < 0, then it is trival by (3.42) that hφ1(0) > 0;

By condition that if α increases, hλ∗1(0) < 0, then by (3.42):

(φ1(0)− 1

2
)4α + (α + λ∗1(0))hφ1(0) + φ1(0)hλ∗1(0) = 0 (3.43)

since the first and third terms in (3.43) are both negative, then

hφ1(0) > 0 (3.44)

If (3.44) applies when c1 and/or α increases, then by (3.40)(3.41), it is trival to prove by

contradiction that h′φ1
(δ) < 0, ∀δ ∈ [0, 1]. �
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3.A.6 Proposition 5

3.A.6.1

For symmetric equilibrium with fδ(δ) ≡ 1 ∀δ ∈ [0, 1],

λ̄(δ) = φ1(δ)λ∗1(δ) + φ0(δ)λ∗0(δ)

Using the notations A(δ), B(δ), a(δ), b(δ) in Appendix 3.A.1,

λ∗1
′(δ) = − 1

2c1

d4V (δ)

dδ
b(δ)

λ∗0
′(δ) =

1

2c1

d4V (δ)

dδ
a(δ)

φ′0(δ) =
2
[
(λ∗1(δ)b(δ))′(α

2
+ 2λ∗0(δ)a(δ))− (λ∗0(δ)a(δ))′(α

2
+ 2λ∗1(δ)b(δ))

]
(α + 2λ∗0(δ)a(δ) + 2λ∗1(δ)b(δ))2

φ′1(δ) = −φ′0(δ) =
2
[
(λ∗0(δ)a(δ))′(α

2
+ 2λ∗1(δ)b(δ))− (λ∗1(δ)b(δ))′(α

2
+ 2λ∗0(δ)a(δ)))

]
(α + 2λ∗0(δ)a(δ) + 2λ∗1(δ)b(δ))2

=⇒

λ∗1
′(0) = − 1

4c1

1

r + α +
λ∗1(0)

2

λ∗0
′(0) = 0

φ′0(0) =
α(λ∗1(δ)b(δ))′|δ=0 − (λ∗0(δ)a(δ))′|δ=0(α + 2λ∗1(0))

(α + λ∗1(0))2

=

− α
8c1

1

r+α+
λ∗1(0)

2

(α + λ∗1(0))2
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=⇒

λ̄′(0) = φ′1(0)λ∗1(0) + φ1(0)λ∗1
′(0)

=

− α
8c1

λ∗1(0)

r+α+
λ∗1(0)

2

(α + λ∗1(0))2
− 1

4c1

φ1(0)

r + α +
λ∗1(0)

2

< 0

By symmetry,

λ̄′(1− δ)

= φ′1(1− δ)λ∗1(1− δ) + φ1(1− δ)λ∗1
′(1− δ) + φ′0(1− δ)λ∗0(1− δ) + φ0(1− δ)λ∗0

′(1− δ)

= −φ′0(δ)λ∗0(δ)− φ0(δ)λ∗0
′(δ)− φ′1(δ)λ∗1(δ)− φ1(δ)λ∗1

′(δ)

= −λ̄′(δ)

then

λ̄′(1) = −λ̄′(0) > 0

and

λ̄′(
1

2
) = −λ̄′(1− 1

2
) = −λ̄′(1

2
)

=⇒

λ̄′(
1

2
) = 0

3.A.6.2

Lemma A.6.2 (1) As c1 → +∞: λ∗1(δ) → 0 and λ∗0(δ) → 0 for ∀δ ∈ (0, 1); (2) As c1 → 0:

given ∀δ̂ ∈ (0, 1) and ∀M > 0, λ∗1(δ̂) > M and λ∗0(δ̂) > M .

Proof:
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By boundedness of 4V (δ) (3.29), we have for ∀δ ∈ (0, 1)

0 <

∫ 1

δ

λ∗0(δ′)

Λ0

(4V (δ′)−4V (δ))φ0(δ′)dδ′ < (4V (1)−4V (0))

∫ 1

δ

λ∗0(δ′)

Λ0

φ0(δ′)dδ′ <
1

2(α + r)

0 <

∫ δ

0

λ∗1(δ′)

Λ1

(4V (δ)−4V (δ′))φ1(δ′)dδ′ < (4V (1)−4V (0))

∫ δ

0

λ∗1(δ′)

Λ1

φ1(δ′)dδ′ <
1

2(α + r)

then it is trival that for any fixed α, as c1 → +∞,

λ∗1(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0
(4V (δ′)−4V (δ))φ0(δ′)dδ′

2c1

→ 0

λ∗0(δ) =

∫ δ
0

λ∗1(δ′)

Λ1
(4V (δ)−4V (δ′))φ1(δ′)dδ′

2c1

→ 0

By symmetry,

λ∗1(δ) =

∫ 1−δ
0

λ∗1(δ′)

Λ1
(4V (1− δ′)−4V (δ))φ1(δ′)dδ′

2c1

→ 0

and also by Section 3.A.2, λ∗1(δ) ∈ ΛS1, φ1(δ) ∈ ΦS1 and 4V (δ) ∈ 4VS where ΛS1, ΦS1

and 4VS are compact sets. Then for each fixed δ̂ ∈ (0, 1), by Extreme Value Theorem,

∃(λ∗1S(δ), φ1S(δ),4VS(δ)) s.t.

(λ∗1S(δ), φ1S(δ),4VS(δ))

= argmax
(λ∗1(δ),φ1(δ),4V (δ))∈ΛS1×ΦS1×4VS

{∫ 1−δ

0

λ∗1(δ′)

Λ1

(4V (δ)−4V (1− δ′))φ1(δ′)dδ′
}

and

M∗

= max
(λ∗1(δ),φ1(δ),4V (δ))∈ΛS1×ΦS1×4VS

{∫ 1−δ

0

λ∗1(δ′)

Λ1

(4V (δ)−4V (1− δ′))φ1(δ′)dδ′
}
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then for any other large constant M > 0, we can always find c∗1(δ̂) = −M∗

2M
s.t.

λ∗1(δ̂) = −
∫ 1−δ̂

0

λ∗1(δ′)

Λ1
(4V (δ)−4V (1− δ′))φ1(δ′)dδ′

2c1

> M ∀c1 < c∗1(δ̂)

i.e. for each fixed δ̂ ∈ (0, 1),

λ∗1(δ̂)→ +∞ as c1 → 0

�

λ̄′(δ) = φ′1(δ)λ∗1(δ) + φ1(δ)λ∗1
′(δ) + φ′0(δ)λ∗0(δ) + φ0(δ)λ∗0

′(δ)

= φ′1(δ)(λ∗1(δ)− λ∗0(δ)) +
1

2c1

d4V (δ)

dδ
(φ0(δ)a(δ)− φ1(δ)b(δ))

where

φ′1(δ) =
(α + 4λ∗1(δ)b(δ))

(
a2(δ)
2c1

d4V (δ)
dδ

+
λ∗0(δ)λ∗1(δ)φ1(δ)

Λ

)
(α + 2λ∗0(δ)a(δ) + 2λ∗1(δ)b(δ))2

+
(α + 4λ∗0(δ)a(δ))

(
b2(δ)
2c1

d4V (δ)
dδ

+
λ∗0(δ)λ∗1(δ)φ0(δ)

Λ

)
(α + 2λ∗0(δ)a(δ) + 2λ∗1(δ)b(δ))2

Λ = Λ1 = Λ0

(1) For each α, by Lemma A.6.2,

λ̄′(δ)

=
1

2c1

{
2c1φ

′
1(δ)(λ∗1(δ)− λ∗0(δ)) +

d4V (δ)

dδ
(φ0(δ)a(δ)− φ1(δ)b(δ))

}
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where

lim
c1→+∞

2c1φ
′
1(δ) (3.45)

= lim
c1→+∞

(α + 4λ∗1(δ)b(δ))
(
a2(δ)d4V (δ)

dδ
+

λ∗0(δ)2c1λ∗1(δ)φ1(δ)

Λ

)
(α + 2λ∗0(δ)a(δ) + 2λ∗1(δ)b(δ))2

+
(α + 4λ∗0(δ)a(δ))

(
b2(δ)d4V (δ)

dδ
+

λ∗0(δ)2c1λ∗1(δ)φ0(δ)

Λ

)
(α + 2λ∗0(δ)a(δ) + 2λ∗1(δ)b(δ))2


=

0

α2

= 0 ∀δ ∈ (0,
1

2
)

lim
c1→+∞

φ0(δ)

φ1(δ)
= lim

c1→+∞

α
2

+ 2λ∗1(δ)b(δ)
α
2

+ 2λ∗0(δ)a(δ)
= 1 <

b(δ)

a(δ)
∀δ ∈ (0,

1

2
) (3.46)

and notations a(δ) and b(δ) follow Section 3.A.1.

Then (3.45)(3.46) and “λ̄′(0) < 0” =⇒

lim
c1→+∞

λ̄′(δ) < 0 ∀δ ∈ [0,
1

2
) (3.47)

We also assume that

λ∗1(δ1; c1) = Ω (λ∗1(δ2; c1)) (c1 → +∞) ∀δ1, δ2 ∈ [0,
1

2
] (3.48)

∫ 1−δ

0

λ∗1(δ′; c1)(4V (δ)−4V (1− δ′))φ1(δ′)dδ′ = Ω(Λ1(c1))(c1 → +∞) ∀δ ∈ (0, 1) (3.49)

which are the negation of λ∗1(δ1; c1) = o (λ∗1(δ2; c1)) (c1 → +∞) and c1λ
∗
1(δ; c1) = o(1)(c1 →

+∞).

Then

λ̄(0) =
αλ∗1(0)

α + λ∗1(0)
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λ̄(
1

2
) = λ∗1(

1

2
)

then by (3.48) and Lemma A.6.2,

lim
c1→+∞

λ̄(0)

λ̄(1
2
)

= lim
c1→+∞

α
λ∗1(0)

λ∗1( 1
2

)

α + λ∗1(0)
=
λ∗1(0)

λ∗1(1
2
)
> 1 (3.50)

Then we calculate that,

λ̄′′(
1

2
) =

d4V ( 1
2

)

dδ

2c2
1Λ1(α + 4λ∗1(1

2
)b(1

2
))

×

{
−4

d4V (1
2
)

dδ
b( 1

2
)

(∫ 1
2

0

λ∗1(δ′)φ1(δ′)dδ′

)
+
c1λ
∗
1(1

2
)α

2
− 2λ∗1(

1

2
)c1λ

∗
0(

1

2
)b(

1

2
)

}
︸ ︷︷ ︸

∗

(3.51)

so the sign of λ̄′′(1
2
) depends on the sign of the ∗ term in (3.51).

As by Lemma A.6.2 and (3.49)

lim
c1→+∞

{
−4

d4V (1
2
)

dδ
b( 1

2
)

(∫ 1
2

0

λ∗1(δ′)φ1(δ′)dδ′

)
+
c1λ
∗
1(1

2
)α

2
− 2λ∗1(

1

2
)c1λ

∗
0(

1

2
)b(

1

2
)

}

= lim
c1→+∞

c1λ
∗
1(1

2
)α

2
> 0

then

lim
c1→+∞

λ̄′′(
1

2
) > 0 (3.52)

Then by (3.47)(3.50)(3.52), we conclude that for each fixed α, ∃c1
1(α), c2

1(α), c3
1(α) s.t.

λ̄′(δ) < 0 ∀δ ∈ [0,
1

2
) for ∀c1 > c1

1(α)

λ̄(0) > λ̄(
1

2
) for ∀c1 > c2

1(α)

λ̄′′(
1

2
) > 0 for ∀c1 > c3

1(α)
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Then

c∗1(α) = max{c1
1(α), c2

1(α), c3
1(α)}

(2) For each c1, since the following components are bounded:

0 <
d4V (δ)

dδ
<

1

r + α
∀δ ∈ [0, 1]

0 ≤ λ∗1(δ) <
1

2c1(α + r)
∀δ ∈ [0, 1]

0 ≤ a(δ) ≤ 1

2
∀δ ∈ [0, 1]

0 ≤ b(δ) ≤ 1

2
∀δ ∈ [0, 1]

=⇒

lim
α→+∞

λ̄′(δ) = lim
α→+∞

{
φ′1(δ)(λ∗1(δ)− λ∗0(δ)) +

1

2c1

d4V (δ)

dδ
(φ0(δ)a(δ)− φ1(δ)b(δ))

}
= lim

α→+∞

a2(δ)
2c1

d4V (δ)
dδ

+
λ∗0(δ)λ∗1(δ)φ1(δ)

Λ
+ b2(δ)

2c1

d4V (δ)
dδ

+
λ∗0(δ)λ∗1(δ)φ0(δ)

Λ

α
+

lim
α→+∞

1

2c1

d4V (δ)

dδ
(φ0(δ)a(δ)− φ1(δ)b(δ))︸ ︷︷ ︸
∗∗

= lim
α→+∞

1

2c1

d4V (δ)

dδ
(φ0(δ)a(δ)− φ1(δ)b(δ))︸ ︷︷ ︸
∗∗

since

lim
α→+∞

φ0(δ)

φ1(δ)
= lim

α→+∞

α
2

+ 2λ∗1(δ)b(δ)
α
2

+ 2λ∗0(δ)a(δ)
= 1 <

b(δ)

a(δ)
∀δ ∈ (0,

1

2
)

so

lim
α→+∞

λ̄′(δ) = lim
α→+∞

1

2c1

d4V (δ)

dδ
(φ0(δ)a(δ)− φ1(δ)b(δ))︸ ︷︷ ︸
∗∗

< 0 ∀δ ∈ (0,
1

2
) (3.53)
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And it is trival that

lim
α→+∞

λ̄(0)

λ̄(1
2
)

= lim
α→+∞

α
λ∗1(0)

λ∗1( 1
2

)

α + λ∗1(0)
=
λ∗1(0)

λ∗1(1
2
)
> 1 (3.54)

lim
α→+∞

λ̄′′(
1

2
) = lim

α→+∞

λ∗1(1
2
)
d4V ( 1

2
)

dδ

4c1Λ1

> 0 (3.55)

Then by (3.53)(3.54)(3.55), we conclude that for each fixed c1, ∃α1(c1), α2(c1), α3(c1) s.t.

λ̄′(δ) < 0 ∀δ ∈ [0,
1

2
) for ∀α > α1(c1)

λ̄(0) > λ̄(
1

2
) for ∀α > α2(c1)

λ̄′′(
1

2
) > 0 for ∀α > α3(c1)

Then

α∗(c1) = max{α1(c1), α2(c1), α3(c1)}

3.A.6.3

λ̄′(δ) = φ′1(δ)(λ∗1(δ)− λ∗0(δ))︸ ︷︷ ︸
3∗

+
1

2c1

d4V (δ)

dδ︸ ︷︷ ︸
4∗

(φ0(δ)a(δ)− φ1(δ)b(δ))

The terms 3∗ and 4∗ are always positive, so we only focus on the sign of φ0(δ)a(δ)−φ1(δ)b(δ).

(1) For each α, by Lemma A.6.2, ∃δ̂ ∈ (0, 1
2
) s.t.

lim
c1→0

φ0(δ)

φ1(δ)
= lim

c1→0

2λ∗1(δ)b(δ)

2λ∗0(δ)a(δ)
>
b(δ)

a(δ)
∀δ̂ < δ <

1

2

where the inequality “>” is by λ∗1(δ) > λ∗0(δ) for ∀δ ∈ (0, 1
2
) and 0 < a(δ̂) < a(δ).

Then ∃δ̂ ∈ (0, 1
2
) s.t.

lim
c1→0

λ̄′(δ) > 0 ∀δ̂ < δ <
1

2
(3.56)
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And we also assume that

λ∗1(δ1; c1) = Ω (λ∗1(δ2; c1)) (c1 → 0) ∀δ1, δ2 ∈ [0,
1

2
]

which is the negation of λ∗1(δ1; c1) = o (λ∗1(δ2; c1)) (c1 → 0).

Then

lim
c1→0

λ̄(0)

λ̄(1
2
)

= lim
c1→0

α
λ∗1(0)

λ∗1( 1
2

)

α + λ∗1(0)
= 0 < 1 (3.57)

Since

0 < c1λ
∗
1(

1

2
)

=
1

2

∫ 1

1
2

λ∗0(δ′)

Λ0

(4V (δ′)−4V (
1

2
))φ0(δ′)dδ′

< (4V (1)−4V (0))
1

2

∫ 1

1
2

λ∗0(δ′)

Λ0

φ0(δ′)dδ′

<
1

4(α + r)

and by Lemma A.6.2

lim
c1→0

λ∗0(
1

2
) = +∞

then the dominant term in term “∗” of (3.51) is “−2λ∗1(1
2
)c1λ

∗
0(1

2
)b(1

2
)”.

So we have

lim
c1→0

λ̄′′(
1

2
) = lim

c1→0

d4V ( 1
2

)

dδ

2c2
1Λ1(α + 4λ∗1(1

2
)b(1

2
))

{
−2λ∗1(

1

2
)c1λ

∗
0(

1

2
)b(

1

2
)

}
< 0 (3.58)

Then by (3.56)(3.57)(3.58), we conclude that for each fixed α, ∃c4
1(α), c5

1(α), c6
1(α) s.t.

∃δ̂ ∈ (0, 1
2
) s.t.

λ̄′(δ) > 0 ∀δ̂ < δ <
1

2
for ∀c1 < c4

1(α)

λ̄(0) < λ̄(
1

2
) for ∀c1 < c5

1(α)
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λ̄′′(
1

2
) < 0 for ∀c1 < c6

1(α)

Then

c∗∗1 (α) = max{c4
1(α), c5

1(α), c6
1(α)}

(2) For each c1, similar to the case of “fixed α”, to discuss the sign of λ̄′(δ), we only focus

on the sign of φ0(δ)a(δ)− φ1(δ)b(δ).

∃δ̂ ∈ (0, 1
2
) s.t.

lim
α→0

φ0(δ)

φ1(δ)
= lim

α→0

2λ∗1(δ)b(δ)

2λ∗0(δ)a(δ)
>
b(δ)

a(δ)
∀δ̂ < δ <

1

2

where the inequality “>” is by λ∗1(δ) > λ∗0(δ) for ∀δ ∈ (0, 1
2
) and 0 < a(δ̂) < a(δ).

Then ∃δ̂ ∈ (0, 1
2
) s.t.

lim
α→0

λ̄′(δ) > 0 ∀δ̂ < δ <
1

2
(3.59)

To compare λ̄(0) and λ̄(1
2
), similarly

lim
α→0

λ̄(0)

λ̄(1
2
)

= lim
α→0

α
λ∗1(0)

λ∗1( 1
2

)

α + λ∗1(0)
= 0 < 1 (3.60)

Also, as α→ 0, the term “
c1λ∗1( 1

2
)α

2
→ 0” in “∗” term of (3.51), so it is trival that

lim
α→0

λ̄′′(
1

2
) < 0 (3.61)

Then by (3.59)(3.60)(3.61), we conclude that for each fixed c1, ∃α4(c1), α5(c1), α6(c1) s.t.

∃δ̂ ∈ (0, 1
2
) s.t.

λ̄′(δ) > 0 ∀δ̂ < δ <
1

2
for ∀α < α4(c1)

λ̄(0) < λ̄(
1

2
) for ∀α < α5(c1)

λ̄′′(
1

2
) < 0 for ∀α < α6(c1)
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Then

α∗∗(c1) = max{α4(c1), α5(c1), α6(c1)}

�

3.A.7 Proposition 6

In section 3.A.7.2, we give three lemmas, the conclusions of which will be used in the main

proof in section 3.A.7.1.

3.A.7.1 Main proof of Proposition 6

Define the following normed linear spaces: ΛS1 = {λS1 (δ) : λS1 (δ) ∈ C1[0, 1];λS1 (δ) ≥

0 and λS
′

1 (δ) ≤ 0,∀δ ∈ [0, 1]}, ΦS1 = {φS1 (δ) : φS1 (δ) ∈ C1[0, 1]; 0 ≤ φS1 (δ) ≤ 1 and φS1
′
(δ) ≥

0,∀δ ∈ [0, 1];
∫ 1

0
φS1 (δ)dδ = 1

2
}, all with the norm ‖f‖ = max

0≤δ≤1
|f(δ)|. We can further trans-

form the original social welfare problem to a new one with two control variables λS1 (δ) ∈ ΛS1

and φS1 (δ) ∈ ΦS1 and transfer the original equilibrium constraint as follows:

New Problem:

[P ] max
λS1 (δ)∈ΛS1,φ

S
1 (δ)∈ΦS1

W =
∫ 1

0
(δ − 2c1λ

S
1

2
(δ))φS1 (δ)dδ

s.t.

H(λS1 (δ), φS1 (δ))

= 2αφS1 (δ)

∫ 1

0

λS1 (δ)φS1 (δ)dδ + 2φS1 (δ)λS1 (δ)

∫ 1−δ

0

λS1 (δ′)φS1 (δ′)dδ′

+ 2φS1 (δ)λS1 (1− δ)
∫ δ

0

λS1 (δ′)φS1 (δ′)dδ′ − α
∫ 1

0

λS1 (δ)φS1 (δ)dδ − 2λS1 (1− δ)
∫ δ

0

λS1 (δ′)φS1 (δ′)dδ′

≡ 0
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If there exists subset 4+ ⊂ [1
2
, 1] s.t. λS∗1 (δ) > 0,∀δ ∈ 4+,28 and under uniform distribution

of δ on [0, 1], the measure of subset 4+ is
∫ 1

0
1{δ∈4+}(δ)dδ = m+, we choose ε̂ > 0 and

δε̂2 ∈ (1
2
, 1) such that the Lebesgue measure of the new subset D = 4+ ∩ [1

2
, δε̂2 ] satisfies

µ[D] = µ[4+ ∩ [1
2
, δε̂2 ]] = ε̂2 < m+.

Based on the ε̂ and new subset D chosen above, we can construct a new solution point(
λNS∗1 (δ), φNS∗1 (δ)

)
as follows:

λNS∗1 (δ) = λS∗1 (δ) + hλS∗1
(δ)

where

hλS∗1
(δ) =

 −ε̂λS∗1 (δ), ∀δ ∈ D

0, ∀δ ∈ [0, 1]nD

and

φNS∗1 (δ) = φS∗1 (δ) + hφS1 (δ)

where the incremental hφS1 (δ) is obtained from the following equation given the incremental

284+ may be a union of several disjoint subintervals of [0, 1].
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hλS∗1
(δ) chosen above:

∂H

∂φS1 (δ)
hφS1 (δ) +

∂H

∂λS∗1 (δ)
hλS∗1

(δ)

= lim
m→0

{
H(λS∗1 (δ), φS1 (δ) +mhφS1 (δ))−H(λS∗1 (δ), φS1 (δ))

m

+
H(λS∗1 (δ) +mhλS∗1

(δ), φS1 (δ))−H(λS∗1 (δ), φS1 (δ))

m

}

= 2αφS1 (δ)

∫ 1

0

λS∗1 (δ)hφS1 (δ)dδ + 2αhφS1 (δ)

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)hφS1 (δ′)dδ′ + 2hφS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+ 2φS1 (δ)λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)hφS1 (δ′)dδ′ + 2hφS1 (δ)λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

− α
∫ 1

0

λS∗1 (δ)hφS1 (δ)dδ − 2λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)hφS1 (δ′)dδ′

+ 2αφS1 (δ)

∫ 1

0

hλS∗1
(δ)φS1 (δ)dδ + 2φS1 (δ)hλS∗1

(δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

hλS∗1
(δ′)φS1 (δ′)dδ′ + 2φS1 (δ)λS∗1 (1− δ)

∫ δ

0

hλS∗1
(δ′)φS1 (δ′)dδ′

+ 2φS1 (δ)hλS∗1
(1− δ)

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ − α
∫ 1

0

hλS∗1
(δ)φS1 (δ)dδ

− 2λS∗1 (1− δ)
∫ δ

0

hλS∗1
(δ′)φS1 (δ′)dδ′ − 2hλS∗1

(1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

≡ 0 on δ ∈ [0, 1]

Then we construct another subset B ⊂ [0, 1
2
] which is symmetric with the subset D chosen

above, i.e. for ∀δ ∈ B, 1− δ ∈ D and for ∀δ ∈ D, 1− δ ∈ B. We will show the new solution

point
(
λNS∗1 (δ), φNS∗1 (δ)

)
dominates the old one

(
λS∗1 (δ), φS∗1 (δ)

)
in the sense that the new

point generates higher value of social welfare without violating the constraint. In the proof,

we need to use the conclusions of Lemma 1, Lemma 2 and Lemma 3, the proof of which will

be given after the main proof.

178



Given the chosen hλS∗1
(δ) above and the obtained hφS1 (δ) from ∂H

∂φS1 (δ)
hφS1 (δ)+ ∂H

∂λS∗1 (δ)
hλS∗1

(δ) ≡

0,∀δ ∈ [0, 1] accordingly, the marginal change in the value of objective function (the social

welfare) taking the chosen ε̂ to zero is:

lim
ε̂→0

1

ε̂

(
∂W

∂φS1 (δ)
hφS1 (δ) +

∂W

∂λS∗1 (δ)
hλS∗1

(δ)

)
= lim

ε̂→0

1

ε̂

∫ 1

0

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ + 4c1

∫
D

λS∗1

2
(δ′)φS1 (δ′)dδ′

= lim
ε̂→0

1

ε̂

∫
B∪D

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ + 4c1

∫
D

λS∗1

2
(δ′)φS1 (δ′)dδ′ (by Lemma 1)(3.62)

Also by Lemma 1 and Lemma 2:

lim
ε̂→0

∫
B∪D

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ

= lim
ε̂→0

(∫
B

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ +

∫
D

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ

)
= lim

ε̂→0

(
−
∫
B

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (1− δ)dδ +

∫
D

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ

)
= lim

ε̂→0

(
−
∫
D

(1− δ − 2c1λ
S∗
1

2
(1− δ))hφS1 (δ)dδ +

∫
D

(δ − 2c1λ
S∗
1

2
(δ))hφS1 (δ)dδ

)
= lim

ε̂→0

(∫
D

(2δ − 1 + 2c1λ
S∗
1

2
(1− δ)− 2c1λ

S∗
1

2
(δ))hφS1 (δ)dδ

)
> 0 (D ⊂ [

1

2
, 1] and λS∗1

′
(δ) < 0) (3.63)

(3.62)(3.63) lead to:

lim
ε̂→0

1

ε̂

(
∂W

∂φS1 (δ)
hφS1 (δ) +

∂W

∂λS∗1 (δ)
hλS∗1

(δ)

)
> 0

Then by Lemma 3, any point
(
λS1 (δ), φS1 (δ)

)
with λS1 (δ) > 0,∀δ ∈ 4+ where 4+ ⊂ [1

2
, 1]

cannot be a local extremum. �
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3.A.7.2 Three Lemmas

Lemma 1 The incremental hφS1 (δ) satisfies

hφS1 (δ) =

 O(ε̂), ∀δ ∈ B ∪D

o(ε̂), ∀δ ∈ [0, 1]n(B ∪D)

and

lim
ε̂→0

hφS1 (δ)

 > 0, ∀δ ∈ D

< 0, ∀δ ∈ B

Proof:

We use guess and verify approach. We guess hφS1 (δ) = O(ε̂),∀δ ∈ B ∪D, and hφS1 (δ) =

o(ε̂),∀δ ∈ [0, 1]n(B∪D). Divide both sides of ∂H
∂φS1 (δ)

hφS1 (δ)+ ∂H
∂λS∗1 (δ)

hλS∗1
(δ) ≡ 0 by ε̂ and take

ε̂ to zero, we get:

lim
ε̂→0

{
2αφS1 (δ)

∫ 1

0

λS∗1 (δ)
hφS1 (δ)

ε̂
dδ + 2α

hφS1 (δ)

ε̂

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′ + 2

hφS1 (δ)

ε̂
λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+ 2φS1 (δ)λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′ + 2

hφS1 (δ)

ε̂
λS∗1 (1− δ)

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

− α
∫ 1

0

λS∗1 (δ)
hφS1 (δ)

ε̂
dδ − 2λS∗1 (1− δ)

∫ δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′

+ 2αφS1 (δ)

∫ 1

0

hλS∗1
(δ)

ε̂
φS1 (δ)dδ + 2φS1 (δ)

hλS∗1
(δ)

ε̂

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′ + 2φS1 (δ)λS∗1 (1− δ)

∫ δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′

+ 2φS1 (δ)
hλS∗1

(1− δ)
ε̂

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ − α
∫ 1

0

hλS∗1
(δ′)

ε̂
φS1 (δ)dδ

−2λS∗1 (1− δ)
∫ δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′ − 2

hλS∗1
(1− δ)
ε̂

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
}

≡ 0 on δ ∈ [0, 1] (3.64)
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(1) For ∀δ ∈ [0, 1]n(B ∪D), the value of left hand side (LHS) of (3.64) satisfies:

LHS1

= lim
ε̂→0

{
2αφS1 (δ)

∫
B∪D

λS∗1 (δ)
hφS1 (δ)

ε̂
dδ + 2α

hφS1 (δ)

ε̂

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′

+ 2
hφS1 (δ)

ε̂
λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ + 2φS1 (δ)λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′

+ 2
hφS1 (δ)

ε̂
λS∗1 (1− δ)

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ − α
∫
B∪D

λS∗1 (δ)
hφS1 (δ)

ε̂
dδ

− 2λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′

− 2αφS1 (δ)

∫
D

λS∗1 (δ)φS1 (δ)dδ + 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′

+ 2φS1 (δ)λS∗1 (1− δ)
∫ δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′ + α

∫
D

λS∗1 (δ)φS1 (δ)dδ

−2λS∗1 (1− δ)
∫ δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′

}
= lim

ε̂→0

{
α(2φS1 (δ)− 1)

∫
B∪D

λS∗1 (δ)
hφS1 (δ)

ε̂
dδ

+ 2
hφS1 (δ)

ε̂

(
α

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ + λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
)

︸ ︷︷ ︸
(*-1)

+ 2
hφS1 (δ)

ε̂

(
λS∗1 (1− δ)

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
)

︸ ︷︷ ︸
(*-2)

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′ − 2φS1 (1− δ)λS∗1 (1− δ)

∫ δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′

− α(2φS1 (δ)− 1)

∫
D

λS∗1 (δ)φS1 (δ)dδ

+ 2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′ − 2φS1 (1− δ)λS∗1 (1− δ)

∫ δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′

≡ 0 on δ ∈ [0, 1]n(B ∪D) (3.65)
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Denote the maximum of
∣∣∣λS∗1 (δ)hφS1 (δ)

∣∣∣ over B∪D as A1, the maximum of
∣∣λS∗1 (δ)φS1 (δ)

∣∣ over

D as A2, the maximum of
∣∣∣hλS∗1

(δ)φS1 (δ)
∣∣∣ over D as A3, then except for the (∗− 1) + (∗− 2)

term in equation (3.65), all the other terms are o(ε̂) terms:

lim
ε̂→0

∣∣∣∣α(2φS1 (δ)− 1)

∫
B∪D

λS∗1 (δ)
hφS1 (δ)

ε̂
dδ

∣∣∣∣
≤ lim

ε̂→0
2
∣∣α(2φS1 (δ)− 1)

∣∣A1ε̂
2 1

ε̂
= lim

ε̂→0
2
∣∣α(2φS1 (δ)− 1)

∣∣A1ε̂ = 0

lim
ε̂→0

∣∣∣∣2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′ − 2φS1 (1− δ)λS∗1 (1− δ)

∫ δ

0

λS∗1 (δ′)
hφS1 (δ′)

ε̂
dδ′
∣∣∣∣

≤ lim
ε̂→0

(∣∣2φS1 (δ)λS∗1 (δ)
∣∣+
∣∣2φS1 (1− δ)λS∗1 (1− δ)

∣∣)A1ε̂
2 1

ε̂

= lim
ε̂→0

(∣∣2φS1 (δ)λS∗1 (δ)
∣∣+
∣∣2φS1 (1− δ)λS∗1 (1− δ)

∣∣)A1ε̂

= 0

lim
ε̂→0

∣∣∣∣−α(2φS1 (δ)− 1)

∫
D

λS∗1 (δ)φS1 (δ)dδ

∣∣∣∣ ≤ lim
ε̂→0

∣∣α(2φS1 (δ)− 1)
∣∣A2ε̂

2 = 0

lim
ε̂→0

∣∣∣∣2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′ − 2φS1 (1− δ)λS∗1 (1− δ)

∫ δ

0

hλS∗1
(δ′)

ε̂
φS1 (δ′)dδ′

∣∣∣∣
≤ lim

ε̂→0

(∣∣2φS1 (δ)λS∗1 (δ)
∣∣+
∣∣2φS1 (1− δ)λS∗1 (1− δ)

∣∣)A3ε̂
2 1

ε̂

= lim
ε̂→0

(∣∣2φS1 (δ)λS∗1 (δ)
∣∣+
∣∣2φS1 (1− δ)λS∗1 (1− δ)

∣∣)A3ε̂

= 0

Then to make equation (3.65) still apply, we conclude that

lim
ε̂→0

hφS1 (δ)

ε̂
= 0, ∀δ ∈ [0, 1]n(B ∪D)
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(2) For ∀δ ∈ D, the value of left hand side (LHS) of (3.64) equals to the summation of

LHS value in case (1) (LHS1) and another extra term with incremental hλS∗1
(δ) outside the

integrals:

LHS2

= LHS1 + lim
ε̂→0

2φS1 (δ)
hλS∗1

(δ)

ε̂

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

= lim
ε̂→0

2
hφS1 (δ)

ε̂

(
α

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ + λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
)

− lim
ε̂→0

2φS1 (δ)
ε̂λS∗1 (δ)

ε̂

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ + o(ε̂)

= lim
ε̂→0

2
hφS1 (δ)

ε̂

(
α

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ + λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
)

− lim
ε̂→0

2φS1 (δ)λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ + o(ε̂)

≡ 0 on δ ∈ D

Then we conclude that

lim
ε̂→0

hφS1 (δ) = O(ε̂) and lim
ε̂→0

hφS1 (δ) > 0, ∀δ ∈ D

(3) For ∀δ ∈ B, the value of left hand side (LHS) of (3.64) equals to the summation of LHS

value in case (1) (LHS1) and some extra terms with incremental hλS∗1
(1 − δ) outside the
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integrals:

LHS3

= LHS1 − lim
ε̂→0

2φS1 (1− δ)hλS∗1
(1− δ)

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

= lim
ε̂→0

2
hφS1 (δ)

ε̂

(
α

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ + λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
)
− lim

ε̂→0
2φS1 (1− δ)−ε̂λ

S∗
1 (1− δ)
ε̂

∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ + o(ε̂)

= lim
ε̂→0

2
hφS1 (δ)

ε̂

(
α

∫ 1

0

λS∗1 (δ)φS1 (δ)dδ + λS∗1 (δ)

∫ 1−δ

0

λS∗1 (δ′)φS1 (δ′)dδ′

+λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′
)

+ lim
ε̂→0

2φS1 (1− δ)λS∗1 (1− δ)
∫ δ

0

λS∗1 (δ′)φS1 (δ′)dδ′ + o(ε̂)

≡ 0 on δ ∈ B

Then we conclude that

lim
ε̂→0

hφS1 (δ) = O(ε̂) and lim
ε̂→0

hφS1 (δ) < 0, ∀δ ∈ B

�

Lemma 2 The incremental hφS1 (δ) satisfies

hφS1 (δ) + hφS1 (1− δ) = 0, ∀δ ∈ [0, 1]

given any form of incremental hλS∗1
(δ).

Proof:
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By ∂H
∂φS1 (δ)

hφS1 (δ) + ∂H
∂λS∗1 (δ)

hλS∗1
(δ) ≡ 0,∀δ ∈ [0, 1], we use:

∂H

∂φS1 (δ)
hφS1 (δ) +

∂H

∂λS∗1 (δ)
hλS∗1

(δ) +
∂H

∂φS1 (δ)
hφS1 (1− δ) +

∂H

∂λS∗1 (δ)
hλS∗1

(1− δ) = 0,∀δ ∈ [0, 1]

then we can trivally get29:

hφS1 (δ) + hφS1 (1− δ) = 0 ∀δ ∈ [0, 1]

for any hλS∗1
(δ). �

Lemma 3 Let f achieve a local extremum subject to H(x) = θ at the point x0 and as-

sume that f and H are continuously Fréchet differentiable in an open set containing x0 and

that x0 is a regular point of H. Then f ′(x0)h = 0 for all h satisfying H ′(x0)h = θ. (This

lemma is from “Optimization by Vector Space Methods” by David G.Luenberger, page 242.)

3.A.8 Proposition 7

By proof of Proposition 6, the cost function C(λ) = c1λ
2 only appear in conditions (3.62)(3.63).

Then if condition (3.19) applies:

C ′(λ)

 ≥ 0 δ = 0;

> 0 ∀δ ∈ (0, λub].

29The result is similar as in (3.35).
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then (3.62) becomes:

lim
ε̂→0

1

ε̂

(
∂W

∂φS1 (δ)
hφS1 (δ) +

∂W

∂λS∗1 (δ)
hλS∗1

(δ)

)
= lim

ε̂→0

1

ε̂

∫ 1

0

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ + 2

∫
D

C ′(λS∗1 (δ′))λS∗1 (δ′)φS1 (δ′)dδ′

= lim
ε̂→0

1

ε̂

∫
B∪D

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ + 2

∫
D

C ′(λS∗1 (δ′))λS∗1 (δ′)φS1 (δ′)dδ′

(by Lemma 1 in Section 3.A.7.2) (3.66)

where the second term is still positive since D ⊂ [1
2
, 1] and C ′(λ) > 0 ∀δ ∈ (0, λub].

Also by Lemma 1 and Lemma 2 in Section 3.A.7.2:

lim
ε̂→0

∫
B∪D

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ

= lim
ε̂→0

(∫
B

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ +

∫
D

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ

)
= lim

ε̂→0

(
−
∫
B

(δ − 2C(λS∗1 (δ)))hφS1 (1− δ)dδ +

∫
D

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ

)
= lim

ε̂→0

(
−
∫
D

(1− δ − 2C(λS∗1 (1− δ)))hφS1 (δ)dδ +

∫
D

(δ − 2C(λS∗1 (δ)))hφS1 (δ)dδ

)
= lim

ε̂→0

(∫
D

(2δ − 1 + 2C(λS∗1 (1− δ))− 2C(λS∗1 (δ)))hφS1 (δ)dδ

)
> 0 (C ′(λ) ≥ 0, D ⊂ [

1

2
, 1] and λS∗1

′
(δ) < 0) (3.67)

(3.66)(3.67) still lead to:

lim
ε̂→0

1

ε̂

(
∂W

∂φS1 (δ)
hφS1 (δ) +

∂W

∂λS∗1 (δ)
hλS∗1

(δ)

)
> 0

Then we can still get the contradiction, then we conclude that any λS∗1 (δ) that satisfies there

exists subset 4+ ⊂ [1
2
, 1] where λS∗1 (δ) > 0,∀δ ∈ 4+ cannot be the social optimal solution.

186



3.A.9 Solution to the social planner problem with different cost functions

3.A.9.1 Convex cost function C(λ) = c1λ
2

Social Optimal Solution

∂L

∂λ1(δ)
=

α
2
− αδ + αc1λ

2
1(δ)− α(α + λ1(δ))2c1λ1(δ)

(α + λ1(δ))2
= 0

and
∂2L

∂λ2
1(δ)

=
−2c1α

3 − α(1− 2δ)

(α + λ1(δ))4
< 0

Then solutions is:

λS∗1 (δ) =
−2c1α

2 +
√

4c2
1α

4 + 4c1α2(1
2
− δ)

2c1α
∀δ ∈ [0,

1

2
), λS∗1 (δ) ≡ 0 ∀δ ∈ [

1

2
, 1]

Competitive Equilibrium Solution

λ∗1(δ) =

∫ 1

δ

λ∗0(δ′)

Λ0
(4V (δ′)−4V (δ))φ0(δ′)dδ′

2c1

λ∗0(δ) =

∫ δ
0

λ∗1(δ′)

Λ1
(4V (δ)−4V (δ′))φ1(δ′)dδ′

2c1

3.A.9.2 Linear cost function C(λ) = c1λ

Social Optimal Solution

∂L

∂λ1(δ)
=

α
2
− αδ + αC(λ1(δ))− α(α + λ1(δ))C ′(λ1(δ))

(α + λ1(δ))2
=

α
2
− c1α

2 − αδ
(α + λ1(δ))2
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Then if c1α <
1
2
, the solution is:

λS1
∗
(δ) =

 λub if δ ≤ 1
2
− c1α;

0 if δ > 1
2
− c1α.

If c1α ≥ 1
2
,

λS1
∗
(δ) ≡ 0 ∀δ ∈ [0, 1]

Competitive Equilibrium Solution

For competitive equilibrium solutions, given parameters c1, α, r, ∃δ∗(c1, α, r), s.t. λ∗1(δ) = λub

for ∀δ ∈ [0, δ∗(c1, α, r)] and λ∗1(δ) = 0 for ∀δ ∈ (δ∗(c1, α, r), 1]; by symmetry, λ∗0(δ) = λub

for ∀δ ∈ [1 − δ∗(c1, α, r), 1] and λ∗0(δ) = 0 for ∀δ ∈ [0, 1 − δ∗(c1, α, r)). For simplicity to

compare with social optimal solution, we give numerical case such that 1− δ∗(c1, α, r) <
1
2
<

δ∗(c1, α, r), i.e. there exists intermediation behavior in CE equilibrium.

3.A.9.3 Social optimal solution for concave cost function C(λ) = c1λ
p, p ∈ (0, 1)

∂L

∂λ1(δ)
=

α
2
− αδ + αC(λ1(δ))− α(α + λ1(δ))C ′(λ1(δ))

(α + λ1(δ))2

=
α(1

2
− δ + (1− p)c1λ1

p(δ)− αc1pλ1
p−1(δ))

(α + λ1(δ))2

• Case 1: λS1
∗
(δ) that satisfies the following equation is a stationary point:

1

2
− δ + (1− p)c1λ1

p(δ)− αc1pλ1
p−1(δ) = 0 (3.68)
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Since

∂2L

∂λ2
1(δ)

=
α
(
λp−1

1 (δ)αc1p(p
2 − 3p+ 4) + λp−2

1 (δ)α2c1p(1− p)2
)

(α + λ1(δ))3

+
α (λp1(δ)c1(1− p)(p− 2) + (2δ − 1))

(α + λ1(δ))3

=
α
(

(αc1λ
p−1
1 (δ)− (1

2
− δ))p+ αc1λ

p−1
1 (δ)(1− p)2 + (1

2
− δ)α(1−p)2

λ1(δ)

)
(α + λ1(δ))3

> 0 by (3.68)

Then the stationary point is local min point.

• Case 2: Since 0 < p < 1, then λ1(δ) ≡ 0 is a local max point, since ∂L
∂λ1(δ)

|λ1(δ)=0 < 0

∀δ ∈ [0, 1
2
), then the social welfare trivally W ∗ = 5 for r = 0.05.

• Case 3: λ1(δ) ≡ λub is a local max point if 1
2
− δ + (1− p)c1(λub)

p − αc1p(λ
ub)

p−1
> 0

for ∀δ ∈ [0, 1
2
).

The social optimal solution for concave cost function is either λS1
∗
(δ) = λub or λS1

∗
(δ) = 0

on [0, 1
2
) depending on parameters c1, α, r, p. (Also need to verify expost that the generated

4V S(δ) satisfies d4V (δ)
dδ

> 0 for ∀δ ∈ [0, 1].)

Numerical Example for Case 2: λub = 0.3, c1 = 2, α = 0.75, p = 0.5 (λ1(δ) ≡ 0 is a

local max point but λ1(δ) ≡ λub is not local max point)

Numerical Example for Case 3: λub = 1, c1 = 1, α = 0.05, p = 0.5 (Both λ1(δ) ≡ 0 and

λ1(δ) ≡ λub are local max points, but the marginal loss from deviating from λ1(δ) ≡ λub is

large in this case)
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Figure 3.16: Case 2: Social optimal meeting technologies and densities for concave cost
function C(λ) = c1λ
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Figure 3.17: Case 3: Social optimal meeting technologies and densities for concave cost
function C(λ) = c1λ

p

3.A.9.4 Social optimal solution for C(λ) = c1λ
2 + c2λ (c1 < 0, c2 > 0)

Finally, we give a numerical example for C(λ) = c1λ
2 + c2λ (c1 < 0, c2 > 0 to double check

the sufficient condition for λS1
∗
(δ) ≡ 0 on [1

2
, 1].

C ′(λ) ≥ 0 ∀λ ∈ [0, λub]
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=⇒

c2 > −2c1λ
ub

• Case 1: The analytical stationary point satisfies:

∂L

∂λ1(δ)
=

α
2
− αδ − α2c2 − 2α2c1λ1(δ)− αc1λ

2
1(δ)

(α + λ1(δ))2
= 0

=⇒

λ1
∗(δ) =

−2αc1 +
√

4α2c2
1 − 4c1(αc2 + δ − 1

2
)

2c1

,

∀δ ∈ [0,
1

2
] (require α2c1 − αc2 +

1

2
≤ 0)

and

∂2L

∂λ2
1(δ)

=
2α2c2 − 2α3c1 + α(2δ − 1)

(α + λ1(δ))4
≥ α + α(2δ − 1)

(α + λ1(δ))4
≥ 0 (by α2c1 − αc2 +

1

2
≤ 0)

so the stationary point is a local min point.

• Case 2: If αc2 ≥ 1
2
, then λ1

∗(δ) ≡ 0 ∀δ ∈ [0, 1
2
] is local maximum point.

• Case 3: If αc2 + 2αc1λ
ub + c1(λub)2 ≤ 0, then λ1

∗(δ) ≡ λub ∀δ ∈ [0, 1
2
] is local maximum

point.

Numerical Example for Case 2: λub = 2, c1 = −0.5, c2 = 10, α = 0.5.

Numerical Example for Case 3: λub = 1.5, c1 = −0.5, c2 = 2, α = 0.05.
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Figure 3.18: Case 2: Social optimal meeting technologies and densities for convex cost
function C(λ) = c1λ

2 + c2λ
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Figure 3.19: Case 3: Social optimal meeting technologies and densities for convex cost
function C(λ) = c1λ

2 + c2λ
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