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Improved reference genome of Aedes 
aegypti informs arbovirus vector control
      Benjamin J. Matthews1,2,3,49*, Olga Dudchenko4,5,6,7,49, Sarah B. Kingan8,49, Sergey Koren9, igor Antoshechkin10,  
Jacob e. crawford11, William J. Glassford12, Margaret Herre1,3, Seth N. redmond13,14, Noah H. rose15,16, Gareth D. Weedall17,18, 
Yang Wu19,20,21, Sanjit S. Batra4,5,6, carlos A. Brito-Sierra22,23, Steven D. Buckingham24, corey l. campbell25, Saki chan26,  
eric cox27, Benjamin r. evans28, thanyalak Fansiri29, igor Filipović30, Albin Fontaine31,32,33,34, Andrea Gloria-Soria28,35,  
richard Hall8, Vinita S. Joardar27, Andrew K. Jones36, raissa G. G. Kay37, Vamsi K. Kodali27, Joyce lee26, Gareth J. lycett17,  
Sara N. Mitchell11, Jill Muehling8, Michael r. Murphy27, Arina D. Omer4,5,6, Frederick A. Partridge24, Paul Peluso8,  
Aviva Presser Aiden4,5,38,39, Vidya ramasamy36, Gordana rašić30, Sourav roy40, Karla Saavedra-rodriguez25, Shruti Sharan22,23, 
Atashi Sharma21,41, Melissa laird Smith8, Joe turner42, Allison M. Weakley11, Zhilei Zhao15,16, Omar S. Akbari43,44,  
William c. Black iV25, Han cao26, Alistair c. Darby42, catherine A. Hill22,23, J. Spencer Johnston45, terence D. Murphy27,  
Alexander S. raikhel40, David B. Sattelle24, igor V. Sharakhov21,41,46, Bradley J. White11, li Zhao47, erez lieberman Aiden4,5,6,7,13, 
richard S. Mann12, louis lambrechts31,33, Jeffrey r. Powell28, Maria V. Sharakhova21,41,46, Zhijian tu20,21, Hugh M. robertson48, 
carolyn S. McBride15,16, Alex r. Hastie26, Jonas Korlach8, Daniel e. Neafsey13,14, Adam M. Phillippy9 & leslie B. Vosshall1,2,3

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including 
dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing 
the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse 
technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it 
accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory 
ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size 
and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase 
genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic 
analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new 
biological insights and intervention strategies to fight this deadly disease vector.

An accurate and complete genome assembly is required to understand 
the unique aspects of mosquito biology and to develop control strat-
egies to reduce their capacity to spread pathogens1. The Ae. aegypti 
genome is large (approximately 1.25 Gb) and highly repetitive, and a 
2007 genome project (AaegL3)2 was unable to produce a contiguous 
genome fully anchored to a physical chromosome map3 (Fig. 1a). A 
more recent assembly, AaegL44, produced chromosome-length scaf-
folds that made it possible to detect larger-scale syntenic genomic 

regions in other species but suffered from short contigs (contig N50, 
84 kb, meaning that half of the assembly is found on contigs >84 kb) 
and a correspondingly large number of gaps (31,018; Fig. 1b). Taking 
advantage of rapid advances in sequencing and assembly technology 
in the last decade, we used long-read Pacific Biosciences sequencing 
and Hi-C (a high-throughput sequencing method based on chro-
mosome conformation capture) scaffolding to produce a new refer-
ence genome (AaegL5) that is highly contiguous, with a decrease of 
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93% in the number of contigs, and anchored end-to-end to the three  
Ae. aegypti chromosomes (Fig. 1 and Extended Data Figs. 1, 2). Using 
optical mapping and linked-read sequencing, we validated the local 
structure and predicted structural variants between haplotypes. We 
generated an improved gene set annotation (AaegL5.0), as assessed 
by a mean increase in RNA-sequencing (RNA-seq) read alignment 

of 12%, connections between many gene models that were previ-
ously split across multiple contigs, and a roughly twofold increase in 
the enrichment of assay for transposase-accessible chromatin using 
sequencing (ATAC-seq) alignments near predicted transcription start 
sites. We demonstrate the utility of AaegL5 and the AaegL5.0 annota-
tion by investigating a number of scientific questions that could not be 
addressed with the previous genome annotations. 

This project used the Liverpool Aedes Genome Working Group 
(LVP_AGWG) strain, related to the AaegL3 Liverpool ib12 (LVP_
ib12) assembly strain2 (Fig. 1c and Extended Data Fig. 1a). Using 
flow cytometry, we estimated that the genome size of LVP_AGWG is 
approximately 1.22 Gb (Fig. 1d and Extended Data Fig. 1b). To gener-
ate our primary assembly, we produced 166 Gb of Pacific Biosciences 
data (around 130× coverage for a 1.28-Gb genome) and assembled 
the genome using FALCON-Unzip5. This resulted in a total assembly 
length of 2.05 Gb (contig N50, 0.96 Mb; and NG50, 1.92 Mb, mean-
ing half of the expected genome size found on contigs >1.92 Mb). 
FALCON-Unzip annotated the resulting contigs as either primary 
(3,967 contigs; N50, 1.30 Mb; NG50, 1.91 Mb) or haplotigs (3,823 
contigs; N50, 193 kb), representing alternative haplotypes present in 
the approximately 80 male siblings pooled for sequencing (Table 1 
and Extended Data Fig. 1e). The primary assembly was longer than 
expected for a haploid Ae. aegypti genome, as predicted by flow 
cytometry and prior assemblies, which was consistent with remaining  
alternative haplotypes that were too divergent to be automatically  
identified as primary and associated alternative haplotig pairs.

To generate a linear chromosome-scale reference genome assembly, 
we combined the primary contigs and haplotigs that were generated by 
FALCON-Unzip to create an assembly comprising 7,790 contigs. We 
used Hi-C to order and orient these contigs, correct misjoined sections 
and merge overlaps (Extended Data Fig. 1c–e). We set aside 359 contigs 
that were shorter than 20 kb and used the Hi-C data to identify 258 
misjoined sections, resulting in 8,306 ordered and oriented contigs. 
This procedure revealed extensive sequence overlap among the contigs, 
consistent with the assembly of numerous alternative haplotypes. We 
developed a procedure to merge these alternative haplotypes, removing 
5,440 gaps and boosting the contiguity (N50, 5.0 Mb; NG50, 4.6 Mb).  
This procedure placed 94% of sequenced (non-duplicated) bases onto 
three chromosome-length scaffolds that correspond to the three Ae. 
aegypti chromosomes. After scaffolding, we performed gap-filling 
and polishing using Pacific Biosciences reads. This removed 270 gaps 
and further increased the contiguity (N50, 11.8 Mb; NG50, 11.8 Mb),  
resulting in a final 1.279-Gb AaegL5 assembly and a complete mito-
chondrial genome (Fig. 1e and Table 1). We used Hi-C contact maps 
to estimate the position of the centromere with a resolution of around 
5 Mb: chromosome 1, approximately 150–154 Mb; chromosome 2, 
around 227–232 Mb, chromosome 3, around 196–201 Mb. There are 
229 remaining gaps in the primary assembly, including 173 on the 
three primary chromosomal scaffolds (Extended Data Fig. 2a and 

Table 1 | Comparison of assembly statistics
Genome assembly

AaegL3 AaegL4 AaegL5 FALCON-Unzip AaegL5 (NCBI) FALCON-Unzip + Hi-C + polish

Total length (non-N bp) 1,310,092,987 1,254,548,160 1,695,064,654 1,278,709,169

Contig number 36,205 37,224 3,967 2,539

Contig N50 (bp) 82,618 84,074 1,304,397 11,758,062

Contig NG50 (bp) 85,043 81,911 1,907,936 11,758,062

Scaffold number 4,757 6,206 N/A 2,310

Scaffold N50 (bp) 1,547,048 404,248,146a N/A 409,777,670a

GC content (%) 38.27 38.28 38.16 38.18

Alternative haplotypes (bp) N/A N/A 351,566,101 591,941,260

Alternative haplotypes (contigs) N/A N/A 3,823 4,224

N/A, not applicable.
aScaffold N50 is the length of chromosome 3.
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libraries to AaegL3.4 and AaegL5.0 gene set annotations (Supplementary 
Data 4–9). LTR, long terminal repeat retrotransposon; MITES, miniature 
inverted-repeat transposable elements; SINES, short interspersed nuclear 
elements.

5 0 2  |  N A t U r e  |  V O l  5 6 3  |  2 2  N O V e M B e r  2 0 1 8
© 2018 Springer Nature Limited. All rights reserved.



Article reSeArcH

Supplementary Data 1). Analysis of near-universal single-copy ortho-
logues using BUSCO6 revealed a slight increase in complete single- 
copy orthologues and a reduction in fragmented and missing genes 
compared to previous assemblies (see Supplementary Methods and 
Supplementary Discussion). AaegL5 is markedly more contiguous than 
AaegL3 and AaegL4 assemblies2,4 (Fig. 1a, b, e and Table 1). Using the 
TEfam, Repbase and de novo identified repeat databases, we found 
that 65% of AaegL5 was composed of transposable elements and other 
repetitive sequences (Fig. 1f and Supplementary Data 2, 3).

Complete and correct gene models are essential for studying all 
aspects of mosquito biology. We used the NCBI RefSeq annotation 
pipeline to produce annotation version 101 (AaegL5.0; Extended Data 
Fig. 2b) followed by manual curation of key gene families. AaegL5.0 
formed the basis for a comprehensive quantification of transcript abun-
dance in 253 sex-, tissue- and developmental stage-specific RNA-seq 
libraries (Supplementary Data 4–8). The AaegL5.0 gene set is con-
siderably more complete and correct than previous versions. Many 
more genes have high protein coverage when compared to Drosophila  
melanogaster orthologues (915 more genes with >80% coverage, a 
12.5% increase over AaegL3.4; Fig. 1g) and >12% more RNA-seq reads 
map to the AaegL5.0 gene set annotation than AaegL3.4 (Fig. 1h and 
Supplementary Data 9). In addition, 1,463 genes that were previously 
annotated separately as paralogues were collapsed into single gene 
models and 481 previously fragmented gene models were completed 
(Supplementary Data 10, 11). For example, sex peptide receptor is rep-
resented by a six-exon gene model in AaegL5.0 compared to two partial  
gene fragments on separate scaffolds in AaegL3.4 (Extended Data 
Fig. 2c). Genome-wide, we mapped a 1.8-fold higher number of ATAC-
seq reads, known to co-localize with promoters and other cis-regulatory 
elements7, to predicted transcription start sites in AaegL5.0 compared 
to AaegL3.4, consistent with more complete gene models in AaegL5.0 
(Extended Data Fig. 2d).

We next validated the base-level and structural accuracy of the 
AaegL5 assembly. We estimate the lower bound of base-level accuracy 
of the assembly to have a quality value of 34.75 (meaning that 99.9665% 
of bases are correct, see Supplementary Methods and Supplementary 

Discussion). To develop a fine-scale physical genome map based on 
AaegL5, we compared the assembly coordinates of 500 bacterial artifi-
cial chromosome (BAC) clones containing Ae. aegypti genomic DNA 
with physical mapping by fluorescence in situ hybridization (FISH) 
(Extended Data Fig. 2e and Supplementary Data 12). After removing 
repetitive BAC-end sequences and those with ambiguous FISH signals, 
377 out of 387 (97.4%) of probes showed concordance between physical 
mapping and BAC-end alignment. The 10 remaining discordant signals 
were not supported by Bionano or 10X analysis, and therefore probably 
do not reflect misassemblies in AaegL5. The genome coverage of this 
physical map is 93.5%, compared to 45% of AaegL38, and is one of the 
most complete genome maps across mosquito species9,10.

Curation of multi-gene families
Large multi-gene families are very difficult to assemble and correctly 
annotate, because recently duplicated genes typically share high 
sequence similarities or can be misclassified as alleles of a single gene. 
We curated genes in large multi-gene families that encode proteases, 
G protein-coupled receptors, and chemosensory receptors using the 
improved AaegL5 genome and AaegL5.0 annotation. Serine proteases 
mediate immune responses11 and metalloproteases have been linked 
to vector competence and mosquito–Plasmodium interactions12. Gene 
models for over 50% of the 404 annotated serine proteases and met-
alloproteases in AaegL3.4 were improved in AaegL5.0, and we found 
49 previously unannotated protease genes (Supplementary Data 13). 
G protein-coupled receptors are membrane proteins that respond to 
diverse external and internal sensory stimuli. We provide major cor-
rections to gene models that encode 10 visual opsins and 17 dopamine 
and serotonin receptors (Extended Data Fig. 2f and Supplementary 
Data 14–16). Three large multi-gene families of insect chemosensory 
receptors are ligand-gated ion channels: odorant receptors (OR gene 
family), gustatory receptors (GR gene family) and ionotropic receptors 
(IR gene family). These collectively allow insects to sense a vast array 
of chemical cues, including carbon dioxide and human body odours 
that activate and attract female mosquitoes. We identified 117 odorant 
receptors, 72 gustatory receptors (encoding 107 transcripts) and 135 
ionotropic receptors in the AaegL5 assembly (Fig. 2a, b, Extended Data 
Fig. 3 and Supplementary Data 17–20), inferred new phylogenetic trees 
for each family to investigate the relationship of these receptors in Ae. 
aegypti, Anopheles gambiae malaria mosquitoes and D. melanogaster 
(Extended Data Figs. 4–6), and revised expression estimates for adult 
male and female neural tissues using deep RNA-seq13 (Extended Data 
Fig. 7). Our annotation identified 54 new ionotropic receptor genes 
(Fig. 2b, Extended Data Fig. 3 and Supplementary Data 17), nearly 
doubling the known members of this family in Ae. aegypti. We addi-
tionally reannotated ionotropic receptors in An. gambiae and found 
64 new genes. In Ae. aegypti, chemoreceptors are extensively clustered 
in tandem arrays (Fig. 2a and Extended Data Fig. 3), in particular on 
chromosome 3p, in which over a third of all chemoreceptor genes (n = 
111) are found within a 109-Mb stretch. Although 71 gustatory recep-
tor genes are scattered across chromosomes 2 and 3, only AaegGr2, a 
subunit of the carbon-dioxide receptor, is found on chromosome 1.  
Characterization of the full chemosensory receptor repertoire will 
enable the development of novel strategies to disrupt mosquito biting 
behaviour.

Structure of the sex-determining M locus
Sex determination in Aedes and Culex mosquitoes is governed by a 
dominant male-determining factor (M factor) at a male-determining 
locus (M locus) on chromosome 114–16. This chromosome is homomor-
phic between the sexes except for the M/m karyotype, meaning that 
males are M/m and females are m/m. Despite the recent discovery of 
the M factor Nix in Ae. aegypti17, which was entirely missing from the 
previous Ae. aegypti genome assemblies2,4, the full molecular proper-
ties of the M locus remain unknown. We aligned AaegL5 (from M/m 
males) and AaegL4 (from m/m females), and identified a region that 
contained Nix in AaegL5 at which the assemblies diverged and that 
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may represent the divergent M/m locus (Fig. 3a). A de novo optical 
map assembly spanned the putative AaegL5 M locus and extended 
beyond its two borders. We estimated the size of the M locus at approxi-
mately 1.5 Mb, including an approximately 163-kb gap between contigs 
(Fig. 3a, c). We tentatively identified the female m locus as the region 
in AaegL4 not shared with the M locus-containing chromosome 1, but 
note that the complete phased structure of the divergent male M locus 
and corresponding female m locus remain to be determined. Nix con-
tains a single intron of 100 kb, while myo-sex, a gene encoding a myo-
sin heavy chain protein that has previously been shown to be tightly 
linked to the M locus18, is approximately 300 kb in length. More than 
73.7% of the M locus is repetitive: long terminal repeat retrotranspos-
ons comprise 29.9% of the M locus compared to 11.7% genome-wide. 
Chromosomal FISH with Nix- and myo-sex-containing BAC clones19 

showed that these genes co-localize to the 1p pericentromeric region 
(1p11) in only one homologous copy of chromosome 1, supporting the 
placement of the M locus at this position in AaegL5 (Fig. 3b). We inves-
tigated the differentiation between the sex chromosomes (Fig. 3d) using 
a chromosome quotient method to quantify regions of the genome 
with a strictly male-specific signal20. A sex-differentiated region in the 
LVP_AGWG strain extends to an approximately 100-Mb region sur-
rounding the approximately 1.5-Mb M locus. This is consistent with 
the recent analysis of male–female FST in wild population samples and 
linkage map intercrosses21 and could be explained by a large region of 
reduced recombination encompassing the centromere and M locus22. 
The availability of a more completely assembled mosquito M locus 
provides opportunities to study the evolution and maintenance of 
homomorphic sex-determining chromosomes. The sex-determining 
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chromosome of Ae. aegypti may have remained homomorphic at least 
since the evolutionary divergence between the Aedes and Culex genera 
more than 50 million years ago. With the more completely assembled 
M locus, we can investigate how these chromosomes have avoided the 
proposed eventual progression into heteromorphic sex chromosomes23.

Structural variation and gene families
Structural variation is associated with the capacity to vector patho-
gens24. We produced ‘read cloud’ Illumina sequencing libraries of 
linked reads with long-range (around 80 kb) phasing information from 
one male and one female mosquito using the 10X Genomics Chromium 
platform to investigate structural variants, including insertions, dele-
tions, translocations and inversions, in individual mosquitoes. We 
observed abundant small-scale insertions and deletions (indels; 26 
insertions and 81 deletions called, median 42.9 kb) and inversions 
and/or translocations (29 called) in these two individuals (Extended 
Data Fig. 8a and Supplementary Data 21). Eight of the inversions and 
translocations coincided with structural variants seen independently 
by Hi-C or FISH, suggesting that those variants are relatively com-
mon within this population and can be detected by different methods. 
AaegL5 will provide a foundation for the study of structural variants 
across Ae. aegypti populations.

Hox genes encode highly conserved transcription factors that specify 
segment identity along the anterior–posterior body axis of all meta-
zoans25. In most vertebrates, Hox genes are clustered in a co-linear 
arrangement, although they are often disorganized or split in other 
animal lineages26. All expected Hox genes are present as a single copy 
in Ae. aegypti, but we identified a split between labial and proboscipedia 
placing labial on a separate chromosome (Extended Data Fig. 8b and 
Supplementary Data 22). We confirmed this in AaegL4, which was 
generated with Hi-C contact maps from a different Ae. aegypti strain4, 

and note a similar arrangement in Culex quinquefasciatus, suggesting 
that it occurred before these two species diverged. Although this is not 
unprecedented27, a unique feature of this organization is that both labial 
and proboscipedia appear to be close to telomeres.

Glutathione S-transferases (GSTs) are a large multi-gene family 
involved in the detoxification of compounds such as insecticides. 
Increased GST activity has been associated with resistance to multi-
ple classes of insecticides, including organophosphates, pyrethroids 
and the organochlorine dichlorodiphenyltrichloroethane (DDT)28. 
Amplification of detoxification genes is one mechanism by which 
insects can develop insecticide resistance29. We found that three 
insect-specific GST epsilon (GSTe) genes on chromosome 2, located 
centrally in the cluster (GSTe2, GSTe5 and GSTe7), are duplicated four 
times in AaegL5 relative to AaegL3 (Fig. 4a, b and Supplementary 
Data 23). Short Illumina read coverage and optical maps confirmed 
the copy number and arrangement of these duplications in AaegL5 
(Fig. 4c, d), and analysis of whole-genome sequencing data for four 
additional laboratory colonies showed variable copy numbers across 
this gene cluster (Fig. 4d). GSTe2 is a highly efficient metaboliser of 
DDT30, and it is noteworthy that the cDNA from three GST genes in 
the quadruplication was detected at higher levels in DDT-resistant  
Ae. aegypti mosquitoes from southeast Asia31.

Genome-wide genetic variation
Measurement of genetic variation within and between populations is 
important for inferring ongoing and historic evolution in a species32. 
To understand genomic diversity in Ae. aegypti, which spread in the 
last century from Africa to tropical and subtropical regions around 
the world, we performed whole-genome resequencing on four labo-
ratory colonies. Chromosomal patterns of nucleotide diversity should  
correlate with regional differences in meiotic recombination rates33.  
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and 3 (d). The orange color of chromosome 1 denotes uncertainty in the 
cM estimates because of deviations in Mendelian ratios surrounding the  
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We observed pronounced declines in genetic diversity near the centre 
of each chromosome (Extended Data Fig. 9a, b), providing independent 
corroboration of the estimated position of each centromere by Hi-C 
(Extended Data Fig. 2a).

To investigate linkage disequilibrium in geographically diverse  
populations of Ae. aegypti, we first mapped Affymetrix SNP-Chip 
markers that were designed using AaegL334 to positions on AaegL5. 
We genotyped 28 individuals from two populations from Amacuzac, 
Mexico and Lopé National Park, Gabon and calculated the pairwise 
linkage disequilibrium of single-nucleotide polymorphisms (SNPs) 
from 1-kb bins both genome-wide and within each chromosome 
(Extended Data Fig. 9c, d). The maximum linkage disequilibrium in 
the Mexican population is approximately twice that of the population 
from Gabon, which probably reflects a recent bottleneck associated 
with the spread of this species out of Africa.

Dengue competence and pyrethroid resistance
To illustrate the value of AaegL5 for mapping quantitative trait loci 
(QTLs), we used restriction site-associated DNA (RAD) markers to 
locate QTLs underlying dengue virus (DENV) vector competence. 
We identified and genotyped RAD markers in the F2 progeny of a 
laboratory cross between wild Ae. aegypti founders from Thailand35 
(Extended Data Fig. 10a). For this population, 197 F2 females had 
previously been scored for DENV vector competence against four 
different DENV isolates (two isolates from serotype 1 and two from 
serotype 3)35. The newly developed linkage map included a total of 
255 RAD markers (Fig. 5a) with perfect concordance between genetic 
distances in centiMorgans (cM) and AaegL5 physical coordinates in 
Mb (Fig. 5a, c, d). We detected two significant QTLs on chromosome 
2 that underlie the likelihood of DENV dissemination from the midgut 
(that is, systemic infection), an important component of DENV vector 
competence36. One QTL was associated with a generalist effect across 
DENV serotypes and isolates, whereas the other was associated with 
an isolate-specific effect (Fig. 5b, c). QTL mapping powered by AaegL5 
will make it possible to understand the genetic basis of Ae. aegypti  
vector competence for arboviruses.

Pyrethroid insecticides are used to combat mosquitoes, including 
Ae. aegypti, and emerging resistance to these compounds is a global 
problem37. Understanding the mechanisms that underlie insecticide 
targets and resistance in different mosquito populations is critical  
to combating arboviral pathogens. Many insecticides act on ion 
channels, and we curated members of the Cys-loop ligand-gated ion 
channel (Cys-loop LGIC) superfamily in AaegL5. We found 22 subunit- 
encoding Cys-loop LGICs (Extended Data Fig. 10d and Supplementary 
Data 24), of which 14 encode nicotinic acetylcholine receptor (nAChR) 
subunits. nAChRs consist of a core group of subunit-encoding genes 
(α1–α8 and β1) that are highly conserved between insect species, and 
at least one divergent subunit38. Whereas D. melanogaster possesses 
only one divergent nAChR subunit, Ae. aegypti has five. We found 
that agricultural and veterinary insecticides impaired the motility of  
Ae. aegypti larvae (Extended Data Fig. 10c), suggesting that these  
Cys-loop LGIC-targeting compounds have potential as mosquito  
larvicides. The improved annotation presented here provides a valuable 
resource for investigating insecticide efficacy.

To demonstrate how a chromosome-scale genome assembly informs 
genetic mechanisms of insecticide resistance, we performed a genome-
wide population genetic screen for SNPs correlating with resistance 
to deltamethrin in Ae. aegypti collected in Yucatán, Mexico, where 
pyrethroid-resistant and -susceptible populations co-exist (Fig. 5e). 
We uncovered an association with non-synonymous changes to three 
amino acid residues of the voltage-gated sodium channel VGSC, a 
known target of pyrethroids (Fig. 5f). The gene model for VGSC, a 
complex locus spanning nearly 500 kb in AaegL5, was incomplete 
and highly fragmented in AaegL3. SNPs in this region have a lower 
expected heterozygosity (Hexp) in the resistant compared to the  
susceptible population, suggesting that they are part of a selective sweep 
for the resistance phenotype surrounding VGSC (Fig. 5g). Accurately 

associating SNPs with phenotypes requires a fully assembled genome, 
and we expect that AaegL5 will be critical to understanding the evolu-
tion of insecticide resistance and other important traits.

Summary
The high-quality genome assembly and annotation described here will 
enable major advances in mosquito biology, and has already allowed 
us to carry out a number of experiments that were previously impossi-
ble. The highly contiguous AaegL5 genome permitted high-resolution 
genome-wide analysis of genetic variation and the mapping of loci for 
DENV vector competence and insecticide resistance. A new appreci-
ation of copy number variation in insecticide-detoxifying GSTe genes 
and a more complete accounting of Cys-loop LGICs will catalyse 
the search for new resistance-breaking insecticides. A doubling in 
the known number of chemosensory ionotropic receptors provides 
opportunities to link odorants and tastants on human skin to mosquito 
attraction, a key first step in the development of novel mosquito repel-
lents. ‘Sterile Insect Technique’ and ‘Incompatible Insect Technique’ 
show great promise to suppress mosquito populations39, but these 
population suppression methods require that only males are released. 
A strategy that connects a gene for male determination to a gene drive 
construct has been proposed to effectively bias the population towards 
males over multiple generations40, and improved understanding of  
M locus evolution and the function of its genetic content should  
facilitate genetic control of mosquitoes that infect many hundreds of 
millions of people with arboviruses every year1.

Online content
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METhOdS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Ethics information. The participation of one human subject in blood- 
feeding mosquitoes was approved and monitored by The Rockefeller University 
Institutional Review Board (IRB protocol LVO-0652). This subject gave their  
written and informed consent to participate.
Mosquito rearing and DNA preparation. Ae. aegypti eggs from a strain labelled 
‘LVP_ib12’ were supplied by M.V.S. from a colony maintained at Virginia Tech. 
We performed a single pair cross between a male and female individual to generate 
material for Hi-C, Bionano optical mapping, flow cytometry, SNP-Chip analysis of 
strain variance, paired-end Illumina sequencing and 10X Genomics linked reads 
(Extended Data Fig. 1a). The same single male was crossed to a single female in 
two additional generations to generate high-molecular weight (HMW) genomic 
DNA for Pacific Biosciences long-read sequencing and to establish a colony (LVP_
AGWG). Rearing was performed as previously described13 and all animals were 
offered a human arm as a blood source.
SNP analysis of mosquito strains. Data were generated as described34, and PCA 
was performed using LEA 2.0 available for R v.3.4.041,42. The following strains 
were used: Ae. aegypti LVP_AGWG (samples from the laboratory strain used for 
the AaegL5 genome assembly, reared as described in Extended Data Fig. 1a by a 
single pair mating in 2016 from a strain labelled LVP_ib12 maintained at Virginia 
Tech), Ae. aegypti LVP_ib12 (laboratory strain, LVP_ib12, provided in 2013 by  
D. Severson, University of Notre Dame), Ae. aegypti LVP_MR4 (laboratory strain 
labelled LVP_ib12 obtained in 2016 from MR4 at the Centers for Disease Control 
via BEI Resources catalogue MRA-735), Ae. aegypti Yaounde, Cameroon (field 
specimens collected in 2014 and provided by B. Kamgang), Ae. aegypti Rockefeller 
(laboratory strain provided in 2016 by G. Dimopoulos, Johns Hopkins Bloomberg 
School of Public Health), Ae. aegypti Key West, Florida (field specimens collected 
in 2016 and provided by W. Tabachnick). Strains used for the linkage disequilib-
rium data presented in Extended Data Fig. 9c, d were: Ae. aegypti from Amacuzac, 
Morelos, Mexico (field specimens collected in 2016 and provided by C. Gonzalez 
Acosta) and Ae. aegypti from La Lope National park forest, Gabon (field specimens 
collected and provided by S. Xia).
Flow cytometry. Genome size was estimated by flow cytometry as described43, 
except that the propidium iodide was added at a concentration of 25 μl mg−1, not 
50 μl mg−1, and samples were stained in the cold and dark for 24 h to allow the stain 
to fully saturate the sample. In brief, nuclei were isolated by placing a single frozen 
head of an adult sample along with a single frozen head of an adult Drosophila 
virilis female standard from a strain with 1C = 328 Mb into 1 ml of Galbraith 
buffer (4.26 g MgCl2, 8.84 g sodium citrate, 4.2 g 3-[N-morpholino] propane sul-
fonic acid (MOPS), 1 ml Triton X-100 and 1 mg boiled RNase A in 1 l of ddH2O, 
adjusted to pH 7.2 with HCl and filtered through a 0.22-μm filter)44 and grinding 
with 15 strokes of the A pestle at a rate of 3 strokes per 2 s. The resultant ground 
mixture was filtered through a 60-μm nylon filter (Spectrum Labs). Samples were 
stained with 25 μg of propidium iodide and held in the cold (4 °C) and dark for 24 h  
at which time the relative red fluorescence of the 2C nuclei of the standard and 
sample were determined using a Beckman Coulter CytoFlex flow cytometer with 
excitation at 488 nm. At least 2,000 nuclei were scored under each 2C peak and 
all scored peaks had a coefficient of variation of 2.5 or less43,44. Average channel 
numbers for sample and standard 2C peaks were scored using CytExpert software 
version 1.2.8.0 supplied with the CytoFlex flow cytometer. Significant differences 
among strains were determined using Proc GLM in SAS with both a Tukey and a 
Sheffé option. Significance levels were the same with either option. Genome size 
was determined as the ratio of the mean channel number of the 2C sample peak 
divided by the mean channel number of the 2C D. virilis standard peak times 
328 Mb, where 328 Mb is the amount of DNA in a gamete of the standard. The 
following species/strains were used: Ae. mascarensis (collected by A. Bheecarry 
on Mauritius in December 2014. Colonized and maintained by J.R.P.), Ae. aegypti 
Ho Chi Minh City F13 (provided by D. J. Gubler, Duke-National University of 
Singapore as F1 eggs from females collected in Ho Chi Minh City in Vietnam,  
between August and September 2013. Colonized and maintained for 13 gen-
erations by A.G.-S.), Ae. aegypti Rockefeller (laboratory strain provided by  
D. Severson, Notre Dame), Ae. aegypti LVP_AGWG (reared as described in 
Extended Data Fig. 1a from a strain labelled LVP_ib12 maintained by M.V.S. 
at Virginia Tech), Ae. aegypti New Orleans F8 (collected by D. Wesson in New 
Orleans 2014, colonized and maintained by J.R.P. through 8 generations of single 
pair mating), Ae. aegypti Uganda 49-ib-G5 (derived by C.S.M. through 5 genera-
tions of full-sibling mating of the U49 colony established from eggs collected by 
J.-P. Mutebi in Entebbe, Uganda in March 2015).
Pacific Biosciences library construction, sequencing and assembly. HMW DNA 
extraction for Pacific Biosciences sequencing. HMW DNA extraction for Pacific 
Biosciences sequencing was performed using the Qiagen MagAttract Kit (67563) 

following the manufacturer’s protocol with approximately 80 male sibling pupae 
in batches of 25 mg.
SMRTbell library construction and sequencing. Three libraries were constructed 
using the SMRTbell Template Prep Kit 1.0 (Pacific Biosciences). In brief, genomic 
DNA (gDNA) was mechanically sheared to 60 kb using the Megaruptor system 
(Diagenode) followed by DNA damage repair and DNA end repair. Universal blunt 
hairpin adapters were then ligated onto the gDNA molecules after which non- 
SMRTbell molecules were removed with exonuclease. Pulse-field gels were run to 
assess the quality of the SMRTbell libraries. Two libraries were size-selected using 
SageELF (Sage Science) at 30 kb and 20 kb, the third library was size-selected at 20 kb  
using BluePippin (Sage Science). Prior to sequencing, another DNA-damage repair 
step was performed and quality was assessed with pulse-field gel electrophoresis. 
A total of 177 SMRT cells were run on the RS II using P6-C4 chemistry and 6 h 
videos.
Contig assembly and polishing. A diploid contig assembly was carried out using 
FALCON v.0.4.0 followed by the FALCON-Unzip module (revision 74eefabdc-
c4849a8cef24d1a1bbb27d953247bd7)5. The resulting assembly contains primary 
contigs, a partially phased haploid representation of the genome and haplotigs, 
which represent phased alternative alleles for a subset of the genome. Two 
rounds of contig polishing were performed. For the first round, as part of the 
FALCON-Unzip pipeline, primary contigs and secondary haplotigs were polished 
using haplotype-phased reads and the Quiver consensus caller45. For the second 
round of polishing we used the ‘resequencing’ pipeline in SMRT Link v.3.1, with  
primary contigs and haplotigs concatenated into a single reference. Resequencing 
maps all raw reads to the combined assembly reference with BLASR (v.3.1.0)46, 
followed by consensus calling with Arrow (https://github.com/PacificBiosciences/
GenomicConsensus)46.
Hi-C sample preparation and analysis. Library preparation. In brief, insect tissue 
was crosslinked and homogenized. The nuclei were then extracted and permea-
bilized, and libraries were prepared using a modified version of the in situ Hi-C 
protocol that we optimized for insect tissue47. Separate libraries were prepared for 
samples derived from three individual male pupae. The resulting libraries were 
sequenced to yield 118 million, 249 million and 114 million reads (coverage: 120×) 
and these were processed using Juicer48.
Hi-C approach. Using the results of FALCON-Unzip as input, we used Hi-C to 
correct misjoins, to order and orient contigs, and to merge overlaps (Extended 
Data Fig. 1c–e). The Hi-C based assembly procedure that we used is described in 
detail in the Supplementary Methods and Supplementary Discussion. Notably, 
both primary contigs and haplotigs were used as input. This was essential, because 
Hi-C data identified genomic loci in which the corresponding sequence was absent 
in the primary FALCON-Unzip contigs, and present only in the haplotigs; the 
loci would have led to gaps, instead of contiguous sequence, if the haplotigs were 
excluded from the Hi-C assembly process (Extended Data Fig. 1e).
Hi-C scaffolding. We set aside 359 FALCON-Unzip contigs shorter than 20 kb, 
because such contigs are more difficult to accurately assemble using Hi-C. To 
generate chromosome-length scaffolds, we used the Hi-C maps and the remaining 
contigs as inputs to the previously described algorithms4. Note that both primary 
contigs and haplotigs were used as input. We performed quality control, manual 
polishing and validation of the scaffolding results using Assembly Tools49. This 
produced three chromosome-length scaffolds. Notably, the contig N50 decreased 
slightly, to 929,392 bp, because of the splitting of misjoined contigs.
Hi-C alternative haplotype merging. Examination of the initial chromosome-length 
scaffolds using Assembly Tools49 revealed that extensive undercollapsed heterozy-
gosity was present. In fact, most genomic intervals were repeated, with variations, 
on two or more unmerged contigs. This suggested that the levels of undercol-
lapsed heterozygosity were unusually high, and that the true genome length was 
far shorter than either the total length of the Pacific Biosciences contigs (2,047 Mb),  
or the initial chromosome-length scaffolds (1,973 Mb). Possible factors that could 
have contributed to the unusually high rate of undercollapsed heterozygosity 
seen in the FALCON-Unzip Pacific Biosciences contigs relative to prior contig 
sets for Ae. aegypti generated using Sanger sequencing (AaegL3)2, include high  
heterozygosity levels in the species and incomplete inbreeding in the samples that 
we sequenced. The merge algorithm described previously4 detects and merges draft 
contigs that overlap one another owing to undercollapsed heterozygosity. Because 
undercollapsed heterozygosity does not affect most loci in a typical draft assembly, 
the default parameters are relatively stringent. We adopted more permissive param-
eters for AaegL5 to accommodate the exceptionally high levels of undercollapsed 
heterozygosity, but found that the results would occasionally merge contigs that did 
not overlap. To avoid these false positives, we developed a procedure to manually 
identify and ‘whitelist’ regions of the genome containing no overlap, based on 
both Hi-C maps and LASTZ alignments (Extended Data Fig. 1c, Supplementary 
Methods and Supplementary Discussion). We then reran the merge step, using 
the whitelist as an additional input. Finally, we performed quality control of the 
results using Assembly Tools49, which confirmed the absence of the undercollapsed  
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heterozygosity that we had previously observed. The resulting assembly con-
tained three chromosome-length scaffolds (310 Mb, 473 Mb and 409 Mb), which 
spanned 94% of the merged sequence length. The assembly also contained 2,364 
small scaffolds, which spanned the remaining 6% (Table 1). These lengths were 
consistent with the results of flow cytometry and the lengths obtained in prior 
assemblies. Notably, the merging of overlapping contigs using the above proce-
dure frequently eliminated gaps, and thus greatly increased the contig N50, from 
929,392 to 4,997,917 bp.
Final gap-filling and polishing. Scaffolded assembly polishing. Following scaffold-
ing and de-duplication, we performed a final round of arrow polishing. PBJelly50 
from PBSuite version 15.8.24 was used for gapfilling of the de-duplicated HiC 
assembly (see ‘Protocol.xml’ in Supplementary Methods and Supplementary 
Discussion). After PBJelly, the liftover file was used to translate the renamed scaf-
folds to their original identifiers. For this final polishing step (run with SMRT Link 
v3.1 resequencing), the reference sequence included the scaffolded, gap-filled refer-
ence, as well as all contigs and contig fragments not included in the final scaffolds 
(https://github.com/skingan/AaegL5_FinalPolish). This reduces the likelihood 
that reads map to the wrong haplotype, by providing both haplotypes as targets for 
read mapping. For submission to NCBI, two scaffolds identified as mitochondrial 
in origin were removed (see below), and all remaining gaps on scaffolds were 
standardized to a length of 100 Ns to indicate a gap of unknown size. The assembly 
quality value was estimated using independent Illumina sequencing data from a 
single individual male pupa (library H2NJHADXY_1/2). Reads were aligned with 
BWA-MEM v.0.7.12-r103951. FreeBayes v.1.1.0-50-g61527c5-dirty52 was used to 
call SNPs and short indels with the parameters -C 2 -0 -O -q 20 -z 0.10 -E 0 -X -u -p 
2 -F 0.6. Any SNP and short indels showing heterozygosity (for example, 0/1 gen-
otype) were excluded. The quality value was estimated at 34.75 using the PHRED 
formula with SNPs as the numerator (597,798) and number of bases with at least 
threefold coverage as the denominator, including alternate alleles (1,782,885,792).
Identification of mitochondrial contigs. During the submission process for this 
genome, two contigs were identified as mitochondrial in origin and were removed 
from the genomic assembly, manually circularized, and submitted separately. The 
mitochondrial genome is available as GenBank accession number MF194022.1, 
RefSeq accession number NC_035159.1.
Bionano optical mapping. HMW DNA extraction. HMW DNA extraction was 
performed using the Bionano Animal Tissue DNA Isolation Kit (RE-013-10), with 
a few protocol modifications. A single-cell suspension was made as follows. First, 
47 mg of frozen male pupae was fixed in 2% v/v formaldehyde in Homogenization 
Buffer from the kit (Bionano 20278), for 2 min on ice. Then, the pupae were 
roughly homogenized by blending for 2 s, using a rotor–stator tissue homogenizer 
(TissueRuptor, Qiagen 9001271). After another 2 min fixation, the tissue was finely 
homogenized by running the rotor–stator for 10 s. Subsequently, the homogenate 
was filtered with a 100-μm nylon filter, fixed with ethanol for 30 min on ice, spun 
down, and washed with more Homogenization Buffer (to remove residual for-
maldehyde). The final pellet was resuspended in Homogenization Buffer. A single 
agarose plug was made using the resuspended cells, using the CHEF Mammalian 
Genomic DNA Plug Kit (BioRad 170-3591), following the manufacturer’s instruc-
tions. The plug was incubated with Lysis Buffer (Bionano 20270) and Puregene 
Proteinase K (Qiagen 1588920) overnight at 50 °C, then again the following morn-
ing for 2 h (using new buffer and Proteinase K). The plug was washed, melted and 
solubilized with GELase (Epicentre G09200). The purified DNA was subjected to 
4 h of drop dialysis (Millipore, VCWP04700) and quantified using the Quant-iT 
PicoGreen dsDNA Assay Kit (Invitrogen/Molecular Probes P11496).
DNA labelling. DNA was labelled according to commercial protocols using the 
DNA Labelling Kit NLRS (RE-012-10, Bionano Genomics). Specifically, 300 ng 
of purified genomic DNA was nicked with 7 U nicking endonuclease Nt.BspQI 
(New England BioLabs, NEB) at 37 °C for 2 h in NEBuffer3. The nicked DNA was 
labelled with a fluorescent-dUTP nucleotide analogue using Taq polymerase (NEB) 
for 1 h at 72 °C. After labelling, the nicks were ligated with Taq ligase (NEB) in 
the presence of dNTPs. The backbone of fluorescently labelled DNA was counter-
stained with YOYO-1 (Invitrogen).
Data collection. The DNA was loaded onto the nanochannel array of Bionano 
Genomics IrysChip by electrophoresis of DNA. Linearized DNA molecules were 
then imaged automatically followed by repeated cycles of DNA loading using the 
Bionano Genomics Irys system. The DNA-molecule backbones (YOYO-1 stained) 
and locations of fluorescent labels along each molecule were detected using the 
in-house-generated software package, IrysView. The set of label locations of each 
DNA molecule defines an individual single-molecule map. After filtering data 
using normal parameters (molecule reads with length greater than 150 kb, a min-
imum of 8 labels and standard filters for label and backbone signals), a total of 
299 Gb and 259 Gb of data were collected from Nt.BspQI and Nb.BssSI samples, 
respectively.
De novo genome map assembly. De novo assembly was performed with non- 
haplotype aware settings (optArguments_nonhaplotype_noES_irys.xml) and 

pre-release version of Bionano Solve3.1 (Pipeline version 6703 and RefAligner 
version 6851). On the basis of the overlap–layout–Consensus paradigm, pairwise 
comparisons of all DNA molecules were performed to create an overlap graph, 
which was then used to create the initial consensus genome maps. By realign-
ing molecules to the genome maps (RefineB P = 10 × 10−11) and by using only 
the best match molecules, a refinement step was performed to refine the label 
positions on the genome maps and to remove chimeric joins. Next, during an 
extension step, the software aligned molecules to genome maps (extension, P = 
10 × 10−11), and extended the maps based on the molecules aligning past the map 
ends. Overlapping genome maps were then merged using a merge P-value cut-off 
of 10 P = 10 × 10−15. These extension and merge steps were repeated five times 
before a final refinement was applied to ‘finish’ all genome maps (refine final,  
P = 10 × 10−11). Two genome map de novo assemblies, one with nickase Nt.BspQI 
and the other with nickase Nb.BssSI, were constructed. Alignments between the 
constructed de novo genome assemblies and the L5 assembly were performed 
using a dynamic programming approach with a scoring function and a P-value 
cutoff of P = 10 × 10−12.
Transposable element identification. Identification of known transposon elements. 
We first identified known transposable elements using RepeatMasker (version 
3.2.6)53 against the mosquito TEfam (https://tefam.biochem.vt.edu/tefam/, data 
downloaded July 2017), a manually curated mosquito transposable-elements  
database. We then ran RepeatMasker using the TEfam database and Repbase 
transposable-elements library (version 10.05). RepeatMasker was set to default 
parameters with the -s (slow search) flag and NCBI/RMblast program (v.2.2.28).
De novo repeat family identification. We searched for repeat families and consen-
sus sequences using the de novo repeat prediction tool RepeatModeler (version 
1.0.8)54 using default parameters with RECON (version 1.07) and RepeatScout 
(1.0.5) as core programs. Consensus sequences were generated and classified for 
each repeat family. Then RepeatMasker was run on the genome sequences, using 
the RepeatModeler consensus sequence as the library.
Tandem repeats. We also predicted tandem repeats in the whole genome and in 
the repeatmasked genome using Tandem Repeat Finder55. Long tandem copies 
were identified using the ‘Match=2, Mismatch=7, Delta=7, PM=80, PI=10, 
Minscore=50 MaxPeriod=500’ parameters. Simple repeats, satellites and low 
complexity repeats were found using ‘Match=2, Mismatch=7, Delta=7, PM=80, 
PI=10, Minscore=50, and MaxPeriod=12’ parameters.

A file representing the coordinates of all identified repeat and transposable- 
element structures in AaegL5 can be found at https://github.com/VosshallLab/
AGWG-AaegL5.
Generation of RefSeq gene set annotation. The AaegL5 assembly was deposited at 
NCBI in June 2017 and annotated using the NCBI RefSeq Eukaryotic gene annota-
tion pipeline56. Evidence to support the gene predictions came from over 9 billion 
Illumina RNA-seq reads, 67,000 Pacific Biosciences IsoSeq transcripts, 300,000 
expressed sequence tags and well-supported proteins from D. melanogaster and 
other insects. Annotation Release 101 was made public in July 2017, and specific 
gene families were subjected to manual annotation and curation. Detailed descrip-
tions of the manual annotation and curation of multigene families (Hox genes, pro-
teases, opsins and biogenic amine receptors, chemosensory receptors and LGICs) 
can be found in the Supplementary Methods and Supplementary Discussion. See 
also https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Aedes_aegypti/101/.
Alignment of RNA-seq data to AaegL5 and quantification of gene expression. 
Published RNA-seq reads13,57 and unpublished RNA-seq reads from tissue-specific 
libraries produced by Verily Life Sciences were mapped to the RefSeq assembly 
GCF_002204515.2_AaegL5.0 with STAR aligner (v.2.5.3a)58 using the two-pass 
approach. Reads were first aligned in the absence of gene annotations using 
the following parameters: --outFilterType BySJout; --alignIntronMax 1000000; 
--alignMatesGapMax 1000000; --outFilterMismatchNmax 999; --outFilterMis-
matchNoverReadLmax 0.04; --clip3pNbases 1; --outSAMstrandField intronMotif; 
--outSAMattrIHstart 0; --outFilterMultimapNmax 20; --outSAMattributes NH 
HI AS NM MD; --outSAMattrRGline; --outSAMtype BAM SortedByCoordinate. 
Splice junctions identified during the first pass mapping of individual libraries 
were combined and supplied to STAR using the --sjdbFileChrStartEnd option for 
the second pass. Reads mapping to gene models defined by the NCBI annotation 
pipeline (GCF_002204515.2_AaegL5.0_genomic.gff) were quantified using fea-
tureCounts59 with default parameters. Count data were transformed to transcripts 
per million values using a custom Perl script. Details on libraries, alignment sta-
tistics and gene expression estimates (expressed in transcripts per million) are 
provided as Supplementary Data 4–8.
Identification of ‘collapsed’ and ‘merged’ gene models from AaegL3.5 to 
AaegL5.0. VectorBase annotation AaegL3.5 was compared to NCBI Ae. aegypti 
annotation release 101 on AaegL5.0 using custom code developed at NCBI as 
part of NCBI’s eukaryotic genome annotation pipeline. First, assembly–assembly  
alignments were generated for AaegL3 (GCA_000004015.3) × AaegL5.0 
(GCF_002204515.2) as part of NCBI’s Remap coordinate remapping service,  
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as described at https://www.ncbi.nlm.nih.gov/genome/tools/remap/docs/ 
alignments. The alignments are publicly available in NCBI’s Genome Data Viewer 
(https://www.ncbi.nlm.nih.gov/genome/gdv/), the Remap interface, and by FTP 
in either ASN.1 or GFF3 format (ftp://ftp.ncbi.nlm.nih.gov/pub/remap/Aedes_
aegypti/2.1/). Alignments are categorized as either ‘first pass’ (reciprocity = 3) 
or ‘second pass’ (reciprocity = 1 or 2). First pass alignments are reciprocal best 
alignments, and are used to identify regions on the two assemblies that can be 
considered equivalent. Second pass alignments are cases in which two regions of 
one assembly have their best alignment to the same region on the other assembly. 
These are interpreted to represent regions in which two paralogous regions in 
AaegL3 have been collapsed into a single region in AaegL5, or vice versa.

For comparing the two annotations, both annotations were converted to ASN.1 
format and compared using an internal NCBI program that identifies regions of 
overlap between gene, mRNA and coding sequence (CDS) features projected 
through the assembly–assembly alignments. The comparison was performed twice, 
first using only the first pass alignments, and again using only the second pass 
alignments corresponding to regions in which duplication in the AaegL3 assembly 
had been collapsed. Gene features were compared, requiring at least some over-
lapping CDS in both the old and new annotation to avoid noise from overlapping 
genes and comparisons between coding and non-coding genes. AaegL5.0 genes 
that matched to two or more VectorBase AaegL3.5 genes were identified. Matches 
were further classified as collapsed paralogues if one or more of the matches was 
through the second pass alignments, or as improvements due to increased conti-
guity or annotation refinement if the matches were through first pass alignments 
(for example, two AaegL3.5 genes represent the 5′ and 3′ ends of a single gene 
on AaegL5.0, such as sex peptide receptor. Detailed lists of merged genes are in 
Supplementary Data 10, 11.
Comparison of alignment to AaegL3.4 and AaegL5.0. The sequences comprising 
transcripts from the AaegL5.0 gene set annotation were extracted from coordinates 
provided in GCF_002204515.2_AaegL5.0_genomic.gtf. Sequences correspond-
ing to AaegL3.4 gene set annotations were downloaded from Vectorbase (https://
www.vectorbase.org/download/aedes-aegypti-liverpooltranscriptsaaegl34fagz). 
Salmon (v.0.8.2)60 indices were generated with default parameters, and all libraries 
described in Supplementary Data 4 were mapped to both AaegL3.4 and AaegL5 
sequences using ‘quant’ mode with default parameters. Mapping results are pre-
sented as Supplementary Data 9 and Fig. 1h.
ATAC-seq. The previously described ATAC-seq protocol61 was adapted for Ae. 
aegypti brains. Individual brains from LVP_MR4 non-blood-fed females (Extended 
Data Fig. 2c, d) or females 48 h or 96 h after taking a human blood meal (data not 
shown) were dissected in 1× PBS, immediately placed in 100 μl ice-cold ATAC 
lysis buffer (10 mM Tris-Hcl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL 
CA-630), and homogenized in a 1.5-ml Eppendorf tube using 50 strokes of a 
Wheaton 1-ml PTFE-tapered tissue grinder. Animals at 96 h after the blood meal 
were deprived of access to a water oviposition site and were considered gravid at the 
time of dissection. Lysed brains were centrifuged at 400g for 20 min at 4 °C and the 
supernatant was discarded. Nuclei were resuspended in 52.5 μl 1× Tagmentation 
buffer (provided in the Illumina Nextera DNA Library Prep Kit) and 5 μl were 
removed to count nuclei on a haemocytometer. In total, 50,000 nuclei were used 
for each transposition reaction. The concentration of nuclei in Tagmentation buffer 
was adjusted to 50,000 nuclei in 47.5 μl Tagmentation buffer and 2.5 μl Tn5 enzyme 
was added (provided in the Illumina Nextera DNA Library Prep Kit). The remain-
der of the ATAC-seq protocol was performed as described61. The final library was 
purified and size-selected using double-sided AMPure XP beads (0.6×, 0.7×). The 
library was checked on an Agilent Bioanalyzer 2100 and quantified using the Qubit 
dsDNA HS Assay Kit. Resulting libraries were sequenced as 75-bp paired-end 
reads on an Illumina NextSeq500 platform at an average read depth of 30.5 million 
reads per sample. Raw fastq reads were checked for nucleotide distribution and 
read quality using FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc) and mapped to the AaegL5 and AaegL3 versions of the Ae. aegypti genome 
using Bowtie v.2.2.962. Aligned reads were processed using Samtools 1.3.163 and 
Picard 2.6.0 (http://broadinstitute.github.io/picard/index.html) and only uniquely 
mapped and non-redundant reads were used for downstream analyses. To com-
pare the annotation and assembly of the sex peptide receptor gene in AaegL3 and 
AaegL5, we used NCBI BLAST64 to identify AAEL007405 and AAEL010313 as 
gene fragments in AaegL3.4 annotation that map to sex peptide receptor in the 
AaegL5.0 genome (BLAST E values for both queries mapping to sex peptide recep-
tor were 0.0). Next, we used GMAP65 to align AAEL007405 and AAEL010313 
fasta sequences to AaegL5. The resulting GFF3 annotation file was used by Gviz66 
to plot RNA-seq reads and sashimi plots as well as ATAC-seq reads in the region 
containing sex peptide receptor. Transcription start site analysis was performed 
using HOMER v.4.967. In brief, databases containing 2-kb windows flanking tran-
scription start sites genome-wide were generated using the ‘parseGTF.pl’ HOMER 
script from AaegL3.4 and AaegL5.0 GFF3 annotation files. Duplicate transcription 
start sites and transcription start sites that were within 20 bp from each other were 

merged using the ‘mergePeaks’ HOMER script. Coverage of ATAC-seq fragments 
in predicted transcription start site regions was calculated with the ‘annotatePeaks.
pl’ script. Fold change in predicted transcription site regions was calculated by 
dividing the ATAC fragments per base pair per predicted transcription start site 
in the AaegL5.0 genome by ATAC fragments per base pair per predicted transcrip-
tion start site in the AaegL3.4 genome at the 0 base pair point in each predicted 
transcription start site. Coverage histograms were plotted using ggplot v.2 2.2.1 in 
RStudio v.1.1.383, R v.3.4.242.
M locus analysis. Aligning chromosome assemblies and Bionano scaffolds. The 
boundaries of the M locus were identified by comparing the current AaegL5 
assembly and the AaegL4 assembly4 using a program called LAST68 (data not 
shown). To overcome the challenges of repetitive hits, both AaegL5 and AaegL4 
assemblies were twice repeat-masked53 against a combined repeat library of TEfam-
annotated transposable elements (https://tefam.biochem.vt.edu/tefam/)2 and a 
RepeatModeler output54 from the Anopheles 16 Genomes project69. The masked 
sequences were then compared using BLASTn64 and we then set a filter for down-
stream analysis to include only alignment with ≥98% identity over 1,000 bp. After 
the identification of the approximate boundaries of the M locus (and m locus), 
which contains two male-specific genes, myo-sex18 and Nix17, we zoomed in by 
performing the same analysis on regions of the M locus and m locus plus 2 Mb 
flanking regions without repeatmasking. In this and subsequent analyses, only 
alignment with ≥98% identity over 500 bp were included. Consequently, approx-
imate coordinates of the M locus and m locus were obtained on chromosome 1 of 
the AaegL5 and AaegL4 assemblies, respectively. Super-scaffold_63 in the Bionano 
optical map assembly was identified by BLASTN64 that spans the entire M locus 
and extends beyond its two borders.
Chromosome quotient analysis. The chromosome quotient (CQ)20 was calculated 
for each 1,000-bp window across all AaegL5 chromosomes. To calculate the CQ, 
Illumina reads were generated from two paired sibling female and male sequenc-
ing libraries. To generate libraries for CQ analysis, we performed two separate 
crosses of a single LVP_AGWG male to 10 virgin females. Eggs from this cross 
were hatched, and virgin male and female adults collected within 12 h of eclosion 
to verify their non-mated status. We generated genomic DNA from five males 
and five females from each of these crosses. Sheared genomic DNA was used to 
generate libraries for Illumina sequencing with the Illumina TruSeq Nano kit 
and sequencing performed on one lane of 150-bp paired-end sequencing on an 
Illumina NextSeq 500 in high-output mode.

For a given sequence Si of a 1,000-bp window, = /F MCQS S Si i i
, where FSi

 is the 
number of female Illumina reads aligned to Si, and MSi

 is the number of male 
Illumina reads aligned to Si. Normalization was not necessary for these datasets 
because the mean and median CQs of the autosomes (chromosomes 2 and 3) are 
all near 1. A CQ value lower than the 0.05 indicates that the sequences within the 
corresponding 1,000-bp window had at least 20-fold more hits to the male Illumina 
data than to the female Illumina data. Not every 1,000-bp window produces a CQ 
value because many were completely masked by RepeatMasker53. To ensure that 
each CQ value represents a meaningful data point obtained with sufficient align-
ments, only sequences with more than 20 male hits were included in the calcula-
tion. The CQ values were then plotted against the chromosome location of the 
1,000-bp window (Fig. 3d). Under these conditions, there is not a single 1,000-bp 
fragment on chromosomes 2 and 3 that showed CQ = 0.05 or lower.
Chromosome FISH. Slides of mitotic chromosomes were prepared from imagi-
nal discs of fourth instar larvae following published protocols3,70,71. BAC clones 
were obtained from the University of Liverpool19 or from a previously described 
BAC library72. BACs were plated on agar plates (Thermo Fisher) and a single 
bacterial colony was used to grow an overnight bacterial culture in LB broth 
plates (Thermo Fisher) at 37 °C. DNA from the BACs was extracted using Sigma 
PhasePrep TM BAC DNA Kit (Sigma-Aldrich, NA-0100). BAC DNA for hybridi-
zation was labelled by nick translation with Cy3-, Cy5-dUTP (Enzo Life Sciences) 
or Fluorescein 12-dUTP (Thermo Fisher). Chromosomes were counterstained 
with DAPI in Prolong Gold Antifade (Thermo Fisher). Slides were analysed using 
a Zeiss LSM 880 Laser Scanning Microscope at 1,000× magnification. We note 
that localization of the M-locus to 1p11 is supported by both FISH and genomic 
analyses, but is contrary to a previously published placement at 1q2117.
Identification and analysis of Ae. aegypti GST and P450 genes and validation 
of the repeat structure of the GSTe cluster. Genes were initially extracted from 
the AaegL5.0 genome annotation (NCBI release 101) by text search and filtered 
to remove ‘off target’ matches (for example, ‘cytochrome P450 reductase’), then 
predicted protein sequences of a small number of representative transcripts were 
used to search the protein set using BLASTp, to identify by sequence similarity 
sequences not captured by the text search (resulting in two additional P450s, no 
GSTs). For each gene family, predicted protein sequences were used to search the 
proteins of the AaegL3.4 gene set using BLASTp. All best matches, and additional 
matches with amino acid identity >90% were tabulated for each gene family 
(Supplementary Data 23) to identify both closely related paralogues and alleles 
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annotated as paralogues in AaegL3.4. On the basis of a BLASTp search against 
the AaegL3.4 protein set, the two putative P450 genes not annotated as such in 
AaegL5.0 (encoding proteins XP_001649103.2 and XP_021694388.1) appear to 
be incorrect gene models in the AaegL5.0 annotation, which should in fact be 
two adjacent genes (CYP9J20 and CYP9J21 for XP_001649103.2; CYP6P12 and 
CYP6BZ1 for XP_021694388.1). Compared to AaegL3.4, which predicts a single 
copy each of GSTe2, GSTe5 and GSTe7, the NCBI annotation of AaegL5.0 predicts 
three copies each of GSTe2 and GSTe5, and four copies of GSTe7, arranged in a 
repeat structure. BLASTn searches revealed one additional copy each of GSTe2 and 
GSTe5 in the third duplicated unit. Both contain premature termination codons 
owing to frameshifts, but these could be owing to uncorrected errors in the assem-
bly. Error correction of all duplicated units was not possible owing to the inability to 
unequivocally align reads to units not ‘anchored’ to adjacent single-copy sequence.

To validate these tandem duplications, two lanes of Illumina whole-genome 
sequence data from a single pupa of the LVP_AGWG strain (H2NJHADXY) were 
aligned to a hard-masked version of the AaegL3 reference genome using Bowtie2 
v.2.2.473, with ‘--very-fast-local’ alignment parameters, an expected fragment 
size between 0 and 1,500 bp and relative orientation ‘forward–reverse’ (‘-I 0 -X 
1500 –fr’). Aligned reads with a mapping quality less than 10 were removed using 
Samtools63. ‘featureCounts’, part of the ‘Subread’ v.1.5.0-p2 package74, was used to 
assign read pairs or reads (‘tags’) aligned to either DNA strand (‘-s 0’) and overlap-
ping the coding regions of a gene by at least 100 bp (‘-t CDS–minOverlap 100’) to 
genes as an estimate of representation in the genome. Gene-wise tag counts were 
normalized by calculating the fragments per kilobase of gene length per million 
mapped reads (FPKM), using the following equation: (tag count/gene length in kb)/ 
(sum of tag counts for all genes in genome/1,000,000).

Median FPKM for all genes in the genome was calculated (48.22), allowing 
FPKM of GSTe genes to be expressed relative to this. To examine strain differences 
in coverage at this cluster, we repeated this analysis for the four laboratory colo-
nies analysed in Extended Data Fig. 9a, b. Median FPKM values across all genes 
ranged from 47.68 to 48.46 and gene-wise FPKM values normalized relative to 
these medians are plotted in Fig. 4d.

To visualize the sequence identity of the repeat structure in the GSTe cluster 
(Fig. 4b), we extracted the region spanning the cluster from AaegL5 chromosome 
2 (351,597,324–351,719,186 bp) and performed alignment of Pacific Biosciences 
reads using minimap2 v2.1.1 (minimap2 -DP -k7 -w1 -B2 -r200 -g100 -m1 L5_gst.
fa L5_gst.fa)75 and visualized these alignments using D-GENIES v1.2.092 with  
minimum identity set to 0.15 and ‘Strong Precision’ enabled. To validate this repeat 
structure, we aligned two de novo optical maps created by Bionano using linearized 
DNA labelled with Nt.BspQI or Nb.BssSI. Single molecules from both maps span 
the entire region and the predicted restriction pattern provides support for the 
repeat structure as presented in AaegL5 (Fig. 4c).
QTL mapping of DENV vector competence. In theory, a good-quality genome 
assembly is not necessary for QTL mapping procedures, because it relies on a link-
age map that can be generated de novo from empirical recombination fractions. 
This typically involves three steps: (i) marker selection based on the Mendelian seg-
regation ratios, (ii) marker assignment to linkage groups and (iii) marker ordering 
within each linkage group. However, if a high-quality reference genome assembly 
is available, the physical position of each marker can be determined and this prior 
information greatly facilitates steps (ii) and (iii), as shown below.

To demonstrate the improvement enabled by our new genome, we generated 
two linkage maps using the same Illumina sequence data that were aligned either 
to AaegL3 or AaegL5 genome assemblies. Although the initial number of markers 
was 616 in both cases, the final linkage map was 3.3-fold denser with AaegL5 
than with AaegL3, as shown in Extended Data Fig. 10b. The difference in marker 
density between the two linkage maps is because many markers were filtered out 
from the AaegL3 data. Because the AaegL3 assembly is highly fragmented (>4,700 
scaffolds), the position of each marker within the linkage groups is primarily 
determined from the recombination fractions. This ordering step is performed 
by creating a backbone with a subset of informative markers using a two-point 
algorithm, followed by the positioning of the remaining markers one at a time 
using a multi-point method. Only markers that are unambiguously positioned 
are kept in the final linkage map for QTL mapping. We note that AaegL4, which 
de-duplicated and scaffolded AaegL3 onto chromosomes4, would probably yield 
a similar improvement in mapping resolution.

Another complication arises for the chromosome 1 in Ae. aegypti, because 
recombination is strongly reduced in the region containing the sex-determining 
M locus. This leads to the severely biased segregation ratios for markers anchored 
to this linkage group. In our F2 intercross design, the fully sex-linked markers 
lacked the F0 paternal genotype in F2 females and segregated in the same manner 
as a backcross design. No linkage analysis method is readily available to deal with 
a chromosome that behaves like a mixture of intercross and backcross designs. 
Therefore, AaegL3-guided linkage analysis and QTL mapping for chromosome 
1 were restricted to the fully sex-linked region based on a backcross design.  

By contrast, AaegL5-guided linkage analysis and QTL mapping for chromo-
some 1 made use of all markers regardless of their segregation ratios, allowing  
chromosome-wide coverage. As mentioned in the present manuscript, the only 
caveat is that our analytical procedure assumes autosomal Mendelian proportions, 
which may have resulted in over- or underestimation of linkage distances between 
markers on chromosome 1. The linkage map was iteratively refined by checking for 
misplaced markers based on visual inspection of the LOD/rf matrix.

Ultimately, AaegL5 has a markedly improved QTL mapping resolution over 
AaegL3. For instance, we mapped the same QTL underlying systemic DENV dis-
semination at the extremity of chromosome 2 with both AaegL3 and AaegL5. 
The 1.5 LOD support interval was much larger for the AaegL3-guided linkage 
map (0–50 cM, 74% of the linkage group) than for the AaegL5-guided linkage 
map (0–17 cM, 9% of the linkage group). We present this analysis in Extended 
Data Fig. 10b.
Mosquito crosses. A large F2 intercross was created from a single mating pair of 
field-collected F0 founders. Wild mosquito eggs were collected in Kamphaeng 
Phet Province, Thailand in February 2011 as previously described35. In brief, F0 
eggs were allowed to hatch in filtered tap water and the larvae were reared until 
the pupae emerged in individual vials. Ae. aegypti adults were identified by visual 
inspection and maintained in an insectary under controlled conditions (28 ± 1 °C, 
75 ± 5% relative humidity and 12:12-h light:dark cycle) with access to 10% sucrose. 
The F0 male and female initiating the cross were chosen from different collection 
sites to avoid creating a parental pair with siblings from the same wild mother76,77. 
Their F1 offspring were allowed to mass-mate and collectively oviposit to produce 
the F2 progeny (Extended Data Fig. 10a). A total of 197 females of the F2 progeny 
were used as a mapping population to generate a linkage map and detect QTLs 
underlying vector competence for DENV.
Vector competence. Four low-passage DENV isolates were used to orally challenge 
the F2 females as previously described35. In brief, four random groups of females 
from the F2 progeny were experimentally exposed to two virus isolates belong-
ing to DENV serotype 1 (KDH0026A and KDH0030A) and two virus isolates 
belonging to DENV serotype 3 (KDH0010A and KDH0014A), respectively. All 
four virus isolates were derived from human serum specimens collected in 2010 
from clinically ill patients who were infected with DENV at the Kamphaeng Phet 
Provincial Hospital35. Because the viruses were isolated in the laboratory cell cul-
ture, informed consent of the patients was not necessary for the present study. 
Complete viral genome sequences were previously deposited into GenBank (acces-
sion numbers HG316481, HG316582, HG316483, and HG316484)35. Phylogenetic 
analysis assigned the viruses to known viral lineages that were circulating in south-
east Asia in the previous years35. Each isolate was amplified twice in C6/36 (Aedes 
albopictus) cell lines (maintained at AFRIMS in Bangkok, Thailand; used only to 
grow virus, not explicitly authenticated or checked for mycoplasma contamina-
tion) before vector competence assays. Four- to seven-day-old F2 females were 
starved for 24 h and offered an infectious blood meal for 30 min. Viral titres in 
the blood meals ranged from 2.0 × 104 to 2.5 × 105 plaque-forming units per ml 
across all isolates. Fully engorged females were incubated under the conditions 
described above. Vector competence was scored 14 days after the infectious blood 
meal according to two conventional phenotypes: (i) midgut infection and (ii) viral 
dissemination from the midgut. These binary phenotypes were scored based on the 
presence or absence of infectious particles in body and head homogenates, respec-
tively. Infectious viruses were detected by plaque assay performed in LLC-MK2 
(rhesus monkey kidney epithelial) cells as previously described35,78.
Genotyping. Mosquito gDNA was extracted using the NucleoSpin 96 Tissue 
Core Kit (Macherey-Nagel). For the F0 male, it was necessary to perform whole- 
genome amplification using the Repli-g Mini kit (Qiagen) to obtain a sufficient 
amount of DNA. F0 parents and females of the F2 progeny were genotyped using 
a modified version of the original double-digest restriction site-associated DNA 
(RAD) sequencing protocol79, as previously described80. The final libraries were 
spiked with 15% PhiX and sequenced on an Illumina NextSeq 500 platform using 
a 150-cycle paired-end chemistry (Illumina). A previously developed bash script 
pipeline80 was used to process the raw sequence reads. High-quality reads (Phred 
scores >25) trimmed to the 140-bp length were aligned to the AaegL5 reference 
genome (July 2017) using Bowtie v.0.12.762. Parameters for the ungapped align-
ment included ≤3 mismatches in the seed, suppression of alignments with >1 
best reported alignment under a ‘try-hard’ option. Variant and genotype calling 
was performed from a catalogue of RAD loci created with the ref_map.pl pipeline 
in Stacks v.1.1981,82. Downstream analyses only used high-quality genotypes at 
informative markers that were homozygous for alternative alleles in the F0 parents 
(for example, AA in the F0 male and BB in the F0 female), had a sequencing depth 
≥10× and were present in ≥60% of the mapping population.
Linkage map. A comprehensive linkage map based on recombination fractions 
among RAD markers in the F2 generation was constructed using the R package 
OneMap v.2.0-383. Every informative autosomal marker is expected to segregate 
in the F2 mapping population at a frequency of 25% for homozygous (AA and 
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BB) genotypes and 50% for heterozygous (AB) genotypes. Autosomal markers 
that significantly deviated from these Mendelian segregation ratios (P < 0.05) 
were filtered out using a χ2 test. Owing to the presence of a dominant male- 
determining locus on chromosome 1, fully sex-linked markers on chromosome 
1 are expected to segregate in F2 females with equal frequencies (50%) of hete-
rozygous (AB) and F0 maternal (BB) genotypes, because the F0 paternal (AA) 
genotype only occurs in F2 males. As previously reported21, strong deviations from 
the expected Mendelian segregation ratios were observed for a large proportion of 
markers assigned to chromosome 1 in the female F2 progeny. Markers on chromo-
some 1 were included if they had heterozygous (AB) genotype frequencies inside 
the 40–60% range and F0 maternal (BB) genotype frequencies inside the 5%–65% 
range. These arbitrary boundaries for marker selection were largely permissive 
for partially or fully sex-linked markers on chromosome 1. Owing to a lack of 
linkage analysis methods that deal with sex-linked markers when only one sex is 
genotyped, the recombination fractions between all pairs of selected markers were 
estimated using the rf.2pts function with default parameters for all three chromo-
somes. The rf.2pts function, which implements the expectation–maximization 
(EM) algorithm, was used to estimate haplotype frequencies and recombination 
rates between markers11 under the assumption of autosomal Hardy–Weinberg 
proportions. Owing to this analytical assumption, the estimates of cM distances 
could be over- or underestimated for markers on chromosome 1. Markers linked 
with a LOD score ≥11 were assigned to the same linkage group. Linkage groups 
were assigned to the three distinct Ae. aegypti chromosomes based on the physical 
coordinates of the AaegL5 assembly. Recombination fractions were converted into 
genetic distances in cM using the Kosambi mapping function84. Linkage maps were 
exported in the R/qtl environment85 in which they were corrected for tight double 
crossing-overs with the calc.errorlod function based on a LOD cut-off threshold 
of 4. Duplicate markers with identical genotypes were removed with the findDup-
Markers function. To remove markers located in highly repetitive sequences, RAD 
sequences were blasted against the AaegL5 assembly using BLASTn v.2.6.0. Markers 
with >1 blast hit on chromosomes over their 140-bp length and 100% identity 
were excluded from linkage analysis. Reported RAD markers were distributed as 
follows: chromosome 1, n = 76; chromosome 2, n = 80; chromosome 3, n = 99.
QTL mapping. The newly developed linkage map was used to detect and locate 
QTLs that underlie the DENV vector competence indices described above. Midgut 
infection was analysed in all F2 females whereas viral dissemination was analysed 
only in midgut-infected females. The four different DENV isolates were included as 
a covariate to detect QTL–isolate interactions. Single QTL detection was performed 
in the R/qtl environment85 using the expectation–maximization algorithm of the 
scanone function using a binary trait model. Genome-wide statistical significance 
was determined by empirical permutation tests, with 1,000 genotype–phenotype 
permutations of the entire dataset.
Comparison between AaegL5 and AaegL3. To assess the improvement obtained in 
AaegL5 to perform QTL mapping, a linkage map was built by aligning RAD mark-
ers to the AaegL3 assembly. The AaegL3-guided linkage map was built by assigning 
markers to chromosomes and by ordering them within each linkage group only 
on the basis of their recombination fractions. Markers were initially filtered based 
on their segregation ratios as described above and assigned to the same linkage 
group based on a LOD score threshold of ≥14. Linkage groups were assigned to the 
three Ae. aegypti chromosomes using supercontigs that were previously mapped to 
the chromosomes22. For each linkage group, a backbone was created with a small 
subset of informative markers (n = 6) using the rf.2pts two-point algorithm of the 
OneMap package. The remaining markers were positioned one at a time using  
the OneMap order.seq multi-point method, which compares all maps including the 
new marker at all possible positions keeping the original linkage map unchanged. 
This procedure produces both a ‘safe’ and a ‘forced’ marker order. The ‘forced’ 
marker map indicates the most likely position for each marker, whereas the ‘safe’ 
marker map only displays the unambiguously positioned markers. The AaegL3-
guided QTL mapping was performed with the ‘safe’ marker map. Strong bias in 
Mendelian segregation ratios of markers anchored to chromosome 1 impeded 
their ordering. Fully sex-linked markers lacked the F0 paternal (AA) genotype 
in F2 females, and segregated analogously to a backcross design in which F1 AB 
heterozygotes are backcrossed to F0 BB homozygotes. No linkage analysis method 
is readily available to deal with a chromosome that behaves like a mixture of inter-
cross and backcross designs. Therefore, AaegL3-guided linkage analysis and QTL 
mapping for chromosome 1 were restricted to the fully sex-linked region based on 
a backcross design. A new OneMap input file only including markers lacking the 
F0 paternal (AA) genotype was made by setting the population type to ‘backcross’ 
instead of ‘F2 intercross’. Markers were ordered using the order.seq function of 
the OneMap package as described above. A table summarizing this comparison is 
available as Extended Data Fig. 10b.
Mapping insecticide resistance and VGSC. The mosquito population Viva Caucel 
from Yucatán State in Southern Mexico (longitude −89.71827, latitude 20.99827), 
was collected in 2011 through the Universidad Autónoma de Yucatán. We identified 

up to 25 larval breeding sites from 3–4 city blocks and collected around 1,000 lar 
vae. Larvae were allowed to eclose, and twice a day we aspirated the adults from 
the cartons, discarding anything other than Ae. aegypti. Then, 300–400 Ae. aegypti 
were released into a 2-foot (61-cm) cubic cage where they were allowed to mate for 
up to five days with ad libitum access to sucrose, after which they were blood fed 
to collect eggs for the next generation. Then, 390 adult mosquitoes were pheno-
typed for deltamethrin resistance. We exposed groups of 50 mosquitoes (3–4 days  
old) to 3 μg of deltamethrin-coated bottles for 1 h. After this time, active mos-
quitoes were transferred to cardboard cups and placed into an incubator (28 °C 
and 70% humidity) for 4 h; these mosquitoes were referred to as the resistant 
group. Immobile mosquitoes were transferred to a second cardboard cup. After 4 h, 
newly recovered mosquitoes were aspirated, frozen and labelled as recovered; these 
were excluded from the current study. The mosquitoes that were immobilized and 
remained inactive at 4 h post-treatment were scored as susceptible. DNA was iso-
lated from individual mosquitoes by the salt extraction method86 and resuspended 
in 150 μl of TE buffer (10 mM Tris-HCl, 1 mM EDTA pH 8.0). We constructed a 
total of four gDNA libraries. Two groups were pooled from DNA of 25 individual 
females that survived 1 h of deltamethrin exposure (resistant replicates 1 and 2). 
The second set of two libraries was obtained by pooling DNA from 25 females 
that were immobilized and inactive at 4 h post-treatment (susceptible replicates 1 
and 2). Before pooling, DNA from each individual mosquito was quantified using 
the Quant-IT Pico Green kit (Life Technologies, Thermo Fisher Scientific) and 
around 40 ng from each individual DNA sample (25 individuals per library) was 
used for a final DNA pool of 1 μg. Pooled DNA was sheared and fragmented by 
sonication to obtain fragments between 300 and 500 bp (Covaris). We prepared 
one library for each of the four DNA pools following the Low Sample protocol 
from the Illumina TrueSeqDNA PCR-Free Sample preparation guide (Illumina). 
Because 65% of the Ae. aegypti genome consists of repetitive DNA, we performed 
an exome-capture hybridization to enrich for coding sequences using custom 
SeqCap EZ Developer probes (NimbleGen, Roche). Probes covered protein-coding 
sequences (not including untranslated regions) in the AaegL1.3 genebuild using 
previously specified exonic coordinates87. In total, 26.7 Mb of the genome (2%) was 
targeted for enrichment. TruSeq libraries were hybridized to the probes using the 
xGenLockDown recommendations (Integrated DNA Technologies). The targeted 
DNA was eluted and amplified (10–15 cycles) before being sequenced on one flow 
cell of a 100-bp HiSeq Rapid-duo paired-end sequencing run (Illumina) performed 
by the Centers for Disease Control (Atlanta, GA, USA).

The raw sequence files (FASTQ) for each pair-ended gDNA library were 
aligned to a custom reference physical map generated from the assembly AaegL5. 
Nucleotide counts were loaded into a contingency table with four rows corre-
sponding to ‘Alive Rep1’, ‘Alive Rep2’, ‘Dead Rep1’ and ‘Dead Rep2’. The numbers 
of columns (c) corresponded to the number of alternative nucleotides at a SNP 
locus. The maximum value for c is 6, corresponding to A, C, G, T, insert or deletion. 
Three (2 × c) contingency tables were subjected to χ2 analyses (c − 1 degrees of 
freedom) to determine whether there are significant (P ≤ 0.05) differences between 
(1) Alive replicates, (2) Dead replicates and (3) Alive versus Dead. If analysis (1) 
or (2) was significant, then that SNP locus was discarded. Otherwise the third 
contingency table consisted of two rows corresponding to Alive (sum of replicates 
1 and 2), Dead (replicates 1 and 2 summed), and c columns. The χ2 value from the 
(2 × c) contingency χ2 analysis with (c − 1) degrees of freedom was loaded into 
Excel to calculate the one-tailed probability of the χ2 distribution probability (P). 
This value was transformed with −log10(P). The experiment-wise error rate was 
then calculated following the method of Benjamini and Hochberg88 to lower the 
number of type I errors (false positives).
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. The overview of the Hi-C workflow, as well as modifications 
to 3D-DNA associated with AaegL5, is shared on GitHub at https://github.com/
theaidenlab/AGWG-merge. The source code and executable version of Juicebox 
Assembly Tools are available at http://aidenlab.org/assembly. Data files and scripts 
used for the final polishing of scaffolded, gap-filled assembly are available at https://
github.com/skingan/AaegL5_FinalPolish.
Data availability. All raw data have been deposited at NCBI under the follow-
ing BioProject accession numbers: PRJNA318737 (primary Pacific Biosciences 
data, Hi-C sequencing primary data and processed contact maps, whole-genome 
sequencing data from a single male (Fig. 4d) and pools of male and females 
(Fig. 3d), Bionano optical mapping data (Figs. 3c, 4c) and 10X linked-read 
sequences (Extended Data Fig. 8a and Supplementary Data 21)); PRJNA236239 
(RNA-seq reads and de novo transcriptome assembly13 (Extended Data Fig. 2c and 
Supplementary Data 4, 5, 7, 9)); PRJNA209388 (RNA-seq reads for developmental 
time points57 (Fig. 1h and Supplementary Data 4–6, 9)); PRJNA419241 (RNA-seq 
reads from adult reproductive tissues and developmental time points, Verily Life 
Sciences (Fig. 1h and Supplementary Data 4, 5, 8, 9)); PRJNA393466 (full-length 
Pacific Biosciences Iso-Seq transcript sequencing); PRJNA418406 (ATAC-seq data 
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from adult female brains at three points in the gonotrophic cycle (Extended Data 
Fig. 2c, d and data not shown)); PRJNA419379 (whole-genome sequencing data 
from four colonies (Fig. 4d and Extended Data Fig. 9a, b)); PRJNA399617 (restric-
tion-site-associated DNA-sequencing data (Fig. 5a–d)); PRJNA393171 (exome-se-
quencing data (Fig. 5e-g)). Intermediate results related to the AaegL5 assembly are 
also available via GitHub (http://github.com/theaidenlab/AGWG-merge) and have 
been uploaded to GEO (GSE113256). The Hi-C maps are available via http://aid-
enlab.org/juicebox. The complete mitochondrial genome is available as Genbank 
accession MF194022.1, RefSeq accession NC_035159.1. The final genome assembly 
and annotation are available from the NCBI Assembly Resource under accession 
GCF_002204515.2.
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Extended Data Fig. 1 | Project flowchart, measured genome size and 
assembly process. a, Flowchart of LVP_AGWG strain inbreeding, data 
collection and experimental design of the AaegL5 assembly process.  
b, Estimated average 1C genome size for each strain for five Ae. aegypti 
strains and Ae. mascarensis, the sister taxon of Ae. aegypti, for which 
the genome size has not previously been measured. There were no 
significant differences between the sexes within and between the species 
and strains analysed (P > 0.2). Significant differences between strains 
were determined using Proc GLM in SAS with both a Tukey and a Scheffé 
option with the same outcome. Data labelled with different letters are 
significantly different (P < 0.01). c, Combining Hi-C maps with 2D 
annotations enabled efficient review of sequences identified as alternative 
haplotypes by sequence alignment. The figure depicts a roughly 24 Mb 
× 24 Mb fragment of a contact map generated by aligning a Hi-C dataset 
to an intermediate genome assembly generated during the process of 
creating AaegL5. This intermediate assembly was a sequence comprising 
error-corrected, ordered and oriented FALCON-Unzip contigs. The 
intensity of each pixel in the contact map correlates with how often 
pairs of loci co-locate in the nucleus. Maximum intensity is indicated in 
the lower left of each panel. These maps include reads that do not align 
uniquely (reads with zero mapping quality); such alignments are randomly 
assigned to one of the possible genomic locations. Three panels show 
three types of annotations that are overlaid on top of the contact map. Left, 
FALCON-Unzip contig boundaries are highlighted as black squares along 
the diagonal. Notably, large linear features appear above and below the 
diagonal. These are the result of sequence overlap among contigs, which 
can indicate the presence of undercollapsed heterozygosity in the contig 
set. Because reads that do not map uniquely are randomly assigned during 
the alignment step, Hi-C reads derived from a contig will sometimes be 

aligned to an overlapping contig. When this happens, the Hi-C read pair 
may contribute to the formation of a linear feature above and below the 
diagonal. Therefore, the linear stretches of enriched contact frequency 
parallel to the diagonal are brought about by the random assignment 
procedure, and can facilitate the detection of pairs of overlapping contigs. 
Note that, when the overlap between contigs is owing to undercollapsed 
heterozygosity, both contigs will exhibit similar long-range contact 
patterns. This aspect of Hi-C data also provides evidence for the presence 
of undercollapsed heterozygosity. Centre, LASTZ-alignment-based 
annotations for fully redundant contigs. The squares shown in blue are 
obtained by taking diagonal contig boundary annotations (in black) and 
shifting them up (respectively, left) when drawing above (respectively, 
below) the diagonal so that the overlapping sequences are horizontally 
(respectively, vertically) aligned. Note that, as expected, the squares 
typically span linear, off-diagonal features in the Hi-C data. When one 
contig is entirely contained in another contig, the redundant contig does 
not contribute sequence to the merged chromosome-length scaffolds. 
Right, LASTZ-alignment-based annotations for partially redundant 
contigs. Again, the squares shown in blue are obtained by taking diagonal 
contig boundary annotations (in black) and shifting them up and left. 
The overlaps shown in this panel correspond to contigs that only partially 
overlap in sequence with other contigs. Consequently, some of their 
sequence is incorporated in the final fasta. d, Comparison of chromosome 
lengths between AaegL4 and AaegL5. Numbers are given before post-
Hi-C polishing and gap closing. e, Step-wise assembly statistics for Hi-C 
scaffolding, alternative haplotype removal and annotation. *Removed 
length, 779,073,495 bp. **The definition of scaffold groups can be found 
in a previously published study4. ***Gaps between contigs were set to 500 bp  
for calculating scaffold statistics. N/A, not applicable.
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Extended Data Fig. 2 | Remaining assembly gaps, summary of geneset 
annotation improvement, chromatin accessibility analysis, physical 
genome map and gene strucures of biogenic amine-binding receptors 
and opsins in AaegL5. a, Representation of structural variants identified 
at assembly gaps by alignment of Bionano optical maps. The estimated 
size of an insertion (blue) or deletion (red) relative to the reference is 
represented by the size of the circle. When the size or type of structural 
variants could not be determined or did not agree between the two optical 
maps, the location of the assembly gap is plotted in grey. Approximate 
locations of the centromeres (red triangles) and telomere-associated 
repeat sequences (blue triangles) are indicated. Raw data are available 
as Supplementary Data 1. b, Comparison of protein-coding genes 
and transcripts in AaegL5.0 (NCBI RefSeq Release 101) and gene set 
annotations from An. gambiae (Agam), Culex pipiens (Cpip) and  
D. melanogaster (Dmel). c, Sex peptide receptor structure in AaegL3.4 and 
AaegL5.0, and female brain RNA-seq and ATAC-seq reads aligned to 
AaegL5. Blue lines on the RNA-seq track indicate splice junctions, with 
the number of reads spanning a junction represented by line thickness. 
Exons are represented by tall filled boxes and introns by lines. Arrowheads 

indicate gene orientation. d, Average read profiles across promoter regions, 
defined as the transcription start site (TSS) ±2.5 kb. Solid lines represent 
Tn5-treated native chromatin using the ATAC-seq protocol (n = 4), dotted 
lines represent Tn5-treated naked genomic DNA (n = 1). Shaded regions 
represent s.d. e, A physical genome map was developed by localizing 500 
BAC clones to chromosomes using FISH. For the development of a final 
chromosome map for the AaegL5 assembly, we assigned the coordinates 
of each outmost BAC clone within a band (Supplementary Data 12) to 
the boundaries between bands. The final resolution of this map varies on 
average between 5 and 10 Mb because of the differences in BAC mapping 
density in different regions of chromosomes. f, Schematic of predicted 
gene structures of the Ae. aegypti biogenic amine-binding receptors and 
opsins. Exons, cylindrical bars; introns, black lines; dopamine receptors, 
yellow bars; serotonin receptors, magenta bars; muscarinic acetylcholine 
receptors, green bars; octopamine receptors, blue bars; opsins, dark 
purple bars; predicted 3′ and 5′ non-coding sequence (dark shading). The 
‘unclassified receptor’ GPRnna19 is not shown. Details on gene models 
compared to previous annotations and the predicted amino acid sequences 
of each gene are available in Supplementary Data 14–16.
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Extended Data Fig. 3 | Chromosomal arrangement of 
chemosensory receptor genes. The location of predicted chemoreceptors 
(odorant receptors (ORs), gustatory receptors (GRs) and ionotropic 
receptors (IRs)) across all three chromosomes in AaegL5. The blunt end of 

each arrowhead plotted above each chromosome marks gene position and 
arrowhead indicates orientation. Filled and open arrowheads represent 
intact genes and pseudogenes, respectively (Supplementary Data 17–20). 
This figure is identical to Fig. 2a, but here includes gene names.
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Extended Data Fig. 4 | Phylogenetic tree of odorant receptor gene 
families from Ae. aegypti, An. gambiae and D. melanogaster. Maximum 
likelihood odorant receptor tree was rooted with Orco proteins, which 
are both highly conserved and basal within the odorant receptor family89. 
Support levels for nodes are indicated by the size of black circles—

reflecting approximate likelihood ratio tests (aLRT values ranging from 
0 to 1 from PhyML v.3.0 run with default parameters90). Suffixes after 
protein names are C, minor assembly correction; F, major assembly 
modification; N, new model; P, pseudogene. Scale bar, amino acid 
substitutions per site.
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Extended Data Fig. 5 | Phylogenetic tree of the gustatory receptor gene 
families from Ae. aegypti, An. gambiae and D. melanogaster. Maximum 
likelihood gustatory receptor tree was rooted with the highly conserved 
and distantly related carbon dioxide and sugar receptor subfamilies, 
which together form a basal clade within the arthropod gustatory receptor 
family89. Subfamilies and lineages closely related to D. melanogaster 

gustatory receptors of known function are highlighted. Support levels for 
nodes are indicated by the size of black circles—reflecting approximate 
likelihood ratio tests (aLRT values ranging from 0 to 1 from PhyML v.3.0 
run with default parameters90). Suffixes after protein names are C, minor 
assembly correction; F, major assembly modification; N, new model;  
P, pseudogene. Scale bar, amino acid substitutions per site.
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Extended Data Fig. 6 | Phylogenetic tree of the ionotropic receptor gene 
families from Ae. aegypti, An. gambiae and D. melanogaster. Maximum 
likelihood phylogenetic tree of ionotropic receptor protein sequences from 
the indicated species rooted with highly conserved Ir8a and Ir25a proteins. 
Conserved proteins with orthologues in all species are named outside the 
circle, and previously unannotated ionotropic receptors are highlighted 

with red lines. Support levels for nodes are indicated by the size of black 
circles—reflecting approximate likelihood ratio tests (aLRT values ranging 
from - to 1 from PhyML v.3.0 run with default parameters90). Suffixes 
after protein names are C, minor assembly correction; F, major assembly 
modification; N, new model; P, pseudogene. Scale bar, amino acid 
substitutions per site.
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Extended Data Fig. 7 | Chemosensory receptor expression in adult  
Ae. aegypti tissues. Previously published RNA-seq data13 were reanalysed 
using the new chemoreceptor annotations and genome assembly. 
Chemoreceptors have been clustered according to Euclidian distance of 
their expression vectors using the R function hclust. Expression is given 

for females at three stages of the gonotrophic cycle (0, 48 or 96 h after 
taking a blood-meal, for which 0 h indicates not blood-fed, 48 h indicates 
48 h after the blood-meal, and 96 h indicates gravid). New genes are 
indicated by black bars on the right.
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Extended Data Fig. 8 | Structural variation, the Hox gene cluster and 
Hox cofactor motifs. a, Linked-read sequencing of two individuals from 
the LVP_AGWG strain identified putative structural variants in the 
AaegL5 assembly. b, Comparative genomic arrangement of the Hox  
cluster (HOXC) in five species (Supplementary Data 22). Note the split of 
labial (lab) and proboscipedia (pb) between two chromosomes in  
Ae. aegypti and Cx. quinquefasciatus. Owing to chromosome arm 

exchange, chromosome 3p in Cx. quinquefasciatus is the homologue of 
chromosome 2p in Ae. aegypti4. c, Repeats in putative telomere-associated 
sequences downstream of pb in both species. d, Motifs known to mediate 
protein–protein interactions with the Hox cofactor Extradenticle (Exd)91 
from the five indicated species are aligned using Clustal-Omega. Perfectly 
aligned residues are coloured according to Hox gene identity, non-
conserved residues are grey.
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Extended Data Fig. 9 | Population genomic structure and linkage 
disequilibrium analysis of Ae. aegypti strains. a, Chromosomal patterns 
of nucleotide diversity (π) in four strains of Ae. aegypti measured in  
100-kb non-overlapping windows and presented as a LOESS-smoothed 
curve. b, Mean nucleotide diversity in the strains in a, with s.d. indicated 
in parentheses. Nucleotide diversity (π) was measured in non-overlapping 
100-kb windows. The Liverpool and Costa Rica colonies maintain 
extensive diversity despite being colonized in the laboratory more than 
a decade ago, but show reduced genome-wide diversity (on the order 
of 30–40%) relative to the more recently laboratory colonized Innisfail 

and Clovis. c, Pairwise linkage disequilibrium between SNPs located 
within the same chromosome estimated from 28 wild-caught individuals 
from the indicated populations. Each point represents the mean linkage 
disequilibrium for that set of binned SNP pairs. Solid lines are LOESS-
smoothed curves, and dashed lines correspond to r2

max/2. Inclusion of 
additional individuals available from the Amacuzac population (up to 137) 
had a minimal effect on the linkage disequilibrium estimations  
(∆R2 < 0.017; data not shown). d, Linkage disequilibrium (r2) values 
along the Ae. aegypti AaegL5 genome assembly based on pairwise SNP 
comparisons. Data were obtained from the average r2 of SNPs in 1-kb bins.
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Chr1 Chr2 Chr3 Overall
AaegL5-guided map

Number of markers mapped 76 80 99 255
Maximum marker spacing (cM) 16.8 12 11.5 16.8

Average marker spacing (cM) 2.1 2.3 1.1 1.8
Length of linkage group (cM) 159.6 183.1 106 448.7

AaegL3-guided map  (restricted to sex-linked region for Chr. 1)
Number of markers mapped 12 32 33 77

Maximum marker spacing (cM) 10.0 17.5 8.6 17.5
Average marker spacing (cM) 3.3 2.2 2.1 2.3
Length of linkage group (cM) 36.8 67.8 66.5 171.2
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Extended Data Fig. 10 | QTL analysis of DENV competence in  
Ae. aegypti and Cys-loop LGICs. a, Schematic representation of the 
experimental workflow for testing DENV competence in Ae. aegypti, 
related to Fig. 5b–d. b, Comparison of QTL map density constructed 
against AaegL3 or AaegL5 assemblies. c, Concentration–response 
curves showing the effect on Ae. aegypti larval motility of insecticides 
currently used in veterinary and agricultural applications (mean ± s.e.m., 
n = 7). d, Phylogenetic tree of Cys-loop LGIC subunits for Ae. aegypti 
and D. melanogaster. The accession numbers of the D. melanogaster 
sequences used in constructing the tree are: Dα1 (CAA30172), Dα2 

(CAA36517), Dα3 (CAA75688), Dα4(CAB77445), Dα5 (AAM13390), 
Dα6 (AAM13392), Dα7(AAK67257), Dβ1 (CAA27641), Dβ2 
(CAA39211), Dβ3 (CAC48166), GluCl (AAG40735), GRD (Q24352), 
HisCl1 (AAL74413), HisCl2 (AAL74414), LCCH3 (AAB27090), Ntr 
(NP_651958), pHCl (NP_001034025), RDL (AAA28556). For Ae. aegypti 
sequences, see Supplementary Data 24. ELIC (Erwinia ligand-gated 
ion channel), which is an ancestral Cys-loop LGIC found in bacteria 
(accession number P0C7B7), was used as an outgroup. Scale bar, amino 
acid substitutions per site.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Flow cytometry data were collected and scored using CytExpert software version 1.2.8.0 (supplied with a Beckman Coulter CytoFlex flow 
cytometer).

Data analysis Common bioinformatic and statistical analysis software packages were used, including: R, NCBI BLAST, Samtools, Picard, GATK, FALCON, 
freebayes BLASR, Quiver, arrow, PBJelly, RepeatMasker, RepeatModeler, RepeatScout, Tandem Repeats Finder, Salmon, gmap, HOMER, 
bowtie, Juicebox, Assembly Tools. Version numbers and specific parameters used during run-time are provided in the methods when 
appropriate. All custom software related to the Hi-C assembly is open source and available on the Aiden Lab GitHub page, as indicated in 
the methods.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data availability statement. All raw data have been deposited at NCBI under the following BioProject Accession numbers: PRJNA318737 (Primary Pacific Biosciences 
data, Hi-C sequencing primary data and processed contact maps, whole-genome sequencing data from a single male (Fig. 4d), and pools of male and females (Fig. 
3d), Bionano optical mapping data (Fig. 3c and Fig. 4c), and 10X linked-read sequences (Extended Data Fig. 8a and Supplementary Data 21)); PRJNA236239 (RNA-seq 
reads and de novo transcriptome assembly,  Extended Data Fig. 2c, d and Supplementary Data 4, 5, 7, 9); PRJNA209388 (RNA-seq reads for developmental time 
points, Fig. 1h and Supplementary Data 4–6, 9); PRJNA419241 (RNA-Seq reads from adult reproductive tissues and developmental time points, Verily Life Sciences 
Fig. 1h and Supplementary Data 4, 5, 8, 9); PRJNA393466 (full-length Pacific Biosciences Iso-Seq transcript sequencing); PRJNA418406 (ATAC-Seq data from adult 
female brains at three points in the gonotrophic cycle, Extended Data Fig. 2c, d and data not shown); PRJNA419379 (whole-genome sequencing data from colonies 
Fig. 4d and Extended Data Fig. 9a, b); PRJNA399617 (RAD-Seq data Fig. 5a-d); PRJNA393171 (exome sequencing data Fig. 5e-g). Intermediate results related to the 
AaegL5 assembly are also available via GitHub (http://github.com/theaidenlab/AGWG-merge) and have been uploaded to GEO (GEO Record: GSE113256). The Hi-C 
maps are available via http://aidenlab.org/juicebox. The complete mitochondrial genome is available as Genbank accession MF194022.1, RefSeq accession 
NC_035159.1. The final genome assembly and annotation are available from the NCBI Assembly Resource under accession GCF_002204515.2.
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Sample size Sample sizes for genome variability analysis via SNP-chip (Fig. 1c) were determined according to previously published work (Evans et al., 2015 
PMID 25721127). Sample sizes for genome size determination (Fig. 1d) were determined according to the standards of the field (see Hare and 
Johnston, 2011 PMID 22065429). Samples sizes for FISH were determined according to the standards of the field (see Timoshevskiy et al., 
2012 PMID 23007640). Sample sizes for dengue virus competence (Fig. 5b-d and Extended Data Fig. 10a), pyrethroid resistance (Fig. 5e-g) and 
larval motility Ext. Data Figure 10c) were determined by the limited availability of animals, biological or chemical reagents. Bioinformatic 
analyses were performed with all available data.

Data exclusions None

Replication Replication does not apply to the primary results of this paper - it was not feasible to independently resequence/reassemble the genome 
twice within the scope of the funding available to us.

Randomization Randomization was not performed in this study. Samples were divided into experimental groups based on species, strain or biological 
phenotype according to the criteria listed in the methods.

Blinding Blinding was not performed for this study. The diversity of sourcing of samples and data precluded centralized collection and blinding of 
biological material or sequencing data.
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Laboratory animals Male mosquitoes at pupal stage (6-7 days post-hatching) were used to generate the high molecular weight DNA for the primary 
assembly, Hi-C data, Illumina sequencing data and  Bionano optical mapping data. Male and female pupal or adult mosquitoes of 
various ages were used for all other data collection. Specific details are provided in the methods. Established laboratory strains 
used include: Aedes aegypti: LVP_AGWG (Rockefeller University), LVP_ib12 (Virginia Tech and Notre Dame), LVP_MR4 (Centers 
for Disease Control), Rockefeller (Johns Hopkins), Ho Chi Minh City Vietnam (Yale University), New Orleans USA (Yale University), 
Uganda (Princeton University), Kamphaeng Phet Province Thailand (Institut Pasteur), Viva Caucel Mexico (Colorado State), Clovis 
USA (Verily Life Sciences), Innisfail Australia (Verily Life Sciences), Puntarenas Costa Rica (Verily Life Sciences), Liverpool (Verily 
Life Sciences). Aedes mascarensis: Mauritius (Yale University).

Wild animals Field-collected mosquitoes (Aedes aegypti) were obtained from locations in Australia, Cameroon, Florida, Gabon, Mexico, and 
Thailand. All appropriate local permits were in place to authorize such collections. Mosquitoes were trapped as adults in the 
field, or as eggs or larvae reared to adulthood in field laboratories, and euthanized by placement into 100% ethanol to preserve 
genomic DNA. These animals were shipped as dead samples to the investigators who carried out the analysis.

Field-collected samples Field-collected mosquitoes (Aedes aegypti) were obtained from locations in Australia, Cameroon, Florida, Gabon, Mexico, and 
Thailand. All appropriate local permits were in place to authorize such collections. Mosquitoes were trapped as adults in the 
field, or as eggs or larvae reared to adulthood in field laboratories, and euthanized by placement into 100% ethanol to preserve 
genomic DNA. These animals were shipped as dead samples to the investigators who carried out the analysis.

Human research participants
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Population characteristics Work with human subjects was covered under Rockefeller IRB protocol LVO-0652 (Laboratory of Leslie Vosshall). Only one 
subject participated in this study as a source of blood for mosquitoes.

Recruitment One of the authors was the subject for this work, and the subject's participation followed vetting by Rockefeller University 
administration officials that no coercion by the laboratory head, Leslie Vosshall, to participate in this study had taken place. 
Written informed consent was obtained prior to enrolling the subject in this study.
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