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ABSTRACT

A new multiplatform multisensor satellite rainfall estimation technique is proposed in which sequences of

Geostationary Earth Orbit infrared (GEO-IR) images are used to advect microwave (MW)-derived pre-

cipitation estimates along cloud motion streamlines and to further adjust the rainfall rates using local cloud

classification. The main objective of the Rain Estimation using Forward-Adjusted advection of Microwave

Estimates (REFAME) is to investigate whether inclusion of GEO-IR information can help to improve the

advected MW precipitation rate as it gets farther in time from the previous MW overpass. The technique

comprises three steps. The first step incorporates a 2D cloud tracking algorithm to capture cloud motion

streamlines through successive IR images. The second step classifies cloudy pixels to a number of predefined

clusters using brightness temperature (Tb) gradients between successive IR images along the cloud motion

streamlines in combination with IR cloud-top brightness temperatures and textural features. A mean pre-

cipitation rate for each cluster is calculated using available MW-derived precipitation estimates. In the third

step, the mean cluster precipitation rates are used to adjust MW precipitation intensities advected between

available MW overpasses along cloud motion streamlines. REFAME is a flexible technique, potentially ca-

pable of incorporating diverse precipitation-relevant information, such as multispectral data. Evaluated over

a range of spatial and temporal scales over the conterminous United States, the performance of the full

REFAME algorithm compared favorably with products incorporating either no cloud tracking or no intensity

adjustment. The observed improvements in root-mean-square error and especially in correlation coefficient

between REFAME outputs and ground radar observations demonstrate that the new approach is effective in

reducing the uncertainties and capturing the variation of precipitation intensity along cloud advection

streamlines between MW sensor overpasses. An extended REFAME algorithm combines the adjusted

advected MW rainfall rates with infrared-derived precipitation rates in an attempt to capture precipitation

events initiating and decaying during the interval between two consecutive MW overpasses. Evaluation

statistics indicate that the extended algorithm is effective to capture the life cycle of the convective pre-

cipitation, particularly for the interval between microwave overpasses in which precipitation starts or ends.

1. Introduction

High-quality precipitation data at fine time and space

resolution have many hydrometeorological applications

including flood forecasting, drought monitoring, disaster

management, and initialization of numerical weather

prediction models, among others. The current constella-

tion of earth observing satellites allows global retrieval

* Current affiliation: Jet Propulsion Laboratory, California

Institute of Technology, Pasadena, California.

Corresponding author address: Ali Behrangi, Jet Propulsion

Laboratory, California Institute of Technology, 4800 Oak Grove

Dr., MS 183-301, Pasadena, CA 91109.

E-mail: ali.behrangi@jpl.nasa.gov

DECEMBER 2010 B E H R A N G I E T A L . 1305

DOI: 10.1175/2010JHM1248.1

� 2010 American Meteorological Society



of precipitation data that complement ground precipi-

tation observations from relatively sparse radar/gauge

networks. While high-resolution precipitation remote

sensing is gaining popularity within several scientific

communities, it faces many challenges. The main chal-

lenge is not only to derive high-quality precipitation

intensity from each individual sensor, but also to com-

bine information from different sensors in order to im-

prove consistency, accuracy, coverage, and timeliness

of high-resolution precipitation estimation. Currently,

the two most commonly used types of sensors in space-

based precipitation monitoring are passive microwave

(MW) and infrared (IR) sensors. Microwave sensors,

which are so far available only aboard Low Earth Orbit

(LEO) satellites, are sensitive to cloud hydrometeors

and yield relatively accurate instantaneous precipitation

estimates for those times when the satellite passes over a

given geographical region. On the other hand, IR sen-

sors aboard Geostationary Earth Orbit (GEO) satellites

can only image clouds rather than the hydrometeors

they contain. GEO satellite data alone yield relatively

inaccurate rainfall intensity estimates that nonetheless

provide comprehensive spatial and temporal coverage.

Given that in the latter case, precipitation is indirectly

estimated from cloud forms present in frequent GEO

images, attempts to combine GEO-IR estimates with

the less frequent but higher-quality precipitation infor-

mation from LEO-MW data has been a major research

issue for more than a decade. These efforts, which will

significantly benefit from the anticipated launch and oper-

ation of the National Aeronautics and Space Administra-

tion (NASA) Global Precipitation Measurement (GPM)

mission, can be categorized into four major groups.

The first and most common type of IR–MW combina-

tion approach includes techniques that retrieve precipi-

tation intensity by establishing an empirical relationship

between GEO-IR images and microwave precipitation

estimates to yield an improved, locally calibrated func-

tion mapping IR imagery to surface rainfall rates. This

includes (i) methods that use microwave estimates to

adjust an IR threshold for rain area delineation followed

by rain-rate estimation (Adler et al. 1993; Kummerow

and Giglio 1995; Xu et al. 1999), (ii) probability/histogram

matching methods in which the cumulative distribution

functions of MW rain rates and IR brightness temper-

atures are matched to provide IR-rain-rate equations

under the general assumption that colder clouds statis-

tically produce more intense rainfall (Hong et al. 2004;

Huffman et al. 2007; Kidd et al. 2003; Sorooshian et al.

2000; Todd et al. 2001; Turk et al. 2000), and (iii) regres-

sion methods in which MW estimates are directly related

to coincident IR pixel data to establish a regression-

based equation for rain-rate estimation (Kuligowski 2002;

Martin et al. 1990; Miller et al. 2001; Vicente et al. 1998).

As discussed by Kidd et al. (2003), calibration-based

combination strategies are affected by the inherent

trade-off between the temporal and spatial details of the

calibration domain. A longer calibration time scale al-

lows for better retention of spatial details but at the

expense of short-term variation in the IR–rainfall re-

lationship. Conversely, when calibration uses coincident

MW–IR images, the algorithm can better capture short-

term variability of IR–rainfall relationships, but at the

expense of information regarding their spatial variabil-

ity because of the limited number or coincident samples.

A second combination strategy, which may be used in

concert with the first, focuses on obtaining the ‘‘best’’

local estimate for a given grid box. This approach has

been employed for generating robust medium-resolution

precipitation products as opposed to finer temporal res-

olution time series. The 3B42-RT product of the Tropical

Rainfall Measuring Mission (TRMM) Multisatellite Pre-

cipitation Analysis (TMPA; Huffman et al. 2007) relies

on collecting available MW estimates from various sat-

ellites within a time bracket of 3 h for each cell on a

0.258 3 0.258 grid and then filling gaps in the grid with

MW-calibrated IR estimates. Clearly, the fundamental

differences between what IR and MW instruments

observe may affect the spatial consistency of rainfall

estimates, introducing discontinuities that may be prob-

lematic for studies focusing on rainfall structures. These

problems can arise in other MW–IR algorithms where

the discontinuities in sensor coverage translate into dis-

continuities in product characteristics.

Cloud motion tracking, which is increasingly becom-

ing a common operational application of GEO satellite

imagery, forms the core element of the third combina-

tion strategy. The Climate Prediction Center Morphing

Method (CMORPH; Joyce et al. 2004) estimates a tem-

porally and spatially complete precipitation field, exclu-

sively from MW observations through guided propagation

of precipitation estimates between two MW images us-

ing IR-based cloud tracking. In brief, CMORPH con-

sists of the following steps: 1) the spatial lag correlations

obtained from successively collocated IR images are

used to calculate cloud motion vectors, 2) the relatively

high-quality MW-derived precipitation estimates are

propagated forward in time along the cloud motion vec-

tors until the next MW overpass is reached, 3) the latter

MW precipitation field is propagated backward in time

using the existing motion vectors, and 4) a time-weighted

linear interpolation of the MW precipitation is obtained

by averaging the forward- and backward-propagated

precipitation fields. The interpolation allows for modifi-

cation of shape and intensity (morphing) of the precipi-

tation field between two microwave overpasses.
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CMORPH has shown good results based on evalua-

tion statistics reported during the Pilot Evaluation of

High-Resolution Precipitation Products (PEHRPP) ini-

tiative as well as in few other studies (Dinku et al. 2008;

Sapiano and Arkin 2009; Tian et al. 2007). However,

a few concerns can be raised. First, the morphed pre-

cipitation product relies on the MW precipitation esti-

mates at the two ends of a cloud advection path. As such,

the method is unable to capture precipitation events

that may form and dissipate between two MW over-

passes such as convective precipitation. More generally,

CMORPH may not result in accurate estimates if the

precipitation field during the morphing process varies

nonlinearly.

The Global Satellite Mapping of Precipitation (GSMaP)_

moving vector with Kalman filter (MVK) algorithm (Ushio

et al. 2009) incorporates the frequently available GEO

information in adjusting the propagated precipitation

field. Although GSMaP_MVK is similar to CMORPH

in propagating the MW-derived precipitation field using

the IR-derived motion vectors, it differs from CMORPH

in that it also uses cloud-top brightness temperatures

to adjust the propagated precipitation intensities along

the motion vectors. More specifically, by considering

the relationship between Tb and precipitation rate and

its associated uncertainties, a Kalman filter is applied

to the propagated precipitation to update the IR–Tb

relationship. The same Kalman gain value may be used

to adjust precipitation intensities along a given mo-

tion vector in both forward- and backward-propagation

stages. The final rain-rate estimate at each interval is

eventually obtained after weighted averaging of the

forward- and backward-propagated precipitation esti-

mates based on the root-mean-square uncertainties as-

sociated with each stage. Note that the CMORPH group

is also pursuing a Kalman filter methodology by using

IR-based estimates to improve their algorithm (Joyce

et al. 2008).

The combination of backward and forward propaga-

tion of MW precipitation estimates is an attempt to

capture the dynamics of growing or decaying precipi-

tation systems. However, the need for a pair of consec-

utive MW observations along the motion vectors, which

are generally separated by a time lag up to 3 h or more,

reduces the effectiveness of this approach in real-time

monitoring of precipitation. Even with GPM in full op-

eration, the revisit time between two MW overpasses

will not improve significantly. Real-time precipitation

monitoring at high time and space resolution is critical

for extreme hydrologic events such as flash floods.

To improve real-time high-resolution estimation of

precipitation rate using GEO-IR-based cloud tracking

and MW data, Bellerby et al. (2009) and Hsu et al. (2009)

developed the Lagrangian Model (LMODEL) algorithm

that combines a high-resolution 2D cloud tracking sys-

tem (Bellerby 2006) and a conceptual semi-Lagrangian

cloud model. The model estimates convective and strat-

iform precipitable water fluxes from GEO imagery and

uses these to model bulk cloud liquid water content and

associated rainfall rates as they evolve along stream-

lines. Model parameters are locally adjusted at MW

overpasses and these adjustments are interpolated along

streamlines between overpasses. State variables are se-

quentially updated using a Kalman filter at each MW

overpass. The method has been tested under the con-

terminous United States and has been demonstrated to

be effective at capturing rainfall variability between MW

overpasses. A weakness of the current LMODEL algo-

rithm is that is does not contain any mechanism to dis-

tinguish between cloud types.

In this study, we propose a new tracking-based MW–

IR rainfall estimation approach that incorporates cloud

classification to improve real-time precipitation estima-

tion. The Rain Estimation using Forward-Adjusted ad-

vection of Microwave Estimates (REFAME) algorithm

computes cloud motion vectors from frequent GEO-IR

cloud-top images using the method developed by Bellerby

(2006). Calculated temperature gradients between suc-

cessive Tb images along with other textural and bright-

ness temperature features are then used to classify GEO

satellite grid boxes into a predetermined number of

clusters. Mean precipitation rates for each cluster are

then derived from time–space-matched MW-derived pre-

cipitation rates in manners similar to the recently reported

Precipitation Estimation from Remotely Sensed Infor-

mation using Artificial Neural Networks–Multispectral

Analysis (PERSIANN-MSA) method (Behrangi et al.

2009b). The cluster mean precipitation rates are used to

adjust the MW precipitation intensities as they are ad-

vected along cloud motion streamlines.

The datasets used in this study are described in sec-

tion 2. The development and structure of the REFAME

algorithm along with few other variations of the algo-

rithm are described in section 3. The variations facilitate

the evaluation of the REFAME. A detailed evaluation

and comparison of the REFAME and the reference

products is provided in section 4. Finally, conclusions

are presented in section 5.

2. Dataset

GEO-IR data from the Climate Prediction Center

(CPC) merged IR dataset (Janowiak et al. 2001) and

MW-derived precipitation estimation from the CPC

merged microwave dataset (Joyce et al. 2004) were ob-

tained for a study region covering the continental United
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States (CONUS) for the period June–August 2006. The

CPC IR dataset is a composite of all available GEO-IR

(;11 mm) images, with zenith angle corrections, and is

available at 4-km spatial resolution every 30 min. The

IR data were remapped onto 0.088 spatial resolution

for this study. The CPC merged MW precipitation data

includes data from the Defense Meteorological Sat-

ellite Program (DMSP) Special Sensor Microwave

Imager (SSM/I), Polar Operational Environmental Sat-

ellite (POES) Advanced Microwave Sounding Unit-B

(AMSU-B), the Aqua Advanced Microwave Scanning

Radiometer-E (AMSR-E), and the TRMM Microwave

Imager (TMI) instruments (Ferraro 1997; Ferraro et al.

2000; Kummerow et al. 2001; Weng et al. 2003). As de-

scribed by Joyce et al. (2004), the merged MW precipi-

tation data is obtained via mapping the MW precipitation

estimates to the nearest grid point on rectilinear grids

at ;0.078 latitude–longitude, separately for each half-

hour and for each satellite. For the grids with no pre-

cipitation data, an inverse distance squared weighting

interpolation of the nearest grids with precipitation es-

timate is used. Finally, by implementing an order of pre-

cedence in regions of overlapping sensors, a spatially

complete field of merged MW precipitation estimate

is obtained at ;0.078 latitude–longitude for each half-

hour. Subsequently, in the present work, the merged

product is interpolated to a common 0.088 spatial and

30-min temporal resolution.

The reference precipitation dataset was obtained from

hourly ground-based weather radar systems, provided

by the National Centers for Environmental Prediction

(NCEP) and Environmental Modeling Center (EMC;

Lin and Mitchell 2005). The NCEP/EMC 4-km gridded

radar rainfall estimates were remapped to a 0.088 latitude–

longitude grid maps, compatible with the IR and MW

dataset.

In this study, the first half period (1 June–15 July 2006)

dataset was used for training and calibration purpose

and the rest was used to evaluate the results. The ground

radar precipitation data is the reference for deriving all

statistical measures for REFAME and its variations are

discussed in section 4 in more detail.

3. Methodology

The REFAME technique comprises three steps. In

the first step, cloud motion streamlines are captured from

successive high-resolution (0.048 latitude–longitude every

30 min) IR images using a 2D cloud tracking algorithm

described in section 3a. In the second step, described in

section 3b, the IR grids are classified into predefined

number of classes using brightness temperature (Tb)

gradients between successive IR images along the cloud

motion streamlines in combination with IR cloud-top

brightness temperatures and textural features. Subse-

quently, the mean precipitation rate for each cluster is

calculated using corresponding MW-derived precipita-

tion estimates. This step is conducted using training

samples prior to the testing/validation phase. In other

words, during the testing/validation period the calcu-

lated mean precipitation rate for each class remains

unchanged. In the third step, described in section 3c, the

mean cluster precipitation rates are used to adjust MW

precipitation intensities advected between available

MW overpasses along cloud motion streamlines. In sec-

tion 3d, a potential extension of REFAME is described

in which GEO-IR-derived precipitation is averaged with

REFAME-derived precipitation to account for those

convective precipitations that may not be captured at

the previous MW overpass.

a. High-resolution 2D cloud tracking

This study employs the high-resolution 2D cloud

tracking algorithm developed by Bellerby (2006). The

algorithm matches equivalent cloud pixels location be-

tween a pair of GEO-IR images using a combination of

hierarchical template matching and mesh-based tracking

techniques. The procedure, fully described in Bellerby

(2006), consists of mapping regular mesh grid centers

(nodes) of a given image (image A) to corresponding

locations in the previous image (image B). The mapping

starts at coarse resolution and uses localized template

matching to optimize the local correspondence between

the two images at and near the nodes. The mapped

nodes are then connected to create a convex quadrilateral

mesh over image B. Both the regular grid over image A

and the irregular grid over image B are interpolated

to twice their current resolution before the procedure

is iterated. In this, and subsequent, iterations, the local

image distortion, including rotation and shear, repre-

sented by the irregular mesh are incorporated into the

local image matching process. The matching points on

image B are again joined to form an irregular mesh over

image B and both regular and irregular meshes inter-

polated to double their resolution. These steps demon-

strated in Fig. 1 are then repeated until the original

resolution of the Geostationary Operational Environ-

mental Satellite (GOES) image is reached. To reduce

potentially ambiguous matches, the procedure includes

consistency checking, mesh untangling, and edge effect

management steps. As a result, and at the end of the

procedure, a Lagrangian representation of cloud devel-

opment is obtained that provides, at each cloudy pixel

location in image A, a translational vector that maps the

pixel to its best match in image B, while explicitly incor-

porating the effect of cloud motion, growth, deformation,
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FIG. 1. Stages of the 2D cloud-advection matching algorithm (Source: Bellerby et al. 2009). (a) Correlation

matching using a rectangular sliding window, (b) mesh replacement using matching results, (c) mesh interpolation,

(d) correlation matching accounting for local image distortion, (e) mesh replacement using matching results, and

(f) mesh interpolation.
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and dispersal (decay). Case studies show that the algo-

rithm is more effective and accurate in tracking cloud

deformation between successive GOES images than

straightforward single-stage template matching ap-

proaches (Bellerby 2006; Bellerby et al. 2009).

b. GEO input-feature extraction and classification

Because of the strong relation between Tb and cloud

height, frequent high-resolution IR observations of

cloud-top properties from GEO satellite images can

provide information on cloud morphology, texture, and

evolution, which in turn may be used to infer infor-

mation relevant to precipitation intensity. For example,

successive IR images may be used to detect a growing

convective system where a gradient of temperature

change (DTb) along the cloud motion streamlines is

negative. A mature convective system that reaches a

high elevation usually demonstrates very low cloud-top

brightness temperature and small DTb. Stratus clouds,

on the other hand, do not usually demonstrate signifi-

cant DTb along the cloud motion streamline. They also

typically appear horizontally flat in IR imagery, mani-

festing only insignificant changes in Tb between neigh-

boring grid boxes.

The REFAME algorithm incorporates a range of IR-

derived cloud ‘‘features’’ to characterize cloud types.

Figure 2 illustrates the features used in REFAME in-

cluding brightness temperature (Tb) of the IR grid box;

texture obtained from 3 3 3 neighboring grid boxes:

mean (M3) and standard deviation (S3); and dynamic

properties, namely, Tb gradient (DTb) calculated from

corresponding brightness temperatures at two succes-

sive images with temporal resolution of GEO-IR im-

agery (30 min).

The inverse statistical relationships between Tb, DTb

(from GEO-IR), and the mean precipitation rate (from

ground radar) are demonstrated in Figs. 3a,b for the

three months of the study period (June, July, and August

2006). To obtain Fig. 3, Tb and DTb were first binned

separately with a step size of two units. The mean

precipitation rate for each bin was then calculated by

dividing the total volume of rain rates over the total

number of samples associated with the bin. The sam-

ple count in each bin is also shown in Figs. 3c,d. The

relationship between DTb and the mean precipitation

rate suggests that in addition to Tb of each grid box,

DTb along the cloud motion path provide useful infor-

mation relevant to precipitation intensity.

The next step of the REFAME algorithm involves

the classification of satellite grid boxes into a predeter-

mined number of clusters (here, 400) sharing similar

input-feature properties. The well-known k-means clas-

sification method was used herein. Briefly, the method

consists of the following steps:

1) Randomly locate n cluster centers (initial centroids)

within the input-feature space D.

2) Using Euclidean distance from the randomly chosen

centers, assign each input-feature vector (i.e., Tb,

DTb, M3, and S3) to the nearest center.

3) Recompute the cluster centers as the mean value of

the input-feature vectors belonging to each cluster.

4) Repeat steps 2) and 3) until the cluster centers do not

change within a predetermined tolerance.

The k-means clustering approach produces clusters that

are located in the input-feature space D to minimize the

cost, which is the sum of the squared Euclidean distance

from every point in D to its nearest cluster center. The

classic cost (or error) function is described as

E 5 �
n

k51
�
x2p

k

kx� c
k
k2, (1)

where x is a point representing an input-feature vector,

Ck is the center of cluster Pk, and n is the number of

clusters. Detailed information about the k-means tech-

nique is available in Duda and Hart (1973), Everitt

(1993), MacQueen (1967), and Qiu and Tamhane (2007).

The classification was performed by introducing

200 000 input-feature vectors to the k-means classifier.

A filtering process prior to the input-feature selection

was used to sample the input-feature vectors from more

than 5 million feature vectors extracted randomly from

satellite pixels of the calibration period (1 June–15 July

2006). Following Behrangi et al. (2009a), the filtering

process was designed to ensure that a sufficient number

of clusters was maintained in the region of low Tb repre-

senting cloudy areas with a higher possibility of precipita-

tion occurrence, resulting in a more desirable distribution

of clusters in the input-feature space. The filtering process

consists of three steps. First, all data samples are binned

into a number of groups based on Tb (here 10 groups with

unequal range). Second, the number of samples in the

FIG. 2. Description of the GEO-IR-derived features used for

classification of IR grid boxes.
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coldest bin is applied as an upper limit to screen the

data in the other bins. Third, data from the warmer bins

are randomly taken out until the total count of data

vectors in each bin matches the number of samples in

the coldest temperature group.

The k-means procedure is an unsupervised classifica-

tion that may be performed independently of any pre-

cipitation rate observation. Classification in unsupervised

mode avoids some of the difficulties that may be intro-

duced by uncertainties in precipitation measurement

field or imperfect time–space matches between satellite

GEO-IR and the precipitation rate. Since the clusters

are derived from multiple cloud features, the REFAME

algorithm is highly flexible and capable of incorporating

new inputs. Enhanced features vectors may, for exam-

ple, include multispectral and cloud-patch information

(Behrangi et al. 2009b; Behrangi et al. 2010).

The next stage of the REFAME algorithm involves

calculating a mean precipitation rate (MPR) for each

cluster using the full calibration dataset. In this stage

k-means cluster centers are not changed. Input-feature

vectors from each satellite grid box are calculated and

used to allocate the grid box to the most closely matching

cluster. If available, the corresponding MW precipitation

rate is then assigned to the cluster. This process con-

tinues until all of the calibration data are exhausted.

MPR for each cluster c is then calculated as

MPR
c
5

�PR
c

N
c

, (2)

where MPRc is the mean precipitation rate for cluster c,

PRc is the corresponding MW precipitation rate esti-

mate (including zero values) of every single grid box

belonging to cluster c, and Nc is the total number of pre-

cipitation and no-precipitation samples within cluster c.

Figure 4 shows a scatterplot of the MPR (y axis)

versus average brightness temperature (x axis) for all

400 cluster centers used in this study. As expected, the

general trend indicates that clusters with lower aver-

age brightness temperature usually correspond to higher

MPR. Note that the observed relationship between a

cluster’s Tb and MPR is a result of considering all of

the input features listed in Fig. 2. Therefore, having

several distinct cluster centers with the same average Tb

indicates that these clusters contain grid boxes with

similar average Tb, but with different averages for the

remaining input features. The clusters’ MPR are used to

FIG. 3. Relation between Tb, DTb (from GEO-IR), and mean precipitation rate (from ground radar) for June

(solid line), July (dark solid line), and August (dashed line) 2006 over CONUS. (a) Relation between Tb and mean

precipitation rate, (b) relation Between DTb and mean precipitation rate, (c) number of precipitation samples in each

Tb bin (with the size of 2 units) to derive the displayed relationships in (a), and (d) number of precipitation samples in

each DTb bin (with the size of 2) to derive the displayed relationships in (b).
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adjust the advection of MW-derived precipitation esti-

mates as described below.

c. Adjusted advection of microwave precipitation
estimates along cloud advection streamlines

The final stage of the REFAME algorithm incorpo-

rates forward adjusted advection of MW-derived pre-

cipitation estimates along cloud motion streamlines

obtained from GEO-IR imagery. Cloud motion vectors

obtained using 2D cloud tracking are used in conjunc-

tion with cluster MPRs described in section 3a to both

advect and adjust the MW precipitation field forward in

time. If the location vectors along an advection stream-

line form a sequence Xt, t 5 1, 2, . . . , and the GEO sat-

ellite feature vector at location Xt is associated with a

cluster of mean precipitation rate MPR(Xt) then the

adjusted advected microwave rain-rate MW*(Xt11) is

calculated iteratively along the streamline as

MW*(X
t11

) 5 MW*(X
t
) 3 Ca(X

t11
), (3)

where

Ca(X
t11

) 5
MPR(X

t11
) 1 1

MPR(X
t
) 1 1

(4)

is an adjustment coefficient.

Figure 5 schematically illustrates how clusters mean

precipitation rate are employed to change the inten-

sity of MW-derived precipitation along an advection

streamline.

d. Extended REFAME incorporating GEO-based
estimates of precipitation rate

REFAME is expected to result in superior perfor-

mance compared to algorithms employing advection or

cloud classification alone because of its ability to modify

precipitation intensity through hybrid advection and

adjustment of the MW precipitation forward in time.

However, the method cannot account for precipitation

events initiating and dying between two MW overpasses

because Eq. (3) is a multiplicative adjustment. These

events can be critical, as the life of an intense convective

storm from growth to dissipation may occur in a matter of

1 h. Such events are captured by using more frequent

GEO-observation of cloud-top properties. An extended

FIG. 4. Scatterplot of the MPR vs cluster average brightness

temperature for all 400 clusters used in this study. Note that the

location of the cluster centers is obtained via k-means classification

using all four input features listed in Fig. 2.

FIG. 5. Schematic demonstration of the procedure used in REFAME to modify the intensity

of MW-derived precipitation as it is advected along the cloud motion streamline. Note that

REFAME uses a combination of features listed in Fig. 2 and is not limited to Tb-only

information for each grid box.
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algorithm (REFAME-GEOmsa) has been developed

to target this problem. REFAME-GEOmsa combines

a GEO-IR-derived precipitation rate with that derived

from REFAME by assigning proper weighs to the ele-

ments of the combination for each time-step difference

from the most recent MW overpass. The development

of the extended algorithm is described below.

1) GEO-IR-DERIVED PRECIPITATION RATE

As discussed in the introduction, a majority of the

GEO-IR-based precipitation estimation algorithms use

power-law regression or histogram-matching techniques

to establish a relationship between cloud-top brightness

temperature and reference precipitation measurements.

The calibrated relationship is then used to estimate pre-

cipitation rate. The common result is that precipitation

rate increases as cloud-top temperature decreases. How-

ever, as shown in Behrangi et al. (2009b) and Behrangi

et al. (2010), the assumption does not always hold.

These and other studies have demonstrated that in addi-

tion to IR brightness temperature other GEO-derived

precipitation-relevant features, such as cloud texture, can

improve precipitation rate estimation from GEO satellites.

Although establishing a relationship between multiple

features and reference precipitation rate is challenging,

the method outlined in section 3a can readily incorporate

multiple features, through the calculated clusters’ MPR,

to estimate gridbox precipitation rate. By employing

a multidimensional clustering/histogram-matching tech-

nique; originally developed for multispectral precipitation

estimation (PERSIANN-MSA; Behrangi et al. 2009b),

GEO-IR precipitation rates are calculated from the GEO

satellite feature vectors described in section 3b. In brief,

clusters are assigned ranks in a descending order based on

their corresponding mean rain rates (highest to lowest).

In parallel, the entire rain-rate sample is also ranked in

descending order. The histogram matching stage then con-

sists of reassigning members of the rain-rate sample into

the above-described clusters according to the number

of samples associated with each cluster. For example,

if cluster C1 with the highest calculated mean rain rate has

N1 samples, the highest N1 rain-rate values are reassigned

to this cluster. The next highest N2 rain-rate values are

reassigned to cluster C2 having N2 samples, and so on for

all of the clusters in the map. The rainfall estimate for a

given cluster is then set equal to the mean of the samples

reassigned to that cluster. Note that the use of histogram-

matched rain-rate values as opposed to the original cluster

means ensures that the resulting rainfall product displays

a realistic dynamic range and accounts for possible mis-

matches between rain-rate and cloud feature locations

in the calibration dataset. As with cloud classification, this

technique may be readily extended to multispectral data.

2) WEIGHTED AVERAGING OF REFAME AND

GEOMSA

REFAME and GEOmsa outputs were linearly com-

bined using weights derived from a comparison of both

products to a ground radar reference dataset. Figures 6a,c

demonstrate that the performance of REFAME, as de-

termined using correlation and root-mean-square error

(RMSE) scores, drops as the time-distance from the pre-

vious MW overpass increases. Figures 6b,d suggest that

the combination weights should be identified with respect

to the time-distance from the last MW overpass. While

the correlation coefficient of REFAME is more sensitive

to time-distance than GEOmsa, it is less sensitive to sam-

ple counts (Figs. 6e,f), particularly as the time-distance

gets larger. The large value of RMSE can be attributed

to the considerable differences between MW-derived

and radar precipitation estimates. Radar precipitation

rates may exceed 100 mm h21 as opposed to MW-derived

precipitation, which does not exceed 50 mm h21. There-

fore, it is expected that the uncertainty in correlation co-

efficient, unlike RMSE, becomes less sensitive to the

existing differences in rain intensity, as the former deals

with patterns and the latter deals with actual values of

precipitation. While RMSE-based combination weights

(Fig. 6d) could be also used, in this study COR was se-

lected as the performance metric to assign combination

weights to REFAME and GEOmsa at each time-distance

(DT ) from previous MW overpasses (Fig. 6b). The com-

bination weights (WREFAME and WGEOmsa) are calcu-

lated by solving the following set of equations:

W
REFAME

(DT)

W
GEOmsa

(DT)
5

COR
REFAME

(DT)

COR
GEOmsa

(DT)
, (5)

W
REFAME

(DT) 1 W
GEOmsa

(DT) 5 1, (6)

where CORREFAME(DT ) and CORGEOmsa(DT ) are cor-

responding correlation coefficients for REFAME and

GEOmsa as compared to the reference ground radar es-

timates at time-distance DT from the most recent MW

estimate along the cloud motion streamlines.

Once the proper weights with respect to the time-

distance from the previous MW overpass were obtained

for each method, the REFAME-GEOmsa is calculated

to identify the precipitation rate for each grid box as

follows:

if DT 6¼ 0,

PR
REFAME-GEOmsa

(X
t
) 5 W

REFAME
(DT)

3 PR
REFAME

(X
t
)

1 W
GEOmsa

(DT) 3 PR
GPR

(X
t
);

(7)
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otherwise,

PR
REFAME-GEOmsa

(X
t
) 5 MW(X

t
), (8)

where PRREFAME-GEOmsa(Xt), PRREFAME(Xt), and

PRGEOmsa(Xt) are the precipitation rate from the al-

ternative product REFAME-GEOmsa, REFAME, and

GEOmsa, respectively, at location X at time t along the

cloud motion streamline.

It must be noted that in the construction of Fig. 6,

the hourly radar precipitation was assumed to have

occurred at uniform intensity during each interval,

which may affect the correlation coefficients and RMSE

values.

4. Evaluation and comparison of results

a. Model validation

REFAME is useful to investigate if inclusion of GEO-

IR information can help to improve the propagated MW

precipitation rate as it gets farther in time from the

previous MW overpass. To assess the contributions made

by the elements of the proposed adjusted-advection pro-

cess, two variations of the algorithm were developed and

compared to REFAME using the ground radar pre-

cipitation rate as reference:

1) Fixed MW precipitation field (MWfix).

2) Forward advection of MW precipitation field

(MWadv).

FIG. 6. Analysis using the ground radar precipitating rate during the calibration period to identify combination

weights to combine REFAME and GEOmsa. (a) COR of REFAME, MWfix and GEOmsa with respect to time-

distance from the most recent MW overpass, (b) correlation-based combination weights (WCOR) for REFAME and

GEOmsa, (c) RMSE of REFAME, MWfix, and GEOmsa with respect to time-distance from the most recent MW

overpass, (d) RMSE-based combination weights (WRMSE) for REFAME and GEOmsa, (e) number of samples

collected during the calibration period to derive the statistics with respect to time-distance from the most recent MW

overpass, and (f) cumulative distribution function of the sample counts with respect to time-distance from the most

recent MW overpass.
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In MWfix, the MW estimate of precipitation for gridbox B

is kept unchanged both in location and intensity until the

next MW overpass provides new precipitation estimate

for B. This product was considered to provide a MW-only

baseline that does not account for cloud motion, and does

not use IR estimates to adjust MW estimates. MWfix,

therefore, to some extent resembles the near–real time

TMPA (TMPA-RT) scheme in implementing MW-

derived precipitation rate in the final precipitation prod-

uct. However, as described in Huffman et al. (2007) and

summarized in the introduction section of the present

manuscript, TMPA-RT also benefits from a MW-

calibrated IR estimates to fill the remaining gaps within

each time bracket of 3 h. This may lead to considerable

differences between TMPA-RT and MWfix. As will be

shown in the results section, MWfix can result in significant

misplacement of the MW precipitation particularly when

clouds are subject to rapid movement and the time-

distance from previous MW overpass is large. In addi-

tion, the product cannot account for changes in rainfall

intensity.

In MWadv the MW precipitation grid boxes are advec-

ted forward in time along cloud motion streamlines ob-

tained from successive GEO-IR images using the 2D cloud

motion algorithm described in section 3a. Assuming a per-

fect tracking of cloud grid boxes, MWadv is expected to

significantly improve the positioning of MW precipitation,

compared to MWfix. However, it does not account for

changes in precipitation intensity between two successive

MW overpasses as REFAME does. The second variation,

MWadv, is tailored to be similar to the scheme imple-

mented in CMORPH. However, as described in Joyce et al.

(2004) and summarized in section 1, CMORPH also ben-

efits from the backward propagation of the next MW-

precipitation overpass to adjust the precipitation intensity

at the expense of postponing the near real-time estimate

of precipitation intensity for up to few hours. While

by excluding the backward propagation of the next

MW precipitation overpass ‘‘QMORPH’’ (Joyce et al.

2004) is a more timely precipitation product, REFAME

was not compared to QMORPH in the present work. The

main reason is QMORPH uses different tracking strategy

and employs a few other adjustments that make it difficult

to conclude whether the differences between REFAME

and QMORPH are algorithmic or due to the variation of

input features.

Evaluation of REFAME, its variations, and REFAME-

GEOmsa were performed using the hourly ground radar

precipitation data as ‘‘ground truth.’’ Four evaluation

statistics are used: equitable treat score (ETS), correlation

coefficient (COR), RMSE, and BIAS (see the appendix

for detail). ETS is computed through the construction of

a binary contingency table to measure the skill of each

product in delineating rain/no-rain areas. This is attained

by selecting a threshold (0.1 mm h21) above which a pre-

cipitation event is considered to have occurred. The rest of

the statistical indices use quantitative values and measure

how well the products can estimate rain rate compared to

the reference radar rain rate. Table 1 summarizes the

evaluation of 3-h aggregated rainfall products at 0.088 and

0.248 latitude–longitude resolutions. With the exception of

BIAS, a performance gain/loss metric is calculated for

each index to facilitate the comparison against the refer-

ence product (MWfix). The gain/loss performance metric

of a given product is computed as

Gain/Loss
scenario

% 5
S

scenario
� S

MWfix

S
MWfix

3 100. (9)

Whether the above performance metric is considered as

gain or loss depends on whether an increase or decrease

of the value of the metric is better or worse. As such,

obtaining a negative performance value for RMSE is

gain while it is considered a loss for the rest of the evalu-

ation indices reported in Table 1.

The results in Table 1 highlight several issues: First,

by advecting the MW-derived precipitation rate (MWadv),

the overall evaluation statistics with respect to the refer-

ence product (MWfix) are improved. The largest gain is

reported for the correlation coefficient (;12% at 0.088

latitude–longitude and ;11% at 0.248 latitude–longitude).

Second, REFAME results in significant overall improve-

ment over both MWfix and MWadv. The improvement in

COR (;23% gain at 0.088 latitude–longitude and ;21%

gain at 0.248 latitude–longitude) is more remarkable than

the rest of the evaluation indices. The improved corre-

lation in conjunction with gain in RMSE (;13% at 0.088

latitude–longitude and ;14% at 0.248 latitude–longitude)

implies that REFAME is very effective for both advection

and adjustment of the MW-precipitation rate along the

cloud motion stream lines. Third, REFAME-GEOmsa

results in another significant improvement over all other

products with gains in COR (;33% at 0.088 latitude–

longitude and ;28% at 0.248 latitude–longitude), RMSE

(;17% at 0.088 latitude–longitude and ;16% at 0.248

latitude–longitude), and ETS (;13% at 0.088 latitude–

longitude and ;14% at 0.248 latitude–longitude). Fourth,

all of the products capture the total volume of precipi-

tation quite well when compared to the reference radar

precipitation estimates. One major shortcoming for MWfix,

MWadv, and REFAME is that they rely on the previous

MW observation of precipitation field. As such, they may

fail to capture the start or end of precipitation events be-

tween two MW overpasses. In contrast, the GEO-based

precipitation estimation method estimates precipitation

from frequent IR images, where rapid and short-lived

changes in cloud-top temperature can be monitored, albeit
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indirectly. This results in improved delineation of pre-

cipitation area as shown in Table 1 and will be displayed in

the case study section.

Table 2 contains the evaluation statistics of 1-h pre-

cipitation estimates from all products at both 0.088 and

0.248 latitude–longitude resolutions. The results are con-

sistent with the 3-h evaluation described in Table 1. Again,

REFAME demonstrates the highest skill in advecting

MW-derived precipitation rate forward in time with

COR having been improved about 28% at 0.088 latitude–

longitude and 27% at 0.248 latitude–longitude. Similarly,

the weighted averaging of GEOmsa and REFAME scores

the best across all other products and the gain in COR

reaches about 44% at 0.088 latitude–longitude and 38%

at 0.248 latitude–longitude. Table 2 also demonstrates

that both REFAME and REFAME-GEOmsa can lead

to substantial gain even at high time (1 h) and space

(0.088 latitude–longitude) resolutions, which are favor-

able for hydrological applications.

Further evaluation of the correlation coefficients as-

sociated with the products studied is shown in Fig. 7.

Figure 7a shows the correlation of the various products’

half-hourly precipitation estimates with hourly reference

radar precipitation rates with respect to time-distance

from the most recent MW overpass computed at 0.088

latitude–longitude resolution. In the construction of Fig. 7,

the hourly precipitation rate observation was assumed to

be uniformly distributed within each hour to allow the

comparison with half-hourly precipitation rates from the

various products. This results in significant reduction in

COR values (e.g., the calculated correlation between

hourly MW-derived and reference radar precipitation

rate is about 0.75 as opposed to 0.55 obtained here).

However, in relative terms, Fig. 7a clearly demonstrates

the superior performance of REFAME and REFAME-

GEOmsa in comparison with the reference MWfix prod-

uct as well as with MWadv. REFAME-GEOmsa indicates

that direct inclusion of GEO-based estimation is crucial

even at small time-distances as it improves the COR

significantly. Eventually, REFAME-GEOmsa approxi-

mates that of GEO-based-only precipitation estimation

as less weight is assigned to REFAME (WREFAME) at

larger time-distances. Figure 7b shows the occurrence

count (in log scale) of product–radar pairs used to derive

the displayed correlations. Obviously, reduction in the

counts is significant as the time gets farther from the most

recent MW overpass. Figure 7c displays that the COR

percent gain of products MWadv and REFAME against

the reference product (MWfix) is significant. Overall, Fig. 7

clearly demonstrates that retaining the MW-derived pre-

cipitation, until the next MW overpass results in significant

drop in correlation coefficient. An advection-only process

progressively improves the correlation as the time-distance

from previous MW overpass gets larger. The adjusted

TABLE 1. Overall 3-h evaluation statistics during the evaluation period (16 Jul–31 Aug 2006).

Products ETS ETS gain (%) COR COR gain (%) RMSE mm h21 RMSE gain (%) BIAS

0.088 lat–lon MWfix 0.345 0.00 0.459 0.00 0.908 0.00 20.059

MWadv 0.353 2.17 0.514 12.14 0.855 25.82 0.022

REFAME 0.361 4.37 0.562 22.59 0.789 213.08 20.003

GEOmsa 0.333 23.71 0.516 12.45 0.950 4.63 0.033

REFAME-GEOmsa 0.389 12.51 0.612 33.36 0.749 217.44 0.006

0.248 lat–lon MWfix 0.343 0.00 0.527 0.00 0.675 0.00 20.079

MWadv 0.350 1.95 0.585 11.06 0.609 29.85 0.002

REFAME 0.359 4.43 0.637 20.81 0.578 214.42 20.023

GEOmsa 0.329 24.17 0.564 7.08 0.835 23.60 0.013

REFAME-GEOmsa 0.391 13.95 0.676 28.29 0.565 216.30 20.014

TABLE 2. Overall 1-h evaluation statistics during the evaluation period (16 Jul–31 Aug 2006).

Products ETS ETS gain (%) COR COR gain (%) RMSE mm h21 RMSE gain (%) BIAS

0.088 lat–lon MWfix 0.289 0.00 0.334 0.00 1.215 0.00 20.052

MWadv 0.295 2.29 0.384 14.90 1.184 22.54 0.018

REFAME 0.307 6.30 0.427 27.61 1.128 27.15 20.005

GEOmsa 0.281 22.63 0.394 17.80 1.220 0.39 0.023

REFAME-GEOmsa 0.335 15.93 0.483 44.48 1.051 213.48 0.002

0.248 lat–lon MWfix 0.309 0.00 0.421 0.00 0.943 0.00 20.072

MWadv 0.321 3.75 0.483 14.91 0.893 25.30 20.002

REFAME 0.334 8.12 0.533 26.78 0.850 29.79 20.025

GEOmsa 0.292 25.50 0.472 12.29 0.997 5.80 0.003

REFAME-GEOmsa 0.365 17.91 0.581 38.10 0.809 214.19 20.019
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advection of the MW precipitation rate is superior to

both the products with about 90% gain in correlation

coefficient 2 h after the most recent MW. The improve-

ment continues in time and as the time-distance reaches

about 5 h, the gain is nearly 300% (Fig. 7c).

The above discussion focused on statistical measures

that provide summaries of overall performance. It is also

important to examine the performance of the various

products for individual events as identified by the best

matched pairs of observation/estimates. Figure 8 presents

a comparison of COR and RMSE between 3-hourly,

0.248 precipitation estimates obtained from REFAME,

MWfix, MWadv, and REFAME-GEOmsa and corre-

sponding radar observations. Although the comparison

covers the entire evaluation period over the full study

area, 3-h radar precipitation maps associated with the

lowest 10% number of rain grid boxes were excluded

from the analysis to focus on extensive precipitation

events. As seen in the first row, REFAME shows fairly

high COR and low RMSE for a reasonable portion of

the samples. When compared with MWfix and MWadv

(rows 2 and 3), REFAME’s COR and RMSE values

demonstrate superior performance in a majority of cases

as indicated by the large number of points above the

1:1 line for COR and below the 1:1 line for RMSE. The

only product with better overall performance than

REFAME is REFAME-GOEmsa (bottom row).

b. Case study: Convective precipitation event

To examine the detailed workings of REFAME, a

case study was investigated that covered a convective

precipitation event from initiation all the way to the

dissipation stage. The event, which is explored at 0.088

resolution, occurred between 0415 UTC 30 July 2006 and

1245 UTC 30 July 2006. Figure 9 shows brightness tem-

perature (IR10.7 mm) and ground radar rain-rate maps

in addition to the various satellite rainfall products. The

third row displays the MW-derived precipitation maps

for all available MW overpasses with missing data shown

in black.

Starting at 0415 UTC, both ground radar and GEO-

msa show scattered precipitation, indicating the initia-

tion stage of the convective system. No precipitation is

captured by MW, and thus no precipitation is estimated

from MWfix, MWadv, and REFAME until 0815 UTC.

At 0815 and 0915 an MW sensor passes over the con-

vective system, which is already in its mature stage.

Although MW and radar demonstrate major discrep-

ancies in detecting precipitation area and estimating its

intensity, both indicate that the convective system has

reached to its mature state. On the other hand, the fre-

quent observation of cloud-top Tb clearly shows the

system’s growth as it gradually gets colder at top and the

area of the cold region gets larger. Therefore, GEOmsa

and as a result REFAME-GEOmsa fairly well capture

the convective growth. During the dissipation stage no

MW overpass is available until 1245 UTC where the

precipitation field has nearly faded. Meanwhile, MWfix

and MWadv continue to show the large intense pre-

cipitation area as estimated from the most recent MW

observation at 0915 UTC. However, at 1245 UTC, the

large intense precipitation field is abruptly replaced by

a smaller low intensity precipitation field. The observed

expansion in precipitation area in MWadv (row 6) can

be attributed to the ability of the 2D cloud hierarchical

tracking algorithm to account for cloud divergence as

discussed in Bellerby (2006). Guided by Tb obser-

vations, REFAME adjusts the MW precipitation in-

tensities as advected along the cloud motion stream

lines and demonstrates, contrary to MWFix, a fairly

smooth transition toward the next MW-derived pre-

cipitation field at 1245 UTC. As expected, the dissipa-

tion trend is also captured by both GEOmsa method and

REFAME-GEOmsa, which agrees with radar precip-

itation maps as well. By exploring the convective sys-

tem two issues need to be highlighted: first, although

REFAME has the ability to include GEO-IR-derived

input features to adjust the MW precipitation intensities

FIG. 7. Analyzing the correlation coefficient of the developed

products with respect to time-distance from the most recent MW

overpass. In this figure the evaluation dataset is used (16 Jul–

31 Aug 2006). Hourly ground radar precipitation rate is assumed

uniform in time to serve as a reference for comparing the half-hourly

precipitation rates derived from different products. (a) Correlation

coefficient, (b) number of available samples at each time-distance to

derive the correlation coefficients reported in (a), and (c) correlation

gain for MWadv and REFAME calculated from Eq. (9).
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forward in time, it cannot generate any precipitation

if the most recent MW shows no precipitation. Second,

REFAME-GEOmsa may ameliorate this issue if the

GEO-based method captures true precipitation.

5. Conclusions

This paper described the development of REFAME,

a combined IR–MW satellite rainfall estimation tech-

nique incorporating real-time adjustment of the multi-

sensor MW precipitation rates as they are advected

forward in time along the GEO-IR-based cloud motion

streamlines. In contrast to other techniques of this type,

REFAME uses cloud-classification techniques to take

account of cloud properties when deriving changes in

precipitation rate along cloud motion streamlines. The

method was developed and evaluated over the United

States during a 3-month period of June–August 2006. To

facilitate the evaluation of REFAME, two other products

were developed. In the first product MW precipitation

rate was held constant, while in the second product cloud

advection was accounted for without adjustment of

MW precipitation estimates until the next MW overpass.

REFAME almost consistently outperformed these two

products by demonstrating considerable gains in evalua-

tion statistics. In addition, an extended algorithm was

proposed in which REFAME was combined with GEO-

derived precipitation rate through assigning weights to

FIG. 8. The 3-h 0.248 latitude–longitude statistics over the full area of the study. (top) The (left) COR and (right)

RMSE of REFAME. (from second row to bottom) Scatterplots of (left) COR and (right) RMSE for REFAME and

MWfix, MW adv, and REFAME–GEOmsa.
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each method based on time-distance from the most re-

cent MW overpass. The main purpose of direct inclusion

of GEO-based precipitation estimate was to capture pre-

cipitation events initiating and decaying during the inter-

val between two consecutive MW overpasses. Evaluation

statistics indicate that the proposed alternative performs

remarkably well for real-time precipitation estimation.

However, further investigation is required to assess the

performance of the employed weighing-average procedures

at various precipitation events.

The REFAME algorithm has been designed to readily

incorporate multiple input features. As such multispectral

satellite information may further improve the perfor-

mance of the algorithm (Ba and Gruber 2001; Behrangi

et al. 2009a,b; Capacci and Conway 2005) by virtue of

improving its GEO based components. While global

high temporal and spatial monitoring of cloud-top prop-

erties in visible, water vapor, and thermal IR bands are

currently available from existing GEO satellites, finer

spectral, spatial, and temporal resolution data is forth-

coming online through the suite of recent and future

geostationary satellites [e.g., Spinning Enhanced Visible

and Infrared Imager (SEVIRI) on board the Meteosat

Second Generation (MSG) satellite and the future Ad-

vanced Baseline Imager (ABI) on GOES-R]. Certainly,

investigating potential improvements in GEO-derived

precipitation estimation using multispectral observa-

tions will continue to be an active area of research.

The REFAME algorithm can be also used in a forward–

backward process such as that used in CMORPH (Joyce

et al. 2004) at the expense of postponing the near-real-

time precipitation estimate for a few hours. The forward–

backward process will definitely improve the performance

of the algorithm since it incorporates information from

the next MW overpass, which, together with the previous

MW information, provides better ability to capture the

precipitation system’s growth and decay. In reality, even

a perfect IR-based cloud tracking method is unlikely to

pinpoint precipitation location because of the relatively

faster movement of the cloud top in comparison with the

precipitation field beneath (Joyce et al. 2004). Investi-

gating this issue is also another area of research that could

lead to improvements in the presented algorithm.

REFAME demonstrates the utility of cloud-type infor-

mation in determining rainfall process variation along

advection streamlines. Future work could combine such

classification with the precipitable water accounting of the

LMODEL to derive an improved cloud-modeling-based

approach.

Finally, having more accurate, frequent, and consis-

tent MW precipitation rate should directly improve the

skill of REFAME. It is hoped that the future Global

FIG. 9. Exploration of a convective precipitins system from initiation to dissipation at 0.088 resolution between 0415 UTC 30 Jul 2006

and 1245 UTC 30 Jul 2006. (a) Brightness temperature, (b) ground radar precipitation rate, (c) MW-derived precipitation rate. (d)–(h)

Performances of GEOmsa, MWfix, MWadv, REFAME, and REFAME-GEOmsa, respectively. The blacked-out part in the third row

indicates regions where no MW data were recorded.
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Precipitation Measurement (GPM) mission will be a

significant step toward such estimates. The REFAME

concept is currently under development for operational

implementation. The operational product will be com-

pared with the existing products in a future work and

hopefully over the International Precipitation Working

Group (IPWG) validation sites (Ebert et al. 2007).
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APPENDIX

Definition of the Evaluation Statistics Used in
this Study

The equitable threat score (ETS) is used to evaluate

the performance of the methods in delineating the areal

extent of rainfall. ETS is calculated from the binary-

based contingency table that classifies the prediction

outcome into the following four possibilities based on

observation of rain/no-rain occurrences:

d Hits (H)—Number of pixels correctly classified as

rainfall,
d Misses (M)—Number of pixels incorrectly classified as

no rainfall,
d False alarms (F )—Number of pixels incorrectly clas-

sified as rainfall,
d Correct negatives (Z)—Number of pixels correctly

classified as no rainfall.

ETS is computed as follows:

ETS 5 (H � hits
random

)/(H 1 M 1 F � hits
random

),

where,

hits
random

5 [(H 1 M)(H 1 F)]/(H 1 M 1 F 1 Z).

Quantitative statistics are computed using ob-

served (RRobs) and estimated (RRest) rain rates and

the total number of observed and estimated rain

pairs (N).

The correlation coefficient (CORR) 5

�
N

i51
[(RR

obs
)

i
(RR

est
)

i
]� [N(RR

obs
)(RR

est
)]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
N

i51
(RR

obs
)2

i �N(RR
obs

)2

" #
�
N

i51
(RR

est
)2

i �N(RR
est

)2

" #vuut
,

Root mean square (RMSE) 5
1

N
�
N

i51
[RR

est
(i)�RR

obs
(i)]2

( )0.5

, and

Bias (BIAS) 5

�
N

i51
[RR

est
(i)�RR

obs
(i)]

N
.
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