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Abstract

Computational Grids are becoming an increasingly important and powerful platform

for the execution of large-scale, resource-intensive applications. However, it remains

a challenge for applications to tap the potential of Grid resources in order to achieve

performance. In this paper, we illustrate how applications can leverage Grids to achieve

performance through coallocation. We describe our experiences developing a scheduling

strategy for a real-life parallel tomography application targeted to Grids which contain

both workstations and parallel supercomputers. Our strategy uses dynamic information

exported by a supercomputer's batch scheduler to simultaneously schedule on worksta-

tions and immediately available supercomputer nodes. This strategy is of great practical

interest because it combines resources available to the typical research lab: time-shared

workstations and CPU time in remote space-shared supercomputers. We show that this

strategy improves the performance of the parallel tomography application compared to

traditional scheduling strategies, which target the application to either type of resource

alone.
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1 Introduction

The aggregation of heterogenous resources into a Computational Grid [FK98a] provides

a powerful platform for the execution of large-scale resource-intensive applications. The

simulateneous use of heterogeneous resources can greatly improve the performance of many

applications, and permits researchers to run applications at the very large problem sizes

critical to the discovery of new results. Although we are gaining considerable experience in

the development of infrastructures which integrate distributed, heterogeneous resources, we

have less experience developing applications which can leverage the distributed resources of

the Grid to improve performance.

One application which has pro�ted from leveraging the processing power of the Compu-

tational Grid is the Parallel Tomography (GTOMO) application being used at the National

Center for Microscopy and Imaging Research (NCMIR). GTOMO is a real-life, embarrassingly-

parallel production application which uses Globus [FK98b] services to perform a 3-D recon-

struction from a series of images produced by NCMIR's electron microscope. As is the case

with many laboratories, NCMIR owns a limited number of workstations (which are used

as desktop machines and as a platform for parallel processing) and has access to super-

computer time. In this paper, we describe a coallocation strategy for using both

supercomputers and interactive workstation clusters to improve the execution

performance of GTOMO within the context of a typical lab environment.

The scheduling strategy for GTOMO works at the application-level to address the dif-

ferent resource scheduling policies for both interactive workstation clusters and supercom-

puters. In interactive workstation clusters (time-shared machines), jobs begin executing

immediately but share the CPU and network with other competing processes. In contrast,

job submissions to a supercomputer (space-shared machine) must wait in a batch queue un-

til the desired number of the machine's processors become available for dedicated use. The

turnaround time

1

experienced by the application can be quite lengthy due to queue wait

times [STF99], even if the execution time of the application is relatively short once it gains

access to the machine.

2

The queue wait times make it di�cult to use supercomputers with

workstations simultaneously, a strategy that could increase the processing power available to

an application. To avoid unpredictable queue time delays, the GTOMO scheduling strategy

adaptively submits job requests to the supercomputer's batch scheduler such that wait time

in the batch queue is avoided (i.e. �nds idle nodes).

The adaptive scheduler developed for GTOMO is framed as an AppLeS [App]. An Ap-

pLeS application scheduler integrates with a target program to develop and deploy an ap-

plication schedule customized for a shared, dynamic Grid environment [BWF

+

96, SBWS99,

SW98]. The scheduler makes predictions of the performance of the application on prospective

resources at execution time (typically using the Network Weather Service monitoring and pre-

diction facility [WSH98]). Using these performance predictions, a potentially performance-

e�cient schedule for the application is identi�ed and deployed. We developed a simple and

e�ective coallocation strategy for the GTOMO AppLeS which targets application tasks to

both supercomputers and/or interactive workstations based on the identi�cation and use

1

The time elapsed from the submission of the application by the user until all of the results are available.

2

In practice, queue times may range from seconds to days.

2



of immediately available resources. Our experiments show that this coallocation strategy

improves the execution performance of the application over strategies which target the ap-

plication to interactive workstations alone and to a parallel supercomputer alone. We believe

that our coallocation strategy will be e�ective for other coarse-grained parallel applications

as well.

The next section provides a brief description of GTOMO. Section 3 describes our coal-

location strategy for scheduling GTOMO over workstations and supercomputers. Section 4

presents the results of comparing our strategy against other scheduling alternatives. Sec-

tion 5 discusses related work. Section 6 concludes the paper and discusses future work.

2 GTOMO Structure

Tomography allows for the reconstruction of the 3-D structure of an object based on 2-D

projections through it taken at di�erent angles. Electron microscopy is a classical use for

tomography. Biological specimens on the cellular and sub-cellular level are viewed with an

electron microscope and their images are recorded at a number of di�erent angles. These

images are then aligned and reconstructed into 3-D volumes using analytic and iterative

tomographic techniques [PRY

+

97].

GTOMO is an embarrassingly parallel implementation of tomography which uses Globus

services to run over a heterogeneous, distributed environment. The structure of GTOMO is

depicted in Figure 1. There are four types of application processes: driver, reader, writer,

and ptomo. The driver controls a work queue: it assigns one slice to a free ptomo until no

more slices remain. The driver is invoked by the user and starts up the other processes. The

reader and writer are I/O processes and hence have direct access to the user �le system. The

reader reads input �les o� the disk and sends them to the ptomos for processing. The writer

receives output �les from ptomos and writes them to disk. This enables GTOMO to run

across di�erent �le systems domains. The ptomo receives input �les from a reader, does all

the computational work, and sends output to a writer. In this study, we use one reader, one

writer, and any number of ptomos, although other process con�gurations are supported by

our implementation. Due to the multi-threaded nature of Globus' Nexus communications

library, one reader can service I/O requests for many ptomos simultaneously, and the same

applies for the writer.

3 Scheduling GTOMO

Generally speaking, the set of potential resources available to GTOMO consists of worksta-

tions w

1

; :::; w

!

and supercomputers s

1

; :::; s

�

. A request to run a process p on workstation

w causes p to start immediately, but p time-shares w with other processes. To use a super-

computer s, one has to specify how many processors n will execute copies of p and for how

long t. The n copies of p do not necessarily start immediately; they might wait in the queue

for an indeterminate amount of time until n nodes become available for t seconds. How-

ever, supercomputer processes run over dedicated resources once they are acquired (through

space-sharing).
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Scheduling GTOMO consists of (i) choosing the requests to send to supercomputers

and workstations, and (ii) assigning work for the ptomos. For the latter, we use a simple

work queue strategy that assigns work on demand. For the �rst, we have to determine

performance-e�cient values of n and t for each available supercomputer s.

3

Our goal is to

select n and t in a way that minimizes GTOMO's turn-around time. Note that di�culty in

predicting supercomputer queue time makes it di�cult to �nd an optimal n and t [Dow97,

STF99, Gib97].

We avoid the queue time prediction problem by using supercomputer nodes that are

immediately available. We assume that the supercomputer scheduler can provide us with the

maximum values of n and t for which execution can begin immediately. Our implementation

uses the showbf command supplied by the Maui Scheduler [Mau] that controls the SDSC SP2

to provide this information. These n and t values are then used by the AppLeS scheduler.

Note that the nodes immediately available in the SP2 may not be available for the

full duration of the application. Therefore, the AppLeS application scheduler has to cope

with ptomo processes that detach themselves from the application before execution has

completed. We have added a fault recovery mechanism to GTOMO, which enables us to

treat this problem as a ptomo failure. Whenever a ptomo fails, the slice it was processing is

returned to the work queue. We can use such a simple scheme because processing a slice has

no side e�ect. The advantage of reducing this problem to fault recovery is, of course, that it

also covers real faults.

4 Experimental Results

We denote the GTOMO AppLeS strategy as SP2Immed/WS since it adaptively combines

both the immediately available SP2 nodes and workstations. In order to ascertain how

this strategy performs, we compared it against other possible scheduling strategies: using

workstations only (WS), using only the nodes that are immediately available in the SP2

(SP2Immed), and requesting a predetermined number of nodes in the SP2 and probably

waiting for them in the queue (SP2Queue). WS and SP2Queue respectively are the standard

ways to use a cluster of workstations and a parallel supercomputer.

We ran experiments on a cluster of 8 workstations available at the Parallel Computation

Laboratory at UCSD and on the SDSC's SP2. The workstation cluster includes 2 200 MHz

UltraSPARC 2s, a 110 MHz Sparc 5, a 85 MHz Sparc 5, and 4 400 MHz Pentium IIs. The

workstations are connected by a mixture of 10 and 100 Mbit/s ethernet subnets. The SP

has 128 thin node POWER2 processors running at 160 MHz where each processor pair is

connected together by a 110 MB/s bi-directional network [SP]. Other users were present on

all resources during the experiments.

Note that it is problematic to design experiments which compare all scheduling strategies

under the same load and queue conditions in real multi-user production environments. In

such environments, the load and availability of resources change over time, so reproducibility

of the same ambient load conditions is not an option. For our experiments, we performed runs

3

For the workstations, all we can do is to increase our nice value, something that is not going to increase

the performance of the application.
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of SP2Immed, SP2Immed/WS, WS, and SP2Queue back-to-back

4

hoping that experiments

within the same set would enjoy roughly similar load conditions. Moreover, we monitored

the number of free nodes in the SP2 and used this information to discard an execution set

in which the nodes available to SP2Immed/WS and SP2Immed di�ered by more than two.

(This was the case in 17 (out of 51) experiment sets.) We therefore ended up with 34 valid

experiment sets.

There are two other details to note in the design of our experiments. First, when we use

only the resources immediately available in the SP2, it might be that there are no nodes

available to execute the application. In this case, we do not run the set of experiments until

the necessary resources become available. This happened 6 times out of 34 attempts. Notice

that by excluding this retry time, we present optimistic turn-around times for the SP2Immed

method. A user using this method would have experienced longer delays.

Second, we needed to decide on n and t when we used the SP2 in the traditional way

(i.e., SP2Queue). We executed benchmarks on the SP2 to determine the processing time of

one slice. This enabled us to conservatively determine t given n (a conservative estimate is

needed because a job is killed when its execution exceeds t). Note that the determination of

the best n requires accurate queue prediction. Since such predictions are not available, we

rotated among values of n likely to be used by GTOMO users: 8, 16, and 32 nodes.

Our experiment results are grouped by the number of nodes SP2Queue used. Figure 2

shows the experiments in which SP2Queue used 8 nodes, Figure 3 shows the results for 16

nodes, and Figure 4 shows the results for 32 nodes. Figures 2-4(a) depict how the di�erent

strategies (WS, SP2Immed/WS, SP2Immed, and SP2Queue) performed. Each set of bars in

the �gure depicts four executions, one under each of the four strategies. The number of nodes

SP2Immed and SP2Immed/WS acquired in each set of experiments is shown in Figures 2-

4(b). The SP2Immed/WS strategy yielded the best performance in all cases except one

(Figure 3, run 8). Note that the SP2Immed/WS strategy exhibited much less variance

than SP2Queue and SP2Immed. As expected, SP2Queue had the greatest variance. While

its turn-around time was sometimes close to SP2Immed/WS (544s for SP2Queue vs. 601s

for SP2Immed/WS for the one time it beat SP2Immed/WS), its worst time was almost

two orders of magnitude greater than SP2Immed/WS (27480s for SP2Queue vs. 369s for

SP2Immed/WS).

5 Related Work

Both Nimrod and Condor have focused on the execution of collections of independent tasks

in clustered workstation environments [ASGC95, LLM98]. In the Nimrod work, tasks are

"experiments" in a parameter sweep application; in the Condor work, tasks are independent

jobs. The tasks in GTOMO are processes in a scatter/gather structured application which

receive input data from a reader process and send output data to a writer process. Note

that Nimrod and Condor focus on increasing the throughput of the job collection whereas

our goal is to increase the performance of a single application. This framework is important

4

We used a 5 minute interval between experiments to ensure that the Maui scheduler had time to update

its availability information.
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for GTOMO because ultimately researchers would like to use it in quasi-real-time to provide

rough 3-D images of the specimen while data is being acquired from the microscope.

Application scheduling for Grids is a recent and very active area. Existing work has

focused primarily on resource discovery and scheduling [CD96, NSS99, FK98b, Wei98] and

coallocation among workstations [BWF

+

96, AYIE98, SWB97, SW98, SBWS99, FK98a] The

work reported herein extends the target domain for GTOMO by targeting both parallel

supercomputers and interactive resources simultaneously.

6 Discussion and Conclusions

In this work, we show how to combine workstations and supercomputers to run GTOMO, a

real-life coarse-grained parallel application. Our solution automatically selects all resources

immediately available across the system. We leverage the Maui Scheduler to obtain informa-

tion on immediately available SP2 nodes. This strategy has the advantage of not requiring

predictions of how long requests wait in the supercomputer queue. Our results show that the

GTOMO AppLeS scheduling strategy consistently outperforms three strategies researchers

might use for scheduling in an typical laboratory setting where researchers have access to a

local cluster of workstations and supercomputer time.

We have learned three interesting lessons about Computational Grids in general as a

result of this e�ort. First, the interface exported by the resource scheduler has great impact

on application schedulers. In fact, we can implement our strategy in a very straightfor-

ward manner thanks to the Maui Scheduler's showbf command. On the other hand, the

Maui Scheduler (as with other supercomputer schedulers, for that matter) precluded us

from trying something more sophisticated due to the di�culty in predicting queue times for

supercomputer requests. Future developing e�orts such as S

3

[CB99], GARA [FKL

+

99], and

more generally, the Grid Forum Scheduling Working Group [GF] are working to change this.

Second, evaluating solutions for real applications running over production environments

has proven to be di�cult due to the impossibility of reproducing the system load and queue

conditions for comparison runs. Others have encountered the same problem. Indeed, a sim-

ulation environment speci�cally targeted toward Grids such as the Bricks project [TMN

+

99]

or the work desribed in [CLZB99] would be very useful.

Third, fault tolerance is likely to be even more important in Grid computing than it is

in parallel computing. For our solution in particular, fault recovery was a natural way to

deal with the time expiration of SP2 requests. In general, using autonomous and distributed

resources increases the chance that some component of the application will fail.

Note that our scheduler could be improved in several ways. First, we plan to extend our

strategy to add processors that become available (both interactive and in the SP2) during

execution. In addition, we plan to consider scaled versions of the program in which a single

reader or writer is likely to become a bottleneck. We are currently developing a strategy

that determines how many readers and writers are needed to avoid contention. Finally, we

intend to integrate the AppLeS GTOMO scheduler with larger end-to-end telemicroscopy

applications for which the tomography reconstruction presented here is a fundamental part.
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Figure 1: Application Components of GTOMO. Solid lines represent transfer of input and

output. Dotted lines denote control connections
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Figure 2: Experiment results when 8 nodes were requested for SP2Queue. (a) Turnaround

time. (Values too large to �t on graph: run 4/SP2Queue - 3078s, run 9/SP2Queue -

6164s, run 10/SP2Immed - 2615s) (b) Number of SP2 nodes used by SP2Immed/WS and

SP2Immed.
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Figure 3: Experiment results when 16 nodes were requested for SP2Queue. (a) Turnaround

time. (Values too large to �t on graph: run 3/SP2Queue - 20484s, run 5/SP2Queue - 17268s)

(b) Number of SP2 nodes used by SP2Immed/WS and SP2Immed.
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Figure 4: Experiment results when 32 nodes were requested for SP2Queue. (a) Turnaround

time. (Values too large to �t on graph: run 8/SP2Queue - 27480s, run 9/SP2Queue - 9869s)

(b) Number of SP2 nodes used by SP2Immed/WS and SP2Immed.

13




