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Abstract We study weakly disordered quantum wires whose width is large compared to the
Fermi wavelength. It is conjectured that such wires display universal metallic behavior as
long as their length is shorter than the localization length (which increases with the width).
The random matrix theory that accounts for this behavior—the DMPK theory—rests on
assumptions that are in general not satisfied by realistic microscopic models. Starting from
the Anderson model on a strip, we show that a twofold scaling limit nevertheless allows
to recover rigorously the fundaments of DMPK theory, thus opening a way to settle some
conjectures on universal metallic behavior.

Keywords Random matrix theory · Disordered conductors · Metallic phase

1 Introduction

We discuss the heuristic DMPK (Dorokhov-Mello-Pereyra-Kumar) theory of disordered
wires in Sect. 1, following to some extent the survey by Beenakker, [2]. Then in Sect. 2,
we introduce our microscopic model, a variant of the Anderson model on a strip, and we
state the rigorous results, Propositions 2 and 3. The last proposition establishes that the
main assumption of DMPK theory—the replacement of the microscopic model by a random
matrix ensemble—is satisfied in a certain scaling limit.

While we were finishing this manuscript, a related article [28] appeared on the archive.
The results of [28] are very similar to ours, although the focus and motivation are different.
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Fig. 1 A schematic picture of
the disordered wire and its
various parameters

1.1 Phenomenology of Disordered Wires

Consider a wire of length L and cross section A, made from a disordered material and let
λ ≥ 0 be a measure of the strength of the disorder. We assume that electrons are injected a
fixed energy E and are scattered coherently in the wire. Let � be the mean free path1 of the
electrons in the wire (hence � depends on λ, namely � ∝ λ−2) and λF the Fermi wavelength.
We choose � as the basic unit of length in which L is measured and hence we define a
reduced length

s := L

�
.

Physically, the Fermi wavelength λF determines the number of channels N that fit into the
area A. Here, we shall rather take the dimensionless number N as a measure of the cross
section of the wire since, in our model, the number of channels will be naturally given. See
Fig. 1 for a summary of the general setup.

If N = 1, it is well-known that the electron gets localized with localization length ≈�

(hence s ≈ 1). However, the localization length increases with N , and we can ask how the
system behaves for s � N , before localization sets in. This regime turns out to be experi-
mentally accessible and it is called the metallic, or diffusive, regime. One of the fascinating
aspects of this regime is the phenomenon of universal conductance fluctuations (UCF). Let
g = g(s,N,λ) be the conductance of the wire, expressed in units of the conductance quan-
tum 2e2/�. It is a random quantity due to the disorder. Its average satisfies Ohm’s law as
long as s is smaller than the localization length ∼ N and it drops off exponentially once
the localization length is exceeded. The rough behavior for large N (see below for precise
conjectures) is

E(g) ∼
{

N/(1 + s) + O(N0) s � N (Ohm’s law)

exp {−s/N} s > N (localization)
(1)

where E(·) indicates an average over the disorder. The UCF mean that

Var(g) = 2/(15β), for s � N (2)

has a fixed value, independent of the material or the wire length and width. The only para-
meter that remains is the symmetry index β that refers to Dyson’s symmetry classes.

It is important to note that these phenomena should emerge in a large N limit only. On
the other hand, N cannot be too large because then we enter the regime of 2-dimensional
localization (assuming that the wire has one transverse dimension). Below, we distill some
mathematical conjectures from the physics literature. Keep in mind that g is a random vari-
able that depends on s,N and λ, and that the disorder strength λ enters in the definition of

1See [2] for a particular definition of the mean free path, which is necessary to avoid numerical constants
in (1) and the Conjectures below.
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the unit of length s. Moreover, the conductance g can in principle depend on the way disor-
der is brought in and on the energy E. Hence, in order to state the conjectures precisely, one
should start from, for example, the microscopic model introduced in Sect. 2 (where β = 1)
and one should assume (possibly weakened versions of) Assumptions 1 and 2.

Conjecture 1 (Localization lengths) For λ small enough but fixed

E(g) < const · e− s
N , for all s,N; (3)

Conjecture 2 (Universal conductance fluctuations)

lim
N↗∞

s/N=z fixed

lim
λ↘0

Var(g) = 2/(15β), for all 0 < z < 1; (4)

Conjecture 3 (Ohm’s law and weak localization correction)

lim
N↗∞

s/N=z fixed

lim
λ↘0

E(g) = 1

z
+ 1

3
(1 − 2/β), for all 0 < z < 1, (5)

where the constant 1
3 (1 − 2/β), called the weak-localization correction, is yet another man-

ifestation of universality.

At the time of writing, none of these conjectures is confirmed mathematically. In [23], a
weakened version of Conjecture 1 was proven, with N fixed and the range of admissible λ’s
shrinking as N ↗ ∞. One should remark that Conjecture 1 differs from 2 and 3 in that the
latter Conjectures cannot hold true without some scaling limit in which λ ↘ 0 i.e. � ↗ ∞.
Indeed, if we did not scale λ, then for large s and N one should recover the two-dimensional
Anderson model, which is expected to be localized. Conjecture 1, however, makes sense
even in the regime of two-dimensional localizations since it states only an upper bound on
the localization length, linearly growing with the sample width N .

1.2 Transfer Matrices and Conductance Properties

A convenient macroscopic description of the wire is through its 2N × 2N scattering ma-
trix S. Heuristically, the S-matrix transforms incoming free waves into outgoing free waves.
Let again N be the number of channels and assume that the free dynamics is time-reversal
symmetric; it follows that one can distinguish N right-moving and N left-moving free
waves. Having this decomposition, the S-matrix acts as

S

(
cin
R

cin
L

)
=

(
cout
L

cout
R

)
, S =

(
r t ′

t r ′

)
, (6)

where cin
L , cout

R , cout
L , cin

R are N -dimensional vectors representing the amplitudes of the respec-
tive waves. The subscript L/R indicates whether the wave is left/right moving respectively,
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and the superscript in/out distinguishes incoming and outgoing waves. The N ×N matrices
t, t ′ and r, r ′ are usually called transmission and reflection matrices. Current conservation
is equivalent to the unitarity of the S-matrix. Further, we assume that a particular basis has
been chosen in C

N such that time-reversal is implemented by complex conjugation. If we
assume that the scattering process is time-reversal invariant as well, then S equals its trans-
pose. In short, the two symmetries read

S−1 = S∗, S = S∗, (7)

where · denotes complex conjugation on each matrix element.
For our purposes, it is more convenient to encode the scattering data in the transfer ma-

trix M , which transforms free waves on the left of the wire into free waves on the right. It
acts as

M

(
cin
R

cout
L

)
=

(
cout
R

cin
L

)
. (8)

Indeed, a left-moving wave on the right-hand side of the wire, and a right-moving wave on
the left of the wire are incoming (they move from infinity towards the wire), whereas the two
others are outgoing. Moreover, transfer matrices satisfy a simple multiplicative composition
rule when two scatterers a put together in series. Finally, (8) and (6) imply simple algebraic
relations between the matrix elements of S and M , and the symmetries (7) translate into

M∗�zM = �z, �xM�x = M, (9)

where we employed the 2N × 2N matrices

�z =
(

1 0

0 −1

)
, �x =

(
0 1

1 0

)
.

In other words,

M =
(

α β

β α

)
,

where the matrices α,β are constrained to satisfy

α∗α − β
∗
β = 1, α∗β − β

∗
α = 0. (10)

In summary, a time-reversal invariant scattering process is described by a transfer matrix
that belongs to the Lie group

G := {
M ∈ GL(2N)

∣∣M∗�zM = �z and �xM�x = M
}
. (11)

It follows from polar decomposition of the reflection and transmission matrices (or equiva-
lently of α,β above) that any element of G can be written as

M =
(

U 0

0 U

)( √
T −1

√
T −1 − 1√

T −1 − 1
√

T −1

)(
V 0

0 V

)
(12)

where U,V are unitary matrices and T is a diagonal matrix whose entries are the eigenvalues
of t∗t , and t is the N ×N transmission matrix appearing in S, see (6). Note that the matrices
U,V are not unambiguously determined because of the invariance of (12) under

U �→ UA, V �→ AV, (13)
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where A is a diagonal matrix with the diagonal consisting of −1 and +1’s. The group
theoretical aspects of transfer matrices are discussed in detail in [18, 24].

We mentioned earlier that the conductance properties of a wire with transfer matrix M

can be read off from the eigenvalues of T . More precisely, the conductance can be defined
via the Landauer-Büttiker formula as

g :=
N∑

i=1

T i = TrT = Tr t∗t (14)

where T i are the eigenvalues of T . Of course, it is also possible to define the conductance
through a physical setup, and then to prove that it is given by (14), but this will not concern
us here.

1.3 The DMPK-Theory of Disordered Quantum Wires

1.3.1 Stochastic Differential Equation for Transfer Matrics

The basic postulate of the DMPK theory states that the random transfer matrix M(s) corre-
sponding to wire length s (in units of the mean free path) satisfies an Ito stochastic differen-
tial equation

dM(s) = dL(s)M(s), M(0) = 1, (15)

where L(s) is a matrix-valued Brownian motion, and dL(s) is independent of M(s) (in
mathematical terms: the process M(s) is adapted to the filtration generated by L(s), see
e.g. [20] for details). Equation (15) is an immediate consequence of the composition rule for
transfer matrices

M(s + ds) = (1 + dL(s))M(s)

where 1 + dL(s) is the transfer matrix for the infinitesimal piece of wire of length ds. In
practice, one assumes that ds is large compared with the mean free path �, but small enough
such for the transfer matrix 1 + dL(s) to be close to the identity. We immediately point out
that this the latter requirement is not canonical. This is due to the fact that we use conventions
such that, at zero disorder, the transfer matrix equals 1.2 In our mathematical treatment of a
microscopic model, this will be assured by expressing the transfer matrix in an ‘interaction
picture’ where the fast oscillations due to the nonrandom ballistic evolution are subtracted.

Current conservation and time-reversal invariance, (9), restrict dL(s) to satisfy{
dL∗(s)�z + �zdL(s) + dL∗(s)�zdL(s) = 0,

dL∗(s)�x + �xdL∗(s) = 0,

as can easily be checked by the Ito calculus. In the upcoming Sect. 1.3.2, we shall postulate
the law of dL(s) as it is derived in the physics literature from maximal entropy considera-
tions. However, for the sake of the geometrically minded reader, we remark that Hüffmann
[18] derives the form of (15) by demanding that the diffusion is generated by the Laplace-
Beltrami operator on a certain symmetric space (note that there is no canonical Laplace-
Beltrami operator on G as it is a noncompact Lie group).

2In the terminology of [2], we assume the ‘equivalent channel’ assumption rather than the ‘isotropy’ assump-
tion.
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1.3.2 The “Maximum Entropy” Assumption

With (15) at hand, the major assumption of the DMPK theory is the ‘isotropy’, or ‘maximal
entropy’ (MEA) assumption which states that dL(s) is drawn from an ensemble of maximal
entropy, constrained on the total scattering, Tr(1 − T (dL(s))), due to dL(s). We do not go
into this derivation and we merely state its conclusion, namely that L(s) is the following
matrix-valued process,

L(s) :=
(

a(s) b(s)

b(s) a(s)

)
, (16)

where

aij (s) =

⎧⎪⎨
⎪⎩

1/
√

2N · (BR
ij (s) + iBI

ij (s)) 1 ≤ i < j ≤ N,

i/
√

N · BI
ii(s) i = j,

−aj i(s) otherwise,

(17)

bij (s) =
{

1/
√

2N · (B̃R
ij (s) + iB̃I

ij (s)) 1 ≤ i ≤ j ≤ N,

bj i(s) otherwise,
(18)

and BR
ij (s), B̃

I
ij (s),B

I
ij (s), B̃

R
ij (s) are independent standard Brownian motions for 1 ≤ i ≤

j ≤ N . We note that by construction

a = −a
∗ and b

∗ = b,

and we have the following invariance property: For any unitary matrix W ,

WaW ∗ ∼ a, (19)

WbW
∗ ∼ b, (20)

where ∼ denotes that the random variables have the same law. In particular, this invari-
ance property means that we need not specify the basis in (17)–(18). Hence, ia is GUE-
distributed, as one could also have noticed from the explicit expression (17). As regards
dL(s), our choice for a and b implies that

WdL(s)W ∗ ∼ dL(s) (21)

where

W :=
(

W 0

0 W

)
for any unitary W. (22)

This expresses the intuition that the disorder in the wire is not ‘biased’ towards any specific
channel basis. In conclusion, the SDE (15), together with the isotropy assumption encoded
in the law defined by (21, 22), defines a stochastic flow in the group G (MEA-flow).

Assume that we aim to calculate the transmission eigenvalues Ti(s) associated to the
transfer matrix M(s). This can be done by Ito calculus, since the eigenvalues Ti(s) are Ito
processes that are functions of M(s). We postpone the explicit result of this calculation to
the next section. First, we explore the main consequence of the symmetry (21) of dL(s).



From the Anderson Model on a Strip to the DMPK Equation 547

We write T (s) = T (M(s)) for the diagonal matrix of transmission eigenvalues associ-
ated to M(s) by the decomposition (12). Likewise, we write U(s),V (s), remembering that
they are not uniquely determined by M(s). We also abbreviate

U (s) :=
(

U(s) 0

0 U(s)

)
,

V(s) :=
(

V (s) 0

0 V (s)

)
,

N (s) :=
( √

T −1(s)
√

T −1(s) − 1√
T −1(s) − 1

√
T −1(s)

)
.

Let W be as in (22) with W Haar-distributed in the unitary group. Then, formally,

T (M(s + ds)) = T ((1 + dL(s))U (s)N (s)V(s))

∼ T (W(1 + dL(s))W ∗U (s)N (s)V(s))

∼ T (U W(1 + dL(s))W ∗N (s))

∼ T ((1 + dL(s))N (s)),

where we used (21), observed that W ∗(s)U (s) ∼ W ∗(s) since the unitary operators W in
W(s) are Haar-distributed, and that the diagonal matrix T (s) is not affected by the unitaries
in the decomposition (12). Importantly, this computation shows that T (s + ds) depends on
M(s) only via T (s) (because it only depends on N (s)), whereas in general, the eigenvalues
at s + ds ought to depend on both the eigenvalues and eigenvectors at s.

M(s) −−−−→
MEA-flow

M(s + ds)−−−→

−−−→

T (s) −−−−−−−→
DMPK-equation

T (s + ds)

(23)

This phenomenon, represented by the commuting diagram (23), is known in statistical me-
chanics as the autonomous evolution of a (set of) macroscopic degree(s) of freedom. Of
course, it is rather well known in random matrix theory as well, as it appears in Dyson’s
Brownian motion, see e.g. [8, 17]. Another conclusion is that, for the sake of calculating
T (s + ds) from T (s) = T (M(s)), we could as well have assumed that the unitary U(s)

in U (s) is Haar-distributed. We can also turn the previous argument around, to obtain the
following statement

If, for all s, the matrix U(s) that appears in the polar decomposition (12) of M(s)

is Haar distributed in the unitary group and independent of T (M(s)), then
T (M(s + ds)) can be calculated form T (M(s)) as if dL(s) were distributed as
in (16).

This observation suggests a heuristic explanation as to why the DMPK equation can still
be a good approximation when dL(s) is not distributed as in (16). By using the ‘concentra-
tion of measure’ property on the unitary group, see e.g. [17], we understand that the set of
U(s) such that the dependence of T (M(s + ds)) on T (M(s)) deviates significantly from
that predicted by the DMPK equation, has an exponentially shrinking size w.r.t. the Haar
measure, as N ↗ ∞.
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1.3.3 The DMPK Equation

In the previous section, we already anticipated the fact that the evolution of the transmission
eigenvalues Tk(s) is autonomous. We now give the precise evolution equation for them.

Since Tk(s) = Tk(M(s)) is a function of M(s), the law of its process can be calculated
by Ito’s fomula:

dTk(s) =
∑
ij

∂Tk

∂Mij

(s)dMij (s) + 1

2

∑
ij,i′,j ′

∂2Tk

∂Mi′j ′∂Mij

(s)dMi′j ′(s)dMij (s).

The derivatives ∂Tk

∂Mij
,

∂2Tk

∂Mi′j ′ ∂Mij
can be computed by spectral perturbation theory under the

assumption that the diagonal matrix T (s) is non-degenerate, i.e. all transmission eigenvalues
are simple.

The formal result is the DMPK equation (discovered by [6, 19])

dTk(s) = vk(T (s))ds + Dk(T (s))dBk(s) (24)

where Bk(s), k = 1, . . . ,N are independent standard Brownian motions and the drift3

vk(T (s)) and diffusion constant Dk(T (s)) are given by (we keep the parameter β to make
the comparison with the literature simpler, in our case β = 1)

vk = −Tk + 2Tk

βN + 2 − β
×

(
1 − Tk + β/2

∑
j �=k

Tk + Tj − 2TkTj

Tk − Tj

)
,

Dk = 4
T 2

k (1 − Tk)

βN + 2 − β
.

We refer to [2] for a more detailed account of this straightforward, but somewhat lengthy,
calculation. We also note that the term ‘DMPK equation’ usually refers to the Fokker-Planck
equation associated with the SDE (24). The Brownian motions Bk(s) in (24) originate from
linear combinations of the Brownian motions in (17). We call the result (24) formal since
we have not established that the equation admits a solution for all times, i.e. we have not
excluded that two or more eigenvalues can collide, see [17] on a possible strategy to do this.

The basic picture concerning (24) is that, as s grows, all Tk(s) are driven to 0 by the term
−Tk in the drift (note that 0 ≤ Tk ≤ 1). However, due to the repulsion in the term containing
(Tk − Tj )

−1, the Tk’s keep a distance of order 1/N . Finally, for small values of Tk, Tj ,
the repulsion vanishes and the Tk’s pile up at 0 (in the localized regime, they are all very
close to 0). The most interesting question is now whether (24) reproduces the phenomena
discussed in Sect. 1.1. In other words,

Does the random variable g satisfy the conjectures listed in Sect. 1.1 if one defines
g = ∑

i Ti with Ti the solutions of (24)?

On the heuristic level, the answer is clearly “yes” for all 3 Conjectures, see e.g. [2] for an
expansion scheme for large N . On the rigorous level however, the situation is not so clear

3We follow the literature on the subject in calling vk and Dk the drift and the diffusion. One could however
argue that this is a confusing convention, since absence of drift, vk = 0 does not render the process time-
reversal invariant, cfr. difference between Ito and Stratonovich conventions.
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(at least to us). For Conjecture 1, the techniques of [23], developed for a harder problem, are
sufficiently strong to settle the question, see e.g. [22]. The perspectives seem to be best for
β = 2 where the DMPK equation can be solved exactly [3] in terms of toroidal functions.
It is plausible that in this case, one can prove all Conjectures listed, but we do not know
any reference where this is actually done. For β = 1,4, the DMPK equation was solved in
[4, 18, 30], but in those cases, the solution is less explicit.

2 The Microscopic Model: Anderson Model an a Strip

2.1 The Hamiltonian for a Disordered Wire

Our system is an infinitely extended wire of width N , which we model by the Hilbert space
l2(Z × {1, . . . ,N}) ∼= l2(Z) ⊗ C

N . We consider the motion of a single electron through the
wire. It is governed by a Hamiltonian consisting of a ballistic part, and a disorder term,
Hλ = Hbal + λV , where λ governs the strength of the disorder. The ballistic Hamiltonian of
the system is given by a longitudinal H‖, acting only on l2(Z), and a transversal H⊥, acting
only on C

N ;

Hbal = H‖ ⊗ 1 + 1 ⊗ H⊥, (25)

and we will slightly abuse the notation by writing

H‖ = H‖ ⊗ 1, H⊥ = 1 ⊗ H⊥.

We choose H‖ to be the standard lattice Laplacian on l2(Z), with kernel

H‖(x, x ′) = δx,x′−1 + δx,x′+1, x, x ′ ∈ Z.

The disorder is modeled by a random on-site potential, which we assume to be located
only on the sites with longitudinal coordinate between 1 and L, as shown schematically in
Fig. 2. Hence, L is the length of the disordered part of the wire and

V :=
∑

x=1,...,L

z=1,...,N

vx,z1(x,z),

with 1(x,z) the one-dimensional projector on the site (x, z) ∈ Z × {1, . . . ,N}, and vx,z are
i.i.d. random variables with mean 0 and variance 1. We also assume that the third, fourth
and fifth moments of vx,z exist, i.e.

E(v) = 0, E(v2) = 1, E(v3),E(v4),E(v5) < ∞. (26)

Fig. 2 The microscopic model
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The operator H⊥ ∈ B(CN) can for some purposes by chosen largely at will (though we
will always impose Assumptions 1 and 2 below) but for our main result we will require that
H⊥ is the transverse Laplacian with periodic boundary conditions and with a magnetic field
that breaks the chiral symmetry (to be introduced precisely later). The eigenvectors of H⊥,
denoted by ψμ,μ = 1, . . . ,N fix a basis in C

N ,

H⊥ψμ = E⊥(μ)ψμ, μ = 1, . . . ,N, (27)

with corresponding energies E⊥(μ). The index μ is hence a free channel-index.
After diagonalizing the free transverse dynamics, we define

E‖ := O∗(E − H⊥)O = diag(E‖(1), . . . ,E‖(N)),

where the eigenvalue E‖(μ) = E − E⊥(μ) represents the longitudinal energy in the μth
channel. The obvious condition for a channel to be conducting is that E‖(μ) lies in the
spectrum of H‖:

Assumption 1 (Elliptic channels) Recall that the spectrum of H‖ is the interval [−2,2]. We
demand

E‖(μ) ∈ int(specH‖) for all μ = 1, . . . ,N.

This assumption does for example exclude a H‖ describing a barrier that would stop the
waves, even in the absence of disorder.

For reasons that will become clear later (see Sect. 3.2), we need to make sure that the
system has no accidental symmetries. A first requirement would be that the operator H⊥ is
nondegenerate, but we demand a stronger condition, namely:

Assumption 2 (No degenerate level spacings) Let H⊥ be nondegenerate, i.e. E‖(μ) �=
E‖(ν) for μ �= ν. Let θμ = θ(E‖(μ)) be defined by

2 cos θμ = E‖(μ), 0 ≤ θμ < π. (28)

Let μi ∈ {1, . . . ,N} for i = 1,2,3,4. Then the equality

4∑
i=1

qiθμi
= 0, where qi ∈ {−1,1}

can only hold (up to a permutation of the indices {1,2,3,4}) if

μ1 = μ2 and μ3 = μ4, and q1q2 = q3q4 = −1.

As E‖(μ) is the energy available for longitudinal propagation in the μth-channel, θμ

corresponds the absolute value of the longitudinal momentum in each channel. Equation (28)
is indeed nothing else than the dispersion relation for H‖.

2.2 Transfer Matrix

The setup described above suggests to study the (random) scattering matrix S = S(λ,L,N)

of the wire, since the motion is ballistic outside a compact region.
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Abstractly, the scattering operator is obtained by comparing the full dynamics to the free
one generated by the ballistic Hamiltonian (25),

S = s − lim
t±→±∞U0(−t−)U(t− − t+)U0(t+), (29)

where U(t) = exp(−Hλt) and U0(t) = exp(−Hbalt). The question of asymptotic complete-
ness, namely the existence of the limits and the unitarity of the scattering operator, is read-
ily solved by noting that the perturbation λV is of finite rank and invoquing the Kato-
Rosenblum theorem [21]. Finally in the fiber decomposition H = ∫ ⊕ HEdE, the scattering
operator is described by a family of 2N × 2N scattering matrices SE .

If Assumption 1 is satisfied, the fiber spaces HE are isomorphic to C
2N ∼= C

N
L ⊕ C

N
R ,

which physically corresponds to a left and a right moving sector. Once the incoming energy
is fixed and the index E dropped, this definition coincides with the more physical one, (6),
based on transmitted and reflected plane waves, see e.g. [1]. In that representation, cur-
rent conservation is equivalent to the unitarity of the scattering matrix, which is ensured
by asymptotic completeness. If, in addition, the matrix S is written down in the eigenbasis
{ψμ ⊕ 0,0 ⊕ ψμ}N

μ=1 defined in (27), time-reversal invariance indeed corresponds to S∗ = S

with · the complex conjugation on each matrix entry.
As noted in Sect. 1, we shall work in the following with the equivalent transfer matrix

M = M(λ,L,N). In order to construct it explicitly, we first introduce the family of matrices
T λ

x , x = 1, . . . ,L, which can be constructed without explicit reference to scattering, and this
is the way this setup is usually presented in the mathematical literature. Define the 2N ×2N

matrix

T λ
x =

(
E‖ −1N

1N 0

)
= (O∗ ⊗ 12)

(
E − Hxx −1N

1N 0

)
(O ⊗ 12), (30)

where Hxx := 1xH1x = H⊥ + λVx and Vx = ∑N

z=1 vx,z1(x,z). The key property of T λ
x is

that, if 
 = (
x)x∈Z,
x ∈ C
N is a (not necessarily normalizable) solution of the eigenvalue

equation Hλ
 = E
 , then (

x+1


x

)
= T λ

x

(

x


x−1

)
.

Of course, this property is preserved under multiplication, i.e.

(

L+1


L

)
= T λ(L)

(

1


0

)
, T λ(L) := T λ

L T λ
L−1 · · ·T λ

1 .

To describe our results in the most natural way, it is convenient to express the transfer ma-
trix in the basis of free in- and out-states, i.e. in left- and right-moving waves in the different
channels μ, as was done in Sects. 1.2 and 1.3. Therefore, we introduce the transformation ϒ

mapping the transfer matrix T λ
x in the position representation to the more physical transfer

matrix

Mλ
x = ϒ−1T λ

x ϒ, x = 1, . . . ,L. (31)

For N = 1, this change of basis amounts to

(
eiθ(ε)

1

)
= ϒ

(
1

0

)
,

(
e−iθ(ε)

1

)
= ϒ

(
0

1

)
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(the vectors on the left should be thought of as incoming and outgoing ‘plane waves’) and for
N > 1, we have N copies of this transformation, with ε = E‖(μ) now channel-dependent,
see (45) for an explicit expression. Note that although it represents a mere basis transforma-
tion, ϒ is not unitary since the bases are not orthogonal.

In that representation, the transfer matrix Mλ
x is diagonal in the absence of disorder,

namely

M0 = M0
x =

(
exp(iθ(E‖)) 0

0 exp(−iθ(E‖))

)
,

and corresponds indeed to its heuristic definition. In the following lemma, we summarize
the precise relation between the microscopic model and the matrices Mλ

x . This is just a
mathematical confirmation of the discussion in Sect. 1.

Lemma 1 The transfer matrices Mλ
x , defined through (30) and (31) belong to the group G ,

see (11). They are related to the scattering matrix, as defined in (29), by the relations given
in Sect. 1.2.

Note further that the transfer matrices constructed in this section represent the influence
of one lattice site. The transfer matrices for longer parts of the wire are introduced below.

2.3 Results

2.3.1 Scaling Limit

Naively, we interpret the DMPK theory as suggesting that the transfer matrix for the wire
with rescaled length s,

Mλ(�λ−2s�) := Mλ

�λ−2s� . . .Mλ
1 ,

(where �a� stands for the largest integer not greater than a) converges to the solution of the
differential equation (15) as λ ↘ 0. This cannot be correct as such. First of all, Mλ(�λ−2s�)
contains some rapidly oscillating terms (as functions of λ−2s) whose phase cannot be well-
defined as a function of s. Recalling that the transfer matrix in the absence of disorder
(V = 0) is of the form

M0(�λ−2s�) =
(

exp
(
i�λ−2s�θ(E‖)

)
0

0 exp(−i�λ−2s�θ(E‖))

)
,

we introduce a first modification to our convergence conjecture. We multiply by the inverse
of this free scatting matrix to subtract the fast oscillations, i.e. we consider

Aλ(�λ−2s�) := (M0(�λ−2s�))−1Mλ(�λ−2s�) (32)

which is 1 at V = 0. The new conjecture is that Aλ(�λ−2s�) converges to the solution of
the DMPK equation. This weakened form is still not correct without further assumptions
although we believe that it is ‘essentially correct’ (as we shall explain below). Actually,
Aλ(�λ−2s�) converges to the solution of a SDE that differs from the DMPK equation because
it has a lower symmetry.
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Proposition 2 If Assumptions 1 and 2 hold, then Aλ(�λ−2s�) converges in distribution,4

Aλ(�λ−2s�) λ↘0−→
distr

A(s) for all s. (33)

The process A(·) is the strong solution of the SDE

dA(s) = dZ(s)A(s), A(0) = 1 (34)

where

Z(s) =
(

a′(s) b′(s)
b̄′(s) ā′(s)

)
.

The matrix-valued Brownian motions a′(s),b′(s) are defined as

a
′
μν(s) = σμν

⎧⎪⎨
⎪⎩

1/
√

2N · (BR
μν(s) + iBI

μν(s)) 1 ≤ i < j ≤ N,

i/
√

N · BI
μ(s) i = j,

−a′
νμ otherwise,

(35)

b
′
μν(s) = σμν

{
1/

√
2N · (B̃R

μν(s) + iB̃I
μν(s)) 1 ≤ i ≤ j ≤ N,

b′
νμ(s) otherwise.

(36)

(the various standard Brownian motions appearing here are similar to those of (17, 18))
with

(σμν)
2 = N E|Ṽμν |2

4 · | sin θμ sin θν | , (37)

where E|Ṽμν |2 denote the covariances of the N × N matrix Ṽ = O∗V O of the random
potentials in the channel basis and the momenta θμ were defined in Assumption 2.

We note immediately that the SDE (34) differs from the corresponding SDE (15) in
DMPK theory by the factors σμν that do depend on the channels. For the same reason, the
definitions (35) and (36) are truly basis-dependent (μ,ν index the channels). This remains
true even if the Hamiltonian H⊥ is chosen in the most isotropic way, as outlined below.

Let H⊥ on C
N be given by the kernel

H⊥(z, z′) := h⊥(eiγ δz,z′−1 + e−iγ δz,z′+1), z, z′ ∈ Z/NZ (38)

(with 0 < γ < 2π/N and h⊥ > 0) which corresponds to a cylindrical wire permeated by a
magnetic field γ along its symmetry axis. Note that we cannot choose γ = 2πk/N , k ∈ Z,
without violating Assumption 2. In those cases, H⊥ corresponds to the pure Laplacian on
a discrete torus, which has a chiral symmetry and hence twice degenerate energy levels.
The choice (38) also forbids the injection energy E to lie at the band center. Indeed, since
the spectrum of H⊥ is symmetric around zero for any γ , the condition E = 0 implies that
the longitudinal energies also come in opposite pairs and therefore the momenta in pairs
(θμ,π − θμ), which also violates the Assumption.

4As visible from the proofs, the convergence actually holds on pathspace equipped with the Skorohod topol-
ogy. This obviously implies convergence of single-time distributions.



554 S. Bachmann, W. De Roeck

Proposition 3 (Convergence to the DMPK process) Let H⊥ be of the form (38) with γ

and h⊥ such that Assumptions 1 and 2 hold. Let A(s) = A(s)γ,h⊥ be the process defined
by Proposition 2. Choose a sequence h⊥(n) such that for any n, Assumptions 1 and 2 are
satisfied and h⊥(n) ↘ 0 as n ↗ ∞. Then

A(s)γ,h⊥(n) n↗∞−→
distr

M(s/c), (39)

where M(s) is the solution of the DMPK-SDE (15) and c = c(E) is a constant that only
depends on the energy E.

Note that the limit in (39) becomes independent of γ . Finally, by combining Proposi-
tions 2 and 3, one gets

lim
h⊥(n)↘0

lim
λ↘0

(
Aλ(�λ−2s�)) = M(s/c),

namely the convergence of the microscopic Hamiltonian model to the DMPK random matrix
model. The order of limits cannot be exchanged, since the bare limit h⊥(n) ↘ 0 eliminates
the transverse motion and hence all interaction between the channels. In fact, if h⊥ = 0, then
the model consists of N copies of a one-dimensional chain and hence its localization length
is independent of N . The rescaling constant c = c(E) originates from the fact that our length
unit λ−2 is not precisely equal to the mean free path; see the footnote on Sect. 1.1.

3 Discussion

3.1 Related Work and Outlook

3.1.1 Scaling Limits in the Anderson Model

The existence of the metallic regime in the Anderson model in dimension d > 2 is a ma-
jor open problem of mathematical physics. An important step ahead was taken with the
establishment of kinetic [10, 25] and diffusive [12] scaling limits, where time and space
are rescaled by appropriate powers of the coupling strengh λ, as the latter goes to 0. In
those scaling limits, the unitary evolution goes over to the linear Boltzmann equation or the
diffusion equation. In spirit, our result is comparable to this approach, although the quasi
one-dimensional metallic regime that we study is distinct from the one in d > 2. In particu-
lar, the quasi 1D metallic regime exists in the scaling limit only (see the remarks following
the Conjectures in Sect. 1.1). We have a kinetic space rescaling x �→ λ−2x, in which the
Hamiltonian model with disorder reduces to a fully stochastic model, just as the unitary
evolution reduces to the fully stochastic Boltzmann equation in the works mentioned above.
To make our results complete, we should establish that the stochastic models obtained in
Propositions 2 and 3 do possess the properties of the metallic regime. This seems straight-
forward for the scaling limit (39), since the eigenvalue process associated with this SDE is
the DMPK equation, which has been studied extensively in the physics literature, see Sect. 1.
In fact, the random matrix ensemble that solves the SDE (15) is often mentioned on a par
with the more familiar Dyson classes of random matrices, see e.g. [5]. To establish that the
SDE obtained in Proposition 2 also has the universal properties of the metallic regime seems
a more challenging task. In some sense, this is comparable to proving that e.g. Hermitian
Wigner matrices with fully broken time-reversal invariance share the universality properties
of GUE, as was recently established in [11, 13].
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3.1.2 Alternative Models for the DMPK Theory

Several models have been constructed to provide an alternative justification for the DMPK
theory. Dorokhov [7] has constructed a Hamiltonian model of N chains coupled only by
random hopping acting strictly transversally. For each pair of chains (μ, ν), the hopping
potential Uμν(x) at point x is a Gaussian variable of zero mean and independent of all other
pairs. The model is therefore invariant under the orthogonal group by construction. In fact,
it is very similar to Wegner’s N -orbitals model [29]. Another model that reproduces the
DMPK theory is the (1D) supersymmetric nonlinear σ model, [9].

3.1.3 Lyapunov Exponents

In [23], Schulz-Baldes calculated the lowest Lyapunov exponents for the Anderson model
on a strip, at small disorder. As already remarked, this yields a partial confirmation of Con-
jecture 1 in Sect. 1.1. The drawback of this approach is that, by their very nature, Lyapunov
exponents do not reveal much information on the metallic regime of disordered wires, al-
though one could argue that the conjectured equidistancy of the Lyapunov spectrum is a sign
of universality. In a recent work, the authors of [24] conjecture (and confirm numerically)
that a certain property, the Random Phase Property (RPP), holds for the Anderson model
on a strip. They remark that the RPP is weaker than the maximal entropy assumptions (see
Sect. 1.3.2) made in the DMPK theory, yet it allows to estimate the Lyapunov exponents
and hence the localization lengths. It is not clear to us (but it does not sound unreasonable)
that the RPP in fact also implies universal behavior in the metallic regime. Further, it seems
plausible that the transfer matrix ensembles that we obtain in Proposition 2 satisfy the RPP.

3.1.4 Hyperbolic Brownian Motion

The DMPK equation (24) for N = 1 was solved explicitly in [16]. It can be related to Brown-
ian motion in the hyperbolic plane. A very similar description can be given from the point
of view of the Brownian Carousel [27]. As already mentioned, the DMPK equation for any
N can be related to Brownian motion on symmetric spaces, see [18, 30].

3.2 Idea of the Scaling Limit

We now explain heuristically why the propositions hold true. Recall the definition of
Aλ(x), x ∈ N in (32), i.e. Aλ(x) := [M0]−xMλ(x). For convenience, we define G such that

M0 = exp(iG), hence G =
(

θ(E‖) 0

0 −θ(E‖)

)
,

and we drop the λ-dependence on Aλ(x). Then, A(x) satisfies the stochastic difference
equation

A(x + 1) − A(x) = [
e−i(x+1)GϒT λ

x+1ϒ
−1eixG − 1

]
︸ ︷︷ ︸

:=λZx+1

A(x). (40)

We remark that the matrices Zx+1 are independent of A(x) and E(Zx+1) = 0, hence A(x) is
a discrete-time martingale. The Zx are however oscillating in x due to the factors eixG. We
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can write

Zx = e−ixGRxe
ixG, λRx := e−iGϒT λ

x ϒ−1 − 1,

where Rx are i.i.d. matrix-valued random variables. From the explicit formula for T λ
x , we

can now check that the expression is indeed linear in λ. Note also that the 2N × 2N matrix
Zx contains only N independent random variables, namely the vx,z, z = 1, . . . ,N .

To gain some insight, we first replace Zx by Rx . That is, we consider the process D(x)

defined by

D(x + 1) − D(x) = λRx+1D(x), D(0) = 1. (41)

First we remark that, with appropriate conditions on the random variable vx,z, we have

λ

�λ−2s�∑
x=0

Rx

λ↘0−→
distr

R(s), for all s, (42)

where the matrix-valued Brownian motion R(s) is defined by replacing each random vari-
able vx,z in the definition of Rx by the Brownian motion Bz(s). Here z is the index ranging
from 1 to N . Of course, (42) is nothing more than a multidimensional version of the conver-
gence of random walk to Brownian motion. We emphasize that the 2N × 2N matrix entries
of R(x) are a linear combination of N independent Brownian motions only. It is not hard
to believe that the discrete-time process (41) converges to the solution of the corresponding
SDE

D(�λ−2s�) λ↘0−→
distr

D(s), where dD(s) = dR(s)D(s), D(0) = 1.

as is easily proven by standard martingale theory, see e.g. [14] and Sect. 4.
We now look for the analogue of the convergence (42) upon replacing Rx by Zx . Let us

first observe it, for example, at the level of the second moment. Indeed,

E

[(
λ

�λ−2s�∑
x=1

Zx

)
ij

(
λ

�λ−2s�∑
x′=1

Zx′

)
kl

]
= λ2

�λ−2s�∑
x=1

e−ix(Gi−Gj +Gk−Gl)E
[
(Rx)ij (Rx)kl

]
, (43)

where the indices i, j, k, l refer to a basis in which the matrix G is diagonal and the numbers
Gi,Gj , . . . are the eigenvalues. This is hence the basis in which the free transfer matrix
is diagonal, and the base vectors can be indexed by the double index (μ,q) where μ ∈
{1, . . . ,N} indexes the channels and q ∈ {+1,−1} is +1 for the left moving and −1 for the
right moving sectors. The eigenvalues are Gj = qθμ if j = (μ,q). Since E[(Rx)ij (Rx)kl] is
independent of x, (43) converges to

s · δGi−Gj ,Gl−Gk
E

[
(R·)ij (R·)kl

]
.

Thus, one can check that

λ

�λ−2s�∑
x=1

Zx

λ↘0−→
distr

Z(s), for all s, (44)
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where Z(s) is a matrix valued BM characterized by the covariances

E(Zij (s)Zkl(s)) = δGi−Gj ,Gl−Gk
E(Rij (s)Rkl(s)),

E(Z ∗
ij (s)Zkl(s)) = δGi−Gj ,Gl−Gk

E(R∗
ij (s)Rkl(s)).

It is in this place that we need to use Assumption 2. Indeed, Assumption 2 states that the
eigenvalues of the matrix G do not have any type of degeneracy, hence a condition like
(Gi − Gj + Gk − Gl) = 0 is only satisfied when i = k, j = l or i = j, k = l . In other
words, the fast oscillations originating from the free part of the transfer matrix kill most of
the correlations between matrix elements of Z(s). As a result, the number of independent
random variables in Z(s) is O(N2) whereas in R(s) it was O(N). In [28], this phenomenon
is called ‘noise explosion’.

Next, we calculate the nonvanishing covariances of Z(s) arising from our microscopic
model. The matrix Rx is given explicitly by

λRx = e−iGϒ(O∗ ⊗ 12)

(
E − Hxx −1N

1N 0

)
(O ⊗ 12)ϒ

−1 − M0
x

= −λe−iGϒ

(
Ṽx 0

0 0

)
ϒ−1

where Ṽx = Ṽ ∗
x was defined in Proposition 2. Hence

E
(
(R∗

x)ji(Rx)ij

) = E

∣∣∣∣∣
(

ϒ

(
Ṽx 0

0 0

)
ϒ−1

)
ij

∣∣∣∣∣ .
Recalling the definition of the map ϒ , we can write it explicitly as a matrix with diagonal
N × N blocks.

ϒ =
(

(iρ(E‖))−1/2 (iρ(E‖))−1/2

(iρ(E‖))−1/2 exp(−iθ(E‖)) (iρ(E‖))−1/2 exp(iθ(E‖))

)
, (45)

where ρ(E‖) = 2 sin θ(E‖). By direct calculation, we can now check that the covariance of
Z(s) agrees with that of the RHS of (37), i.e.

E|Zij |2 = E|(Rx)ij |2 = |σμν |2, i = (μ,±), j = (ν,±).

We now explain heuristically how this gives rise to Proposition 2. Recall that A(·) satisfies
the stochastic difference equation

A(x + 1) − A(x) = λZx+1A(x). (46)

Since Zx has zero mean and unit variance, it takes a time of order λ−2 for A(·) to change
appreciably. However, on this timescale, the oscillations in Z· are not longer visible and
one can hence replace λZ�λ−2s� ≈ dZ(s), i.e., by a time average on the fast time-scale, in
(46). This suggests that the scaling limit As of A(�λ−2s�), if it exists, must be a solution of
dA(s) = dZ(s)A(s), and hence Proposition 2 holds.
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4 Proof of the Scaling Limits

Proposition 2 is essentially a textbook result in homogenization theory, where one starts
from an evolution equation with a fast degree of freedom that evolves independently of
the slow degrees. In our case, the fast degrees of freedom are the oscillating phases in the
random variables Zx . For a treatment of these matters, we refer the reader to [15], where
one discusses a setup identical to our case (see Chaps. 6 and 7 of [15]). In fact, the only
difference is that our model is defined on the lattice instead of in the continuum (and hence
we can have independent random potentials instead of a rapidly decaying dependence in the
x variable). One can mimick the proof of [15] apart from the fact that we have to establish
tightness of processes with sample paths in DRd [0,∞[ instead of CRd [0,∞[.

For the sake of explicitness, we outline a proof based on an expansion. We first show
that the second, third and fourth moments of Ax converge to those of A(s) in a scaling
limit. Then, in Sect. 4.2, we invoke a standard result to eventually prove in Sect. 4.3 that the
convergence of moments is sufficient to conclude the proof.

4.1 Convergence of Moments

We will establish the convergence of fourth moments of Aλ(�λ−2s�) by a brutal, but
completely standard estimate. We use the assumption that the third and fourth moments
E(v3),E(v4) are finite.

Lemma 4 Let Pe, e = a, b, c, d be operators on C
2N with ‖Pe‖ = 1 and let se ∈ [0, τ ],

e = a, b, c, d for some finite τ .
Let (Aλ(x))# stand for either (Aλ(x))∗ or Aλ(x). Then∣∣E[

TrPa (Aλ(�λ−2sa�))#Pb(A
λ(�λ−2sb�))#Pc(A

λ(�λ−2sc�))#Pd(A
λ(�λ−2sd�))#

]
(47)

− E
[
TrPa(A(sa))

#Pb(A(sb))
#Pc(A(sc))

#Pd(A(sd))
#
]∣∣ ≤ C(λ, τ,N) (48)

where C(λ, τ,N) ↘ 0 as λ ↘ 0.

Proof To avoid too many constants, we will treat the case where se = τ , Pe = 1 and # are
chosen such that we take the adjoint of the first and third A. The general case is completely
analogous.

By iterating the difference equation (40), we obtain

(47) = E

(
Tr

τλ∏
xa=1

(1 + λZ∗
xa

)

τλ∏
xb=1

(1 + λZxb
)

τλ∏
xc=1

(1 + λZ∗
xc

)

τλ∏
xd=1

(1 + λZ∗
xd

)

)
(49)

where we have abbreviated τλ := �λ−2τ� and the Zxe are ordered with decreasing indices
and the Z∗

xe
have increasing indices. Evaluating the products yields

(49) = 1 +
∑
n>0

λn
∑
Pn

E Tr
((

Z∗
x1
a
· · ·Z∗

x
ma
a

)(
Z

x
mb
b

· · ·Zx1
b

)(
Z∗

x1
c
· · ·Z∗

x
mc
c

)(
Z

x
md
d

· · ·Zx1
d

))
︸ ︷︷ ︸

r(Pn)

. (50)

In (50), 1 ≤ x1
e < · · · < xme

e ≤ τλ are sites (elements of N), for e = a, b, c, d and some
numbers ma + mb + mc + md = n. The sum

∑
Pn

runs over all such sets of sites, such that
the E(·) is not zero, i.e. such that for each xi

e that appears in the set, there is at least one
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partner xi
e′ = xi

e with e′ �= e. This allows us to divide the sites that appear in the sets into
three classes: those that appear twice, three or four times. Let n2, n3, n4 be the number of
such sites. Then 2n2 + 3n3 + 4n4 = n. The number of Pn corresponding to (n2, n3, n4) is
estimated as

#{Pn : (n2, n3, n4) is fixed} ≤ (τλC
4
2)

n2

n2! · (τλC
4
3 )

n3

n3! · (τλC
4
4 )

n4

n4! ,

where C4
2,3,4 are binomial coefficients. For each choice of Pn,

|r(Pn)| ≤ (NE(v2))n2 · (NE(v3))n3 · (NE(v4))n4 .

This gives us an a-priori bound on the sum in (50):∑
n

λn
∑
Pn

|r(Pn)|

≤
∑

n2,n3,n4≥0

λ2n2+3n3+4n4
∑

Pn:(n2,n3,n4) fixed

|r(Pn)|

≤
∑

n2,n3,n4≥0

λ2n2+3n3+4n4 · (C4
2E(v2)Nτλ)

n2

n2! · (C4
3E(v3)Nτλ)

n3

n3! · (C4
4E(v4)Nτλ)

n4

n4!

≤
∑

n2,n3,n4≥0

(const · Nτ)n2

n2! · (const · λNτ)n3

n3! · (const · λ2Nτ)n4

n4!

≤ econst·Nτ , for any λ.

Hence, by dominated convergence, we can interchange the sum over n and the limit λ ↘ 0
to obtain

(49) = 1 +
∑
n>0

lim
λ↘0

λn
∑
Pn

r(Pn).

One can also see immediately that all terms with n3 �= 0 or n4 �= 0 vanish as λ ↘ 0. There-
fore, the sum over Pn reduces to a sum over pairings, each involving n = 2ν matrices Zm

x ,
and the expectation value is a simple product of ν covariances. Each such pairing can be
described by first specifying a ‘pattern’, namely from which group a, b, c, d the matrices
are drawn in each pair, and then the particular point x associated to each pair. Given a pat-
tern, we can use the same oscillatory argument that led to (44) to handle the limit of the sum
over all sets of points satisfying that pattern, thereby replacing sums over Zme

xe
by stochastic

integrals over Brownian motions dZ(sme
e ) (recall that the Kronecker δ’s are included in the

definition of Z(s)). Hence,

lim
λ↘0

λ2ν
∑
P2ν

r(P2ν)

=
∑

ma+mb+mc+md=2ν

E

(
Tr

∫
0<s1

a<···<s
ma
a <τ

dZ ∗(s1
a ) . . . dZ ∗(sma

a )

×
∫

0<s1
b
<···<s

mb
b

<τ

dZ(s
mb

b ) . . . dZ(s1
b ) ·

∫
0<s1

c <···<s
mc
c <τ

dZ ∗(s1
c ) . . . dZ ∗(smc

c )

×
∫

0<s1
d
<···<s

md
d

<τ

dZ(s
md

d ) . . . dZ(s1
d )

)
.
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As an illustrative example of the discussion above, we perform the computation explicitly
in the case ma = mb = 2,mc = md = 0. Then

λ2r(P2+2+0+0) = λ2
∑

x
1,2
a ,x

1,2
b

E
(
Tr(Z∗

x1
a
Z∗

x2
a
· Zx2

b
Zx1

b
)
)

= λ2
∑

1≤x1<x2≤τλ

E
(
Tr(Z∗

x1Z
∗
x2Zx2Zx1)

)

λ↘0−→ E

(
Tr

∫
0≤s1<s2≤τ

dZ(s1)∗dZ(s2)∗dZ(s2)dZ(s1)

)
(51)

= E

(
Tr

∫ τ

0

∫ s2
a

0
dZ(s1

a )
∗dZ(s2

a )
∗ ·

∫ τ

0

∫ s2
b

0
dZ(s2

b )dZ(s1
b )

)
(52)

where (51) follows from the convergence of the second moments, (44), and the Gaussian
property of the Brownian increments, and (52) by their independence for unequal times. We
note that the contraction pattern

Z∗
x1
a
Z∗

x2
a
Zx2

b
Zx1

b

does not appear because of the ordering of the matrix product. Moreover, the iterated Ito-

integrals are well-defined since
∫ s2

a

0 dZ(s1
a ) is an Ito-process which is adapted to the filtration

associated with the Brownian motion Z(s2
a ).

To conclude, we observe that the summation over n yields the stochastic Neumann series
associated to the SDE (34) in each of the four brackets, and therefore (48). �

In fact, one could repeat this proof for all moments if one assumes that all moments of
vx,z exist.

4.2 An Abstract Result on Convergence to Diffusions

Let Xn(t), n ∈ N, be a sequence of R
d -valued discrete time martingales, defined via the

discrete time stochastic difference equation

Xn(t + λ2
n) − Xn(t) = λn · ξn(t)Xn(t), t ∈ λ2

nN,

where λn ↘ 0 as n ↗ ∞, and ξn(t) = (ξn
ij (t))

d
i,j=1 are random variables with mean zero and

covariance

E(ξn
ij (t)ξ

n
kl(t

′)) = δt,t ′C
n
i,j,k,l(t), t, t ′ ∈ λ2

nN.

We assume that the functions Cn
i,j,k,l(·) are uniformly bounded and

∫ τ

0
dsf (s)Cn

i,j,k,l(s)
n↗∞−→ σijσkl

∫ τ

0
dsf (s), for any f ∈ C(R). (53)

The jump process Xn is viewed as a process in continuous time whose sample paths belong
to DRd [0,∞[, the space of right-continuous functions with left limits, equipped with the
Skorohod topology. The set of jump times tJ is thus λ2

nN. In this context, we shall denote by
Xn(tJ −) the left limit of the sample path of Xn at tJ .
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The following lemma is a version of Theorem 4.1 in Chap. 7 of [14], simplified such as
to match the setup above.

Lemma 5 (Convergence to diffusions) Let X be a R
d -valued diffusion process X defined

as the unique strong solution of the SDE

dXi (s) =
∑

j

σij Xj (s)dBj (s), X (0) = c ∈ R
d ,

with respect to the filtration generated by the d-dimensional Brownian motion B(s). Assume
that

• The processes

Wn
ij (s) :=

∑
k,l

Cn
i,k,j,l(s)X

n
k (s)X

n
l (s)

satisfy

sup
0≤t≤τ

∣∣∣∣
∫ t

0
ds

(
Wn

ij (s) −
∑
k,l

σikσjlX
n
k (s)X

n
l (s)

)
︸ ︷︷ ︸

=:Yn
ij

(t)

∣∣∣∣ n↗∞−→
distr

0; (54)

• The jumps of Xn become small in the sense that

E
(
sup tJ ∈[0,τ ]|Xn

i (tJ ) − Xn
i (tJ −)|2) −→ 0, (55)

E
(
sup tJ ∈[0,τ ]|Wn

ij (tJ ) − Wn
ij (tJ −)|) −→ 0, n ↗ ∞, (56)

where the sup ranges over all jump time tJ .

Then,

Xn n↗∞−→
distr

X

on the space DRd [0,∞[.

Note that

Xn
i (t)X

n
j (t) −

∫ t

0
dsWn

ij (s)

are martingales with respect to the filtration generated by Xn(t), as required by Theorem 4.1
in Chap. 7 of [14].

4.3 Proof of Proposition 2

To prove Proposition 2, we use Lemma 5 with Xn(s), resp. X (s), the R
d -valued processes

containing all real and imaginary parts of the matrix elements of Aλ(�λ−2s�), resp. A(s),
(hence d = 2(2N)2) and with n labeling a sequence λn such that λn ↘ 0 as n ↗ ∞. The
functions Cn

i,j,k,l(·) are the oscillating covariances of the random variables Zx , see Sect. 3.2.
Lemma 4 yields that all 4th moments of Xn converge to those of X as n ↗ ∞, uniformly

on compacts, i.e.

sup
{si }∈[τ,τ ′]

[
E

(
Xn

i1
(s1)X

n
i2
(s2)X

n
i3
(s3)X

n
i4
(s4)

) − E
(

Xi1(s1)Xi2(s2)Xi3(s3)Xi4(s4)
)] −→ 0, (57)
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and we note that the same argument can be repeated to provide the convergence of 2nd and
3rd moments.

We check condition (54) of Lemma 5. First, by the definition of Y n, and using the uniform
bound on the fourth moments of Xn, we observe that for any t, t ′ ∈ [0, τ ] and for all i, j =
1, . . . , d ,

E
∣∣Y n

ij (t
′) − Y n

ij (t)
∣∣2 ≤ (t − t ′)2C,

and C < ∞ can be chosen independent of n. The Chebyshev inequality then reads

P
(∣∣Y n

ij (t
′) − Y n

ij (t)
∣∣2

> b
) ≤ 1

b
(t − t ′)2C. (58)

To show that this yields the convergence (54), let us assume that the random variable there
does not vanish in distribution. That implies in particular that there is a sequence of times
tm ∈ [0, τ ], and some constants c, c′ > 0 such that;

P
(|Y m

ij (tm)| > c
)
> c′, for all m. (59)

Let t̄ be an accumulation point of the sequence (tm). Then (59) implies that either
P(|Y m

ij (tm) − Y m
ij (t̄)| > c/2) > c′/2, which is excluded by (58), or P(|Y m

ij (t̄)| > c/2) > c′/2.
But the latter can also be excluded by observing that, as m → ∞,

E(|Y m
ij (t̄)|2) −→ 0.

This follows by the convergence of fourth moments, the continuity of sample paths of X
and the weak convergence (53). Hence, condition (54) is proven.

We now turn to condition (55). Recalling that Xn(tJ ) − Xn(tJ −) = λn · ξn(tJ )Xn(tJ ) for
any jump time tJ , we have for any α > 0 and b > 0,

P
(
sup tJ ∈[0,τ ]|Xn

i (tJ ) − Xn
i (tJ −)| > b

)
≤ λ−2

n · sup
tJ

P
(|λn · ξn

ij (tJ )Xn
j (tJ )| > b

)

≤ λ−2
n · sup

tJ

1

bα
E|λn · ξn

ij (tJ )Xn
j (tJ )|α

≤ 1

bα
· λ−2+α

n · sup
tJ

(
E|ξn

ij (tJ )|αa
)1/a(

E|Xn
j (tJ )|αa′)1/a′

, 1/a + 1/a′ = 1

where the first equality follows from the fact that there are λ−2
n jumps in the interval [0, τ ],

the second and third are Chebyshev and Cauchy-Schwartz inequalities, respectively. If a, a′
are chosen so that αa′ ≤ 4 and E|ξn

ij (tJ )|αa < ∞, the last expression is bounded by

1

bα
· O(λ−2+α

n ).

Let now b > 1. To conclude, we compute

E(sup tJ ∈[0,τ ]|Xn
i (tJ ) − Xn

i (tJ −)|2)

≤ λ
−2+α

2α
n + P(|Hn| ∈ [λ−2+α

2α
n ,1]) +

∞∑
k=0

E(|Hn|2∣∣|Hn| ∈ [bk, bk+1]) · P(|Hn| ∈ [bk, bk+1])

≤ λ
−2+α

2α
n + O(λ

−2+α
2

n ) + O(λ−2+α
n ) ·

∞∑
k=0

b2(k+1) · b−kα,
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where we have abbreviated Hn = suptJ ∈[0,τ ] |Xn
i (tJ ) − Xn

i (tJ −)|. Condition (55) follows by
noting that the choice α > 2 ensures both the finiteness of the series and the convergence of
the expectation value to zero. Finally, Condition (56) follows by a similar argument. This
concludes the proof of Proposition 2. �

Note that α > 2 implies a > 2 and therefore αa > 4, whence the need to control higher
moments of the potential v, see (26).

4.4 Proof of Proposition 3

To prove Proposition 3, we note that, for H⊥ as in (38), the basis of eigenfunctions ψμ

consists simply of the exponential functions on Z/NZ, independently of γ . Hence,

E|Ṽμν |2 = 1/N, independently of μ,ν.

Since h⊥ ↘ 0, also E⊥(μ) ↘ 0 for all μ and hence E‖(μ) → E and θμ → θ where θ is the
solution of 2 cos θ = E. This means that

(σμν)
2 → 1

4(1 − (cos θ)2)
= 1

4(1 − (E/2)2)
,

which fixes the scale factor c in the RHS of (39). Since both the processes A and M are
solutions of SDE’s with smooth and uniformly bounded coefficients, convergence of the
solutions follows from convergence of the coefficients, see e.g. Chap. 11 in [26]. �
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