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Abstract of the Dissertation

Ageostrophic Instabilities of Interior Horizontal and
Vertical Shear Flows

by

Peng Wang
Doctor of Philosophy in Atmospheric and Oceanic Sciences

University of California, Los Angeles, 2012

Professor James. C. McWilliams, Chair

This dissertation mainly addresses the generic types of ageostrophic instability in gen-

eral continuously differentiable, interior, horizontal and vertical shear flows without

special ”edges” (vertical, side or equatorial boundaries or frontal outcropping). In con-

trast to the classic barotropic and baroclinic instabilities, whose nonlinear dynamics

(geostrophic turbulence) have an “inverse cascade” characteristic, the ageostrophic in-

stabilities serve as a local route for the breakdown of balance in the interior ocean or

atmosphere, leading to an efficient energy cascade towards small scales. For the first

part of this dissertation, the linear instabilities, both momentum-balanced and unbal-

anced, in several different u(y) shear profiles are investigated in the rotating shallow

water equations. The unbalanced instabilities are strongly ageostrophic and involve

inertia-gravity wave motions, occurring only for finite Rossby (Ro) and Froude (Fr)

numbers. Aside from the classic shear instability among balanced shear wave modes

(i.e., B-B type), two types of ageostrophic instability (B-G and G-G) are found. Here B

represents balanced shear wave mode, and G represents inertia-gravity wave mode. The

B-G instability has attributes of both a balanced shear wave mode and an inertia-gravity

wave mode. The G-G instability occurs as a sharp resonance between two inertia-

gravity wave modes. The criterion for the occurrence of the ageostrophic instability is

associated with the second stability condition of Ripa [1983], which requires a suffi-
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ciently large local Froude number. When Ro and especially Fr increase, the balanced

instability is suppressed, while the ageostrophic instabilities are enhanced. The profile

of the mean flow also affects the strength of the balanced and ageostrophic instabilities.

For the second part of this dissertation, the linear instabilities of several rotating, stably

stratified, interior vertical shear flows U(z) are solved in Boussinesq equations. Two

types of baroclinic, ageostrophic instability, AI1 and AI2, are found in antisymmetric

U(z) for intermediate Rossby number (Ro). AI1 is a stationary (zero frequency) insta-

bility, which appears in a continuous transformation of the unstable mode properties

between classic baroclinic instability (BCI) and centrifugal instability (CI). It begins to

occur at intermediate Ro values and horizontal wave numbers (k, l) that are far from l

= 0 or k = 0. AI1 grows by drawing energy from the kinetic energy of the mean flow.

The instability AI2 always has inertial critical layers at certain heights; and hence it

is associated with an inertia-gravity wave. For an unstable AI2 mode, the coupling is

either between an interior balanced shear wave and an inertia-gravity wave (B-G), or

between two inertia-gravity waves (G-G). The main energy source for an unstable B-G

mode is the mean kinetic energy, while the main energy source for an unstable G-G

mode is the mean available potential energy. AI1 and AI2 of the B-G type occur in

the neighborhood of A − S = 0 [McWilliams et al., 1998], while AI2 of the G-G type

arises beyond this condition (A− S denotes absolute vertical vorticity minus strain rate

in isentropic coordinates). Both AI1 and AI2 are unbalanced instabilities, which lead

to a loss of balance in 3D interior flows.
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CHAPTER 1

Introduction

1.1 Balanced Dynamics and Loss of Balance

The general circulation of the ocean is constrained by approximately “balanced” dy-

namics, i. e., mostly geostrophic in horizontal momentum and hydrostatic in verti-

cal momentum. The circulation is strongly influenced by rotation ( f , 0) and stable

stratification (N2 > 0), with a small Rossby number Ro = U0/ f L and Froude number

Fr = U0/NH, where U0 is the characteristic velocity scale, f and N are Coriolis and

buoyancy frequencies, and L (H) is the horizontal (vertical) length scale. For mesoscale

eddies in the ocean, the Ro and Fr are typically not large, and they are also approxi-

mately balanced motions. The balanced dynamics belong to the “slow manifold” of

advection and potential vorticity dynamics, which are manifested by an approximate

model called Balanced Equations. As Ro→ 0, quasi-geostrophic equations are asymp-

totically accurate as Balanced Equations. For finite Ro, the Balanced Equations man-

ifest a higher-order momentum balance (e.g., gradient-wind balance) [Charney, 1962,

Lorenz, 1960]. In contrast, the “fast manifold”, which is excluded from the balanced

dynamics, is categorized as “unbalanced” motions, whose primary paradigm is inertia-

gravity waves. The general circulation is forced on the planetary scale, and the majority

of kinetic and available potential energy is maintained on the planetary and mesoscale

scales. On the other side, the kinetic energy dissipation is only effective on the molec-

ular scale. How is the energy transferred towards small scales and finally dissipated?

The nonlinear dynamics in the balanced flows, geostrophic turbulence, is understood

to be a very inefficient route due to its “inverse cascade” [Charney, 1971]. Therefore,
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breakdown of balance, manifested as an energy transfer to unbalanced motions, can be

an important route for a forward turbulent energy cascade and dissipation.

The boundary regions (e.g., turbulent boundary layer, bottom topography, and coast)

are generally known as places where the flows lose their balance and dissipation oc-

curs. However, the dissipation of energy in boundary regions is not enough to cover the

whole water volume in the ocean. Figure 1.1 presents the major energy reservoirs, their

sources and interchanges in the ocean based on the estimation from observation. Green

denotes primarily ageostrophic motions, blue denotes the motions that are dominantly

in geostrophic balance, and red denotes forcing. Besides the solar and lunar tidal cycle

(the left energy route in the figure), most of the energy which drives the general circu-

lation comes from the surface wind and heat forcing. Note that most of the wind flux

work (68TW out of 69TW) is dissipated right away by the surface wave breaking, and

hence this fraction of wind forcing is not involved in maintaining the circulation. A

majority of the forcing energy that participates in the general circulation (0.8TW out of

1TW) finally goes to the interior ocean that is roughly below 100m (below the bound-

ary mixed layer). The interior ocean is a big reservoir of kinetic and available potential

energy, but the mechanisms and rates for the energy dissipation there through the loss

of balance is still unclear (indicated by the yellow box along the right energy route).

The eddy diffusivity (or dissipation rate) is a necessary and important parameter in the

large-scale ocean models. Many schemes that proposed for the parameterization of

eddy diffusivity are for turbulent boundary layers. The interior eddy diffusivity is much

less studied hence poorly determined [Bryan, 1987, Gargett, 1984], mainly due to the

difficulty to reach high-resolution observation in the interior ocean, and the incomplete

understanding of the small-scale dynamics there. Studying the mechanism how the en-

ergy is transferred from the balanced mesoscale eddies to those unbalanced fluctuations

in the interior ocean can help us to have a clearer knowledge of submesoscale dynamics

and further do a better job on the eddy diffusivity parameterization.

Therefore, identifying a local route for a loss of balance and forward energy cas-
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Figure 1.1: A presentation of the major energy reservoirs, their sources and inter-

changes for the ocean. Transfers are in terawatts (TW = 1012W), and reservoir values

are in exajoules (EJ = 1018J) except for the time-mean general circulation which is in

yottajoules (YJ = 1024J). More explanation about the figure is in the text part of Sec.

1.1. Figure from Ferrari and Wunsch [2010].
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cade in the interior ocean is an important, fundamental geophysical fluid dynamical

problem. It is not yet generally understood. The classic barotropic [Drazin and Reid,

1981, Poulin and Flierl, 2003] and baroclinic [Charney, 1947, Eady, 1949, Phillips,

1954] instabilities, which are associated with the inflection point (where potential vor-

ticity gradient changes sign) in the velocity profile [Rayleigh, 1880], occur within the

constraints of balance, hence are not likely to be a route for the breakdown of balance.

The purpose of our work is to look for possible types of ageostrophic instability that

can provide a local route to a loss of balance in the interior flows.

1.2 Ageostrophic Instabilities

There are a few types of classic ageostrophic instability that have been well studied.

Gravitational instability [Chandrasekhar, 1961], which occurs when the stratification is

unstable (N2 < 0), is a very early stage for the convective turbulence. Centrifugal insta-

bility [Ooyama, 1966] occurs where the Ertel potential vorticity changes sign (PVErtel <

0); it greatly enhances the local vertical motions. Kelvin-Helmholtz instability [Miles,

1961] starts when there is strong vertical shear in a stratified flow (Ri = N2/U2
z <

1
4 ,

where Ri is Richardson number), and it induces vertical overturning and diapycnal mix-

ing. These ageostrophic instabilities were originally identified in a non-rotating regime

and have been well examined in laboratory experiments. Other than these classic ones,

the previous literature has proposed a couple of theoretical frameworks and identified

several types of ageostrophic instability.

1.2.1 Theoretical Framework

Ripa [1983] derives two sufficient stability conditions for a rotating shallow water par-

allel flow: if there exists any constant value of α such that
[
α −U(y)

]
dQ(y)/dy > 0 and[

α − U(y)
]2 6 H(y) for all y, then the flow is stable to infinitesimal perturbations. Here

U(y), H(y) and Q(y) are the mean flow velocity, total water depth and potential vortic-
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ity, respectively. His first condition is related to the Rayleigh’s inflection point criterion

(associated with the barotropic instability), and the second one refers to a local Froude

number Fr condition. The second condition by Ripa [1983] provides us a theoretical

direction on the ageostrophic instability in rotating shallow water or hydrostatic layered

flows. The conditions are generalized by Ripa [1991] in a multi-layer model; however,

they cannot be asymptotically applied to a continuously stratified fluid due to its lack of

a lower bound on the inertia-gravity wave horizontal phase speed at high wavenumber,

in contrast to a shallow-water fluid with lower bounds on both its vertical length scale

and horizontal phase speed.

McWilliams et al. [1998] proposed three sufficient conditions for the occurrence

of the breakdown of balanced evolution in a 3D stratified flow, which are associated

with three types of ageostrophic instability. These conditions are: 1) sign change of

stratification N2, which is related to the gravitational instability; 2) sign change of the

absolute vertical vorticity on isentropic surfaces A (proportional to PVErtel), which is

related to the centrifugal instability; 3) sign change of A−S , where S is the magnitude of

horizontal strain rate in the isentropic coordinates, hence it is necessarily positive. The

third condition can be satisfied in more common situations, with a moderate but finite

Ro. Because A tends to be small in anticyclonic flows, the instabilities that are relevant

to the A − S condition are often called anticyclonic, ageostrophic instability (AAI).

Unlike the other two criteria (N2 = 0 and A = 0), the occurrence of AAI may be in the

neighborhood of, rather than precisely at, A−S = 0. The above three conditions require

a fully 3D structure of the unstable modes, hence are more relevant to the ageostrophic

instabilities in a 3D stratified flow than the Ripa [1983] condition for a shallow water

layer.

1.2.2 Earlier Studies on Ageostrophic Instability

Several types of ageostrophic instability have been identified in shallow water or hydro-

static layered flows. In a non-rotating shallow water model, Satomura [1980] and Balm-
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forth [1999] study wall-bounded flows (a Couette flow with zero potential-vorticity

gradient and a hyperbolic tangent flow with small potential-vorticity gradient, respec-

tively), suggesting there is an instability when the gravity waves resonate. With a ra-

diating boundary condition, Satomura [1980] also identifies a type of radiating un-

able gravity waves. In an equatorial, zero potential vorticity front, Hayashi and Young

[1987] find a type of ageostrophic instability triggered by the resonance between two

Kelvin waves. Dritschel and Vanneste [2006] examine a geostrophic potential vor-

ticity front and find a weakly unstable ageostrophic mode that is associated with the

potential vorticity discontinuity and far-field inertia-gravity waves. Beginning with Or-

lanski [1968] and Mechoso and Sinton [1983], who study a variety of instabilities in a

long-wave limit with a two-layer frontal model, both geostrophic and ageostrophic in-

stabilities are found in a geostrophic surface-frontal flow, a. k. a., a flow with a vanish-

ing layer depth where the bounding interface “outcrops” (and quasigeostrophic theory

based on Ro, Fr → 0 fails). The frontal-trapped mode is stable in a one-layer shallow

water frontal flow with uniform potential vorticity [Paldor, 1983]. With another nearby

front or non-uniform potential vorticity in the flow, the frontal mode becomes unsta-

ble, by interacting with another frontal mode or the shear mode [Griffiths et al., 1982,

Kubokawa, 1985]. With a nearby side boundary, the interaction of the frontal-trapped

mode and the coastal-trapped mode (Kelvin wave mode) leads to an ageostrophic insta-

bility [Gula and Zeitlin, 2010, Kubokawa, 1986]. With the addition of an active second

layer, the frontal flow has non-uniform potential vorticity, and the frontal mode, the

shear mode, and the gravity wave mode lead to different combinations of resonance

with several types of instability [Boss et al., 1996, Gula et al., 2010, Killworth et al.,

1984]. Sakai [1989], followed by Gula et al. [2009a,b], and Sutyrin [2007], finds a type

of ageostrophic instability caused by a resonance between a shear wave and a boundary

Kelvin wave in a channeled, purely baroclinic, two-layer hydrostatic flow. Iga [1999]

extends the Sakai [1989] baroclinic case to a mixed barotropic and baroclinic flow in

a channeled, two-layer model (non-uniform velocity in the lower layer), and finds the
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possibly of a resonance between an upper-layer gravity wave and a lower-layer shear

wave. The baroclinic, asymmetric centrifugal instability is examined by Bouchut et al.

[2011] in a barotropic Bickley jet in a two-layer shallow-water model.

Several 3D instability problems were solved in a rotating, stratified barotropic flow:

an elliptical flow with uniform potential vorticity [McWilliams and Yavneh, 1998], a

centrifugally stable Taylor-Couette flow [Molemaker et al., 2001, Yavneh et al., 2001],

a geostrophic boundary current with uniform potential vorticity [McWilliams et al.,

2004], and a horizontal plane couette flow [Vanneste and Yavneh, 2007]. All these

studies identify the ageostrophic instabilities as a type of AAI, and their growth rates

have an inverse exponential dependence on Ro. de La Cruz-Heredia and Moore [1999]

find an ageostrophic, barotropic instability due to the coupling of a shear wave and a

Kelvin wave in a bounded piecewise linear shear with a discontinuity. In the bounded

barotropic flows [de La Cruz-Heredia and Moore, 1999, McWilliams et al., 2004, Mole-

maker et al., 2001, Vanneste and Yavneh, 2007, Yavneh et al., 2001], at least one Kelvin

wave is involved in the ageostrophic instability. The ageostrophic instability in an Eady

flow (a baroclinic flow) is well understood from earlier studies [Molemaker et al., 2005,

Nakamura, 1988, Plougonven et al., 2005, Stone, 1966]. It is interpreted as a coupling

between an edge Rossby wave and a Doppler-shifted inertia-gravity wave. Its growth

rate strongly increases near the neighborhood of A − S = 0, hence it is also identified

as a type of AAI. An ageostrophic instability which couples topographic Rossby waves

and inertia-gravity waves is found by Sutyrin [2008] in a stratified layer of fluid be-

tween two homogenous layers, with constant A and S , and A-S , 0. To examine the

instabilities in a stratified flow of a mixed barotropic and baroclinic type, Moore and

Peltier [1987, 1990] and Snyder [1995] study a two-dimensional front with uniform po-

tential vorticity, and are not able to find small-scale ageostrophic instabilities. Yamazaki

and Peltier [2001a,b] revisit the problem by adding a small potential vorticity variation

cross the front; they find several small-scale instabilities, but it is not clear whether the

unstable modes were well resolved. Barth [1994] examines a thermal-wind balanced
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coastal jet (front) with a realistic stratification, and finds a surface-trapped, baroclinic,

small-scale instability, the nature of which is yet unclear. Recently Ménesguen et al.

[2012] study the ageostrophic instability in a stratified, interior jet with both barotropic

and baroclinic shear, and find the characteristics of the unstable modes are transformed

through a near-degeneracy in the neighborhood of A − S = 0.

1.2.3 Physical clarification of the A − S condition

As mentioned in Sec. 1.1, the large-scale and mesoscale flows are within the constraints

of “balanced” dynamics. It is strongly controlled by rotation and stable stratification,

and is hydrostatic in vertical momentum and gradient-wind balanced in horizontal mo-

mentum (the horizontal diagnostic force balance is among Coriolis force, centrifugal

force and pressure gradient force). This simplified fluid dynamical system is described

by a set of Balanced Equations, which are a set of asymptotically consistent approxi-

mations built around the diagnostics of force balance in the larger scale motions. The

Balanced Equations are not unique; for instance, the quasigeostrophic equations are

one set of Balanced Equations with an accuracy of O(Ro). Many Balanced Equations

have been formulated [Charney, 1962, Lorenz, 1960], which have a higher accuracy

of O(Ro2) than the quasigeostrophic model. As a partial differential equation system,

the Balanced Equations do not have a solution in some particular parameter regime or

flow configurations. For instance, in a gradient-wind balanced anticyclone, the pressure

cannot have an extreme maximum. The solvability conditions show that there are sin-

gularities in the time integration of Balanced Equations when some critical conditions

are satisfied anywhere in the domain. These critical conditions are called “limit of bal-

ance”. Once beyond the conditions, the balanced time evolution would break down and

the flows are no longer “balanced” and cannot be described by a balanced model. Fur-

thermore, the unbalanced fluctuations would begin to evolve and grow; hence the limits

for the time evolution of balanced model are very likely to relate with the onset con-

ditions of unbalanced (ageostrophic) instabilities, which would not occur in Balanced

8



Equations and generate unbalanced fluctuation when the balanced time integration is

broken down.

The solvability of a particular set of O(Ro2) Balanced Equations are analyzed by

McWilliams et al. [1998] and three precise conditions for the limits of time integra-

tion of Balanced Equations are given. The solvability conditions must be satisfied in

initial conditions and anytime in the time integration to keep the motions stay in the

constraints of balance. The first two conditions (N2 changes sign and A changes sign)

are consistently associated with two classic ageostrophic instabilities. The third condi-

tion, A − S changes sign, is not familiar to us. A − S must be positive in a balanced

flow in order to be able to solve the gradient-wind balance equation for the horizontal

streamfunction by inverting the operator of the Monge-Ampere equation with a nonzero

divergence of the pressure gradient force on its right-hand side. Therefore, the A − S

sign change implies inability to time integrate the Balanced Equations, hence necessar-

ily a growth of unbalanced flow. However, it is yet unclear how this relates to the linear

instability problem for fluctuations about a balanced basic-state flow. We name the in-

stability that is associated with this A − S condition as an AAI. As mentioned in Sec.

1.2.2, several types of flow [McWilliams and Yavneh, 1998, McWilliams et al., 2004,

Ménesguen et al., 2012, Molemaker et al., 2001, 2005, Yavneh et al., 2001] have been

examined and AAI are found in those flows. Although all the AAI are not the same,

two common points are found: 1) Not like the other two ageostrophic instabilities (GI

and CI), the occurrence of AAI may be in the neighborhood of, rather than precisely

at, A − S = 0; its growth rate vanishes as Ro → 0 and strongly increases beyond the

Ro where A − S = 0; 2) Almost all the AAIs involve at least an inertia-gravity wave

or a Kelvin wave coupled to the mean shear. These two characteristics are quite dif-

ferent from GI, CI or any other known 3D instability in stratified flows, which implies

a new type of broadly existing instability. The theoretical prediction in Molemaker

et al. [2001] and Yavneh et al. [2001] is validated by Le Bars and Le Gal [2007], who

examine a stably stratified Taylor-Couette flow and observe the AAI in the form of non-
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axisymmetric oscillating modes. The modes do not exist in quasigeostrophic limit, and

is non-centrifugal and non-gravitational. In their work, the instability appears when

two vertically counter-traveling helicoidal waves superimpose and resonate. Perhaps

more future lab experiments on different types of mean flow would help us for a full

physical picture of the A − S condition and AAI.

1.3 Objectives and Layout of This Dissertation

Most of the examined flows are special, simplified cases: the occurrence of an ageostrophic

instability relies on the existence of boundaries, equator, surface outcropping, or sin-

gular potential vorticity, which support particular neutral mode types (e.g., boundary-

trapped wave, Kelvin wave, frontal wave, singularity-trapped wave). Our work aims

to study the generic characteristics of ageostrophic instability in more general mean

flows (continuously differentiable interior flows U(y) and U(z) with a continuous, non-

uniform potential vorticity, and without vertical and side boundaries or surface outcrop-

ping), which can provide us a comprehensive guide to understand the possible process

for the loss of balance in the interior atmosphere and ocean. If we review the criteria of

currently known linear instability conditions with increasing Ro and Fr, the instabilities

appear in the following order: barotropic or baroclinic instability (the only type that ex-

ists in the quasigeostrophic regime), anticyclonic, ageostrophic instability (AAI), cen-

trifugal instability (CI), Kelvin-Helmholtz instability (KHI), and finally gravitational

instability (GI) when the flow is unstably stratified. Our goal is to understand a general

local route for the loss of balance within the control of rotation and stable stratification,

so we are more interested in the ageostrophic instabilities that occur for an intermedi-

ate Ro and Fr (below the criteria for CI, KHI and GI). We solve the linear instability

problem of an interior horizontal shear U(y) in a single-layer, f -plane shallow-water

model, and that of an interior vertical shear U(z) in a f -plane, constant-stratification

Boussinesq model.
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The parallel mean flows we examine are idealized flows, while the real mesoscale

eddies are more complicated vortices. The flows we study can be treated as cross-

sections of vortices; the instability analysis of these simpler flows is easier to be solved

hence can provide us a more complete view of all the possible instabilities. Although

the behaviors of parallel flows and vortex flows are different, but the main conclusions

such as the criterion for the instability, the dynamical mechanism would be similar.

The mesoscale eddies have a typical length scale of 10 to 100 km, with a horizontal

velocity scale 0.05 to 0.5 m/s, and a vertical velocity scale 0.01 m/s. Figure 1.2 shows

an example of global distribution of mesoscale eddies by satellite data. The eddies are

generated by the large-scale circulations through barotropic and baroclinic instabilities.

If a mid-latitude eddy (where f is typically 10−4/s) has a horizontal length of 10 km and

horizontal velocity of 0.5 m/s, the Ro for this eddy would be 0.5. Our shear flows do not

have a very large Ro, so they are still be able to represent the realistic regimes. A typical

length scale for submesoscale flows is 1 km and they have a large vertical velocity due

to strong horizontal divergence (0.1 m/s or larger), so we expect the resulted unstable

fluctuations to have a much smaller horizontal scale compared to the mean shear. In

the problems that we solve, the influence from the large-scale circulation (∼ 1000 km)

is not considered.

In the shallow water model, because there is no interior stratification and the hor-

izontal velocity is depth-independent, the baroclinic (BCI), gravitational, centrifugal,

and Kelvin-Helmholtz instabilities do not occur. In a 3D stratified flow, all those insta-

bilities could exist if the onset condition is satisfied. With the linear instability analysis

approach, the following questions are mainly addressed in our work: 1) What is the

generic type of ageostrophic instability of an interior barotropic shear flow in a rotating

shallow water fluid? 2) What is the generic type of ageostrophic instability of an inte-

rior baroclinic shear flow with A (or PVErtel) > 0 in a rotating, stably stratified fluid? 3)

How do the criteria of these instabilities relate to the theoretical frameworks discussed

in Sec. 1.2.1? 4) What are the dynamical mechanisms for the ageostrophic instabili-
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Figure 1.2: An example of global mesoscale eddy distributions (sea surface height field)

on 28 August 1996 constructed from the merged T/P and ERS-1 data after spatially

high-pass filtering with half-power filter cutoffs of 20o of longitude by 10o of latitude.

Figure from Chelton et al. [2011].

ties? Is there a difference between a shallow-water or layered flow, and a continuously

stratified flow?

In this Dissertation, Chapter 2 presents the study of ageostrophic instability in ro-

tating shallow water equations, including general types of instability found in the mean

flows (B-B, B-G and G-G), the criterion for their occurrence, associated dynamical

mechanism, and a nonlinear example for the ageostrophic instability. The character-

istics of two types of ageostrophic instability (AI1 and AI2) in a stratified, interior

baroclinic shear flow in Boussinesq equations, including their physical mechanisms,

Ro dependence, balance diagnostics, and energetics are demonstrated in Chapter 3.

This dissertation is summarized with discussion and future questions in Chapter 4.
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CHAPTER 2

Ageostrophic Instability in Rotating Shallow Water

This chapter solves the linear instability problem in a single-layer, uniformly-rotating

(non-equatorial) shallow-water model for several balanced mean shear profiles u(y)

with a continuous, non-uniform potential vorticity, and without side boundaries or van-

ishing layer depth. We are searching for the generic type of ageostrophic instability,

the criterion for its occurrence, and the associated dynamical mechanism. Note that be-

cause there is no interior stratification and the horizontal velocity is depth-independent,

the baroclinic, gravitational, centrifugal, and Kelvin-Helmholtz instabilities do not oc-

cur. Section 2.1 specifies the equations, the non-dimensional parameters, and the mean

flows. A general picture for the neutral and unstable modes is shown in Sec. 2.2, fol-

lowed by a detailed study for each type of instability in Sec. 2.3 and 2.4. Section 2.5

examines Ro and Fr dependence, the degree of ageostrophy, and the energy diagnos-

tics for the instabilities. A nonlinear example of the ageostrophic instability is shown

in Sec. 2.6. Sec. 2.7 is a brief summary of main conclusions.
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2.1 Shallow Water Equations and Mean Flows

We study the instability problem in a f -plane rotating conservative shallow water model,

with dimensional equations,

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y
− f v + g′

∂h
∂x

= 0

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ f u + g′
∂h
∂y

= 0

∂h
∂t

+
∂(uH)
∂x

+
∂(vH)
∂y

= 0 ,

(2.1)

where f is the coriolis frequency, g′ is the reduced gravity, and H = H0 + h is the total

water depth, with H0 the average value. h is the surface elevation, and u and v are zonal

and meridional velocities, respectively. The equations can be non-dimensionalized to

yield two independent parameters: Rossby number Ro and Froude number Fr,

Ro =
U0

f L
, Fr =

U0
√

g′H0
,

where U0 is the velocity scale of the mean flow and L is the horizontal scale of the mean

shear. We decompose the variables into the mean parallel flow and the fluctuations:

u = u(y) + u′(x, y, t) , v = v′(x, y, t) , h = h(y) + h′(x, y, t).

The non-dimensional linearized fluctuation equations are

Ro(
∂u′

∂t
+ u

∂u′

∂x
+ v′

∂u
∂y

) − v′ +
∂h′

∂x
= 0

Ro(
∂v′

∂t
+ u

∂v′

∂x
) + u′ +

∂h′

∂y
= 0

Fr2(
∂h′

∂t
+ u

∂h′

∂x
+ v′

∂h
∂y

) + (Ro + Fr2h)(
∂u′

∂x
+
∂v′

∂y
) = 0 ,

(2.2)

with the mean flow in geostrophic balance, u = −dh/dy. Assuming the solutions have a

form (u′, v′, h′) = Re[(û(y), v̂(y), ĥ(y))ei(kx−ωt)] , where k is the downstream (x-direction)
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wavenumber and ω is the wave frequency, then we have an eigenvalue problem:
kRou −i(Ro∂u

∂y − 1) k

−i kRou −i ∂
∂y

k(Ro + Fr2h) −i
(
Fr2 ∂h

∂y + (Ro + Fr2h) ∂
∂y

)
kFr2u




û

v̂

ĥ


= ω


Ro 0 0

0 Ro 0

0 0 Fr2




û

v̂

ĥ

 .
(2.3)

Note that all the mentioned variables will be non-dimensional henceforth.

We examine four types of mean flow: the Bickley jet ( j = 1), the cyclonic and

anticyclonic double jet ( j = 2), the triple jet ( j = 3), whose analytical forms are

u = A1cosh−2y ( j = 1) , (2.4)

u = −A2ye−y2
or u = A2ye−y2

( j = 2) , (2.5)

u = A3(1 − 2y2)e−y2
( j = 3) , (2.6)

respectively. A1, A2 and A3 are positive constants. The value of A3 is set such that

hmax = 1 in j = 3, and the j = 1 and 2 mean flows are normalized to have the same

umax − umin by adjusting the value of A1 and A2. The u(y) and h(y) mean profiles are

shown in Fig. 2.1. The j = 3 mean flow is more general in the sense that it contains

a Bickley jet in the center, an anticyclonic shear on the left, and a cyclonic shear on

the right. The total water depth should be positive, which implies a limitation of the

existence of the mean flow (that has hmin < 0) in the (Ro, Fr) space. The condition

H = H0 + h
∗

> 0 (where ∗ denotes dimensional variables) implies Fr2

Ro

∣∣∣hmin

∣∣∣ 6 1, so the

limitation condition is Fr2 6 λRo for the mean flows. The value of λ depends on the

particular mean flow: λ = 0.2968 for j = 1, λ = 0.5098 for j = 2 cyclonic, and λ = 1 for

j = 3. This limitation does not apply to the j = 2 anticyclonic shear, where it always

satisfies H = H0 + h
∗

> 0. Fig. 2.2 shows the q(y) profiles of the mean flows for small

15



−5 0 5

1
2
3

u(y)

−5 0 5

−2
0
2

h(y) j=1

−5 0 5

−1
0
1

u(y)

−5 0 5
0

1h(y)
j=2 anticyc

−5 0 5

−1
0
1

u(y)

−5 0 5

−1.5
−1

−0.5
0

h(y)
j=2 cyc

−5 0 5
−1
0
1
2

y

u(y)

−5 0 5

−0.5
0

0.5

y

h(y)
j=3

Figure 2.1: Mean velocity u(y) (left) and geostrophic-balanced surface elevation h(y)

(right) for j = 1, 2 (anticyclonic), 2 (cyclonic) and 3, respectively. To normalize the

mean flows, we choose hmax = 1 in j = 3, and all the mean flows have the same umax−umin

value.

(left) and moderate (right) Ro, where

q =
1 − Rouy

1 + Fr2

Ro h
. (2.7)

For small Ro and Fr (quasi-geostrophic regime), the water depth is nearly constant in

y. The magnitude of q is symmetric for the regions with h > 0 and h < 0, and its value

is small. For moderate Ro and Fr, the surface elevation becomes comparable to the

average water depth. h > 0 has a small effect on q (Fig. 2.2 (f)), while in the h < 0

region, q has a large value due to the thin water depth (Fig. 2.2 (e), (g) and (h)). For a

fixed Ro, increasing Fr leads to a significant increase of the local q in the h < 0 region

(not shown).

It has been identified that three types of solution coexist in a u(y) flow: the conjugate
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Figure 2.2: Mean potential vorticity q(y) for j = 1, 2 (anticyclonic), 2 (cyclonic) and 3,

respectively (from top to bottom). The small Ro (= 0.05) profiles are shown on the left,

and the finite Ro (= 1) profiles are shown on the right. In (a), (b), (c) and (d), Ro = 0.05

and Fr = 0.01. In (e), Ro = 1 and Fr = 0.4. In (f) and (g), Ro = 1 and Fr = 0.6. In (h),

Ro = 1 and Fr = 0.8.
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pairs of growing and decaying modes, the non-singular neutral mode, and the singular

continuum mode [Held, 1985, Lin, 1961]. In shallow water equations, the eigenvalue

problem can be expressed by Aφ = ωBφ, where A and B are real matrices,

A =


kRou −(Ro∂u

∂y − 1) k

1 kRou ∂
∂y

k(Ro + Fr2h) −
(
Fr2 ∂h

∂y + (Ro + Fr2h) ∂
∂y

)
kFr2u

 ,

B =


Ro 0 0

0 Ro 0

0 0 Fr2

 ,
and φ =

(
û iv̂ ĥ

)T
, with T meaning transpose. If ω and φ are its eigenvalue and

eigenfunction, then according to (Aφ)∗ = Aφ∗ = (ωBφ)∗ = ω∗Bφ∗, ω∗ and φ∗ are

also its eigenvalue and associated eigenfunction, where ∗ means complex conjugate.

Therefore, the growing and decaying modes appear in pairs in the non-viscous case.

For the j = 2 mean flows, another symmetry appears because u(y) = −u(−y) and

h(y) = h(−y). We have A(y)φ = ωBφ, where φ =
(
û(y) iv̂(y) ĥ(y)

)T
. Let y → −y

and take the conjugate of the whole equation, it follows A(y)φ̃ = (−ω∗)Bφ̃, where

φ̃ =
(
û∗(−y) − iv̂∗(−y) − ĥ∗(−y)

)T
. A new symmetric eigenvalue −ω∗ and associ-

ated eigenfunction are obtained. This means that the growing (or decaying) modes can

be found in pairs (ω and −ω∗), with the same growth rate and opposite-signed phase

speeds, and their associated eigenfunctions φ and φ̃ are partially symmetric and par-

tially anti-symmetric in y. The paired unstable modes in j = 2 flows will be shown in

Sec. 2.2. Besides the growing and decaying pairs, neutral mode solutions also exist for

the equations, which can become unstable when they couple and interact (Sec. 2.2).

To solve the eigenvalue problem, we use an eigensolver with a Fortran library

ARPACK. Because a large resolution is needed for an accurate solution, it is too ex-

pensive to compute the full-spectrum eigenvalues. ARPACK computes a few eigenval-

ues and corresponding eigenfunctions close to the given “target” (guessed eigenvalue)

by a iterative convergence process. The result is checked with a linear time integra-
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tion code. We discretize the differential operators by a second-order centered finite-

difference method, in a staggered grid, with a resolution of N ∼ 5000 in the y direction.

The domain in the computation is sufficiently large ([-5 5]) to remove the boundary

influence on the unstable modes, which are trapped in the mean shear region. The

boundary condition at y = ±5 is chosen to be v′ = 0 and ∂u′
∂y = ∂h′

∂y = 0. We do not look

for radiating instabilities by setting a matching boundary condition, therefore none of

the unstable modes found by our eigensolver propagate along y. We check our result by

increasing resolution in both grids and k until the eigenvalue converges and no longer

changes with higher resolution. The eigenvalues converge well for our current resolu-

tion. For most of our numerical results, viscosity terms (Ek∇2u, Ek∇2v) are not needed

(Ek is the Ekman number). However, there is a viscosity option in order to eliminate

the unreliable eigenmodes that are marginally resolved. Some weakly unstable or neu-

tral modes with critical layers could be inaccurately determined without viscosity. On

the contrary, the unstable mode, which is our focus, has an imaginary part in the eigen-

value so it can be accurately calculated by the eigensolver. We have tested different Ek

values to make sure that the viscosity is sufficiently small that it has neglectable effect

on the unstable modes. The correctness of our eigensolver is confirmed by reproducing

the growth rate of the barotropic instability in a Bickley jet (Fig. 2 and 3 in Poulin and

Flierl [2003] and Fig. 2 in Lambaerts et al. [2011]).

2.2 Neutral and Unstable Modes

The dynamical mechanism of instability has been commonly interpreted as a resonant

coupling of two neutral waves in previous literature [Gula and Zeitlin, 2010, Hayashi

and Young, 1987, Sakai, 1989]. In the general cases we investegate, this interpretation

is helpful for us to understand the unstable modes, especially the ageostrophic modes,

so this conventional concept is kept in this paper. The neutral wave modes are Doppler-

shifted and modified by the background mean shear, with both frequency and mode
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structure being changed. When two neutral wave modes have the same frequency, they

can interact and resonate with each other, leading to an instability.

2.2.1 Neutral Modes

In rotating shallow water equations, there are mainly two types of non-singular neutral

wave modes in an interior shear flow that does not have side boundaries or surface out-

cropping: the shear wave mode and the inertia-gravity wave mode. The shear wave

mode (also called “Rossby wave” or “vortical wave”) is defined as the mode that exists

due to the potential vorticity gradient. It is a balanced mode, which can be found in

the quasi-geostrophic equations. For a finite Ro where quasi-geostrophy fails, the shear

wave mode may satisfy a higher-order balanced dynamics (Sec. 1.1). We refer to the

balanced shear wave mode as the B mode.

To estimate the phase speed of the shear wave, we start from the f -plane quasi-

geostrophic free-surface potential vorticity equation,

DqQG

Dt
= 0 , qQG = ∇2ψ −

Fr2

Ro2ψ , (2.8)

where ψ is the stream function with ~u = ẑ × ∇ψ. The quasi-geostrophic potential

vorticity equation follows from (2.1), by taking Ro and Fr to zero limit as their ratio

remains a constant. The linearized potential vorticity equation is

(
∂

∂t
+ u

∂

∂x
)(∇2ψ′ −

Fr2

Ro2ψ
′) +

∂ψ′

∂x
(
Fr2

Ro2 u − uyy) = 0 . (2.9)

With the assumption ψ′ = Re[ Ψ(y)ei(kx−ωt) ], we get

Ψyy + [
dqQG/dy

u − c
− (k2 +

Fr2

Ro2 )]Ψ = 0 ,
dqQG

dy
=

Fr2

Ro2 u − uyy . (2.10)

To make a local estimate for the neutral mode, we assume dqQG

dy and u are constant at

local y, and hence Ψ(y) has a form of eily. Then the estimated phase speed for the

balanced shear wave mode becomes

CQG = u −
dqQG/dy

k2 + l2 + Fr2

Ro2

. (2.11)
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The locally estimated phase speed of the shear wave shows that beyond the Doppler

shift of the mean velocity, its sign is opposite to the sign of the potential vorticity

gradient. The mathematical expression of the phase speed becomes complicated with

a finite Ro effect, but we expect its dependence on u and qy qualitatively remains the

same for the B mode, where

dq
dy

=

Fr2

Ro u q − Rouyy

1 + Fr2

Ro h
.

The background qy is essential for the existence of the shear wave mode. With uniform

potential vorticity [Hayashi and Young, 1987, Satomura, 1980], there is no instability

that involves a B mode. For a fixed set of (k, Ro, Fr), a singular qy value supports a

single shear wave mode. In Boss et al. [1996] and Dritschel and Vanneste [2006], the

stepwise uniform potential vorticity creates a singular qy at the front, which supports a

B mode trapped near the singular point. In Killworth et al. [1984], Kubokawa [1986]

and Gula and Zeitlin [2010], the surface outcropping point is singular in qy and supports

a frontal-trapped wave, which behaves the same as a B mode at small wavenumbers.

If qy is continuous in y, a set of shear wave modes with a continuous range of phase

speeds coexist due to the variation of qy. Belonging to balanced dynamics, the shear

wave mode has a slow phase speed comparable to u when Ro is small.

Another type of non-singular neutral mode in rotating shallow water equations is

the inertia-gravity wave mode. The inertia-gravity wave velocity is highly divergent,

and hence it does not exist in the quasi-geostrophic regime. The mode is unbalanced, so

any instability involving this mode is an unbalanced instability. We refer to the inertia-

gravity mode as the G mode. The G mode has two branches: the P mode (positive

phase speed branch, red dashed lines in Fig. 2.3) and the N mode (negative phase speed

branch, blue solid lines in Fig. 2.3). Without mean flow background, the dispersion

relation for an inertia-gravity wave mode is

C±p = ±

√
k2 + l2

Fr2 +
1

Ro2

/
k , (2.12)
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where l is the wavenumber in the y direction, and C+
p (C−p ) is the phase speed for the

P (N) mode without mean flow. The inertia-gravity wave mode has a fast phase speed

when Ro, Fr << 1. Without u(y), the phase speed of a neutral B mode and that of a

neutral G mode are well separated. The Doppler shift and modification by u(y) lead to

a possibility of an interaction between them.

2.2.2 Unstable Modes

We find three types of unstable mode in the mean flows: B-B, B-G and G-G instability.

As mentioned in Sec. 2.2.1, the instabilities can be interpreted as a coupling between

two neutral wave modes, so we name an instability by its resonating components. The

B-B instability is the classical shear instability (barotrophic instability). The B-G and

G-G instabilities are two different types of ageostrophic instability. An unstable B-

G mode exists at small and intermediate k (∼1-5), with attributes of both a balanced

shear wave mode, and an inertia-gravity wave mode. An unstable G-G mode exists at

both intermediate and large k (>3), with attributes of two inertia-gravity wave modes

modified by u(y).

The growth rate σ and downstream (i.e., in the x direction) phase speed Cp versus

k for the four mean flows are shown in Fig. 2.3-2.6. The results shown in the figures

are for moderate Ro and Fr (order 1). The triple jet is the most general one among the

mean flows, and all three types of instability appear in this mean flow. It provides us a

complete view for the instabilities for a moderate Ro and Fr, so the unstable modes of

the triple jet are shown in the beginning and most of our further results are demonstrated

in the triple jet. In Fig. 2.3, the black curves represent the B-B instability. The red

dashed (P mode) and blue solid (N mode) curves are G modes. We label the G modes

by P (or N) and the approximate wavenumber in y (here we use a notation m for these

discrete wavenumbers), which only have integer or half integer values. At small and

intermediate k (∼1-5), the unstable red or blue modes have a smooth growth rate over a

broad k band. They are a B-G instability. Although the green modes belong to neither
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a P nor an N group, they are also a B-G instability. The unstable modes with multiple

growth rate peaks at intermediate and large k, where the P and N modes overlap, are a

G-G instability. Figure 2.4 to 2.6 follow the same plotting convention as Fig. 2.3. Note

that the y axes of the growth rate plots in Fig. 2.3, 2.5 and 2.6 are of different scales.

The G-G instability is somewhat weaker than the B-B and B-G instabilities; however,

its occurrence extends to very large downstream wavenumbers, and the number of the

unstable G-G modes is infinite (only a few examples are shown in Fig. 2.3 and 2.4). In

sum, both B-G and G-G modes are unbalanced modes; the former has a board band in

k while the latter appears as peaks in growth rate.

B-B and B-G instabilities appear in all four types of mean flow. For moderate Ro

and Fr (order 1), G-G instability only occurs in j = 2 (cyclonic) and j = 3 mean flows

(shown in Fig. 2.3 and 2.4). We do find G-G instability in j = 2 (anticyclonic), but for

very large Ro (about 10). For j = 1, the G-G instability does not exist. As shown in

Fig. 2.3, the balanced and ageostrophic instabilities have comparable growth rate in j

= 3. With the same bulk Ro = 1.0 and Fr = 0.7, in j = 2 (cyclonic), the ageostrophic

instability is dominant over the balanced one (Fig. 2.4), while in j = 2 (anticyclonic),

the balanced instability is dominant (Fig. 2.5). The ageostrophic instability is weak in

the Bickley jet even for a Ro = 3.0 (Fig. 2.6). As discussed in Sec. 2.1, the growth

rate and dispersion curves occur in symmetric pairs for j = 2 (Fig. 2.4 and 2.5): the

Pm and Nm modes have the same σ(k) curve, and their Cp(k) curves are symmetric

around Cp = 0. Their corresponding eigenfunctions are symmetric (v′ and h′) or anti-

symmetric (u′) about y = 0.

2.3 B-B Instability

The balanced (barotropic) instability [Drazin and Reid, 1981, Poulin and Flierl, 2003]

is associated with the inflexion point in the parallel mean flow, where the potential vor-

ticity gradient changes sign [Rayleigh, 1880]. This instability appears at small k (k < 2).
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Figure 2.3: The growth rate σ (upper) and phase speed Cp (lower) for Ro = 1.0, Fr

= 0.99 and j = 3. The black lines represent B-B modes (left). The blue solid and

red dashed curves represent N and P inertia-gravity wave modes respectively. The

numbers next to N or P in the legend are integers or half integers, which denotes the

wavenumbers in y. Following the N or P mode curves, the smooth σ over a wide k

range presents B-G modes (middle). The green lines are also B-G modes (middle). The

σ peaks at intermediate and large k, where N and P modes overlap, are G-G modes (in

the right plot). All the unstable B-B and B-G modes are shown in the plot, while only

a few G-G modes are presented.
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Figure 2.4: The growth rate σ (upper) and phase speed Cp (lower) plots for Ro = 1.0,

Fr = 0.7 and j = 2 (cyclonic). Plotting conventions are the same as in Fig. 2.3. The

plots contain B-B, B-G and G-G modes.
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Figure 2.5: The growth rate σ (upper) and phase speed Cp (lower) plots for Ro = 1.0,

Fr = 0.7 and j = 2 (anticyclonic). Plotting conventions are the same as in Fig. 2.3. The

plots contain B-B (left) and B-G (right) modes.
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Figure 2.6: The growth rate σ (upper) and phase speed Cp (lower) plots for Ro = 3.0,

Fr = 0.9 and j = 1. Plotting conventions are the same as in Fig. 2.3. The plots contain

B-B (left) and B-G (right) modes.
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The growth rate is the strongest at the Fr = 0 limit, where it is independent of Ro, and

the increasing Fr tends to suppress the B-B instability. Figure 2.7 shows the fluctuation

fields of the balanced modes at a given time, for small (upper) and intermediate (lower)

(Ro, Fr) pairs, and j = 3. The associated mean flow qy profiles are shown below the

fluctuation plots. For small (Ro, Fr), which is in the quasi-geostrophic regime, the field

patterns are strongly geostrophic-balanced and quite symmetric in y. When (Ro, Fr)

increases, the patterns are still mostly geostrophic. However, the fluctuations are no

longer symmetric in y, and are mostly concentrated in the anticyclonic shear region.

The magnitude of qy becomes significantly large in the cyclonic shear region due to a

strong surface depression. With a finite Ro and Fr effect, the instability of a parallel

cyclonic shear weakens much more significantly than that of an anticyclonic shear (Fig.

2.4 and 2.5). Therefore for moderate Ro and Fr, the B-B mode in j = 3 occurs only

in the anticyclonic shear. The study of Perret et al. [2011] also shows that B-B insta-

bility favors the anticyclonic shear. The B-B instability is mostly balanced, even for an

intermediate Ro and Fr.

The B-B instability can be interpreted as a resonance between two oppositely prop-

agating shear wave modes. The shear wave mode in qy > 0 region has a negative phase

speed, and the shear wave mode in qy < 0 region has a positive phase speed. With the

Doppler shift of the mean flow velocity, the two B modes have the same phase speed

and could interact with each other. The occurrence of the instability requires that the

flow has both qy > 0 and qy < 0 regions, which is consistent with Rayleigh’s condition.

We see multiple B-B modes for the mean flows. In j = 3, there are mainly three

unstable B-B modes in the quasi-geostrophic regime. As Ro and Fr increases, the

growth rate of a B-B mode decreases. For Ro = 1.0 and Fr = 0.99 (Fig.2.3), two of

the unstable B-B modes almost vanish, and only the strongest mode remains (the lower

plot in Fig.2.7). In j = 1 and 2, there are two unstable B-B modes in the small-Ro limit

(The two modes in j = 1 is also seen in Lambaerts et al. [2011]). For the Ro and Fr

shown in Fig. 2.6, the small growth rate B-B mode no longer exists in j = 1. With the
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Figure 2.7: The fluctuation fields of the B-B modes at k = 1 and the mean potential

vorticity gradient qy profiles for Ro = 0.1, Fr = 0.05 (upper) and Ro = 1.0, Fr = 0.99

(lower) in j = 3. h′ is shown by the color; u′ and v′ are shown by the black vector

arrows. For h′, red implies positive, blue implies negative and green implies zero. The

same color code applies to all the color plots of h′ in subsequent figures.
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same finite Ro and Fr, both unstable B-B modes remain in the anticyclonic shear (Fig.

2.5) while only one remains with a very weak growth rate in the cyclonic shear (Fig.

2.4).

2.4 G-G and B-G Instabilities

The G-G and B-G modes are unbalanced instabilities. Figure 2.8 shows an example

of the fluctuation fields for the two types of mode in j = 3. The fluctuations have an

inertia-gravity wave mode pattern in y for both types. All G-G and B-G unstable modes

have critical layers (shown by the black straight lines in Fig. 2.8). For a G-G mode,

there are two G components, distributed on each side of the critical layer. Only one G

component appears in a B-G mode.

The G-G instability can be interpreted as a sharp resonance between two inertia-

gravity wave modes from each group (N and P) respectively. The analytical dispersion

relation for a G mode without the mean flow in shown in (2.2.1). With the existence

of a mean flow background, dispersion relation curves are modified. Because the mean

flow varies slowly, we assume the solution has a form eily in y to make a local estimation

of the new dispersion relation for the two groups of G modes:

Ĉp
±

= u± ±

√
(k2 + m2)(

1
Fr2 +

h
±

Ro
) +

1
Ro2

/
k , (2.13)

where u+ or u− is the local mean flow velocity, and h
+

or h
−

is the associated local

surface elevation. The values of u+, u−, h
+
, and h

−

are constants, which can be obtained

by averaging the u or h over the y region where the G component is located. Note

that the meridional wavenumber is represented by m in this new dispersion relation.

Without the mean flow, the meridional wavenumber l is continuous, while with the

mean flow, only integer and half integer meridional wavenumbers are allowed, so we

change to the notation m. Four Cp curves of each group (in red and blue, respectively)

calculated from (2.2.1) are shown in Fig. 2.9(a). They are the dispersion curves for
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Figure 2.8: The fluctuation fields of a B-G mode at k = 2.83 (upper) and a G-G mode at

k = 4.52 (lower) for Ro = 1.0, Fr = 0.99 and j = 3. h′ is shown by the color; u′ and v′

are shown by the black vector arrows. The straight black line indicates the critical layer

where u = Cp, and the straight red line indicates the inflection point where qy = 0.
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the free G modes without the mean flow. Figure 2.9(b) shows the mean flow and the

fluctuation h′ for a resonant G-G mode in j = 3, as a function of y. The fluctuation

has two G components: the left one (y < 0.8), in the N group, is concentrated in the

positive-signed u region, and the right one (y > 0.8), in the P group, is concentrated in

the negative-signed u region. With the Doppler shift and modification by the mean flow,

the P group is negatively shifted and the N group is positively shifted, leading to a cross

of a pair of G mode Cp curves. When the two G modes have the same phase speed, they

can resonate with each other, and instability occurs. The Ĉp
+

and Ĉp
−

estimated from

(2.13) are shown in Fig. 2.9(c). They are well consistent with the Cp obtained by the

eigensolver in Fig. 2.9(d). Figure 2.10 shows an example of the G-G resonance. The

two plots on the left column are the growth rate and phase speed curves, zoomed in the

P2-N2 resonant peak region. The right column shows the fluctuation h′ of the unstable

resonant mode (A) and its component G modes (B and C), respectively. When the Cp

curves separate, the two G modes are almost stable, and only one G mode appears in

the fluctuation pattern. When the curves overlap, the growth rate appears as a peak and

the fluctuation pattern contains both G components.

Rather than having a sharp resonant peak in the growth rate, the B-G modes occur

over a wide k range in between the B-B modes and the G-G modes. We interpret an

unstable B-G mode as a result of the interaction between a B mode and a G mode. The

fluctuation of the unstable mode is highly ageostrophic, and its growth rate vanishes

for a small Ro and Fr. The G component appears in the y region where the local u is

opposite-signed to the phase speed of the free neutral G mode. As discussed in Sec.

2.2, the neutral G mode is a fast mode and the neutral B mode is a slow mode; they are

well separated without the background mean flow. With the Doppler shift of the mean

flow and a finite Ro and Fr, the phase speed of the G mode becomes small, and thus

possible to interact with a slow B mode. Because all our mean flows have continuous,

non-uniform qy, many B modes within a continuous range of phase speed values coexist

and might resonate with the G mode. Therefore, we cannot identify a particular B
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Figure 2.9: An explanation of the G-G resonance by Cp for Ro = 1.0, Fr = 0.99 and j

= 3. (a) shows the Cp curves of a few neutral G modes without mean flow. (b) is the

fluctuation h′ (in color) of a G-G mode at k = 8.01, with the background mean flow

superimposed (black curve, right axis). (c) shows the Cp curves with the modification

by the local mean flow calculated from (2.13) (see text). (d) shows the same Cp curves

as (c), except that they are obtained from the numerical eigensolver.
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Figure 2.10: Fluctuations h′ (right column) for an unstable G-G mode (P2-N2) (A) at k

= 8.01 (with the black line indicating the critical layer) and its neighboring component

G modes: a weakly unstable P2 mode (B) and a neutral N2 mode (C) at k = 7.88, for

Ro = 1.0, Fr = 0.99, and j = 3. The left column shows the zoomed-in growth rate and

phase speed curves around k = 8.01.
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component (in contrast to the G component in B-G and G-G instabilities). The pattern

imprint of the G component is clear while that of the B component is obscure in the

eigenfunctions for a large growth rate B-G mode (Fig. 2.8), though we do see the

imprint of the B component in weakly unstable B-G modes (not shown), where the

coupling of the B and G modes is not strong. For special shallow-water flows with a

singular qy [Boss et al., 1996, Dritschel and Vanneste, 2006, Gula and Zeitlin, 2010,

Kubokawa, 1986], the B component is a distinct mode and has an identifiable pattern

imprint trapped near the singular point. However, with our continuous, smooth qy,

the B component is less evident in the unstable mode. The obscurity of B component

is also found in Balmforth [1999] in a flow without rotation. We have seen in other

shallow-water flows that the imprint of the B component in the unstable eigenmode

fades as q changes from stepwise uniform to continuously non-uniform. Dritschel and

Vanneste [2006] also report significant changes in the behavior of the shear wave when

q is smoothed over the front.

Both the G and B components are close to where qy = 0 (indicated by a red straight

line in Fig. 2.8, and the qy profile for this mean flow is shown in the bottom of Fig.

2.7), but they are located at different sides of qy = 0. For instance in Fig. 2.8, the

G component has a negative phase speed without the mean flow and it appears in the

y region where u is positive, so the magnitude of its phase speed becomes a smaller

negative value with the Doppler shift according to (2.13). The B component occurs

in the y region where qy is negative which yields a positive phase speed, and the local

u is negative, so the phase speed becomes a small negative value from the estimation

(2.11). This is a consistent explanation for how the B and G modes resonate and lead to

an instability. A similar explanation applies to all the B-G instabilities in j = 1, 2 and

3.

The four types of mean flow behave differently in ageostrophic instabilities (as

shown in Fig. 2.3 to 2.6). In the Bickley jet ( j = 1), we can only find the B-G in-

stability. This is because the Bickley jet does not have both u > 0 and u < 0. The
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phase speed of the two groups of G modes cannot be shifted in the opposite direction

to reach Ĉp
+

= Ĉp
−
. Though the j = 2 flows have both positive and negative u(y), the

ageostrophic instability is significantly different. For moderate Ro and Fr, the cyclonic

shear has both a G-G mode and a B-G mode, while we do not find G-G modes in the

anticyclonic shear. The G-G instability occurs in j = 2 (anticyclonic) only for a Ro

value over 10. According to (2.13), with the local u having the same magnitude, the

phase speed of the G mode depends on the local h. The cyclonic shear has a negative

h, so it has a smaller phase speed magnitude than the anti-cyclonic shear. Therefore,

the G-G instability is more likely to occur in the cyclonic shear than in the anticyclonic

shear.

2.5 Ro and Fr Dependence, Degree of Ageostrophy and Energy Di-

agnostics

2.5.1 Ro and Fr Dependence

For an intermediate Ro and Fr, the balanced modes (B-B) and ageostrophic modes

(B-G and G-G) coexist in our mean flows, occurring at different spatial scales. As

Ro, Fr → 0, only the B-B instability occurs. As Ro and Fr increase, the ageostrophic

instability begins to appear. In this section we address two questions: 1) In what Ro and

Fr regime does the ageostrophic instability begin to appear? 2) As Ro and Fr increase,

how does the growth rate of the balanced and ageostrophic instabilities change?

Ripa [1983] derived two sufficient stability conditions for a shallow water parallel

flow: if there exists any constant value of α such that

(α − u(y))
dq(y)

dy
> 0 (2.14)

and

Fr2(α − u(y))2 6 1 +
Fr2

Ro
h(y) (2.15)
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for all y, then the flow is stable to infinitesimal perturbations. In other words, if for

all α one of the conditions is violated at some y, the flow may be unstable. The first

condition is associated with Rayleigh’s inflection-point condition, and is familiar in

classical barotropic instability. The second condition refers to a local Froude number

F̃r(y) defined by:

F̃r(y) = Fr
|u(y)|√

1 + Fr2

Ro h(y)
. (2.16)

Instability occurs when the local F̃r(y) is large enough (not the bulk Fr). Note that if

taking α = 0, (2.15) implies that the flow is stable when F̃r 6 1. However, because

(2.15) is a sufficient condition and α could be any constant value, the real critical F̃r for

the occurrence of the ageostrophic instability is not exactly 1 (Fig. 2.12). F̃r represents

the local ratio of the strength of mean flow to that of the inertia-gravity wave speed,

taking into account the surface elevation effect. For the occurrence of a G-G mode or

a B-G mode, the G mode has to be Doppler shifted by an opposite-signed local u (Sec:

2.4). To have an effective Doppler shift, the mean flow velocity should be comparable

to the phase speed of a free G mode, which requires a local F̃r of order 1.

Figure 2.11 shows the relation between F̃r(y) and the eigenmode patterns for the

four types of mean flow (One example is shown for each flow). The fluctuation field

is concentrated in the y region where the local F̃r(y) is larger than a critical value

and decays outside that region for all the ageostrophic unstable modes in the mean

flows. As shown in Fig. 2.11, for the same Ro (1.0) and bulk Fr (0.7), the local F̃r

is different in j = 2 flows. Due to the surface elevation effect, the cyclonic shear has

a larger local F̃r than the anticyclonic shear, which implies that the occurrence of an

ageostrophic instability requires a larger Ro and bulk Fr in the anticyclonic shear flow

(Sec. 2.4). With the assumption (u′, v′, h′) = Re
[
(û(y), v̂(y), ĥ(y))ei(kx−ωt) ] (Sec. 2.1),

the fluctuation equations (2.2) can be simplified to a second-order differential equation

in y: d2η

dy2 + χ(y) dη
dy + γ(y)η = 0, where η could be either û, v̂ or ĥ. Neglecting the χ(y) dη

dy

term (which is much smaller than the other two terms in our problem) and considering

the behavior of η in a local view, the sign of γ(y) determines whether the the solution
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Figure 2.11: The local F̃r(y) for the mean flows (upper plots) and the associated h′ field

(lower plots) for the unstable ageostrophic modes. For j = 1, Ro = 1.0 and Fr = 0.50.

For j = 2 (anticyclonic), Ro = 1.0 and Fr = 2.50. For j = 2 (cyclonic), Ro = 1.0 and Fr

= 0.70. For j = 3, Ro = 1.0 and Fr = 0.99. A G-G mode is chosen in j = 2 and 3, and

a B-G mode is chosen in j = 1.

oscillates or decays with y. γ(y) is approximately proportional to F̃r2(y) − φ(y) (the

detailed derivation is not shown). When F̃r(y) is above a certain value, γ(y) > 0,

the fluctuation has an oscillatory pattern where the unstable mode amplitude is large;

when F̃r(y) is smaller than the threshold, γ(y) < 0, the magnitude of the fluctuation

decays and disappears. This relates F̃r(y) to the edge of the unstable modes (shown in

Fig. 2.11), and indicates that the existence of an unstable ageostrophic mode requires a

sufficiently large local F̃r.

Figure 2.12 shows the maximum growth rate in the (Ro, Fr) space for the B-B, B-G
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Figure 2.12: The σ values in the (Fr, Ro) space for the three types of unstable modes

(B-B, B-G and G-G) in j = 3. The upper solid black curve Fr2 = Ro shows the limits

for the existence of a geostrophic mean flow. The lower black line is the contour for

min[F̃r(y)] = 1. For the B-B and B-G modes, we choose the maximum growth rate for

each Ro and Fr. For the G-G mode, we choose the maximum growth rate of a particular

mode P1.5-N1. We have checked and confirmed that other G-G modes behave the same

as this one for the dependence of Ro and Fr.
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modes and a particular G-G mode (P1.5-N1), in j = 3. For B-B instability, the growth

rate almost does not depend on Ro at a small Fr (<0.1), consistent with the classical

barotropic instability of a 2D fluid. For Fr < 0.4, the growth rate increases with in-

creasing Ro, while for Fr > 0.4 the growth rate decreases slightly with increasing Ro.

For a fixed Ro, the growth rate of B-B instability weakens significantly with increasing

Fr, especially for the small Ro. On the contrary, the ageostrophic instabilities (B-G and

G-G) are more unstable for a larger Fr. The strongest growth rate of the ageostrophic

instability appears just below the edge for the existence limit of a geostrophic mean

flow (indicated by the upper black line; Sec. 2.1). The B-G instability is stronger than

the G-G instability, and starts to appear at a lower Fr value than the G-G instability. The

line min[F̃r(y)] = 1 is plotted by the lower black curve. The two black lines roughly

enclose the regime for the B-G instability. Although not shown in Fig. 2.12 (right),

the line min[F̃r(y)] = 1.7 roughly marks the lower limit of the G-G instability. This

confirms that the ageostrophic instabilities are associated with the violation of Ripa’s

second condition. For intermediate Ro and Fr (order 1) in j = 3, the growth rate of

ageostrophic modes is small compared with the balanced mode. However, with in-

creasing Ro and Fr, the growth rate of the balanced instability decreases, while that of

the ageostrophic instability increases. At a large Ro and Fr, the ageostrophic instability

would be stronger than the balanced one. The relative strength of the three instabilities

varies significantly among different types of flow. For instance, in j = 2 (cyclonic),

the B-G ageostrophic instability is the most unstable one among the three instabilities

for Ro = 1.0 and Fr = 0.70 (Fig.2.4), i.e., the ageostrophic instability is dominant over

the balanced one. In contrast, the balanced instability is the dominant one in j = 2

(anticyclonic) and Bickley jet for Ro = 1.0.

2.5.2 Degree of Ageostrophy

Besides the difference in the growth rate dependence on Fr, the balanced instability and

ageostrophic instability have significant difference in the degree of ageostrophy for the
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eigenmodes. We use the divergent component of the fluctuation velocity to represent

the degree of ageostrophy, which is defined as

δ =

∣∣∣∣∣∣~u′div

∣∣∣∣∣∣∣∣∣∣∣∣~u′∣∣∣∣∣∣ =

√√√∫
(u′2div + v′2div)dy∫
(u′2 + v′2)dy

. (2.17)

The divergent velocity is evaluated by ~u′div = ~u′ − ~u′geo, where ~u′geo = ẑ × ∇ψ′. The

vorticity of the fluctuation is the same as the geostrophic component: ζ′ = ẑ · (∇×~u′) =

ẑ · (∇×~u′geo) = ∇2
hψ
′, and we obtain ψ′ by ψ′ = ∇−2

h ζ
′. δ for the three instabilities versus

Fr is plotted for a fixed Ro = 1.0 in Fig. 2.13. The B-B eigenmode has a zero divergent

component at small Fr. Though the divergent part increases with Fr, it remains small

for a broad range of finite Fr. With a finite Ro and Fr effect, the mode is still balanced

(Sec 2.2.1 and 2.3). For B-G and G-G modes, the divergent velocity is dominant,

indicating that the fluctuation is highly ageostrophic. When the ageostrophic instability

starts to appear at the critical Fr (roughly 0.4 for B-G and 0.7 for G-G), the growth rate

is weak and the mode is mostly a neutral G mode that is not coupled with the mean

shear, so the fluctuation is almost purely divergent (δ ∼ 1). When Fr increases, the

mean flow interacts with the G mode, leading to unstable modes. The unstable mode is

not purely divergent due to the participation of the mean flow. The B-G mode involves

the interaction between a B mode and a G mode, so the ageostrophic degree is smaller

than a G-G mode. Though the result is shown for a fixed Ro = 1.0, the conclusion

discussed above remains the same for different Ro cases. The higher-order balance for

the instabilities is not checked in our work. However, because both the B-G and G-G

instabilities clearly involve a coupling with inertia-gravity waves, they are unbalanced

instabilities.

2.5.3 Energy Diagnostics

To reach a more complete view of the unstable modes, the energetics is examined. In

the linearized shallow water system, we express the total energy E as the sum of the
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the B-B, B–G and G-G modes in j = 3, for a fixed Ro = 1.0. The same unstable modes

as in Fig.2.12 are chosen to calculate this ratio.
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mean energy E and the quadratic fluctuation energy E′:

E =

∫ [ 1
2

(1 +
Fr2

Ro
h)u2

+
1
2

Fr2

Ro2 h
2

+
1

Ro
h
]
dy (2.18)

E′ =

∫ [ 1
2

(1 +
Fr2

Ro
h)(u′2 + v′2) +

1
2

Fr2

Ro2 h′2 +
Fr2

Ro
uh′u′

]
dy , (2.19)

where the overhead bar means zonal average. The total energy E = E + E′ is conserved

without viscosity. The energy balance for the mean flow and the fluctuations are

dE′

dt
=

∫ [
(1 +

Fr2

Ro
h)uv′

∂u′

∂y
−

Fr2

Ro2 h′v′(Rou
∂u
∂y

+
∂h
∂y

)
]
dy

dE
dt

=

∫
[−(1 +

Fr2

Ro
h)uv′

∂u′

∂y
+

Fr2

Ro2 h′v′(Rou
∂u
∂y

+
∂h
∂y

)
]
dy .

(2.20)

The first conversion term is related to the horizontal Reynolds stress (as in classical

barotropic instability), and the second is related to eddy mass flux (Stokes drift).

The ratio of potential to kinetic energy of the fluctuations PE/KE is examined,

where PE =
∫

1
2

Fr2

Ro2 h′2 and KE =
∫

1
2 (1 + Fr2

Ro h)(u′2 + v′2). KE is dominant for all three

types of instability. The PE/KE ratio is larger in the ageostrophic instabilities than

in the balanced instability. For the conversion between E and E′, the first and second

terms in (2.20) have the same sign in the balanced instability, but have opposite signs

in the ageostrophic ones, implying that the ageostrophic unstable fluctuations transfer

energy to the mean flow through the mass fluxes. The first conversion term, horizontal

Reynolds stress, is dominant for all three types of instability.

2.6 A Nonlinear Example of Ageostrophic Instability: Modon

In j = 2 (cyclonic), the ageostrophic instability is dominant over the balanced one

for intermediate Ro and Fr values. Compared with the cyclonic case, the balanced

instability is stronger, and the ageostrophic instability is weaker for j = 2 (anticyclonic),

with the same Ro and Fr. This asymmetry is also seen in j = 3, where the balanced

instability appears in the region with negative potential vorticity, and the ageostrophic

instability appears in the region with positive potential vorticity and large local F̃r.

43



Therefore, in the nonlinear time evolution of a rotating shallow water flow for a finite

Ro and Fr, it is expected that the ageostrophic instability would appear in a cyclone.

This expectation is borne out in the time evolution of a modon for finite Ro.

A modon, as well studied by McWilliams [1981] and Kizner et al. [2008], is a

steadily propagating dipole. The steady modon solution for Ro = 0.2 and Fr = 0.2 in

Kizner et al. [2008] is taken as the initial condition for the time-integration study of

nonlinear shallow water equations (2.1). The surface elevation h, potential vorticity q,

and local F̃r of the modon solution are shown in the first row of Fig. 2.14, where

q =
1 + Ro(vx − uy)

1 + Fr2

Ro h
, F̃r = Fr

|~u|√
1 + Fr2

Ro h
.

Note that here u, v, h and q are non-dimensional variables. The y profiles at x = 0 are

shown in the second row. In order for the modon to steadily propagate, the strength

of the cyclone and that of the anticyclone are quite asymmetric in h and q for finite

Ro. The extremes of the cyclone are stronger than those of the anticyclone. Unlike the

symmetric parallel flows studied in previous sections, the asymmetric modon profile

leads to a sizable local F̃r, even with relatively small bulk Ro and Fr.

The time evolution of the ageostrophic instability is shown in the third row in Fig.

2.14. The black thick lines circle the region where F̃r is larger than 1 in Fig. 2.14

(the third plot of the first row; the third row). Following with the moving frame of the

modon, the plots are zoomed in the cyclone region, which is indicated by the white

rectangle in the plots of the first row. The ageostrophic unstable waves are trapped in

the cyclone region; as they evolve, they change the shape of the modon, evidently to

make it less unstable, and then die away through viscosity. As circled by the thick black

lines, the instability appears where the local F̃r is large, which is consistent with Ripa’s

second condition. The evolution of initial modons with smaller Ro and local F̃r does

not manifest this spontaneous instability.

A linear instability analysis of a modon cross-section profile confirms the above

nonlinear result. We take the y profile of h at x = 0 as the mean background h, and
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Figure 2.14: The modon initial condition (first two rows) and time evolution (the third

row) for Ro = 0.2 and Fr = 0.2 in the non-dimensional, nonlinear rotating shallow

water equations. (To be continued on next page.)
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Figure 2.14: (Continue to previous page.) The first row shows the patterns for h, q,

and F̃r at t = 0. For h contours, the interval is 0.5 and the minimum value is -3.5 (zero

contour is not shown). For q contours, the interval is 0.5 and the minimum value is

0.5. For F̃r contours, the interval is 0.4 and the minimum value is 0.4. The second row

shows h(y), q(y), and F̃r(y) at x = 0 and t = 0. The third row shows the patterns for h

at t = 0.2, 0.5, and 0.8, respectively. The plot is zoomed-in the region indicated by the

white rectangle in the first row, following with the moving-modon. The contours have

the same values as in the h plot at t = 0. The thick black line circles where F̃r > 1,

both in the F̃r plot in the first row and the h plots in the third row.

calculate the u that is in geostrophic balance with h. Note that u is different from the

y profile of u at x = 0 of the modon. The h and u profiles are shown in the upper left

column in Fig. 2.15. To be consistent with the nonlinear simulation, we take Ro = 0.2

and Fr = 0.2 in the linear calculation. We find multiple ageostrophic unstable modes

in a range of intermediate and large k. The growth rate is significantly large compared

to the symmetric idealized flows in early sections (the bottom plot, Fig. 2.15). The k

range (5∼10) shown in the plot is consistent with the zonal length scale of the trapped

ageostrophic instability occuring in the nonlinear evolution (the third row, Fig. 2.14).

The local F̃r(y) of the mean flow and an example of the unstable eigenmodes are shown

in the upper right column in Fig. 2.15. The ageostrophic mode is trapped in the region

where F̃r is the largest in y, which is consistent with the meridional position of its

occurrence in the nonlinear evolution.

This modon example illustrates the transient, nonlinear behavior of an ageostrophic

instability in a more complex (nonparallel) flow. The time evolution of a finite Ro

modon is also examined by Ribstein et al. [2010], where the ageostrophic instability is

not observed perhaps due to a lower resolution compared to our simulation. Lahaye and

Zeitlin [2012] study the time evolution of a geostrophic modon in a higher Ro (0.3 or

0.4) shallow-water model, and find shock formation during the adjustment process. We
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Figure 2.15: The linear instability analysis of the modon cross-section profile for Ro

= 0.2 and Fr = 0.2. The upper left column shows the mean profile h(y) and u(y). h

is the cross-section of the steady modon profile at x = 0, and u is the zonal velocity in

geostrophic balance with h. The bottom plot is the growth rate σ versus k for multiple

unstable ageostrophic modes. The selected k range is consistent with the length scale

of the trapped instability appearing in the nonlinear evolution. The upper right column

shows the local F̃r(y) and the fluctuation fields of an unstable ageostrophic mode for k

= 6.80 (marked by a cross in the bottom σ plot). h′ is shown by the color; u′ and v′ are

shown by the black vector arrows.
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do not see similar phenomena in our simulation, perhaps because our initial condition

is a steady modon solution to the finite Ro model and hence there is little adjustment.

Furthermore, the Ro in our case (= 0.2) might be too small for the occurrence of a

shock.

2.7 Main Conclusions

To identify a general route for the breakdown of balance and the energy transfer towards

small scales, the ageostrophic instability of a horizontal interior shear flow is studied

in this chapter. We solve for the instabilities in several balanced parallel shear flows

u(y) (Bickley jet, cyclonic and anticyclonic double jet, and triple jet), with continuous,

non-uniform potential vorticity, without side boundaries or vanishing layer depth, in a

single-layer f -plane rotating shallow water model. In the system, there are mainly two

types of neutral modes: B mode and G mode. A neutral B mode is a balanced shear

wave mode that exists due to the potential vorticity gradient. A neutral G mode is an

inertia-gravity wave mode. The resonant coupling of two neutral modes yields three

types of instability: B-B, B-G and G-G. B-B instability is the balanced shear instabil-

ity (classical barotropic instability) that relates to Rayleigh’s inflection point condition.

Both B-G and G-G are unbalanced instabilities, which are highly ageostrophic and

occur when the local F̃r is sufficiently large (associated with Ripa’s second stability

condition). The resonant G component can be clearly identified in the ageostrophic in-

stabilities. However, the B-G instability involves a set of B modes due to a continuously

varying potential vorticity gradient, so its resonant B component is less evident in the

unstable modes. The balanced instability is suppressed by large Fr, while the growth

rate of the ageostrophic instability increases with increasing Fr. For moderate Ro and

Fr, all three types of instability appear in the cyclonic double jet and the triple jet, but

only B-B and B-G instabilities appear in the anticyclonic double jet and the Bickley jet.

The G-G instability can be found in the anticyclonic double jet for large Ro and Fr but
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never appears in the Bickley jet. In the cyclonic double jet, the ageostrophic instability

is dominant over the balanced one for intermediate Ro and Fr values. The ageostrophic

instability is manifested in the nonlinear time evolution of a finite Ro modon, appearing

in the cyclone region, where the local F̃r is large.

As proposed in McWilliams et al. [1998], three criteria are related to the breakdown

of balance in a 3D flow, and they are associated with three types of instabilities. The

N2 (gravitational instability) and A (centrifugal instability) conditions do not apply to

the single-layer shallow water model. They both involve vertical overturning in the

unstable eigenmodes. The A − S condition for the mean flow in the shallow water

system is

A − S = 1 − Rouy − Ro
∣∣∣uy

∣∣∣ . (2.21)

We check the critical Ro where min(A−S ) changes sign and find that it greatly precedes

the onset of ageostrophic instabilities, hence is not evidently relevant to shallow-water

instabilities, perhaps for the same reason of the lack of overturning modes. In contrast,

Ripa’s second stability condition is more relevant to the instability cases in the shallow

water model. This suggests that the processes leading to loss of balance can be rather

different in 3D and shallow water fluids.
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CHAPTER 3

Ageostrophic Instability in Rotating, Stratified Vertical

Shear Flows

In this chapter we focus on the linear instabilities of a rotating, stably stratified (con-

stant N2), interior baroclinic shear flow U(z) with non-uniform potential vorticity in

Boussinesq equations. The chapter is constructed as follows: Section 3.1 specifies

the equations, the non-dimensional parameters, and the mean flows. The first type of

ageostrophic instability (AI1), a transformation between BCI and CI, is decribed in

Sec. 3.2, followed by Sec. 3.3 for the second type of ageostrophic instability (AI2)

that is associated with inertial critical layers. Sec. 3.4 briefly summarizes the main

conclusions.

3.1 Equations, Paramters and Mean Flows

We solve the instability problem with a f-plane, constant-stratification (N2 = constant),

linearized Boussinesq equations. To non-dimensionalize the variables, we scale them

as follows:

(x, y)→ L , z→ H , (u, v)→ U0 , w→ W0 =
f U2

0

N2H
, p→ f U0ρ0L , b→

f U0L
H

,

where f and N are Coriolis and buoyancy frequencies, ρ0 is the average density. For a

small perturbation around the mean state U(z), B(y, z), and P(y, z) the linearized non-
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dimensional Boussinesq equations are

Ro(
∂u′

∂t
+ U

∂u′

∂x
+

Ro
Bu

Uzw′) − v′ +
∂p′

∂x
= 0

Ro(
∂v′

∂t
+ U

∂v′

∂x
) + u′ +

∂p′

∂y
= 0

λ2 Ro2

Bu
(
∂w′

∂t
+ U

∂w′

∂x
) − b′ +

∂p′

∂z
= 0

∂u′

∂x
+
∂v′

∂y
+

Ro
Bu

∂w′

∂z
= 0

∂b′

∂t
+ U

∂b′

∂x
+ Byv′ +

Ro
Bu

Bzw′ = 0 .

(3.1)

There are three important non-dimensional parameters in the equations: Rossby num-

ber Ro, Burger number Bu, and aspect ratio λ,

Ro =
U0

f L
, Bu =

(NH
f L

)2

, λ =
H
L
.

The Froude number can be defined by Ro and Bu: Fr = U0
NH = Ro

√
Bu

. Because the mean

flow velocity U(z) is uniform in the horizontal plane, the horizontal length scale L is

arbitrary. Therefore, the three parameters (Ro, Bu, λ) are not independent of each other.

We choose Bu = 1 (a typical value for mesoscale eddies or synoptic storms), and then

Ro and λ become free parameters. For the large-scale or mesoscale (synoptic-scale)

flows, the horizontal scale is much larger than the vertical scale, so we choose a small

value of aspect ratio (λ = 0.01 in our study). We look for the ageostrophic instability

in a balanced flow for intermediate Ro. The mean flow satisfies thermal-wind balance

By = −Uz, so

~V(z) = (U(z), 0, 0) , B(y, z) =
Bu
Ro

z − Uzy .

Here the first term in B is caused by the background stratification, and the second term

represents the horizontal buoyancy slope induced by the thermal-wind balanced vertical

shear. The vertical gradient of buoyancy is Bz = Bu
Ro − Uzzy. If Ro and the meridional

scale of the fluctuation are not large, the first term is dominant over the second. We

consider solutions with small and intermediate Ro or meridional scale, so the second

term in Bz, −Uzzy, is dropped in the buoyancy equation by solving the problem in the
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neighborhood of y = 0. This allows a solution with an eily form in the meridional

direction. Then, the above assumption is valid when Ro is not large or l is not small.

With this simplification, we can assume (u′, v′,w′, p′, b′) ∼ Re[(û, v̂, ŵ, p̂, b̂)ei(kx+ly)eσt]

(the real part of σ is the growth rate, and we use ω = −Imag(σ) to denote frequency),

and then (3.1) becomes a 1D eigenvalue problem in z:

Ro(σû + ikUû + RoUzŵ) − v̂ + ik p̂ = 0

Ro(σv̂ + ikUv̂) + û + ilp̂ = 0

λ2Ro2(σŵ + ikUŵ) − b̂ +
∂p̂
∂z

= 0

ikû + ilv̂ + Ro
∂ŵ
∂z

= 0

σb̂ + ikUb̂ − Uzv̂ + ŵ = 0 .

(3.2)

We solve this system for small λ = 0.01 and Ro increasing from 0 to values beyond

the onset condition for CI, but below that for KHI. The problem is solved by a For-

tran code with ARPACK library (an eigensolver library). Because a large resolution

is needed for an accurate solution, it is too expensive to compute the full-spectrum of

eigenvalues. ARPACK computes a few eigenvalues and corresponding eigenfunctions

close to the given “target” (guessed eigenvalue) by a iterative convergence process.

The differential operators are discretized by a second-order centered finite-difference

method, in a staggered grid, with a resolution of N ∼ 5000 in the vertical direction.

For the interior vertical shear flows, the domain in the computation is sufficiently large

to remove the boundary influence on the unstable modes. We choose a rigid boundary

condition w′ = 0 and ∂u′
∂z = ∂v′

∂z =
∂p′

∂z = ∂b′
∂z = 0. We do not look for radiating instabili-

ties by setting a propagating boundary condition, therefore none of the unstable modes

found by our eigensolver has a vertical propagation. We increase the grid resolution

from 3000 to 10000, and have confirmed with that the eigenvalue converges well with

N = 5000 for the unstable modes of interest.

Two types of interior vertical shear flows are examined: the hyperbolic tangent

flow (TANH) and the double-jet flow (DJET). Although the EADY flow has been well
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Figure 3.1: The mean flow velocity profiles U(z) for the EADY flow, hyperbolic tangent

(TANH) flow, and the double-jet (DJET) flow. All the velocity profiles have the same

maximum magnitude (0.5), and the velocity difference between [-0.5, 0.5] is about 1.

For EADY the vertical boundaries are at |z| = 0.5, and for the others they are at much

longer |z|.

studied by earlier literature, we reproduce some instability results of it for comparison

with the TANH and DJET flows. The analytical forms for the mean flows U(z) are

EADY : U = z, TANH : U = 0.5×tanh(2.65z), and DJET : U = e0.5ze−2z2
, respectively.

The velocity profiles of the mean flows are shown in Fig. 3.1. The velocities are

normalized to have the same maximum magnitude
∣∣∣U(z)

∣∣∣max = 0.5, and the vertical

distance between Umax and Umin is 1 for EADY and DJET flows, and about 1 for

the TANH flow. All of these U(z) are odd-symmetric about z = 0. Because the TANH

flow is simpler than the DJET flow and thus easier to understand, our main results and

discussion in the next two sections will focus on this flow.

We now consider the Ro regimes for instabilities discussed in Sec. 1.2. At Ro→ 0,

the classic baroclinic instability occurs if inflection points exist (as they do here). As Ro

increases, the conditions are satisfied in the following order: 1) A − S = 0 is satisfied,
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Table 3.1: Critical Ro for the occurrence of anticyclonic, ageostrophic instability (AAI),

centrifugal instability (CI), and Kelvin-Helmholtz instability (KHI) in the three mean

flows.

Flow AAI CI KHI

EADY 0.71 1 2

TANH 0.53 0.75 1.51

DJET 0.43 0.61 1.21

and anticyclonic, ageostrophic instability (AAI) occurs or has a significant growth rate

beyond this Ro; 2) A = 0 is satisfied, and the centrifugal instability (CI) begins to occur;

3) the onset condition for the classic Kelvin-Helmholtz instability (KHI) (non-rotating)

Ri < 1
4 is reached; 4) if N2 < 0, the gravitational instability would occur. The Ro

criteria for the occurrence of AAI, CI, and KHI in the three types of mean flow are

calculated and listed in Table 3.1. The criteria are calculated by evaluating the Ro

values that satisfy min(A-S ) = 0, min(A) = 0, and min(Ri) = 1
4 , respectively. For an

interior vertical shear U(z),

A = 1 − Ro2U
2
z , S = Ro2U

2
z , and Ri = 1

/
Ro2U

2
z ,

where A and S are non-dimensionalized by f . The non-dimensional PVErtel, scaled by

f N2, is

PVErtel = 1 − Ro2U
2
z .

Note that for both A and PVErtel, we have dropped the term −RoUzzy with the assump-

tion that we solve the problem for non-large Ro or non-small l in the neighborhood of

y = 0.

3.2 AI1: A Continuous Transformation Between BCI and CI

For the three types of U(z) with a zero vertical average (Fig. 3.1), the dominant BCI in

the quasigeostrophic regime has a vertically symmetric mode structure (The eigenvalue
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Figure 3.2: The growth rate of the vertically symmetric mode (ω = 0) in the TANH

flow in a (k, l) space with increasing Ro. The minimum value for the contours is 0.05,

and their interval is 0.1.
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σ of this mode only has a real part (ω = 0), and the eigenfunction satisfies
[
û(z), v̂(z),

ŵ(z), p̂(z), b̂(z)
]

=
[
iû∗(−z), iv̂∗(−z), iŵ∗(−z), −ip̂∗(−z), ib̂∗(−z)

]
, where ∗ denotes com-

plex conjugate), with zero frequency. As Ro increases, this BCI mode becomes less

unstable, and its occurrence shrinks to smaller k in the EADY flow, while it becomes

more unstable and extends to larger k in the TANH and DJET flows. On the other hand,

with increasing Ro, this vertically symmetric mode extends to larger l and continuously

changes its property in all three mean flows. To be representative of the continuous

transformation, the growth rate of the vertically symmetric mode (ω = 0) in the TANH

flow in a (k, l) space, with increasing Ro is shown in Fig. 3.2. The vertically symmetric

mode is a single mode with continuous transformation, rather than multiple coexisting

modes with the same frequency ω = 0. This result is confirmed by a full-spectrum

eigenvalue solver with a lower resolution. As Ro increases, the mode becomes stronger

near l = 0 and broadens to larger k and l. During the extension to larger l, the mode

changes and is no longer a BCI mode. At Ro = 0.7, this mode has extended to very

large l (> 12) and becomes highly ageostrophic at intermediate and large l. At Ro =

0.8, the CI mode begins to appear at k = 0 and large l (the strongest CI mode appears

near l ∼ 25 and hence is not shown in the figure). At Ro = 1, the CI mode becomes quite

robust near k = 0 and l = 10; all the unstable modes join together, occuring over small

and intermediate k, and a wide range of l. The behavior of the vertically symmetric

modes in the EADY and DJET flows is similar to that in the TANH flow, except that in

the EADY flow, all the modes appear in a narrower band of small k, especially when l

is large. In the continuous transformation with increasing Ro, the mode that appears far

from l = 0 and k = 0 is a new type of ageostrophic instability; we name it AI1. It occurs

at finite Ro, but below the onset Ro for CI, and its growth rate increases with increasing

Ro. There is no clear separation in (k,l) between either BCI and AI1, or AI1 and CI at

any Ro, but the characteristics of the three types of instability are distinguishable for an

intermediate Ro (Fig. 3.3 to 3.5).

The main differences among these three types of unstable modes are manifested
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by the Ro regime for the occurrence of the mode, patterns of the eigenmode, the diag-

nostics of balance, and the energetics. For the diagnostics of balance, we analyze the

degree of balance by the method devised in Molemaker et al. [2005] (Section 5 and

Appendix C). We define the streamfunction ψ and the velocity potential χ as

u = −
∂ψ

∂y
+ Ro

∂χ

∂x
and v =

∂ψ

∂x
+ Ro

∂χ

∂y
,

and decompose the fluctuation variables X′ into balanced and unbalanced components,

X′ = X′bal + X′unb. The balanced component satisfies the following diagnostic con-

straints in Balanced Equations:

2ikUzψ̂ + (2ilRoUz +
∂

∂z
)χ̂ + (

ilRoUzz

k2 + l2 − 1)ŵ = 0

ψ̂ = p̂

b̂ =
∂p̂
∂z

(k2 + l2)χ̂ =
∂ŵ
∂z

.

(3.3)

The first equation is a combination of the zonal momentum equation, (ikU + σ)(k2 +

l2)ψ̂ + (k2 + l2)χ̂ + ilRoUzŵ = 0, and the buoyancy equation, ikUzψ̂ + ilRoUzχ̂ − ŵ −

(ikU +σ)b̂ = 0, by eliminating σ. The equations (3.3) is a set of higher-order Balanced

Equations (which neglects terms of order Ro2). Then the full solution is projected

onto the Balanced Equations to maximize the balanced component. Here energy E′ =∫
1
2 (u′2 + v′2 + λ2Ro2w′2 + b′2) is chosen as a metric for unbalance, and the degree of

unbalance δ is defined by the integrated energy ratio,

δ =

1
2

∫ [
(u′unb)2 + (v′unb)2 + λ2Ro2(w′unb)2 + (b′unb)2] dz

1
2

∫ [
u′2 + v′2 + λ2Ro2w′2 + b′2

]
dz

,

where the overhead bar denotes horizontal average in both the x and y directions.

In the Boussinesq equations, the kinetic energy for the fluctuation is defined by

KE = 1
2

∫
(u′2 + v′2 + λ2Ro2w′2), and the available potential energy is APE = 1

2

∫
b′2.
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From (3.1), we derive the energy balance equations for a mean flow U(z):
dKE

dt
=

∫ [
− RoUzu′w′ + w′b′

]
dz

dAPE
dt

=

∫ [
Uzv′b′ − w′b′

]
dz .

(3.4)

The term
∫
−RoUzu′w′ is the vertical Reynolds stress work, indicating the vertical en-

ergy conversion from the mean kinetic energy to the fluctuation kinetic energy (KMKE);

the term
∫

Uzv′b′ is the horizontal buoyancy flux work, indicating the energy transfer

from the mean potential energy to the fluctuation potential energy (PMPE).
∫

w′b′

represents the energy conversion between the potential and kinetic energy in the fluctu-

ation; a positive value indicates an energy transfer from potential to kinetic.

The growth rate, degree of unbalance δ, potential and kinetic energy conversion

from the mean flow, and the eigemode patterns for a BCI mode is shown in Fig. 3.3.

The fluctuation variables are normalized by the square root of the integrated energy
√

E′, in both the eigenmode pattern plots, and the calculation of the energy conver-

sions. Three particular (k, l) pairs are chosen near l = 0, where the classic BCI is the

strongest. The instability exists at a Ro → 0 limit, and its growth rate slightly increases

with Ro. The mode is balanced for small Ro. Although the unbalanced component in-

creases with Ro, it remains small even for intermediate Ro. In the quasigeostrophic

regime, the mean potential energy conversion (PMPE) is the dominant energy source

for the BCI fluctuation to grow. When Ro increases, the contribution of the mean ki-

netic energy conversion (KMKE) increases, but it is still less than that of the mean

potential energy conversion. In the eigenmode patterns, u′ has a very small magnitude

due to the geostrophic balance. The fluctuation v′ is mostly in phase with b′, while the

phase correlation between u′ and w′ is weak, which indicates a dominance of PMPE

for the BCI mode. As in a quasigeostrophic solution, the streamfunction (not shown in

Fig. 3.3, but can be inferred from u′ and v′) indicates an upstream (westward) phase tilt

with height to allow w′b′ > 0 [Pedlosky, 1982].

The characteristics of the CI are demonstrated in Fig. 3.4, for three different l
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Figure 3.3: Diagnostics and eigenmode patterns for the classic baroclinic instability

(BCI) mode (vertically symmetric) in the TANH flow. The left plots are (a) the growth

rate, (b) the unbalanced fraction in the total fluctation energy δ, and (c) the energy

conversion from mean potential energy (PMPE, solid lines) and mean kinetic energy

(KMKE, dash-dot lines) varying with Ro, respectively. Three particular (k,l) groups

are shown, the black indicates k = 1.2, l = 1, the red indicates k = 1.4, l = 0.5, and

the blue indicates k = 1.5, l = 0 in (a), (b) and (c). The right plots are the normalized

eigenmode patterns (u′, v′, w′, b′) of a BCI mode for k = 1.5, l = 0, and Ro = 0.5,

with the same color scale. Red (solid contours) indicates positive, and blue (dashed

contours) indicates negative. The contour values start from 0.5, and the interval is 0.5.
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Figure 3.4: Diagnostics and eigenmode patterns for the centrifugal instability (CI)

mode (vertically symmetric) in the TANH flow. The plot conventions are the same

as in Fig. 3.3. In the left plots, the black indicates k = 0, l = 18, the red indicates k = 0,

l = 12, and the blue indicates k = 0, l = 9. The eigenmodes are for k = 0, l = 9, and Ro

= 1.0. The cross in (a) indicates the Ro where PV = 0. The contour values start from

0.5, and the interval is 1.
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values at k = 0. CI starts to occur when PV (here PV means PVErtel, and we use

PV hereafter) becomes negative, and its growth rate strongly increases with Ro. In

the TANH flow, the onset criterion for the CI is Ro > 0.75 (Table. 3.1). For a fixed

Ro, there is a lower limit in l for the occurrence of CI, and the growth rate increases

with l. For Ro slightly larger than 0.75, the CI occurs above very large l (> 25); as

Ro increases, the lower l limit decreases. Therefore for the l values shown in Fig.

3.4, CI does not yet begin to appear around Ro = 0.75. Consistent with the Stone

[1966] result, the unstable CI mode extents to l → ∞ in non-viscous case. The CI

mode is highly unbalanced for intermediate Ro. Among the variables, v′ and w′ have

the largest unbalanced fraction, which implies a strong inertial momentum balance in

zonal direction, and a large amount of horizontal divergence. The main energy source

for a CI mode is the mean potential energy conversion at relatively small Ro or l. As Ro

or l increases, the mean kinetic energy conversion becomes important and dominant.

Similar conclusions on the energetics can be deduced from the analytical solution in

Hoskins [1974], for the symmetric instability of a uniform vertical shear flow. The

phase correlation between u′ and w′, or v′ and b′, necessary for positive KMKE or

PMPE, is not easily identified in the eigenmode patterns, with both in-phase and out-

of-phase components.

The AI1 (Fig. 3.5) appears in a continuous transformation between BCI and CI, and

it does not clearly separate from the BCI and CI in (k, l). However, it behaves differ-

ently from the other two classic instabilities. It is an ageostrophic instability that occurs

at a finite Ro, between the Ro regimes where BCI and CI exist. Due to the obscurity of

its separation with BCI or CI, the onset Ro for the AI1 mode depends on (k, l), thus is

not clearly determined, but it is close to 0.53 (A-S = 0), and smaller than 0.75 (PV =

0), which allows its categorization as a type of AAI. The strongest unstable AI1 mode

in a (k, l) space occurs far from l = 0 or k = 0. The mode is mostly balanced for the Ro

as it begins to occur, but the unbalanced component strongly increases with Ro. Distin-

guished from the BCI and CI, the mean kinetic energy conversion is the main energy
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Figure 3.5: Diagnostics and eigenmode patterns for the first type of ageostrophic in-

stability (AI1) mode (vertically symmetric) in the TANH flow. The plot conventions

are the same as in Fig. 3.3. In the left plots, the black indicates k = 1.5, l = 5, the red

indicates k = 1.8, l = 8, and the blue indicates k = 2.0, l = 12. The eigenmodes are for

k = 1.8, l = 8, and Ro = 0.7. The cross in (a) indicates the Ro where A-S = 0. The

contour values start from 0.5, and the interval is 1.
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source for the unstable fluctuation in AI1, while the mean potential energy conversion

is negative for intermediate Ro, indicating a kinetic energy conversion to potential en-

ergy in the fluctuation fields. The evidence is also shown in the eigenmode patterns:

there is a 180o phase shift between w′ and b′. u′ and w′ are positively correlated, and

v′ and b′ are negatively correlated. In a (k, l) space for Ro = 0.8, where CI just starts

to occur and is confined near k = 0, it is clear that the potential energy conversion is

positive near both k = 0 and l = 0 (where the BCI is strongest), and it is negative with

a minimum around k = 2 for intermediate l; the negative potential energy conversion

region roughly encloses the (k, l) regime for AI1. For Ro = 1, or even larger values, the

CI extends to the larger-k direction; AI1 and CI become less distinguishable in (k, l).

Because we study the mean flow with a very small λ = 0.01, all the unstable modes

discussed above are mostly hydrostatic, although there is a small unbalanced fraction

in the b′ field.

3.3 AI2: The Ageostrophic Modes Associated with ICL

Besides the joint zero-frequency unstable modes discussed in Sec. 3.2, we find some

other ageostrophic modes in the TANH and DJET flows, which all appear with inertial

critical layers (ICL). The inertial critical layer is defined as where U(z) − Cp = ± f /k

dimensionally, or U(z) − Cp = ±1/Rok non-dimensionally, where Cp = ω/k is the

downstream phase speed. The physical characteristics of ICL have been recognized as

an “absorber” of inertia-gravity waves, and it is indicated that inertia-gravity waves in

ICL may be unstable due to a non-uniform mean flow background [Jones, 1967, Ya-

manaka, 1985]. We categorize these modes as another type of ageostrophic instability:

AI2. In all, AI2 has a weaker growth rate than AI1. With λ = 0.01, AI2 is also mostly

hydrostatic.

The EADY ageostrophic instability has been interpreted as a coupling between an

edge wave and an inertia-gravity wave, which occurs with an inertial critical layer
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[Nakamura, 1988, Plougonven et al., 2005], and hence is categorized as AI2 in this

paper. We name the AI2 that couples balanced shear waves and inertia-gravity waves

as a BG mode (“B” refers to balanced shear waves, and “G” refers to inertia-gravity

waves), and the AI2 that couples two inertia-gravity waves as a GG mode. The EADY

ageostropic instability is of the BG type, but special due to its dependence on the verti-

cal boundaries. For a f -plane vertical shear U(z), the horizontal gradient of PV is

PVy = −RoUzz ; (3.5)

a non-zero PVy (Uzz) supports the existence of a balanced shear wave (Rossby wave).

The EADY flow has a zero interior PVy, but the horizontal buoyancy gradient (propor-

tional to Uz) at the vertical boundaries supports the existence of edge waves, which is

a special type of balanced wave. In the EADY flow, there are no interior shear waves,

so the vertical boundary is essential for the occurrence of an unstable BG mode. If

we consider a flow transformation from EADY to TANH, Uz gradually vanishes at the

boundaries and PVy (Uzz) begins to appear in the interior of the vertical shear flow. The

classic BCI would still exist due to the appearance of interior PVy. Then how about the

AI2? An experiment is designed to examine the change of the ageostrophic instability

in the transformation. We study a series of hyperbolic tangent mean flows,

U(z) =
1
a

tanh(az) , (3.6)

in a fixed domain [-0.5 0.5]. The mean flows have a parameter a to control their shapes

and Uz values at the boundaries. All the mean flows are normalized to have the same

Uz = 1 at z = 0. When a → 0, the flow becomes an EADY flow and Uz = 1 at the

boundaries. As a increases, Uz vanishes at the boundaries and the interior PVy (Uzz)

increases. The upper plots in Fig. 3.6 show the growth rate of the BG mode for the

mean flows with Uz = 1 and Uz = 0.9 at the boundaries, respectively. The BG mode

separates in k when Uz decreases; the right part occurs towards larger and larger k

while the left persists in the same k range. The growth rates of both parts decrease

dramatically with decreasing Uz. The maximum growth rate for the BG mode in k <
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Figure 3.6: The BG mode vanishes in the EADY slow as Uz decreases at the boundaries

due to the increase of a in (3.6). The upper plots demonstrate the growth rate σ(k, l) in

the BG mode for Uz = 1 (a = 0) and Uz = 0.9 (a = 0.65), respectively, with the same

color scale. The lower plot shows the maximum growth rate versus the boundary Uz

for k < 2.5 (blue) and k > 2.5 (red), respectively.

2.5 and k > 2.5 versus Uz is shown in the lower plot. In both k ranges, the BG mode

vanishes when Uz decreases, with the large-k BG mode vanishing more quickly. When

Uz vanishes, the edge wave no longer exists, therefore the EADY BG mode disappears.

However, different from the BCI, no other BG mode arises with increasing interior PVy

in the hyperbolic tangent flows, even for a large value of a, where the interior shear

wave replaces the edge wave in the TANH flow.

Through a coupling of an interior shear wave and an inertia-gravity wave, the BG

mode is found in the DJET flow. Figure 3.7 shows the fluctuation steam-function pat-

tern for the BG mode in the DJET flow. The mode appears with an inertial critical layer
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and clearly consists of two components. Near the ICL, the mode is highly unbalanced

and confined near the ICL; this is the inertia-gravity wave component. The balanced

component, an interior shear wave, is in the mean shear region. It is supported by the

outer PVy in the velocity roll-off region that does not exist in the TANH flow. The

structure of this BG mode is very similar to that in the EADY flow (Fig. 7 in Mole-

maker et al. [2005]), except for the vertical location of the shear wave. Different from

the EADY BG mode, this interior BG mode only occurs at small and intermediate k.

The growth rate of this BG mode in a (k, l) space for Ro = 0.01 and Ro = 1 is shown

in Fig. 3.8. At Ro = 0.01, there is a BCI mode near l = 0 with non-zero frequency.

The mode is balanced and the energy conversion is from potential to kinetic. Like AI1,

the BG type AI2 in the DJET flow also comes from a continuous transformation. As

Ro increases, this mode expands to intermediate k and l with an increasing growth rate;

the inertia-gravity wave begins to couple with the shear flow, and an ICL appears at

intermediate (k, l). At Ro = 1, the mode has expanded to large l and it is unbalanced

by a coupling with inertia-gravity waves for all the intermediate and large (k, l) region.

Figure 3.8(c) shows the growth rate versus Ro for three particular pairs of (k, l). The

BG mode starts to occur in the neighborhood of A-S = 0 and below the Ro onset of

CI, hence can also be categorized as AAI. The main energy source for this interior BG

mode is the mean kinetic energy.

In the TANH flow, we find a type of AI2 that can be interpreted as a coupling

of two inertia-gravity waves; we call it as a GG mode. The characteristics of this

mode is shown in Fig. 3.9. It appears at intermediate k and large l. The mode is

mostly hydrostatic and starts to appear around Ro ∼ 0.8, far below the onset Ro of KHI

(Ro = 1.51). It is highly unbalanced for intermediate Ro, including all the fluctuation

velocities u′, v′ and w′. An unstable GG mode grows by drawing energy from the

available potential energy of the mean flow, and the instability transfers the fluctuation

kinetic energy to the mean state kinetic energy. A GG mode has two inertial critical

layers (indicated by the horizontal black lines in the patten plots), with two inertia-
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Figure 3.7: The fluctuation streamfunction patterns of a BG mode (full, unbalanced,

and balanced components, with the same color scale) for k = 1.8, l = 3.5, and Ro = 1.

The black horizontal lines indicate the inertial critical layers.
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Figure 3.8: The growth rate of the BG mode in the DJET flow in a (k, l) space is shown

for Ro = 0.01 (a) and Ro = 1 (b). (c) shows the growth rate versus Ro for three particular

(k, l) pairs. The black indicates k = 2, l = 1.5, the red indicates k = 1.6, l = 2.5, and the

blue indicates k = 1.5, l = 3.5. The cross indicates the Ro where A-S =0.
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gravity wave components confined near them. The component sheared inertia-gravity

waves are Doppler-shifted to have the same frequency. The GG mode shown in Fig.

3.9 has a zero frequency; there are other GG modes with non-zero frequencies and

non-symmetric vertical structures.

All the AI2 modes (including BG and GG) have inertial critical layers and hence

are associated with the coupling of inertia-gravity waves. The BG mode occurs near

the Ro where A-S = 0, therefore is an AAI in type; the GG mode arises away from

this condition, hence is not associated with it. We do find a type of vertically asym-

metric mode (ω , 0) in the TANH flow, with a weak growth rate (∼ 0.01), occurring

at intermediate k and large l for Ro values above the CI threshold (> 0.8). It is also an

unbalanced instability, whose energy source is the mean potential energy. It does not

appear with an ICL, and is neither AI1 nor AI2.

Because of the continuous transformation of mode characteristics in ageostrophic

instability, rather than arising with a distinct separation from other types of instability,

there is not unique definition of a representative growth rate for either AI1 or AI2 at a

fixed Ro. In Sec. 3.2 and 3.3, the growth rate dependence on Ro is shown for several

(k, l) pairs, which do indicate the relevance of the A-S condition as a neighborhood for

onset of instability.

3.4 Main Conclusions

We solve the linear instability problem for an interior, baroclinic shear flow U(z) in

a 3D, rotating, continuously stratified fluid. Two types of mean flow are examined:

TANH (hyperbolic tangent flow) and DJET (double-jet flow), with a focus on the TANH

flow. We find two types of baroclinic, ageostrophic instability, both of which are mostly

hydrostatic with the small aspect ratio λ. For a particular l (cross-stream wavenumber),

they start to occur at finite Ro, and their growth rate increases with increasing Ro. The

first type of ageostrophic instability (AI1) comes from a continuous transformation and
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Figure 3.9: The diagnostics and eigenmode patterns for the second type of ageostrophic

instability (AI2) of the GG type in the TANH flow. The plot conventions are the same

as in Fig. 3.3, except that the inertial critical layers are indicated by the black horizontal

lines right plots. In the left plots, the black indicates k = 3.5, l = 5, the red indicates k

= 3.6, l = 8, and the blue indicates k = 3.8, l = 12. The eigenmodes are for k = 3.8, l =

12, and Ro = 0.85. The contour values start from 1, and the interval is 1.
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expansion in (k, l) between the classic baroclinic instability (BCI) and centrifugal insta-

bility (CI). It occurs between the Ro regimes for BCI and CI, and in the (k, l) range that

is far from k = 0 or l = 0. The AI1 mode is mostly balanced for the Ro at which it starts

to occur, and it is unbalanced for intermediate Ro. Unlike the BCI and CI, the main

energy source for AI1 is the mean kinetic energy, and the unstable fluctuation transfers

energy to the mean potential energy. This mode is also found in the EADY flow, except

in a narrower band of k. The second type of ageostrophic instability (AI2) is associated

with inertial critical layers and hence related to a coupling with inertia-gravity waves.

The coupling is either between a balanced shear wave and an inertia-gravity wave (BG

type), or between two inertia-gravity waves (GG type). The EADY ageostrophic insta-

bility is caused by a coupling between an edge wave and an inertia-gravity wave, and

it is an AI2 of the BG type. In a transformation from a EADY to TANH flow, the BG

mode in the EADY flow disappears with vanishing Uz (proportional to the horizontal

buoyancy gradient) at boundaries, while no other BG mode that is associated with an

interior potential vorticity gradient arises with increasing interior Uzz (proportional to

PVy) in the TANH flow. The BG mode is found in the DJET flow, as a coupling be-

tween an interior shear wave and an inertia-gravity wave. It appears with an inertial

critical layer, and the balanced and unbalanced components are clearly identified in the

fluctuation patterns. In the TANH flow, we find the AI2 of a GG type. The main energy

source for an AI2 BG mode is the mean kinetic energy, while that for an AI2 GG mode

is the mean potential energy. Both AI1 and AI2 are unbalanced instabilities, with the

growth rate of AI2 generally less than AI1.

Both AI1 and AI2 of the BG type in the interior U(z) flows occur in the neighbor-

hood of A-S = 0, hence are possibly in the AAI category. As other AAI modes in the

previous literature, they do not have a sharp onset criterion. The AI2 of GG type occurs

for a Ro value beyond the A-S condition, and therefore it is not a type of AAI. The

characteristics of the AI1 and AI2 modes are not the same, and they are not the same as

other AAI modes previously found in other flows (Sec. 1.2), including the EADY flow.
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This indicates that AAI is more a collection of unstable mode types rather than a single

unique type. AI1 does not have evident inertia-gravity wave characteristics (radiation

or inertial critical layers), but AI2 does, indicating not all the unbalanced instabilities

and loss of balance in a continuously stratified flow are related to an energy transfer to

inertia-gravity waves. Unlike the ageostrophic instability in the EADY flow, both AI1

and AI2 do not require boundaries. Both instabilities are absent in the quasigeostrophic

limit (Ro→ 0) and distinct from BCI, and they start to occur below the Ro criteria for

CI and KHI. The understanding of these types of ageostrophic instability demonstrates

a possible local route for the loss of balance and forward energy cascade in the interior

ocean and atmosphere.
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CHAPTER 4

Summary and Discussion

4.1 Summary

This dissertation mainly contains two parts: the ageostrophic instability of a horizon-

tal shear flow in rotating shallow water equations, and the ageostrophic instability of

a vertical shear flow in 3D stratified fluids. The purpose of our work is to look for

general types of ageostrophic instability that can provide a local route to a loss of bal-

ance in the interior oceanic and atmospheric flows, which leads to an efficient energy

transfer towards small scales and final dissipation. As an approach, the linear instabil-

ity problems of continuously differentiable, interior U(y) and U(z) without boundaries

or surface outcropping are solved in rotating shallow water equations and Boussinesq

equations, respectively.

In a rotating shallow-water, interior barotropic shear flow U(y), there are mainly

two types of neutral modes: balanced shear wave mode (B mode) and inertia-gravity

wave mode (G mode). The resonant coupling of two neutral modes yields three types of

instability: B-B, B-G and G-G. B-B instability is the balanced shear instability (classic

barotropic instability) that relates to Rayleigh’s inflection point condition. Both B-G

and G-G are unbalanced instabilities, which are highly ageostrophic and occur when

the local F̃r is sufficiently large (associated with the second stability condition of Ripa

[1983]). The resonant G component can be clearly identified in the ageostrophic insta-

bilities. However, the B-G instability involves a set of B modes due to a continuously

varying potential vorticity gradient, so its resonant B component is less evident in the
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unstable modes. The balanced instability is suppressed by large Fr, while the growth

rate of the ageostrophic instability increases with increasing Fr. We examine four types

of mean flow (Bickley jet, cyclonic and anticyclonic double jet, and triple jet); it is

found that the strength of the ageotrophic instabilities also depends on the shape of the

mean flow. In the nonlinear vortex dynamics, the ageostrophic instability is manifested

in the time evolution of a finite Ro modon, appearing in the cyclone region, where the

local F̃r is large.

In a rotating, continuously stratified, interior baroclinic shear flow U(z), we find

two types of baroclinic, ageostrophic instability. They start to occur at finite Ro, and

their growth rate increases with increasing Ro. The first type of ageostrophic instabil-

ity (AI1) comes from a continuous transformation and expansion in (k, l) between the

classic baroclinic instability (BCI) and centrifugal instability (CI). It occurs between

the Ro regimes for BCI and CI, and in the (k, l) range that is far from k = 0 or l =

0. The AI1 mode is mostly balanced for the Ro at which it starts to occur, and it is

unbalanced for intermediate Ro. The main energy source for AI1 is the mean kinetic

energy, and the unstable fluctuation transfers energy to the mean potential energy. The

second type of ageostrophic instability (AI2) is associated with inertial critical layers

and hence related to a coupling with inertia-gravity waves. The coupling is either be-

tween a balanced shear wave and an inertia-gravity wave (B-G type), or between two

inertia-gravity waves (G-G type). In a transformation from the Eady flow to the hy-

perbolic tangent flow, the B-G mode in the Eady flow disappears with vanishing Uz at

boundaries, while no other B-G mode that is associated with an interior potential vor-

ticity gradient arises with increasing interior PVy in the hyperbolic tangent flow. The

B-G mode is found in the double-jet flow, appearing with an inertial critical layer. We

find the AI2 of a G-G type in both the hyperbolic tangent and the double-jet flows. The

main energy source for an AI2 B-G mode is the mean kinetic energy, while that for an

AI2 G-G mode is the mean potential energy. Both AI1 and AI2 of the B-G type in the

interior U(z) flows occur in the neighborhood of A-S = 0 [McWilliams et al., 1998],
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hence are possibly in the AAI category. The AI2 of G-G type occurs for a Ro value

beyond the A-S condition, and therefore it is not a type of AAI.

To summarize existing literature and our results for a general picture of ageostrophic

instability, we have learnt the following points:

1. Ageostrophic instability is a generic behavior in interior horizontal and vertical

shear flows. The instability occurs or becomes strong at finite Ro and Fr with

values smaller than those required for the onset of classic unbalanced types of

instability (centrifugal, Kelvin-Helmholtz, gravitational). Ageostrophic instabil-

ity provides an important local route for the breakdown of balance and forward

energy cascade in the interior ocean.

2. Ageostrophic instability formally involves a “resonant” coupling by the mean

shear flow of the resting-state linear modes comprised of quasigeostrophic and

unbalanced inertia-gravity or Kelvin wave types. In idealized configurations with

boundaries or discontinuous interior interfaces, the resonating modes may some-

times readily be identified, but not usually not so with general mean shear profiles

and continuous stratification in the interior.

3. Ageostrophic instability in rotating shallow water occurs for a sharp criterion:

local Fr exceeds a critical value (Ripa, 1983). In contrast, the ageostrophic in-

stability in continuously stratified flow with PV > 0 does not have a sharp onset

but for many flows its growth rate strongly increases near the neighborhood of

A − S = 0 (McWilliams et al., 1998). This difference reflects the lower bound on

the vertical scale and inertia-gravity wave speed in rotating shallow water.

4. Looking across many mean flow and stratification configurations, it seems clear

that not all interior ageostrophic instabilities are the same. The occurrence and

strength of the ageostrophic instability depend on the shape of the mean flow. An-

ticyclonic, ageostrophic instability (AAI) types are common, but some cyclonic

mean flows are unstable with intermediate Ro.
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4.2 Remaining Questions and Future Work

There are still some questions or possible work remaining in the study of ageostrophic

instabilities:

1. The study of B-G instability in rotating shallow-water flows indicates that the

imprint of the B component is less evident when the mean flow has a contin-

uous potential vorticity gradient rather than a singular potential vorticity. We

understand that the continuous potential vorticity gradient supports a series of

continuous shear waves, rather than only one in the singular case. However, a

direct explanation of why the shear wave component becomes obscure in the un-

stable mode patterns with a continuous mean potential vorticity gradient is still

unclear.

2. We see a B-G type AI2 in both EADY and DJET flows, where the boundary edge

wave or interior shear wave couples with an inertia-gravity wave. The TANH

flow has an interior potential vorticity gradient that supports the existence of

shear waves; however, we do not find a B-G type AI2 in the TANH flow even

for a Ro > 1. This implies that the occurrence of the B-G AI2 requires some

other conditions, e.g., the particular shape of the mean flow. What could be the

requirement and associated explanation?

3. All previous AAIs in a 3D stratified flow involve inertia-gravity waves or Kelvin

waves. We identify AI1 as a type of AAI, but different from AI2 and previous

AAI types. Ménesguen et al. [2012] find a transformation of unstable modes

near A−S = 0. Therefore, AAI is a collection of instabilities rather than a unique

type. Can we find other types of AAI in other mean flows? Is there a general

wave interpretation (or visual physical interpretation) associated with AAI?

4. In general, the linear instability problem of interior U(y, z) shear flows is not fully

understood yet. The problem might be solved with a high resolution and various
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pairs of Bu and Ro if the numerical technique is improved and the calculation is

allowed in the future.

Following the theoretical study in this dissertation, some work could be done in the

next steps in order for a further application of the basic theory.

1. The nonlinear evolution of some parallel shear flows U(y) and U(z) could be

examined in a direct numerical simulation, with a focus on how the balanced

motions are broken down by the ageostrophic instabilities, and how the energy is

transferred to smaller scales in the nonlinear turbulent process.

2. Some lab experiments could be developed to study the turbulent dynamics in an

initially balanced flows with PV > 0 for a finite Ro like the work in Le Bars

and Le Gal [2007]. With lab studies on various types of flow, we might be able

to get a visual physical understanding on the A − S condition. We expect the

experiments could tell us a difference on the turbulence evolution and turbulent

energy spectrum among the flows with AAI, the classic ageostrophic flows with

CI or KHI, and the classic shear flows with barotropic and baroclinic instabilities.

3. Most of the observation and modeling data in the ocean did not have enough

resolution to resolve submesoscale features in the past. In recently years, plenty

of new data coming from both observations and regional oceanic simulations

is capable to capture the submesoscale phenomena. The existing ageostrophic

theories can provide a support for the analysis and understanding of the data.

4. All the studies in 1, 2, 3 can help us for a better understanding of the physics

on submesoscale or even smaller scales in the ocean. The understanding of sub-

mesoscale dynamics could further apply to improve the parameterization of eddy

diffusivity or other small-scale features in GCMs.

5. The large-scale atmosphere of other planets, such as Venus and Titan, manifest

strong ageostrophic characteristics. The flows have a finite Ro and behaves quite
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differently from the fluids on earth, and the quasigeostrophic theory fails. The

ageostrophic theory in this dissertation may be applied to discribe the dynamics

of the other planetary atmospheres.

78



Bibliography

Balmforth, N. J. (1999), Shear instability in shallow water, J. Fluid Mech., 387, 97–127.

Barth, J. A. (1994), Short-wavelength instabilities on coastal jets and fronts, J. Geophys.

Res., 99, 16,095–16,116.

Boss, E., N. Paldor, and L. Thompson (1996), Stability of a potential vorticity front:

from quasi-geostrophy to shallow water, J. Fluid Mech., 315, 65–84.

Bouchut, F., B. Ribstein, and V. Zeitlin (2011), Inertial, barotropic, and baroclinic in-

stabilities of the Bickley jet in two-layer rotating shallow water model, Phys. Fluids,

23, 126,601.

Bryan, F. (1987), Parameter sensitivity of Primitive Equation Ocean General Circula-

tion Models, J Phys. Oceanogr., 17, 970–986.

Chandrasekhar, S. (1961), Hydrodynamic and Hydromagnetic Stability, Cambridge

University Press.

Charney, J. G. (1947), The dynamics of long waves in a baroclinic westerly current, J.

Atmos. Sci., 4, 136–162.

Charney, J. G. (1962), Integration of the Primitive and Balanced Equations, Proc. Int.

Symp. Numerical Weather Prediction, pp. 131–152.

Charney, J. G. (1971), Geostrophic Turbulence, J. Atmos. Sci., 28, 1087–1094.

Chelton, D. B., M. G. Schlax, and R. M. Samelson (2011), Global observations of

nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216.

de La Cruz-Heredia, M., and G. W. K. Moore (1999), Barotropic instability due to

Kelvin wave-Rossby wave coupling, J. Atmos. Sci., 56, 2376–2383.

79



Drazin, P. G., and W. H. Reid (1981), Hydrodynamic Stability, Cambridge University

Press.

Dritschel, D. G., and J. Vanneste (2006), Instability of a shallow-water potential-

vorticity front, J. Fluid Mech., 561, 237–254.

Eady, E. T. (1949), Long waves and cyclone waves, Tellus, 1, 33–52.

Ferrari, R., and C. Wunsch (2010), The distribution of eddy kinetic and potential ener-

gies in the global ocean, Tellus A, 62, 92–108.

Gargett, A. (1984), Vertical eddy diffusivity in the ocean interior, J. Mar. Res., 42,

359–393.

Griffiths, R. W., P. D. Killworth, and M. E. Stern (1982), Ageostrophic instability of

ocean currents, J. Fluid Mech., 117, 343–377.

Gula, J., and V. Zeitlin (2010), Instabilities of buoyancy-driven coastal currents and

their nonlinear evolution in the two-layer rotating shallow water model. Part 1. Pas-

sive lower layer, J. Fluid Mech., 659, 69–93.

Gula, J., R. Plougonven, and V. Zeitlin (2009a), Ageostrophic instabilities of fronts in

a channel in a stratified rotating fluid, J. Fluid Mech., 627, 485.

Gula, J., V. Zeitlin, and R. Plougonven (2009b), Instabilities of two-layer shallow-water

flows with vertical shear in the rotating annulus, J. Fluid Mech., 638, 27.

Gula, J., V. Zeitlin, and F. Bouchut (2010), Instabilities of buoyancy-driven coastal

currents and their nonlinear evolution in the two-layer rotating shallow water model.

Part 2. Active lower layer, J. Fluid Mech., 665, 209–237.

Hayashi, Y. Y., and W. R. Young (1987), Stable and unstable shear modes of rotating

parallel flows in shallow waters, J. Fluid Mech., 184, 477–504.

80



Held, I. M. (1985), Pseudomomentum and the orthogonality of modes in shear flows,

J. Atmos. Sci., 42, 2280–2288.

Hoskins, B. J. (1974), The role of potential vorticity in symmetric stability and insta-

bility, Q. J. Roy. Meteor. Soc., 100, 480–482.

Iga, K. (1999), Critical layer instability as a resonance between a non-singular mode

and continuous modes, Fluid Dyn. Res., 25, 63–86.

Jones, W. L. (1967), Propagation of internal gravity waves in fluids with shear flow and

rotation, J. Fluid Mech., 30, 439–448.

Killworth, P., N. Paldor, and M. Stern (1984), Wave propagation and growth on a sur-

face front in a two-layer geostrophic current, J. Mar. Res., 42, 761–785.

Kizner, Z., G. Reznik, B. Fridman, R. Khvoles, and J. McWilliams (2008), Shallow-

water modons on the f-plane, J. Fluid Mech., 603, 305–329.

Kubokawa, A. (1985), Instability of a geostrophic front and its energetics, Geophys.

Astro. Fluid, 33, 323–357.

Kubokawa, A. (1986), Instability caused by the coalescence of two modes of a one-

layer coastal current with a surface front, J. Oceanogr., 42, 373–380.

Lahaye, N., and V. Zeitlin (2012), Shock modon: A new type of coherent structure in

rotating shallow water, Phys. Rev. Lett., 108(4), 044502.

Lambaerts, J., G. Lapeyre, and V. Zeitlin (2011), Moist versus dry barotropic instability

in a shallow-water model of the atmosphere with moist convection, J. Atmos. Sci.,

68, 1234–1252.

Le Bars, M., and P. Le Gal (2007), Experimental analysis of the stratorotational insta-

bility in a cylindrical Couette flow, Phys. Rev, Lett., 99(6), 064502.

81



Lin, C. C. (1961), Some mathematical problems in the theory of the stability of parallel

flows, J. Fluid Mech., 10, 430–438.

Lorenz, E. (1960), Energy and numerical weather prediction, Tellus, 12, 364–373.

McWilliams, J. (1981), Numerical studies of barotropic modons, Dynam. Atmos.

Oceans, 5, 219–238.

McWilliams, J. C., and I. Yavneh (1998), Fluctuation growth and instability associated

with a singularity of the balance equations, Phys. Fluids, 10, 2587–2596.

McWilliams, J. C., I. Yavneh, M. J. P. Cullen, and P. R. Gent (1998), The breakdown

of large-scale flows in rotating, stratified fluids, Phys. Fluids, 10, 3178–3184.

McWilliams, J. C., M. J. Molemaker, and I. Yavneh (2004), Ageostrophic, anticyclonic

instability of a geostrophic, barotropic boundary current, Phys. Fluids, 16, 3720–

3725.

Mechoso, C. R., and D. M. Sinton (1983), On the energy analysis of the two-layer

frontal model., J. Atmos. Sci., 40, 2069–2074.
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