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ABSTRACT OF THE DISSERTATION

Deception in two-player zero-sum stochastic games:

Theory and application to warfare games.

by

Rajdeep Singh

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2006

Professor William M. McEneaney, Chair

In this work, two-player zero-sum stochastic games, under imperfect information, are

investigated in the discrete-time/discrete-state case. We focus on the case where only

one player, Blue, has incomplete or partial information and the other player, Red, has

complete state information. In stochastic games with partial information the Informa-

tion State is a function of a conditional probability distribution. In the problem form

here, the payoff is only a function of the terminal state of the system, and the initial

information state is a max-plus sum of max-plus delta functions. The Blue player can

achieve robustness to the effect of Red’s control on its observations. Using the recently

established deception-robust theory, we demonstrate that the full state-feedback opti-

mal control applied at the Maximum Likelihood State (‘MLS’) is not optimal for the

Blue player in a partially-observed game and hence the Certainty Equivalence Principle

does not hold. An automated deception-enabled control algorithm is derived for the

Red player with an assumption that Red can model the Blue algorithm completely. An

example game is used to demonstrate that even for the Red player, with complete state

information, the optimal control is not the state-feedback optimal control. A future

study of deception-enabled Red approach is proposed in the mixed strategy framework.

Lastly, some modelling ideas are presented for Urban Warfare. The example cases con-

sidered in this study are simple enough to allow an intuitive understanding of optimal

strategies, while complex enough to demonstrate real-world difficulties. The theory dis-

cussed here is more general than the specific application which has been presented owing

to the critical nature of imperfect information and hence its utility in war games.

xvii



Chapter 1

Introduction

1.1 Motivation

In order to motivate the research done in this dissertation, we note that in recent

years, computational aids have greatly stepped-up the pace of military operations. This

pace will only increase further with increasing reliance on autonomous vehicles. This

stepped-up pace of operations has, in turn, led to efforts in the development of decision

aids appropriate to problems in this domain. A fundamental aspect of such problems is

the presence of an adversary. Consequently, many of the efforts in this domain are making

use of game theoretic methods (D.P. Bertsekas & Logan 1999, J.B. Cruz 2000, D. Ghose

& Shamma 2000, Heise & Morse 2000, Jelinek & Godbole 2000), (McEneaney, Lauko

& Fitzpatrick 2004), among many notable others. Further, a great number of these

problems have stochastic as well as game-theoretic components. It is well-known that

human decision makers have found deception and counter-deception to be extremely

valuable tools. In fact, the imperfect information aspect of these problems is often a

critical factor.

Stochastic games with imperfect information have also been studied more specif-

ically in the pursuit-evasion type games, (P. Bernhard 1987) looks into a game where

the evader (rabbit) makes no observations and the pursuer (hunter) has consequently no

means to deceive the evader. In another pursuit-evasion type game with partial informa-

tion for both players, (Olsder & Papavassilopoulos 1988), the evader doesn’t control the

observations. There, the pursuer can light up its current node location and two adjacent

1



2

nodes, one on each side, on the movement grid along the circumference of a circle. If

the evader falls in the lighted zone, the game is over. When the pursuer uses this con-

trol choice (called a searchlight) to search for the evader, it discloses its own position

by default. This leaves no scope for deceiving the evader. In these games either the

adversarial noise is missing or there is no observation process for the evader. Dynamic

stochastic games, with imperfect information for only one player, who’s observations

have adversarial noise are even harder. In (Dinah Rosenberg & Vieille 2004), a different

class of partial information is discussed with the payoff matrix being unknown to one

player.

In the last ten years, there has been a substantial effort in the application of au-

tomated reasoning techniques to problems in the military Command and Control arena.

In these efforts, it has become increasingly clear that the lack of perfect information

and deception play critical roles in the development of useful Command and Control

strategies. Of course, these play important roles in many other areas. However, it was a

Command and Control application that happened to provide the impetus for the work

to be described in this dissertation. Although these issues had arisen earlier, see for

example (P. Bernhard 1987, Basar & Olsder 1982, Olsder & Papavassilopoulos 1988),

but the substantial growth in computational power in the intervening years has allowed

one to address these problems much more satisfactorily.

In (Swarup & Speyer 2004) theory for a system taking values in the continuum

rather than in a discrete set is developed but it is restricted to linear systems. That

restriction allows one to obtain certain elegant results which are not generalizable to

the problem form considered here. There is a similarity in that the controls obtained

there are specifically constructed to handle potential deception, but there are tremendous

problem-complexity reductions which are induced by the linearity.

Control under partial information involves three components. The first consists

of the accumulation of observational data up to the current moment and the construction

of an abstract object which condenses this data into a form useful to the controller. The

second consists in the determination of the effects of control choices on the expected

(broadly defined) future costs. The third and last is the component which combines the

output of the other two components in a way that yields the optimal (again broadly
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defined) choice of control at the current moment. The object which is obtained by the

first component is generally referred to as the information state. It depends only on

the past. The object obtained by the second component is generally referred to as the

value function, and maps current states into future costs. Thus, the third component is

combining these past and future objects to obtain the best decision in the present.

One very natural way to address the control problem under partial information

(and here we also use the term control broadly to indicate also the decision process in

a game problem), is to estimate the current state of the system, and then apply the

optimal control that one has determined for that state. In linear, stochastic problems

with quadratic cost measures (most notably, the linear/quadratic regulator), this does in

fact yield the optimal control given the current available observational data. However,

there are very few problems outside of that example for which this approach yields the

optimal control decision. On the other hand, until recently the computations required

to obtain the mathematically demonstrable optimal controller have been too excessive

for real-time applications for most problems. Further, for problems that are not “too”

nonlinear, the above heuristic approach has yielded an acceptable (and often quite good)

controller.

Unfortunately, most real-world adversarial problems do not fit within the cat-

egory of problems which are well-handled by that heuristic approach. Rather, the prob-

lems are often strongly nonlinear, and, importantly, have an opponent who may be

attempting to cause you to make an incorrect decision through its influence on your

observation process. Interestingly however, for a class of linear adversarial problems,

one may find that a very low-complexity information state can still obtain the optimal

control; see (Swarup & Speyer 2004). In such problems an information state which is

simply a single state estimate cannot contain enough information to make an optimal

control decision. One must be able to evaluate the alternatives based on the (past) data

up to the moment and the (future) measures of the total cost. States which may “seem”

unlikely based on the observations, but which pose large benefits for the opponent may

be important in deciding which action to take.

The estimation of ground-truth in the presence of deception is quite difficult.

At best, one might obtain a measure of the likelihood (loosely defined) that a deception
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is being employed. However, this does not imply that one cannot determine an effective

course of action regardless of the lack of certainty with regard to whether the opponent

is employing deception. How should one act if deception is suspected but cannot be

ascertained? In this dissertation, we consider how one can reduce the susceptibility

to deception, i.e., how one can choose one’s actions so that the impact of a deception

is minimized. We refer to this reduction in susceptibility to deception as deception-

robustness. We also consider the flip side, where we could deceive our opponent (with

partial information) when we have the perfect information, by use of our controls on the

opponent’s observations. We refer to automated controllers that use deception, when it

is useful, as deception-enabled (‘DE’) controllers.

In order to study this problem properly, we must have some mathematical model

of adversarial conflict. This model must encompass both the inputs of an intelligent

adversary and the necessarily unpredictable outcomes of low-level actions in a conflict.

Thus, the natural framework for study of this problem is that of stochastic games. We

will be interested only in dynamic games (i.e. time-dependent systems), rather than

static games. We will be discussing deceptions which critically rely on the lack of perfect

observations of the system. Thus, we are led to the realm of stochastic games under

imperfect information (also referred to in the literature as stochastic games under partial

information). The bulk of the theory is independent of whether the system state takes

values in a discrete space or in the continuum. However, in order to develop tractable

algorithms, we concentrate on the case of systems with a finite number of discrete states.

We will also assume that these systems operate in discrete-time. This implies that

the underlying models of the state dynamics will be discrete-time Markov chains. We

will suppose that there are two players in these games. Consequently, the transition

probabilities for the Markov chains will be controlled by the actions of the two players.

The player with partial information, (who we attempt to assist with a deception-robust

or ‘DR’ control) is designated as Blue, and its opponent (with complete information) is

designated as Red.

As noted above, the classes of deceptions we study here will rely on Blue’s

imperfect knowledge of the state of the system. This implies that we must model the

Blue player, for which we are developing our deception-robust controller, as obtaining its
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information from an observation process (which will also be combined with some initial

estimates). On the other hand, we choose not to model the Red player as also obtaining

its information from its own observation process. One of the reasons for this simplification

is the presence of serious mathematical roadblocks to solution of such games in the case

where the information available to each of the players is different and where one player’s

knowledge does not necessarily completely subsume the other’s. Further, the case where

the opponent has perfect knowledge of the system is clearly the most demanding. If

the opponent has partial and corrupted knowledge, then the achieved results will be

more favorable than predicted. Lastly, we note that we will consider only zero-sum

games. This is the case when the opponent is choosing its actions to maximize whatever

criterion it is that we wish to minimize. One can make a compelling argument that the

opponent will generally not have a diametrically opposed goal. However, if the opponent

is choosing its actions based on a goal other than the diametrically opposed goal, then

the expected outcome of the game (from our perspective) will be no worse than what

we predict under the zero-sum assumption. We will also refer to this formulation as a

minimax formulation since we will be minimizing the maximum (worst-case) expected

outcome.

The theoretical underpinning of the methods developed and discussed in this

dissertation have origins in a particular branch of game theory and nonlinear, risk-

sensitive, stochastic control. (Fleming 1964, Friedman 1971, Elliott & Kalton 1972)

developed the notion of value for dynamic games in the 1960’s and early 1970’s. In

the 1980’s, nonlinear H∞ control was developed. Most importantly, a representation

in terms of dynamic games was formed; see (Basar & Bernhard 1991). Soon after, in

the early 1990’s, risk-sensitive control was developed (subsuming stochastic control and

robust/H∞ control), and was found to have an equivalent representation as a stochastic,

dynamic game; see (Fleming & McEneaney 1995, Fleming & McEneaney 1992a, Fleming

& McEneaney 1992b, James 1992, Runolfsson 1993). These were first developed as state-

feedback control. James et al. (James & Baras 1996, James & Yuliar 1995) extended

this to observation-feedback. (Basar & Bernhard 1991) also obtained a similar result.

In the robust/H∞ limit approach to observation-feedback, the concept of information

state as a worst-case cost over potential opponent inputs was a critical breakthrough
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(Basar & Bernhard 1991, Helton & James 1999). The risk-sensitive approach in this

dissertation is a direct descendent of the above referenced risk-sensitive control theory.

The deception-robust approach significantly generalizes the above information state from

a class of problems with only deterministic noise inputs to the stochastic game realm.

In (João Hespanha 2000), it is demonstrated that deception can be a useful

strategy. In the game considered there, there is a single observational event followed by

a single dynamical event. In this dissertation, we extend that to a multi-step problem.

We also follow a slightly different (but related) approach to deal with the scenario of

partial information. In particular, we provide a general mathematical framework from

the viewpoint of the player who lacks perfect information. Also, in contrast to (João

Hespanha 2000), which deals with mixed strategies for a given problem, we build a

theoretical framework using pure strategies dependent on the information patterns of

the players. This framework is applied to a problem which is similar in nature to the

problem of (João Hespanha 2000) in that the events and states of the system take values

in finite sets. One other notable variation in the application used here is that we add

decoys and false alarm observations to the problem as well.

Deception-Robust theory has already been established from the Blue player’s

perspective in a partially observed game set up (McEneaney 2004). A natural motivation

is to explore the merits of using a complex control algorithm like the deception-robust

theory over the standard approach that uses the Certainty Equivalence Principle. The

deception-enabled theory developed in this dissertation is to provide an impetus to sim-

ilar work from the Red player’s perspective. Naturally so, with military applications

serving as a major motivation, we also venture into modelling some contemporary war

game situation as an the application of the deception-robust and the deception-enabled

technology developed in this work.
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The overall structure and contributions of this research are as follows.

1.2 Dissertation Overview

In chapter 2, we concentrate on two-player zero-sum stochastic games in discrete

space (X ) and discrete-time domain, where both players have complete information (full

state-feedback). A terminal time game is formulated with the state transition following

a markov-chain process

pij(u, w) = Pr(Xt+1 = j | Xt = i, ut = u, wt = w). (1.1)

A strategy set is defined for each player and using a Basar-Olsder type, lower value

definition

Vt̄(x) = sup
θ[t̄,T )∈Θ[t̄,T )

inf
λ[t̄,T )∈Λ[t̄,T )

E[E(XT ) |Xt̄ = x]

we derive the the dynamic programming equation (DPE)

Vt(x) = max
w∈W

min
u∈U

E[Vt+1(Xt+1)|Xt = x], ∀ t̄ ≤ t < T

where U and W are the finite control sets for Blue and Red respectively and Xt ∈ X .

The optimal controls are then obtained using the DPE for both the players. There

is no observation process, so no deception is possible in this case. In section 2.3, a

terminal time game example, called the Masked Attack Game (MAG), is formulated

with appropriate definitions of U and W . We solve two cases, one where the state-

transition is only controlled by the Blue player, and another where both players controls

affect the state-transition as defined in (1.1). The optimal control are then obtained for

the Blue and the Red player in both the cases. The example is set up such that a saddle

point does exist, or in other words the minmax value is the same as the maxmin value ,

max
w∈W

min
u∈U

E[Vt+1(Xt+1)|Xt = x] = min
u∈U

max
w∈W

E[Vt+1(Xt+1)|Xt = x], ∀ t̄ ≤ t < T.

The analysis of the MAG example concludes this chapter with insights into the additional

complexity one might expect in the partially-observed game.

In Chapter 3, the observation process for the Blue player (the one with partial

information) is included in the dynamics and various Blue approaches are outlined using
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a stochastic Red control modelling. The main approaches discussed include the certainty

equivalent control (alternatively referred here as the Maximum Likelihood State or the

‘MLS’ control) and a heuristic based on the equivalence between risk-sensitive stochastic

control and stochastic games called the risk-averse approach. Then the deception-robust

theory is outlined from (McEneaney 2004) and a refined form of the information state,

without maximization over the Red state feedback controls �w ∈ Wn, is defined (without

any change in the final results). The information state is the maximal cost over the space

of feasible conditional probability distributions on the state.

It(q; u[0,t), y[0,t))
.=

⎧⎪⎨⎪⎩
sup

q0∈Q
q,u[0,t)
0

I0(q0) if q ∈ Qt(u[0,t), y[0,t));

−∞ otherwise.
(1.2)

The information state propagation and some robustness results given in (McEneaney

2004) are derived again using the definition of the information state given by (1.2). A

robust control for the Blue player obtained as in (McEneaney 2004) is given here as the

deception-robust control for the partially observed game.

um
t

.= argmin
u∈U

[
max

q∈Q(X )
{It(q) + Lt(q, u)}

]
. (1.3)

We then discuss the MAG example in the partially-observed game set-up in section

3.4. We present simulation results with different levels of information and compare the

‘MLS’ approach with the deception-robust approach to assert the robustness property

of the controller given by (1.3). Then we present an overall comparison between the

performance of the approaches outlined in section 3.2 to the deception-robust approach

discussed in section 3.3. The focus is then primarily shifted to the deception-robust

approach with comparative simulation results being presented, whenever appropriate,

to highlight its advantages compared to the other approaches. Section 3.5.1 discusses

the initialization of I, where we assume that I0 takes the form of a max-plus sum of

max-plus delta functions, where φ is a (finite) max-plus sum of max-plus delta functions

if there exist {qk}K
k=1 such that

φ(q) =
K⊕

k=1

φk(q) = max
k

φk(q). (1.4)

Discussion on how to initialize the {qk}K
k=1 is followed by a study that highlights the

value of any knowledge on the initial Red state or Red control on the performance of the
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Blue player. The exponential growth of Qt is shown to be reasonably contained using

the simple methods, referred to here as pruning, in section 3.5.2. Finally, mismodelling

studies for parameters that have an effect on the observation process of the Blue player,

namely observation of stealthy entities and decoys/false alarms, are given in section 3.6

to illustrate the robustness properties of the control given by (1.3) and the sensitivity of

the ‘MLS’ and the ’Risk-Averse’ approach.

Chapter 4 looks at deception-enabled controllers for the Red player under the

strong assumption

The Red player knows (Q0, {yr}t
r=0) and the Blue control algorithm. (A-RI)

The Red player maximizes the expected terminal cost to obtain the optimal control

�w∗ ∈ argmax
�w∈W n

E[Wt+1(X, q)|Xt = x, qt = q̃]. (1.5)

With appropriate modelling assumptions applied to the MAG example game, the simu-

lation results using (1.5) are presented in section 4.2. Section 4.3 provides discussion on

the obvious issues of mismodelling when assumption (A-RI) does not hold. In the same

section, we discuss an example where Red does not employ any internal Blue model as a

motivation for potential future research; studying deception-enabled Red controllers in

the partially-observed set up with a mixed-strategy Red control.

Finally, in chapter 5, modelling issues related to simulating an urban warfare

game are outlined. Discussion on path planning and attrition modelling (with emphasis

on computing most of the data offline) is followed by the computation of an approximate

(or heuristic) value and optimal controls for both players, in the state-feedback case.

This chapter concludes with discussion on some results obtained using simulated gaming

environment (automated control computations), representative of real-world behavior.

1.3 Contributions

The contributions of this dissertation can be summarized as follows:

(1) Complete-Information Game: State Feedback (Chapter 2)
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• Derived the Dynamic Programming Equation (DPE) for two-player zero-sum

stochastic game with complete-information state-feedback.

• Analysis of the MAG, with complete information, to elucidate the complexity

one expects in the partially-observed stochastic games.

(2) Blue Approach in the Partially-Observed Game (Chapter 3)

• Refined definition of Information state, It, in partially-observed games, with

observation based information for Blue and complete information for Red.

This definition is without maximization over the state feedback Red controls,

�w ∈ Wn (see 3.3).

• Derived information state propagation results with the new definition and

robustness properties of the proposed minimizing control um (as given in

equation (3.53)).

• Application of deception-robust theory (McEneaney 2004) to the MAG exam-

ple and analysis to confirm the optimality of the proposed deception-robust

controller given by (3.53) (sections 3.4 and 3.6).

• Analysis of initialization for the MAG example, where the information state

takes the form of max-plus sum of max-plus delta functions or choosing q ∈ Q̃φ
0

(section 3.5.1). Analysis of Intel about Red initial state and control set Wn

and the resulting performance advantage to the Blue player.

• Proposed simplistic and efficient pruning methods to contain the exponential

growth of Qt and provided analysis for the MAG example with discussion on

error tolerance and computational speeds (section 3.5.2).

• Mismodelling analysis of the parameters that directly affect the information

dissemination to the Blue player in the MAG example. Confirmation of the

deception-robustness properties using simulation results and consequently the

utility of deception-robust approach to war games (section 3.6).

(3) Red Approach in the Partially-Observed Game (Chapter 4)

• Derived an optimal (potentially, deception-enabled) control for the Red player
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with assumption of having complete knowledge about the Blue control com-

putation (section 4.1).

• Confirmation that the control given by equation (1.5) (or (4.8)) is indeed

optimal (and deception-enabled) for the MAG example and assertion of the

sub-optimality of the Red state-feedback optimal control for the partially-

observed game.

• Mismodelling analysis for the MAG example when Red’s internal Blue control

approach mismatches the actual Blue approach. Construction of an example

to motivate research for Red deception-enabled control as a mixed strategy

(without assuming any knowledge or modelling of Blue control algorithm).

(4) Urban Warfare Modelling (Chapter 5)

• Construction of a model for an urban warfare game (in state-feedback) and

demonstration of real-world strategies like ’Feint’ and ’Protect’ in a simulated

environment with the proposed modelling (section 5.0.2). This also serves

an an underlying exercise to provide test-beds for any future application of

deception-enabled and deception-robust theory to Urban Warfare.



Chapter 2

Complete-Information Game:

State Feedback

We first formulate the state-feedback zero-sum game between two players where

both players have complete information of the state of the system. Each player can be a

single entity or a group with common interests and goals. The objectives can be problem

specific but would be generally antagonistic and hence we utilize a single cost function

which the Blue player is trying to minimize and the Red player is trying to maximize.

Since the state is completely known to both the players, there is no initial cost (owing

to obfuscating the information state of the player with partial information). We only

have terminal cost (reflecting the accomplishment of goals of both players). There is

no running cost as the terminal payoff will be an ensemble cost (alternatively called the

payoff) of the loss or gain made by each player during the course of interactions between

the initial and the final time. In particular, as an example one can think of a war game

where an objective could be to take over a high-value strategic target. The cost incurred

during the course of such action is generally reflected by the accomplishment of this goal

at the end of the game.

12
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2.1 Problem Formulation and State Dynamics

Potential states of the system will be represented by x ∈ X where X is some

finite set. Let time t take values in T̄, where T̄ = {t̄, t̄ + 1, ., . . . , T} and where t̄ is the

initial time of the game. The state of the system at time t will be denoted by Xt. Each

state x will be associated with a unit basis vector in Rn, where n
.= (#X ). We suppose

that the state evolves as a controlled Markov process. Let the probability that Xt+1 = j,

given Xt = i with controls ut = u and wt = w be

pij(u, w) = Pr(Xt+1 = j|Xt = i, ut = u, wt = w) (2.1)

and let the n× n matrix of the elements pij be denoted as P (u, w) where n
.= #X . The

state Xt propagates as a Markov chain with probabilities given by (2.1). For the state-

feedback case, each player control decision is based on the complete state information,

Xt ∈ X , at current time t. Let U and W be the finite sets of open loop Blue and

Red controls respectively. Then the Blue player state-feedback control �ut ∈ Un and the

state-feedback Red controls �wt ∈ Wn (Wn being the outer product of W , n times). Let a

conditional probability (in absence of observations) of the state at time t be denoted by

qt ∈ Q(X ). For given controls �ut, �wt, the probability distribution propagates according

to

qt+1 = P̃ T (�ut, �wt)qt (2.2)

Note that though the mapping P̃ is into Q(X ), it is not necessarily onto. Also note that

in the above propagation, appropriate components of �ut and �wt are used, i.e.

P̃ij(�ut, �wt) = Pij([�ut]i, [�w]i). (2.3)

2.2 Strategies, Value Function, Dynamic Programming Equa-

tion and Optimal State-Feedback Control

We now define the strategies for both players. The strategies for Red for the

state-feedback case are defined as follows.

Θ[t̄,T ) =
{

θ[t̄,T ) : X T−t̄ → W (T−t̄), n.a
}

(2.4)
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Note that θ[t̄,T ) is n.a. (nonanticipative) if given any t ∈ T̄ , X1
[t̄,T ) ∈ X T−t̄ , and

X2
[t̄,T ) ∈ X T−t̄ such that X1

r = X2
r , ∀ t̄ ≤ r ≤ t, then

θt[X1
[t̄,T )] = θt[X2

[t̄,T )].

Note that in defining the strategies we use the fact that both the players have complete

state knowledge at any given time. Thus, setting the domain of the strategy to include

the state knowledge till current time t, the range is just the sequence of open loop controls

(in the appropriate time domain). The set of strategies for Blue is defined similarly,

Λ[t̄,T ) =
{

λ[t̄,T ) : X T−t̄ × W T−t̄ → U (T−t̄), n.a
}

. (2.5)

where non-anticipativeness of λ[t̄,T ) is defined similarly. In particular, λ[t̄,T ) is n.a.

(nonanticipative) if given any t ∈ T̄ , (X1
[t̄,T ), w

1
[t̄,T )) ∈ (X T−t̄×W T−t̄) , and (X2

[t̄,T ), w
2
[t̄,T )) ∈

(X T−t̄ × W T−t̄) such that X1
r = X2

r and w1
r = w2

r , ∀ t̄ ≤ r ≤ t, then

λt[X1
[t̄,T ), w

1
[t̄,T )] = λt[X2

[t̄,T ), w
2
[t̄,T )]

Note that if the Red player chooses w[t̄,T ) using a strategy θ[t̄,T ) ∈ Θt̄,T , then λ[t̄,T ) ∈ Λ[t̄,T )

is n.a., if given any t ∈ T̄ , X1
[t̄,T ) ∈ X T−t̄ , and X2

[t̄,T ) ∈ X T−t̄ such that X1
r = X2

r ,

∀ t̄ ≤ r ≤ t, we have

λt[X1
[t̄,T ), w

1
[t̄,T )] = λt[X2

[t̄,T ), w
2
[t̄,T )]

where by non-anticipativeness of θ[t̄,T ), ∀ t ≤ r ≤ t one has:

w1
r

.= θr(X1
[t̄,T )) = θr(X2

[t̄,T ))
.= w2

r

It implies that the state process X[t̄,T ) is sufficient (Red control history w[t̄,T ) is not

required) for an alternate definition of non-anticipativeness of λ[t̄,T ). A simple plot to

explicate this notion is given in (2.1).

The terminal cost (or payoff) is E : X → R; the cost or the payoff at terminal

state x ∈ X is E(x). This motivates the Blue player to use strategies such that the

terminal state XT yields the lowest possible payoff and Red player will try to achieve

the exact opposite.

For the state-feedback (complete-information) game, we define the lower value

of the Basar-Olsder type (Basar & Bernhard 1991), and (Basar & Olsder 1982). Define
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Figure 2.1: Non-anticipativeness of a strategy

the value function for state-feedback game (SFG) as :

Vt̄(x) = sup
θ[t̄,T )∈Θ[t̄,T )

inf
λ[t̄,T )∈Λ[t̄,T )

E[E(XT ) |Xt̄ = x] (2.6)

The state-feedback value function at the terminal time is VT (x) = E(x). Hence

we obtain,

Vt̄(x) = sup
θ[t̄,T )∈Θ[t̄,T )

inf
λ[t̄,T )∈Λ[t̄,T )

E[VT (XT ) |Xt̄ = x] (2.7)

Note that X and W are finite and θ[t̄,T ) : X T−t̄ → W T−t̄. So θ[t̄,T ) maps a finite

number of state processes nT−t̄ to a finite number of control processes NT−t̄
w , where recall

that n
.= #X and Nw

.= #W . Also, λ[t̄,T ) maps a finite number of state process and Red

control process combinations (nNw)T−t̄ to a finite number of control processes NT−t̄
u ,

where Nu
.= #U . This allows us to use min for infimum and max for supremum and we

get

Vt̄(x) = max
θ[t̄,T )∈Θ[t̄,T )

min
λ[t̄,T )∈Λ[t̄,T )

E[E(XT ) |Xt̄ = x] (2.8)
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Note that X represents the random state process propagated by θ[t̄,T ) and

λ[t̄,T ). We now present some basic results for deriving the DPE (Dynamic Programming

Equation).

Lemma 2.2.1. Let’s fix θ[t̄,T ) ∈ Θ[t̄,T ), and for any t̄ < t < T , let λ[t̄,t) ∈ Λ[t̄,t), and

λ[t,T ) ∈ Λ[t,T ), where

Λ[t̄,t) =
{

λ[t̄,t) : X t−t̄ × W t−t̄ → U t−t̄,n.a
}

(2.9)

and

Λ[t,T ) =
{

λ[t,T ) : X T−t × W T−t → UT−t,n.a
}

. (2.10)

Define

λ∗
s =

⎧⎪⎨⎪⎩
λs if s < t;

λs if s ≥ t.

(2.11)

Then λ∗
[t̄,T ) is also a strategy; λ∗

[t̄,T ) ∈ Λ[t̄,T ). We will denote the construction in the

above sense by λ[t̄,t)

⋃
λ[t,T ).

Proof. See Appendix (2.4.1).

Corollary 2.2.1. Let λ[t̄,T ) ∈ Λ[t̄,T ). Let, λ̃s = λs, if s < t, and for any given any

X[t̄,t) ∈ X t−t̄ and X̄[t,T ) ∈ X T−t, let λ
X[t̄,t)

s

[
X̄[t,T )

] .= λs

[
X[t̄,t)

⋃
X̄[t,T )

]
. Then λ̃ ∈ Λ[t̄,t)

and λ
X[t̄,t) ∈ Λ[t,T ).

Proof. See Appendix (2.4.2).

Similar results also hold true for the Red player strategy θ[t̄,T ).

Lemma 2.2.2. Fix θ[t̄,T ) ∈ Θ[t̄,T ). Given any x ∈ X and λ[t̄,T ) ∈ Λ[t̄,T ), let F (x, λ[t̄,T ))
.=

E[E(XT ) |Xt̄ = x], where the state process X. is propagated using λ[t̄,T ) and θ[t̄,T ) and

initial condition Xt̄ = x, then

min
λ[t̄,T )∈Λ[t̄,T )

F (x, λ[t̄,T )) = min
λ̃[t̄,t)∈Λ[t̄,t)

min
λ[t,T )∈Λ[t,T )

F (x, λ̃[t̄,t)

⋃
λ[t,T )) (2.12)

where on the right hand side the state process X. is propagated by λ̃[t̄,t)

⋃
λ[t̄,T ) and θ[t̄,T )

with initial condition Xt̄ = x.

Proof. See Appendix (2.4.3).
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Lemma 2.2.3. Fix any t̄ < t < T , x ∈ X , Choose any θ[t̄,T ) ∈ Θ[t̄,T ) and any λ̃[t̄,t) ∈
Λ[t̄,t), then

S(x, θ[t̄,T ), λ̃[t̄,t)) = R(x, θ[t̄,T ), λ̃[t̄,t)) (2.13)

where S and R are defined as below

S
.= min

λ[t,T )∈Λ[t,T )

E[E[E(X̄T )|X̄t = Xt]| Xt̄ = x] (2.14)

R
.= E[ min

λ[t,T )∈Λ[t,T )

E[E(X̄T )|X̄t = Xt]| Xt̄ = x] (2.15)

The state process X[t̄,t] is propagated by θ[t̄,t) and λ̃[t̄,t), with initial condition Xt̄ = x and

X̄[t,T ] is propagated by θ[t,T ) and λ[t,T ), with initial condition X̄t
.= Xt. The arguments

of S and R are dropped for space constraints. Note that θ[t,T ) has implicit dependence on

the state process X[t̄,t) as defined in corollary 2.2.1.

Proof. See Appendix (2.4.4).

We now prove the Dynamic Programming Principle. Let us define

Nt̄(x, θ[t̄,T ))
.= min

λ[t̄,T )

E[E(XT ) |Xt̄ = x] (2.16)

so that

Vt̄(x) = max
θ[t̄,T )∈Θ[t̄,T )

Nt̄(x, θ[t̄,T ))
.= Nt̄(x, θo

[t̄,T )) (2.17)

where

θo
[t̄,T ) ∈ argmax

θ[t̄,T )∈Θ[t̄,T )

Nt̄(x, θ[t̄,T )). (2.18)

Lemma 2.2.4. For any t̄ ≤ t < T ,

Vt̄(x) = Nt̄(x, θo
[t̄,T )) = Ñ[t̄,t)(x, θ̃o

[t̄,t)) (2.19)

where

Ñ[t̄,t)(x, θ[t̄,t)) = min
λ̃[t̄,t)∈Λ[t̄,t)

E[Vt(Xt) |Xt̄ = x] (2.20)

and

θ̃o
[t̄,t) ∈ argmax

θ[t̄,t)

Ñ[t̄,t)(x, θ[t̄,t)) (2.21)

so that

Ñ[t̄,t)(x, θ̃o
[t̄,t)) = max

θ[t̄,t)

min
λ̃[t̄,t)

E[Vt(Xt)|Xt̄ = x] (2.22)
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Proof. See Appendix (2.4.5).

Next we specialize this result and obtain the One-Step DPE.

Theorem 2.2.1. For any t̄ ≤ t < T , let Vt(x) be as given by (2.19), then,

Vt(x) = max
w∈W

min
u∈U

E[Vt+1(Xt+1)|Xt = x]. (2.23)

Proof. See Appendix 2.4.6.

Note that (2.23), also gives the optimal controller u∗,w, and w∗ for the complete-

information state-feedback game) for each time t̄ ≤ t < T . In particular:

w∗
t ∈ argmax

w∈W
min
u∈U

E[Vt+1(Xt+1)|Xt = x]. (2.24)

and

u∗
t (wt) ∈ argmin

u∈U
E[Vt+1(Xt+1)|Xt = x] , ∀wt ∈ W. (2.25)

In the max-min set-up, the Blue player has advantage being the inside player.

For specific games (like in the upcoming example in the later sections) saddle-point

existence may allow using max-min and min-max alternatively.

2.3 The Masked Attack Game (MAG)

The remainder of this chapter will be devoted primarily to application of the

state-feedback theory to a seemingly simple example game. However, as we will see

in section 3.4, once one introduces the partial information and deception components,

determination of the best (or even nearly best) strategy becomes quite far from obvious.

The following terminology (used in the remainder of this chapter) may require a little

elaboration:

• Entity: controllable objects, e.g., tanks and unmanned aerial vehicles.

• Attrition: Damage caused by one of the sides to the entities belonging to another.

• C2 : Command and Control, the process by which the opponents guide their entities

in the battle.
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• Intel: Information that one side obtains by observing the territory and entities of

the other.

• Asset: An object of high value. (In this example, the term asset will only be used

to designate certain stationary Blue objects — not the Red and Blue entities.)

• Decoy: An inexpensive imitation of an entity, without combat capability.

• Stealth: Use of camouflage or other means to avoid detection.

• UAV: Unmanned or Uninhabited Air Vehicle.

• UCAV: Unmanned or Uninhabited Combat Air Vehicle, capable of attacking the

opponent entities.

We will assume without loss of generality that the initial time t̄ = 0. We

refer to our example as the Masked Attack Game (MAG). A snapshot from the game

is depicted in Figure 2.2. In the MAG example, the Red player is attempting to take

(or, equivalently from the perspective of the game, destroy) a valuable Blue asset while

Blue will attempt to interdict the Red advance(s). In the partially-observed game Red

can use stealth and decoys to obscure the direction from which the attack will occur.

However, in the complete-information case Blue has full-state knowledge, so the affect

of using stealth is almost redundant (unless we allow for the attrition or damage caused

by Blue on the Red entities to be dependent on stealth).

In particular, we consider an example where Red and Blue have only a handful

of forces, and the attack(s) can come along only two routes. This MAG example is

complex enough to demonstrate many of the issues that appear when applying this

technology. At the same time, it is simple enough so that technical complications do not

muddy the picture excessively.

Objective

In this game the Red player has four ground entities (say, tanks) and the Blue

player has two UCAVs. The objective of the Red player is to capture the high-value

Blue assets by moving at least one non-decoy Red entity to a Blue asset location by
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the terminal time, T . The Blue player uses the UCAVs to interdict and destroy the

moving Red entities and prevent them from reaching the Blue assets by the terminal

time. Winning and losing are measured in terms of the total cost (equivalently, the score

or the payoff) at the pre-specified terminal time.

The payoff at terminal time is computed as follows: each Red surviving en-

tity costs Blue 1 point and if Blue loses any (or both) of the high-value assets to Red

(amounting to at least one non-decoy Red entity reaching the asset by the terminal time)

it costs Blue 20 points. Suppose at time T , for a state x ∈ X , we denote the total number

of surviving Red entities on both routes as xR,s. Recall that Red “takes” the assets by

successfully moving (non-decoy) alive entities to their targets.

J(x) =

⎧⎪⎨⎪⎩
20 + xR,s if xR,s > 0;

0 otherwise.
(2.26)

So in the best case scenario, Blue achieves a payoff of 0 (xR,s = 0) or in the

worst case scenario a payoff of 24, (20 + xR,s, where xR,s = 4, at terminal time). There

is no running cost. The running cost in an example such as this would refer to the cost

of specific control processes used up to the current time t, for example, the cost of using

the decoys, or/and the fuel cost when moving the UCAVs from one route to another.

Dynamics

Red entities move at the same speed independent of being stealthy or non-

stealthy and independent of the route (uniform terrain). Red entities are not allowed

to switch routes during the game and do not have any attrition capability against the

Blue UCAVs (hence the dynamic update is dependent only on the Blue control). Blue

UCAVs require at least two time steps to travel from one route to the other.

The simulation snapshot from the partial-information game in Figure 2.2, is

taken between time steps 1 and 2 from the graphic for a MATLAB simulation that runs

the example game. Blue’s base is at the bottom of the figure. Red is depicted with

a base at the top of the figure. The two rectangular shapes on either side of the Blue

base represent the positions of two high-value assets belonging to Blue. The dashed

lines are meant to indicate routes that the Red entities (depicted as tanks) could take
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2 Red NS−Tank,1 NS decoy left on Eastern route

One Red NS tank destroyed at time 1

BLUE BASEBLUE ASSET−2 BLUE ASSET−1

RED BASE

1 Red NS−Tank, 1 decoy 

2 Red S−Tank  on Western route

Blue observations
 for western route

Blue observations
 for eastern route

2 Blue UAV teams 

2 Red S−Tanks 

Maximum Likelihood State, posteriori
at t=2

(0,2)

Figure 2.2: A snapshot from the Matlab simulation

toward each of the Blue high-value assets. The Red player is moving four ground entities

from the Red base toward two Blue assets. These entities move along either an eastern

route or a western route depending on which Blue asset they are attacking. (There may

be Red entities moving along both routes, and it is assumed that there are simply two

groups of Red entities, those moving along the eastern route and those moving along

the western route.) At the time of the snapshot in Figure 2.2, Red was in the process

of non-stealthily moving one tank and one decoy tank toward the eastern Blue asset,

and two tanks (their gray color indicating stealthy movement) toward the western Blue

asset. The black tank icon along the eastern route road indicates that at time 1 the tank

on that route (which had been operating non-stealthily) was destroyed.

Obviously, Red entities may move stealthily or non-stealthily (with no affect

on information in the state-feedback case). In partial-information game scenario, Red

entities are detected more easily when they are non-stealthy. Blue has two attack UCAVs,

which may be assigned to attack Red entities on either route, individually or in tandem.

In the figure, the missile shaped icons moving along the eastern road indicate Blue
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UCAVs which are currently attempting to intercept the Red entities moving along that

route. Blue’s UCAVs are typically expected to be more effective against the Red entities

when they are moving in the non-stealthy mode (although for study purposes, we mainly

include results where the effectiveness against stealthy and non-stealthy entities are

identical once Blue has decided to attack them). Further, there is a fixed travel-time for

the UCAVs to move from one route to the other. At each time step, Blue must decide how

to assign its UCAVs, while Red decides which Red entities to make stealthy (and whether

to employ a decoy in the partial-information game scenario). Red also initially decides

how to partition its ground entities between the two routes; this partition remains in

effect throughout the game. The healths of the Red entities will transition as a discrete-

time Markov chain, where the transition probabilities depend on whether they are under

attack by zero, one or two Blue UCAVs. We should note that Red “takes” an asset

by successfully moving at least one non-decoy entity to the asset (while Blue UCAVs

provide resistance by intercepting the Red entities). The state transition probabilities

can be affected by the actions of both players. Note that in the partial-information game,

the observation probabilities can also be affected by the controls of both players. The

current Blue observations are also shown for both routes in Figure 2.2. In this snapshot,

the annotations indicate that it so happens that Blue has detected both the Red entities

on the eastern route (one of which is a decoy) and detected nothing on the western route.

The ‘MLS’ estimate, i.e., the naive estimate, is also indicated. Blue can chose to apply

the optimal state-feedback control corresponding to the ‘MLS’ estimate as the control for

the partially-observed game. We will call this naive approach, employing the Certainty

Equivalence Principle, as the ‘MLS’ approach. We use the above game discussion to first

provide the state-feedback solution of the MAG example.

Controls

Let the state Xt be decomposed into the Red and the Blue components as

(XR
t , XB

t ). In the MAG example problem introduced in the previous section, Red entities

move at a fixed rate, independent of stealth, and so Red entity positions are not included

in the state. We define the Red state component XR
t as the pair indicating the number of

Red surviving on each route at any time t, XR
t = (r1

t , r
2
t ), with r1

t <= r1
0 and r2

t <= r2
0.
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This definition of Red state component subsumes the health component of the state

(only allowing two health states, ’OK’ or ’Destroyed’). For the Blue UCAVS, the health

component is redundant as we don’t allow the Red teams to cause any attrition on the

Blue player. We now define the open loop control sets, U and W . Let U = [1, 2, 3, 4, 5, 6],

then u ∈ U , where:

• u=1: Send both UCAVs to the western route.

• u=2: Send both UCAVs to the middle/neutral zone (no attack).

• u=3: Send both UCAVs to the eastern route.

• u=4: Send one UCAV to the western route and move one to the middle/neutral

zone.

• u=5: Send one UCAV to the eastern route and move one to the middle/neutral

zone.

• u=6: Send one UCAV to the eastern route and one to the western route.

The Blue state definition is simply derived from the Blue control options. Blue

decision is to pick a route to send the Blue UCAVs for the next time step. The Blue

state XB
t is an index indicating the positions of the two UCAVs (similar to the Blue

control definition) as defined above. Given Xt = x (known to both players), the Blue

state at the next time step is simply the Blue control at current time step, XB
t+1 = ut,

where ut ∈ U , which implies that XB
t ∈ U . Let

XN .= {x ∈ X : xB
t+1 �= ut}

be the set of states which do not correspond to the deterministic Blue state transition

(given the Blue control ut), then we have for x̄ ∈ XN ,

Pr(Xt+1 = x̄ | Xt = x, ut, wt) = 0.

We now define the Red control set W . Recall that Red initially partitions its

forces along the two routes and this partition remains in effect throughout the game.
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The set of Red controls W is given by

W = {w̄1, w̄2, w̄3, w̄4}

where individual controls w̄i ∈ W have the following meaning:

• w̄1 = (S, S): Red entities on both routes operate stealthily.

• w̄2 = (S, N): Red entities on the western route operate stealthily, and those on

the eastern route operate non-stealthily.

• w̄3 = (N, S): Red entities on the western route operate non-stealthily, and those

on the eastern route operate stealthily.

• w̄4 = (N, N): Red entities on both routes operate non-stealthily.

Notation and Parameters

The main parameters employed in the simulation study to follow are:

• pN
2 : Probability of a Red entity being destroyed when attacked by both UCAVs

and when Red is non-stealthy.

• pN
1 : Probability of a Red entity being destroyed when attacked by one UCAV and

when Red is non-stealthy.

• pS
2 : Probability of a Red entity being destroyed when attacked by both UCAVs

and when Red is stealthy.

• pS
1 : Probability of a Red entity being destroyed when attacked by one UCAV and

when Red is stealthy.

• α1: pN
1 /pN

2 or pS
1 /pS

2 , ratio of attrition caused by 1 UCAV relative to attrition

caused by 2 UCAVs.

• rr=r1
0/r2

0, ratio of the (asymmetrical) initial Red entity distribution on the two

routes.
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Attrition Model

The attrition model used in this example is a binomial model. We outline the

model by denoting the attrition probability (or equivalently state transition probabil-

ity) on each side as a function of Blue and Red control. At any time t, given a state

Xt = (XR
t , XB

t ) = {(i1, i2), i3}), one can compute the optimal w and u using (2.24) and

(2.25) respectively. For notational simplicity we define some subsets of U and W for

constructing the attrition probability model. For example, U2
L denotes the set of control

elements u ∈ U which correspond to two UCAVs attacking the western (left) route.

• U2
L = [1], U1

L = [4, 6], and U0
L = [2, 3, 5]

• U2
R = [3], U1

R = [5, 6], and U0
R = [1, 2, 4]

Similarly for the Red player we define subsets of W (with Red controls as

elements). For example, W s
L denotes the set of control elements w ∈ W which correspond

to the Red entities on the left route being stealthy.

• W s
L = [w̄1, w̄2] and Wn

L = [w̄3, w̄4]

• W s
R = [w̄1, w̄3] and Wn

R = [w̄2, w̄4]

Given a Blue control u, the attrition probability for a non-stealthy Red on the

left (right) side then becomes:

pN
L (u) .= 1U2

L
(u)pN

2 + 1U1
L
(u)pN

1

pN
R (u) .= 1U2

R
(u)pN

2 + 1U1
R
(u)pN

1

Similarly the attrition probability for a stealthy Red on the left (right) side given u is

computed as:

pS
L(u) .= 1U2

L
(u)pS

2 + 1U1
L
(u)pS

1

pS
R(u) .= 1U2

R
(u)pS

2 + 1U1
R
(u)pS

1

Then the attrition probability for a Red on the left (right) side given u and w becomes:

pL(u, w) = 1W s
L
(w)pS

L(u) + 1W n
L
(w)pN

L (u)
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pR(u, w) = 1W s
R
(w)pS

R(u) + 1W n
R
(w)pN

R (u).

Note that the Blue control ut leads to XB
t deterministically, so that

Pr[Xt→Xt+1](u, w) .= Pr[XR
t →XR

t+1](u, w).

Also the attrition caused by Blue on one route is independent of the attrition caused by

Blue on the other route. Given XR
t = (i1, i2) and XR

t+1 = (j1, j2) we get the following

attrition (or state-transition) modelling :

Pr[XR
t →XR

t+1](u, w) .= Pr[i1→j1,i2→j2](u, w) = Pr[i1→j1](u, w)Pr[i2→j2](u, w)

Pr[XR
t →XR

t+1](u, w) =

⎡⎣⎛⎝ i1

j1

⎞⎠ (pL)i1−j1(1 − pL)j1

⎤⎦⎡⎣⎛⎝ i2

j2

⎞⎠ (pR)i2−j2(1 − pR)j2

⎤⎦
where we have used the attrition probabilities pL(u, w) and pR(u, w) without the control

arguments for space constraints.

Notes on Strategy

We will use the following notation :

• AD: When attrition is dependent on the stealthiness of Red entities (or pN
2 > pS

2 ).

Red control in this case is to choose an initial state XR
0 and controls wt for t ∈

[0, 1, ..., T − 1].

• AI : When attrition is independent on the stealthiness of Red entities (or pN
2 = pS

2 ).

Red control in this case is only to choose an initial state XR
0 .

For the state-feedback case it is worth noting that in this example, a saddle

point solution does exist, i.e

Vt(x) .= min
u∈U

max
w∈W

E[Vt+1(Xt+1)|Xt = x] = max
w∈W

min
u∈U

E[Vt+1(Xt+1)|Xt = x]. (2.27)

Let’s consider the AI case first. Red can choose to set up an initial distribution

of its total forces, r0, which Blue is aware of in the complete-information case. The Red

control option is redundant in this case, as there is no difference in choosing a side to

be stealthy or not (in fact all possible control choices for Red ,w̄ ∈ W , are equivalent).
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Both the min-max and max-min games (in the full state-feedback case) are reduced to

a minimization problem for the Blue player i.e. :

min
u∈U

max
w∈W

E[Vt+1(Xt+1)|Xt = x] = min
u∈U

E[Vt+1(Xt+1)|Xt = x].

max
w∈W

min
u∈U

E[Vt+1(Xt+1)|Xt = x] = min
u∈U

E[Vt+1(Xt+1)|Xt = x].

For the AI case all the control choices are equivalent. We will refer to any

w̄k ∈ W as the complete-information state-feedback optimal control and w̄1 will be the

complete-information state-feedback deceptive control (will be appropriate when used in

the partially-observed game set up).

Let’s consider the AD case now. Here again, Red can choose to set up an initial

distribution of its total forces, r0, which Blue is aware of in the complete-information

game. The Red control option is trivial in this case as well (but not redundant). The

expected number of surviving Red in this case depends on the attrition caused by Blue

which depends on the stealth factor. Intuitively, the best option for the Red player is to

turn the entities stealthy on the route under attack or both routes (irrespective of the

min-max or the max-min case) since there is no running cost. We explicate this intuitive

Red behavior next. For the max-min game this implies that since Red is moving first, it

will always choose controls only based on the Red state at time t, XR
t . Let’s denote the

set with Red states of the form (0, b) as RR, the set with Red states of the form (a, 0)

as RL, and the set with Red states of the form (a, b) as RB The control choice for Red

would be:

wo
t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{w̄1, w̄3} if x ∈ RR;

{w̄1, w̄2} if x ∈ RL;

{w̄1} if x ∈ RB;

(2.28)

Clearly the Red control choice w̄1 is optimal for all cases. So, in the max-min game for

the example in this study we have the Red player choosing the stealthy option for both

sides. This reduces the Blue optimal control computation to

uo
t (w

o
t ) = argmin

u∈U
E[Vt+1(Xt+1)|Xt = x].

For the min-max game, since Red is moving second, it will choose controls

based explicitly on the Red state at time t, XR
t , and the Blue control uo

t (hence implicitly
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Table 2.1: State-Feedback Optimal Red control, minmax, AD case
Set of Red states Blue player optimal control u∗

t

1 2 3 4 5 6
RL W s

L W W W s
L W W s

L

RR W W W s
R W W s

R W s
R

RB W s
L W W s

R W s
L W s

R W s
L ∩ W s

R

dependent on the Blue components of the state also, XB
t ). The optimal control for the

Blue player is

uo
t = argmin

u∈U
max
w∈W

E[Vt+1(Xt+1)|Xt = x].

The optimal Red choice wo
t (u

o
t ) in this case would then be given by the Table

2.1. For example if XR
t = x, where x ∈ RL, then the optimal Red control is to turn the

left side stealthy, wo
t ∈ W s

L, when it’s under attack on that route, i.e, when u ∈ {1, 4, 6}.
For u ∈ {2, 3, 5} (x ∈ RL), any of the w̄k ∈ W is optimal.

So in this min-max game also, the Red player’s optimal choice is to use the

stealthy option for both sides (or the side with at least one surviving Red entity). Red

will achieve the same expected payoff with any of the optimal choices, when multiple

optimal Red controls are available. The min-max game (in the complete-information

state-feedback case) is again reduced to a minimization problem for the Blue player,

with Blue optimal control given by

uo
t = argmin

u∈U
E[Vt+1(Xt+1)|Xt = x]

with wo
t = w̄1. For the AD case, we will call w̄1 as the complete-information state-

feedback optimal control.

Analysis of the State-Feedback case

Through the analysis of the MAG example, it will be clear that the state-

feedback problem is fairly simple. Further, the optimal control choices in the state-

feedback case help illuminate the partially-observed problem, which is the focus of our

study. We now discuss some simulation results to elucidate aspects of dynamics of the

MAG example and some natural differences from the partially observed scenario.
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Table 2.2: Blue State-Feedback Control, Fast speed for Blue, MS2
Blue State XB

t Blue player control ut

1 2 3 4 5 6
1 1 1 0 1 0 0
2 1 1 1 1 1 1
3 0 1 1 0 1 0
4 1 1 0 1 1 1
5 0 1 1 1 1 1
6 0 1 0 1 1 1

Table 2.3: Blue State-Feedback Control, Slow speed for Blue, MS3
Blue State XB

t Blue player control ut

1 2 3 4 5 6
1 1 0 0 1 0 0
2 1 1 1 1 1 1
3 0 0 1 0 1 0
4 1 1 0 1 1 1
5 0 1 1 1 1 1
6 0 1 0 1 1 1

In our modelling, we allow the Blue UCAVs to move from one route to the

other in either two or three time steps. We will use the notation MS2 for the former and

MS3 for the later. Note that in these two cases described above the state-dependent

allowable Blue controls will be different. For MS2 and MS3 the state dependent Blue

control are shown in Tables 2.2 and 2.3. The tables should be understood as indicating

that a control is allowed in a certain state by having a 1 in that state/control entry. In

other words, the entry 1 at the (i, j) position in the above tables implies that if Blue is

at state i at any time, movement to state j is a feasible control option for Blue.

The strategy and the payoff also depend on the terminal time, T . We would

refer to model with T = k by Tk. Combining these notations together, MS2T5 would

refer to the model, where the Blue UCAVs can move from one route to the other in 2

time steps and the terminal time is 5 units (or 4 control actions allowed per UCAV).

The first results compare MS2T5 to MS3T5 for exactly the same parameters (note that

this will compare mean-sample payoff as a function of Blue speed here). This is shown

in Figure 2.3. Clearly, the faster Blue (being able to go from one route to the other in
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less time) achieves a smaller mean-sample payoff.
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Figure 2.3: Payoff dependence on Blue speed, ‘DR’
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Figure 2.4: Payoff dependence on the terminal time, ‘DR’

The second result gives the effect of having more control action for Blue. Ob-
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viously, a higher T (in MS2T5) gives Blue more control steps, and so on an average it is

expected to destroy more Red entities, leading to a lower mean-sample payoff as shown

in Figure 2.4.

In state-feedback games, with available control choices (sets U and W ) known

for both players, one can narrow down the set of feasible controls to a smaller set of con-

trols that are sufficient to compute the optimal control sequences. We consider the case

AI from Blue’s perspective. We choose α1 ≤ 0.5, the attrition capability of one UCAV

being less than half the attrition capability of two UCAVs. For nontrivial discussion, we

choose the Red initial state distribution to be either XR
0 = (1, 3) or XR

0 = (2, 2). We

discuss the case, XR
0 = (1, 3). With the first Blue control with initial state XB

0 = 2,

(or Blue UCAVs in the central/neutral zone) is to attack the eastern route with both

UCAVs, uB
1 = 3. Further, the Blue control for subsequent steps depends on the outcome

of the interaction at time 1 between the two UCAVs and the Red entities (3 in number)

on the eastern route. Recall that the Blue control depends on the current state and

the modelling constraints. For best results, the Blue player would like to have at least

one shot at Red on both routes. With u0 = 3, a maximum of 108 control sequences, of

type (u0 = 3, u1, u2, u3), are available for Blue in this set up. One can easily enumerate

the the sequences (3, u1, u2, u3) such that the Blue player attacks the western route at

least once and then reduce the available choices by by cross comparing sequences. For

example, a reduced set of control sequences, of type (u0 = 3, u1, u2, u3) is given below.

• (3,2,1,1), (3,2,2,1), (3,2,4,1), (3,2,5,6), (3,2,6,6).

• (3,5,2,1), (3,5,4,1), (3,5,4,6), (3,5,5,6), (3,5,6,6).

• (3,3,2,1), (3,3,5,6)

Some of these control sequences will achieve better results mainly due to re-

moving redundant steps ((3, 2, 1, 1) versus (3, 2, 2, 1)) and/or by noting the existence of

more efficient attack sequences ((3, 2, 6, 6) versus (3, 2, 5, 6)). Finally, only 5 sequences

((3, 2, 1, 1), (3, 3, 2, 1), (3, 5, 4, 1), (3, 5, 6, 6), and (3, 3, 5, 6)) need to be considered for

evaluating the optimal strategy for Blue. For the parameter space in which we ran most

of our simulation, (3, 3, 2, 1) is the optimal Blue control.
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The Blue control choice is thus fairly straight-forward for state-feedback game.

Clearly with XR
0 unknown, such computational simplification is not available for the

Blue player and finding optimal control sequence for the entire time horizon is not a

simple task anymore. In adversarial environment, such similar reasoning is not sufficient

or does not have the structure (due to lack of information) to yield a narrower set of

control choices for computing the optimal control sequence. In fact, for the state-feedback

case, for given attrition parameters, the optimal control sequences can also be found as

a function of X0 = (a, b) and α1. We conclude this part of the discussion by stating

that unlike state-feedback, partially-observed games require a more complex algorithmic

approach (like the deception-robust theory).

Another aspect of strategy or control formulation which is easy to analyze in

the state-feedback game is the dependence of the Blue control strategy on α1. For Red

initial states (a, b), with b > a and b �= 0, a �= 0 (as in the above example (1, 3)), the

optimal Blue control uo
T−1 (with XB

T−1 = 2) changes from ’3’ to ’6’ for specific α1 as a

function of (a, b) and pN
2 . The switch between the two control options is determined by

simply comparing the expected payoff between the Blue control choices uT−1 = 3 and

uT−1 = 6. With uT−1 = 3, at least a Red entities survive and the expected payoff for

the game is given by:

a + 20 +
b∑

k=0

[
kE[XR

T = (a, k)]
]

which can be written as

a + 20 +
b∑

k=0

⎡⎣k

⎛⎝ b

k

⎞⎠ (pN
2 )b−k(1 − pN

2 )k

⎤⎦
which is

a + 20 +
b∑

k=1

⎡⎣k

⎛⎝ b

k

⎞⎠ (pN
2 )b−k(1 − pN

2 )k

⎤⎦
Note that

k

⎛⎝ b

k

⎞⎠ = b

⎛⎝ b − 1

k − 1

⎞⎠
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Substituting the above identity, we get further simplification

a + 20 +
b∑

k=1

⎡⎣b(1 − pN
2 )

⎛⎝ b − 1

k − 1

⎞⎠ (pN
2 )b−k(1 − pN

2 )k−1

⎤⎦
by re-indexing of the summation limits k1 = k − 1 we get,

a + 20 + b(1 − pN
2 )

b−1∑
k1=0

⎡⎣⎛⎝ b − 1

k1

⎞⎠ (pN
2 )b−1−k1(1 − pN

2 )k1

⎤⎦
which using the binomial expansion finally gives

a + 20 + b(1 − pN
2 )

Note that this result can also be achieved using the binomial mean for the

expected Red teams surviving on the right route. Payoff achieved using uT−1 = 6 can be

similarly computed, where we need to allow for all possibilities of k Red objects surviving

at time T , i.e. (1, k − 1) or (k − 3, 3) dependent on the state XR
T−1 at time T − 1.

a∑
k=0

⎡⎣(pN
1 )a+b−k(1 − pN

1 )k(20 + k)

⎡⎣ l2∑
l1

⎛⎝ a

l

⎞⎠⎛⎝ b

k − l

⎞⎠⎤⎦⎤⎦
where l1 = max(0, k − b) and l2 = min(k, a).

If b >> a, typically a higher α1 is required for switching the control from 3 to

6, for a fixed pN
2 . Such change in strategy is not distinct in the partially-observed game

because Blue control is a function of qt which is dependent on the observation process.

Also note that obviously for even rr = 1, a higher α1 is required for (a + k, a + k)

compared to (a, a). For the partially-observed game lets discuss the above example in

the appropriate α1 regime that admits sending one UCAV to each route as an optimal

Blue strategy at time T −1. An observation, say (0, 3), due to use of decoys by Red, may

give a maximum likelihood state of (0, r2
4), leading to an optimal Blue control uo

t = 3

(using the naive or the ‘MLS’ approach). However, since the true state is (1, 3), this

would be a sub-optimal control for Blue in the partially-observed game set-up. Simplified

analytical expressions for computing the optimal Blue control are not available in the
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Table 2.4: Comparing complete-information and partially-observed scenario, (1, 3)

pN
2 0.6 0.65 0.7 0.75 0.8 0.85

State-Feedback 13.77 11.94 10.02 8.08 6.17 4.33
Partially-Observed 19.34 18.54 18.10 17.45 16.24 15.5

Table 2.5: Comparing complete-information and partially-observed scenario, (2, 2)

pN
2 0.6 0.65 0.7 0.75 0.8 0.85

State-Feedback 15.75 14.14 12.38 10.48 8.48 6.40
Partially-Observed 18.42 17.44 16.46 15.24 12.42 11.12

partially-observed game owing to the unknown Red states and potentially adversarial

noise.

We point another natural difference in the nature of state-feedback game to

the partially-observed game scenario (using the MAG example) by comparing the mean-

sample payoff when Red chooses a symmetric Red (2, 2) initial state to the mean-sample

payoff for an asymmetric Red initial state, (1, 3) (in both full state-feedback and partial-

information game). Obviously, given lack of true state information, Blue will achieve a

higher mean-sample payoff compared to case where it has complete state information.

This result are shown in Tables 2.4 and 2.5 by comparing the mean-sample payoff columns

under full state-feedback and partially-observed cases in both tables.

Finally, note that results in these tables indicate that the symmetric distribution

(2, 2) is better for Red than (1, 3) in the full state-feedback case. On the other hand,

in the partially-observed game scenario, the asymmetric layout (1, 3) (skewed with an

added decoy on the non-stealthy eastern route) gives a higher mean-sample payoff and

is a better initial layout for Red. These results are for the case AI ; note that when

attrition is independent of stealth, the effect of the information level on the Blue control

decisions is isolated to illustrate the importance of state information.

From Red perspective the case AD is just minutely different. Red can still

choose to make entities on each route stealthy or non-stealthy in this case. Typically

attrition for stealthy entities will never be greater than that for non-stealthy entities.

Consequently, the optimal Red control is to have the entities operate stealthily on the

route under attack . Red, being the maximizer, is the inside player in the minimax, and
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makes its control decision after Blue makes its decision. Red can stay stealthy for the

entire game as there is no running cost. The partially-observed game in the AD case

is again complex, as the Red player may use decoys to corrupt the observation process

of Blue. Simply employing the state-feedback control for Red does not allow it the

full potential to deceive Blue. We conclude with the above analysis that the partially-

observed game (with adversarial noise) is a problem with a very complex structure.
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2.4 Appendices

2.4.1 Proof of Lemma 2.2.1

Note that to prove λ∗
[t̄,T ) ∈ Λ[t̄,T ), we need to prove

(a). λ∗
[t̄,T ) → U (T−t̄).

(b). λ∗
[t̄,T ) is non-anticipative as defined in (2.5).

Since λ̃[t̄,t) → U t−t̄ and λ[t,T ) → UT−t. Then given any X[t̄,T ], by definition

λ∗
[t̄,T ) : Xt̄,T → (U t−t̄

⋃
UT−t) .= UT−t̄. Let X1

t̄,T and X2
t̄,T be two state processes such

that X1
r = X2

r , ∀ r ≤ s < T . We divide the proof into two possibilities for proving

non-anticipativeness. We first consider the case s ≤ t. We assume that the Red control

process is fixed by the non-anticipativeness of the θ process and the second arguments

for λ is dropped in the following proof. We need to prove that λ∗
s[X

1
t̄,T , .] = λ∗

s[X
2
t̄,T , .].

λ∗
s[X

1
t̄,T , .] = λ∗

s[X
1
t̄,t

⋃
X1

[t,T ), .] = λs[X1
t̄,t, .] = λs[X2

t̄,t, .] = λ∗
s[X

2
t̄,T , .].

Where the second equality follows by the definition of λ∗̄
t,T in (2.11), the third equality is

a result of non-anticipativeness of λt̄,t and the last equality is again by the definition of

λ∗̄
t,T in (2.11). For the second case s ≥ t. We need to prove that λ∗

s[X
1
t̄,T , .] = λ∗

s[X
2
t̄,T , .].

λ∗
s[X

1
t̄,T , .] = λ∗

s[X
1
t̄,t

⋃
X1

[t,T ), .] = λs[X1
[t,T ), .] (2.29)

with X1
t̄,t = X2

t̄,t. Similarly,

λ∗
s[X

2
t̄,T , .] = λ∗

s[X
2
t̄,t

⋃
X2

[t,T ), .] = λs[X2
[t,T ), .] (2.30)

with X2
t̄,t = X1

t̄,t. But λs[X2
[t,T ), .] = λs[X1

[t,T ), .] by non-anticipativeness of λ[t,T ). Com-

bining equations (2.29) and (2.30) completes the proof for the second case.

2.4.2 Proof of Corollary 2.2.1

The proof for λ̃ ∈ Λ[t̄,t) is obvious by the definition and proof of Lemma 2.2.1.

We only prove the n.a. of λ
X[t̄,t) ∈ Λ[t,T ). Let X1

[t,T ) ∈ X T−t and X2
[t,T ) ∈ X T−t, such

that X1
r = X2

r , ∀ t ≤ r ≤ s. Then by n.a. of λ[t̄,T ) ∈ Λ[t̄,T ), one has

λs

[
X1,∗

[t̄,T )

]
= λs

[
X2,∗

[t̄,T )

]
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∀ t ≤ r ≤ s, where X1,∗ = X̄[t̄,t)

⋃
X1

[t,T ) and X2,∗ = X̄[t̄,t)

⋃
X2

[t,T ) for any X̄[t̄,t) ∈ X t−t̄.

Then by definition,

λ
X̄[t̄,t)

s

[
X1

[t,T )

]
.= λs

[
X1,∗

[t̄,T )

]
and

λ
X̄[t̄,t)

s

[
X2

[t,T )

]
.= λs

[
X2,∗

[t̄,T )

]
.

which completes the proof.

2.4.3 Proof of Lemma 2.2.2

We fix some x ∈ X and some θ[t̄,T ) ∈ Θ[t̄,T ). We will hereon suppress the

dependence on the first two arguments in (2.31), (2.32), and (2.34) for space constraints.

Let

λo
[t̄,T ) ∈ argmin

λ[t̄,T )∈Λ[t̄,T )

F (x, λ[t̄,T )). (2.31)

So that the X. process propagates using θ[t̄,T ) and λo
[t̄,T ) with initial condition Xt̄ = x.

Also let

λ̃o
[t̄,t) ∈ argmin

λ̃[t̄,t)∈Λ[t̄,t)

min
λ[t,T )∈Λ[t,T )

F (x, λ̃[t̄,t)

⋃
λ[t,T )) (2.32)

in which case the X. process propagates using θ[t̄,T ) and λ̃o
[t̄,t)

⋃
λ[t,T ) with initial condition

Xt̄ = x. Finally for any given λ̃[t̄,t) ∈ Λ[t̄,t) let

λ
o
[t,T )(λ̃[t̄,t)) ∈ argmin

λ[t,T )∈Λ[t,T )

F (x, λ̃[t̄,t)

⋃
λ[t,T )) (2.33)

where now the X. process propagates using θ[t̄,T ) and λ̃[t̄,t)

⋃
λ

o
[t,T )(λ̃[t̄,t)) with initial

condition Xt̄ = x. In particular

λ
o
[t,T )(λ̃

o
[t̄,t)) ∈ argmin

λ[t,T )∈Λ[t,T )

F (x, λ̃o
[t̄,t)

⋃
λ[t,T )) (2.34)

By (2.32) and (2.34), λ̃o
[t̄,t)

⋃
λ

o
[t,T )(λ̃

o
[t̄,t)) ∈ Λ[t̄,T ). Then using the definition of λo

t̄,T given

in (2.31), one has

min
λt̄,T∈Λt̄,T

F (x, λt̄,T ) .= F (x, λo
t̄,T ) ≤ F (x, λ̃o

[t̄,t)

⋃
λ

o
[t,T )(λ̃

o
[t̄,t))) (2.35)

Using (2.35) and (2.34) one gets the first inequality

min
λt,T∈Λt,T

F (x, λt̄,T ) ≤ min
λ̃[t̄,t)∈Λ[t̄,t)

min
λ[t,T )∈Λ[t,T )

F (x, λ̃[t̄,t)

⋃
λ[t,T )) (2.36)
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For the reverse inequality, note again that using (2.32) and (2.34) we have

F (x, λ̃o
[t̄,t)

⋃
λ

o
[t,T )(λ̃

o
[t̄,t)))

.= min
λ[t,T )∈Λ[t,T )

F (x, λ̃o
[t̄,t)

⋃
λ[t,T )) (2.37)

By Corollary 2.2.1, λo
[t̄,t) ∈ Λ[t̄,t), which gives

F (x, λ̃o
[t̄,t)

⋃
λ

o
[t,T )(λ̃

o
[t̄,t))) ≤ min

λ[t,T )∈Λ[t,T )

F (x, λo
[t̄,t)

⋃
λ[t,T ))

where on the right hand side, the X. process propagates using θ[t̄,T ) and λo
[t̄,t)

⋃
λ[t,T )

with initial condition Xt̄ = x. Again using Corollary 2.2.1, λo
[t,T ) ∈ Λ[t,T ) (where the

dependence of λo
[t,T ) on the state process X[t̄,t) is implicit in the definition of λo

[t,T )), which

further gives

F (x, λ̃o
[t̄,t)

⋃
λ

o
[t,T )(λ̃

o
[t̄,t))) ≤ F (x, λo

[t̄,t)

⋃
λo

[t,T ))

note that λo
[t̄,T )

.= λo
[t̄,t)

⋃
λo

[t,T ), so we have

F (x, λ̃o
[t̄,t)

⋃
λ

o
[t,T )(λ̃

o
[t̄,t))) ≤ F (x, λo

[t̄,t)

⋃
λo

[t,T ))
.= F (x, λo

t̄,T )

Equations (2.31), (2.32), (2.34) with the above inequality yields

min
λ̃[t̄,t)∈Λ[t̄,t)

min
λ[t,T )∈Λ[t,T )

F (x, λ̃[t̄,t)

⋃
λ[t,T )) ≤ min

λt̄,T∈Λt̄,T

F (x, λt̄,T ) (2.38)

Finally equations (2.36) and (2.38) gives the required equality

min
λt̄,T∈Λt̄,T

F (x, λt̄,T ) = min
λ̃[t̄,t)∈Λ[t̄,t)

min
λ[t,T )∈Λ[t,T )

F (x, λ̃[t̄,t)

⋃
λ[t,T )) (2.39)

2.4.4 Proof of Lemma 2.2.3

One can rewrite S and R as follows:

S
.= min

λ[t,T )

Eq

{
E[E(X̄T )| X̄t = Xt]

}
(2.40)

R
.= Eq

{
min
λ[t,T )

E[E(X̄T )| X̄t = Xt]
}

(2.41)

where X. propagates with the initial condition Xt̄ = x using θ[t̄,t) and λ̃[t̄,t) and X̄

propagates with initial condition X̄t = Xt and using θ[t,T ) and λ[t,T ). The random

variable X̄t is distributed according to q, X̄t ∼ q, and by Eq we mean the expectation

with respect to the distribution q (or Eq
.= EX̄t∼q). Let

λ∗
[t,T ) ∈ argmin

λ[t,T )

Eq

{
E[E(X̄T )| X̄t = Xt]

}
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and let X∗
[t,T ) be the process propagated by strategies λ∗

[t,T ) and θ[t,T ), then we get

S = Eq

{
E[E(X∗

T )| X∗
t = Xt]

}
and since λ∗

[t,T ) ∈ Λ[t,T ) we have the inequality

S ≥ Eq

{
min
λ[t,T )

E[E(X̄T )| X̄t = Xt]
} .= R

For the other direction, recall that λ[t,T ) is dependent on the state process X[t,T ) (non-

anticipatively). Given any z ∈ X , let λ
∗,z be optimal, that is

E
[E(X̄z,∗

T )| X̄z,∗
t = z

]
= min

λ[t,T )

E[(X̄T )| X̄t = z
]

(2.42)

where X̄z,∗
. is the state process corresponding to λ

∗,z with initial condition X̄z,∗
t = z.

Now define λ∗
. as follows. For each sequence X̄[t,T ] ∈ χT−t+1 such that X̄t = z let

λ∗
[t,T ) = λ∗,z

[t,T ). Note that this defines λ∗
[t,T ) uniquely for each process path. Given θ[t,T ),

λ∗
[t,T ), and any initial X̄t, let X̄∗

[t,T ] be the corresponding process. Then by (2.42) and

definition of λ∗
. , we get

Eq

{
E
[E(X̄∗

T )| X̄∗
t = Xt

]}
= Eq

{
min

λ[t,T )∈Λ[t,T )

E
[E(X̄T )| X̄t = Xt

]} .= R (2.43)

where X. propagates (on both the sides) with the initial condition Xt̄ = x using θ[t̄,t) and

λ̃[t̄,t). From time t onwards, on the left hand side X̄∗ propagates with initial condition

X̄∗
t = Xt and using θ[t,T ) and λ∗

[t,T ), whereas on the right hand side X̄ propagates with

initial condition X̄t = Xt and using θ[t,T ) and λ[t,T ). Since λ∗
[t,T ) ∈ Λ[t,T ), one immediately

gets:

S
.= min

λ[t,T )

Eq

{
E
[E(X̄T )| X̄t = Xt

]} ≤ Eq

{
E
[E(X̄∗

T )| X̄∗
t = Xt

]}
Then using (2.43), we get S ≤ R, which completes the proof.

2.4.5 Proof of Lemma 2.2.4

The first equality is a restatement of (2.17), so we only need to prove the second

equality in (2.19). From (2.20) one has

Ñ[t̄,t)(x, θ̃o
[t̄,t)) = min

λ̃[t̄,t)∈Λ[t̄,t)

E
[
Vt(Xt)|Xt̄ = x

]
(2.44)
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where X. propagates with initial condition Xt̄ = x to Xt using θ̃o
[t̄,t) and λ̃[t̄,t) using

dynamics (1). By definition (as in (2.17))

Vt(x1) = Nt(x1, θ
o,x1

[t,T )) (2.45)

where

θ
o,x1

[t,T ) ∈ argmax
θ[t,T )∈Θ[t,T )

Nt(x1, θ[t,T )) (2.46)

For any process X̄[t,T ], let

θ̄∗[t,T ) = θ
o,x1

[t,T ) , if X̄t = x1. (2.47)

Then by (2.47) and (2.46) and for any z ∈ X

Nt(z, θ̄∗[t,T )) = Nt(z, θ
o,z
[t,T )) (2.48)

Using (2.16), and (2.48), we get

Nt(z, θ̄∗[t,T )) = min
λ[t,T )∈Λ[t,T )

E
[E(X̄T ) | X̄t = z

]
(2.49)

where X̄[t,T ] propagates by (1) with controls λ[t,T ) and θ̄∗[t,T ), and X̄t = z. Then using

(2.45), and (2.48), and for any z ∈ X we get

Vt(z) = Nt(z, θ̄∗[t,T )) (2.50)

For any ω in the sample space, X̄t(ω) ∈ X with probability 1. Note that since (2.50) is

true ∀z ∈ X , this gives

Vt(X̄t) = Nt(X̄t, θ̄∗[t,T )) (2.51)

Then substituting (2.51) in (2.44), we get

Ñ[t̄,t)(x, θ̃o
[t̄,t)) = min

λ̃[t̄,t)∈Λ[t̄,t)

E
[
Nt(Xt, θ̄

∗
[t,T )) | Xt̄ = x

]
Further using (2.16) in the right side of the above equation, gives

Ñ[t̄,t)(x, θ̃o
[t̄,t)) = min

λ̃[t̄,t)∈Λ[t̄,t)

E
[

min
λ[t,T )∈Λ[t,T )

E
{E(X̄T ) | X̄t = Xt

}|Xt̄ = x
]

where X. propagates using initial condition Xt̄ = x using θ̃o
[t̄,t) and λ[t̄,t) and X̄. propagates

with initial condition X̄t = Xt using θ∗[t,T ) and λ[t,T ). Then using Lemma 2.2.1, Lemma

2.2.2, and definition of Λ gives

Ñ[t̄,t)(x, θ̃o
[t̄,t)) = min

λ[t̄,T )∈Λ[t̄,T )

E
[
E
{E(X̄T ) | X̄t = Xt} |Xt̄ = x

]
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Further by conditional expectation (Resnick 1998) this yields

Ñ[t̄,t)(x, θ̃o
[t̄,t)) = min

λ[t̄,T )

E
[E(XT ) |Xt̄ = x] (2.52)

where X[t̄,T ] propagates according to dynamics (2.1) with controls θ̃o
[t̄,t)∪θ̄∗[t,T ) and λ[t̄,T ).

Note that θ̃o
[t̄,t) ∪ θ̄∗[t,T ) ∈ Θ[t̄,T ), then using (2.52) implies

Ñ[t̄,t)(x, θ̃o
[t̄,t)) ≤ max

θ[t̄,T )∈Θ[t̄,T )

min
λ[t̄,T )∈Λ[t̄,T )

E
[E(XT ) | Xt̄ = x].

The right hand side, by definition, is Vt̄(x), so we get the inequality

Ñ[t̄,t)(x, θ̃o
[t̄,t]) ≤ Vt̄(x) (2.53)

For the other direction let us fix x ∈ X . Then define

θ̃o
[t̄,t) ∈ argmax

θ̃[t̄,t)∈Θ[t̄,t)

max
θ[t,T )∈Θ[t,T )

min
λ[t̄,T )∈Λ[t̄,T )

E
[E(XT ) |Xt̄ = x] (2.54)

Then X. propagates till time t using θ̃o
[t̄,t) and λ[t̄,t) with initial condition Xt̄ = x (the

dependence of the optimal θo on x is implicit here). From time t onwards, X. propagates

using θ[t,T ) and λ[t,T ). Now for a fixed x ∈ X and θ̃o
[t̄,t) given by (2.54), define

θ
o
[t,T ) ∈ argmax

θ[t,T )∈Θ[t,T )

min
λ[t̄,T )∈Λ[t̄,T )

E
[E(XT ) |Xt̄ = x] (2.55)

where now X. propagates till time t using θ̃[t̄,t) and λ[t̄,t) from initial condition Xt̄ = x

and from time t onwards, X. propagates using θ
o
[t,T ) and λ[t,T ) (the dependence of the

optimal θ
o on x and θ̃o

[t̄,t) is implicit here). Then using definition of Vt̄(x) and (2.54) and

(2.55)

Vt̄(x) = min
λ[t̄,T )∈Λ[t̄,T )

E
[E(X∗

T ) |X ∗̄
t = x] (2.56)

where X∗
. propagates till time t using θ̃o

[t̄,t) and λ[t̄,t) from initial condition X∗
t = x and

from time t onwards, X∗
. propagates using θ

o
[t,T ) and λ[t,T ). Using conditional expectation

(Resnick 1998) and Lemma 2.2.1, (2.56) becomes

Vt̄(x) = min
λ̃[t̄,t)∈Λ[t̄,t)

E[ min
λ[t,T )∈Λ[t,T )

E
{E(X̄∗

T ) | X̄∗
t = X∗

t } | X ∗̄
t = x] (2.57)

with appropriate propagation of X∗. and X̄∗
. in the appropriate time domain as in (2.56).

Note that θ
o
[t,T ) ∈ Θ[t,T ) (where this θ

o is the specific one dependent on x and θ̃o
[t̄,t)) which
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gives

Vt̄(x) ≤ min
λ̃[t̄,t)∈Λ[¯̄t,t)

E
[

max
θ[t,T )∈Θ[t,T )

min
λ[t,T )∈Λ[t,T )

E
{E(X̄T ) | X̄t = X∗

t }| X ∗̄
t = x

]
(2.58)

where X∗
. propagates till time t using θ̃o

[t̄,t) and λ[t̄,t) from initial condition X ∗̄
t = x and

from time t onwards, X̄. propagates using θ[t,T ) and λ[t,T ) with initial condition X̄t = X∗
t .

Further, using θ̃o
[t̄,t) ∈ Θ[t̄,t) gives

Vt̄(x) ≤ max
θ̃[t̄,t)∈Θ[t̄,t)

min
λ̃[t̄,t)∈Λ[t̄,t)

E
[

max
θ[t,T )∈Θ[t,T )

min
λ[t,T )∈Λ[t,T )

E
{E(X̄T ) | X̄t = Xt

}| Xt̄ = x
]

(2.59)

where X. propagates till time t using θ̃[t̄,t) and λ[t̄,t) from initial condition Xt̄ = x and

from time t onwards, X̄. propagates using θ[t,T ) and λ[t,T ) with initial condition X̄t = Xt.

By definition of Vt, (2.59) yields

Vt̄(x) ≤ max
θ̃[¯̄t,t)∈Θ[t̄,t)

min
λ̃[t̄,t)∈Λ[t̄,t)

E[V (Xt)|Xt̄ = x] (2.60)

By (2.22), the right hand side of (2.60) is Ñt̄,t(x, θ̃o
[t̄,t)), which completes the reverse

direction.

2.4.6 Proof of Theorem 2.2.1

Using Lemma 2.2.4 and choosing t̄
.= s and t

.= s + 1

Vs(x) = max
θs∈Θs

min
λs∈Λs

E[Vs+1(Xs+1|Xs = x)]

We note that for a given Xs = x, maximum over θs can be replaced by maximum over

W (as θs : x → W ) and similarly minimum over λs can be replaced by minimum over

U , which gives the one-step DPE (replacing the dummy time variable s with t above):

Vt(x) = max
w∈W

min
u∈U

E[Vt+1(Xt+1)| Xt = x] (2.61)

which completes the proof of Theorem 2.2.1.
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Chapter 3

Blue Approach in the

Partially-Observed Game

The partially-observed game where the Blue player has only some or no in-

formation about the state of the system will be now discussed. The Red player has

complete state knowledge. Note the dynamics of the state transition is still modelled as

a discrete-time controlled markov chain process (affected by the controls of both play-

ers). The information set for the Blue player, q, in this game is built on the observations

that the Blue player will make, which noticeably, can also be controlled by the Red

player. Blue decision process will based on the belief that the true state at time t, Xt,

is distributed as per qt. The Blue player also needs to estimate or (guess based on some

intel) the initial state of the system, q0. The non-random control action due to presence

of an adversary (Red) which can affect the Blue player’s control (by affecting Blue’s

observations) makes this problem interesting and challenging. We refer to deception as

the use of controls by the Red player that may allow the Red player to steer the state

which is favored by Red, or in other words, which leads to maximizing the terminal

payoff. Note that such deception controls purposely introduce non-random noise into

Blue observation process due to which the Blue may chose a sub-optimal control action

or strategy (dependent on the estimates driven by observations). Since, the Blue control

action is based on state estimates, the utility of automated Red controllers which employ

deception when useful, is an equally important and interesting problem. Some Red con-

44
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trols (more than others) may be able to corrupt Blue observations and possibly achieve a

higher payoff. We first focus on the Blue player’s need to implement an approach which

allows for some robustness to the potential deception that the Red player may employ.

We look at some of the standard approaches for the Blue player followed by a recently

proposed theory (with some revised results) that formulates the game problem using the

concept of information state and gives a deception-robust Blue control.

3.1 Partially-Observed Game Formulation

Recall that the Red player will know the state perfectly. We will assume that

there is an observation process for Blue which can be controlled by both players. Let

the observation process be y., with yt ∈ Y . Given Xt = i, and controls ut = u, wt = �wi

R̃ȳ
i (u, �w) = Pr(yt = ȳ | Xt = i) (3.1)

denotes the probability that observation yt = ȳ, where �w ∈ Wn is the Red state-feedback

control. We take Y to be a finite set for consistency (but that does not appear to be

required for the results to follow). We will assume the observation process does not

depend on the Blue control. Then using (3.1), given Xt = i and wt = �wi, the probability

that yt = ȳ becomes

R̃ȳ
i (�w) = Pr(yt = ȳ |Xt = i). (3.2)

With the observation process included, we now discuss the propagation of the distribution

qt. We first discuss the case where Blue models the (unseen) Red control actions as a

stochastic process and propagates forward a conditional probability representing its lack

of knowledge of the state of the system.

3.2 Blue Approaches Using a Stochastic Modelling of Red

Control

Blue can propagate a single distribution (initialized to q0 ∈ Q(X )) conditioned

on the above observation process. The posteriori q̂ is then obtained using the Bayesian
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update and (3.2), [
q̂ �w
t+1

]
i
=

R̃ȳ
i (�w) [qt]i∑

k∈X R̃ȳ
k(�w) [qt]k

(3.3)

However Blue doesn’t know the current Red control so one get’s the average posteriori

by

q̂t+1 =
∑

�w∈ �W n

q̂ �w
t+1p

B
�w . (3.4)

where pB
�w gives the probability with which the Blue player assumes the Red control to be

�w; Blue models the Red control to be distributed according to pB
�w . Obviously, Red may

not be using such simplistic control approach. The dynamical update given the current

ut = u is then given by

qt+1 =
∑

�w∈W n

[
P̃ T (u, �w)q̂ �w

t

]
pB

�w (3.5)

where we note that the q̂ is as given by (3.3), since it is inside the summation and we

want to use the same �w in the observation and the dynamic update before taking the

expectation using pB
�w . Also note that in the arguments of P̃ , we now have the open loop

Blue player control as the Blue player does not have the state process information, X..

Hence P̃ij(u, �w) = Pij(u, �wi), where �wi is the ith component of the Red state feedback

control �w applied to the state i and Pij definition is as given by (2.1).

In this chapter we study the Blue player’s control decision viewpoint by fixing

some hand-crafted strategy for the Red player. The use of decoys is an obvious control

action for Red in the partially-observed scenario. In this hand-crafted strategy, Red

moves the route with less entities in a stealthy mode and moves the bigger group of

entities on the other route in a non-stealthy mode with an added decoy (to further

exaggerate the asymmetry in Blue’s estimation of the true state X.). We will refer to

this strategy as the ‘RG’ or the Red-game strategy. Note that we allow the Red player

to have complete access to the appended state (Xt, qt) for making its control decision

(considering that as a worst-case scenario for Blue). In the section on deception-enabled

control for the Red player, we will see that this hand-crafted strategy is optimal for Red

to use deception for its advantage, whenever possible. The order of action/operation for

the game at any time t is as follows.
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• Observation process: The random variable yt is distributed by (3.2), where yt :

Ω → Y. For example, given Xt(ω) = i and wt = �wi, yt(ω) = ȳ, for some ȳ ∈ Y .

• Blue control decision: Blue can propagate a single distribution process q. (using

a stochastic model of Red control, pB
�w). Then, Blue can either apply the state-

feedback optimal control at some estimate of the state or use a ‘HB’ recursion based

control approach. Blue can propagate q. process from q0 using the observation

update (3.4) and dynamic update (3.5) and apply one of the following approaches

(to be discussed in section 3.2):

– The ‘MLS’ or Näıve approach.

– Risk-sensitive approach (‘RS’).

– Heuristic Blue (‘HB’).

• Finally one uses the control u (obtained from one of the previous listed items) in

the state transition (2.1) and and the dynamic update (3.5).

Recall that Blue control at time t, ut, is based on qt (with Blue assuming that

the true state Xt, is distributed as per qt). We first discuss the controls based on a single

distribution process q. carried forward by the Blue player (starting at some q0 ∈ Q(X ))

using the updates (3.4) and (3.5). We will use the following notation throughout:

Γ [a] = argmax
i∈X

(ai) (3.6)

and

γ [a] = argmin
i∈X

(ai) (3.7)

In linear control systems with quadratic cost criteria, the control obtained

through the separation principle is optimal. That is, the optimal control is obtained

from the state-feedback control applied at the state given by

x = Γ [qt] . (3.8)

where Γ is defined by (3.6). Note that the argmax computation could lead to a set of

multiple states achieving the maximum and the equality in the above equation implies
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that we choose one of those states. This would be the first and the most ’näıve’ approach

where using equations (3.8), (2.25), and (2.24), allows us to compute optimal controller

ũ∗
t (w̃

∗
t ) ∈ argmin

u∈U
E[Vt+1(Xt+1)|Xt = x]. (3.9)

where

w∗
t ∈ argmax

w∈W
min
u∈U

E[Vt+1(Xt+1)|Xt = x].

We will refer to this as the ‘MLS’ approach and the control given by (3.9) as the ‘MLS’

Blue control or the uMLS control. Note that using the above approach with the min-max

definition of value may lead to different optimal controls for Red or (and) Blue (if no

saddle point exists). Of course, the unseen Red controls will very likely not be randomly

chosen. In order to safeguard itself against those possibilities which are most dangerous,

Blue needs to somehow emphasize those possible states when deciding what action to

take. In this section, we consider one approach to that method, which we will refer

to as the risk-sensitive controller (for Blue). This method will combine the likelihood

of each possible state with the dangerousness of that state in order to obtain a state

estimate. This estimate will be averse to risk in the sense that it will tend toward those

states which are likely to lead to undesirable outcomes from the Blue perspective. This

approach will employ a heuristic that is based on an equivalence between risk-sensitive

stochastic control and stochastic games. Proving such an equivalence is technically

challenging. This equivalence has been obtained for some problem classes, but is not

proven for our problem class. Nonetheless, we will apply the resulting theory (assuming

equivalence) to our problem.

A different principle, the Certainty Equivalence Principle, is appropriate in

robust control. We have applied a generalization of the controller that would emanate

from this latter principle. This generalization allows us to tune the relative importance

between the likelihood of possible states and the risk of misestimation of the state. Let

us motivate the proposed approach in a little more detail. In deterministic games under

partial information, the Certainty Equivalence Principle indicates that one should use

the state-feedback optimal control corresponding to the state given by

x̄ = Γ [It + Vt]



49

where I is the information state and V is the value function (Fleming & Soner 1992)

(assuming uniqueness of the argmax of course). In this problem class, the information

state is essentially the worst case cost-so-far, and the value is the minimax cost-to-come.

So, heuristically, this is roughly equivalent to taking the worst-case possibility for total

cost from initial time to terminal time. (See, for instance, James et al. (James &

Baras 1996, Helton & James 1999, James & Yuliar 1995), and McEneaney (McEneaney

1999a, McEneaney 1999b).) We now discuss the mathematics which lead to the heuristic

for the algorithm described below.

The deterministic information state is very similar to the log of the observation-

conditioned probability density in stochastic formulations for terminal/exit cost prob-

lems. (In fact, this is exactly true for a class of linear/quadratic problems.) In the

stochastic linear/quadratic problem formulation, the information state at any time, t, is

characterized as a Gaussian distribution, say

pt(x) = k(t) exp
{
−1

2(x − x̄(t))T C−1(t)(x − x̄(t))
}

.

In the deterministic game formulation, the information state at any time, t, is charac-

terized as a quadratic cost, say

It(x) = −1
2(x − x̂(t))T Q(t)(x − x̂(t)) + r(t).

Interestingly, Q and C−1 satisfy the same Riccati equation (or, equivalently, Q−1 and C

satisfy the same Riccati equation). x and x̄ satisfy identical equations as well. Therefore,

It(x) = log[pt(x)] + “time-dependent constant” (McEneaney 1999b, Fleming 1997).

This motivates the algorithm proposed. This algorithm is the following: apply

state-feedback control at

x̄∗ = Γ [log q̂t + κVt] (3.10)

where q̂ is the probability distribution based on the conditional distribution for Blue

given by (3.4) and V is state-feedback stochastic game value function (c.f. (Fleming &

Soner 1992)). Here, κ ∈ [0,∞) is a measure of risk aversion. Note that κ = 0 implies

that one is employing a ‘MLS’ estimate in the state- feedback control (for the game), i.e.

Γ [log q̂t] = Γ [q̂t] .
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Note also (at least in linear-quadratic case where log[q̂t]i = It(i) modulo a constant),

κ = 1 corresponds to the deterministic game Certainty Equivalence Principle (Helton

& James 1999, James & Baras 1996), i.e. argmax{It(i) + Vt(i)}. As κ → ∞, this con-

verges to an approach which always assumes the worst possible state for the system when

choosing a control – regardless of observations. In equation (3.10), if the evaluation of

the two components log [q̂t] and V are approximately in some overlapping (or similar)

range , then a reasonable estimate for the risk-sensitive approach is ensured otherwise

the argmax computation could be driven by either one. One can scale one of the com-

ponents in the following way to get same range of numbers for evaluation of both the

components. Let qM = maxi∈X {log [q̂t]i} and qm = mini∈X {log [q̂t]i}. Similarly define

V M = maxi∈X Vi and V m = mini∈X Vi. Now one can use an alternate (modified) form

of (3.10) computation as

x̄∗ = Γ [log q̂t + KκVt] = Γ
[
log q̂t

K
+ κVt

]
(3.11)

where K = qM−qm

V M−V m . The control is then computed using equations (3.11), (2.25), and

(2.24) as

ũ∗
t (w̃

∗
t ) ∈ argmin

u∈U
E[Vt+1(Xt+1)|Xt = x̄∗]. (3.12)

where

w∗
t ∈ argmax

w∈W
min
u∈U

E[Vt+1(Xt+1)|Xt = x̄∗].

The control given by (3.12) will be the ‘RS’ Blue control, uRS .

Another heuristic based on using the state-feedback value function is now out-

lined. Given qt = q, and controls ut = u and wt = �w, let us define

J(q, u, �w) =
∑
i∈X

∑
j∈X

P̃ij(u, �w)Vt+1(j) [q̂t]i (3.13)

where q̂ is given by (3.3). Then, taking expectation with respect to the Red state-

feedback controls being distributed as per pB
�w , one gets

J̄(q, u) =
∑

�w∈W n

J(q, u, �w)pB
�w

Then let’s define

u∗,q
t ∈ argmin

u∈U
J̄(q, u) (3.14)
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to be the best Blue control based on this computation. This heuristic controller given

by (3.14) will be referred to as the ‘HB’ Blue control, uDP .

Now we turn to the case where Blue can propagate forward multiple distrib-

utions, and does not use a stochastic Red control. Instead Blue propagates each dis-

tribution forward based on all possible Red control, (�w ∈ Wn). In this manner Blue

defines an information state and propagates it forward in time. Blue control is shown

to be based on a payoff that takes into account the information state and the best cost

Blue can achieve in the future given that information state. This Blue approach is now

discussed in the following section.

3.3 Deception-Robust Theory

In a deterministic game under imperfect information, the information state for

Blue is a function of the state, and it represents the minimal cost to the opposing player

(maximal cost from the point of view of Blue) for the state to be x at current time

t given the observations up to the current time. Alternatively, in a stochastic control

problem under imperfect information, the information state is simply the probability

that Xt = x conditioned on the observations up to the current time t. Here however,

Red can affect the observation process, so one must consider the cost to Red to produce

a possibly misleading conditional probability distribution. Thus, it is natural to propose

an information state for Blue as It : Q(X ) → R where Q(X ) is the space of probability

distributions over state space X ; Q(X ) is the simplex in the first octant of Rn defined by

the unit basis vectors. For example with #(X ) = 3, one has a simplex in R3 as shown

in Figure 3.1. For simplicity of presentation, we henceforth refer to It as an information

state, although the basis for this designation does not appear until Section 3.3.3. We let

the initial information state be I0(.) = φ(.). Here, φ represents the initial cost to obtain

and/or obfuscate initial state information. The case where this information cannot be

affected by the players may be represented by a maxplus delta function (a form which,

as we will show soon, allow for tractability). φk is a max-plus delta function over Q(X )
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if there exists qk ∈ Q(X ) such that

φk(q) =

⎧⎪⎨⎪⎩
0 if q = qk

−∞ otherwise.
(3.15)

The problem will still be finite-dimensional for initial information states taking the form

of finite max-plus sums of max-plus delta functions. φ is a (finite) max-plus sum of

max-plus delta functions if there exist {qk}K
k=1 such that

φ(q) =
K⊕

k=1

φk(q) = max
k

φk(q). (3.16)

This will be the case we will concentrate on here. Let the set of max plus delta function

used in the definition of φ be denoted by Q̃φ
0 ⊂ Q(X ),

Q̃φ
0 = {q ∈ Q(X ) : φ(q) = 0}. (3.17)

Clearly note that φ(q) = 0 ⇐⇒ φk(q) = 0 for at least some k. Clearly for a finite K

and projecting all future paths using every possible �w ∈ Wn, till time t, the maximum

number of state trajectories will be K[#Wn]t. Thus, with the max-plus sum of delta

functions, the information state propagation leads to only finitely many distributions.

We first discuss the information state propagation for any initial form of I0.

3.3.1 Information State Propagation

Since wt is not known by Blue, it will be necessary to keep track of a set of

feasible conditional probabilities at time t, Qt. Note that for t prior to the current time,

ut being Blue’s control is known by Blue. We do not allow either player to know the

control history of their opponent. Let w[0,t) = {w0, w1, ., ., wt−1}, where each wr ∈ W

denotes a sequence of controls for Red. Then, if the controls for Red were independent

of the true state, x, one would have

Qt(u[0,t)) =
{
q ∈ Q(X ) : ∃w[0,t) ∈ W t such that q0 ∈ Q(X ) where

q0 is given by backward propagation (3.19) with qt = q
}
(3.18)

where
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qr−1 = P̃−T (ur−1, wr−1)qr. (3.19)

1

1

1

Simplex in 3−Dimensional Case (#X=3)

Q

I : Q       R

Figure 3.1: Simplex in a 3D

We will assume the existence of P−T in the standard sense throughout. Now

let �w[0,t) = {�w0, �w1, . . . , �wt−1} where each �wr ∈ Wn denotes a vector of state-dependent

controls for Red. One now sees that (in the absence of an observation process) the

feasible set at time t should be given by

Qt(u[0,t)) =
{
q ∈ Q(X ) : ∃�w[0,t) ∈ [Wn]t such that q0 ∈ Q(X ) where

q0 is given by backward propagation (3.21) with qt = q
}
(3.20)

where
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qr−1 = P̃−T (ur−1, �wr−1)qr. (3.21)

Recall that the observations occur at each time step just before the dynamics, and we

continue to denote the a priori by qt and the a posteriori by q̂t. Also, using R̃(ȳ, ut, �w) .=

Rȳ(u, �w) , where Rȳ(u, �w) is defined in (3.1), we define

q̂t =
(

1�R′(y,ut, �w)qt

)
D(y, ut, �w)qt. (3.22)

The possible set of posteriori distributions, Q̂t is the set of all q̂t given by (3.22) for some

qt ∈ Qt. We suppose that D is full rank; i.e. that R̃i �= 0 for all i. Inverting this, one

finds with a little work that each component qti = [1/(
∑

i R̃
−1
i q̂ti)]R̃

−1
i q̂ti.

With the addition of the observation process, the feasible set now becomes

Qt(u[0,t), y[0,t)) =
{
q ∈ Q(X ) : ∃�w[0,t) ∈ [Wn]t such that q0 ∈ Q(X )

where q0 is given by backward propagation (3.24)

with qt = q
}

(3.23)

where

qr−1 = Ĝ−1(qr, ur−1, �wr−1, yr−1) (3.24)

.= 1�R′(yr−1,ur−1, �wr−1)qr
D−1(yr−1, ur−1, �wr−1)P̃−T (ur−1, �wr−1)qr

where R̂i(yr−1, ur−1, �wr−1)
.= 1/[R̃i(yr−1, ur−1, �wr−1)].

The information state definition for t > 0 becomes

It(q; u[0,t), y[0,t))
.=

⎧⎪⎨⎪⎩
sup

q0∈Q
q,u[0,t)
0

I0(q0) if q ∈ Qt(u[0,t), y[0,t));

−∞ otherwise.
(3.25)

where for some Q0 ⊂ Q(X ) (given by the choice of I0),

Q
q,u[0,t)

0
.= {q̃ ∈ Q0 : ∃�w[0,t) ∈ [Wn]t such that q0 = q̃, using (3.24) and initial qt = q}.
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Note that we will often suppress the dependence of Qt on u[0,t), y[0,t). We note that the

information state above is a refined form of the definition in (McEneaney 2004)

It(q; u[0,t), y[0,t))
.=

⎧⎪⎨⎪⎩
sup

q0∈Q
q,u[0,t)
0

max�w[0,t)∈[W n]t I0(q0) if q ∈ Qt(u[0,t), y[0,t));

−∞ otherwise.

We remove the max over the Red control history in the refined form and re-

produce the same results as obtained in (McEneaney 2004). The following results hold

with It given by (3.25)

Lemma 3.3.1. (McEneaney 2004)

Qt+1 =
{
q ∈ Q(X ) : ∃qt ∈ Qt, �w ∈ Wn such that q = G(yt, ut, �w)[qt]

}
(3.26)

where

G(y, u, �w)[q] .= Ĝ(y, u, �w, q) = P̃ T (u, �w) 1�RT (y,u, �w)q
D(R̃(y, u, �w))q.

Lemma 3.3.2. (McEneaney 2004)

Qt �= ∅, ∀ t ∈ T̄ (3.27)

Lemma 3.3.3. (McEneaney 2004)

It+1(q) =

⎧⎪⎨⎪⎩
max�w∈W q

t
max�q∈S �w,q

t
It(q̂) if W q

t �= ∅;

−∞ otherwise
(3.28)

where

S �w,q
t = S �w,q

t (u[0,t], y[0,t]) = {q̂ ∈ Qt : q = G(yt, ut, �w)[q̂]}
W q

t = {�w ∈ Wn : S �w,q
t �= ∅}. (3.29)

In fact, one can also have an equivalent result to Lemma 3.3.3 in the following

form using (3.25):

Theorem 3.3.1.

It+1(q) =

⎧⎪⎨⎪⎩
max�q∈Sq

t
It(q̂) if Sq

t �= ∅;

−∞ otherwise
(3.30)

where
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Sq
t = Sq

t (u[0,t], y[0,t]) = {q̂ ∈ Qt : q = G(yt, ut, �w)[q̂]

for some �w ∈ Wn} (3.31)

Proof. See Appendix (3.7.1).

Note that the information state at time t maps conditional probability distrib-

utions (conditioned on the observation process) to costs (∈ R∪ {−∞}). It indicates the

maximal cost (optimal from Red perspective) to generate conditional distribution q, in a

Bayesian estimator, given the Blue observations up to time t. Though the above discus-

sion is true for any form of I0, for the case we concentrate on here, the initial information

state, I0 = φ takes the form of a max-plus delta function (3.15). This corresponds to

the situation where Red controls do not affect the initialization. For each (known) u0

and (unknown) �w0, the dynamics and observation propagation discussed above takes q0

into some q1. The set of all possible q1’s which may be generated by feasible �w0’s is Q1

(as indicated mathematically above). Note that the size of Q1 is no larger than the size

of Wn. Further,

I1(q) =

⎧⎪⎨⎪⎩
0 if q ∈ Q1;

−∞ otherwise.

This defines the propagation of the information state forward in time by one

time-step for this particular class of initial information state. Further for the case where

the information is initialized as a sum of max-plus delta functions, for each (known)

u0 and (unknown) �w0, the dynamics and observation propagation discussed above takes

qk
0 ∈ Q̃φ

0 into some qk
1 . The set of all possible qk

1 ’s which may be generated by feasible

�w0’s is Q̃φ
1 . Note that the size of Q̃φ

1 is no larger than the size of KWn. Further,

I1(q) =

⎧⎪⎨⎪⎩
0 if q ∈ Q̃φ

1 ;

−∞ otherwise.

We rewrite the feasible set for this specific form as

Q̃t(u[0,t), y[0,t)) =
{
q ∈ Q(X ) : ∃�w[0,t) ∈ [Wn]t such that q0 ∈ Q̃φ

0

where q0 is given by backward propagation (3.24)

with qt = q
}

(3.32)

(3.33)
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The information state definition becomes

It(q; u[0,t), y[0,t))
.=

⎧⎪⎨⎪⎩
sup

q0∈Q̃
q,u[0,t)
0

I0(q0) if q ∈ Q̃t(u[0,t), y[0,t));

−∞ otherwise.

for t > 0

where

Q̃
q,u[0,t)

0
.= {q̃ ∈ Q̃φ

0 : ∃�w[0,t) ∈ [Wn]t such that q0 = q̃ given

qt = q and backward propagation (3.24)}.

Lemma 3.3.4. If φ is a max-plus delta function as given by (3.15), then It(q) : Q(X )→
{−∞, 0} is a max-plus sum of at most (#Wn)t max-plus delta functions.

Proof. The proof is obvious from the above discussion.

Lemma 3.3.5. If φ is a max-plus sum of max plus delta function as given by (3.16),

then It(q) : Q(X ) → {−∞, 0} is a max-plus sum of at most K(#Wn)t max-plus delta

functions.

Proof. The proof is obvious from the above discussion.

3.3.2 State Feedback Value Function

We now turn to the state-feedback value function. The full state of the system

is now described by the true state taking values x ∈ X and Blue’s conditional probability

process taking values q ∈ Q(X ). We denote the terminal payoff for the game as E : X →
R (where of course this does not depend on the internal conditional probability process

of Blue). Thus the state-feedback value function at the terminal time is

VT (x, q) = E(x). (3.34)

One issue that arises is the information available to Red. One option would be to assume

that it knows only the actual true state, x. However, with full knowledge of the state

and observations, Red could also construct the conditional probability, q. This second

model is more conservative in terms of construction of the Blue control, and this model

will be used here.
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The state of the state-feedback game at time t is (Xt, qt). Blue will have access

only to the probability distributions up to the current time, while Red will have access

to the true state as well.

We define the strategies for Blue as follows. We continue to use the convention

that interval subscripts indicate sequences; for instance, u[t̄,r] = {ur}r
r=t̄. Since Blue has

access only to probability distributions, the set of strategies for Blue over time interval

[t̄, T − 1] is

Λ[t̄,T−1] =
{

λ[t̄,T−1] : QT−t̄ → UT−t̄, nonanticipative in q·
}

. (3.35)

Note that λ[t̄,T−1] is nonanticipative in q· if given any t ∈ {t̄, t̄ + 1, . . . , T − 1} and any

q[t̄,T−1], q̃[t̄,T−1] ∈ QT−t̄ such that qr = q̃r for all r ≤ t, then λt[q[t̄,T−1]] = λt[q̃[t̄,T−1]].

Further, note that λt is independent of x. More specifically, if the true state Xt �= X̂t,

but qr = q̃r for all r ≤ t, then one still has λt[q[t̄,T−1]] = λt[q̃[t̄,T−1]]. For notational

simplicity, let λt ≡ λ[t,T ]. For reasons of robustness, we will be interested in an upper

value (giving advantage to Red). Consequently, the strategy set for Red is naturally

Θ[t̄,T−1] =
{

θ[t̄,T−1] : X T−t̄−1 × QT−t̄ → Wn(T−t̄), nonanticipative in X·, q·
}

.

Note that the dependence of θt on the current state, Xt, is implicit in the fact that �w

is a vector of length n where component i represents the control w to be played if the

current state is Xt = i. The strategy set Θ corresponds to the closed-loop perfect state

(CLPS) information pattern (Basar & Bernhard 1991, Basar & Olsder 1982), while λ is

similar to CLPS but with the x-portion of the state unobserved.

Since Blue knows only the q· process, the best that could be achieved from

Blue’s perspective would be

V 1
t̄ (q) = inf

λ[t̄,T−1]∈Λ[t̄,T−1]

sup
θ[t̄,T−1]∈Θ[t̄,T−1]

Eq

{
E[E(XT ) |Xt̄ = X]

}
(3.36)

where Eq represents expectation over X with P (X = i) = qi for all i ∈ X , and the

dynamics are propagated with strategies λ and θ. Since the above formulation is slightly

nonstandard, some equivalent formulations follow.



59

Lemma 3.3.6. (McEneaney 2004) The optimal Blue value, V 1
t̄ , satisfies

V 1
t̄ (q) = inf

λ[t̄,T−1]∈Λ[t̄,T−1]

max
�w[t̄,T−1]∈W n(T−t̄)

Eq

{
E[E(XT ) |Xt̄ = X]

}
(3.37)

= inf
λ[t̄,T−1]∈Λ[t̄,T−1]

Eq

{
max

�w[t̄,T−1]∈W n(T−t̄)
E[E(XT ) |Xt̄ = X]

}
(3.38)

= inf
λ[t̄,T−1]∈Λ[t̄,T−1]

Eq

{
max

θ[t̄,T−1]∈Θ[t̄,T−1]

E[E(XT ) |Xt̄ = X]
}

. (3.39)

Define

Mt̄(x, q, λ[t̄,T−1])
.= max

θ[t̄,T−1]∈Θ[t̄,T−1]

E[VT (XT , qT ) |Xt̄ = x] (3.40)

so that

V 1
t̄ (q) = inf

λ[t̄,T−1]∈Λ[t̄,T−1]

Eq

{
Mt̄(X, q, λ[t̄,T−1])

}
. (3.41)

Noting the fact that U is finite, one sees that there exists an optimal λ
0
[t̄,T−1] (see

(McEneaney 2004)) given by

λ
0
[t̄,T−1] = argmin

λ[t̄,T−1]∈Λ[t̄,T−1]

Eq

{
Mt̄(X, q, λ[t̄,T−1])

}
. (3.42)

We also define

Vt̄(x, q) = Mt̄(x, q, λ
0
[t̄,T−1]),

which one might interpret as a Red value function, but that will not be pursued here.

Now that the state-feedback value has been defined, one needs to show how it

can be obtained by backward dynamic programming propagation. Let V d
t (x, q) be the

function obtained by the following backward dynamic programming iteration. (Note that

the d superscript notation does not indicate an index for a set, but is instead intended

to denote the function obtained by this backward dynamic programming iteration.) It

must be shown that V d
t (·, ·) = Vt(·, ·). Let V d

T (x, q) = E(x) for all x ∈ X and q ∈ Q(X ).

We now suppose that one has V d
t+1(·, ·), and demonstrate how one obtains V d

t (·, ·).

1. First, let the vector-valued function �Mt be given component-wise by

[ �Mt]x(q, u) = max
�w∈W n

[∑
j∈X

P̃xj(u, �w)V d
t+1(j, q

′(q, u, �w))
]

(3.43)

where
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q′(q, u, �w) = P̃ T (u, �w)q (3.44)

and the optimal �w is

�w0
t = �w0

t (x, q, u) = argmax
�w∈W n

{∑
j∈X

P̃xj(u, �w)V d
t+1(j, q

′(q, u, �w))
}

. (3.45)

2. Then define Lt as

Lt(q, u) = qT �Mt(q, u), (3.46)

and note that the optimal u is

u0
t = u0

t (q) = argmin
u∈U

Lt(q, u) = argmin
u∈U

qT �Mt(q, u). (3.47)

3. With this, one obtains the next iterate from

V d
t (x, q) =

∑
j∈X

P̃xj(u0
t , �w0

t )V
d
t+1(j, q

′(q, u0
t , �w0

t )) = [ �Mt]x(q, u0
t ) (3.48)

and the corresponding best achievable expected result from the Blue perspective is

V d,1
t (q) = qT �Mt(q, u0

t ). (3.49)

Consequently, for each t ∈ {0, 1, . . . , T} and each x ∈ X , V d
t (x, ·) is a piecewise

constant function over simplex Q(X ). (Once we obtain Vt ≡ V d
t , this will obviously

imply the corresponding piecewise constancy of the state-feedback value function Vt.)

Due to this piecewise constant nature, propagation is relatively straight-forward (more

specifically, it is finite-dimensional in contradistinction to the general case). However,

this is slightly less critical than the propagation issue for the information state, since

the state-feedback value may be pre-computed, while the information state must be

propagated in real-time.

We now show that in fact, Vt ≡ V d
t for all t ∈ [0, T ]. By definition, V d

T (x, q) =

E(x) = VT (x, q) for all x ∈ X and q ∈ Q(X ). The next step in proving the equivalence

is to prove that Vt satisfies the dynamic programming principle (DPP). For the problem

considered here, the DPP takes the form of the following theorem.

Theorem 3.3.2. (McEneaney 2004) Let 0 ≤ t < r ≤ T . Then

Vt(x, q) = Mt(x, q, λ
0
[t,T−1]) = M̃[t,r)(x, q, λ̃

0

[t,r−1]) (3.50)

where
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M̃[t,r)(x, q, λ[t,r−1]) = max
θ[t,r−1]∈Θ[t,r−1]

E
[
Vr(Xr, qr) |Xt = x

]
(3.51)

qt = q, and

λ̃
0

[t,r−1] = argmin
λ[t,r−1]∈Λ[t,r−1]

Eq

{
M̃[t,r)(X, q, λ[t,r−1])

}
. (3.52)

Using this DPP (Theorem 3.3.2), one can inductively obtain the equivalence of

our defined value and the output of the DPP iteration (3.43)–(3.49).

Theorem 3.3.3. (McEneaney 2004)

Vt = V d
t ∀ t ∈ [0, T ]

and of course

V 1
t = V d,1

t ∀ t ∈ [0, T ].

Again, this validates the DPP iteration (3.43)–(3.49) as a means for computing

the state-feedback value function, Vt.

3.3.3 Robustness

The remaining component of the computation of the control at each time instant

is now discussed. The control computation for such games is typically performed via the

use of the Certainty Equivalence Principle (Basar & Bernhard 1991, Helton & James

1999)). When the Certainty Equivalence Principle holds, the information state and

state-feedback value function can be combined to obtain the “optimal” controls which

can be shown to be robust in a sense to be discussed below. The chief gain is that this

allows one to compute a state-feedback controller ahead of time, and then only propagate

the information state “estimator” forward in time rather than computing the control as a

function of the information state in real time. Otherwise, the computational cost would

be prohibitive.

To simplify notation, note that by (3.46), (3.43) and Theorem 3.3.3 for any u,

Lt(q, u) = Eq

[
max
�w∈W n

∑
j∈X

P̃Xj(u, �w)Vt+1(j, q′(q, u, �w))
]

where the notation q′(q, u, �w) is defined in (3.44). Let us hypothesize that the optimal

control for Blue is

um
t

.= argmin
u∈U

[
max

q∈Q(X )
{It(q) + Lt(q, u)}

]
. (3.53)
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We will assume that um is a strict minimizer. Note that um is a strict minimizer of a

function f(u) if f(um) < f(u) for all u �= um. One has obvious robust game inequalities

such as the following:

Lemma 3.3.7. (McEneaney 2004) Suppose um
t is a strict minimizer. Then, given any

ũt �= um
t , ∃ q1, �w1 and ε > 0 such that

{It(q1) + Eq1 [
∑
j∈X

P̃xj(ũt, �w1)Vt+1(j, q
′
(q1, ũt, �w1))]}

> max
q∈Q(X )

{It(q) + Eq max
�w∈W n

[
∑
j∈X

P̃xj(um
t , �w)Vt+1(j, q′(q, um

t , �w))]} + ε (3.54)

Lemma 3.3.8. Let I0,u[0,t) and y[0,t) be given. Suppose um
t is a strict minimizer. Then,

given any ũt �= um
t , ∃ q1

0 ∈ Q(X ), �w1
t ∈ [Wn]t and ε > 0 such that

E
q
′′
t
{I0(q1

0) + [
∑
j∈X

P̃Xj(ũt, �w1
t )Vt+1(j, q

′
(q

′′
t , ũt, �w1

t ))]} − ε

> max
q0∈Q(X )

max
�w[0,t]∈[W n]t+1

E
q
′
t
{I0(q0) +

∑
j∈X

P̃Xj(um
t , �wt)Vt+1(j, q′(q

′
t, u

m
t , �wt))} (3.55)

Proof. See Appendix (3.7.2).

In order to prove robustness with respect to the value of the game and not just

{It(.) + Lt(.)}, one must first define an imperfect observation value function in terms of

the worst-case expected cost (from the Blue point of view). In order to make this section

more readable, we will begin by writing down this value function, and then describe the

terms within it rather than vice-versa. For technical reasons, it appears best to work

with the following value function. This value at any time t̄ is

Zt̄
.= sup

qt̄∈Qt

inf
λ[t̄,T−1]∈Λ[t̄,T−1]

sup
θ[t̄,T−1]∈θ[t̄,T−1]

[
It̄(qt̄) + Eqt̄

{E[E(XT )|Xt̄ = X]}
]
. (3.56)

= sup
qt̄∈Qt

[
It̄(qt̄) + inf

λ[t̄,T−1]∈Λ[t̄,T−1]

sup
θ[t̄,T−1]∈θ[t̄,T−1]

Eqt̄
{E[E(XT )|Xt̄ = X]}

]
. (3.57)

The expectation uses the (Blue) assumption that the distribution of Xt̄ is qt̄

for each qt̄ ∈ Qt̄ and is taken not only over Xt̄ but also over all observation and dynamic
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noise from time t̄ to terminal time T . Note that this is not a full upper value in that the

supremum over qt̄ occurs outside the infimum over Blue controls λ[t̄,T−1]. The strategy

set for Blue is

Λ[t̄,T−1] =
{

λ[t̄,T−1] : Y T−t̄ → UT−t̄, nonanticipative in y·−1

}
where “nonanticipative in y·−1” is defined as follows. A strategy, λ[t̄,T−1] is nonanticipa-

tive in y·−1 if given any t ∈ (t̄, T − 1] and any sequences y·, ỹ· such that yr = ỹr for all

r ∈ [t̄, t − 1], one has λt[y] = λt[ỹ]. Note that since the infimum over λ[t̄,T−1] in (3.56)

occurs inside the supremum over qt̄, the “optimal” choice of λ may depend on qt̄. Also

note that the “optimal” choice of λ[t̄,T−1] may depend on It̄(·). The strategy set for Red

(neglecting qt̄ as a Red control) is naturally

Θ[t̄,T−1] =
{

θ[t̄,T−1] : Y T−t̄ → Wn(T−t̄), nonanticipative in y·−1

}
. (3.58)

Also, Qt = Qt(u[0,t), y[0,t)) as given in (3.23). Since the supremum over θ[t̄,T−1] is inside

the infimum, and the �w[t̄,T−1] process is a feedback on the state, then as in Lemma

3.3.6, one can replace the supremum over θ[t̄,T−1] ∈ Θ[t̄,T−1] with a maximum over

�w[t̄,T−1] ∈ Wn(T−t̄), and so

Zt̄ = sup
qt̄∈Qt

inf
λ[t̄,T−1]∈Λ[t̄,T−1]

max
�w[t̄,T−1]∈W n(T−t̄)

[
It̄(qt̄) + Eqt̄

{E(XT )}] . (3.59)

The first step in obtaining the robustness result is to show that the value, Zt̄

has the following representation

Theorem 3.3.4. (McEneaney 2004)

Zt̄ = sup
qt̄∈Qt̄

[
It̄(qt̄) + V 1

t̄ (qt̄)
]

∀ t̄ ∈ [0, T ]. (3.60)

In other words, the game value Zt̄ is the supremum of the sum of the information

state, It̄, and the optimal expected state-feedback value, V 1
t̄ , from Blue’s perspective.

It is interesting to note that in the max-plus algebra (Cuninghame-Green 1979), (3.60)

takes the form

Zt̄ =
∫ ⊕

Qt̄

V 1
t̄ (q) ⊗ It̄(q) dq (3.61)

where
∫ ⊕
A indicates max-plus integration over set A. In other words, (3.61) is the

max-plus expectation of V 1
t̄ with respect to max-plus probability It̄ (see (Akian 1999),

(Fleming 2004) for example).
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Using Theorem 3.3.4, one can show (McEneaney 2004) that

Zt̄ = sup
qt̄∈Qt

[
It̄(qt̄) + min

u∈U
Lt̄(qt̄, u)

]
= sup

qt̄∈Qt

min
u∈U

[
It̄(qt̄) + Lt̄(qt̄, u)

]
. (3.62)

In order to obtain the Robustness/Certainty Equivalence result to follow, it is

sufficient to make the following Saddle Point Assumption. We assume that

sup
qt̄∈Qt

min
u∈U

[
It̄(qt̄)+Lt̄(qt̄, u)

]
= min

u∈U
sup

qt̄∈Qt

[
It̄(qt̄)+Lt̄(qt̄, u)

]
∀ t̄ ∈ [0, T ]. (A5.1)

With Assumption (A5.1), (3.62) becomes

Zt̄ = min
u∈U

sup
qt̄∈Qt

[
It̄(qt̄) + Lt̄(qt̄, u)

]
. (3.63)

Finally, after some work , one obtains the robustness result:

Theorem 3.3.5. (McEneaney 2004) Let t̄ ∈ {0, T − 1}. Let I0, u[0,t̄−1] and y[0,t̄−1] be

given. Let the Blue control choice, um
t̄ , given by (3.53) be a strict minimizer. Suppose

Saddle Point Assumption (A5.1) holds. Then, given any Blue strategy, λ[t̄,T−1] such that

λt̄[y·] �= um
t̄ , there exists ε > 0, qε

t̄ and �wε
[t̄,T−1] such that

sup
q∈Qt̄

{It̄(q) + Lt̄(q, u
m
t̄ )} = Zt̄ ≤ It̄(q

ε
t̄ ) + Eqε

t̄

{
E[E(Xε

T ) |Xε
t̄ = X]

}
− ε (3.64)

where Xε denotes the process propagated with control strategies λ[t̄,T−1] and �wε
[t̄,T−1].

Remark 3.3.1. Theorem 3.3.5 also serves as a basis for referring to It as an information

state – at least in the case where Assumption (A5.1) holds.

3.4 Partially-Observed Game: MAG Revisited

We introduce some additional parameters for the extending the modelling of

the example discussed in the state-feedback case.

• pn: Probability of observing a non-stealthy Red entity.

• ps: Probability of observing a stealthy Red entity.

• pf : Probability of a observing a Red decoy.
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• ps: Probability of all Red entities on a side being stealthy. This is a model para-

meter used internally by the Blue controller when Blue uses the näıve approach.

Recall that for the MAG example in the complete-information state-feedback

case, the optimal control for Red was dependent on the two cases, AD and AI . In par-

ticular, for the case AI , optimal Red control in the complete-information state-feedback

case was to use any w̄k ∈ W . For the AD case, Red entities on both routes were made

stealthy with the optimal Red choice, w̄1 ∈ W . The results to follow in this chapter

and chapter 4 will be for the AI case and we assume hereon that the Red player will

use the ‘RG’ strategy for its control computation (otherwise one will use a random red

control which is not expected from an intelligent adversary). The following study will be

focused on comparing the deception-robustness Blue approach compared to the standard

existing approaches. We will focus on two main approaches namely the ‘MLS’ and the

deception-robust for the major part of the remaining discussion.

Note that the Red player may deceive Blue by the use of stealth and decoys

when appropriate. Recall that Red can start at one of the following initial states, XR
0 :

(0, 4), (1, 3), (2, 2), (3, 1), and (4, 0). The cases (0, 4) and (4, 0) are trivial from structure

and (1, 3) is axially symmetric to (3, 1). As shown in the state-feedback game section

(1, 3) gives higher mean-sample payoff in the partially-observed games, so we discuss

simulation results for this Red initial state (unknown to Blue). Note that the initial

Red state also affects Blue’s observations (and consequently the information state or

the observation conditioned distributions). The ‘RG’ strategy forms a formidable Red

opponent. The low probability of detecting the single Red entity on the western route

relative to the likely observations on the eastern route would tend to lure a näıve Blue

controller into thinking that all the Red forces are along the eastern route, and to only

apply UAVs there in order to have the highest probability of stopping all the forces on

this route. This is indeed the optimal Blue choice when using a Bayesian Filter (or the

näıve ‘MLS’ approach), but the deception-robust approach does not fall for this deception

and provides resistance to the western Red entities as well. Note that use of stealth is

equivalent to low values of ps. In particular we allow the observation probability for a Red

decoy to be the same as for a non-stealthy Red (non-decoy). With Red RG approach,

we return to Blue’s control mechanism and the affect of ps, ps, and pf mismodelling on
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Blue’s expected payoff. Recall that Blue is not aware of the true initial Red state. The

objective for the rest of the chapter is to explore the merits of using a complex control

algorithm like deception-robust over the ‘MLS’ approach.

Assumptions and Approximations

The computation of Vt(x, q) as outlined in (3.43)-(3.49) requires that one al-

ready has pre-computed Vt+1(x̄, q̄), ∀ (x̄, q̄) ∈ X × Qt+1. In the one step recursion from

terminal time T to T − 1, since VT (x, q) only depends on x, one can obtain the approxi-

mation to the value at time T − 1 by the iterative scheme outlined in (3.43)-(3.49). For

the example problem under consideration #X = 13, but Qt is propagated in real time

and one cannot pre-compute Vt+1(x̄, q̄) for all (x̄, q̄) ∈ X × Qt. One way to circumvent

this is to approximate each q ∈ Qt by some q̃ ∈ Q̃, where Q̃ is some predefined set of

distributions (on which one can pre-compute V (x, q̃), for every (x, q̃) ∈ X × Q̃). One can

also approximate the future cost Vt+1(x, q) by Vt+1(x) and then repeat the computation

outlined in (3.43)-(3.46).

1.

[ �Ma
t ]x(q, u) = max

�w∈W n

[∑
j∈X

P̃xj(u, �w)Vt+1(j)
]

(3.65)

and the optimal Red control in this internal Blue computation is

�wa
t = �wa

t (x, q, u) = argmax
�w∈W n

{∑
j∈X

P̃xj(u, �w)Vt+1(j)
}

. (3.66)

2. Then define La
t as

La
t (q, u) = qT �Ma

t (q, u), (3.67)

and the ’approximate’ Blue control ua can then be computed as a function of q

ua
t = argmin

u∈U

[
max
q∈Qt

{It(q) + La
t (q, u)}

]
(3.68)

Recall that we are initializing I0 as the max-plus sum of max plus delta func-

tions, so we only compute controls based on q ∈ Qt (and hence It(q) = 0 and it drops

out of the computation, since Vt(.) > 0 for all t). Finally

ua
t = argmin

u∈U

[
max
q∈Qt

La
t (q, u)

]
= argmin

u∈U

[
max
q∈Qt

qT �Ma
t (q, u)

]
(3.69)
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Clearly with this approximation the Blue control obtained will not have the

robustness properties derived in section 3.3.3. However, one expects that using the

control by (3.69) Blue will not achieve a better payoff than when using the actual robust

control given by (3.53), i.e. ua /∈ argminu∈U

[
maxq∈Q(X ){Lt(q, u)}] . The results to follow

will indicate that even with Blue using the control given by (3.69), one obtains a much

lower payoff than when Blue uses any other approach outlined in the section 3.2. That

clearly indicates that Blue will do no worse compared to other techniques when Blue

uses the robust control given by (3.53).

Observation Model

For simplicity of exposition and to extend the masked attack problem, from

complete-information game to the partial-information game in the simplest manner, we

will define Wn as a natural extension of the set W definition in the state-feedback section

(with the addition of using a decoy as a control). One could allow for the possible state-

dependent Red control choices, �w, in a manner where each Red entity can be turned

stealthy individually based on Xt. However, as we will see shortly, a definition of Wn

that only allows the Red player to turn all entities stealthy or non-stealthy on a given

route for all time (with the choice of using a decoy on each route) is sufficient to capture

the affect of partial information on Blue performance and sub-optimal control decision.

Let

ŴI = {ŵ1, ŵ2, ŵ3, ŵ4} (3.70)

where ŵi ∈ ŴI are defined as an extension of the corresponding w̄i ∈ W control (given

in section 2.3) with an addition of a non-stealthy decoy on each route. For example, ŵ1

is the extension of the Red control w̄1 (where Red entities operate stealthily on both

routes), with a non-stealthy decoy on each side. Now define

Wn
I = {�w : �wi = w, ∀ i ∈ X , for the some w ∈ ŴI} (3.71)

Also, let

W̃ = {w̃1, w̃2, w̃3, w̃4} (3.72)

where w̃i ∈ W̃ are defined as an extension of the corresponding w̄i control with an

addition of a non-stealthy decoy on the eastern route. For example, w̃2 is the extension
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of the Red control w̄2 (where Red entities operate stealthily on the western route and

non-stealthily on the eastern route), with a non-stealthy decoy on the eastern route. The

Red ‘RG’ strategy uses w̃2 ∈ W̃ . Also define

Wn = {�w : �wi = w, ∀ i ∈ X , for the some w ∈ W̃} (3.73)

It is very obvious by construction that Wn and Wn
I are only consisting of open loop

controls for the Red player. Let us assume that the Red player will always choose to

use a decoy on the eastern route only; the actual Red control belongs to W̃ . Also, if one

chooses pf = 0, then one has ŴI = W̃ and Wn = Wn
I .

Note that if we will allow the Blue player to have access to Wn
I , then Blue has

imperfect information on the Red control set. However access to Wn will give perfect

information on the Red control set to the Blue player. Recall that Blue uses the Wn

knowledge to assume a stochastic model for the Red control by choosing some pB
�w or in

the deception-robust approach it uses Wn to propagate q. along each �w ∈ Wn. Clearly

the lack of information on Wn, the Red state-feedback control set, will adversely affect

Blue’s performance. At this point we present a result to demonstrate the sensitivity

of the ‘MLS’ approach compared to the deception-robust approach with different levels

of information imperfection. Without providing any details on the parameters used in

various information levels at this point, we only make brief comments on the extreme

levels of imperfection. In the least imperfect scenario, the Blue player will have access

to the correct Red control set Wn (and where Red is only using w ∈ W ) and all the

simulation parameters are perfectly known by the Blue player. In the most imperfect

scenario there is mismodelling of simulation parameters by Blue. In fact, the Blue player

only has access to the imperfect Red control set Wn
I whereas the Red player is actually

using w̃ ∈ Wn (more specifically w̃2). These levels are shown in are the extreme left and

right of Figure 3.2.

Note that the ‘MLS’ approach (’*’ curve) gives a higher mean-sample payoff

compared to the ‘DR’ approach (’o’ curve). From the lowest imperfect information level

on the left to the most imperfect information level on the right, the ‘MLS’ approach

gives a very slowly increasing mean-sample payoff with increasing imperfection levels, or

slightly worse performance for Blue. On the other hand the ‘DR’ approach is quite robust
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Figure 3.2: Comparing the sensitivity of ‘MLS’ approach to the ‘DR’ approach

to the levels of imperfect information and hence the advantage of using ‘DR’ approach

is clearly improving as one moves towards the right extreme (with most imperfect levels

of information) where there is a almost a 75% drop in the mean-sample payoff from the

‘MLS’ approach. In the least imperfect scenario there is a still a significant advantage

of about 30% using ’DR” over the ‘MLS’ approach. In fact note that the ‘DR’ approach

in the most imperfect information scenario achieves a lower mean-sample payoff com-

pared to the mean-sample payoff using the ‘MLS’ approach even in the least imperfect

information scenario. We will be doing most of our studies in the most imperfect infor-

mation regime (unless stated otherwise). We makes two quick notes before constructing

the observation model. Firstly, when Blue uses a stochastic model of Red and Red is

using a fixed hand-crafted strategy like ‘RG’, there is inherent mismodelling owing to

the choice of pB
�w . Secondly, in the most imperfect information regime as defined above,

we have another inherent mismodelling due to Wn
I being used by Blue instead of Wn.

However our comparisons of the Blue approaches will have the same underlying mod-

elling assumptions, so the results will be indicative of the sensitivity of each approach
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under partially-observed scenario.

We now construct an observation model by denoting the observation probability

on each side as a function of w̄ ∈ W only (neglecting the presence of decoys or pf =

0). This will only capture the affect of using stealth as a Red control affecting Blue’s

observation process. Using the notation defined earlier, the observation probability for

the left side can be defined as

pL
o (w) .= 1W s

L
(w)ps + 1W n

L
(w)pn. (3.74)

Similarly the observation probability for the right side be defined as

pR
o (w) .= 1W s

R
(w)ps + 1W n

R
(w)pn (3.75)

Defining y in terms of the components on the western and the eastern route as

y = (y1, y2), we assume that the observation on each side is independent of the other; the

random measurement one one side, y1, is independent of the random measurement on the

other side, y2 (but obviously dependent on the Red control). Further with no dependence

on u, the observations have no dependence on XB (by the dynamics of the masked attack

example). Then, given Xt = (XR, XB), with XR = (i1, i2), the observation probability

as a function of Red control w (in the absence of decoys) is given by:

Pr(y|XR)[w] = Pr((y1, y2)|(i1, i2))[w] = [Pr(y1|i1)] [w] [Pr(y2|i2)] [w].

The terms on the each route are computed using (3.74) and (3.75), for example,

Pr(y1|i1)[w] =

⎛⎝ i1

y1

⎞⎠ (pL
o )y1(1 − pL

o )i1−y1 . (3.76)

gives the observation probability on the western route. Then using (3.76) (and similar

definition of Pr(y2|i2)[w]) one gets

Pr(y|XR)[w] =

⎛⎝ i2

y2

⎞⎠⎛⎝ i2

y2

⎞⎠ (pL
o )y1(pR

o )y2(1 − pL
o )i2−y2(1 − pR

o )i2−y2

The above equation is now extended to include presence of decoys on each side (pf �= 0).

We now choose �w ∈ Wn
I which by (3.71) is equivalent to choosing ŵ ∈ ŴI . Also, by

definition ŵ ∈ ŴI , Red employs a decoy on both routes as an extension of w̄ ∈ W .
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Table 3.1: Comparing different Blue approaches
pf parameter Mean-sample payoff

‘MLS’ ‘HB’ ‘RS’ ‘DR’
0.3 16.24 8.62 13.86 4.86
0.4 15.88 8.84 14.12 5.12
0.5 16.44 9.24 14.32 4.68
0.6 15.96 8.58 14.48 4.76
0.7 15.82 9.38 13.18 5.08
0.8 16.06 9.36 13.04 5.48

Then, the observation probabilities using decoys on each route are derived from their

corresponding observation probabilities without using decoy as below:

Pr(yk|XR
k )[ŵ] =

⎧⎪⎨⎪⎩
{Pr(yk − 1|XR

k )[w]}pf + {Pr(yk|XR
k )[w]}(1 − pf) if yk > 0;

{Pr(yk|XR
k )[w]}(1 − pf) otherwise.

(3.77)

Then using k = 1 and k = 2 in (3.77) gives the observation probability in

presence of decoys on the western and the eastern route respectively.

3.5 Comparing Different Blue Approaches

We present some results for the AI case with some of the parameter values as

follows, pN
2 = pS

2 = 0.85, pN
1 = pS

1 = 0.425, ps = 0.2, pn = 0.8, pfT = 0.8, and κ = 0.6.

Note that we set all the simulation and Blue parameters to be the same except the false

alarm parameter, i.e., pfT �= pfB. We vary the parameter pfB and the simulation results

using each approach as a function of pfB are given in Table 3.1.

There are several interesting things that these results indicate. Firstly, the

mean-sample payoff for each approach is not very sensitive to the variation in pfB. Note

that we are in the most imperfect regime; very low probability of detecting the stealthy

Red entities (ps = 0.2) and the Blue player using the set Wn
I for its control computation.

The mean-sample payoff is determined by the Blue control sequence alone since we are

in the AI case. The results indicate that there is no change in the Blue player’s strategy

using any of these approaches for the specifically chosen parameter regime. The ‘DR’

approach achieves the minimum mean-sample payoff and is the optimal Blue control.
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The main difficulty with using the ‘RS’ approach is a choice of κ, which may

be obtained for a given problem after possibly lot of simulations and trial and error. For

the example studied in this chapter we varied κ between 0 and 10 to demonstrate the

nature of the risk-sensitive approach in general. Firstly, for the case κ = 0, we have

the risk-sensitive approach equivalent to the näıve approach; apply the state-feedback

control at the ‘MLS’ estimate. As κ increases we expect the approach to achieve a lower

mean-sample payoff for Blue, since it is taking into account the expected future cost as a

risk-sensitive measure. Note however that in the adversarial environment the effect of the

Red player’s control on the Blue player’s observations has more complex consequences

than that of random noise. The risk-averse approach gets the best mean-sample payoff for

Blue with κ between 0.5 and 0.6 (note again that this choice will be problem specific).

As κ increases beyond this point, the mean-sample payoff begins increasing, and has

a horizontal asymptote which corresponds to a Blue controller which ignores all the

observations and assumes the worst-case possible Red configuration. The ‘RS’ approach

is a useful approach if one has a structured methodology to find the optimal κ.

Referring to Table 3.1, we also note that the ‘MLS’ approach is the worst

approach for Blue. Surprisingly, the heuristic ‘HB’ approach gives a lower mean-sample

payoff compared to the ‘MLS’ and the ‘RS’ methods. Their is some structural similarity

between the ‘DR’ and the ‘RS’ methods which might provide some explanation for this

result. The optimal control computation using the ‘HB’ approach given by (3.13)-(3.14)

computes the expected payoff using the state-feedback value Vt+1 and pB
�w (like the term

La(q, u) except that here their is no maximization over �w ∈ Wn). Our approximation

of the ‘DR’ approach computes a very similar expected cost but maximizes over the

Red state-feedback control space instead of using pB
�w . Of course, finally the max over

qt ∈ Q is computed to give the approximation of the robust controller, see (3.68). The

computation using ‘HB’ approach clearly does not reason for the robustness at all, unlike

the ‘DR’ approach. There is no proven theory behind the heuristic ‘HB’ approach and

it seems to be ’loosely’ inspired by similarity in structure to the ‘DR’ approach. Hence,

we will explore the difference in performance between the simplest control approach (the

‘MLS’ approach) and the most complex one (the ‘DR’ approach); we will focus mainly

on the ‘MLS’ and the ‘DR’ approach for the simulation results to appear in the following
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discussions.

3.5.1 Initializing the Controller

Instead of taking a vector form of q, here we represent q as a matrix to reflect

that the Red player state is composed of number of Red entities on two routes, i.e.

XR = (r1, r2). The Blue player will model the possibility of a Red decoy on each route

with the knowledge that there are at most 4 Red teams (and at least 1, otherwise there is

no game). The size of q in the matrix representation is (5×5) (allowing for XR = (0, a) or

XR = (b, 0)). So the entry qi,j would give the probability for the state XR = (i−1, j−1)

(obviously qi,j = 0, if i + j > 5). A uniform distribution qU
0 would then be of the form

(pc
1 = 1

14):

qU
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 pc
1 pc

1 pc
1 pc

1

pc
1 pc

1 pc
1 pc

1 0

pc
1 pc

1 pc
1 0 0

pc
1 pc

1 0 0 0

pc
1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or if Blue uses non-zero mass only for the Red states such that total number of Red

entities is at least two, then (pc
1 = 1

14):

q̄U
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 pc
1 pc

1 pc
1

0 pc
1 pc

1 pc
1 0

pc
1 pc

1 pc
1 0 0

pc
1 pc

1 0 0 0

pc
1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Blue could also choose a distribution with higher mass corresponding to a higher number

of Red teams as qNU
0 :

qNU
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 pc
1 pc

2 pc
3 pc

4

pc
1 pc

2 pc
3 pc

4 0

pc
2 pc

3 pc
4 0 0

pc
3 pc

4 0 0 0

pc
4 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.78)
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One set of constants in equation (3.78) can be assigned the following values,

pc
1 = 1

20 , pc
2 = 1

15 , pc
3 = 3

40 , and pc
4 = 2

25 . This would assign a mass of 0.1, 0.2, 0.3 and 0.4

mass corresponding to total Red entities (r1+r2) being 1, 2, 3, and 4 respectively. Recall

that we will be mainly considering φ which are sums of max-plus delta functions (these

can alternatively be represented by sets of distributions). Since an observation at any

state with 0 mass will lead to some computational issues and ill-defined propagation, we

can replace the 0’s with reasonably small ε. We will refer to these type of distributions

as qG,0
i,j , a delta function distributions corresponding to the state XR = (i − 1, j − 1).

qG
2,4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε ε ε ε ε

ε ε ε 1 − 14ε 0

ε ε ε 0 0

ε ε 0 0 0

ε 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.79)

The decision on what is the best set of initial distributions depends on several

factors, of which, information on Red’s initial state plays a critical role.

Recall that we consider only the case where the initial information state in the

deception-robust controller, I0 = φ, is zero on finitely many qk ∈ Q̃φ
0 (in the case of

max-plus sum of max-plus delta functions) and −∞ elsewhere. Choosing the proper

φ at the outset is important in ensuring good future behavior of the controller. This

issue is a significant generalization over the analogous issue for standard methods where

one simply needs to pick a reasonable initial probability distribution (covariance for

example). Here, in the deception-robust case, one could imagine that very poor initial

information might be represented by a φ which is zero only on the uniform distribution

since the uniform distribution represents a total lack of knowledge. Alternatively, one

might also represent this lack of knowledge by letting φ be zero (or a sufficiently high

mass) on every distribution which is one at a single state and zero (or a small ε) elsewhere.

These two possibilities represent radically different concepts for the reason for our lack of

initial information of the opponent state. The first approach corresponds to a world-view

wherein all of our lack of knowledge is due to unknown random variables – as though

the initial state was random. The second approach corresponds to a world-view where
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one imagines the opponent carefully choosing its initial state with no randomness about

the actual initial state at all. Thus, we see that the initialization issue is a good deal

more complex in the deception-robust controller than it is in more typical approaches.

We will present some data indicating how this decision should be made.

We introduce the following notation: parameter p indexed by T (pT ) corre-

sponds to the parameter in the simulator (or true parameter) and if indexed by B (pB)

corresponds to a parameter in Blue modelling of truth (used in state estimation and con-

trol computation). Recall that there is the inherent decoy mismodelling because Blue is

using the Red control set Wn
I . We refer to the decoy modelling (or mismodelling) with

the following notation:

• Type [pf1]: Blue using Wn
I and pfT = pfB.

• Type [pf2]: Blue using Wn
I and pfT �= pfB.

Choice of the Blue initial distributions requires more analysis. If the Red player

uses an intelligent strategy (non-probabilistic) for initial-state layout (on the two routes)

but Blue models Red initial state layout probabilistically (or vice versa), how does such

mismodelling affect Blue’s performance? We discuss some simulation results to answer

these mismodelling issues. We will need the following terminology:

• BD-RD: Blue uses distribution based modelling of Red initial-state layout, actual

Red initial-state layout is also distribution based (näıve).

• BD-RG: Blue uses distributions based modelling of Red initial-state layout, actual

Red initial-state layout is non-distribution based (intelligent, say as in RG).

• BG-RG: Blue uses max-plus sum of max-plus delta functions (with qG
i,j distribu-

tions) initialization to model Red initial-state layout, actual Red initial-state layout

is non-distribution based (intelligent, say as in RG).

• BG-RD: Blue uses max-plus sum of max-plus delta functions (with qG
i,j distribu-

tions) initialization to model Red initial-state layout, Red initial-state layout is

distribution based (näıve).
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Figure 3.3: What is a good initial distribution for Blue, [pf1] mismodelling, ‘DR’
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Figure 3.4: What is a good initial distribution for Blue, [pf2] mismodelling, ‘DR’

In Figure 3.3, there is Type [pf1] mismodelling of false alarms whereas Figure

3.4 has Type [pf2] mismodelling of false alarms. In both these figures we have four set
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of data plots. In Type [pf1] mismodelling results, it is clear by comparing ’*’ curve

with ’o’ curve that one has a lower mean-sample payoff using a single probabilistic

distribution as per which Red is näıvely choosing its initial state in comparison to the

mean-sample payoff when using max-plus sum of max-plus delta functions (qG
i,j type

distributions). The latter Blue approach is not lacking too much in performance and

one can attribute this performance difference due to Blue’s mismodelling (even with a

relatively intelligent modelling) of the actual Red initial-state layout strategy. Similar

results can be deduced by comparing ’x’ with ’∇’ (or the inverted triangle) for the

second case. More intuitively, lower mean-sample payoff is achieved (better for Blue),

when it models the (true) intelligent Red initial-state layout appropriately, using the

max-plus sum of max-plus delta functions (qG
i,j type distributions) as initial distributions

compared to modelling Red initial-state layout probabilistically. If Blue mismodels in

this case then the difference is proportionately higher indicating that in the presence

of mismodelling, Blue tends to suffer more drastically when using a näıve model for an

intelligent Red initial-state layout than when using an intelligent model strategy for a

näıve Red initial-state layout. The results for Type [pf2] mismodelling in Figure 3.4 lead

to very similar conclusions. As an aside, one may also note that a higher mean-sample

payoff is achieved (better for Red) using an intelligent strategy (involving deception).

This can be confirmed by comparing the plots: ’∇’ vs ’*’ and ’x’ vs ’o’. Blue on the

other hand will generally achieve better results by using max-plus sum of max-plus delta

functions (of type qG
i,j at various potential states). Note that these initial distributions

type are harder to prune as we will see in the pruning section 3.5.2.

We now ascertain that quality of information is more important than quantity

of information. Some interesting results obtained by differentiating the quality of infor-

mation contained in the initial distributions are presented here. In the first scenario,

Blue models the unknown Red initial state with 3 initial distributions (one of which is

a delta function at the true Red state (1, 3), i.e. qG
2,4). More distributions (of type, qG

i,j)

are then added and simulation runs are repeated with the increasing number of initial

distributions. The results for this scenario are given in Table 3.2.

There is no significant change in the mean-sample payoff if we keep adding more

spiky distributions (to the original 3 distributions). We now compare this to the second



78

Table 3.2: Value of Intel in choosing the initial distributions: ‘DR’

#Q0 Payoff with Intel Payoff without Intel
3 4.84 7.24
5 4.76 6.82
7 4.92 5.56
9 5.02 5.24
11 4.88 5.02

scenario results given in Table 3.2, which are obtained with same parameters but with

no initial distribution of type qG
i,j . We use relatively flatter initial distributions of kind

qU
0 , q̄U

0 or qNU
0 for the second scenario. As we increase the number of such distributions,

one obtains a lower mean-sample payoff for Blue, and it approaches the mean-sample

payoff that Blue achieves in the first scenario. This leads to the conclusion that with

quality of initial information (the knowledge that Red is using an initial layout as per

some intelligent strategy (like RG) one can use fewer number of initial distributions and

the computational growth factor can be lowered by some factor (linearly).

Affect of Specific Knowledge or Intel About the Red Control

We now show that the ‘DR’ approach will work no worse (and potentially

better) when Blue has some ’specific’ information about Red control choices. In this

example the Red player is using the RG strategy. Let’s assume that Blue knows using

some intel that Red will only use w ∈ W ∗ (⊂ W ). Then note immediately that #W ∗ is

M∗ which is less than M , the dimension of W . Clearly one has a slower growth rate per

time step by a factor of M/M∗. Correspondingly one has Q
t
⊂ Qt, where Q

t
is new set

of feasible distributions at time t. Then for any u ∈ U , one has

max
q∈Q

t

{It(q) + Lt(q, u)} ≤ max
q∈Qt

{It(q) + Lt(q, u)}

which gives

min
u∈U

[
max
q∈Q

t

{It(q) + Lt(q, u)}
]
≤ min

u∈U

[
max
q∈Qt

{It(q) + Lt(q, u)}
]

.

This implies that Blue achieves a payoff which is no worse than using a larger set of

distributions and has potential for at least saving a lot of computational time. For
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technical reasons we will assume that no pruning is used in this analysis. We provide a

brief comparison between the ‘DR’ and the ‘MLS’ approach using result from a simulation

study (for similar intel/knowledge about the Red control set). Note that Blue uses a

probabilistic model for Red control strategy in the näıve approach. Let pw̄k
be the

probability of using w̄k ∈ W Red control in Blue update algorithm. We enumerate the

intel level numerically by an increasing number representing improving knowledge level

of Red control set:

• 1: pw̄1 = 0, pw̄2 = 1
3 , pw̄3 = 1

3 , pw̄4 = 1
3 .

• 2: pw̄1 = 0, pw̄2 = pw̄3 = 0.45, pw̄4 = 0.1

• 3: pw̄1 = 0, pw̄2 = pw̄3 = 0.5, pw̄4 = 0

• 4: pw̄1 = 0.03, pw̄2 = 0.91, pw̄3 = 0.03, pw̄4 = 0.03

For example, Blue may know that Red is using an asymmetrical control, and

hence set pw̄1 = 0 and pw̄4 = 0. With such modelling of Red control one can again expect

Blue to do no worse than having no information about actual Red control, even while

using Wn
I . As seen in Figure 3.5, for the present study example such information does

not gain any significant advantage for Blue using the näıve approach and Wn
I . More

specifically, such information was not able to change the Blue control strategy. When

the Blue player computed its control with Wn, a change in Blue control gave Blue almost

20% improvement in the mean-sample payoff. The higher mean-sample payoff given by

the ’o’ curve corresponds to Blue knowing Wn
I . Note that this change happens with the

knowledge that pw̄2 = pw̄3 = 0.5, thus implying that substantial intel on Red control and

the correct control set Wn makes the standard approach work reasonably well for Blue

in this example (even though the mean-sample payoff from ‘MLS’ still does not match

the mean-sample payoff when Blue is using the ‘DR’ approach).

3.5.2 Pruning or Reduction in the Size of Qt

We refer to the reduction in the size of the set of potential states as pruning.

From Blue’s perspective in the partially-observed case, this refers to reduction in the

size of the set of feasible observation-conditioned distributions, Qt. Pruning techniques
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for Blue directly affect computational speeds. Choosing the initial distributions qk
0 (for

modelling unknown Red initial state layout) and using some intel about the Red control

is closely linked to the computational speed of pruning and Blue performance. This

forms an important component of the study. As outlined in the theory, a set of initial

distributions is carried forward by Blue using each Red control �w ∈ Wn, to obtain the

set of feasible distributions at each time. Since, in the ‘DR’ approach, an argmax needs

to be computed over such a set of feasible distributions, we need to prune these dis-

tributions sufficiently to allow computational feasibility and also stay within reasonable

error tolerance at the same time. Growth of the number of these distributions is linear

in the number of initial distributions and exponential in the dimension of the finite Red

control set. This provides motivation to study the affects of pruning using various initial

distributions (and in different numbers) and any effect of a more specific knowledge of

Red control set on the performance of the Blue player or the pruning speeds. One may

note that the pruning can be done after the observation update or after the dynamic up-

date or one may even use pruning after each of these updates. If one uses some pruning
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method before the observation update, the most critical thing is to keep a track of the

Red state-feedback control associated with a particular q ∈ Qt. This is important since

we assumed that the same Red control will be used for the observation and the dynamic

update.

Note that if nw is the size of W , and one has niq initial distributions, then the

set of feasible distribution Qt at time t has size niq ∗ (nw)t. This growth is exponential

and needs to be checked to allow practical implementation of the ‘DR’ approach. In

practice only a few distributions will be useful. In computation involving argmax over

q ∈ Qt, a smaller size of Qt will make faster computational speeds possible. We first

outline the pruning algorithm that is used in the simulation results to follow. At time t

one can obtain a set Q
t
⊂ Qt as follows. Let’s initialize Q̄t

.= Qt and Q
t
= ∅. For some

q ∈ Q̄t, let

Qμ,q
t = {qk ∈ Q̄t : L1(qk, q) ≤ μ}

where μ is the pruning error tolerance and L1 is the L1 norm. Note that q ∈ Qμ,q. We

reset Q̄t = Q̄t \ {Qμ,q} and Q
t
= Q

t

⋃{q} and keep repeating the above operations till

(#Q̄t) = 0. The resulting Q
t

gives us the pruned set of distributions. We refer to this

pruning method as ’N-1’ and if we use the L2 norm instead, we call it the ’N-2’ pruning.

Another pruning technique can use the spikiness of the information in the dis-

tributions. Let

QΓc

t = {q ∈ Qt, such that Γ[q] �= Γ[qk], ∀ qk ∈ Qt, qk �= q}

Let’s initialize Q̄t
.= Qt \ QΓc

t and Q
t
= ∅, then for some q ∈ Q̄t such that q /∈ Q

t
, let

Q̄μ,q
t = {qk ∈ Q̄t : Γ[q] = Γ[qk] and 0 < ([qk]Γ[q] − [q]Γ[q]) ≤ μ, qk �= q}

Reset Q̄t = Q̄t \{Q̄μ,q} and Q
t
= Q

t

⋃{q}. We stop repeating the above operation when

there is no q ∈ Q̄t such that q /∈ Q
t
. Then the pruned set of distributions is given by

Q̄t
⋃

QΓc

t . This pruning technique will be called the ’N-3’ pruning method.

We used N-1’ and ’N-2’ pruning techniques in our simulations because of their

simple application and the fact that their was no significant difference in performance

using any of the above, see Table 3.3. There was a slight advantage in speed owing

to using ’N-2’; the set Q
t

was on an average 20% smaller in size when using ’N-2’ as

compared to when using the ’N-1’ technique.
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Table 3.3: Comparing Blue performance using different pruning techniques

pf Payoff with N-1 Payoff with N-2 Payoff with N-3
0.3 4.30 4.36 4.26
0.4 4.54 4.46 4.38
0.5 4.42 4.55 4.62
0.6 4.38 4.42 4.50
0.7 4.58 4.52 4.48

Table 3.4: Payoff based on error tolerance μ

μ Payoff with [qG
ij ]0 Payoff with qU

0 or qNU

0.0001 4.30 4.76
0.001 4.54 5.26
0.05 4.42 6.38
0.1 4.38 7.44
0.2 4.36 7.92

In the following simulation results Red strategy RG and MS2T5 model are

used. The affect of μ on computational speed is expected to be very simple, a higher

μ would generally prune more distributions in comparison to a lower μ. Thus with

higher μ simulation speeds are faster compared to lower values of μ due to slow growth

of Qt. However this intuitive relationship also depends on another factor, the actual

distribution set also. Since Qt is obtained from Q0, the choice of initial distributions

will also affect the pruning speed. When distributions of type qG
i,j(at a different state)

are used, less distributions are pruned and simulation speed slows down considerably.

However the mean-sample payoff in this case is not very sensitive to the error tolerance,

μ, as one can see in Table 3.4. This may allow for a potential higher error tolerance, μ,

as admissible. Initial distributions that are more flat lead to faster pruning and hence

better speeds. But with more flat distributions (qU
0 , q̄U

0 , and qNU
0 ) the mean-sample

payoff is more sensitive to the μ. Consequently such distributions may need a tighter

error tolerance, μ, to achieve the desired performance specifications. The results for this

case are also shown in Table 3.4. Note that the error tolerance, μ, can be readjusted

with time if some learning rate type of information is available to lower or increase the

pruning level.
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3.6 Mismodelling: Blue Deception-Robust Algorithm

In this section we again assume the XR
0 = (1, 3) and present simulation results

for the case AI (attrition level is not based on stealth).

Mismodelling pN
2

We start with a simulation result where the attrition parameter [pN
2 ]T �= [pN

2 ]B.

For a constant α1, this also gives [pN
1 ]T �= [pN

1 ]B, [pS
2 ]T �= [pS

2 ]B, and [pS
1 ]T �= [pS

1 ]B. Let

[pN
2 ]B = k[pN

2 ]T , where we allow 0.5 ≤ k < 0.9. The results in Figure 3.6 indicate that

the mean-sample payoff doesn’t change initially (indicating no change in Blue control)

as k increases (or the mismatch between [pN
2 ]T and [pN

2 ]B is reduced). However, with k

close to 0.9 for [pN
2 ]T = 0.675 (or 0.8 for [pN

2 ]T = 0.875), the mean-sample payoff drops

significantly, indicating a change in Blue control. Note that this change happens for a

relatively smaller k with a higher [pN
2 ]T . From the top plot (pf = 0) to the bottom

plot (pf �= 0), one can also see that with exclusion of decoys the mean-sample payoff

is lower compared to the mean-sample payoff with inclusion of decoys (indicating the

scope of deceptive Red controls and Blue performance in presence of higher levels of

imperfection).

Mismodelling ps

We set pfB = 0 and pfT = 0 to study the sole affect of probability of observing

stealthy Red entities. Some other parameter values : pn = 0.8 and ps = 0.5 were chosen

for the following results. Note that ps is not used in the ‘DR’ approach. The ‘RG’ strategy

of Red allows for very little (almost negligible) influence of ps on ‘MLS’ performance. In

absence of false alarms, and for a fixed ps, the ‘MLS’ Blue control computation depends

on observations (here affected by varying ps
T and ps

B, and a function of ps). For the

‘DR’ approach control computation depends on observations (here affected by varying

ps
T and ps

B, not a function of ps). In Figure 3.7 it is clear that the ‘DR’ approach is

robust to mismodelling of ps (or almost independent of ps
T for a fixed ps

B), which is a

very good result. The ‘MLS’ approach however fairs poorly as ps
T decreases for a fixed ps

B

or stealthy Red entities become harder to detect, as seen in Figure 3.8. This essentially
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translates into ‘MLS’ becoming more susceptible to deception.
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For a fixed ps
T as ps

B is varied, not much change is noticeable in the mean-sample
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payoff. Note here that the observation process is exogenous and independent of Blue state

or control. One potential argument is that with decoy and the skewed asymmetric Red

layout the maximum likelihood state is seen to occur at states corresponding to (a, b),

where b > a. Using ‘MLS’ approach Blue is committed to the eastern side at the first

time step and with successive skewed observations leaning towards east (with a flashing

decoy on the eastern route and the western route Red entities staying stealthy), Blue

does not gain anything by modelling the ps
T correctly for this scenario. The frequency of

observing the stealthy Red on the western route is smaller than the frequency of observing

the decoy even when Blue models ps
T perfectly (i.e. ps

B = ps
T ). This argument is clearly

not generalizable as one would expect better performance with perfect modelling or a

lower mean-sample payoff.

Mismodelling pf

With the notation defined earlier we discuss results for both cases, [pf1] and

[pf2]. Also note that we set pn = ps and pn
T = pn

B to avoid coupling affects of mismodelling

due to the affect of stealth. Besides noticing the mismodelling trends one may note that
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in all the results so far ‘DR’ approach has been better for Blue than ‘MLS’ (lower

expected payoff, Blue being the minimizer). In [pf1], Red can only use the stealth

factor as additional deception (which we have not allowed by setting pn = ps) then one

may note that ‘MLS’ Blue approach does better in this parameter regime compared to

completely imperfect case where its mean-sample payoff (though not very sensitive to

pfT ) is way higher than the mean-sample payoff corresponding to the ‘DR’ approach.

‘MLS’ approach gives even higher mean-sample payoff in the second case (very imperfect

scenario) compared to their corresponding values for the [pf1] case. In Figures 3.9 and

3.10, one can see that using ‘MLS’ approach (as pf increases) Blue performance gets

affected negatively (mean-sample payoff increases) whereas the ‘DR’ approach is still

robust to this variation.
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Figure 3.9: Mismodelling pf , [pf1], ‘DR’

Figures 3.11 and 3.12 show that using ‘MLS’ or ‘DR’ approach (as pf increases)

Blue performance doesn’t get affected negatively. However, from [pf1] to [pf2] their is a

substantial jump in the mean-sample payoff using ‘MLS’ whereas the ‘DR’ approach is

very robust.
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Variation of ps

Recall that there is this second inherent mismodelling in ‘MLS’ approach as

Red control is using the ‘RG’ strategy and Blue uses ps to model Red control/strategy
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Table 3.5: Mismodelling ps, with (pfB �= pfT )

pf 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Mean-sample payoff 16.24 15.82 16.14 15.96 15.94 16.08 15.74

(Blue doesn’t know X. and w.). We discuss two cases here also. First we set pf = 0

in this simulation to find ps mismodelling affects in absence of false alarms and in the

second case we set pfB �= pfT to find affect of mismodelling ps in presence of false alarms

with the [pf2] mismodelling. Results for the ‘MLS’ approach with variation in ps are

shown in Table 3.5. One can note that ps variation doesn’t change the mean-sample

payoff substantially in either case. In fact this result is again supported by the argument

of the previous section for this problem but may not hold true generally for all problems.

3.7 Appendices

3.7.1 Proof of Theorem 3.3.1

Proof. Note that the proof is similar to the proof in (McEneaney 2004), if we note that:

1. Sq
t =

⋃
�w∈W q

t
S �w,q

t
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2. Sq
t �= ∅ ⇐⇒ W q

t �= ∅

The first item in the above list is by clear definition of the terms. Note that

Sq
t �= ∅ ⇐⇒ {S �w,q

t �= ∅ for some �w ∈ W q
t }. Which by definition of W q

t gives Sq
t �= ∅

⇐⇒ W q
t �= ∅. We now provide the proof for the information state propagation given by

the form (3.25). We first prove that It+1(q) ≥ maxq̂∈Sq
t
It(q̂). The case Sq

t = ∅ is trivial.

So we assume Sq
t �= ∅, which implies ∃ q̃t ∈ Qt such that

q = G(yt, ur, �̃w)[q̃t] (3.80)

for some �̃w ∈ Wn. Now using finiteness of W and q̃t ∈ Qt, ∃ �̂w[0,t) and by the definition

of Qt, ∃q̂0 such that

It(q̃t) = I0(q̂0) (3.81)

where

q̃t = [
t−1∏
r=0

G(yr, ur, �̂wr)][q̂0]

If one defines

�wr =

⎧⎪⎨⎪⎩
�̂wr if r ≤ t − 1;

�̃wr if r = t.

(3.82)

then �w[0,t] ∈ [Wn]t. and

q = [
t∏

r=0

G(yr, ur, �wr)][q̂0],

so that q ∈ Qt+1. Then, using definition of I, one gets

It+1(q) ≥ I0(q̂0). (3.83)

Combining (3.81) and (3.83) gives

It+1(q) ≥ max
q̂∈Sq

t

It(q̂). (3.84)

Now we prove the reverse direction It+1(q) ≤ maxq̂∈Sq
t
It(q̂). The case when

Sq
t = ∅ is again trivial, so consider the case It+1(q) �= −∞; otherwise there is nothing to

prove. By finiteness of W there exists an optimal �̂w and corresponding q0 ∈ Q(X ) given

by

q = [
t∏

r=0

G(yr, ur, �̂wr)][q0]
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such that

I0(q0) = It+1(q). (3.85)

Then

qt = [
t−1∏
r=0

G(yr, ur, �̂wr)][q0] ∈ Sq
t .

Note that qt ∈ Sq
t ⇒ qt ∈ Qt and using definition of It,

It(qt) ≥ I0(q0). (3.86)

Combining (3.85) and (3.86) yields

It+1(q) ≤ It(qt) ≤ max
q̂∈Sq

t

It(q̂). (3.87)

3.7.2 Proof of Lemma 3.3.8

Proof. It is sufficient to show that the left and the right hand sides of (3.54) are equivalent

to the left and the right hand sides of (3.55). We first prove the equivalence of the right

hand sides. Note that using the facts that Qt �= ∅ and if q �∈ Qt then I(q) = −∞, the

outer maximization can be rewritten as

= max
q∈Qt

{It(q) + Eq max
�w∈W n

[
∑
j∈X

P̃xj(um
t , �w)Vt+1(j, q′(q, um

t , �w))]}

Using the definition of I(.), one gets

max
q∈Qt

{ max
q0∈Q

q,u[0,t)
0

I0(q0) + Eq max
�w∈W n

[
∑
j∈X

P̃xj(um
t , �w)Vt+1(j, q′(q, um

t , �w))]}.

Since the inside expectation over the future cost doesn’t depend on q0, one can

move the inner max
q0∈Q

q,u[0,t)
0

as follows:

= max
q∈Qt

max
q0∈Q

q,u[0,t)
0

{I0(q0) + Eq max
�w∈W n

[
∑
j∈X

P̃xj(um
t , �w)Vt+1(j, q′(q, um

t , �w))]}.

Note that for each q̃0 ∈ Q0 and some �w[0,t) ∈ [Wn]t, ∃ q = q
′
t (∈ Q(X )) such that q̃0 → q

′
t

using �w[0,t) and hence q̃0 ∈ Q
q,u[0,t)

0 .
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Conversely, for any q ∈ Qt and a corresponding q0 ∈ Qq,u[0,t) , q0 ∈ Q0 and q0 → q using

some �w[0,t) ∈ [Wn]t. which then gives

= max
q0∈Q(X )

max
�w[0,t)∈[W n]t

{I0(q0) + E
q
′
t

max
�w∈W n

[
∑
j∈X

P̃xj(um
t , �w)Vt+1(j, q′(q

′
t, u

m
t , �w))]}.

where q
′
t is given by propagation (3.24) with initial q0, controls u[0,t) and �w[0,t), and

observations y[0,t), and noting that It is deterministic (given y[0,t))

= max
q0∈Q(X )

max
�w[0,t)∈[W n]t

E
q
′
t
{I0(q0) + max

�w∈W n
[
∑
j∈X

P̃xj(um
t , �w)Vt+1(j, q′(q

′
t, u

m
t , �w))]}.

and since Wn consists of state-feedback controls

= max
q0∈Q(X )

max
�w[0,t]∈[W n]t+1

E
q
′
t
{I0(q0) + [

∑
j∈X

P̃xj(um
t , �w)Vt+1(j, q′(q

′
t, u

m
t , �w))]}.

which is the desired equivalence for the right sides.

For the left side equivalence, note that by definition of It(.), ∃ q1
0 ∈ Q(X ) and

�w[0,t) ∈ [Wn]t such that q1
0 → q

′′
t using �w[0,t) (q1

t = q
′′
t ∈ Qt) such that

It(q
′′
t ) = I0(q1

0).

Then utilizing that I(.) is a deterministic function of given y[0,t), and controls u[0,t) and

�w[0,t) one gets the required result

E
q
′′
t
{I0(q1

0) + [
∑
j∈X

P̃Xj(ũt, �w1
t )Vt+1(j, q

′
(q

′′
t , ũt, �w1

t ))]}

= {It(q1) + Eq1 [
∑
j∈X

P̃xj(ũt, �w1)Vt+1(j, q
′
(q1, ũt, �w1))]} (3.88)
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Chapter 4

Red Approach in the

Partially-Observed Game

In this chapter we will develop some automated control algorithm for the Red

player which will employ deceptive controls, if useful. This control will be deception-

enabled control because it employs deception when it is profitable to do so. In this set up

as before, Red will be maximizing and Blue will be minimizing the same cost criterion.

Recall that the Blue player has no access to the actual state process, X., but only knows

the q. process. Again, the Blue player has no access to the Red control history as well.

In the Deception-Robust approach, we allowed the Red player to have access to the q.

process (which Red could construct if it had access to the observation process y.). This

led to the appended state (X., q.) for the Red player. This construction led to the worst

case scenario for Blue, giving the deception-robust theoretical formulation. We could

restrict the information set of the Red player to only state process X., and that of Blue

to only the observation process y., which will lead us to information patterns that are

not nested, since neither players information set subsumes the others. Instead, from the

Red player’s viewpoint we set up best case scenario, where Red has complete knowledge

of not only the observation process y., but also access to Blue’s initial state estimate q0,

and the approach Blue is using to compute its control u.. As before the Red decision

will still be based on the appended (Xt, qt).

93
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4.1 Red Algorithm Approach Using an Internal Blue Con-

trol Model

We reiterate the strong modelling assumption discussed above:

The Red player knows (Q0, {yr}t
r=0)and the Blue control algorithm. (A-RI)

Instead of solving the problem where the information sets are not nested, we

explore the case where Red has maximum information (as given by (A-RI)) and find out

if deception is feasible for our example problem. Clearly, if deception is not useful under

these relaxed conditions, then one doesn’t expect deception to be useful in the scenario

where the information patterns are not nested (since Red has neither any information on

the observation process nor any knowledge of the Blue control approach). Though the

results for a particular example cannot be generalized they will shed some preliminary

light into the construction and utility of automated deception control algorithm.

So we now solve the problem using the assumption (A-RI). Recall that the

observation process is dependent on the actual Red control; the observation process takes

place only after Red chooses a control. And given a qt, the Blue control computation

happens after the observation happens. Thus, under assumption (A-RI), and for a given

qt, the Red player needs to generate a virtual Blue control uv,y
t at each time t, as a

function of y ∈ Y . Note that this is the internal control computations that Red does

by mimicking the Blue algorithm and we assume that the parameters of the actual Blue

algorithm are modelled perfectly by Red’s internal Blue algorithm. Once Red uses this

virtual control in deciding its optimal control (the algorithm for this will be defined

soon), the actual observation yt happens, and the actual Blue control uyt
t is computed by

the Blue player based on that observation and distribution qt. If there is no mismatch

of parameters used in the actual Blue algorithm and the internal mimicking of this

algorithm in the Red virtual Blue computation, then one has uyt
t = uv,yt

t . Clearly this

should form the most ideal information set for Red to be able to exercise deception, if

possible. Note also that if there is some parameter mismatch between the actual Blue

algorithm and Red’s internal Blue algorithm, then one might expect uyt
t �= uv,yt

t . Some

simulation results will be presented to study mismodelling, specifically the mismatching

of the algorithms (without any parameter mismodelling).
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Recall that Red is the maximizer and in the domain with assumption (A-RI),

one would expect Red to achieve no lower payoff than when it has no information on

the actual observations, yt, or Blue algorithm (or mismodels the internal parameters of

the Blue algorithm) or a combination of all these factors. Since Red can generate the

virtual Blue control, Red can now solve an optimal control problem, where Red is trying

to maximize the cost function. There are reasonable possibilities for Blue algorithm

modelling (on the part of Red); from näıve to a little more generic. Note that Red

computes the virtual Blue control as a function of q̂r, ∀ r ≤ T̄ (obtained using {ys}r−1
s=0

and q0, and some stochastic Red control model, pB
�w). Note that the Blue (internal or

actual) computation, has access to the current observation yt in its decision process.

Given initial q0, the Red player can internally propagate q. by using an estimation based

controller and stochastic Red control modelling as in section 3.2. We will denote this

virtual control as uv,s
r , where ’s’ stands for stochastic model of Red control. In which

case uv,s
. may be computed using (3.12), (3.9), or (3.14). Similarly, if Red computes the

virtual Blue control using the ‘DR’ approach (as in section 3.3), Red will compute the

virtual Blue control, say uv,d
r , as a function of Qr (or Q̂r, in particular, the set of pruned

posteriori distributions), ∀ r ≤ T̄ (obtained using {ys}r−1
s=0 and projecting each q0 ∈ Q0

along each possible Red control trajectory, {ws}r−1
s=0 ∈ W r). In Red’s internal Blue control

computation, some initial Q0 and I0 are propagated for each possible observation process

y., to Qt, It(q) using the robust control given by (3.53), uv,d
. = um

. .

Note that the Red player is mimicking the actual Blue algorithm and all these

computations are done internally by Red in exactly the same manner as the actual Blue

player would compute its control ut, (based on the random observation at time t). If

assumption (A-RI) holds, then based on its knowledge of the actual Blue algorithm Red

internally computes the virtual Blue control, and propagates the state q. (internally)

with :⎧⎪⎨⎪⎩
uv,s

t and pB
�w using (3.4) and (3.5) if Blue uses a stochastic Red control model

uv,d
t and θ.(X., q.) using (4.2) if Blue uses the ‘DR’ approach

(4.1)

where
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q̂t =
(

1�R′(y,ut, �w)qt

)
D(y, ut, �w)qt (4.2)

with appropriate definitions of D and R̃ from section 3.3 and yt = ȳ.

We will refer to the virtual Blue control that Red computes internally as u∗,v,

where

u∗,v
t =

⎧⎪⎨⎪⎩
uv,s

t if Red’s internal Blue computation uses a stochastic Red model

uv,d
t if Red’s internal Blue computation is driven by ‘DR’ approach

(4.3)

We now define the strategy set for Red in terms of the appended state (X., q.) as follows:

Θ[t,T ) =
{

θ[t,T ) : X (T−t) × Q(T−t) → [Wn](T−t), n.a
}

. (4.4)

where X. propagates as a Markov chain with probabilities given by (2.1) (with �w. =

θ.(X., q.) and the internal Blue control given by (4.3). The q. process is propagated by

(4.1).

Recall that there is no running cost for this problem. The terminal cost (or

payoff) is E : X → R; the cost of terminal state (XT , qT ) is E(XT ). Given any initial

state (x, q̃) ∈ X × Q(X ), Red will be maximizing the following cost function for this

optimal problem:

Wt(x, q̃) = max
θ[t,T )

E[WT (XT , qT )| Xt = x, qt = q̃] (4.5)

where the cost function at the terminal time is: WT (XT , qT ) = E(XT ) and where q. is

propagated using (4.1) and the X. process is propagated using (2.1) with same controls

as used for propagating the q. process.

Theorem 4.1.1. Given (4.5), (4.4) and r : t ≤ r < T

Wt(x, q̃) = max
θ[t,r)

E[Wr(Xr, qr)|Xt = x, qt = q̃]. (4.6)

where X. propagates by (2.1) (with �w. = θ.(X., q.) and internal Blue control given by

(4.3)) and the q. process is propagated by (4.1) .

Proof. See Appendix 4.4.1.
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Since the result is true for any r, in particular it is true for r = t + 1. Note

that in this special case (for a fixed x ∈ X and q̃ ∈ Q̄t), the definition of the strategy

set implies that the max over θt̄ ∈ Θt̄ is equivalent to the max over �w ∈ Wn, which gives

the one step backwards recursion

Vt(x, q̃) = max
�w∈W n

E[Vt+1(X, q)|Xt = x, qt = q̃] (4.7)

Finally we get the Red optimal controller from (4.7),

�w∗ ∈ argmax
�w∈W n

E[Vt+1(X, q)|Xt = x, qt = q̃]. (4.8)

We will use this control computation to determine if the Red player is able to take

advantage using (A-RI) and employ deception, whenever it is useful.

4.2 Red Approach Using an Internal Blue Model: MAG

Revisited

We now return to our example problem and illustrate that the Red player does

indeed use deceptive control by using (4.8). As before, we will only allow the Blue player

to know the set Wn
I (as defined in (3.71)). Also note that since the Blue player only

knows Wn
I , the Red player assumes same information for its internal virtual Blue control

computation. We allow Red to choose its control from the re-defined set

Wn = {�w : �wi = w∗, ∀ i ∈ X , for some w∗ ∈ W̃
⋃

W
⋃

W} (4.9)

where W̃ is defined in section 3.3, W is defined in section 2.3, and W is the set of

Red controls wk, such that wk is an extension of w̄k ∈ W , with a decoy added on

the western route. In this case, as an extension of w̄1 (using stealth on both routes),

w1 will correspond to using stealth on both routes and a non-stealthy decoy added to

the western route. The Red player may choose controls that do not use a decoy. If

it does choose to use a decoy it is allowed to use decoys only on one route (note that

X0 = (1, 3) is our fixed initial Red state). Clearly, with the new definition of Wn given in

(4.9) above, the Red player has choices ranging from the state-feedback optimal control,

w̄1 ∈ W , to potentially deceptive ones, w̃i ∈ W̃
⋃

W . Recall that the ‘RG’ strategy
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uses, wo = w̃2(∈ W̃ ), a decoy on the eastern route with three non-stealthy Red entities,

and moving the Red entity on the western route stealthily. To obtain the result that

the deceptive control outperforms the state-feedback control, one can simply run the

simulation by fixing, say ‘RG’ as a potential deceptive Red strategy and compare it

with the simulation runs by fixing the Red state-feedback optimal control as a strategy.

Note that we now allow the Red player to choose a time dependent control given by

(4.8) (unlike the ‘DR’ case where the Red strategy was not time-dependent). Figure 4.1

shows some results using assumption (A-RI), where the Blue player is using the ‘MLS’

approach, which is also the Red internal Blue algorithm (where ‘MLS’ approach is defined

in section 3.2). Recall that this implies, uyt,v
t = uyt

t . The optimal Red control (for time

t = 1) is w̃2, and the subsequent controls are dependent on the random outcome of the

observations and the dynamic process. We first discuss the results given in Figure 4.1

and then comment on the optimal Red control for time t > 1.
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Blue actual algorithm (and Red internal Blue algortihm): MLS

Comparing State−Feedback and Deceptive Red Control under assumption A−RI

P
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DECEPTION−ENABLED
STATE−FEEDBACK OPTIMAL

Figure 4.1: Red using ‘DE’ control vs. Red using state-feedback optimal control

It is clear from the data that the deceptive approach works better for the Red

player than using the state-feedback optimal control (w̄1 or turning both sides stealthy).

There is up to 60% improvement in the mean-sample payoff by using the deceptive control
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given by (4.8). As the probability to observe a stealthy object (p2) increases, the mean-

sample payoff decreases for both choices of Red control indicating the role of stealth in

exercising deception. These results presented in Figure 4.1 are with 2000 monte-carlo

simulation runs; a larger number of iterations would capture this trend even more nicely.

However it is clear that the deceptive controller for Red outperforms the state-feedback

optimal Red controller. It is worth noting that the state-feedback optimal Red control

is not optimal here, even when the Red player has perfect state knowledge. We conclude

that the state-feedback optimal control is sub-optimal for the MAG example, under

partial information set up, when the Red player is using assumption (A-RI).

The optimal Red control for time t > 1 gives a very unusual but seemingly

intelligent Red strategy. After the first step dynamic interaction, if the random outcome

of the interaction between the two UCAVs and Red entities on the eastern route leads to

very low Red attrition (say 0 or 1 Red team is destroyed on the eastern route), then the

Red player uses a control w2 ∈ W . It uses a decoy on the western route and turns the

single Red entity non-stealthy on that route. Also, all the remaining Red entities on the

eastern route are now turned stealthy. If the observation at the next time leads the Blue

player to assign a sufficiently high mass on state (2, 0) or (1, 0), the Blue player optimal

‘MLS’ control is to start moving both the UCAVs to the western route, i.e. u2 = 2. Then

as Blue moves towards the western route, the Red player is seen to exercise two control

possibilities (depending on q3). It can continue playing the same control as at time t = 2,

w3 = w2, and Blue sends both UCAVs to the western zone (in which case the UCAVs

cannot return to intercept the remaining Red entities on the eastern route), leading to

a payoff 20 + r2
T , where r2

T = r2
2 (since no attrition happened after time step 2 on the

eastern route). In the second possibility, Red can also choose to reverse the control at

time t = 3 to w3 = w̃2 (again depending on q3). If the random observation at t = 3 is

still favorable to Red (leading Blue to again reassign the mass to a maximum likelihood

state corresponding to most or all remaining Red entities on the eastern route), then the

Blue player will choose to either send a single UCAV to each route or return both the

UCAVs to the eastern route. In particular, it is often seen that the automated controller

attempts to cause Blue to vacillate, wasting time in transit between the two routes for

the above application problem. This sometime leads the Blue player to spend some
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time without intercepting the Red entities on either route or/and eventually neglect one

side completely. This complex behavior demonstrates the Red intent to deceive Blue

and gives a higher mean-sample payoff than the mean-sample payoff when using the

state-feedback Red optimal control w2.

This problem formulation has the obvious disadvantage of being susceptible to

mismodelling by Red of the Blue control algorithm. The space of opponent controllers

may be huge (even for our small scale problem, with appropriately redefining W ) and

so one would hope to avoid reliance on models of opponent controllers. We now present

some mismodelling results where the assumption (A-RI) does not hold because the Red

player has imperfect knowledge of the actual Blue algorithm (though it still has access

to the correct observation process). In particular, the Red player is using an internal

Blue approach different from the approach that the Blue player actually employs. The

Red player may be using a smarter internal Blue algorithm or a much simpler/näıve

internal Blue computation compared to the actual Blue algorithm. Clearly in this case

uyt,v
t = uyt

t may no longer be true. The Red internal Blue approach can be either the

‘HB’ or the ‘MLS’ approach defined in section 3.2, whereas we also allow the Blue player

to use the ‘DR’ approach defined in section 3.3. Red may choose not to use any internal

Blue computations and simply use the state-feedback optimal control. We will use Ra to

mean that Red is using the control approach ’a’, where ’a’ could be the ‘HB’, ‘MLS’ or

the ’State-feedback optimal’ control approach. Recall, that in the AI case (section 2.3),

the state-feedback optimal Red control is to randomly chose some w̄k ∈ W . Clearly in

partial information one may expect the control w̄1 = (S, S) to be more useful for Red

(which was the optimal control for the AD case in the state-feedback set up). Simulation

results show a small advantage for the Red player when using w̄1 = (S, S) than when

randomly using some w̄k ∈ W , so we use w̄1 is the state-feedback optimal control in the

following results.

We first discuss the case where the Blue player chooses the ‘MLS’ approach.

In Figure 4.2, note that even when (A-RI) holds or when Red is using the correct Blue

approach (‘MLS’) in its computations, the Red player does not achieve a higher payoff

than when using the incorrect Blue approach (‘HB’). As pf increases, the payoff using

the state-feedback optimal control stays the lowest but it’s not too low compared to



101

the payoff using Red control given by (4.8). Two more things can be noticed from the

results in this figure. Firstly, as pf increases the Red player achieves a higher mean-

sample payoff. Secondly, the state-feedback optimal Red control is almost as good as the

controls given by (4.8) for high values of pf . Clearly in the parameter regime to the left

of the plot (or lower pf values), the decoy addition is a valuable deceptive control for Red

than using the state-feedback optimal control. With higher values of pf , the effect of

pf variation does not yield as much advantage with the deceptive control given by (4.8)

as with the state feedback optimal Red. This happens because the Blue player assumes

Wn
I to be the Red control set. When Red uses the state-feedback optimal control and

pf increases, this causes a worse mismodelling scenario for Blue than when Red is using

a decoy on at least one side.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

9

10

11

12

13

14

15

16

17
Algorithm Mismatch in Red’s internal Blue computation

M
ea

n−
sa

m
pl

e 
pa

yo
ff

pf variation

R
DP

R
MLS

R
STATE−FEEDBACK

Figure 4.2: Red internal Blue algorithm mismatch: Actual Blue ‘MLS’

Recall, that the ‘HB’ approach has been shown to yield a better payoff for the

Blue player in the MAG example. For the case where the Blue player chooses the ‘HB’

approach, the results in Figure 4.3 give more intuitive results than when Blue uses the

‘MLS’ approach. Using the correct Blue approach, ‘HB’, in its internal computations,
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Figure 4.3: Red internal Blue algorithm mismatch: Actual Blue ‘HB’

the Red player does achieve a higher mean-sample payoff than using the incorrect Blue

approach, ‘MLS’. The mean-sample payoff using the state-feedback optimal Red control

is again the lowest. Moreover, in such mismodelling scenarios, the Red player’s payoff is

affected more adversely when it uses a less smart/näıve internal Blue approach (‘MLS’ vs

‘HB’) than the actual Blue approach compared to the scenario when Red uses a smarter

internal Blue approach when the Blue player is actually using a näıve approach.

One can extend this study to include the mismodelling case RDRBa, where Blue

is using the ’a’ approach which is not the same as the Red internal ‘DR’ approach. Recall

that in this case, the Red player has to propagate Qt for every potential observation

y ∈ Y , because Red control decision wt happens before the actual observation yt. This

propagation is computationally burdensome and is not expected to yield any adverse

controls for Red as indicated by the mismodelling results above.

Another interesting and surprising result is obtained when we try and force the

Blue player to do exactly the opposite of what the Red player’s internal computations

suggest (the virtual optimal Blue control). This result is for the case where the Blue



103

player is using the ‘MLS’ approach. The results in Figure 4.4 indicate that the Blue player

does worse than using the ‘MLS’ approach instead of causing any serious problems for the

Red player (since the assumption (A-RI) does not hold). Also, the Red state-feedback

optimal control does better than the Red control using (4.8). The results obviously are

limited to the example in hand and do not reflect any general behavior that can be

extended to other problems.
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Figure 4.4: Blue control exact opposite of Red’s internal virtual Blue computation

4.3 Red Approach Using No Internal Blue Control Model:

Brief Insight

The main result of this study is that the automated controller given by (4.8) is

optimal for Red under the assumption (A-RI) and Red does employ deception-enabled

control choices, when useful. Also, the state-feedback optimal control is sub-optimal for

the partially-observed case under the assumption (A-RI). The two cases for this example

also indicate that when (A-RI) does not hold (owing to mismatch of algorithms in Red’s
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internal computation and the actual Blue algorithm), the Red player still does better

compared to the state-feedback optimal Red control but the optimal control is more

dependent on the parameter regime and the actual Blue algorithm.

A simple, one-step example is now discussed to ascertain that it is possible

that when Red does not use any model for the Blue player control computation, it may

still be optimal to use a controller which is not state-feedback optimal, but which uses

deception. In particular, it motivates the pursuit of optimal Red control in the form of

a mixed-strategy and demonstrates that such pursuit in not vacuous (though it will not

be a part of this dissertation).

The example problem consists of only a single observation followed by one-step

dynamics yielding the payoff. The example is as follows. Red has two objects, A and B.

The Red objects may be arranged with A on the left and B on the right or vice-versa.

Blue will observe, very imperfectly, which side has which object. Red can affect this

observation with a control. If Red plays T , then Blue’s observation will be correct with

probability one, and if Red plays F , Blue’s observation will be wrong with probability

one. Less extreme probabilities can be used; it simplifies the computation to make the

probabilities trivial. The arrangement of the objects is (A, B) or (B, A), with equal

probability. First, Red chooses whether to falsify the Blue observation or not; this is the

Red control decision. Then, after making the observation, Blue can attack either the left

or the right. If Blue attacks the side with object A and wins, then Blue receives −10

points. If Blue attacks the side with object B and wins, then Blue receives −1 point.

No points are awarded if Blue loses. Blue is trying to minimize the payoff.

The Red control (T or F ) affects the probability of Blue winning. The prob-

abilities of Blue winning against A are 0.7 if Red plays T and 0.8 if Red plays F . The

probabilities of Blue winning against B are 0.6 if Red plays T and 0.9 if Red plays F .

We consider a maximin value. Note that the state-feedback optimal Red control is T , as

with full information, Blue will always attack A, and Blue’s expected payoff is −7 when

Red plays T and −8 when Red plays F .

In this partially-observed problem, one must consider a mixed Red strategy.

We also allow Blue a mixed strategy, although consideration of only deterministic Blue

controls (as functions of the observation) is sufficient for optimality. Let the probability
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that Red plays T be p, and the probability that Blue attacks the side where A is observed

be q.

As the problem is axially symmetric (i.e., left versus right), the computations

of are significantly reduced. If Red plays T , the expected payoff is JT (q) = −0.7(10)q −
0.6(1)(1 − q). If Red plays F , the expected payoff is JF (q) = −0.9(1)q − 0.8(10)(1 − q).

Thus the optimal Red control is

po = argmax
p∈[0,1]

{
min

q∈[0,1]

[
p(−7q − 0.6(1 − q))

+(1 − p)(−0.9q − 8(1 − q))
]}

.

The minimizing value of q always occurs at either q = 0 or q = 1 (and so Blue would do

as well without mixed controls of course). One easily finds that

po = argmax
p∈[0,1]

⎧⎪⎨⎪⎩
−6.1p − 0.9 ifp ≥ (7.1/13.5)

7.4p − 8 ifp < (7.1/13.5).
.

Consequently the optimal Red control is to play T with probability po = (7.1/13.5). The

state-feedback optimal control for Red is T , but the partial information optimal control

for Red plays T only with probability (7.1/13.5). Thus, even without knowledge of the

Blue controller, the optimal Red control may choose to falsify the observation in spite

of the fact that this control produces a worse expected payoff in the state-feedback case.

Also note that the optimal Red mixed strategy did not depend on the actual state, only

on the distribution of left and right (50% each). One may allow Blue to know the current

Red mixed strategy (whose choice could depend on the true state but might not), but

not the true state itself (outside of potential dependence of the Red strategy on the Red

state). This earlier example indicates that this can indeed be a class where deception is

fruitful.

4.4 Appendices

4.4.1 Proof of Theorem 4.1.1

Proof. Using (4.5) with t = r, and substituting it in (4.6) we equivalently need to show

max
θ[t,T )

E[WT (XT , qT )| Xt = x, qt = q̃] .= max
θ[t,r)

E[max
θ[r,T )

G(Xr, qr)|Xt = x, qt = q̃](4.10)
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where

G(Xr, qr) = E[WT (X̄T , q̄T )|X̄r = Xr, q̄r = qr]

where X̄. propagates using θ[r,T )(X̄., q̄.) and the internal Blue control given by (4.3) and

the q̄. process is propagated by (4.1), with the initial condition (X̄r, q̄r) = (Xr, qr). It will

be implicit in subsequent discussion that till time r, the state process X. is propagated

using θ[t,r)(X., q.) and the internal Blue control given by (4.3) and the q. process is

propagated by (4.1), with initial condition (Xt, qt) = (x, q̃). Fix any θ[t,r) ∈ Θ[t,r) and

define:

L(x, q̃) = E[max
θ[r,T )

G(Xr, qr)|Xt = x, qt = q̃] (4.11)

R(x, q̃) = max
θ[r,T )

E[G(Xr, qr)|Xt = x, qt = q̃] (4.12)

Note that if we prove that L(x, q̃) = R(x, q̃), then taking max over θ[t,r), applying Lemma

(2.2.2) to the appended state (X, q) , and use of conditional expectation would complete

the proof of Theorem 4.1.1. We first prove the inequality i.e

L(x, q̃) ≥ R(x, q̃)

Fix θ[t,r) ∈ Θ[t,r) and let

θ
∗
[r,T ) ∈ argmax

θ[r,T )∈Θ[r,T )

E[G(Xr, qr)|Xt = x, qt = q̃] (4.13)

which gives

R(x, q̃) = E[G(Xr, qr)|Xt = x, qt = q̃] (4.14)

where X̄. propagates using θ
∗
[r,T )(X̄., q̄.) and the internal Blue control given by (4.3) and

the q̄. process is propagated by (4.1) with the initial condition (X̄r, q̄r) = (Xr, qr). Since

θ
∗
[r,T )(X̄., q̄.) ∈ Θ[r,T ), we get the obvious inequality

R(x, q̃) ≤ E[max
θrT

G(Xr, qr)|Xt = x, qt = q̃] .= L(x, q̄) (4.15)

where X̄. propagates using θ[r,T )(X̄., q̄.) and the internal Blue control given by (4.3) and

the q̄. process is propagated by (4.1) with the initial condition (X̄r, q̄r) = (Xr, qr). The

reverse inequality can be proved very similarly to the proof of the reverse inequality

of Lemma 2.2.4, with the state now being (X., q.) and appropriate propagation of the

individual state components X. and q..
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Chapter 5

Urban Warfare Modelling

We now discuss the main steps one goes through in implementation of this

technology to large scale problems as of an Urban Warfare Combat. The main goal

will be to generate automated controls (reflecting realistic behaviors) on part of both

players. First, one must clearly define the (finite) state space. That is, one must develop

a model of all possible (physical) states of the system, and this must consist of a finite

number of states. In many warfare problems, a state space is defined as the set of

all possible entity positions and healths (where “health” is broadly defined, but where

one can typically index this by a few numbers). For example, consider a game with

nB Blue entities and nR Red entities, and in which each of these entities may occupy

a position on the “board” where there are, say, nL positions, and we indicate the set

of these positions as L. Let the Blue and Red entity positions be LB
1 , LB

2 , . . . LB
nB

and

LR
1 , LR

2 , . . . LR
nR

, respectively. Suppose each of these entities has one of four health states,

say in H = {destroyed, damaged, needs maintainence, OK}. These health states may

be denoted as HB
1 , HB

2 , . . . HB
nB

and HR
1 , HR

2 , . . . HR
nR

. A state, x ∈ X then corresponds

to a vector

x = {LB
1 , . . . LB

nB
, LR

1 , . . . LR
nR

, HB
1 , . . . HB

nB
, HR

1 , . . . HR
nR

} ∈ LNT ×HNT

where the superscripts on L and H indicate outer product and NT = nB + nR. For

nB = 6, nR = 8, and nL = 1000, X is comprised of 400014 states. In a military game

such as this with a state space such as that indicated above, the possible controls for

any entity might be to move from l31 ∈ L to adjacent location l171 ∈ L, or say fire at
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position l22. They may also be more general such as “lay low”, or return fire if fired

upon (”tight”). We suppose that the controls for each entity take values in finite sets U0

and W0 (containing controls such as those above). Then the control sets for all of Blue

and all of Red would be U = U6
0 and W = W 8

0 , respectively. The allowable controls may

be state-dependent and we will discuss more about that in the specific modelling of a

small example to follow.

Next, one must determine the transition probabilities for moving from state x

to state x̄ given controls u ∈ U and w ∈ W , Px,x̄(u, w). For nontrivial games, these will

not be enumerated for each possibility, but instead, will be built up from probabilities

of outcomes of individual entity actions. In our example, there would be a probability

for Blue Entity 2 to go from health state OK to health state damaged, given that its

control is to move from location l1 to l80 while being fired upon by Red Entity 3 at

position l7 while this Red entity is itself under fire from another Blue entity. This

defines the dynamics. We have the full information modelling in which we do not have

any observation process. Without loss of generality, we will have the defending player as

the minimizer and the attacking player as the maximizer. Also, we will now have an exit

set game instead of a terminal time game. It can be shown that an exit set game can

be arbitrarily well-approximated by a terminal time game. Intuitively, one can assign

the terminal time to be the some reasonably high number and when the state enters the

exit set, say XE , trivial dynamics follows for the rest of the time. Note that we will also

include running cost in this example (motivated by simulation results demanding some

motivation for the attacking team to move towards the target).

5.0.1 Urban Warfare Game Example

The layout of the example graph is as depicted in Figure 5.1. Each numbered

’dot’ on the graph corresponds to a location or a node with coordinates nx, ny, and

nz. There are a total of 33 nodes distributed over several levels of the buildings and

on the streets, so for this example 
L = 33. We have three Blue and three Red teams,

nB = 3, nR = 3, and nT = 6. We will only allow three health states, say in H =

{destroyed (3), damaged (2), OK (1)}. Then for this example, state x ∈ L6 ×H6 i.e., a
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Figure 5.1: Urban Warfare simulation layout

state vector is a 12 dimensional vector, An example of state would be x ∈ L6 ×H6,

x
.= (5, 8, 1, 28, 25, 21, 1, 1, 2, 1, 1, 1)

For x as given above, there are three Blue teams at nodes 5 (completely healthy), 8

(completely healthy), and 1 (damaged) respectively. All the Red teams are healthy and

located at 28, 25, and 21. Let x = (xB, xR) be the decomposition of the state into state

components of each player. Further decomposition of each player’s state component into

location and health components gives, xB = (xB
L , xB

H) and xR = (xR
L , xR

H). Then at time

t, the location of the kth Blue team will be [xB
L ]k,t and the health of the lth Red will be

[xR
H ]l,t. We will denote �hR

l,t to be the health distribution of the Red team l. Given the

state x, in general the mth component of �hR
l,t is 1, if [xR

H ]l,t = m, where m ∈ H. The

Blue player health also has a similar representation. We will assume that all the teams

start in the completely healthy state, i.e. [�hR
l,0]1 = 1, ∀ l ∈ L and [�hB

k,0]1 = 1, ∀ k ∈ L.

Let’s define the control in terms of two components, movement and attri-
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tion/firing controls

[ut]k = [[uM ]k,t, {[uF
i ]k,t}3

i=1].

Then at time t, [uM ]k,t is the movement control and [uF
i ]k,t is the firing control for

the kth Blue team (corresponding to an engagement with a Red team i). Similarly

[wt]l = [[wM ]l,t, {[wF
i ]l,t}3

i=1]. Given movement controls for the players, one gets the

deterministic transition for the location component of the state as

[xB
L ]k,t+1 = [uM ]k,t and [xR

L ]l,t+1 = [wM ]l,t

where [xB
L ]k,t+1 is the node location of the kth Blue team at time t + 1. Let

XN
L

.= {x ∈ L6 ×H6 : ([xB
L ]k,t+1 �= [ut]k) or ([xR

L ]k,t+1 �= [wt]k) for some k ∈ L }

be the set of states which do not correspond to the movement control of at least one

Blue or one Red player. Also note that we do not allow maintenance or health recovery,

so let

XN
H

.= {x ∈ L6 ×H6 : ([xB
H ]k,t+1 > [xB

H ]k,t) or ([xR
H ]k,t+1 > [xR

H ]k,t) for some k ∈ L}

be the set of states which correspond to improvement in health from time t to time t+1.

Define

XN = XN
H
⋃

XN
H (5.1)

Let Uk
t and Wl

t be the set of state-feedback controls for Blue team k and Red team l

respectively. Given x ∈ L6 × H6, [ut]k ∈ Uk
t and [wt]l ∈ Wl

t (for each k ∈ L and each

l ∈ L), then for any x̄ ∈ L6 ×H6 such that x̄ ∈ XN , we have

Pr(Xt+1 = x̄ | Xt = x, ut, wt) = 0.

For this example discussion the exit set, XE , would be a set of states such that all

defending teams are in health ’3’ and all the surviving attacking teams are at the target.

Given a state x ∈ L6 ×H6 and target node, t∗, we will denote the number of attacking

teams that survive by nA
s,x, the number of attacking teams that survive and are at the

target by nA,t∗
s,x , and the defending teams that survive by nD

s,x. Then the definition of the

exit set (with t∗ as the target) becomes

XE = {x ∈ L6 ×H6 such that (nA
s,x = 0) or

[
(nD

s,x = 0) and (nA
s,x = nA,t∗

s,x )
]
} (5.2)
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Note that by definition that nA
s,x ≥ nA,t∗

s,x and the second condition in (5.2) holds true

even when nA
s,x = 0 (no attacking team survives).

We can drop the firing controls ([uF
i ]k,t or [wF

i ]l,t), if we allow the teams to

fire at any visible opponent team. The visibility or the line of sight mapping can be

computed offline as a function of geometry between node to node, node to edge (or vice-

versa) and edge to edge. Some examples of type of engagements are given in Figures

5.2-5.3. If no line of sight exists between Blue team k and Red team l at time t, then

their is no attrition between that pair of teams at time t. That allows the firing control to

be computed deterministically as a function of movement and geometry. So it suffices to

look for the optimal path or the movement control for each player and the firing control

will be automatically derived from the location and the movement control computation.

We now develop the outline for path planning, and attrition (or damage caused by two

opposing teams in a firing engagement with each other).

Figure 5.2: Node-Node firing graph
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Figure 5.3: Node-Edge firing fraph

Path Planning

In the mathematical sense, the allowable movements are defined by a graph,

where the nodes are the locations. Then a movement edge mapping is given by M :

L × L → B, where B = [0, 1] and where M(m, n) = 1, if and only if there is a direct

movement allowed between node m and n. Let

E = {e = (m, n) : (m, n) ∈ L × L, and M(m, n) = 1}.

Then E is the set of all the movement edges. At any time t, a Blue or a Red team can

move from a node i to node j if there is an edge on the movement graph. Let

Ei = {j ∈ L : e ∈ E, where e = (i, j)}. (5.3)

Then Ei is the set of all nodes having a movement edge connected to node i. Note that

i ∈ Ei and j ∈ Ei ⇐⇒ i ∈ Ej . For example in Figure 5.4 there is a movement edge

between nodes 1 and 2, so 2 ∈ E1 and 1 ∈ E2, but there is no movement edge between

1 and 10, so 1 /∈ E10 and 10 /∈ E1.
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Figure 5.4: Movement graph

The state dependent movement control sets for Blue and Red players at time

t is Uk
t (for the kth Blue team) and Wl

t (for the lth Red team). Note that given the

state x at any time t, Uk
t ⊆ E[xB

L ]k,t and Wl
t ⊆ E[xR

L ]l,t . In the examples to follow, the

building on the right side of the graph (with node number 32 inside that building) will

be the target (t∗) to be captured by the attacking team. Let D : L × L → R. Define

D(m, n) =

⎧⎪⎨⎪⎩
√

((mx − nx)2 + (my − ny)2 + (mz − nz)2) if n ∈ Em;

∞ otherwise.

Then, D gives the actual distance (or edge length) between two nodes if an edge exists

between them or assigns ∞ to allow for ignoring that path as a potential choice for

movement. Let PF : L × L → R, be the weighting factor for computing the shortest

path based on the geometry. For example, PF (m, n) = 1.1, if m and n are in open

area; the distance along an open area edge is penalized by a factor of 1.1. Similarly

PF (m, n) = 0.95, if m is in an open area and n is inside a building. Note that if m

and n are not of the same type (for example, both are not in the open area), then
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PF (m, n) �= PF (n, m). Then the weighted edge length is given by

D̄(m, n) .= D(m, n)PF (m, n)

where, D̄ : L × L → R. Given D̄ and Ei, and using standard path planning algorithms

(Dijkstra 1959) one can compute the following:

• D∗: shortest distance matrix with the (m, n) entry, D∗(m, n), giving the shortest

distance between node m and node n, D∗ : L × L → R .

• PS : shortest path index matrix, with the (m, n) entry, PS(m, n), giving the penul-

timate node along the shortest path between m and n, PS : L × L → L.

• l∗: shortest path steps matrix with the (m, n), l∗(m, n), giving the number of nodes

along the shortest path from m to n, l∗ : L × L → N.

Note that the first node along the shortest path between m and n is given by

PS(n, m). The shortest distance matrix D∗, gives a measure of proximity to the goal

or target and may be used in computing some expected payoff incurred at the terminal

time. Similarly, l∗ is useful for a graph with equal edge lengths to be used as a measure

of proximity to the target. Note that we will be using an equal edge length graph or

in other words D(m, n) = D(p, l), for any (m, n) ∈ E and any (p, l) ∈ E. So, for this

particular example we will use l∗ as a measure of proximity to the target.

We allow for minor variations along the shortest path from node any node

m ∈ L to another node n ∈ L. One of the variations of these paths allows a team to

stay at the current location for the current time step. Another variation allows for paths

that lead from node m to the target t∗ in l∗(m, t∗)+1 steps (or one more time step than

the the number of steps required by following the shortest path). Note that the best

movement will be decided from the cost computations based on not only the shortest

distance path but also on the outcome of the engagements as the teams move along

their chosen paths. Thus allowing for the path variations introduces some dynamic noise

into the system and allow for some possible paths choices for teams heading towards

the target. In particular we allow for maximum 5 paths from any node m to the (pre-

assigned) target t∗, which are all computed offline. We will refer to any of these path

variations as the near-shortest path.



116

While moving towards the target along the shortest path is an important move-

ment option, one can also compute shortest path to the nearest safe or strategically

advantageous node location. We will refer to such course of movement control action

as the ’Protect’ option. In the example to be discussed, the team choosing the protect

option will move to the rooftop of the nearest building. Given the node location m, one

can define

SP,m = {n ∈ L such that n is on the rooftop of a building}

and

S̄P,m = {n̄ ∈ SP,m : D∗(m, n̄) ≤ D∗(m, n) , for ∀ n �= n̄}. (5.4)

Given a team at the node position m, the protect option will correspond to moving along

the shortest path from m to some n̄ ∈ S̄P,m using the shortest path index mapping PS .

We will store the kth node visited along the shortest path from m to n as

P(k, m, n), where P(1, m, n) = m, and where n may be the actual target of the game or

the node corresponding to the protect option (i.e. n ∈ SP,m). We now outline a small

algorithm to obtain the first K nodes along the shortest path from node m to n, i.e.

P(1 : K, m, n). Set c = 0, and k = n,

While (c < K and PS(m, k) �= m)

{k = PS(m, k), c = c + 1, P(c, m, n) = k}
If (c< K)

{P(c + 1 : K, m, n) = k.} (SP-A)

Some team may also choose to move towards the nearest opponent location

and one can compute this online in real time given the information on the opponent

location (using the above algorithm). Then, the shortest path between Blue team k and

the nearest opponent (Red) team no
B,k can be computed using PS , where,

no
B,k = {l̄ ∈ L : D([xB

L ]k,t, [xR
L ]l̄,t) < D([xB

L ]k,t, [xR
L ]l,t), for each l �= l̄, l ∈ L} (5.5)

The location component of the state transition update is simple: the movement

control of each team at time t becomes its new location at time t + 1, gives the the

location component of the state at time t + 1. However some attacking teams may be

going towards the target and some may be going towards the nearest defending team
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to strike an engagement. We define some terminology for various movement options or

strategies for the teams. Let the pre-defined target node location be t∗.

• M1 or (T-T-T): All three teams moving along a near- shortest path towards t∗.

• M2 or (T-T-P): Two teams moving along a near-shortest path towards t∗ and

one team towards strategic points or protect nodes (possibly higher elevations) for

protecting its own team members.

• M3 or (T-P-D): One team each going to t∗ along a near-shortest path, to the protect

node, and along the shortest path to the nearest opponent (attacker) respectively.

• Define movement options for the attacking player as:

OA .= [M1, M2]

• Define movement options for the defending player as:

OD .= [M1, M2, M3]

Note that the team movement is dependent on the option chosen as defined

above. For example at any time t, Blue movement option when it is attacking will

be, MB
t ∈ OA, whereas while defending it will choose a movement option, MB

t ∈ OD.

Further, given MB
t one can define d

MB
t

k , to be the destination of the Blue team k when

choosing option MB
t . Then,

d
MB

t
k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
t∗ if (MB

t ∈ OA) , team k assigned to go to the target ;

p∗ if (MB
t ∈ OA) , team k assigned to to do protect, p∗ ∈ SP,[xB

L ]k,t ;

no
B,k if (MB

t = M3) , team k assigned to go to the nearest Red, no
B,k

(5.6)

Similarly, destination of the Red team l when choosing option MR
t is

d
MR

t
l =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
t∗ if (MR

t ∈ OA) , team l assigned to go to the target ;

p∗ if (MR
t ∈ OA) , team l assigned to to do protect, p∗ ∈ SP,[xR

L ]l,t ;

no
R,l if (MR

t = M3) , team l assigned to go to the nearest Blue, no
R,l

(5.7)
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Given d
MB

t
k and [xB

L ]k,t, the path (or movement controls) for the Blue team k

from time t onwards can be computed using P(:, [xB
L ]k,t, d

MB
t

k )

[uM ]k,t+t̃ = P(t̃ + 1, [xB
L ]k,t, d

MB
t

k ) (5.8)

and

[wM ]l,t+t̃ = P(t̃ + 1, [xR
L ]l,t, d

MR
t

l ). (5.9)

The path of each team is based on the choice of options for each player as defined above

and also on the assignment of a movement type to each team by the player. We now

discuss the other critical component of this example, the attrition modelling.

Attrition Data Generation

Since the attrition level is based on line of sight between nodes, or node to edge

(or edge to node), and edge to edge, one can again compute some attrition data based

on geometry offline. Let various possible engagement modes, C ∈ PE , where

PE = {NN, NE, EN, EE} (5.10)

. The individual elements are simply the acronyms for the type of engagement, i.e. ’NN’

implying a node to node engagement. Note that for C ∈ PE , the teams involved in

the engagement may be stationery or moving. However, allowing for being stationery at

a node as a possible movement control, we will refer to an engagement C ∈ PE as an

engagement between teams with movement controls ca and cd respectively. Note that

the subscripts implies that teams assume the roles of an ’attacker’ and a ’defender’. For

a given C ∈ PE , ca and cd are defined as below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ca ∈ L and cd ∈ L if C = (NN);

ca ∈ L and cd ∈ E if C = (NE);

ca ∈ E and cd ∈ L if C = (EN);

ca ∈ E and cd ∈ E if C = (EE).

(5.11)

At any time t, given a Blue team k and a Red team l and their respective

destinations (obtained using movement options [MB]t and MR
t and (5.7)), the movement
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controls for the Blue team k and the Red team l are obtained using (5.8) and (5.9)

respectively. Without loss of generality, let (5.8) give a Blue control [uM ]k,t = [xB
L ]k,t,

which implies that the Blue team stays at the current location. Similarly, (5.9) give a

Red control [wM ]l,t �= [xR
L ]l,t, which implies that the Red team will be moving to location

[wM ]l,t ∈ E[xR
L ]l,t . The resulting controls will then define the potential engagement mode,

C, between the two teams . Considering attrition from Blue team k on Red team l, we

have C = (NE), with ca = [uM ]k,t and cd = ([xR
L ]l,t, [wM ]l,t). Considering attrition

from Red team l on Blue team k, we have C = (EN), with ca = ([xR
L ]l,t, [wM ]l,t) and

cd = [uM ]k,t. We will hereon use an attrition level matrix, AC
B,h(., .) or AC

B,h, for the

attrition caused by a Blue team in health state h on a Red team (with the appropriate

arguments being chosen depending on C given by [MB]t and MR
t , (5.7), (5.8) and (5.9)).

In fact one only needs to compute the various attrition level matrix (geometry based)

for the Blue attrition on Red for health level 3, AC
B,3, and use some constant mappings

to obtain

• Attrition level matrices from Blue on Red when Blue is in health state 2. Note that

the attrition level on Red will be less for a Blue team in ’damaged’ state compared

to the when the attacking Blue team is in ’OK’ state.

• Attrition level matrices from Red on Blue when Red is in health state 3 and in

health state 2. These are expected to be lower than the corresponding attrition

levels caused by Blue on Red.

• Finally for Blue or Red in a health state 2 or 3, one can compute the reduced

attrition due to the attacker being under fire/attack itself. Again the attrition

level, caused by the attacking team under fire itself, will be reduced due to this

affect.

We model the geometrical aspect of attrition using the approach outlined below.

For example, ANN
B,h (m, n) will denote the attrition level caused by a Blue team at node

m (in health state h) on a Red team at node n. Then

ANN
B,h : L × L → (some subset of Z

+).

Note that a higher value of ANN
B,h (m, n) will correspond to higher attrition or damage.
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For a higher ground point, m, and a lower ground point, n, one has ANN
B,h (m, n) >

ANN
B,h (n, m). For a point inside the building, m, and a node point ,n, in open area, one

has ANN
B,h (m, n) > ANN

B,h (n, m). Also one naturally has ANN
B,h̄

(m, n) > ANN
B,h (m, n), where

h ∈ H, h̄ ∈ H, and h̄ > h .

The dynamic interaction (or engagement or fire-exchange) can happen from a

team at node m ∈ L on a team moving along an edge e ∈ E or vice-versa, and also

between two teams, one moving along the edge e1 ∈ E and the other team moving

along the edge e2 ∈ E. We will assume that we have also pre-computed the attrition

level matrices for these engagement types where Blue team is attacking with full health.

Namely we have pre-computed AC
B,3, for all C ∈ PE . Note that for a given health level

h one may also choose ANE
B,h(m, e) ≥ AEN

B,h(e, m). We only have three health levels with

the 0 level corresponding to no engagement, so we will mainly talk about attrition levels

3 and 2.

Let ANN
L = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} define the set of attrition levels (the

severity of damage) that a team may cause on an opponent team in a node to node

engagement. Let ANN
L

= {0, 1, 2, 3, 4, 5, 6, 7, 8}, ANN
L = {0, 1, 2, 3, 4, 5, 6, 7} and ANN�L =

{0, 1, 2, 3, 4, 5, 6}. Obviously ANN
L

⊂ ANN
L , ANN

L ⊂ ANN
L

and ANN�L ⊂ ANN
L . In general,

one can define AC
L , AC

L
, AC

L , and AC�L for C ∈ PE . Let MC
B(3→2) : AC

L → AC
L
, then

AC
B,2(ca, cd) = MC

B(3→2)(A
C
B,3(ca, cd))

will give us the attrition level matrix by a ’damaged’ Blue on Red, for C ∈ PE and ca

and cd given by (5.11). One example of such mapping is as given below:

MC
B(3→2)(n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
n − 2 if n ≥ 6;

n − 1 if 3 ≤ n < 6;

n if n < 3.

(5.12)

In particular, MNN
B(3→2) : ANN

L → ANN
L

, for obtaining the reduced attrition due to the

Blue being in health state 2 instead of state 3, in a node to node interaction. We

will assume similar mapping definitions as (5.12) for the subsequent discussion (with

appropriate domain and range of a specific mapping). For asymmetric attrition levels,
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let MC
B→R : AC

L → AC
L
, then

AC
R,3(ca, cd)

.= MC
B→R(AC

B,3(ca, cd))

be the attrition level caused by a Red team on a Blue team with C ∈ PE and ca

and cd given by (5.11). One can define MC
B→R(AC

B,3) in similar manner as MC
B(3→2

given by (5.12). In particular, MNN
B→R : ANN

L → ANN
L

, will be used for obtaining the

asymmetric attrition between the two players, in a node to node interaction. We obtain

he attrition level caused by a Red team in health state 2 on a Blue team using the

mapping MC
R(3→2) : AC

L
→ AC

L ,

AC
R,2(ca, cd) = MC

R(3→2)(A
C
R,3)(ca, cd).

Finally, we compute the reduced attrition due an attacking team being under ’attack

itself’; being fired upon from more than one defending team (or being under fire from

at least another defending team when attacking a certain defending team). Let ĀC
B,3 be

the reduced attrition by a completely health Blue team (under attack itself) in a C type

engagement with a Red team, then

ĀC
B,3(ca, cd)

.= M̄C
B,3(A

C
B,3(ca, cd))

where, M̄C
B,3 : AC

L → AC
L
. Let ĀC

B,2 be the reduced attrition by a damaged Blue team

(under attack itself) in a C type engagement with a Red team, then

ĀC
B,2(ca, cd)

.= M̄C
B,2(A

C
B,2(ca, cd))

where, M̄C
B,2 : AC

L
→ AC

L . Let ĀC
R,3 be the reduced attrition by a completely healthy

Red team (under attack itself) in a C type engagement with a Blue team, then

ĀC
R,3(ca, cd)

.= M̄C
R,3(A

C
R,3(ca, cd))

where, M̄C
R,3 : AC

L
→ AC

L . Finally, let ĀC
R,2 be the reduced attrition by a damaged Red

team (under attack itself) in a C type engagement with a Blue team, then

ĀC
R,2(ca, cd)

.= M̄C
R,2(A

C
R,2(ca, cd))

where, M̄C
R,2 : AC

L → AC�L . Note that the last mapping will be used in real-time, since

the movement controls will be decided by the players in real-time. We will use the
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appropriate attrition level depending on whether the attacking team is ’under attack

itself’. For example, as discussed before, given a Blue team k in health hk and a Red team

l in health hl, one can obtain the appropriate engagement type, C, and the arguments,

ca and cd, to be used for obtaining AC
B,hk

(ca, cd) and AC
R,hl

(ca, cd). Let us define

1B,k
l =

⎧⎪⎨⎪⎩
1 if AC

B,hk
(ca, cd) > 0;

0 otherwise ;
(5.13)

At time t, given the state xt and the controls given by (5.8) and (5.9), one can compute

(5.13) for every Red team paired with the Blue team k (and for all k, and vice-versa).

Then define

1B,k =

⎧⎪⎨⎪⎩
1 if

∑3
l=1(1

B,k
l ) > 2;

0 otherwise ;
(5.14)

Then 1B,k will be the ’under attack’ indicator function for the Blue team k. Similarly,

one can define 1R,l to be the ’under attack’ indicator function for the Red team l. Then,

given the locations and healths of all teams, for a given Blue team k in health hk we

define ,

AC,∗
B,hk

(ca, cd) =

⎧⎪⎨⎪⎩
AC

B,hk
(ca, cd) if 1B,k = 0;

ĀC
B,k(ca, cd) if 1B,k = 1;

(5.15)

where the choice of C (and ca and cd) is again dependent on the Red team which is

paired with the Blue team k in using (5.15). This implies that we will use the matrix

ĀC if the attacking team is under attack itself or the matrix AC otherwise. Let P (a)

be a pre-defined health transition matrix (of size 3 × 3) corresponding to an attrition

level a ∈ AC
.,.. Clearly P (0) = I3×3. Let the attrition matrices for attrition level 3 and n

(n > 3) take the form:

P (3) =

⎡⎢⎢⎢⎣
a b c

0 d f

0 0 1

⎤⎥⎥⎥⎦

P (n) =

⎡⎢⎢⎢⎣
a1 b1 c1

0 d1 f1

0 0 1

⎤⎥⎥⎥⎦



123

Then one would expect some monotonicity of the last column entries c and f . In par-

ticular for the above choice of attrition levels one should assure c1 > c and f1 > f .

Health Transition

Recall that each team has complete state information including the node posi-

tions and the health level on all other teams (allies and opponents). Health transition of

team k at any time is dependent on the current health level and the location of all those

opposing teams that are capable of exchanging fire/attrition and all those allied teams

that can provide cover-fire (to attenuate the attrition level of opposing teams) to team

k.

We now give the computation for the transition of the kth Blue and the lth Red

team. For given state x, movement options (MB
t , MR

t ) and movement type assignment

(to target etc.), the health transition of the kth Blue team from time t to t + 1 is given

by

�hB
k,t+1 =

3∏
l=1

[P̄B,R
k,l ]�hB

k,t (5.16)

where

P̄B,R
k,l =

3∑
h=1

P (A∗,C
R,h(., .)[�hR

l,t]h

is the average health transition matrix from all the Red teams on the Blue team k.

Similarly the health transition of the lth Red team from time t to t + 1 is given by

�hR
l,t+1 =

3∏
k=1

[P̄R,B
l,k ]�hR

l,t (5.17)

where

P̄R,B
l,k =

3∑
h=1

P (A∗,C
B,h(., .))[�hB

k,t]]h

Note that the arguments of AC,∗ (defined in (5.15)) in the above equation are obtained

using corresponding path computation as given by (5.8) and (5.9) and definitions of

connection set Ei and PE as in (5.3) and (5.10). Also, �hB
k,t ∈ HD and �hR

l,t ∈ HD where,

HD will denote the set of distributions over H. The above health transition computation

can be repeated for all Blue and Red teams and for all time t along the paths given by

(5.8) and (5.9).
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Max-Min Cost Optimization and Control Computation

We note that even for this example the state space is quite large to allow for a

recursive Dynamic Programming recursion, once the state-feedback value Vt in defined

in terms on state x ∈ X . We also include running cost to allow for pragmatic controls (or

in some scenario’s the teams may choose to stay at their current locations). Let the game

start at time t and in state Xt = x, which is known to both players. We will assume here

that Red is attacking and Blue is defending (though one can switch the dummy names

to get the reverse scenario). The players will choose the optimal movement option at

time t by optimizing the total cost, C̄(X[t,t+t̄)) (to be defined), by projecting the state

Xt = x using movement options and the corresponding paths as discussed in the previous

subsections. Note that we are including some running cost here by including the state

process X[t,t+t̄) instead of only including Xt+t̄ in the arguments of C̄.

For this particular example we project the path of the teams for t̃ time steps

according to the chosen options and then forcing all teams (for the remaining t̄− t̃ steps)

to move along the shortest path to target node, t∗, from their current location at time t̃.

Given MB
t and MR

t , the location component of X. is determined using (5.8) and (5.9).

The health distribution of the Blue team b at time s is given by [XB
H ]b,s ∼ �hB

b,s, and

the health distribution of the Red team r at time s is given by [XR
H ]r,s ∼ �hR

r,s, where

t ≤ s < t + t̃. The health distribution propagation (for �hB
b,s and �hR

r,s) happens using

(5.17) and (5.16). Let H̄D ⊂ HD such that

H̄D = {�h ∈ HD : [�h]i = 1 for some i ∈ {1, 2, 3}}. (5.18)

where [�h]k corresponds to the probability of the health state being k. Then, H̄D is the

set of distributions corresponding to the corner of the simplex. Also for any �h ∈ H̄D

such that [�h]k = 1, let us retrieve the index corresponding to unity probability mass as

ν
[
�h
]

.= k.

From time t + t̃ onwards, let X. propagate with the location component being

determined using (5.8) and (5.9) with P now being determined for starting location Xt+t̃

and destination t∗. We now project all possible trajectories corresponding to starting

each team with a health distribution in the set H̄D at time t + t̃. Let, T I = {1, 2, 3},
denote the common set of indices for the teams of each player. Let �̄hB

b ∈ H̄D and
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�̄hR
r ∈ H̄D, for each b ∈ T I and each r ∈ T I . Let �hB

b,t+t̃
= �̄hB

b and �hR
r,t+t̃

= �̄hR
r . Then

at time s, health of the Blue team b is distributed according to �hB
b,s, [XB

H ]b,s ∼ �hB
b,s, for

t + t̃ ≤ s. Similarly, health of the Red team r at time s is distributed according to �hR
r,s,

[XR
H ]r,s ∼ �hR

r,s, for t + t̃ ≤ s. As before, the health distribution propagation (for �hB
b,s and

�hB
b,s) happens using (5.17) and (5.16). The total cost, C̄(X.), to be optimized will have

contributions from the following factors:

• Goal achievement. Some cost incurred by Red, if Blue has some surviving units at

the target, and this grows iteratively for every time step a Blue team stays at the

target.

• The survival of the attacking Blue teams, each surviving team has a value VB.

• The survival of the defending Red teams, each surviving team has a value VR.

For computing each of the above components we need some more terminology.

Let 1t∗ be the indicator function for a team being at the target t∗, i.e. 1t∗(l) = 1, if l = t∗.

The running cost will provide the attacking team some incentive to move towards the

target (which is one of the goals), by assigning an iteratively additive bonus (points) V t∗

for each surviving attacking team k at the target for each time r, t ≤ r ≤ t + t̄. We also

assign a bonus V c,t∗ for each surviving team k to be in close proximity of the target at

time t+ t̃. The proximity to target can be decided either by the shortest distance matrix,

D̄∗ or the steps from target l∗. Let 1c,t∗ be the indicator function for a team being in

close proximity to the target t∗, i.e. 1c,t∗(l) = 1, if D̄∗(l, t∗) < μD, where μD is some

threshold distance dependent on the particular game. Similarly, for a graph with equal

edge lengths, one can define 1c,t∗(l) = 1, if l∗(l, t∗) < l∗∗, where l∗∗ is some threshold

number of steps dependent on the particular game. Now we construct the running cost

CR,X.

t,t+t̃
, C̃R,X.

t+t̃,t+t̄
and the terminal cost CT,X.

t+t̄
components. Let

C(Xs) =
3∑

b=1

{1t∗([XB
L ]b,s)V t∗(1 − [�hB

b,s]3)}

for t ≤ s ≤ t + t̃ and

CR,X.

t,t+t̃
=

t+t̃∑
s=t+1

[C(Xs)] + (1c,t∗([XB
L ]b,t+t̃)V

c,t∗(1 − [�hB
b,t+t̃

]3)). (5.19)
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Similarly one can define

C̃(Xs) =
3∑

b=1

[
1t∗([XB

L ]b,s)V t∗
]
(1 − [�hB

b,s]3)

for t + t̃ < s ≤ t + t̄ and

C̃R,X.

t+t̃,t+t̄
=

t+t̄−1∑
s=t+t̃+1

[
C̃(Xs)

]
. (5.20)

The cost component at time t + t̄ is

CXt+t̄

t+t̄ =

[
[

3∑
b=1

(1 − �hB
b,t+t̄)]VB − [

3∑
r=1

(1 − �hR
r,t+t̄)VR] + C̃(Xt+t̄)

]
. (5.21)

We will use the notation
B∑

�̄hB ,T I

=
∑

�̄hB
1 ∈H̄D

∑
�̄hB

2 ∈H̄D

∑
�̄hB

3 ∈H̄D

and
R∑

�̄hR,T I

=
∑

�̄hR
1 ∈H̄D

∑
�̄hR

2 ∈H̄D

∑
�̄hR

3 ∈H̄D

where we imply to sum over all the combinations for all the Blue (Red) team healths in

the set H̄D. Then the total cost can be written as

C̄(X.) = CR,X.

t,t+t̃
+

B∑
�̄hB ,T I

R∑
�̄hR,T I

[
3∏

b=1

3∏
r=1

[
�hR

r,t+t̃

]
ν
�
�̄hR

r

�
[
�hB

b,t+t̃

]
ν
�
�̄hB

b

�
] [

C̃R,X.

t+t̃,t+t̄
+ CXt+t̄

t+t̄

]
.

(5.22)

Then the following max-min computation gives the optimal movement options

for both teams:

V (Xt) = max
M i∈OA

min
Mj∈OD

[
C̄(X.)

]
. (5.23)

Let

M∗B ∈ argmax
M i∈OA

min
Mj∈OD

C̄(X.) (5.24)

and

M∗R,M i ∈ argmin
Mj∈OD

C̄(X.).

In particular

M∗R,M∗B ∈ argmin
Mj∈OD

C̄(X.). (5.25)

Since we are formulating an exit set game, we keep repeating the above control decision

process given by (5.23)-(5.25), until time tE such that XtE = x, with x ∈ XE .
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5.0.2 Simulating Real World Behavior

We present some simulation results at this point using some snapshots of the

simulation at chosen time instants to illustrate the observed behavior or strategy pat-

terns. More specifically we will discuss the ’Protect’ behavior of Blue and the ’Feint’

behavior of Red. Recall that the attacking team is the maximizer and defending team

is the minimizer.

Protect Behavior

To illustrate the protect behavior we assume that the attacking Blue team

are in a specific locations, with one of the teams at the rooftop of a building near the

target. In the Figure 5.5 the Blue team 1 is on rooftop of a building at node 3. The

other two Blue teams are both located at node 23. The defending Red teams start

at node locations 32, 20, and 31. All teams start in the health state 1, which gives

x = {3, 23, 24, 32, 31, 20, 1, 1, 1, 1, 1, 1} as the initial state.

Figure 5.5: Protect scenario: Introduction
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The players compute the optimal movement options and corresponding path or

movement controls using (5.24)-(5.25), (5.8)-(5.9), and (5.16)-(5.17). If the Blue team 1

at node 3 control computation yields the movement control [uM ]1,1 = 3, we say that the

Blue team chooses to provide cover fire to its allies moving towards the target. It chooses

to stay on the rooftop and fire at the opponent teams in line of sight. The movement

control to ’stay put’ at the current location can come from either the protect option M2

or M1 since we allow for some path variations to the shortest path going towards the

target. One needs to ascertain if the Blue player chose the protect option or M2 as the

optimal option from (5.24) and if so, what team was assigned to go to the nearest rooftop.

If the Blue team 1 at node 3 is the one assigned to go to the nearest rooftop, in this it

case stay at its current location, node 3 (3 ∈ SP,3 by (5.4), in fact SP,3 = {3}). The

example scenario is run with three different sets varying the value of Blue team survival

VB and the initial state x. In the snapshot captured in Figure 5.6, VB = 1, VR = 5,

V t∗ = 100, and V c,t∗ = 30. The initial state is x = {3, 23, 24, 32, 31, 20, 1, 1, 1, 1, 1, 1}.

Figure 5.6: Protect scenario: Low Blue survival cost and engagement

The automated Red control using (5.25) gives M∗R,M∗B
= M1 (or all Red
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going towards the target). The automated optimal control computation using (5.24)

gives M∗B = M1, so all the Blue teams are going to the target. In particular the Blue

team starting at node 23 is moving towards the target and heading towards node 25 and

team 1 is moving down from rooftop going towards the target to node 4. Clearly the Blue

player does not choose the protect option in this case. However in the snapshot captured

in Figure 5.7 with VB = 3, the automated optimal control computation using (5.24) gives

M∗B = M2, the Blue team 1 at node 3 is assigned the ’To protect’ movement.

Figure 5.7: Protect scenario: Low Blue survival cost and engagement-II

Though the Blue teams, at node 23 and 24, have same movement controls as

before, team 1 now stays at node 3. In fact, any further increase in VB will yield similar

results. One can conclude that the Blue team chooses to protect (or provide cover-fire)

to other Blue teams, if VB is large enough for the Blue player to value its own teams

survival (reflected by the contribution to C̄(X.) in (5.22).

However, with VB = 3, but now moving the other two Blue teams farther from

the target, say at node 21, one gets an interesting result. Refer to the snapshot in

Figure 5.8, in which the initial state is x = {3, 21, 21, 32, 31, 20, 1, 1, 1, 1, 1, 1}. Starting
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Figure 5.8: Protect scenario: High Blue survival cost and no-engagement

at this location the two Blue teams at node 21, the automated Blue movement option

is MB∗ = M1. In particular the movement of the two Blue teams at node 21 to node

31 does not allow for any engagement with any Red teams (for the movement controls

given by their respective optimal movement option in (5.25)). No engagement happens

due to no line of sight between the Red teams starting positions, edge movements and

the starting positions of the two Blue teams (node 21) or their respective movement

edge (21 − 33). Even with Blue cost VB = 3, the Blue team 1 at node 3 chooses to go

towards the target since its other team members are not in need of immediate cover-fire

and hence the iterative bonus to be at the target V t∗ seems to play a bigger role in this

scenario.

Feint Behavior

Now we turn to the study a behavior commonly known as Feint. For the Feint

scenario, certain Red player chooses some Blue teams and wants to divert their attention
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Figure 5.9: Feint scenario: Local set up

so that some other Red teams face less resistance, from the remaining Blue teams, on

their way to the target or some strategic location. We call the Blue teams (group) that

Red wants to lure as the ’Feint-Receptive’ or ‘FR’ Blue team(s) and the Red teams that

are being employed to create this diversion will be called the ’Feint-Offensive’ or ‘FO’

Red teams. Generally the non-‘FO’ Red teams (more in number than the ‘FO’ Red

teams) ’stays put’ or in a low or no activity state for the time the ‘FO’ Red teams are

advancing to induce engagement with the ‘FR’ Blue teams. Also the ‘FR’ Blue team is

generally chosen to be larger in size than the non-‘FR’ set of Blue teams, so that if Red

succeeds in drawing the larger ‘FR’ Blue group, it can take the advantage of asymmetric

engagement on the ignored route (non-‘FR’ Blue vs non-‘FO’ Red to cause maximum

damage).

In full state-feedback, the individual Blue and Red teams can compute the

movement options and corresponding controls based on knowledge of all the Red and

Blue team states. So even in the scenario being set up to demonstrate Feint, controls for

the ‘FR’ Blue can be computed using (5.19)-(5.24) taking into account all the Blue and
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Figure 5.10: Feint scenario: Local reaction

the Red teams. We will call this computation as global control computation and the set

of control choices for the ‘FR’ Blue teams as ŨFR
G . We also compute the global controls

for all the other Blue and Red teams; the controls for ‘FO’ are designed to induce the

‘FR’ Blue and hence they are pre-determined by the Red player.

Note that to achieve this effect the ‘FO’ Red teams are trying to engage the ‘FR’

Blue teams into a local engagement (where the ‘FR’ Blue team ignore the presence of the

non-‘FR’ teams which are farther away. In this set up the ‘FR’ Blue compute the controls

by reacting locally to counter to the ‘FO’ Red teams purposeful movement/control. In

a little more details, the ‘FR’ Blue teams compute their best movement option using

(5.19)-(5.24), but only considering the contribution from the ‘FR’ Blue teams and ‘FO’

Red teams to the payoff and propagating the health distributions for these teams as

well (involved in a local engagement, ignoring the other Blue and Red teams). In the

simulation runs, this computation can be done by simply turning the initial health state

of the non-‘FR’ Blue teams and non-‘FO’ Red teams to 3 (destroyed) and proceed with

the regular algorithm. We call this the local reaction of the ‘FR’ Blue teams and the set
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Figure 5.11: Feint scenario: Global set up

of controls for the ‘FR’ teams is called ŨFR
L .

One can continue this for few time steps. Then we ’Feint-alert’ the Blue player

(cautioning that the Red player is attempting Feint) if

[ŨFR
L ]i �= [ŨFR

G ]i

In other words if the local Blue control for each ‘FR’ team ’i’ does not match with the

global Blue control for the ’i’th ‘FR’ team, we conclude that the Red player is attempting

to Feint and draw the Blue teams into some sub-optimal local reaction to gain advantage

by the use the non-‘FO’ Red teams (that were ignored in the local ‘FR’ Blue control

computation). Note that employing full state-feedback Feint is hard to achieve since full

information is available to both the players. The study is motivated by some observed

scenarios in a military application where team units may react locally.

For this example the choice was driven by geometry, distance between the Blue

and the Red teams, line of sight and some experimentation. Another hard aspect of

studying Feint is to find out the ‘FO’ Red teams and the ‘FR’ Blue teams. In this
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Figure 5.12: Feint scenario: Global reaction

example global and local controls were computed for 2 successive time steps. The ‘FO’

Red teams control were pre-determined, the non-‘FO’ Red teams stayed put for the

first time step and computed global control for the second time step, the ‘FR’ teams

computed both global and local controls for two successive time steps and the non-‘FR’

Blue teams compute global controls for both time steps. Figures 5.9 and 5.11 identify

the ‘FO’ and non-‘FO’ Red teams and ‘FR’ and non-‘FR’ Blue teams and mark them

for local or global control computation. In this scenario the Red player wants to move

all its teams to the strategic location node 32 (t∗) on the west side of the layout. The

Red team at node 10 is the single ‘FO’ Red team and Blue teams at nodes 32 and 20

form the ‘FR’ Blue teams. The other non-‘FO’ Red teams are both at node 23 and the

non-‘FR’ Blue team is at node 31. The ‘FO’ Red team causes initial movement along

the edge 10 − 13 on its way to the target node 32. The other Red teams just wait at

their initial locations. Blue computes ŨFR
L and for ‘FR’ teams at 32 and 20 and the

non-‘FR’ Blue team at node 31 computes global control in Figure 5.9, whereas in Figure

5.11, Blue computes ŨFR
G and for ‘FR’ teams at 32 and 20 ant the non-‘FR’ Blue team
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at node 31 also computes global control.

Refer to Figure 5.10 as the first step transition from Figure 5.9, the case where

‘FR’ Blue teams compute the local control. In the local reaction Blue team at node

32 in the ‘FR’ teams moves to node 18, whereas the team at node 20 moves to node

17 to provide resistance to the advancing Red ‘FO’ team. However in Figure 5.12, the

first step transition, using global controls for the corresponding teams, is to move to

nodes 25 and 18 respectively. Clearly [ŨFR
L ]32 �= [ŨFR

G ]32 and [ŨFR
L ]20 �= [ŨFR

G ]20. Thus,

we conclude that the ‘FO’ Red team at node 10 is trying to divert the Blue ‘FR’ teams

teams attention from the Red teams at 23 and 25. In the evolution of the simulation Red

is able to achieve its objective but since the simulation results are random, employing

Feint may not always end in Red’s favor.

This chapter is in part a reprint of the materials as is appears in,

Rajdeep Singh, William M. McEneaney - Adversarial Reasoning: Computational Ap-

proaches to Reading the Opponent’s Mind, CRC press, To appear.

The dissertation author was the primary author and the co-author listed in these publi-

cations directed and supervised the research.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The standard state-feedback solution to a two-player zero-sum stochastic game

in the discrete-time/discrete-space domain is obtained using a lower value. An ap-

plication to the MAG example problem in the state-feedback section and analysis of

state-feedback solution highlighted the differences in the nature of state-feedback and

partially-observed games, which make the latter substantially harder to solve. The state-

feedback solution is then used to obtain the certainty-equivalent or the ‘MLS’ control

(and some other single-distribution based control) for the Blue player when Blue uses a

stochastic modelling of the Red control.

With the recently proposed Deception-Robust theory, see (McEneaney 2004),

the Blue player can generate a deception-robust controller (with partial information

based on observation conditioned distributions). In this deception-robust approach, the

information state for Blue takes the form of a maximal cost over the space of feasi-

ble conditional probability distributions on the state. This information state combined

with a certain “generalized state-feedback” value function generates the Blue controller.

Whereas the theoretical results of the deception-robust approach, referred in this dis-

sertation, were firmly established, some results related to the information state are re-

derived with a refined mathematical definition of the information state. In particular

the dependence of the earlier definition of the information state (at any time t) on

[�w][0,t) ∈ [Wn]t is now removed. The information state propagation and certain robust-
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ness properties were re-derived with this new definition. The above redefinition does not

change any of basic results from (McEneaney 2004) but served the purpose of providing

a somewhat simplified mathematical definition of the information state.

The application of various Blue approaches (including the deception-robust theory) to

the MAG gave us the following main results:

• The deception-robust control is the optimal Blue control and robust to adversarial

noise in the observation process.

• The deception-robust control never under-performs the ‘MLS’ controller. The ad-

vantage of the deception-robust approach varies on the information level and the

parameter regime, but is the highest in the most imperfect information scenario.

This confirms the robustness properties of the deception-robust approach (and its

usefulness for such games) and also highlights the inadequacy of the ‘MLS’ con-

troller due to its high sensitivity on the ‘MLS’ estimate.

• With the the max-plus sum of max-plus delta functions, the information state

propagation complexity is equivalent to the complexity of propagation of Qt, the

set of feasible distributions. Initial distributions of type qG
ij (at different possible

Red states) gives the best Blue payoff compared to using relatively flatter (qU

or qNU , uniform or non-uniform) distributions in the deception-robust approach.

The same lack of knowledge can be modelled using different set of initial distribu-

tions, of which the one which models the initial distribution assuming an intelligent

adversary is better for Blue (using distributions of type qG
ij).

• A lower number of initial distributions is needed if some intel is available on the

initial Red state or some reduced set of Red controls W ∗, from which the actual

Red control is being exercised (which also leads to slower growth of Qt).

• When using distributions of type qG
ij , the pruning speed is slower (or size of Qt is not

reduced substantially after pruning). However, the performance is not very sensi-

tive with the error tolerance, μ, so a relaxed error tolerance is admissible allowing

for higher pruning speeds. The growth of Qt is slower using initial distributions of
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type qU or qNU , but one needs tighter/stricter error tolerance, μ, for getting the

desired performance.

• In the partially observed game with adversarial control, the ‘MLS’ may not re-

flect the true representation of the actual state. The ‘MLS’ controller performance

is comparatively reasonable with less imperfect information (say, correct apriori

knowledge of Wn) and some good stochastic model of the Red control (a pB
�w which

closely represents the actual Red control). However, this may not be guaranteed

in a partially-observed game. Results using good stochastic model only show rea-

sonable improvements in performance for the MAG example when Blue also has

apriori knowledge of Wn (and not the incorrect set Wn
I ).

• The Risk-Sensitive (RS) Blue control outperforms the ‘MLS’ control with appro-

priately chosen parameter κ. The deception-robust control out-performs the RS

control with up to 50% reduction in the payoff.

• The key to tractability is that the costs are only initial and final, and in particular,

the costs to the players to affect the observation process is only indirectly felt

through the effects those control have on the state process (and hence the terminal

state).

• Deception is useful for the Red player but its utility depends on the parameter

regime and the control decision process of Blue. With good sensor models (that

detect even stealthy Red entities quite well) and intel (essentially leading to more

accurate information), it becomes difficult to achieve deception, sometimes, even

when Blue uses the standard ‘MLS’ control. The reduction in payoff (better for

Blue) as the observation probability of the stealthy Red entities increases, confirms

this conclusion.

The basic building blocks of an approach to deception-enabled control have

been constructed. An automated deception-enabled Red control was proposed under

the assumption (A-RI). It is demonstrated that if Red has a (perfect) model of the

Blue controller where that Blue controller is restricted to operating of a observation-

conditioned probability process using a stochastic Red model, then one obtains a Red
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controller which employs deception where appropriate. This result is not surprising since

Red is omniscient or it has all the possible information, including the information set

of Blue. More importantly and not so obviously, it is seen that this deception-enabled

Red control performs rather well when Red is significantly mismodelling the simulation

dynamics and/or the Blue control algorithm. The main results for the deception-enabled

study are summarized below

• For Red, under assumption (A-RI), the optimal control is not identical to the opti-

mal state-feedback Red control, even though Red has complete state information.

In particular, it demonstrates that a control for Red, which is not state-feedback

optimal, may nonetheless be optimal for Red due to the deceptive effect it has on

the Blue observation process.

• The usefulness of deception might be restricted variably on various parameters

sets. The utility of deceptive control based on the stealthiness of Red entities is

dependent on the parameter regime, naturally related to the quality of information

dissemination associated within that parameter regime. Recall, that the state-

feedback optimal control uses stealth for affecting the observations. In particular

with increasing observation probability of the stealthy Red entities, the advantage

of obtaining better payoffs for Red is undermined.

• The mismodelling results for the case where the assumption (A-RI) does not hold

(due to the Red players’s internal Blue algorithm not being the same as the actual

Blue algorithm) also indicate that the automated control proposed under assump-

tion (A-RI) still never gives a worse payoff than using the state-feedback optimal

control for Red. In particular when Red internal mismatched model is poorer than

the actual Blue algorithm we found that Red does worse. In the flip case, or the

case where Red uses a better internal Blue model than actual Blue algorithm,

the results show that the automated deception-enabled control outperforms state-

feedback optimal Red control. The results in that case are however not conclusive

about a definite advantage to use a better internal Blue model. A larger number

of simulation runs could possibly give a more concrete and useful result.



140

In the Urban Warfare Modelling section, we demonstrated how some commonly

observed real-world war behaviors can be modelled appropriately and automatedly

generated in a simulated gaming environment. The discussion also looked into

achieving computational efficiency with offline data generation and some heuristics

that reasonably capture the dynamical behavior of the problem.

We now look at some natural extension of the research in this dissertation as

future work.

6.2 Future Work

The deception-robust controller explicitly reasons about deception and handles

deception better that the risk-averse approach, but this improvement comes at a sub-

stantial computational cost. For a given, fixed computational limit, depending on the

specific problem, the additional approximations which must be made in order for the

deception-robust controller to be computed may reduce its effectiveness, and it is not

obvious which approach will be more successful. The results from this dissertation shed

some light on the utility or the value of specific intel, which makes the deception-robust

approach computationally less burdensome. However, the benefits of using the computa-

tional intensive deception-robust approach vis-a-vis a more standard speedier approach

like the ‘MLS’ or the Risk-Sensitive approach seems to be problem specific. Any technol-

ogy or heuristic which assists in determining which approach the Blue player should be

using (based on a given problem) will be very useful. Such decision making will certainly

be driven by the level of imperfection or, alternatively speaking, the level of intel for a

given problem. There are several challenges with implementing the deception-robust and

the Risk-sensitive approach that need more attention.

• For the RS approach, currently, κ is based on a simulation results repeated over

some specific parameter regimes. Naturally the optimal κ would be problem spe-

cific. The computation of an optimal κ is an area of future study. Also, for large

problems, it is not even feasible to compute V (x) offline, ∀ x ∈ X (which is gener-

ally achievable for reasonably sized problems). Instead, one may use hierarchical

techniques to decompose the problem. Further, even this may not be sufficient to
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make the problem computationally tractable. In that case, one may allow Blue

and Red to search only over move strings of several steps where these move strings

may be partially random. One then applies some heuristic value approximation

at the end of the short time-horizon look-ahead. This is the approach we used

for computing a heuristic value, in implementing the state-feedback example, dis-

cussed in the Urban Warfare modelling section. Lastly, instead of computing Vt(i)

for all i ∈ X , one can restrict the computation to only those i for which [q̂t]i is not

too far below the argmax over all [q̂t]i. Of course, this shortcut is only possible if

the computation is done in real-time.

• The computation or some reasonable approximation of V (x, q) (much more compu-

tationally intensive than V (x)) is also an area of future study. Simplistic approx-

imations like the one used in this dissertation were good enough for the example

problem discussed, but one needs to find more general approximation techniques.

These approximations should be representative of the advantage to Red (or the

disadvantage to Blue), resulting from the Blue player’s belief that the true state X

is well-represented by the distribution q. For example, the following approximation

lacks the required representation.

Vt(j, q) ≈
∑
i∈X

V̄t(j, i)[q]i (6.1)

where we assume that we can somehow compute Vt(j, i). Let’s assume that given

some j ∈ X , V (j, i) takes positive values when the state i is very different from

the actual j and negative values when the state i is very close to the actual state j

(lower payoff is favorable to Blue). We also assume that at terminal time T , V̄T (j, i)

only depends on j (similar to VT (j, q)). If at terminal time T , V̄ (j, i) = E(j), then

using (6.1) one gets,

VT (j, q) ≈
∑
i∈X

E(j)[q]i = E(j)

which confirms that the suggested approximation has the correct form. Let us

assume that at some time t, [q1
t ]i = 0.5 and [q1

t ]j = 0.5 and [q1
t ]k = 0 ∀ k �= i
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and ∀ k �= j and k ∈ X ). Let’s assume that states i and j are such that i is

favorable for Blue whereas j is not favorable to Blue (say in some equal measure).

Now assume that [q̃1
t ]i = 1

N (∀ i ∈ X , where N
.= #X or the dimension of X , total

number of states). The two distributions (q1
t and q̃1

t ) give very different beliefs that

Blue might have of the actual state, however one can expect Vt(j, q1) not be very

different from Vt(j, q̃1) with the form given by (6.1).

Deception-enabled controllers under assumption (A-RI) rely heavily on perfect

modeling of opponent controllers. This formulation is naturally susceptible to mismod-

elling by Red of the Blue control algorithm, as the space of opponent controllers may

be huge. The question of existence of potentially deceptive automated controllers which

do not presuppose a model of the opponent control algorithm is nontrivial. Hence, two-

player zero-sum stochastic games where the information patterns for both players are

not nested will be a challenging future research.

For the Urban warfare modelling, the next step is to extend the modelling to

the partial information set-up. This problem is much harder using even with the risk-

sensitive Blue approach. Hierarchical methods, mapping the results from the small scale

problems to approximate ensemble behaviors of higher scale problems (using clustered

states) would be a challenging future study.
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