
UC Office of the President
Recent Work

Title
Exploring Abstraction Functions in Fuzzing

Permalink
https://escholarship.org/uc/item/9m1245n1

Authors
Salls, Christopher
Machiry, Aravind
Doupe, Adam
et al.

Publication Date
2020-06-29

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9m1245n1
https://escholarship.org/uc/item/9m1245n1#author
https://escholarship.org
http://www.cdlib.org/

Exploring Abstraction Functions in Fuzzing
Christopher Salls∗, Aravind Machiry∗, Adam Doupe†,

Yan Shoshitaishvili†, Christopher Kruegel∗, and Giovanni Vigna∗
∗University of California, Santa Barbara {salls, machiry, chris, vigna}@cs.ucsb.edu

†Arizona State University {doupe, yans}@asu.edu

Abstract—Fuzz testing has emerged as the preeminent auto-
mated security analysis technique in the real world. To keep
up with the shifting security landscape, researchers have inno-
vated the fuzzing process to identify more and more complex
vulnerabilities. One innovation is an approach inspired by genetic
programming: the fuzzer generates test-cases, evaluates the
quality of the test-case, and uses this evaluation to select test-cases
for further iterations of the process. While this innovation has
impressive results: without a formal, scientific model on which to
base these improvements, the field of fuzzing has been explored
in an ad hoc way. As a result, it is difficult to understand the
relative merit of different techniques.

In this paper, we formalize the input evaluation and selection
components of fuzzing, borrowing concepts from the field of
static analysis, and providing a base for future expansion of
and research into fuzzing techniques. In building this formalism,
we observed that the impact of different abstraction functions
in modern fuzzing techniques is under-explored in prior re-
search. Without a formal base on which to reason about their
contributions, researchers of fuzzing techniques have missed the
potential for improvements to this critical component of fuzzing
approaches. We explore the implications of our formalization-
derived observation on the effectiveness of evolutionary fuzzing
techniques in the second half of the paper, showing that the
application of different abstraction functions, and the use of
multiple abstraction functions in tandem, improves state-of-the-
art fuzzing techniques.

I. INTRODUCTION

As our society becomes increasingly dependent on software,
the security of this software becomes paramount. Whereas, at
one time, security could be approached reactively—responding
to vulnerabilities only after their exploitation by attackers—
this is no longer acceptable. Modern security is proactive, with
researchers attempting to identify and fix software flaws before
they can be found by attackers.

One method, fuzz testing, has emerged as the preeminent
automated security analysis technique in the real world. This
technique has impressive results thus far. A modern example
is American Fuzzy Lop (AFL) [23], a powerful fuzzer based
on genetic techniques, which is responsible for the detection
of hundreds of real-world flaws, including high-impact vulner-
abilities such as the Stage-fright vulnerability [7]. AFL’s suc-
cess has spawned a veritable “cottage industry” of researchers
looking to improve various stages of the fuzzing process.
However, without a formal, scientific model on which to base
these improvements, the field of fuzzing was explored in an
extremely ad hoc way, and it is difficult to understand the
relative merit of different approaches.

In this paper, we present the first formalization of input
evaluation and selection in fuzzing, borrowing concepts from
the field of static analysis. Formally, a fuzzer generates input
test-cases and dispatches them to a program, dynamically
triggering a subset of the potential states that the program can
reach. However, the full set of states is potentially infinite.
For tractability, the formal fuzzing process uses an approach-
specific abstraction function to reduce this set to an abstract
state space, allowing the fuzzer to identify “promising” test-
cases for further mutation by selecting test-cases that correlate
to different abstract states in the state space.

We explore the implications of our formalization-derived
observation on the effectiveness of evolutionary fuzzing tech-
niques in the second half of the paper, and we show that the
application of different abstraction functions, and the use of
multiple abstraction functions in tandem, shows promise for
improving state-of-the-art fuzzing techniques. To maximize the
benefit of this work to the community, we will open-source
the resulting tool upon publication.

In summary, this paper makes the following contributions:
• To form a scientific base for research into future ap-

proaches in fuzzing, we provide a formalization of the
input evaluation and selection process in fuzzing and
redefine current work in the context of this formalism.

• Stemming directly from an observation made during the
formalization process, we propose a diversification of
fuzzer abstraction functions and design a number of such
functions that can be used both alone and in composition
with each other.

• We implement an extensible framework for the devel-
opment and evaluation of fuzzer abstraction functions,
evaluate its impact on the effectiveness of a modern
fuzzer, and open-source our work for reproducibility and
for the community to build upon.

II. BACKGROUND AND RELATED WORK

Fuzzing is a well-known technique for program testing by
generating random data as input to programs under test, and
has drawn much research attention over a wide span of time.
The main goal of fuzzing techniques is to violate implicit
expectations made by the developer on the input and expose
resulting security flaws or bugs.

Input generation: This defines how the inputs are generated
by the fuzzing technique. Most of the research in fuzzing
occurs in this aspect. There are many well-known input
generation techniques:

Mutation-based: Here, the fuzzer starts with some seed inputs
and new inputs are generated by mutating certain regions
of existing inputs [23], [18].

Evolution-based: In this case, evolutionary techniques are
used to combine interesting inputs to generate new in-
puts [17]. We formally define the definition of interesting
in Section III.

Grammar-based: The fuzzer generates input that satisfies a
specified grammar. Program that expect input to conform
to a grammar, such as interpreters [9], and file editors, are
generally fuzzed with this input generation technique. If
the input structure can be specified as a grammar, then
grammar-based techniques can be effective in triggering
complex behavior in the target program.

Note that these techniques are not exclusive—tools, such as
Dowser [11], combine taint tracking and symbolic execution
to generate interesting inputs to trigger buffer overflows.
Similarly, Driller [19] combines three strategies: mutation,
evolution, and symbolic execution.

Input selection or evaluation: A fuzzing technique must
know the effectiveness of its generated inputs, so that it can
determine if a new input or mutation strategy was useful.
Measuring the effectiveness needs visibility into the program
under test and, as such, black-box techniques can only have
a limited input evaluation by examining the output of the
program. In Section III we formally redefine input selection
and input evaluation as abstraction functions, however for now
we will use the informal terms. There are two well-known
input evaluation techniques:
Goal-based or directed: Here the input is evaluated on the

likelihood of achieving a goal or causing program to reach
a certain state. Dowser [11] and BuzzFuzz [8] generate
inputs that are likely to cause buffer overflows. libFuzzer-
gv [20] explored guiding the fuzzer based on the stack
depth and on the number of memory allocations made.
However, these input selection strategies are specialized
for each goal and cannot be generalized.

Coverage-based: Here the input is evaluated based on what
code is triggered by it on the test program. The intuition
is simple: dynamic techniques cannot find a bug if they
do not execute the code containing the bug, and thus, a
higher code coverage implies a higher chance of bugs.
Most general fuzzing techniques, such as AFL [23],
VUzzer [17], and syzkaller [10] are coverage based.

Most existing research in fuzzing attempts to find new input
generation techniques to efficiently generate effective inputs.
However, the importance of input selection and evaluation
in fuzzing remains an under-explored area and a promising
research direction. Wang et al [22] take a step down that road,
exploring the differences in some selection strategies. Our
work (done independently and concurrently) further explores
the effectiveness of various abstraction functions, evaluating a
different set of fuzzing strategies, in a larger experiment, with
a thorough investigation into the effectiveness of the various
strategies.

III. FORMALIZING

Fundamentally, the goal of a fuzzer is to find in a given
program software bugs that violate the security properties of
the program. As fuzzing is a dynamic technique, the fuzzer
finds bugs by providing input to the program in an attempt to
trigger a program state that violates a security specification (for
example, accessing invalid memory). Fuzzing can be viewed
as an iterative process, targeted to explore the state space of a
given program completely. Unfortunately, exploring the entire
state space of a program is equivalent to solving the halting
problem, which is undecidable.

Similar to program testing, fuzzing is an automated testing
technique. It tries to generate interesting inputs as fast as
possible within a given resource budget.

A. Concepts

First, we define some notions that will be used throughout
our fuzzing formalism:
Input: Programs consume input data to drive their operation.

An input, ι is our representation of this input data. Note
that this notion of input covers all types of input to a
program (command line, network, files etc).

Input Space: The alphabet of possible inputs is Σ and the
set of all possible inputs is Σ∗. If the length of the input
is not bounded, the set Σ∗ is infinite.

Concrete State: The snapshot of all the processor registers,
the program’s memory, file system operations, or anything
else that effects the operation of the program represents
the concrete state, r, of a program. The symbol C
indicates the set of all the possible concrete states of a
program.

Concrete State Space: Each input ι triggers a series of con-
crete states as it is processed. The trace of all of the
concrete states reached by the input ι, denoted as csι, is
the Concrete State Trace of the input.
Because there is a potentially infinite amount of inputs
that could be read by the program, the set of all Concrete
State Traces can be infinite. CS denotes the set of all
concrete state traces for a program.

Abstract State Space, AS: As the set of Concrete State
Traces CS can be infinite (or computationally infeasi-
ble to enumerate), fuzzing techniques must abstract the
concrete state space so that different states (and therefore,
different inputs) can be considered equivalent. Here we
derive inspiration from Abstract Interpretation [4], and
similar to abstract domains in Abstract Interpretation we
define the Abstract State Space (AS) as a domain to
which a concrete state space will be mapped to. The
elements of this domain are called abstract states.

These concepts will be used as the basis of a formal definition
of fuzzing.

B. Mapping to Abstract States

Fuzzing techniques reason over the abstract state space of an
input instead of the concrete state space. This allows them to

group inputs having different cs enabling efficient generation
of interesting inputs.

The mapping between AS and CS is handled by two
functions:
Abstraction function (α): This function maps a concrete

state trace to an abstract state.
Formally, α : CS → AS and A is a set of abstraction
functions.

Concretization function (γ): This function maps an abstract
state to a list of concrete states.
Formally, γ : AS → CS.

For a given input ι and a corresponding csι, we can compute
the corresponding abstract state by applying α as α(csι). We
call this the Input Abstract State (IAS).

Formally, IAS(ι, α) = α(csι).
The tuple of an input (ι) and corresponding IAS form the
Fuzzing Result (FR) of the input ι.

Formally, FR(ι, α) = (ι, IAS(ι, α)).
For a set of inputs I and an abstraction function α, the set of
corresponding fuzzing results are called Fuzzing Results Set
(FRS).

Formally, FRS(I, α) = {FR(ι, α), .. | ∀ι ∈ I}.
For a set of inputs I and a set of abstraction functions A, we
can define Complete Fuzzing Results (CFR) formally as:
CFR(I, A) = {FR(ι, α), .. | ∀α ∈ A, ι ∈ I}.

For a given set of abstraction functions A, two inputs ι1 and ι2
are considered the same iff CFR({ι1}, A) = CFR({ι2}, A).

To shorten the notation we will use α (ι) as the abstraction
of the Concrete State Trace triggered by ι, i.e. α(ι) := α(csι).

C. Fuzzing Techniques and Procedures

With these notions defined, we can formally define a fuzzing
technique (F̂) as a function that takes the following inputs:
• The set of abstraction functions to be used for the current

iteration (Acurr).
• The program pcurr to be tested, with additional instru-

mentation as needed by the abstraction functions Acurr.
• The set of complete fuzzing results of all previously

tested inputs and abstraction functions (CFRprev).
• A set of inputs to be used for current iteration (Icurr).
• The time and resource consumed thus far (t rcurr).

and produces the following outputs:
• A set of inputs to be used for the next iteration (Inext).
• A set of abstraction functions to be used for the next

iteration (Anext).
• A version of the program pnext, with additional instru-

mentation needed by the abstraction functions Anext.
• The new complete fuzzing result set, which includes

the complete fuzzing result of Icurr. i.e., {CFRprev ∪
CFR(Icurr, Acurr)}.

• The new time and resource consumption (t rnext).
Formally, a fuzzing technique can be defined as:

F̂ : (pall, Iall, P (A), P (CFRall), tall, rall)

X (pall, Iall, P (A), P (CFRall), tall, rall)

where pall is the set of all possible functionally identical
copies of the program p, P (A) is the power set of all
possible abstraction functions, P (CFRall) is the power set
of complete fuzzing results across all possible inputs Iall
and all possible sets of abstraction functions A (formally,
CFRall = CFR(Iall, A)), tall is the set of all possible
time consumptions, and rall is the set of all possible resource
consumptions.

In every iteration, a fuzzing procedure usually stores all
the interesting inputs used during the iteration. An input is
interesting if it explored an abstract state that is not reached
by any of the previous inputs. Formally, let the set of all
interesting inputs stored by a fuzzing technique be Ĩ , an input
ι in the iteration, i.e., ι ∈ Icurr, can be considered interesting
if the following relation holds:

∃α ∈ Acurr | α(ι) 6 ⊆α
⋃
i∈Ĩ

α(i)

where Acurr is the set of abstraction functions used in the
iteration.

The above relation ensures that there is an abstraction
function, according to which the input ι explored an abstract
state that is not reached by any of the previously used inputs.

The fuzzing process F̄ applies the fuzzing technique F̂
iteratively until the resource budgets are consumed.

A fuzzing process F̄ is given the program p, an initial
set of inputs Iinit (known colloquially as “seeds”), a set of
initial abstraction functions Ainit, a fuzzing technique F̂ , a
time budget t, and a resource budget r. A fuzzing process
will return the set inputs that trigger invalid program states
Iinvalid.

F̄ : (pall, Iall, F̂ all, tall, rall) X Iall (1)

The fuzzing process F̄ applies F̂ iteratively until the pro-
vided resource budgets are exhausted.

... F̂ ◦ F̂ ◦ F̂ ◦ F̂ (p, Iinit, Ainit, ∅, 0, 0) (2)

D. Fuzzing parameters
Given this formal definition of fuzzing, any fuzzing tech-

nique can be described by defining the following parameters:
Input Generation (Inext): This describes how the new input

is generated, i.e., the technique used to generate Inext for
an iteration of the fuzzing technique. An intelligent input
generation is an innate feature of any fuzzing technique.
There are different ways to generate inputs, whether by
using random data, by using the fuzzing result of the
previous inputs, or a combination of both.

Abstraction Functions (A): This is the total set of abstrac-
tion functions that could be used by the fuzzing process.

Abstraction Function Selection (Anext): Similar to input
generation, this parameter describes the mechanism used
to select the abstraction functions to be used for the next
iteration. Most of the fuzzing techniques have a single ab-
straction function (i.e., |A| = 1) and use the same abstrac-
tion functions in every iteration (i.e., Anext = Aprev). We
call these techniques Single Abstraction Fuzzing (SAF).

To demonstrate the generality of our model, let us define
some of the existing fuzzing technique using these parameters.
AFL [23]: For input generation, AFL uses various mutation

of interesting inputs such as: bit-flipping, byte-flipping,
splicing, etc. It is a SAF technique with the following
abstraction function:

αafl(ι) = {(bb1i , bb1j , log2(n1)), (bb2i , bb
2
j , log2(n2)), ..}

where (bb∗i , bb
∗
j , log2(n∗)) are pairs of basic blocks (bb)

such that bb∗j is visited right after bb∗i for n∗ number of
times when the program processed the input ι and log2
is the logarithm with base 2.

Dowser [11]: For input generation, Dowser uses constraint
solving to generate interesting inputs.
It is also an SAF technique with a slightly different
abstraction function than SAGE: instead of collecting
all the constraints, it only collects the constraints at
predetermined program points PDowser.

αDowser(ι) = 〈(c1, b), (c2, b), (c3, b), ...〉 (3)

where c∗ ∈ PDowser is a conditional statement of the
program p reached by the input ι and b is the Boolean
value (i.e., b ∈ {1, 0}), that indicates the result of the
conditional statement.

Driller [19]: It uses both AFL method and constraint solving
(similar to SAGE) for input generation. It is a SAF
technique with the AFL’s abstraction function i.e., αafl.

VUzzer [17]: It generates inputs based on mutation and com-
binations of interesting inputs.
It is also a SAF technique with the following abstraction
function, which is based on a scoring function (score)
that is based on the basic blocks reached by the input.

αV Uzzer(ι) = {(len(ι), score(bb1w, bb
2
w, ...))}

where len(ι) is the length of the input in bytes and bb∗w
is a pre-calculated weight of the basic block bb∗ reached
by the input ι.

Steelix [13]: This is a technique customized to fuzz magic
byte based programs. For input generation, Steelix uses
conditional mutation of the input bytes where a compar-
ison failed.
Steelix is actually a multi-abstraction fuzzer that com-
bines AFL and the results of interesting comparison
operations. Formally,

αsteel(ι) = {(bb1i , bb1j , lg2(n1)), (bb2i , bb
2
j , lg2(n2)), ...,

(c1, n1), (c2, n2), (c3, n3), ...}

Here, the first part is similar to AFL, where
(bb∗i , bb

∗
j , log2(n∗)) are pairs of basic blocks (bb) such

that bb∗j is visited right after bb∗i for n∗ number of times.
The second part captures the results of interesting com-
parisons: where c∗ is a conditional statement reached by
the input and n∗ is the number of bytes in the conditional
statement that matched.

Angora [1]: Angora uses a single abstraction function similar
to AFL’s, with the addition of context sensitivity given by
taking a hash of the callstack. Angora also generates new
inputs using byte level taint tracking and a gradient decent
algorithm for trying to satisfy conditional statements.

αangora(ι) = {(bb1i , bb1j , h(stack1), log2(n1)),

(bb2i , bb
2
j , h(stack2), log2(n2)), ..}

As shown, the provided formal model of fuzzing helps in un-
derstanding various fuzzing techniques in a systematic manner.
Any fuzzing technique can be easily defined using our Fuzzing
Parameters (Section III-D).

By describing existing fuzzing techniques using our formal
model, one can see the following observations emerge:

Observation 1: Most current fuzzing techniques either de-
velop new input generation techniques (e.g., Driller [19],
DIFUZE [3]) or change, in tandem, both the abstrac-
tion function and the input generation technique (e.g.,
VUzzer [17], Angora [1], and Dowser [11]). In actuality,
these two concepts are orthogonal.

Observation 2: Most existing fuzzing techniques are
Single-Abstraction Fuzzers (SAF). That is, they use the
same single abstraction function in every fuzzing itera-
tion. However, there is no obvious reason why this must
hold for all techniques.

This leads us to a natural research direction:
• With a fixed input generation technique, how does the

chosen abstraction functions affect the effectiveness of
fuzzing?

• Can a fuzzing strategy use multiple abstraction functions?
Will it be more effective (given the same budget) than the
corresponding SAF variation?

In the next section, we will describe a number of alternate
abstraction functions that we will use to explore this direction
of research.

IV. ABSTRACTION FUNCTIONS EXPLORED

There are potentially infinite ways to abstract the concrete
state space covered by an input on a program. Some aspects
that abstraction functions could be based on are: (1) Code
coverage, the set of basic blocks accessed [21], (2) Data
access, the set of all global variables accessed, or (3) Function
invocations, is the set of all library function called during
program execution.

As mentioned in Section III-D, there could be several possi-
ble abstraction functions, where each could be effective in ex-
ploring a particular concrete state space of the program. Based
on the requirements of effective exploration and performance
overhead, we implemented six different abstraction functions,
three of which are similar and have fine-grained granularity

and the remaining three attempt to abstract different concrete
state spaces of the program.

1) Basic Blocks Abstraction (αbb): This is the most basic
abstraction function which simply tracks the number of times
each basic block was executed by the program. Instead of
maintaining the raw counts, we use logarithmic counting set
(as used in AFL[23]). Formally:

αbb(ι) = {(bbi, log2(ci)), (bbj , log2(cj), ...}

Where, bb∗ is the basic-block executed and c∗ is the number of
times corresponding basic block is executed when the program
processed the input ι.

The intuition behind this abstraction is to capture the basic-
block coverage achieved by an input on the program, under
the assumption that more coverage yields more bugs.

2) Edges Abstraction (αedge): This abstraction function
increases the granularity of Basic Blocks abstraction by track-
ing the number of times (using logarithmic counting) an
edge between basic blocks is executed. This is the same
abstraction (Section III-D) used by the AFL fuzzer [23].

3) Block Triples abstraction (αtriple): The Block Triples
abstraction function is similar to the Edges abstraction func-
tion, however instead of tracking edges (which is a pair of
basic blocks), here we track all of the three consecutive basic
blocks visited during the execution of the program.

The intuition here is that because the edges abstraction is
successful (as shown by AFL), then perhaps increasing the
granularity of the abstraction could increase its effectiveness.

4) Edge + Return Loc Abstraction (αedgeret): This abstrac-
tion, in addition to the Edges abstraction, also considers the
calling function. In static-analysis terms, this is a 1-context
sensitive version of the Edges abstraction. Formally,

αedgeret(ι) = {(bb1i , bb1j , ret1, log2(n1)),

(bb2i , bb
2
j , ret2, log2(n2)), ..}

Where ret∗ is the calling context under which the correspond-
ing edge (bb∗i , bb

∗
j) was visited. The rest of the terms are the

same as the Edges abstraction.
The intuition behind this abstraction is that if there is some

function that performs a comparison, such as a strcmp, it is
useful to satisfy that comparison when it is called in different
contexts and not in a single context. For example, in Listing 1
a single function is used to check a three-byte header. A
Basic Blocks or Edges abstraction can satisfy the check once
because, as each successive byte is matched, the new input
will be considered interesting. However, it will only match
one header, because for a second header those blocks/edges
will have already been seen in the utility function, and it would
not be able to successively match the new bytes. On the other
hand, the Edge + Return Loc abstraction will match the header
multiple times, because it includes the calling context.

5) Function Context Abstraction (αcontext): In this abstrac-
tion function, we attempt to capture the context of the executed
functions. As the context could be potentially unlimited, we
limit the length of the context to four. We capture the context

Listing 1: In this example, a utility function, check_header
is used for multiple checks. An abstraction function that only
tries to cover all edges will likely fail to pass both checks,
because it will have already seen the edges within the utility
function.

as the sequence of the last four return address on the call-
stack at the entry of each executed function. In the case where
the call-stack has less than four return addresses we use null
instead. This is done by xoring the callstack entries.

The motivation for this abstraction is that, in many real-
world vulnerabilities, the context of certain function invo-
cations is critical. For example, in a JavaScript engine, the
JavaScript code can add or remove elements in an array.
However, these operations might not be safe if the code is
called from inside a sort function which does not handle a
changing array size (as in CVE-2013-0997 [5]).

6) Method Calls Abstraction(αomcp): This abstraction
function is specialized for object-oriented programs, and we
capture the pairs of methods executed on the same object
instantiation. Consider an example, where we have an object
foo with methods A(), B(), and C(). If the execution
of a program given input ι results in the following method
invocation sequence: foo.A(), foo.B(), foo.C(), then
we will add the pairs A-B, A-C, B-C, to the counts. If there
is a second object bar that is the same class as foo and
the program execution is: foo.A(), bar.B(), foo.C(),
bar.B() we will add the pairs A-C, B-B to the counts because
the method calls are tracked on a per-object basis.

7) Steelix (αsteelix): Although this is actually a multi-
abstraction as explained in Section III-D, it is included here
as it is one of the strategies we explore in our evaluation.
The details are previously explained, but briefly, Steelix uses
two abstraction functions, edges, and one which looks at
comparisons with important values.

A. Multi-Abstraction

As demonstrated in Section III-D, most existing fuzzing
techniques are Single Abstraction Fuzzing (SAF). In this
paper, we explore combining multiple abstraction functions so
that they can provide new inputs to each other and combine the
strengths that each abstraction function provides. For example,
let us consider how the Edges and Method Calls abstractions
described previously might pair well together. The Method
Calls abstraction instruments method calls on objects and will
consider different arrangements of method calls interesting,
however it might not be able to trigger a particular method
call in the first place. The Edges abstraction might easily find
that new method call, however it may not find the different
arrangements of the method calls interesting.

To combine abstractions, we chose to run them as parallel
fuzzers and share inputs between them, similar to the ensemble
fuzzing strategy presented by Chen et. al [2] and Wang et. al
[22]. In other words, each fuzzer will use its own abstraction
function but consider all interesting inputs that all fuzzers

TABLE I
MULTISTRATEGY FUZZER CONFIGURATIONS.

Selection Strategy Abstraction Functions

Multi-Strategy1
Basic Blocks, Edges, Block Triples,
Edge + Return Loc, Function Context,
Method Calls

Multi-Strategy2 Steelix, Basic Blocks,
Edge + Return Loc, Function Context

discover. Of course there are other ways of using multiple ab-
straction functions, such as switching between them, although
exploring such other ways of combining them is out of scope
of this paper.

V. IMPLEMENTATION

We implemented each of the abstraction functions including
the Mult-Strategy abstraction using American Fuzzy Lop,
as it is one of the most popular and effective open source
fuzzers. To implement the Multi-Strategy abstractions we
run each input selection strategy in parallel with separate
(distinct) fuzzers, however the found interesting inputs are
shared between each fuzzing instance.

VI. EVALUATION

Lacking the formalism contributed by this paper, existing
approaches in fuzzing do not maintain a separation between
the abstraction function utilized and other details of the
respective approaches. Additionally, it seems that current
fuzzing techniques do not tend to leverage multiple abstraction
functions. In this section, we explore both of these oversights,
evaluating the effectiveness of alternate abstraction functions
as well as the combination of multiple abstraction functions.
We attempt to answer the following research questions.

RQ1: Does the choice of abstraction function affect the bug
finding capabilities?

RQ2: How effective is it to combine different abstraction
functions?

When evaluating these research questions, it is important to
keep in mind we are not only looking to see if the choice of
abstraction functions or combination thereof results in more
crashes, but also to see if the bugs that are found differ. That
is, if one abstraction function finds less bugs, but finds bugs
not found by another than it is still interesting and would be
worth applying.

Also, it is important to reiterate, as stated in Observation 2
in Section III, that the choice of abstraction function (or
functions) is orthogonal to other aspects of the fuzzing pro-
cess. That is, though symbolically-assisted approaches (such
as Driller [19]) would have a scaling effect on the numbers
reported in this section, they would not effect the relations
between these numbers. As such, we evaluate our system using
a modification of the American Fuzzy Lop fuzzer.

A. Dataset

To explore our research questions, we chose a varied
dataset that is amenable to large-scale experiments. Specif-
ically, we use the dataset of vulnerable programs produced
for the DARPA Cyber Grand Challenge (CGC) [6] for our
experimentation. These binaries contain a very diverse set
of functionalities and variable complexity, and guarantee the
presence of known bugs [15], [14], providing a perfect testing
ground for our system. After filtering out challenges that
involved multiple binaries (which AFL cannot currently fuzz)
and challenges which failed to build for Linux (using a port
of the CGC dataset to that platform [16]), there were 217
different binaries that we used.

To evaluate the impact of abstraction functions on real-
world software, we evaluated them on Objdump and Im-
ageMagick in Section VI-E.

B. Experimental Setup

We evaluated each binary in the CGC dataset using each
of the seven selection strategies detailed in Section IV). Each
of these single-strategy fuzzing configurations was run for 8
hours on 12 cores, giving each configuration 96 CPU hours
of experimentation time. This is well over the minimum time
suggested by [12].

We also evaluated two multi-abstraction fuzzing (MAF)
configurations that combines multiple select abstraction func-
tions. In each of these, the abstractions were run in parallel
(with cross-fuzzer synchronization of Ĩ) for 8 hours, with 12
cores total divided equally between the fuzzers. Note that
this is the same amount of resources provided for testing
the single-abstraction fuzzers. The abstractions used in the
MAF configurations are shown in Table I. We chose one
configuration (Multi-Strategy1) which included every abstrac-
tion function except Steelix, and one MAF configuration with
Steelix (Multi-Strategy2). The abstraction functions chosen for
Multi-Strategy2 aimed to pick the a smaller, but varied set of
selection strategies.

C. Crash Numbers

Table III shows the total number of binaries crashed by each
SAF configuration, along with the MAF configurations. Con-
firming our intuition, both multi-strategy fuzzers performed
better than any of the single-strategy fuzzers that were part of
them. The three best fuzzers (Multi-Strategy2, Steelix, Multi-
Strategy1) were all MAF’s, indicating that MAF fuzzers per-
form better than their SAF counterparts. The Steelix strategy
performed very well, crashing a total of 127 binaries. This
result was expected because it is designed to recover strings
and magic numbers, of which there are many in the CGC.
The Multi-Strategy2 strategy performed the best, crashing 132
of the 217 binaries. The one SAF that performed the best
was Edge + Return Loc, crashing 102 binaries, 10 more than
any other SAF. This result shows that adding some callstack
context to the abstraction seems to improve it’s bug-finding
capabilities.

TABLE II
THIS TABLE SHOWS THE PERCENTAGE OF BINARIES THAT ARE CRASHED BY THE CONFIGURATION IN THE CORRESPONDING ROW THAT ARE also CRASHED WHEN USING THE

CONFIGURATION IN THE CORRESPONDING COLUMN. THE VALUE OF EACH CELL AT ROW m AND COLUMN n IS:
CAFm

∩ CAFn
CAFm

∗ 100, WHERE Ck IS THE TOTAL

BINARIES CRASHED WHEN USING THE ABSTRACTION FUNCTION k, AFm , AND AFn ARE THE ABSTRACTION FUNCTIONS OF ROW m AND COLUMN n RESPECTIVELY. THE

CELLS IN THE TABLE ARE SHADED BASED ON THE VALUE VERYHIGH 100-95, HIGH 95–90, MEDIUM 90–80, AND LOW < 80.

Basic
Blocks Edges Block

Triples
Edge +
Return Loc

Function
Context

Method
Calls

Multi-
Strategy1 Steelix Multi-

Strategy2
Basic Blocks —- 94.51 94.51 96.70 80.22 61.54 96.70 94.51 95.60
Edges 94.51 —- 94.51 96.70 81.32 63.74 96.70 97.80 96.70
Block Triples 93.48 93.48 —- 97.83 80.43 63.04 98.91 97.83 97.83
Edge+Ret Loc 87.13 87.13 89.11 —- 74.26 58.42 99.01 94.06 98.02
Function Context 93.59 94.87 94.87 96.15 —- 73.08 96.15 100.00 100.00
Method Calls 91.80 95.08 95.08 96.72 93.44 —- 98.36 98.36 98.36
Multi-Strategy1 83.02 83.02 85.85 94.34 70.75 56.60 —- 90.57 94.34
Steelix 67.72 70.08 70.87 74.80 61.42 47.24 75.59 —- 97.64
Multi-Strategy2 65.91 66.67 68.18 75.00 59.09 45.45 75.76 93.94 —-

TABLE III
RESULTS OF EACH OF FUZZING USING THE DIFFERENT ABSTRACTION

FUNCTIONS ON THE CGC DATASET.

Selection Strategy Type Number
Crashes

Mean
Block
Coverage

Mean
Execs
per sec

Basic Blocks SAF 91 38.1% 625
Edges SAF 91 38.5% 620
Block Triples SAF 92 39.0% 412
Edge + Return Loc SAF 101 39.5% 555
Function Context SAF 78 35.5% 569
Method Calls SAF 61 28.6% 469
Multi-Strategy1 MAF 106 39.5% 551
Steelix MAF 127 47.2% 581
Multi-Strategy2 MAF 132 48.1% 530

The Method Calls configuration was the least effective with
only 55 crashes. As explained in Section IV, this abstraction
function is specialized for object-oriented programs, while
most of the CGC binaries are not object-oriented.

These results allows us to infer an answer to Research
Question 1 (RQ1).

Answer for RQ1: The choice of an abstraction function
is important in fuzzing, and an inappropriate abstraction
function (e.g., Method Calls on non-object-oriented code)
can seriously impair fuzzing effectiveness.

The relatively poor performance of the Method Calls and
Function Context SAF configurations does not mean that
these abstractions are useless. In fact, we found in our
evaluation, when combined with other abstraction functions
in Multi-Strategy1, it enabled the detection of a crash in
Modern Family Tree which no other configuration found.

Table II shows a fine-grained comparison of different con-
figurations. It contains the percentage of binaries that are
crashed by the configuration in the corresponding row that are
also crashed when using the configuration in the corresponding
column. Specifically, the value of each cell at row m and
column n is computed as: CAFm ∩ CAFn

CAFm
∗100, where Ck is

the total binaries crashed when using the abstraction function
k, AFm, and AFn are the abstraction functions of row m and
column n respectively. This table allows the comparison of
the different abstraction functions against each other. For a

given pair of abstraction functions αm and αn), we can make
following observations based on the value of a cell (m,n),
which is the value at row m and column n:
• A higher value at the cell (αm, αn) indicates that αn

encompasses the effectiveness of αm.
• A higher value at the cell (αn, αm) indicates that αm

encompasses the effectiveness of αn.
• A higher value at both the cells (αm, αn) and (αn, αm)

indicates that the abstraction functions αm and αn have
similar bug finding abilities.

• A lower value at both the cells (αm, αn) and (αn, αm)
indicate that the abstraction functions find different bug
types and these are the good candidates to be combined.

The Multi-Strategy1 configuration was able to leverage the
capabilities of the six abstraction functions that it utilized, and
this can be seen from the high percentages in the cells of
the Multi-Strategy1 column and relatively low percentages in
the cells of the Multi-Strategy1 row. This is true despite the
fact that the individual abstraction functions in Multi-Strategy1
receive only a fraction of the time they had individually.

If we look at the Steelix column we see that the only SAF’s
that were not very highly encompassed by it were Edge +
Return Loc and Basic Blocks. Basic Blocks being a more
coarse-grained abstraction might’ve done better in cases where
Steelix produced too many paths to process. This result also
implies that combining Steelix, Basic Blocks, Edge + Return
Loc, Function Context in the Multi-Strategy2 configuration is
a good choice.

Looking specifically at the column for Multi-Strategy2, we
see that it encompassed all the other strategies fairly well;
Multi-Strategy1 was the only strategy that it didn’t find at least
95% of the same crashes. This implies that although we were
able to capture most of the bug finding capabilities of the
other strategies with this combination, we still missed some
bugs that a different combination of strategies got.

Answer for RQ2: The results show that both Multi-
Strategy1 and Multi-Strategy2 configurations were more
effective at finding crashes than their individual abstrac-
tion functions. Therefore, combining abstraction func-

Fig. 1. This graph shows the results of re-running the Steelix and Multi-
Strategy2 fuzzer configurations 12 times on five select binaries that were only
found by Multi-Strategy2. These results do not include the original large-scale
test.

tions, which no other fuzzing approach has attempted,
is an effective technique to enhance fuzzing.

Abstraction functions based on basic blocks (Basic Blocks,
Edges, Block Triples, and Edge + Return Loc) all show
similar bug finding abilities, and this is evident from the
high percentage in the cells of the corresponding abstractions.
Finally, it is interesting to see that having more fine-grained
abstractions (e.g. block triples, vs edges) does not necessarily
improve the effectiveness.

D. Different Strategies Repeatedly Crash Different Binaries

In the evaluation, we saw plenty of cases in which a binary
is crashed by one configuration and not another. This is seen in
Table II, anywhere where the overlap is not 100%. We want to
evaluate whether these results are random or if binaries exist
where one configuration is for sure better at finding that crash.

First we explore Multi-Strategy2 vs Steelix, to know if the
binaries crashed by the first and not the second are random
or repeatable. To test this, we picked five binaries that were
found by Multi-Strategy2 and not Steelix and explored what
happened if we repeated the test 12 additional times. These
results are shown in Figure 1. Note that the original fuzzing
run is not included to make sure the results aren’t biased. We
see that of the five binaries that in only one case did Steelix do
better in our repeated evaluation. This result shows that Multi-
Strategy2 outperforming it on these binaries is repeatable.

Even when comparing individual abstraction functions we
were frequently able to find examples where one abstraction
function repeatedly did better than others. Due to cost and time
constraints we weren’t able to re-run all tests twelve times like
above, but here’s some examples we tested.

• Dive Logger was crashed at least 10/12 times by Edge
+ Return Loc and each of the MAF’s that include Edge
+ Return Loc, but rarely by other strategies.

• Modern Family Tree was crashed 11/12 times by Multi-
Strategy1, but no more than 3/12 times by any other
strategy (including Multi-Strategy2).

TABLE IV
RESULTS OF FUZZING USING DIFFERENT ABSTRACTION FUNCTIONS ON

IMAGEMAGICK AND OBJDUMP. NOTE THAT THERE WERE NO CRASHES ON
IMAGEMAGICK WITHOUT SEEDS SO THOSE COLUMNS ARE OMITTED.

RESULTS SHOWN ARE THE MEDIAN OF SIX RUNS.

ImageMagick
7.0.4-2
(seeds)

Objdump
2.26.1
(seeds)

Objdump
2.26.1

(no seeds)

Selection Strategy Median
crashes

Median
crashes

Median
crashes

Basic Blocks 0.5 7.0 3.0
Edges 0.0 7.0 4.0
Block Triples 1.0 5.5 4.5
Edge + Return Loc 1.5 6.5 4.0
Function Context 1.0 4.0 1.5
Method Calls 0.0 3.0 1.0
Multi-Strategy1 1.0 5.0 2.5
Steelix 1.0 6.0 3.5
Multi-Strategy2 2.0 6.0 4.5

• Neural House was rarely crashed by Edges and Basic
Blocks, but frequently by Block Triples, Edge + Return
Loc and Steelix.

• anagram game is crashed most frequently by Basic
Blocks, Edges, Function Context, and we never saw any
of the multi-abstraction fuzzers crash it.

These results that sometimes a fuzzer which in general
doesn’t find the most crashes might be better at a specific
binary. It also indicates that the incomplete overlap we saw
in Table II is a product of the different performance of the
fuzzing configurations.

E. Real World Programs

We evaluated the effectiveness of the individual abstraction
functions, as well as the effectiveness of the multi-abstraction
fuzzers on two real-world programs: Objdump-2.26.1, and
ImageMagick-7.0.4-2. These are programs that have been used
in other fuzzing evaluations [12].

We ran each fuzzer configuration described previously six
times on each of these programs. Each run was using 12 cores
for 8 hours for a total of 96 core-hours. Then we analyze the
results in terms of unique number of crashes, where unique
is defined in terms of the crashing callstack. Note that these
do not represent unique bugs, as attributing crashes to bugs is
out of scope of this paper. These programs were fuzzed both
with and without seeds.

The results are shown in Table IV. As we can see from
the table, the strategy that does the best depends both on the
binary being fuzzed and whether or not seeds are provided.
Basic Blocks and Edges do better than any other configuration
on Objdump with seeds, however, they both are significantly
less effective without seeds and perform very poorly on
ImageMagick. Looking into the results, it seems that for
Objdump, especially with seeds, these two strategies had
generated significantly less inputs compared to say Steelix, and
executed inputs about 20% faster. Since the extra capabilities
of Steelix and Edge + Return Loc weren’t necessary to trigger
additional coverage (especially when given seeds!) the faster
basic sensitivities were the best.

One consistent trend across all of them is that Multi-
Strategy2 does very well, even if it is not always the best.
This confirms our earlier results that it is widely applicable on
a range of binaries. Multi-Strategy2 has the abilities of Basic
Blocks to explore lots of inputs quickly and that of Steelix
and Edge + Return Loc to deeply explore. Another interesting
point is that Edge + Return Loc did well on all four tests. This
implies that some callstack context is important for fuzzers to
be able to explore lots of the state-space.

VII. DISCUSSION

We saw in our evaluation of fuzzing strategies that combin-
ing different abstraction functions allows them to complement
each other by sharing inputs between them. This resulted
in the multi-abstraction fuzzers crashing more binaries than
any single strategy from their components. Even though the
Multi-Strategy2 configuration found the most crashes in our
tests, there were programs in which another configuration
was more likely to crash. Future work could be to try and
automatically determine the best fuzzer configuration to use.
Also, as mentioned in the framing of the evaluation, other
input generation techniques, such as Driller, could also be used
on top of this to improve results for all abstractions in our
evaluation.

Despite finding that Multi-Strategy2 found the most crashes
in our tests, we also saw programs in which a different
configuration was more likely to find a crash, as was discussed
in Section VI-D. One takeaway of this is that although a
particular fuzzer might find less crashes than another it still
might be useful if it finds different crashes. Consider Edge +
Return Loc, alone it finds less crashes in number than Steelix
but it also found crashes in different programs.

VIII. CONCLUSION

In this paper, we have presented the first formalization of
input evaluation in fuzzing, borrowing concepts from the field
of static analysis. This formalization can immediately be used
as an effective base for future research: by reasoning about
which concepts of the formalization have been explored by
current work (and the more salient question of which have
not been), we identified that the impact of different abstraction
functions on fuzzing outcomes is unexplored in current work.

Thus, we performed an investigation into alternate abstrac-
tion functions for fuzzers. We identified seven input abstraction
functions with various levels of granularity and evaluated
them on a large dataset from the DARPA Cyber Grand
Challenge and on two real-world programs. The results show
that the choice of an abstraction function is important and can
affect the effectiveness of fuzzing. Furthermore, we show that
combining different abstraction functions is superior to using
just one.

Keeping with the scientific spirit, we open-source the re-
sulting abstraction-modular fuzzer.

REFERENCES

[1] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 711–725.

[2] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and
Z. Su, “Enfuzz: Ensemble fuzzing with seed synchronization among
diverse fuzzers,” in 28th {USENIX} Security Symposium ({USENIX}
Security 19), 2019, pp. 1967–1983.

[3] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna, “Difuze: Interface aware fuzzing for kernel drivers,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 2123–2138.

[4] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. ACM, 1977, pp. 238–252.

[5] CVE-2013-0997, https://packetstormsecurity.com/files/123229/
Apple-Security-Advisory-2013-09-12-2.html, 2013.

[6] DARPA, “Darpa cyber grand challenge,” 2016, http://archive.darpa.mil/
cybergrandchallenge/.

[7] J. Drake, “Stagefright: Scary code in the heart of android,” BlackHat
USA, 2015.

[8] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox
fuzzing,” in Proceedings of the 31st International Conference on
Software Engineering, ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 474–484. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070546

[9] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’08.
New York, NY, USA: ACM, 2008, pp. 206–215. [Online]. Available:
http://doi.acm.org/10.1145/1375581.1375607

[10] Google, “syzkaller - linux syscall fuzzer,” 2017, https://github.com/
google/syzkaller.

[11] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowser: a
guided fuzzer to find buffer overflow vulnerabilities,” in Proceedings of
the 22nd USENIX Security Symposium, 2013, pp. 49–64.

[12] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 2123–2138.

[13] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: Program-state based binary fuzzing,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2017. New York, NY, USA: ACM, 2017, pp. 627–637.
[Online]. Available: http://doi.acm.org/10.1145/3106237.3106295

[14] LungeTech, “Cgc data archive for finals,” 2017, http://www.lungetech.
com/cgc-corpus/cwe/cfe/.

[15] ——, “Cgc data archive for qualifiers,” 2017, http://www.lungetech.com/
cgc-corpus/cwe/cqe/.

[16] T. of Bits, “Darpa challenge binaries on linux, os x, and windows,” 2017,
https://github.com/trailofbits/cb-multios.

[17] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing,” in Proceedings of the
2017 Network and Distributed System Security Symposium, 2017.

[18] S. Rawat and L. Mounier, “Offset-aware mutation based fuzzing for
buffer overflow vulnerabilities: Few preliminary results,” in Software
Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on. IEEE, 2011, pp. 531–533.

[19] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
Fuzzing Through Selective Symbolic Execution,” in Proceedings of the
2016 Network and Distributed System Security Symposium, 2016.

[20] G. Vranken, “libfuzzer-gv: new techniques for dramatically
faster fuzzing,” https://guidovranken.wordpress.com/2017/07/08/
libfuzzer-gv-new-techniques-for-dramatically-faster-fuzzing/, 2017.

[21] D. Vyukov, “Kcov: Kernel coverage,” 2017, https://lwn.net/Articles/
671640/.

[22] J. Wang, Y. Duan, W. Song, H. Yin, and C. Song, “Be sensitive and
collaborative: Analyzing impact of coverage metrics in greybox fuzzing,”
in 22nd International Symposium on Research in Attacks, Intrusions and
Defenses ({RAID} 2019), 2019, pp. 1–15.

[23] M. Zalewski., “American fuzzy lop,” 2017, http://lcamtuf.coredump.cx/
afl/technical details.txt.

