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Autonomous closed-loop mechanistic
investigation of molecular electrochemistry
via automation

Hongyuan Sheng 1,9 , Jingwen Sun 1,9, Oliver Rodríguez2,3,4,
Benjamin B. Hoar1, Weitong Zhang 5, Danlei Xiang1, Tianhua Tang6,
Avijit Hazra 6, Daniel S. Min1, Abigail G. Doyle 1, Matthew S. Sigman 6,
Cyrille Costentin 7, Quanquan Gu 5, Joaquín Rodríguez-López 2,3,4 &
Chong Liu 1,8

Electrochemical research often requires stringent combinations of experi-
mental parameters that are demanding tomanually locate. Recent advances in
automated instrumentation and machine-learning algorithms unlock the
possibility for accelerated studies of electrochemical fundamentals via high-
throughput, online decision-making. Here we report an autonomous electro-
chemical platform that implements an adaptive, closed-loop workflow for
mechanistic investigation of molecular electrochemistry. As a proof-of-con-
cept, this platformautonomously identifies and investigates an ECmechanism,
an interfacial electron transfer (E step) followed by a solution reaction (C step),
for cobalt tetraphenylporphyrin exposed to a library of organohalide elec-
trophiles. The generally applicable workflow accurately discerns the EC
mechanism’s presence amid negative controls and outliers, adaptively designs
desired experimental conditions, and quantitatively extracts kinetic informa-
tion of the C step spanning over 7 orders of magnitude, from which mechan-
istic insights into oxidative addition pathways are gained. This work opens
opportunities for autonomous mechanistic discoveries in self-driving elec-
trochemistry laboratories without manual intervention.

The past few decades have witnessed exciting advancements in
molecular and organic electrochemistry1–4. Typical electrochemical
research involves a myriad of tunable experimental parameters, ran-
ging from universal chemistry variables to those specific to electro-
chemistry. The resultant complexity creates challenges for efficient
discovery of electrochemical transformations and elucidation of
reaction mechanisms, as it can be tedious or even impractical for

experimentalists to explore the high dimensionality of the parameter
space and enumerate all possible combinations manually5–7. As elec-
troanalytical chemistry8–11 has established stringent requirements of
experimental conditions that must be met for defining probable
mechanisms and performing electrokinetic analysis, there is a sig-
nificant demand on how to identify parameter combinations suitable
for mechanistic studies.
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There have been key developments in high-throughput experi-
mentation hardware for synthetic purposes12–17 that can be translated
to electrochemical research18–24, yet additional automated electro-
analytical platforms with minimized adoption barriers are needed for
fundamental mechanistic investigations. Customized multi-well par-
allel-plate reactors18–22 have been reported for evaluating organic
electrosynthesis, and microfabricated microfluidic devices23,24 have
been reported for automated electrokinetic measurements. Never-
theless, there remains a need for automated experimentation plat-
forms with minimized barriers to entry that resemble standard
electroanalytical setups in a typical laboratory, in order to directly
utilize the vast tools available to electrochemists to obtainmechanistic
information8–11.

We envisioned that the integration of standard and automated
electroanalytical tools with closed-loop decision-making for the
autonomous identification of desired experimental conditions could
accelerate and facilitate mechanistic investigations in fundamental
electrochemistry. Automated experimentation has led to the con-
vergence with artificial intelligence25–28, heralding the advent of self-
driving platforms that iteratively design, operate, analyze, and opti-
mize experiments to achieve a user-defined objective29,30. While
closed-loop screening processes based on machine-learning (ML)
models or Bayesian algorithms have been emerging in the engineering
of lithium-ion batteries31,32, an autonomous closed-loop process has
not been demonstrated in fundamental electrochemistry. We posit
that the challenges reside in the difficulty of analyzing electrochemical
data for mechanistic investigations. For example, the richmechanistic
information in cyclic voltammetry (CV), a traditional electroanalytical
technique10,11, is represented by subtle features in voltammograms that
aredifficult to quantifywith simplefigures-of-merit.Manual inspection
is required to discern the evolution of voltammetric responses with
different parameters such as scan rate (ν) and/or reactant concentra-
tions. Such manual CV analysis is not compatible with automated
experimentation featuring high data throughput, hence impeding
autonomous closed-loop research. It is thus critical to develop a
mechanistically savvy ML model that evaluates the potentially subtle
CV features and transduces them into a data format compatible with
automated experimentation.

In this context, we recently reported a deep-learning (DL) model
based on the residual neural network (ResNet) architecture33 that
automatically distills subtle features in voltammograms and prob-
abilistically classifies five prototypical mechanisms in molecular
electrochemistry34,35. One important feature of our DL model34, dif-
ferent from earlier attempts36,37, is the yielded numerical propensity
distributions of probable mechanisms that addressed the aforemen-
tioned challenges in automated mechanistic analysis of electro-
chemical data. In this regard, our DL model unlocks the possibility of
enabling a proof-of-concept autonomous closed-loop process for
mechanistic investigation of molecular electrochemistry (Fig. 1a).

Building upon this achievement, here we present an autonomous
electrochemical platform (Fig. 1b, c) that integrates flow chemistry for
sample preparation, automated electrochemical testing, DL-based
voltammogram analysis, and closed-loop decision-making based on
Bayesian algorithms (Fig. 1a). We demonstrate a proof-of-concept
application exploring the reactivity of cobalt tetraphenylporphyrin
(CoTPP) with a library of organohalide (RX) electrophiles38,39 wherein
an ECmechanism, an interfacial electron transfer (E step) followedby a
solution reaction (C step)9,11, was identified (Fig. 1d). The generally
applicable workflow efficiently explored the parameter space and
discerned the presence of an EC mechanism amid negative controls
and outliers. Furthermore, the workflow found suitable parameter
combinations and extracted the second-order kinetic rate constants of
the C step (k0) for different RX electrophiles spanning at least 7 orders
of magnitude. The autonomous platform was capable of continuous
operation for up to ~50 h by experimentally examining 2520

combinations of chemical and electrochemical parameters without
manual intervention. These results demonstrated the feasibility of
autonomous mechanistic discoveries in molecular and organic elec-
trochemistry in the future.

Results
A proof-of-concept study using an autonomous electrochemical
platform based on classical electroanalytical setups
We constructed an autonomous electrochemical platform consisting
of five key modules (Supplementary Notes 1 and 2): (1) flow chemistry
that enables automated electrolyte formulation and disposal
(Fig. 1b, c), (2) automated electrochemical testing, including automatic
iR compensation during CV measurements, via a modified Hard
Potato40 Python library controlling a commercial potentiostat, (3) DL-
based automated CV analysis that yields numerical propensity dis-
tributions of probable mechanisms that can be readily evaluated
(Fig. 1e)34, (4) adaptive exploration of a large parameter space using a
Dragonfly41,42 Bayesian optimization package that suggests new
experimental conditions toward a user-defined objective in a closed-
loop manner (Fig. 1f), and (5) a conventional single-compartment
electrochemical cell with a three-electrode configuration (Fig. 1b, c),
ubiquitous in electrochemistry textbooks and laboratories. The use of
classical electroanalytical setups ensures the consistency of future
fundamental research and the validity of deploying the rich existing
knowledge and literature in electrochemistry. The entire platform can
be conveniently installed in a glovebox (Fig. 1b, c) to ensure compat-
ibility with oxygen- and moisture-sensitive chemistry.

As an initial case study, we deployed an autonomous closed-loop
workflow to investigate the oxidative addition of RX electrophiles to
electrogenerated low-valent metal complexes, a key activation step in
numerous metal-catalyzed transformations3,4. In a prototypical EC
mechanism (Fig. 1d), a quasi-reversible if not completely reversible
reduction of CoIITPP (E step) yields a nucleophilic CoITPP species that
attacks the R–X bond and forms a metal–alkyl bond (C step) via a
number of possible pathways4,43. As the nature of the electrophiles can
differ greatly, an EC mechanism may not be uniformly operational.
Therefore, we designed a generally applicable closed-loopworkflow to
probe two questions autonomously (Fig. 1f): (1) without any a priori
knowledge of a given electrophile’s reactivity, can the workflow
explore the parameter space and discern the possible presence of an
EC mechanism? (2) if an EC mechanism is present, can the workflow
suggest and identify the desired experimental conditions for measur-
ing the rate (k0) of theC step?Quantificationof kinetic rate constants is
the foundation ofmechanistic studies, and it is non-trivial to locate not
one but multiple suitable combinations of both ν and RX concentra-
tion ([RX]) so that k0 can be appropriately determined9,44–46. Here such
mechanistic studies are shown tobe autonomously completedwithout
manual intervention.

The scarcity of suitable parameter combinations for electro-
kinetic analysis, showcased by automated exhaustive
experiments
We first evaluated the practical parameter space suitable for measur-
ing k0 in a model system when RX = 1-bromobutane (n-BuBr)38. When
[CoIITPP] = 1mM in dimethylformamide (DMF) solvent using tetra-
butylammonium hexafluorophosphate (0.1M NBu4PF6) as the sup-
porting electrolyte, the voltammograms evolved with both ν and [RX]
(Fig. 2a). A single-electron quasi-reversible if not completely reversible
CoII/I redox event at−1.275 V versus ferrocene/ferrocenium (Fc/Fc+)was
observed with high ν and low [RX], yet the redox’s irreversibility grew
moreprominent as νdecreased and [RX] increased, in accordancewith
the kinetic zone diagram of an EC mechanism when the C step can be
considered irreversible with a large equilibrium constant9,11.

Our platform, without implementing closed-loop decision-mak-
ing, exhaustively sampled the parameter space and yielded
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Fig. 1 | Proof-of-concept autonomous research in fundamental electro-
chemistry. a Concept of an autonomous closed-loop process for mechanistic
investigation of molecular electrochemistry from cyclic voltammetry (CV).
b Annotated photograph and (c) schematic of our constructed autonomous elec-
trochemical platform based on classical electroanalytical setups and installed in an
oxygen/moisture-free glovebox. The platform is deployed for mechanistic studies
of the reaction of cobalt tetraphenylporphyrin (CoTPP) with a library of organo-
halide (RX) electrophiles in dimethylformamide (DMF) solvent using tetra-
butylammoniumhexafluorophosphate (NBu4PF6) as the supporting electrolyte.dA
prototypical ECmechanism in which a quasi-reversible if not completely reversible
reduction of CoIITPP (E step) yields a nucleophilic CoITPP species that attacks the
R–X bond and forms a metal–alkyl bond (C step) bearing a characteristic second-
order kinetic rate constant (k0). e Deep-learning (DL) capability that transduces CV

features into quantifiable figures-of-merit (mechanism propensity distributions,
denoted as y) compatible with downstream Bayesian optimization and automated
experimentation. The voltammograms in (e) are adapted from the middle panel in
Fig. 2a, where the experimental conditions are detailed. The reverse-to-forward
peak current ratio (ipa/ipc) between anodic (ipa) and cathodic (ipc) peak currents of
the CoII/I redox is defined in Supplementary Note 5. Five prototypical mechanisms
(E, EC, CE, ECE, DISP1) in molecular electrochemistry are defined in Supplementary
Table 6. f A generally applicable closed-loop workflow designed to explore the
parameter space and discern the possible presence of an EC mechanism given a
specific RX (Stage I) and, if an EC mechanism is present, to further suggest and
identify the desired experimental conditions for the quantification of k0 value
(Stage II).
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quantifiable figures-of-merit from voltammograms. Owing to the nat-
ure of our DL model34, each inquiry in the parameter space includes a
set of six voltammograms (Fig. 2a) under a given [RX] and six
logarithmically-sampled v values with the maximal and minimal ν dif-
fering by a factor of 10 (νmax/νmin = 10), and thus is represented as a
function of both [RX] and νmin (Fig. 2b). Setting [CoIITPP] = 1mM and
RX= n-BuBr, 420 combinations of [RX] and νmin ([RX]∈ [0, 20] mM
and νmin∈ [0.01, 0.2] V/s, Supplementary Note 3), representing 2520
voltammograms, were automatedly prepared by flow chemistry and
tested with automatic iR compensation in the glovebox. The experi-
ments took ~50h continuously without manual intervention, at a rate
of ~1.2min per CV measurement. The 420 voltammogram sets were
individually analyzed by our DL model34 immediately after each vol-
tammogram set was measured, yielding the propensity values of five

mechanisms (Fig. 1e; E, EC, CE, ECE, DISP1, defined in Supplementary
Table 6). The DL analysis of such a model system38 yielded non-zero
propensity values for only E and/or EC mechanisms over the entire
parameter space, whereas zero propensity values for CE, ECE, and
DISP1 mechanisms were obtained (Supplementary Fig. 9). The DL-
generated propensity of an EC mechanism, extracted from voltam-
mogram features, is higher under high [RX] and low νmin (Fig. 2b),
consistent with what a human researcher would conclude yet now a
quantifiable value in lieu of a descriptive notion is provided
with sufficient detection sensitivity. The obtained propensity of an
EC mechanism not only will discern its possible presence but also
will serve as a numerical figure-of-merit for Bayesian optimization
(Supplementary Note 4) to enable closed-loop decision-mak-
ing (Fig. 1f).

Fig. 2 | Automated exhaustive CV experiments that illustrate the scarcity of
useful data for electrokinetic analysis. a Representative sets of six voltammo-
grams, tested with automatic iR compensation. [CoIITPP] = 1mM in DMF solvent
using0.1MNBu4PF6 supporting electrolyte; RX = 1-bromobutane (n-BuBr) and [RX]
∈ [0, 20] mM; six logarithmically-sampled scan rates (ν) with the maximal and
minimal ν differing by a factor of 10 (νmin/νmax = 1/10) and νmin ∈ [0.01, 0.2] V/s.
b The DL-generated propensity of an EC mechanism (denoted as EC%) obtained
from 420 combinations, representing 2520 voltammograms, of [n-BuBr] and νmin

([n-BuBr] ∈ [0, 20] mM and νmin ∈ [0.01, 0.2] V/s). c The observed pseudo-first-
order kinetic rate constant of the C step (kobs) derived from and plotted versus ipa/
ipc (defined in Supplementary Note 5) of the CoII/I redox in the selected voltam-
mograms with non-zero [n-BuBr] values, with the colors of the data points scaling
with increases in [n-BuBr]. The shaded area in (c) suggests that such kinetic analysis

should only be performed when ipa/ipc ∈ [0.65, 0.75], as the derived kobs values
show little variationunder a given [n-BuBr] value andappear to growproportionally
with increases in [n-BuBr]. d Themapping of ipa/ipc of the CoII/I redox in each of the
2520 voltammograms as a function of ν and [n-BuBr] (ν∈ [0.01, 2] V/s and [n-BuBr]
∈ [0, 20] mM). The shaded area in (d) highlights that the experimental conditions
for ipa/ipc ∈ [0.65, 0.75] correspond to only 4.2% of the sampling space. e A linear
regression of log10(kobs) versus log10[n-BuBr] among those valid kobs values derived
from ipa/ipc ∈ [0.65, 0.75] in (c), yielding the reaction order (n) and k0 for n-BuBr.
The colors of the data points scale with increases in [n-BuBr], and the vertical error
bars represent the standard deviations of log10(kobs) among all the valid kobs values
at each [n-BuBr] value. Data distributions underlying the error bars in (e) are pre-
sented in Source Data file.
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The combinations of ν and [RX] values that are suitable for mea-
suring k0 are scarce. In general, k0 can be derived from the observed
pseudo-first-order kinetic rate constant of the C step (kobs) defined as
kobs = k0 [RX]n, where n is the reaction order of RX. For any combina-
tion of ν and [RX] that leads to a partially irreversible CoII/I redox fea-
ture in a voltammogram, kobs can be derived from the reverse-to-
forward peak current ratio (ipa/ipc, defined in Supplementary Note 5)
between anodic (ipa) and cathodic (ipc) peak currents of the CoII/I redox
(depicted in Fig. 1e)44–46. However, such kinetic analysis should only be
performed when ipa/ipc ∈ [0.65, 0.75] (Fig. 2c and Supplementary
Note 5)44–46, a narrow range in which the CoII/I redox’s irreversibility is
neither too strongnor tooweak to ensure the validity of kobs = k0 [RX]n.
When RX = n-BuBr, the mapping of ipa/ipc as a function of ν and [RX]
(Fig. 2d) highlights that the experimental conditions for ipa/ipc∈ [0.65,
0.75] correspond to only 4.2%of the sampling space, resulting in only a
modest portion of useful voltammograms out of the 2520 mea-
sured ones.

The extracted values of k0 and n are consistent with literature
values when RX = n-BuBr. Figure 2c plots the kobs values derived from
the selected voltammogramswith non-zero [n-BuBr] values, regardless
of the validity of such analysis, versus ipa/ipc. Only those kobs values
derived from ipa/ipc∈ [0.65, 0.75] are valid, as they show little variation
under a given [n-BuBr] value and appear to grow proportionally with
increases in [n-BuBr] (the shaded area in Fig. 2c). Among the valid kobs
values, an 11-point linear regression of log10(kobs) versus log10[n-BuBr]
(Fig. 2e) establishes that kobs = 25.7M−0.96 s−1 [n-BuBr]0.96. The extracted
k0 value assuming pseudo-first-order kinetics for n-BuBr agrees well
with a reported k0 of 30M−1 s−1 (ref. 38). As manual efforts of locating
the desired 4.2% of the sampling space can be tedious, the scarcity of
suitable parameter combinations calls for an adaptive, closed-loop
search to accelerate kinetic analysis.

Adaptive, closed-loop workflow ofmechanism discernment and
electrokinetic analysis
We constructed an adaptive, closed-loop workflow that involves two
stages (Fig. 1f, detailed in Supplementary Fig. 16): Stage I for
mechanism discernment and Stage II for electrokinetic analysis. As
RX’s reactivity may vary greatly, the accessible range of [RX] is
expanded from [0, 20] mM to [0.008, 1000] mM with additional RX
reservoirs in the flow chemistry module (Supplementary Note 6). In
Stage I, Bayesian optimization41,42 is deployedwith a designated goal of
maximizing the voltammograms’ propensity, obtained from the DL
model, toward an EC mechanism by varying [RX] and νmin (Supple-
mentary Note 4). After a finite number of optimization steps, Stage II
will be activated if the DL-generated propensity of an EC mechanism
can exceed 50%, otherwise the workflow terminates. In Stage II, the
workflow first determines a cutoff RX concentration, [RX]cutoff, below
which avoids assessing unnecessarily high [RX] values in future
inquiries (Supplementary Note 7). The workflow also creates an initial
response surface of ipa/ipc as a function of [RX] and ν, from the existing
CV data in Stage I, via a Gaussian process41,42. Based on the determined
[RX]cutoff and the response surface of ipa/ipc, the workflow iteratively
designs combinations of [RX] and ν for the next inquiry that may
satisfy ipa/ipc∈ [0.65, 0.75], and automatedly executes CV measure-
ments in the glovebox. Each inquiry in Stage II includes a set of six
voltammograms under an assigned [RX] value below [RX]cutoff and six
proximate ν values (Supplementary Note 8). The workflow iteratively
adds the resultant CV data to the cumulative database, determines
whether thenewdata satisfy ipa/ipc∈ [0.65, 0.75], updates the response
surface of ipa/ipc on-the-fly, and initiates the next iteration of autono-
mous inquiry if required.

Testing such an autonomous workflow without any a priori
knowledge of a given RX’s reactivity validated our design. A negative
control, in which acetonitrile (CH3CN) was found to be unreactive
toward CoITPP (Supplementary Fig. 23), confirmed that the workflow

would not indistinguishably assign an EC mechanism to any substrate
and would properly terminate at the end of Stage I.When RX = n-BuBr,
a 15-step campaign of Bayesian optimization in Stage I (Fig. 3a),
including 6 random sampling and 9 optimization steps, satisfactorily
yielded the desiredmaximized propensity of an ECmechanism for this
model system38 (Fig. 3b and Supplementary Fig. 24). As themaximized
propensity of an ECmechanism far exceeded the 50% threshold, Stage
II was triggered with a determined [RX]cutoff = 24.3mM (Supplemen-
tary Note 7). A response surface of ipa/ipc was initiated (Fig. 3c), and a
customized algorithm was executed to design and assess the next
combinations of [RX] and ν for 19 iterative inquiries (Fig. 3d and Sup-
plementary Note 8), meanwhile continuously updating the response
surface of ipa/ipc (Supplementary Fig. 25). Eventually, desired combi-
nations of [n-BuBr] and ν that satisfy ipa/ipc∈ [0.65, 0.75] were found at
2 and 9 [n-BuBr] values in Stage I and II, respectively (Supplementary
Fig. 26), after a total of 34 inquiries for both stages where 204 vol-
tammogramsweremeasuredwithin 12 h. Subsequent linear regression
of log10(kobs) versus log10[n-BuBr] (Fig. 3e) led to kobs = 32.6M−1.01 s−1 [n-
BuBr]1.01, in good agreement with that determined from automated
exhaustive CV experiments in Fig. 2e. The measured k0 value is robust
with a relative uncertainty of less than 5%, as determinedby triplicating
theworkflow (k0 = 31 ± 1M−1 s−1, Supplementary Fig. 28 and Fig. 4a). It is
noteworthy that updating the response surface of ipa/ipc on-the-fly is
beneficial for successfully locating desired combinations of [RX] and v.
The final response surface of ipa/ipc (Fig. 3f) displayed significant dif-
ferences from the initial response surface (Fig. 3c). An in silico analysis,
where the response surface of ipa/ipc was not updated, suggested a
near 50% reduction in the success rate of locating the desired para-
meter combinations (Supplementary Note 9). Instead of exhaustively
testing 2520 voltammograms for ~50h (Fig. 2b), the autonomous
closed-loop workflow reduced the number and duration of experi-
ments by roughly a factor of 10 and 5, respectively, meanwhile asses-
sing a 50-times wider range of [RX].

Autonomous studies of a diverse scope of organohalide sub-
strates for mechanistic insights
The generality of the as-described experimentation platform and
closed-loop workflow (Fig. 1f and Supplementary Fig. 16) enabled
autonomous investigation of an EC mechanism between CoTPP and a
diverse scope of RX substrates. Figure 4a summarizes themeasured k0
values of up to 30 substrates, over multiple orders of magnitude,
toward the electrogenerated CoITPP. For one RX substrate, the
autonomous workflow of 14 ± 3 h on average was executed with 33 ± 1
inquiries for both stages (or 15 inquiries if autonomously terminated
after Stage I), which would otherwise take an estimated ~50 h with 420
inquiries if employing an automated exhaustive screening. If we
assume 1 h for a typical human researcher to manually conduct one
inquiry including sample preparation and six CV measurements, we
estimate that the autonomous workflow could shorten the total time
of experiments by ~60%.

The reactivity of unactivated RX substrates are, as expected,
sensitive to the halogen leaving group, as k0 decreases dramatically
from 1-iodobutane (n-BuI) to n-BuBr to 1-chlorobutane (n-BuCl) whose
reactivity is undetectable within the inquired parameter space (Sup-
plementary Figs. 28–30). Meanwhile, the linear alkyl chain length has
little effect on k0 among n-BuBr, 1-bromohexane (n-HexBr), and
1-bromooctane (n-OctBr), whereas steric effects are observed with a
decrease in k0when comparingn-BuBr to 1-bromo-2-methylpropane (i-
BuBr) to 2-bromobutane (2-BuBr) and from n-BuI to neopentyl iodide
(Me3CCH2I) (Supplementary Figs. 31–35). Also, as expected, electron-
withdrawing functional groups can activate RX substrates for nucleo-
philic addition (Supplementary Figs. 36 and 37), as k0 increases from n-
BuCl to dichloromethane (CH2Cl2) to chloroacetonitrile (ClCH2CN)
whose measured k0 = 1.6 × 104M−1 s−1 is consistent with a literature
value (1.9 × 104M−1 s−1)39. Such inductive effect diminishes as the
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electron-withdrawing group is more remote from the electrophilic
carbon, which is supported by comparing the rate of ClCH2CN to
3-chloropropionitrile (Cl(CH2)2CN) and 5-chlorovaleronitrile
(Cl(CH2)4CN) (Supplementary Figs. 38 and 39). Lastly, the platform’s
low relative uncertainty for k0 measurements allowed us to determine
the secondary α-deuterium kinetic isotope effect (2° KIE per α-D):
1.25 ± 0.03 for n-BuBr relative to n-BuBr-d9 (CD3(CD2)3Br), 1.28 for n-
BuI relative to n-BuI-d9 (CD3(CD2)3I) (Supplementary Figs. 40 and 41),
and 1.06 ±0.02 for primary benzyl bromide (PhCH2Br) relative to
PhCD2Br (Supplementary Note 10 and Supplementary Figs. 45–48).

The autonomous platform was further deployed in a Hammett
study of para-substituted primary benzyl bromide derivatives (p-X-
PhCH2Br, where X represents a para-substituent) (Fig. 4a and Sup-
plementary Figs. 49–60), after a revision to the workflow to accom-
modate their faster rates with CoITPP (Supplementary Note 10). Such
reactions are relevant to the recent interest in organic electrosynthesis
catalyzed by low-valent first-row transitionmetals43,47,48.We performed
linear free energy relationship analysis (Supplementary Figs. 61 and62)
using various polar- (such as σ) or radical-derived Hammett
parameters43,49 that are defined in Supplementary Table 13. In Fig. 4b,
the measured k0 values of ten p-X-PhCH2Br substrates relative to that
of unsubstituted PhCH2Br (log10(kX/kH)) were plotted against σ. A lin-
ear correlation with a positive slope among all substrates (r2 = 0.81,
ρ = 1.35) indicates a negative charge buildup in the transition state,
consistent with the anionic nature of the CoITPP nucleophile. The
observed deviation from a perfect linear correlation could be ascribed
to structural variations in the transition state that have been often

observed for SN2 reactions at benzylic sites50–54, or different para-
substituents acting to stabilize the transition state with a differing
balance of inductive and resonance effects49. Also, the less reactive
secondary benzyl bromide (PhCH(CH3)Br) (Supplementary Fig. 63)
compared to PhCH2Br is aligned with typical SN2 reactions. Empow-
ered by the autonomous platform that accelerates experimentation,
our studies of benzyl bromide substrates and beyond support a
SN2-type pathway (Fig. 4b), out of other possible alternative
pathways43,47,48, for the C step between CoITPP and RX electrophiles
(Supplementary Note 11 and Supplementary Tables 14 and 15).

Intriguingly, the closed-loopworkflow found detectable reactivity
of 4-chlorobutyronitrile (Cl(CH2)3CN) toward CoITPP but autono-
mously terminated after Stage I, because Cl(CH2)3CN was deemed to
not follow an ECmechanism by the DLmodel (Supplementary Fig. 65).
This autonomous execution by the platform was surprising, since
other similar substrates including Cl(CH2)2CN, Cl(CH2)4CN, and the
more reactive 4-bromobutyronitrile (Br(CH2)3CN) and
4-iodobutyronitrile (I(CH2)3CN) (Supplementary Figs. 66 and 67) all
obey an ECmechanism. Through additional manual CVmeasurements
(Fig. 4c), we confirmed Cl(CH2)3CN as a mechanistic outlier, with the
exclusion of potential artifacts including chemical purity, automated
electrolyte formulation, or electrode fouling (SupplementaryNote 12).
An irreversible reductive shoulder peak anodic of the CoII/I redox
appeared and gained prominence with higher [RX], accompanied with
an intensified reductive peak of CoIITPP.We hypothesize that an outer-
sphere electron transfer pathway47 involving an alkyl radical inter-
mediate and transient regeneration of CoIITPP (Fig. 4c and

Fig. 3 | Autonomous closed-loop workflow of mechanism discernment and
electrokinetic analysis. a The workflow of Stage I for DL-based discernment of an
EC mechanism via Bayesian optimization. A system is considered to bear an EC
mechanism when the maximized DL-generated propensity of an EC mechanism
exceeds 50%.bThe trajectory of a 15-step campaign of Bayesian optimizationwhen
RX = n-BuBr. [RX]∈ [0.008, 1000] mM and νmin∈ [0.01, 0.2] V/s. c The initial
response surface of ipa/ipc as a function of ν and [n-BuBr] (ν∈ [0.01, 2] V/s and [n-
BuBr] ∈ [0.008, 1000] mM), created via a Gaussian process, after completion of
Stage I. d The workflow of Stage II for adaptive search of parameter combinations
suitable for electrokinetic analysis. e Desired combinations of [n-BuBr] and ν that

satisfy ipa/ipc∈ [0.65, 0.75] are found at 2 and 9 [n-BuBr] values in Stage I and II,
respectively, resulting in a linear regression of log10(kobs) versus log10[n-BuBr] for
the quantification of k0 value. The vertical error bars represent the standard
deviations of log10(kobs) among all the valid kobs values at each [n-BuBr] value. f The
on-the-fly updated response surface of ipa/ipc after completion of Stage II. The
colors of the surfaces in (c) and (f) represent the local model uncertainty from the
Gaussian process (the standard deviation of the modeled ipa/ipc). The fluctuations
in the surfaces in (c) and (f) could be ascribed to the fact that a small number of data
points are fitted to a large parameter space. Data distributions underlying the error
bars in (d) are presented in Source Data file.
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Supplementary Note 13) could be operational for Cl(CH2)3CN. As the
DL model in the autonomous platform correctly identified the exis-
tence of alternative mechanisms, our platform is sensitive enough to
detect outliers that bear previously unexpected mechanisms.

The performance of our demonstrated autonomous platform
relies on the accuracy and general applicability of the DL-enabled
automatic mechanism discernment. The DL model deployed here was
trained by simulated voltammograms corresponding to only five

Fig. 4 | Substrate scope studies and mechanistic insights. a The generally
applicable closed-loop workflow enables autonomous investigation of EC
mechanism between CoTPP and a diverse scope of RX substrates amid negative
controls and outliers, and the k0 values of up to 30 substrates toward the elec-
trogenerated CoITPP are measured over multiple orders of magnitude. * within
the inquired parameter space; ** reacts with the electrogenerated CoITPP but
does not follow an EC mechanism. b Hammett plot of para-substituted primary
benzyl bromide derivatives on the σ scale, where kX and kH are the k0 values of the
para-substituted (p-X-PhCH2Br, denoted as p-X, where X represents a para-

substituent) and unsubstituted (PhCH2Br, denoted as p-H) substrates, respec-
tively. The error bars in (a) and (b) represent the standard deviations of k0 and
log10(kX/kH), respectively, for those substrates measured by the closed-loop
workflow for multiple replicates. c Additional manual CV experiments, via
sequential titration of Cl(CH2)3CN with an increasing equivalent (equiv.) relative
to CoIITPP, confirm Cl(CH2)3CN as a mechanistic outlier that reacts with CoITPP
but does not follow an ECmechanism. 1mM CoIITPP in DMF using 0.1M NBu4PF6.
Data distributions underlying the error bars in (a) and (b) are presented in Source
Data file.
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classicalmechanisms andwas tasked formechanismclassificationwith
the assumption that there is only one redox event34. A more advanced
DL model capable of both redox-event detection and mechanistic
classification out of a larger library of nine mechanisms, dubbed as
EchemNet, has recently been reported to accommodate voltammo-
grams with in principle an arbitrary number of redox events55. Such
advancement removes the restriction of pre-assigning a potential
window for cyclic voltammetry measurements and will engender a
higher level of autonomy in experimentation platforms. Nonetheless,
advanced DL architectures are still needed to either account for
mechanisms out of the existing trained ones or if possible accom-
modate all the possible mechanistic variations. The intrinsic issue of
mechanistic ambiguity in voltammetry, thatmultiplemechanismsmay
exhibit similar if not the same voltammetric responses35, suggests
inevitable sampling bias during DL model’s training. Thus, credible
experimental data with proper mechanistic annotations should be
welcomed to further refine the trained DLmodel and it is necessary to
incorporate chemistry insights to further ascertain mechanism
assignment.

Discussion
In summary, we report an autonomous platform in fundamental
electrochemistry that adaptively discerns molecular mechanisms and
designs stringent experimental conditions for electrokinetic analysis.
This modular platform is compatible with and readily applicable to
existing electrochemistry laboratories, inheriting the rich knowledge
in electrochemistry gained over the past decades. Through a proof-of-
concept closed-loop survey of an EC mechanism between CoTPP and
up to 30 RX substrates, we demonstrated the platform’s wide range of
rate quantification (k0 of the C step) over 7 orders of magnitude, low
relative uncertainty (<5%) for k0 measurements, 10-fold reduction of
experimental attempts compared to exhaustive screening, and the
sensitivity and capability of detecting negative controls and mechan-
istic outliers. Such features will find great use for a myriad of
mechanistic discoveries and investigations in molecular and organic
electrochemistry. Future advances, such as MLmodels with expanded
mechanistic capabilities of analyzing CV data and beyond as well as
robotic handling of solid-state materials on electrodes, will lead to the
establishment of general-purpose self-driving electrochemistry
laboratories. Theworkpresented here lays the cornerstone for such an
edifice in the future.

Methods
Chemicals
Cobalt(II) tetraphenylporphyrin (CoIITPP) (TCI America, >80.0%) was
recrystallized frommethylene chloride (FisherChemical, HPLC) before
use: ~1 g of as-received CoIITPP was dissolved in ~500ml of methylene
chloride via sonication for ~2 h; the solution was filtered with 0.45μm
syringe filters (VWR), transferred in a crystallization dish (Pyrex), and
evaporated under ambient atmosphere overnight; the recrystallized
solid was dried at 60 °C and stored in an Argon-filled glovebox. Tet-
rabutylammonium hexafluorophosphate (NBu4PF6) (TCI America,
>98.0%) was dried at 90 °C under vacuum and stored in the glovebox.
Dimethylformamide (DMF) (Sigma-Aldrich, anhydrous, 99.8%) was
stored in the glovebox and used as received.

A diverse scope of organic electrophiles was studied in this work.
Purchased from Sigma-Aldrich were 1-bromobutane (n-BuBr) (99%),
1-iodobutane (n-BuI) (99%, stabilized with copper), 1-bromo-2-
methylpropane (i-BuBr) (99%), dichloromethane (CH2Cl2) (anhy-
drous, ≥99.8%, stabilized with amylene), chloroacetonitrile (ClCH2CN)
(99%), acetonitrile (CH3CN) (anhydrous, 99.8%), benzyl bromide-α,α-
d2 (PhCD2Br) (98 atom% D), 4-methylbenzyl bromide (p-Me-PhCH2Br)
(97%), 4-(trifluoromethoxy)benzyl bromide (p-F3CO-PhCH2Br) (97%),
methyl 4-(bromomethyl)benzoate (p-MeO2C-PhCH2Br) (98%), and 4-
(bromomethyl)benzophenone (p-PhOC-PhCH2Br) (96%). Purchased

from TCI America were 1-bromohexane (n-HexBr) (>98.0%),
1-bromooctane (n-OctBr) (>98.0%), 2-bromobutane (2-BuBr) (>98.0%),
1-chlorobutane (n-BuCl) (>99.0%), 3-chloropropionitrile (Cl(CH2)2CN)
(>98.0%), 4-chlorobutyronitrile (Cl(CH2)3CN) (>97.0%),
5-chlorovaleronitrile (Cl(CH2)4CN) (>97.0%), 4-bromobutyronitrile
(Br(CH2)3CN) (>97.0%), and benzyl bromide (PhCH2Br) (>98.0%, sta-
bilized with propylene oxide). Purchased from Oakwood Chemical
were neopentyl iodide (Me3CCH2I) (98%), 4-iodobutyronitrile
(I(CH2)3CN) (97%), and 1-(bromomethyl)-4-methoxybenzene (p-MeO-
PhCH2Br) (stabilized with K2CO3). Purchased from Synquest Labora-
tories were 4-fluorobenzyl bromide (p-F-PhCH2Br) (98%), 4-(tri-
fluoromethyl)benzyl bromide (p-F3C-PhCH2Br) (98%), and
4-cyanobenzyl bromide (p-NC-PhCH2Br) (98%). Purchased from Cam-
bridge Isotope Laboratories were n-BuBr-d9 (98%) and n-BuI-d9 (98%,
stabilized with copper). Purchased from AK Scientific was 1-(bromo-
methyl)-4-phenoxybenzene (p-PhO-PhCH2Br) (95%). Purchased from
Thermo Scientific Chemicals was (1-bromoethyl)benzene (PhCH(CH3)
Br) (97%). Among all the organic electrophiles mentioned above, solid
chemicals were stored in the glovebox and used as received, whereas
liquid chemicals were transferred in a Schlenk flask, evacuated under
vacuum on a Schlenk line, brought into the glovebox, and dried over
3 Å molecular sieves (Sigma-Aldrich) before use.

Electrochemical experiments
All the stock solutions used for electrochemical experiments were
prepared in the glovebox. Electrochemical experiments were per-
formed in a single-compartment, three-electrode cell (placed in the
glovebox) with a glassy carbon disk (3mm in diameter) working
electrode, a non-aqueous Ag/Ag+ reference electrode (the filling
solution was prepared as 10mM AgNO3 in anhydrous CH3CN using
0.1M NBu4PF6 supporting electrolyte), and a platinum wire counter
electrode connected to a CHI760E potentiostat (all from CH Instru-
ments). The working electrode was polished with 0.05 μm Micro-
Polish alumina powder on a MicroCloth polishing pad (both from CH
Instruments) pre-wet with deionized water, thoroughly rinsed with
deionized water, briefly sonicated in acetone for less than 20 s, and
dried under ambient conditions before use. All measured potentials
were versus the Ag/Ag+ reference electrode, whose potential was
calibrated against a ferrocene/ferrocenium (Fc/Fc+) redox couple (E
versus Ag/Ag+ = E versus Fc/Fc+ + 0.072 V) and remained fairly stable
throughout this work (less than ~10mV drift over long-term storage).
The formal potential for the CoII/ITPP redox was determined as
−1.275 V versus Fc/Fc+. Cyclic voltammetry was measured with auto-
matic iR compensation for three cycles, where the forward scan was a
cathodic scan from −0.9 V vs. Ag/Ag+ to the switching potential (set
to −1.5 V vs. Ag/Ag+ or a less negative value to avoid electroreduction
of themetal–alkyl species formed from oxidative addition of organic
electrophiles to the electrogenerated CoITPP), and the reverse scan
was an anodic scan from the switching potential to −0.9 V vs. Ag/Ag+.
For the system of CoTPP with organic electrophiles studied in this
work, electrode fouling was not observed for the working electrode
during prolonged electrochemical testing (hundreds or thousands of
cyclic voltammetry measurements during the autonomous closed-
loop workflow or automated exhaustive screening, respectively),
which allowed for continuous operation without the need of re-
polishing the working electrode in the middle of each electro-
chemical experiment.

Autonomous electrochemical platform
Detailed information about our constructed autonomous electro-
chemical platform is provided in the Supplementary Information,
including but not limited to hardware and software specifications,
standard operating procedures, and rationales behind our design of a
closed-loop workflow for autonomous investigation of an EC
mechanism betweenCoTPP and a library of organohalide substrates in
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two stages (Stage I for mechanism discernment and Stage II for elec-
trokinetic analysis).

Data availability
The data that support the findings of this study are presented in the
article and Supplementary Information. All new data associated with
this paper are available in the Zenodo repository (https://doi.org/10.
5281/zenodo.10587576). Any other relevant data are also available
from the corresponding authors upon request. Source data are pro-
vided with this paper.

Code availability
The source Python code is provided as Supplementary Software in this
paper. The deep-learning model is available in the Zenodo repository
(https://doi.org/10.5281/zenodo.10587576) due to large file sizes. Any
other relevant code is also available from the corresponding authors
upon request.
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