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Motility-induced phase separation (MIPS), the phenomenon in which purely repulsive active particles 
undergo a liquid-gas phase separation, is among the simplest and most widely studied examples of a 
nonequilibrium phase transition. Here, we show that states of MIPS coexistence are in fact only metastable 
for three-dimensional active Brownian particles over a very broad range of conditions, decaying at long 
times through an ordering transition we call active crystallization. At an activity just above the MIPS 
critical point, the liquid-gas binodal is superseded by the crystal-fluid coexistence curve, with solid, liquid, 
and gas all coexisting at the triple point where the two curves intersect. Nucleating an active crystal from a 
disordered fluid, however, requires a rare fluctuation that exhibits the nearly close-packed density of the 
solid phase. The corresponding barrier to crystallization is surmountable on a feasible timescale only at 
high activity, and only at fluid densities near maximal packing. The glassiness expected for such dense 
liquids at equilibrium is strongly mitigated by active forces, so that the lifetime of liquid-gas coexistence 
declines steadily with increasing activity, manifesting in simulations as a facile spontaneous crystallization 
at extremely high activity.

Introduction.—The equilibrium crystallization of hard
spheres [1] is the canonical example of entropically driven
ordering of particle configurations: For a range of volume
fractions ϕ, a fluid of hard spheres in three dimensions (3D)
undergoes a symmetry breaking transition into coexisting
disordered (fluid) and ordered (solid) phases [2–11].
Boltzmann statistics provide an unambiguous physical
interpretation of the driving force for this transition: the
free volume generated by ordering permits a more diverse
set of particle configurations, whose entropy is the sole
contribution to the free energy of hard spheres. This order-
disorder transition is entirely geometric in origin and is
controlled solely by ϕ.

The influence of nonconservative dynamics on the
melting transition of hard spheres is an open and important
subject in nonequilibrium statistical mechanics: How do
driven dynamics compete with entropic geometric forces to
create or destroy order? To this end, active Brownian
particles (ABPs) have emerged as a paradigmatic minimal
model of driven systems and have aided in advancing our
general understanding of nonequilibrium phase behavior
[12–14]. In the athermal limit, the ABP model has only two
distinct control parameters, both geometric in character.
Dimensional analysis reveals one as ϕ and the other as the
ratio of the persistence (or “run”) length of a free particle’s

trajectory l0 to the particle size σ. This run length provides
a convenient and direct measure of the time-irreversible
motion of active particles, allowing for a continuous
departure from reversible dynamics (l0=σ → 0) [15–17]
where equilibrium hard-sphere physics should be precisely
recovered.
Further motivating the study of active crystallization is

the knowledge that for finite run lengths, ABPs exhibit a
distinct geometric transition that has garnered considerable
interest: the so-called motility-induced phase separation
(MIPS) [12,18–20]. This uniquely nonequilibrium phe-
nomenon requires no interparticle attraction, yet appears to
be a genuine liquid-gas transition, with no evidence of
rotational symmetry breaking between the coexisting
phases in 3D [21–25]. The apparent and conspicuous
absence of an ordered phase for activities in the vicinity
of the MIPS phase boundary raises the intriguing question:
Does the crystallization transition disappear as the system
departs from equilibrium?
In this Letter we aim to clarify the relationship between

MIPS and crystallization out of equilibrium. To this end,
we present results of extensive simulations of active
Brownian hard spheres, conducted over a broad range of
conditions. The majority of computational work on ABP
ordering transitions has focused on repulsive disks in 2D
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[26–32], where the relationship between MIPS and crys-
tallization is obscured by complications that long muddied
the nature of freezing even for hard disks at equilibrium
[33,34]. We instead construct phase diagrams for active
Brownian hard spheres in 3D, where the order-disorder
transition is straightforward in the equilibrium limit. These
results reveal that the crystallization coexistence region in
fact expands with increasing activity, engulfing the MIPS
phase boundary everywhere except for a narrow range of
control parameters. Slightly above the critical activity, the
solid-fluid phase boundary intersects the liquid-gas bino-
dal, forming an active triple point where solid, liquid, and
gas may coexist. The proximity of the triple and critical
points renders nearly the entirety of the MIPS phase
boundary metastable, with solid-fluid coexistence being
the globally stable configuration. The frequent observation
of liquid-gas coexistence (and its apparent stability) is due
to the remarkably narrow region of the phase diagram
where nucleation of an active crystal from a disordered
fluid can be readily observed. By locating these regions, we
are able to identify the rate-limiting features of the active
crystal nucleation landscape.
Model system.—We consider the simplest active system

that captures the equilibrium crystallization limit for
vanishing activity: 3D active Brownian hard spheres.
Each of the N particles experiences three forces: a
drag force −ζ _x proportional to the particle velocity _x, a
conservative (pairwise) interparticle force FC½xN �, where
xN is the set of all particle positions, and an active
self-propelling force FA ¼ ζU0q. The particle orientations
q independently obey diffusive 3D rotary dynamics
_q ¼ Ω × q where the stochastic angular velocity has mean
0 and variance hΩðtÞΩð0Þi ¼ 2=τRδðtÞI and τR is the
characteristic reorientation time. We take the interparticle
force FC½xN ; ε; σ� to result from a Weeks-Chandler-
Anderson potential [35] (characterized by a Lennard-
Jones diameter σ and energy ε) and take ζU0, σ, and τR
to be the characteristic units of force, length, and time,
respectively. The overdamped Langevin equation for the
dimensionless velocity _̄x naturally follows as

_̄x ¼ l0

σ
ðqþ F̄C½x̄N ;S�Þ; ð1Þ

where l0 ¼ U0τR. The dimensionless force F̄C depends on
the reduced positions x̄N and is fully characterized by the
“stiffness” parameter S ≡ ε=ðζU0σÞ.
Despite our use of a continuous potential, the hard-

sphere limit is very closely approached in these simula-
tions. Lacking translational Brownian motion (which
attenuates the influence of activity on the phase behavior
[36]), and inertia (which also profoundly alters active phase
behavior [37]), these particles strictly exclude volume with
a diameter d set by S. Continuous repulsions act only at
distances between d and 21=6σ, a range that quickly
becomes negligible as S increases. We use a stiffness

S ¼ 50 for which d=ð21=6σÞ ¼ 0.9997, effectively achiev-
ing hard-sphere statistics. Holding S to remain in this
hard-sphere limit, the system state is independent of the active
force magnitude and is fully described by two geometric
parameters: the volume fraction ϕ ¼ Nπð21=6σÞ3=6V and the
dimensionless intrinsic run length l0=σ.
All simulations were conducted with a minimum of

54000 particles using HOOMD-blue [38,39].
Phase diagram.—The phase diagram of 3D active hard

spheres is presented in Fig. 1. Initially homogeneous [39]
systems prepared within the liquid-gas binodal are often
observed to spontaneously phase separate, the widely
reported MIPS. For all activities within the 3D MIPS phase
boundary, the coexisting phases differ only in density,
appearing to share precisely the same symmetry, shown
in Fig. 1(b). More quantitatively, Figs. 1(c) and 1(d) show the
probability distribution of local density to be bimodal, while
q12 (the per-particle Steinhardt-Nelson-Ronchetti order

FIG. 1. (a) Phase diagram of 3D active hard spheres, with the
critical region magnified in the inset. For ðl0=σ ¼ 50;ϕ ¼ 0.5Þ,
(b) representative configurations of liquid-gas and solid-fluid
coexistence. Corresponding probability distributions for (c) local
volume fraction (using particle Voronoi volumes), and (d) q12
(which takes a value of q12 ≈ 0.6 for perfect fcc order and
q12 ≈ 0.3 for a disordered fluid). (e) Global symmetry parameter
Q12 as a function of time for both coexistence scenarios.



parameter [40] measuring 12-fold rotational symmetry) is
Gaussian distributed to a good approximation.
The critical point associated with this liquid-gas tran-

sition is found by assuming critical scaling of the order
parameter, which we take to be the difference between
liquid- and gas-phase densities ϕliq − ϕgas. Defining the
reduced activity as τ ¼ ½ðl0 − lcÞ=lc�, the order parameter
is anticipated to scale as ϕliq − ϕgas ∝ τβ (τ > 0). By fitting
the coexisting densities nearest to the critical point [39], we
extract a critical activity lc=σ ≈ 18.8 and critical exponent
β ≈ 0.33. The latter value agrees suggestively (and perhaps
fortuitously) with the 3D Ising universality class. A full
critical scaling analysis [41–45] (such as those recently
performed on 2D active systems [46–49,59]) will be
required to confirm the robustness of this apparent agree-
ment. The critical density is found to be ϕc ≈ 0.483.
The order-disorder transition, by contrast, is notably

absent from the literature on 3D ABPs, a direct conse-
quence of formidable nucleation barriers that will be
described below (see Fig. 2). To access this transition,
we devise a simulation protocol [39] that biases the system
to form face-centered-cubic (fcc) crystals, later established
as the stable ordered phase for this system. In a nutshell, we
initialize the particles in a perfect fcc configuration at
ϕ ¼ 0.7 and perform a uniaxial extension to sweep through
ϕ and identify regions of solid-fluid coexistence. Long
simulations [39] are run to verify the stability of the
observed coexistence. The resulting coexisting solid and
fluid densities are reported in our phase diagram [Fig. 1(a)]
with a typical configuration shown in Fig. 1(b).
Importantly, solid-fluid coexistence was observed to be a

stable configuration for a range of ϕ at all values of activity
—including those in which MIPS is observed. At small

activities, where particle motion is nearly reversible [39],
systems approach the well-established hard-sphere coex-
istence densities [2,9] of ϕfluid ¼ 0.494 and ϕsolid ¼ 0.545.
At l0=σ ¼ 0.05, for instance, we find ϕfluid ¼ 0.52 and
ϕsolid ¼ 0.58. With increasing activity, we observe a rapid
departure from this reversible limit; coexisting densities of
both phases increase markedly. The solid packing fraction
quickly approaches the close-packed volume fraction ϕcp ≈
0.74 and remains near this value for all l0=σ ≥ 5.
In contrast to the solid density, the activity dependence of

the fluid is nonmonotonic and defines some of the central
features of the phase diagram. As the activity is increased
from zero, the fluid density rapidly increases to a volume
fraction of ≈ 0.59 (at l0=σ ¼ 5), then decreases upon
reaching the critical activity for MIPS. The fluid density
continues to decrease with activity until intersecting the
MIPS binodal (l0=σ ≈ 21.25) slightly above the critical
point. The intersection of these coexistence curves results
in an active triple point [60] where gas, liquid, and solid
phases can coexist at the densities marked in Fig. 1(a).
Above the triple activity, the fluid that coexists with the

solid phase has a density that is strictly less than the MIPS
gas-phase density. As a result, above the three-phase
coexistence line, the liquid-gas binodal is entirely engulfed
by the solid-fluid coexistence boundary [see Fig. 1(a)]. In
an equilibrium context, encapsulation of the liquid-gas
binodal by the crystal-fluid phase boundary is a familiar
and generic feature of simple substances below their triple
temperature [61–63]. Equilibrium requirements that free
energy be convex and extensive further guarantee that the
phase boundary with more extreme densities (typically
crystal-fluid) corresponds to the more stable coexistence.
Leveraging the tools of large deviation theory [50],

FIG. 2. Crystal nucleation from metastable active fluids with l0=σ ¼ 50. (a) Time evolution of Q12 and accompanying snapshots 
(right). (b) Dynamic structure factor Fðk; tÞ evaluated at the wave vector k ¼ jkj ¼  k� corresponding to the first peak of Fðk; 0Þ [39]. 
Probe volume occupation probability PvðNÞ plotted as a function of N in (c) for ϕ ¼ 0.62 at various probe diameters Dp, and in (d) for 
Dp ¼ 6.0σ at various densities. Lines are Gaussian distributions with the same mean and variance as simulation data.



a similar conclusion can be drawn even for systems out of
equilibrium [39]. For our ABPs at activities above
l0=σ ≈ 21.25, states of liquid-gas coexistence should there-
fore crystallize irreversibly. We observe that systems above
the triple point and within the MIPS binodal can never-
theless persist for very long times in a state of liquid-gas
coexistence. We now aim to verify that these states are
globally unstable.
Homogeneous nucleation and stability.—Despite recent

progress in the development of importance sampling tech-
niques for nonequilibrium systems [64–73], the ability to
comprehensively survey the phase behavior of many-particle
active systems [74–77] remains limited. In the absence of
these tools, we make an appeal to two-state rate theory to
identify the relative stability of the two coexistence scenar-
ios. Observing one form of coexistence (e.g., liquid-gas)
spontaneously transition to the other (e.g., solid-fluid), and
failing to observe the reverse transition, would provide
compelling evidence for the global stability of the latter
coexistence scenario (and, naturally, the metastability of the
former). However, long simulations at many such state
points reveal no transitions. For example, Fig. 1(e) shows
the time evolution of the global order parameterQ12 ¼ hq12i
(the particle-averaged q12) at (l0=σ ¼ 50, ϕ ¼ 0.5). This
points to the looming larger question: Can we observe the
unbiased nucleation of an active crystal from a disordered
fluid? We therefore turn to understanding the general forces
that sculpt the crystal nucleation landscape and their
dependencies on the state parameters (l0=σ, ϕ).
Figure 2 surveys the crystal nucleation landscape at

dense packing fractions outside of the liquid-gas binodal
(ϕ > 0.61 for l0=σ ¼ 50). In this region of the phase
diagram, solid-fluid coexistence is the unambiguously
stable system state. We prepare these metastable high-
density fluids by the isotropic compression of less-dense
fluids [39]. A disordered fluid at ϕ ¼ 0.635 is observed
to remain a liquid on all accessible timescales. Fluids
at ϕ ≥ 0.64, by contrast, readily nucleate a tightly
packed active crystal (fcc), which grows into a single
ordered domain that coexists with a fluid (gas) bubble [see
Fig. 2(a)]. The crystal symmetry and coexisting densities
are consistent with those obtained from our crystal seeding
procedure. Crystal nucleation remains facile up to ϕ ¼ 0.65
(near maximal packing [78]), the limiting density at which
a hard-sphere fluid can still relax.
The remarkably narrow window of density

(0.64 ≤ ϕ ≤ 0.65) where active crystal growth can be
observed makes evident why the 3D active order-disorder
transition has, to our knowledge, previously eluded obser-
vation. That this nucleation window occurs near maximal
packing can be understood from general ideas of classical
nucleation theory, which has successfully described the
nucleation of 2D active liquids [79–81]. In this framework,
the characteristic crystal nucleation rate should be governed
by the product of the inverse fluid relaxation time τ−1fluid and

the probability PCN of forming the critical nucleus in the
course of spontaneous fluctuations [82].
High densities are generally considered inhospitable for

nucleation, since fluids typically vitrify near maximal
packing, i.e., τfluid diverges. Highly active fluids, however,
exhibit no sign of glassy dynamics up to a density of (at
least [83]) ϕ ¼ 0.635, as evidenced by the self-component
of the dynamic structure factor [Fig. 2(b)]. Significant
arrest only occurs upon reaching the geometrically frus-
trated maximal random limit, consistent with the emerging
active glass literature [51–57].
In the absence of vitrification, dense liquids can be

favorable for nucleation, since they promote fluctuations
that feature solidlike local density. We quantify this enhance-
ment of PCN by calculating the probability PvðNÞ to observe
N particles in a spherical probe volume v of diameter Dp.
Much like hard spheres at equilibrium [84], the distribution
is Gaussian for many standard deviations, even for large
densities and relatively small probe diameters [see Fig. 2(c)].
For v comparable in size to a plausible critical nucleus
(Dp ¼ 6σ), solidlike local densities are highly atypical at

FIG. 3. Spontaneous transition from liquid-gas to solid-fluid
coexistence ðl0=σ ¼ 500;ϕ ¼ 0.5Þ. Time evolution of Q12,
indicating four frames whose structures are (partially) rendered
alongside the distributions of q12 for each configuration.



l0=σ ¼ 50 for fluids at all densities we have studied, shown
in Fig. 2(d). For ϕ ≤ 0.635, such extreme local density
fluctuations are so unlikely as to be unobserved in our long
simulations. Near ϕ ¼ 0.65, they become discernible (while
still rare), consistent with our observations of successful
crystal nucleation.
Discussion and conclusions.—The near close-packed

density of active crystals severely restricts the region of
the phase diagram where crystallization can feasibly be
observed in simulations, in stark contrast to the broad range
of conditions in which MIPS is readily observable (via
nucleation or spinodal decomposition). Sufficiently close-
packed local fluctuations occur with non-negligible proba-
bility only in fluids that are almost maximally packed. Direct
observation of transitions from liquid to solid, such as in
Fig. 3, is thus feasible at very high activity, where the liquid
phase is extremely dense. At low activities, the MIPS liquid-
phase density is simply too low to nucleate an active crystal
on accessible timescales, as exemplified by the long trajec-
tory of Fig. 1(e) with liquid density ϕ ≈ 0.61. In this low-
activity case we lack the direct evidence of spontaneous
transitions to judge the metastability of liquid-gas coexist-
ence. Based on theoretical considerations [39], however, the
densities of coexisting phases we observe in simulations
constitute strong indirect evidence to this effect. We there-
fore conclude that MIPS is in factmetastable above the triple
point activity. Consequently, liquid-gas coexistence is only
the globally stable state in the narrow interval [85] between
the critical and triple points (see Fig. 1(a) inset and videos in
Supplemental Material [39]).
The phase diagram presented in this work bears a

striking resemblance to the phase diagram of traditional
equilibrium molecular or colloidal systems with short-
ranged attractions [61–63]. However, attempting to directly
equate activity to an “effective attraction” has proven to be
difficult [25,86,87]. We therefore anticipate that 3D active
hard spheres will serve as an important system to generalize
the equilibrium arguments used in the construction of solid-
fluid phase boundaries (and triple points) to nonequilibrium
systems. Moreover, additional examination of active phase
behavior in 3D may prove insightful for further under-
standing the role of dimensionality in the rich phase
behavior (such as “bubbly liquids” [31,88,89]) reported
in 2D. Finally, while active freezing has primarily been
experimentally interrogated in 2D [90–92], we hope that
our study will aid in guiding ongoing efforts [93] to realize
3D active crystals.
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