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DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



LBNL-42982

Dynamic Restarting Schemes for Eigenvalue Problems

Kesheng Wu and Horst D. Simon

Computing Sciences Directorate
Ernest Orlando Lawrence Berkeley National Laboratory
University of California -
Berkeley, California 94720

March 1999

This work was supported by the Director, Office of Science, Office of Laboratory Policy and Infrastructure
Management, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.



Dynamic Restarting Schemes For Eigenvalue P}‘OblemST

3 Kesheng Wuf Horst D. Simont
March 10, 1999

Abstra(_:t .

In studies of restarted Davidson method, a dynamic thick-restart scheme was found
to be excellent in improving the overall effectiveness of the eigenvalue method. This
paper extends the study of the dynamic thick-restart scheme to the Lanczos method
for symmetric eigenvalue problems and systematically explore a range of heuristics and
strategies. We conduct a series of numerical tests to determine their relative strength
and weakness on a class of electronic structure calculation problems.

The Lanczos method is an effective method for computing extreme eigenvalues and the
corresponding eigenvectors of large matrices. In order to limit the maximum memory usage
and reduce arithmetic operations per iteration, it is often restarted. In this case, the user
specifies a maximum number of Lanczos vectors to be used, say m. After m Lanczos vectors
are generated, the approximate solutions are computed and evaluated. If they are not
acceptable, a restarting scheme is used to extract the most important information and the
information is used in the Lanczos iterations to again generate m Lanczos vectors. The most
straightforward way to start the Lanczos algorithm is to give it one starting vector. Earlier -
restarting schemes are derived based on this observation. Variations of this scheme include
restarting with one Ritz vector, restarting with a linear combination of Ritz vectors and so
on [12]. A much more effective scheme named the implicit restarting scheme was discovered
by Sorensen in 1992 [13]. One important characteristics of this scheme is that it allows an
arbitrary number of vectors to be saved at restart. Another restarting scheme with similar
features is the thick-restart scheme [15] whose history can be traced back to earlier versions
of the Davidson method [6]. However, this feature of restarting with arbitrary number of
starting vectors are not fully exploited until recently. To contrast with the implicit restarting
scheme, the thick-restart scheme is often called an explicit restarting scheme.

Both the implicit restarting scheme and the explicit restart scheme allow one to improve
the effectiveness of a restarting method. The choice of exactly what and how many vectors to
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save is one of the determining factors in the overall effectiveness of the eigenvalue methods.
The restarting schemes discussed in this paper refer the strategies of making this choice. _
More specifically, this paper studies a number of heuristics for deciding what and how many
vectors to save in the thick-restart Lanczos method for symmetric eigenvalue problems [16].
Because the strategies can not be compared analytically, we have chosen to compare them
using a small set of test problems. Through this set of tests, we are going to identify
some efficient schemes for a type of eigenvalue problem arise from the electronic structure
calculations. Through our effort, we also hope to identify clearly unsound choices a.nd narrow
the search range for future users.

This paper is organized as follows. We start by describing'the ‘thick-restart Lanczos
method in Section 1. The test problems used are described in Section 2. Section 3 contains
the basic rationale behind the different restarting strategies and give a brief overview of what
analytical tools are available for devising restarting strategies. The main body of the text,
sections 4 and 5, contains the details of how to implement the four main restarting strategies
and how to modify them in order to achieve better performance. In section 6, we summarize
the observations made in sections 4 and 5, suggest how the four main strategies should be -
implemented and demonstrate their effectiveness on a large test problem.

1  Thick-restart Lanczos method

Many well known methods for eigenvalue problems, such as the Lanczos method [10], the
Arnoldi method [12], and the Davidson method [5], have to be restarted in large scale appli-
cations either to reduce the computer memory usage or to reduce the arithmetic operations
per iteration. For convenience of discussion, an iteration of the restarted method is this
paper includes all operations associated with one matrix-vector multiplication. One conse-
quence of restating these methods is that the restarted versions may take considerably more
iterations to reach convergence compared to their non-restarted counterparts. An effective
restarting strategy is crucial to reduce the number of iterations. In this paper, we will limit
ourselves to study only real symmetric or complex Hermitian eigenvalue problems for which
_the Lanczos method is the most effective method. Previously, the implicit restarting scheme
has been used with the Lanczos method [1, 2]. In this paper, we will study the thick-restart
Lanczos method. For convenience of discussion, we briefly describe the the two major com-
ponents of the thick-restart Lanczos method the Lanczos iterations to extend the basis and
the restarting procedure.

Given a matrix A, its eigenvalue A and the corresponding eigenvector z are defined by
equation Az = A\z. The Lanczos method computes approximate values to A and z which are
also called X and z. If there are m Lanczos vectors, they will be denoted by ¢, . .. ,gm- In the
process of computing m Lanczos vectors, the algorlthm will also compute o, 8,1 =1,...,m
which are used later in the Raylelgh—thz prOJectlon Here is a brief description of the
algorithm.

Initialization

To start solving a new eigenvalue problem, take a starting vector, normalize it and
store the resulting vector as ¢;. Set k to zero. ' .



-When restarting, k is set by the the restarting procedure which also provides g1, . . ., gk, qk+1,
a1y .., 0, and ,31,.. .,,Bk_.
Iterate
Fori=k+1,...,m,

1. giy1 < Agi, ‘
2. a; qiT(Iz'+1,
3. i=k+1,
Qi1 ¢ Qi1 — 04Q; — Zﬁﬂj, '

else ‘
Git1 < Qi1 — 045G — Bi-1Gi—1

4. B < gl g1 < @is1/Bi-

- This short description captures the essence of the algorithm. We have ignored the details
for dealing with finite precision arithmetic in particular the re-orthogonalization procedure
[16] because they are not directly relevant to the restarting strategies to be discussed. The
following equations summarize the relation among the Lanczos vectors produced by this

algorithm, (Qz =q,.- 1%])

AQi = QzT + ,quH_le.“ (2 > k) B (1)
. ( 0y B \
o B |
= Br -0 Be owri Brn ' | -
T, = Boni onre Berz } . 2)
ﬁi—.Z -1 Pia
ﬂi—l (07}

At the initialization step, i.e., (i = k), the following relation must be satisfied,
Agi = 050 + Bigk41,0 =1, .., k. (3)

The value k in the above formula is called the thickness in this paper. The simplest way
to satisfy this relation is to supply the algorithm with one starting vector ¢; (k = 0). In
the thick-restart Lanczos method, the restarting procedure produces k orthogonal vectors
satisfying the above equation which allows it to use arbitrary number of startlng vectors.
The main steps of the restarting scheme can be described as follows.



1. Compute an eigen-decomposition of T}, T,, = YDYT. As in the Rayleigh-Ritz pro-
jection, the diagonal elements of D are the eigenvalues of T,, and the approximate
eigenvalues (the Ritz values) of A.

If we only want to perform convergence test, it is possible to only compute the last row
of Y, which will reduce the need of both the memory and the arithmetic operations.

2. Based on available information, decided what and how many Ritz values are to be

saved. In our program, we order the eigenvalues of T, in ascending order and the

- entire decision reduces to pick two integers k;.and k, which indicate that dig, . Ak kg

and dg, 14,41, - ., dmm are to be saved. This paper is about how to choose k; and &,
such that the whole eigenvalue program takes the least amount of time.

3. Let £ = k; + m — k.. Denote the Ritz values to be saved as &y, &o, ..., &, and
the corresponding columns of Y as yi, ..., yx. The Ritz vectors can be computed -
as q) = Qmy1, - G = QmUk, a0d Gky1 = gmsr- In addition, B = Bryma, -- -
Bk = :Bmym,lc- ‘

This algorithm generates Ritz pairs as in the standard Rayleigh-Ritz projection. The
difference is in what Ritz values are actually computed. In the standard Rayleigh-Ritz
projection, the number of Ritz pairs to be computed is the number of eigenpairs wanted.
If the smallest eigenvalues are wanted, than the smallest Ritz values are saved. If the
largest eigenvalues are wanted, than the largest Ritz values are saved. In the thick-restart
procedure, we typically save some largest ones and some smallest ones no matter which end
of the spectrum we are interested in, and usually more Ritz pairs are saved than the standard
case. ' _ .
Because the matrix T}, is not tridiagonal in the thick-restart Lanczos algorithm, more
arithmetic operations are need to compute an eigenvalue decomposition for it. If the basis
size m is relatively small, the extra amount of arithmetic will be negligible compared to other
operations in the restarted Lanczos algorithm. For this reason, we will not discuss this issue
further. '

2 Test problems

Through out this paper we will use a small number of test problems repeatedly. They are
described in this section.

The three test problems listed in Table 1 come from two sources. The matrix si4 and
si6 are from simulation of electronic properties of silicon atom clusters 3, 4]. These two
real symmetric matrices are generated from the first step of the Self-Consist Field (SCF)-
iterations. They are relatively small so we can perform a large number of tests without
consuming significantly amount of computer time. During our tests, we always compute -
the 12 smallest eigenvalues and the corresponding eigenvectors of si4 test problem and the
16 smallest. eigenvalues and the corresponding eigenvectors for si6 test problem. Test prob-
lem InGaAs9k is generated from simulation of a 9000-atom InAs quantum dot in an GaAs



Table 1: Information about the test problems.

NAME N NNZ Comment
sid 4451 84918 Ab Initio simulation of a four-silicon cluster
si6 7949 151524 Ab Initio simulation of a six-silicon cluster

{ InGaAs9k 137919  (full) empirical pseudopotential simulation of an
InGaAs quantum dot

surrounding [17]. This test problem has a complex Hermitian matrix which is not stored ex-

plicitly. The matrix-vector multiplication is performed through Fast Fourier Transformations

(FFT). -

These three test problems are chosen because the authors are involved in projects that
produce similar matrices. The selection of the test problems is small. However, by restricting
to these problems, we are able to perform a more thorough analyses of the different restartmg
strategies which may ultimately reveal more about the restarting strategies.

Since all test problems compute the smallest eigenvalues, we describe the restarting strate-
gies based on finding the smallest eigenvalues. It should be straightforward to extended it
to the case of finding the largest eigenvalues. When computing the smallest eigenvalues, the

“simplest thing to do is to always save a fixed number of the smallest Ritz pairs. This simple
restarting scheme is called the fixed-thickness scheme in this paper. To measure the dynamic
restarting schemes, we will conduct a series of tests to determine the optimal thickness for
the fixed-thickness scheme. The tests are run with the starting vector [1,1,...,1]T. The Ritz
pairs are declared converged if their residual norms are less than /€| A||, where € is the unit
round off error which is about 2.2 x 1071%, ‘and the norm of the matrix (||A]|) is estimated
by the largest (absolute) Ritz value ever computed in the Lanczos method. All future tests
will be performed using the same starting vector and convergence tolerance.

For the two smaller test problems, si4 and si6, we have conducted the tests with three
different basis size m = 20, 50,100. The optimal thickness based on either the time or the
number of matrix-vector multiplications are listed in Table 2. In the table, the number
of matrix-vector multiplications is denote by MATVEC. The top half of Table 2 shows
results that use the minimal number of matrix-vector multiplications and the bottom half
of the table shows results that use the minimal amount of computer time. These results are
obtained by trying all possible values of £ under each given m (ne, < k < m—3). We would
like to devise a set of strategies that can automatically choose an appropnate thickness that
performs no worse than results achieved here.

The timing results in Table 2 are measured on a SGI Onyx 2 running at 195 MHz. All
tests involving si4 and si6 are run on this machine. Tests involving the quantum dot problem
will be run on a Cray T3E parallel machine to provide a different prospective.

‘ We have conducted similar experiment with the quantum dot test problem to compute
the five smallest eigenvalues and the corresponding eigenvectors. Figure 1 shows the time
and the number of matrix-vector multiplications used to solve the InGaAs9k test problem
with different fixed thickness. A basis size (m) of 25 is used in this test. The timing results -



Table 2: The minimal time and number of matrix-vector multiplications used to solve two
silicon cluster test problems usmg thlck—restart Lanczos method with fixed thlckness (k =
kl, IC = m) :

minimal number of MATVEC

S omr= 20 - m =50 m =100
- | MATVEC k| MATVEC. k& | MATVEC k
si4 | 488 16 274 34 268 44°
- 816 1621 16 274 22 271 43
o -minimal time (seconds) '

m = 20 - m=2>50 m = 100
time k time k time k
si4 5.18 12 3.19 19 459 14

| si6 |- 50.0 16 790 16 119 42|

2268 MATVEC is also used when k is 58 and 72.

are obtained on 32 processors of a Cray T3E 900. The optimal thickness in this case is
12 which achieves both minimal number of matrix-vector multiplications (1806) and the
~ minimal amount of CPU time (179.6 sec). This is a much large test problem than the two
silicon *c}uster ones and the matrix-vector multiplications take up a much large portion of
the total time too. Because the matrix-vector multiplications dominate the overall time,
minimizing the number of iterations also minimizes the total time for this test problem.
Now that we have established the performance target for the test problems next we will
exam what can be used to guide our choice of restarting strategies. -

3 Rationale for the ‘heuristic,s

In our version of the thick-restart scheme, see page 3, the decision to be made is to choose-
two integers k; and k., see also Figure 2. This section will review the theoretical tools that
can guide us in making this decision. We will see how they are used and why additional
“heuristics are needed.

There are two theoretical tools that can be used to analyze the choices, the polynomaial
filter and the approzimate deﬂatzon. The bases vectors generated by the implicitly restarted
Arnoldi method and the thick-restart Lanczos method are always orthogonal bases of some
‘Krylov subspace, K(A,v) [13, 16]. The starting vector v changes after each restart. The
- polynomial filter refer to the relationship between these starting vectors where the vector
v before and after a restart is related by a polynomlal of the form MI7;*(A — &I). The
scalar values §; are called the shifts. In the implicitly restart Lanczos method, they can be
arbitrarily chosen. In the thick-restart Lanczos method, they are the Ritz values discarded
during restart. Based on this polynomial relation, the optimal choice for the shifts are
the Leja points [1]. The polynomial filter argument has strong theoretical foundation and
programs based on this mechanism are found to be effective in practice [1]. However, this
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Figure 1: The time (seconds) and number of matrix-vector multiplications used by the thick-
restart Lanczos method to find the five smallest eigenvalues of the InGaAs9k test problem
with different fixed thickness (m = 25).
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Figure 2: Schematics of selecting decision during thick-restart.

analysis does not give an clear indication of exactly how many shifts to apply or how many
vectors to save when more than one eigenvalue is computed.

Another theoretical tool that can be used to guide the design of dynamic restarting
heuristics is the approzimate deflation feature of the Ritz vectors [9] . To compute eigenvalues
near o, the Ritz values riear o should be saved. Morgan’s analyses indicate that the saved Ritz
vectors approximately deflate the spectrum, increase the effective separation between the
wanted eigenvalues and the rest of the spectrum, and consequently increase the convergence
rate of the restarted method [9]. The dynamic thick-restart scheme used in the dynamic
thick-restart Davidson method is successful example of using this argument [15].

Since the Lanczos method is only effective in computing the extreme eigenvalues, our

7



implementation of the thick-restart scheme only save some largest Ritz values and some
smallest Ritz values. When computing the smallest eigenvalue, the effective gap ratio used
to devise the dynamic thick-restart scheme is [15]
v¥= ii'—-)j\\i (kl <k, < m) (4)
Ak, — AL , : .
'Based on the approximate deflation argument, saving more nearby Ritz vectors will
- result in faster convergence rate for the smallest Ritz value. Obviously the maximum gap
ratio is achieved when k; is £, — 1. However, in this case, the effective gap ratio is a wild °
overestimate of its actual value. In addition, when k; = k, — 1, an iteration of the restarted
Lanczos algorithm is expensive because the Rayleigh-Ritz projection is performed after every
matrix-vector multiplication and it always computes m — 1 Lanczos vectors. Figure 1 clearly
indicates that as k approaches m both CPU time and the number of iterations increase.
Similar to the polynomial filter argument, the approximate deflation argument does not
" suggest an effective choice of how many Ritz pairs to saved either. The innovation of this
paper is to augment these theoretical arguments with heuristics to make effective choices
during restart.

To reduce the time and iterations in the dynamic thick-restart Davidson method, the
developers of the dynamic thick-restart Davidson method require that k, > k& + 3 [15].
Because the function < is a monotonic function of k; and k,, if no Ritz values are exactly
equal to each other, this requirement leads to 3 Ritz pairs being discarded at every restart.
The choice of always discarding 3 Ritz pairs and saving m — 3 is somewhat arbitrary. One
way to remove this arbitrariness is to develop an empirical formula for deciding how many
Ritz vectors should be saved. After each iteration, the residual norm is expected to decrease
by a factor proportional to e~7 by the definition of  [9]. Maximizing +y is equivalent to
maximizing the residual norm reduction for each iteration. An alternative is to minimize the
residual norm at the end of an entire restarted loop. If k Ritz pairs are saved, after m — k
iterations, the residual norm will decrease by a factor proportional to e~(m=k)Y Minimizing
the residual norm at the next restart is equivalent to maximizing the quantity u = (m—k)y.
It is clear that u is not a monotonic function unless the Ritz values are exponential functions
of their indices. Therefore maximizing p should provide appropriate choices for k; and k.

These approximate deflation based heuristics are relatively simple. Next we will see how
well they actually work. There are also obvious limitations on these schemes. For example,
the effective gap ratio are only meaningful if the saved Ritz values are close to the actual
eigenvalues. Typical at least some of the saved Ritz values are not accurate, it might be
helpful to take their errors into account. We will explore this and related issues in sectlon 5
in order to enhance the robustness of our restartmg strategies.

4 Implementing the heuristics

This section describes the details of how to implefnent the heuristics as actual computer
programs. More specifically, we will concentrate on restarting choices based on individual
heuristics. Here is a list of four heuristics that we plan to use.



1. Index based scheme — develop an empirical formula for deadlng what are the appro-
priate values for k; and k.

2. Residual norm based scheme — save Ritz pairs that are near the wanted ones and also
have relatively small residual norms.

3. Maximizing the gap ratio 7.

A

4. Maximizing progress, i.e., finding k; and %, that maximize the value p = (m — k).

Typically, the restarted Lanczos algorithm is used to compute a number of eigenvalues
at a time. Most of the heuristics require one Ritz pair being identified as the one currently
being computed. This idea is similar to targeting in the Davidson method and we will also
call the selected Ritz pair the target in this paper. When computing a number of smallest
eigenvalues, the target is the smallest Ritz value that does not satisfy the convergence criteria.
Clearly, other choices are possible. However, this simple choice appears to work reasonably
well for the test problems. We will be using this choice throughout the rest of the discussion.

When deciding the parameters needed to make these heuristics into programs, we will use
the two smaller test problems, si4 and si6. The objective of tuning these restarting schemes
is to achieve the performance listed in Table 2.

41 Index based scheme

The rationale for this scheme is to save Ritz pairs near the wanted eigenvalues. The key
here is to develop an reasonable formula that can achieve good overall performance. For
simplicity, if the smallest eigenvalues are wanted, we only save the smallest Ritz values and
their corresponding Ritz vectors. Using the simple formulae considered here, if there is
only one eigenvalue to compute, this scheme will revert back to the fixed-thickness scheme.
These formulae are based on the number of Ritz pairs already converged n., the number of
eigenvalues wanted n.;y, and the basis size m. It differs from other three dynamic schemes
in that it does not use information about the Ritz values or the residual norms. Given a
maximum basis size m, if the thickness k is kept constant, the optimal value of k is often
near m/2 for moderate size n.;, and m, see for example Figure 1. Based on this observation,
our first formula for choosing & is

k=n.+(m-—mn.)/2. (5)
"MATVEC time (sec)
m=20 m=50 m=100|m=20 m=50 m=100
sid | 536 282 301 4.65 3.29 7.21
si6 1561 282 403 34.9 18.7

8.18

The above table shows the iterations and time used by the thick-restart Lanczos method
using this restarting strategy. Compared with the results in Table 2, the number of iterations
(matrix-vector multiplications) and the time are close to the optimal values achieved with
fixed thickness for basis sizes of 20 and 50. However, when the basis size is 100, significantly

9



more time is used in this case. From the last column of Table 2 we see that k = 40 seems to
be a good choice for both test problems. Base on this observation, we proposed to gradually
vary k from m/2 to 2m/5 as m/n.;y increases, for example,

nezg o _ _
5 10m) (6) '

The time and 1terat10ns used by the th1ck—restart Lanczos method with this scheme of choos—r
1ng k are :

k =n + (m — nc)(

7.82

MATVEC " time (sec)
_ m=20 m=50 m=100m=20 m=50 m=100
si4 548 304 275 4.80 3.38 5.86
si6 1561 279 276 35.1 11.9

'From this tablé, we see that choosing the thickness according to Equation 6 leads to better
performance compared to using Equation 5 for si6, but not for si4. The iterations and time
used by this choice of thickness are comparable to the results shown in Table 2 for most
cases. Only in one case, solving si4 test problem with m = 100, the time used is significantly
more than in the optimal fixed thickness case. Since the value of k that achieves minimal
time is very close to n.;, for si4 test problem. We decide to test the following formula as well

k=n.+ nez’g- o | (7)

The results of using this choice is as follows,

MATVEC time (sec)
m=20 m=50 m=100| m=20 m=>50 m=100
sid | 456 297 298 5.27 3.09 458
1si6 | 1741 277 416 44.7 7.44 16.1

_ We see that this choice work well for m = 50 but not so well for smaller m and it also
“causes more time to be used for si6 test problem with m = 100. We have tested many other
choices to predict the optimal k based on n.g, n., m and parametérs other then Ritz values
or residual norms. None of them can consistently generate better performance than using

"Equation 6. We believe this is because one formula can not predict the optimal £ values
for the two test problems. This suggests that a robust strategy must take the spectrum
information into consideration. For the moment, we accept Equation 6 as the formula to
1mplement this strategy ‘

4.2 Mlmlcklng ARPACK

The eigenvalue package ARPACK has an 1mplementat10n of the implicitly restarted Lanczos’
method for symmetric eigenvalue problems [8]. The restarting scheme in ARPACK also
determines how many vectors in a similar manner as described in previous subsection. Here
we will briefly examine the scheme used in ARPACK and see how Equation 6 works in
ARPACK

10



Table 3: The time and number of matrix-vector multiplications used by ARPACK to solve.
~ the si4 and si6 test problems.

B} MATVEC | time (sec)

m=20 m=50 m=100{m=20 m=50 m=100
si4 523 308 343 10.1 7.0 11.5
si6 3373 421 <471 | '155.6 20.7 31.0

In version 2.4 (dated 07/31/96) of ARPACK, if there is no eigenvalue with zero residual
norm, the selection of number of vectors to save is based on the following formula,

k = Neig + min(ne, (M — neig) /2). ' (8)

In addition to the above formula, there is also a special case when n;, = 1. Since we always
compute more than one eigenvalue, the special case is not relevant to our test problems.
By selecting k using the above equation, the thick-restart Lanczos method uses following
iterations and time to solve the two silicon cluster test problems.

MATVEC time (sec)
, m=20 m=50 m=100| m=20 m=50 m =100
sid 402 299 293 4.43 3.21 . 4.79
816 2280 283 405 66.4 7.87 159

This imitation of ARPACK has very similar performance to the scheme depicted by
Equation 7. The actual performance of ARPACK is shown in Table 3. Because of differ-
ences in the convergence test, our restarted Lanczos method does not use the same time or
iterations'. When computing 7., smallest eigenvalues, during convergence test, ARPACK
performs the test on all Tleig ‘smallest Ritz values and n. is the count of how many have
satisfied the convergence criteria. In our implementation of the restarted Lanczos method,
we perform the convergence test on one Ritz pair at a time until one fails the test or all
wanted ones have satisfied the convergence criteria. In other words, n,. is the size of the lead-
ing group of Ritz pairs that are converged. Because of this difference, the two convergence
tests will report different n. even if all the Ritz pairs are exactly the same. This difference
causes the different number of Ritz pairs to be saved and ultimately causes the two method
to behave differently.

" To demonstrate that our restarting schemes can be easily used in ARPACK, we modify
ARPACK (dsaup2.f) to use Equation 6 instead of Equation 8. The 1tera.t10ns and time
- used by this modified version of ARPACK are

'Both. ARPACK and our thlck—restart Lanczos program (TRLAN) are compiled with the same flags
(-mips4 -64 -Dfast=IP27 -0PT:alias=restrict) and linked with the same libraries (-L/usr/1ib64
-lcomplib.sgimath). The matrix-vector multiplications of the Compressed Sparse Row (CSR) matrices
use the same function from SPARSKIT [11]. Examining the hardware event counters through perfex re-
veals that both TRLAN and ARPACK run at about the same speed (45MFLOPS for si4 m = 100) but
ARPACK uses more floating-point operations (ARPACK 5.06 x 108 FLOP, TRLAN 2.41 x 10® FLOP, si4,

= 100).

11



m=20 m=50 m=100

~ time (sec)

m=20 m=50 m=100

si4
516

MATVEC
450 308 |
427

1338

343
471

6.47
45.6

6.01
18.3

10.2
28.4

In this test, the number of iterations used by ARPACK is significantly reduce when the
basis size is small, see Table 3. When the basis size is large, the difference is small because the
number of restarted loops are the same before and after the modification. Each ARPACK
restarted loop builds a basis of size m before performing convergence test, a number of
unnecessary matrix-vector multiplications were used before the last convergence test.

In this paper, we use the thick-restart Lanczos method to demonstrate that a good
restarting scheme is useful. The brief digression here demonstrates that a good restarting
- scheme will benefit the implicitly restarted Lanczos method as well. In fact, this should be
true for all restarted methods.

4.3 Save nearly converged Ritz pairs

This strategy tries to save the Ritz pairs that are close to the wanted eigenvalues and are
also closer to convergence than an average Ritz pair. The main design choice here is what
residual norms are small enough to be saved. To make the comparison concrete, we need to
have reference values. One natural reference value is the maximum residual norm. Those
Ritz pairs with similar residual norms probably should be ignored. As the reference value
for what should be saved, we use the residual norm of the target Ritz pair. We have decided
not to use the convergence criteria to determine this reference value because the convergence
criteria may not always include an explicit condition on the residual norms, and even there
is one the actual residual norms may always be significantly larger than the residual norm
tolerance. With two reference values, now we can try to establish a formula for determining
what residual norms are small enough to be saved.

Let 7pmez denote a residual vector with the largest norm and r; be-the residual vector
of the target where t is its index. As usual, the Ritz values are in ascending order. When
computing the smallest eigenvalues, we will save Ritz palrs L....k (k. = m) if ||r]] < s,
(=t+1,...,k). The values of s is determmed as - :

s = maX(\/'rmaz'f't, 2Tt+1)- o : (9)

~ The value of s is usually \/F,_,;;r_t To ensure that at least one additional Ritz pair beyond .
the target is saved, we added the term 2ry,;. During the actual search for k;, we also make
sure that k; < m — 3. In addition, s must be less than ||r;,z||. There are two cases where s
is greater or equal to ||Tmazll; {I7ell = |ITmazl| or 2”"°t+1” 2 ”Tma:c“ In either case, we revert
back to the strategy described in subsection 4.1.

We encapsulate all above conditions in a short program and use it in the thick-restart
Lanczos method. The following table displays the time and matrix-vector multiplications
used to solve the two smaller test problems.
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MATVEC _ time (sec)
m=20 m=50 m=100 m=20 m=50 m=100
si4 548 304 275 - 4.87 3.37 6.02
516 1561 279 276 35.1 7.74 12.1

The time and number of matrix-vector multiplications used to solve the two test problems -
are close to those using Equation 6. Solving si4 test problem with m = 100 again uses
considerably more time than the optimal time shown in Table 2, it indicates that this residual
norm based scheme has similar shortcomings as the previous one.

" We attempted to use different formulae to compute s, however, none of them can vary the
test results significantly. Thus, we decide to use Equation 9 for implementing this strategy.

4.4 Maximizing the effective gap ratio

The most straightforward way of implementing this strategy is to evaluate the gap ratio v
for all pairs of k; and k, and then select one pair that gives the maximum «. Since vy is a
monotonic function of k; and &, there is no need to search through all possible combinations.
In the implementation used for the dynamic thick-restart Davidson method, &, is required
to be larger than or equal to k; + 3. In this case, we only need to compare different gap
ratios by always setting k, = k; + 3, which significantly reduces the number of comparisons
needed. The following table lists the time and matrix-vector multiplications used with this
choice of k; and k. '

MATVEC time (sec)
m=20 m=50 m=100{m=20 m=50 m =100
sid | . 407 293 280 5.65 10.6 61.1
si6 1522 347 271 44.9 25.7 51.5

Similar to what is observed in dynamic thick-restart Davidson method, this particular
implementation of dynamic thick-restart scheme is effective in reducing the number of matrix-
vector multiplications but is not very effective in reducing the execution time of whole
eigenvalue method. Table 4 shows the minimal time and iterations achieved if we first
‘determine the determine the thickness then maximize . In this case, the minimal iterations
are achieved with about the same thickness as those in Table 2 and the minimal times are
achieved with slightly smaller k& than those in Table 2. Needless to say, the optimal results
achieved by using different k£ is considerably better than always save m — 3. The only
exception is using m = 20 to compute 16 eigenvalues of si6 where both schemes save 17 Ritz
vectors. In addition to first pick the thickness before maximizing vy, there are many ways to
enhance the effectiveness of this strategy and we will consider them in the next section.

4.5 Maximizing g

There is no free parameter in determining the maximum p. We use a brute-force searching’
scheme to compare all pairs of k; and &, to find a pair that maximizes u. In our implemen-
tation, we have the following restriction on k; and k., n.;, < k; < k. — 3. The following table
- lists the test results of using this scheme. '
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Table 4: The minimal time and number of matrix-vector multiplications used to solve the
~ two silicon cluster test problems by first deciding how many Ritz pairs to save and then
~ choose those that maximize the effective gap ratio. '

minimal number of MATVEC

m = 20 | m = 50 m = 100
MATVEC k| MATVEC &k |MATVEC &
sid 443 17 288 36¢ . 268 44°
si6 - 1522 17 . 274 32 271 43¢

C ~minimal time (seconds) '

m=20 m =950 m = 100
, time k| - time k time k
sid | . 4.57 13 3.13 19 - 453 14
si6 44.9 17 7.87 22 11.8 43

®The k value of 43 can also achieve the minimum number of matrix-vector multiplications.

The k value of 58, 72, 76, 79, 86, 88, 92, 93, 96 can also achieve the minimum number of matrix-vector
multiplications. _ '

®The k value of 81, 91, 97 can also achieve the minimum number of matrix-vector multiplications.

MATVEC time (sec)
m=20 m=030 m=100| m=20 m=50 m =100
si4 413 295 285 5.31 4.34 9.49
516 1495 488 403 42.3 18.9 23.4

Compared to the previous case of maximizing the effective gap ratio with kK = m — 3,
this scheme uses more matrix-vector multiplications but less time. However, the results are
not as good as the optimal results shown in Tables 2 or 4. We believe the main reason for
~ this mediocre performance is that the effective gap ratio defined by the Equation 4 is not
accurate when the saved Ritz values are far from the corresponding eigenvalues. For this
reason, most of techniques used to enhance the scheme of maximizing -y can also be used to
enhance this one.

5 Combining different schemes

In previous section, we have examined how to implement-the four heuristics. Tests show
~ that the individual heuristics works fairly well by themselves but they do not always lead to
the “optimal” performances. The objective of this section is to explore a number of ways of
combing the different heuristics to generate more robust strategies. -
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Figure 3: The residual norms of the Ritz pairs at the first three restarts when solving the
si4 test problem.

5.1 Whether to save unwanted eigenvalues

Figure 3 shows the distribution ‘of the residual norms against the Ritz values when solving
si4 test problem. When restarting for the first time, the residual norms corresponding to
the largest Ritz values are about the same size as those for the smallest ones. Since the
Ritz pairs with largest Ritz values are diScarded during the restart, the largest Ritz values
computed from the second restarted loop are smaller than those computed from the-first
- one and their corresponding residual norms are much large as well. However, after the third
restarted loop, the largest Ritz values and their corresponding residual norms are almost
exactly the same as those from the first. Since we don’t want the largest eigenvalues, this
repeated computation appears to be a waste of computing effort. A simple alternative to
discarding them is saving them. The goal of this subsectlon is to find out whether or not it
is worthwhile to save these unwanted Ritz values.

The schemes presented in subsections 4.1 and 4.3 only save the Ritz pairs near the wanted

eigenvalues. Our first set of tests extend these schemes to save the largest Ritz values as
well. The choices considered are: saving only the converged ones, saving a fixed number of
~ them, and saving nearly converged ones.
To limit the numbers of tests, we start by varying the scheme described in section 4.1.
" -The first test performed is to save the largest eigenvalues that are converged. The value of k
is defined by Equation 6. The time and the iterations used to solve si4 and si6 test problems
are
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MATVEC

m=20 m=50 m=100

time (sec)

m=20 m=50 m =100

si4
si6

548
1561

304
279

272
276

4.87
35.0

3.52
7.82

5.86
11.9

From this simple test we see that saving only converged unwanted eigenvalues does not
significantly alter the overall performance of the restarted Lanczos method. There is only
one case where the modified stheme reduces the number of matrix-vector multiplications,
however, more time is used in the same case. _ f

Part of the reason that saving only converged unwanted Ritz values does not work well is -
that the unwanted ones are not computed to high accuracy in the restarted Lanczos method.
This is especially true when the basis size m is relatively small. One scheme to overcome
this problem is to always save a fixed number of unwanted Ritz pairs. The next table is
generated by always saving one unwanted Ritz pair.

MATVEC time (sec)
m=20 m=50 m=100|m=20 m=50 m =100
si4 548 304 272 4.87 3.52 5.86
si6 | 1561 279 276 35.0 7.82 11.9

The time and the iterations in this table are fairly close to those of the unmodified scheme
shown in subsection 4.1. Because of this, we decided to save two unwanted Ritz pairs instead.

The iterations and time used with this modification are

MATVEC time (sec)
Im=20 m=50 m=100 m=20 m=50 m =100
si4 539 285 267 5.24 3.26 5.84
si6 2468 413 432 79.4 11.9 19.7

Saving two unwanted Ritz pairs in addition to a number of wanted Ritz pairs reduces the
number of matrix-vector multiplications when solving si4 test problem. However, more time
were used in most cases. A more flexible scheme is needed to decide how many unwanted
Ritz pairs to save. The rationale behind the scheme described in subsection 4.1 is to save a
number of unconverged ones in addition to the converged ones. Next we consider a similar
scheme for the unwanted Ritz pairs. Let n, denote the number of unwanted Ritz values that
have converged. We save n, + 1 unwanted Ritz values in the next set of tests. The number
of iterations and time are listed in the following table.

MATVEC time (sec)
S (m=20 m=50 m=100 m=20 m =50 m =100
sid | 527 292 268 |- -5.16 3.33 5.98
s16 3407 423 271 111.2 12.1 11.8

This modification reduces the matrix-vector multiplications used when the basis size is 50
and 100, but it does not always reduce the time even when the numbers of iterations are
reduced. The following are results of applying the same modification to the scheme of saving
nearly converged wanted Ritz values, see subsection 4.3.
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MATVEC time (sec)
m=20 m=50 m=100| m=20 m=50 m =100
si4 527 292 268 5.08 3.33 5.96 -
si6 | 3407 423 271 113.1 12.1 11.8

For the two heuristics that do not initially save unwanted Ritz pairs, saving unwanted
ones are helpful in reducing number of matrix-vector multiplications in some cases. Since
more Ritz pairs are saved, an iteration on average uses more arithmetic operations than.
before, therefore the modified schemes often uses more-time overall.

The schemes described in sections 4.4 and 4.5 save a number of unwanted Ritz values by
design. Is there a benefit to not saving those unwanted ones? By discarding the unwanted
Ritz pairs, the number of vectors saved will be smaller than before. This may reduce the
cost of restarting and reduce the overall execution time. The following table records the
iterations and the time used to solve the test problems with a scheme that first maximizes
v (k = m — 3) and then reset k, to m,

MATVEC time (sec)
m=20 m=50 m=100 m=20 m=50 m =100
si4 390 298 269 4.01 '5.15 23.0
si6 2134 444 399 66.9 33.1

17.6

This modification to the scheme of maximizing gap ratio reduces the execution time of the
restarted Lanczos method, but increases the number of iterations in most test cases. Similar

modification is also applied to the scheme of maximizing u, see subsection 4.5. The time

and the iterations used to solve the two test smaller problems are

si4
516

277

MATVEC
m=20 m=50 m =100
618 305
1819 466

389

7.32

time (sec)
m=20 m=50 m=100
6.04 3.72
55.5. 15.0

19.3

We see that more iterations are used with this modification compared to the original scheme
shown in subsection 4.5 when the basis size is relatively small (m = 20,50). Less time is
used when the basis size is larger, (m = 50, 100). However, even with this modification, the
scheme of maximizing p is not able to achieve the optimal performance shown in table 2.

Overall, saving unwanted Ritz pairs using the simple schemes described in this section is
beneficial only in a small number of cases. Based on this set of tests, there is no reason to
change the four strategies to include or to exclude unwanted eigenvalues:

5.2 Reducing time while maximizing gap ratio

In subsection 4.4 we pointed out the need of dynamically choosing the number vectors to save
when maximizing the effective gap ratio. This section will explore combining the observations
made in subsections 4.1 and 4.4 to automatically achieve the optimal timing results shown
in Table 4. \ ' '
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The first test uses Equation 6 to determine the number of Ritz pairs to be saved, then
maximize the gap ratio v under the constraint that k Ritz pairs will be saved. The iterations
and time used by the thick-restart Lanczos method with this restarting scheme are shown
next.

MATVEC time (sec)
m=20 m=50 m=10|m=20 m=50 m=100
sid 908 305 278 9.09 3.46 5.88
si6 283 278 69.7 8.02 121

3159

Clearly, when the basis size is relatively small, say m = 20, much more time is used
with this scheme. In fact, when the basis size is small (m = 20), none of the variants of
maximizing gap ratio uses less time than the simple index based schemes, see subsection 4.1.
When the basis size is larger, m = 50 and m = 100, this combined scheme uses about the
same amount of time as shown in subsection 4.1 but more time than the optimal case shown
in Table 4. : - _

The second test uses Equation 7 to determine the number of Ritz pairs to be saved, then
maximize the gap ratio v under the constrain that k Ritz pairs will be saved. The resulting
number of iterations and time are listed in the following table.

MATVEC time (sec)
m=20 m=50 m=100 m=20 m=50 m =100
si4 493 293 292 6.15 3.18 4.68
si6 1335 280 403 39.0 7.78 15.7

This set of results are again close to simply saving k smallest Ritz values, see subsection 4.1.
Maximizing p with a fixed & is same as maximizing y. For this reason, there is no need to
apply the same modification to the scheme of maximizing p. However, in the implementation
used to produce the results shown in subsection 4.5, we limited k;, < k, — 3. When k
and k, are close to each other, the value of u is significantly larger than its actual value.
To avoid this situation, we mandate a larger separation between %; and k., for example,
k; <-k, — (m — n.)/2. The test results of using this modified version of maximizing u are

MATVEC time (sec)
|m=20 m=50 m=100|m=20 m=50 m=100
sid 468 287 294 458 3.42 6.73
si6 2024 511 403 65.0 15.2 18.7

We see that this choice works reasonably well for si4 test problem but not so well for si6
‘test problem. Using the constraint k; < k, — (m — n.)/2, the number of Ritz pairs saved is
guaranteed to be less than (m + n) / 2. When the basis size is small, this leads to too few
Ritz pairs being saved. : :

The next modification relax the search range to k < k, — min(m — negq, 2(m — nc)/5).
This change increases the limit on k£ and allows more Ritz pairs to be saved. This added
flexibility helps to reduce the time and 1terat10ns used to solve the si6 test problem as shown
in the followmg table
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m=20 m=50 m=100

time (sec)

m=20 m=50 m=100

si6

sid

MATVEC
471 297
1209 456

274
276

4.77
32.2

3.59
13.9

5.83
13.1

By ensuring a large separation between k; and k., we are able to achieve much better
performance than allowing them to be arbitrarily close. However, we have not achieved the
performance target shown in Table 4.

5.3 Ensuring convergence

The schemes described in subsectlons 4.1, 4.2 and 4.3 do not use the Ritz values when
deciding the thickness. One simple way of taking the Ritz values into account is to ensure
that a reasonably large gap ratio is achieved. The goal of this modification is to ensure
that the wanted eigenvalues can be computed within specified number of iterations. If the
residual vector of the current target is r;, the effective gap ratio is -y, and the tolerance
on residual norm is ¢, then the number of iterations required to make the target converge
may be estimated as In(||r¢]|/c)/v. If n. is the number of Ritz pairs already converged and
Tmatvec 15 the number of matrix-vector multiplications (iterations) used so far, the average
number iterations to compute each pair is (Nmatvec + {n(||7¢ll/€)/7)/(nc + 1). Assuming the
rest of eigenvalues are equally difficult to compute, the total number of iterations needed to
compute all wanted eigenvalues is

Neig
| Thnatvec +

in((Irell/c)
(ne +1) )

Y

The maximum number of iterations to be used is usually specified by the user. From the
above expression we can derive the desired «y to ensure solutions are found within the specified:
number of iterations. It is possible that the quantity Nmatvecneig/(nc + 1) is larger than the
maximum iterations allowed. In this case, the above formula will compute an invalid
(v < 0). If this happens, we compute a minimal 7 that will ensure the current target will
converge in the remaining iterations. In addition, we always make sure that at least three
Ritz pairs are discarded during restart.

The first test to incorporate this heuristic is implemented as a modification to the simple
index based scheme. The number of Ritz pairs to save is first computed using Equation 6.
Additional Ritz pairs are saved to make sure the desired minimal +y is achieved. The follow--
ing table lists the number of iterations and. time used to solve the two silicon cluster test

problems.

m=20 m=>50 m =100

time (sec)

m=20 m=50 m =100

si6

sid

“MATVEC
488 304
1369 279

275
276

4.29
32.8

3.70
7.86

5.91
11.9

When the basis size is small.(m = 20), the performancé of the restarted Lanczos method
with this modification is better than without it, see subsection 4.1. When basis size is larger,
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= 50, 100, the performance differences is fairly small. The reason is that with large basis
size, Equation 6 already leads to large enough gap ratlo and the modification does not change
the thickness used.
When the basis size m is 50 or 100, Equation 7 prescribes a smaller thickness and this
may lead to less time being used. The next test uses the smaller value of Equation 6 and 7,

1

ki = kg, kr =m, o
' . . 2 ’n,'e.,;g .
. kx =1 + min ( (m — n.)(z + —- ,neig , : (10)
_ 5  10m
then modifies the thickness to ensure the minimal gap ratio is achleved The test yields the
following results.

. MATVEC time (sec)
: m=20 m=50 m=100|m=20 m=50 m =100
sid | 488 297 298 4.29 3.01 4.62
si6 1369 277 416 32.8 7.40 16.0

When the basis size is 50 or 100, the time used by this combined scheme is very close to those
used with Equatlon 7 alone. This is again because the modification to ensure the minimal
gap ratio did not change the thickness.

The same modification can be applied to the scheme of saving nearly converged Ritz
pairs as well, see subsection 4.3. The following table lists the test results.

MATVEC time (sec)
m=20 m=50 m=100| m=20 m=50 m =100
si4 488 304 275 4.26 3.51 5.96
si6 1369 279 276 32.9 7.81 12.0

From all the above tests, we see that adding this modification is useful when the basis
- size is small. When the basis size is large, our dynamic thick-restart scheme already achieve
the desired effective gap ratio, therefore the additional modification does not change the
actual number of Ritz pairs saved.

5.4 Using biased estimate

The computed effective gap ratio can be much larger than its actual value when the Ritz
values are different from the corresponding eigenvalues. Here we will use an alternative
- formula for compute the gap ratio to see whether or not we can generate more eﬁectlve‘
schemes. ' » : o
If the residual vector of a thz pair is r, then the actual eigenvalue is in the range of
(A =|Ill, A+ ]|r]}) which is often called the trust region {7, 10]. In fact, if we want to compute
the smallest eigenvalue and A, is the smallest Ritz value, the actual eigenvalue is most likely
in the range of [A — ||r||,A]. In this case, we can use A — ||| as the biased estimate of
‘the eigenvalue [14]. This biased estimate has been successfully used as the shift in for the
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Davidson method [14]. Here we will use it as an alternative way of computing the effective
gap ratio.

The biased estimates can be closer to the actual eigenvalue than the Ritz values in some
cases. We can use the biased estimates in place of the Ritz values in the formula of effective
gap ratio ' '

| o D=l =2+
Ak, + I7e Al = Ay + ||

" Because the residual norms have more complex relation with their indices, 4 is no longer a

monotonic function of k; and k,. However, both |jry,|| and ||7%, || may be quite small if &, and
k, are close to m. If we use a brute-force method to search for a pair of k; and k, that gives
the maximum 4 we may reach the conclusion that the pair k; = m—1 and k, = m is the best,
which it is obviously not. Our first implementation of this scheme uses the same restriction
as in the dynamic thick-restart Davidson method, that is, k; < k. — 3. The followmg table
shows the results of using this scheme.

si6

MATVEC time (sec)
m=20 m=50 m=100{m=20 m=50 m=100
sid | 699 324 280 9.94 11.3 60.9
2182 606 . 418 71.7 42.3 84.8

This test shows that using 4 produces roughly the same overall performance in the restarted
Lanczos method. »

This test demonstrates that 4 has similar shortcomings as . Since allowing k; and k&, to
vary arbitrarily does not give the desired results, we can let them vary near some values that
are known to be good. In previous section, we have seen that saving k, smallest Ritz values
-works reasonably well. Now we will try to find the maximum % near k; to see whether we
can further enhance it effectiveness. Since this scheme only searches for a local maxim ¥, we
will avoid the pitfalls mentioned before. To construct a computer program out this idea, we .
need to decide exactly what range to search for kl Let’s first consider search in the range
of (kz, (kz + m)/2). The test results are

MATVEC time (sec)
m=20 m=50 m=100 m=20 m=50 m =100
si4 575 283 274 5.84 3.72 7.26
si6 888 285 416 23.2 9.60 21.5

In five out of the six test cases, more time is used compared to simply setting k; to k.. Next
we restrict the above search range with an additional condition of Ay, < Ay, < g, + |7k, |-

The following table lists the results of using this scheme to determine what Ritz pairs to

- save.
MATVEC time (sec)
m=20 m=50 m=100{m=20 m=50 m =100
si4 517 293 298 4.45 3.03 4.59
si6 277 432 27.8 7.74 17.2

1181
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The time used to solve the test problems is significantly reduced compared to the previous
implementation. The only case that more time is used than the optimal fixed thickness
scheme is solving the si6 test problem with m = 100.  Overall, this scheme leads to good
performance for the restarted Lanczos method.

Near the end of the previous subsection, we have tested a scheme of saving k, smallest
Ritz values and also ensuring the minimal gap ratio is achieved. Instead of checking that
« is larger than the minimal value, we can altern\atively making sure ¥ is larger than the
minimal value. The following table lists the test results of using this alternative scheme.

MATVEC time (sec)
m=20 m=50 m=100| m=20 m=50 m =100
si4 474 297 298 4.27 3.04 4.55
si6 1463 277 416 34.8 7.38 16.1

‘This set of results are roughly the same as using v instead of 4. In addition, with either one
of the modifications, the thick-restart Lanczos method uses about the same amount of time
and iterations as simply saving k, smallest Ritz values. The main reason for this is that
saving k; Ritz pairs already ensure the minimal gap ratio for the two test problems.

Similar to replacing v with 4 when maximizing the gap ratio, we can also replace v with
4 when maximizing u, i.e., maximizing (m — k)4. The following table contains the results
of maximizing (m — k)% under the constraint of k; < k, — min(m — neiq, 2(m — n;)/5).

MATVEC time (sec)
m=2 m=50 m=100{m=20 m=50 m =100
si4 465 303 281 4.68 3.61 7.21
si6 1786 501 - 279 46.6 15.2 13.1

The corresponding results of maximizing (m— k) is shown in the last table of subsection 5.2.
Comparing the two tables, we see that slightly more iterations and time are used when
maximizing (m — k)#. :

With the limited number of tests performed in here, we do not see a clear advantage
of using the biased estimate when computing the effective gap ratio. We will simply use
whenever the effective gap ratio is needed in the remaining of this paper.

5.5 Saving degenerate Ritz pairs

One of the heuristics not yet considered is related to degeneracies. If two Ritz values are
nearly identical and one of them is to be saved, we should save them both. In a Lanczos
" method implemented in the floating-point arithmetic, the Ritz values corresponding to the
degenerate eigenvalues are never exactly identical to each other. The main difficulty to -
implement this heuristic is how to determine degeneracies. The criteria we use for judg-
ing whether or not two Ritz values will eventually converge to two identical eigenvalues is
whether their trust region overlap. In this subsection we will explore a few different ways of
implementing this strategy.
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To limit the number of tests to perform, we start by using this heuristic as a modification
to selecting k based on Equation 10. In other word, when computing the smallest eigenvalues,
we first set k, = m and k; = k;, then modify k; to include Ritz values that are close to
Ak,. To determine whether ); and Ai+1 could be considered as degenerate, our first test is
Ai > Aiy1 — ||riza]|- Using this criteria, the results of solving the two silicon cluster test
problems are ' '

MATVEC . time (sec)
m=20 m=50 m=100{ m=20 m=50 m =100
si4 552 292 295 5.23 3.05 4.58
1218 408 412 29.3 11.2 16.0

516

The modification reduces the iterations for larger m when solve si4 test problem but the
same is not true for si6 test problem.

The second criteria for testing whether two Ritz values could eventually converge to the
same eigenvalue is A; + ||75|| > Air1 and the time and the iterations used to solve the two
* ‘silicon cluster test problems are '

MATVEC _ time (sec)
m=20 m=50 m=100 m=20 m=50 m =100
si4 600 294 297 | 5.47 3.07 4.64
s16 1839 275 412 43.0- 16.4

7.37

When the basis size is 20, both above modifications increase the time and iterations used
compared to the original scheme shown in subsection 5.3.

The previous two criteria for testing degeneracies are combined to form the third test.
In this case, both A; > A4y — ||7it1]| and A; + ||7i]] > Ait1 have to be satisfied in order for A;
and A;4+1 to be considered degenerate and the results of using this test criteria are

MATVEC time (sec)
m=20 m=50 m=100 m=20 m=50 m =100
si4 533 294 297 4.65 3.02 4.60
si6 1458 276 412 33.3 7.39 16.1

Since both A; and A;4; are expected to decrease in the future iterations and ||ri,]| is
usually larger than ||r;||, we modified the above test to be A; — ||7i]| > Aiz1 — ||risa]] and
s+ |Imsl] > Aipr. With this test, the trust region of ); is completely covered by that of A;;.
The resulting time and iterations used by the thick-restart Lanczos method are

Si6

277

7.39

- MATVEC time (sec)
m=20 m=50 m=100|m=20 m=50 m=100
si4 534 296 297 4.78 . 3.06 4.60
1323 412 29.5 16.0
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Comparing the results of using these four set of testing criteria for determining potential
degeneracies, we see that the time and iterations used with small basis size (m = 20) have
been steadily decreasing. However, the time and iterations used with larger basis sizes are
almost the same. For future discussion, we will use the last set of testing criteria.

Since the idea of guaranteeing minimal gap ratio was found to be useful when the basis
size is small, we try to combine this heuristic and the above tests for degeneracy to see
whether or not the resulting scheme is even better for small basis size. The resulting time
and iterations used by the restarted Lanczos method are

MATVEC time (sec)
, m=20 m=530 m=100|m=20 m=50 m=100
si4 504 296 297 4.49 3.06 4.60
5i6 1395 277 415 33.8 7.46 116.3

The set of results are roughly the same as modifying the strategy of saving k, smallest
Ritz pairs to ensure the minimal gap ratio is achieved, see subsection 5.3. The additional
modification of saving those Ritz values that are potentially degenerate does not significantly
change the overall effectiveness of the eigenvalue method. Since both modifications are very
simple to implement, we can use both of them without significantly cost and we will do so
in the future tests.

The same two heuristics can also be easily applied to the strategy of saving nearly con-
verged Ritz pairs, see subsection 4.3. The time and iterations used with this modified version
of the strategy are as follows

MATVEC time (sec)
m=20 m=50 m=100| m=20 m=50 m =100
si4 504 303 274 4.38 3.40 5.87
si6 1395 279 275 34.0 7.82 11.9

Compared with the results without these two modifications, see subsection 4.3, the modified
scheme is considerably more effective when the basis size is small. Compared with the scheme
which only has the modification to guarantee the minimal gap ration, see the last experiment
of subsection 5.3, we see that the newly added modification of saving degenerate elgenvalues
does not significantly change the overall performance :

6 Putting it together

In proceeding sections, we have identified four basic strategies of determining what and how
many Ritz pairs to save for the thick-restart scheme, (1) saving a number of Ritz pairs based
on indices, (2) saving a number of Ritz pairs based on residual norms, (3) saving Ritz pairs to
maximize the effective gap ratio vy and (4) saving Ritz pairs to maximize yu. We have tested
“a number of formulae for the first two schemes and achieved a reasonably good performance
on the test problems. In their simplest forms, the last two schemes save too many Ritz pairs
in most test cases and are only effective in reducing the number of iterations. Because they
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save too many Ritz pairs, each iteration is more expensive on average. This leads to more
“time being used by the Lanczos method with these two restarting strategies.

We have experimented with modifying the four basic strategies by (1) saving the un-
~ wanted Ritz values in addition to the wanted one, (2) forcing the last two schemes to save
less Ritz pairs, (3) using an alternative formula for the effective gap ratio, (4) maintaining
a reasonable gap ratio, and (5) saving potentially degenerate Ritz pairs. When a relatively
small portion of the Lanczos basis is saved during restarting, including additional unwanted
Ritz pairs can reduce the number of iterations. In our tests, this happens when the basis
size is 50 or 100. When. the number of Ritz pairs saved is close to the basis size m, saving
additional unwanted Ritz pairs generally causes more time to be used. This is the case when
the basis size is close to the number of eigenvalues wanted. If we first choose a moderate
size k then try to maximizing v, the difference between k; and &, is fixed and the resulting
choices often lead to better performance than allowing k; and k, to become arbitrarily close.
Computing the gap ratio using the biased estimates of the eigenvalues do not significantly
alter the overall effectiveness of the eigenvalue method compared to computing gap ratio
using Ritz values. The last two modifications of maintaining a reasonable gap ratio and
saving degenerate Ritz pairs are relatively inexpensive to implement and fairly useful when
the basis size is close the the number of eigenvalues wanted.

As an example of how to use all the different heuristics, we will describe our final imple-
mentation of the four restarting strategies.

1. Index based scheme When trying to find a number of the smallest eigenvalues, at
each restart, this scheme selects

. 2 neig
k; = n. + min (neig, (m— Tlc)(g + M))
smallest Ritz pairs. This basic choice is modified to ensure a minimal gap ratio is achieved,
see subsection 5.3 and potentially degenerate Ritz pairs are saved, see subsection 5.5. No
unwanted Ritz pairs are saved in this case (k, = m). :

2. Residual norm based scheme This scheme saves Ritz pairs near the wanted eigen-
values and have residual norms smaller than r; = max(2r;y1,/TmaezTt), See subsection 4.3.
Two modifications are applied after the basic steps are taken, they ensure a reasonable gap
ratio is achieved and save potentially degenerate Ritz pairs. No unwanted Ritz pairs are
saved. ' '

3. Maximizing effective gap ratio This scheme first determines the number Ritz pairs
to be saved, k = max (R, (3m + 2n.)/5), then search.for a combination of k; and k, that
gives the largest yv. The above formula gives the following relation for k; and %, is k;, =
kr 4+ min(m — neig, 2(m — n.)/5). No further modification is applied.

4. Maximizing progress This scheme search through all possible choices of k; and &, to
maximize the value of y = (m — k) * y. The constraint on k; and k, is k; < k, — min(m —
Teigy 2(m — nc) /5). | '
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Table 5: Time and iterations used to compute the five smallest eigenvalues of InGaAs9k test
problem.

. MATVEC time (sec)
index scheme 1469 144.6
residual scheme 2813 274.2
max -y 3461 336.4
max 4 984 104.2
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Figure 4: The time (seconds) used to find different number of eigenvalues of the InGaAs9k -
test problem. , ' :

Table 5 lists how these four schemes perform when computing the five smallest eigenvalues
_of the InGaAs9k test problem. The elapsed time is measured on 32 processors of a Cray
T3E-900. Compared to the timing results shown in Figure 1, we see that the Lanczos method
with restarting scheme one and four uses significantly less time than the m1n1mal time used
with the fixed thickness scheme. -

In many electronic structure calculations, a large number of eigenvalues and eigenvectors
are computed. Figure 4 demonstrates how the thick-restart Lanczos method scales as the
number of eigenvalues increases. In this test, the basis size used is always ne;, + 20. In
other word, the Lanczos only need workspace to store 21 vectors, 20 for the Lanczos vectors,
one for the residual vector. The Tleig vVectors needed to store the eigenvectors are used by
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the program to store Ritz vectors as well. From the plot we see that the time required to
compute the smallest eigenvalue is almost the same as computing two smallest ones. When
the number of eigenvalues to be computed is between 2 and 32, the last two restarting
schemes are slightly better than the first two. Using one of the last two restarting schemes, -
doubling the number of eigenvalues, the restarted Lanczos method takes about 45 percent
more time. When computing more than 32 eigenvalues, in other words, when n;, > m/2, the
first two restarting schemes become more competitive than the last two. In the range tested,
the Lanczos method with the first scheme uses 65 percent more time when the number
of. eigenvalues doubles, and the Lanczos method with the second restarting scheme uses
about 55 percent more time. No matter which restarting strategy is used, the thick-restart
Lanczos method scales sublinearly with the number of eigenvalues. This suggests that the
thick-restart Lanczos method may be used to compute a large number of eigenvalues.

In general, the behavior of the thick-restart Lanczos method is determined by the details
of the spectrum distribution. The fact that the optimal thickness is significantly different
for si4 and si6 test problem when m = 100 demonstrates this point clearly. Through the
tests, we have demonstrated the importance of developing good réstarting strategy and have
showed how to implement the four different restarting schemes. Our tests shown that the
thick-restart Lanczos using these restarting strategies is capable of efficiently computing a
large number of eigenvalues and eigenvectors of a large matrix.
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