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Somos nuestra memoria, 

somos ese quimérico museo de formas inconstantes, 

ese montón de espejos rotos. 

We are our memory,  

we are that chimerical museum of shifting shapes,  

that pile of broken mirrors. 

–Jorge Borges, “Cambridge” Elogio de la sombra, translated in In Praise of Darkness 
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Associative Learning in Dorsal and Ventral Hippocampus 

By Max Ladow 

 

Abstract 

 

Animals associate cues with outcomes and continually update these associations 

as new information is presented. How might the brain allow for the learning of these 

associations, particularly the identity and incurred value of the cues? What might the 

link be between behavioral learning and neural representation? Such a complicated set 

of questions cannot be addressed by a single set of experiments, but the intent of this 

thesis is to contribute to the understanding of these foundational questions.  

The hippocampus is crucial for associative learning, yet how neurons track 

changes in cue-outcome associations remains unclear. In the experiments described in 

this thesis, recordings from dorsal and ventral hippocampus (vCA1 and dCA1) across 

days of learning in odor and tone associative learning tasks were analyzed to 

understand how cue and outcome representations might be differently encoded across 

these areas. Both areas encoded cues and outcomes, but vCA1 representations were 

dependent on learning and behavioral salience, while dCA1 cue representations 

exhibited outcome invariant stable representation. Additionally, vCA1 neurons, but not 

dCA1 neurons, demonstrated encoding of outcome during the odor period as well as 

temporally broadened encoding of outcome throughout trials. Thus, vCA1 and dCA1 

appear to have diverging roles in associative learning encoding. 
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In Chapter 1 (Introduction), I provide an introduction to the hippocampus, with 

special emphasis on it’s dorsal-ventral axis and potential differences in functionality. 

Over the last few decades, it has been increasingly hinted at that these separate areas 

or gradient in the hippocampus might serve overlapping but also distinct roles in various 

memory and learning behaviors. I will illustrate how past approaches, which have 

tended to focus on the spatial domain and to a lesser extent on emotion, leave many 

basic questions unanswered. 

In Chapter 2 (Neural dynamics underlying associative learning in the dorsal and 

ventral hippocampus), I present evidence of differences in dorsal and ventral 

hippocampal representations of associative learning. Using 2-photon calcium imaging, I 

tracked the same dCA1 and vCA1 neurons across days to determine how responses 

evolve across phases of odor-outcome learning. I found that, initially, odors elicited 

robust responses in dCA1, whereas in vCA1 odor responses primarily emerged after 

learning and embedded information about the paired outcome. Population dynamics in 

both regions rapidly reorganized with learning, then stabilized into ensembles that 

stored task representations for days, even after extinction or pairing with a different 

outcome. Finally, I found stable, robust signals across CA1 when anticipating 

behaviorally controlled outcomes, but not when anticipating inescapable shock. These 

results identify how the hippocampus encodes, stores, and updates learned 

associations, and illuminates the unique contributions of dorsal and ventral 

hippocampus. 
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In Chapter 3 (Conclusions), I place these experimental findings within the larger 

context of our knowledge of the hippocampus to date. I propose that the dorsal ventral 

axis of the hippocampus has different roles in not only spatial learning or emotion-

related behavior but also associative learning and suggest further experimental studies 

for understanding the mechanisms underlying their differing population dynamics which 

could be to expand our knowledge of hippocampal function in health and disease 

states. 
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Chapter 1: Introduction 

 
The seat of memory in the brain 

 Central to our experience as humans is our ability to remember: to learn, to 

reflect, to bridge new forms of understanding. Memory functions as a foundation of how 

we orient our lives and our trajectories through them (Zeidman & Maguire, 2016). When 

our memory becomes impaired our lives can be altered in myriad ways, not only limiting 

out future abilities, but also changing ingrained aspects of our identity. For example, in 

Alzheimer’s Disease patients many studies have shown shifts in personality correlated 

with disease progression, which in sum can lead to a transformation in the sense of self 

(Addis & Tippett, 2004; Bishop et al., 2010; Chatterjee et al., 1992; Talassi et al., 2007). 

Thus, to identify the neurobiological mechanisms of and foundations for memory, 

neuroscience in the past half century has developed basic and clinical insights towards 

these memory processes and pathologies (Milner et al., 1998). 

How should we define memory? A suitable simple and broad definition might be 

that memory is any process that receives information and crucially maintains or stores it 

for some eventual use; more specifically, in neuroscience memory is further 

subclassified into several categories (Eichenbaum, 2017; Eichenbaum et al., 2007). 

First, the timing of memory storage and retrieval can be used to differentiate memory 

into short- and long-term, meaning for up to 10-12 seconds or as long as a whole 

lifetime (Dharani, 2015). Long-term memory can be further classified into declarative 

and nondeclarative memory, which is to say memory that can be consciously or 

unconsciously recalled (Camina & Güell, 2017; Cohen & Squire, 1980). And within 

declarative memory, we can further categorize into semantic and episodic memory, 

https://paperpile.com/c/wIWppA/AsNX
https://paperpile.com/c/wIWppA/B947+WsnM+eIBt+F2VH
https://paperpile.com/c/wIWppA/5dwQ
https://paperpile.com/c/wIWppA/n7Jq+XmSn
https://paperpile.com/c/wIWppA/u5Rn
https://paperpile.com/c/wIWppA/GNHr+YJ0Y


2 
 

respectively the memory of factual and first-hand experiential information (Tulving et al., 

1972). The episodic memory consists of a combination of context (“where,” place and 

time) and content (“what,” objects and events) (Dickerson & Eichenbaum, 2010). 

Returning to short-term memory, that grouping can also be divided into procedural, 

associative, non-associative, and priming memory (Camina & Güell, 2017). Procedural 

memory refers to learning actions to complete a task, like riding a bike, while non-

associative and priming memory refer to behavior arising to repeated exposure to a 

stimulus that affects respectively response to that stimulus or other stimuli (Camina & 

Güell, 2017). Finally, associative memory refers to the creation of an association 

between sections of information through classical and operant conditioning, which is to 

say association between a new stimuli and behavior or behavior and consequences of 

said behavior (Camina & Güell, 2017). While hearing a jingle from an ice cream truck 

leading you to buy ice cream is an example of classical conditioning, an example of 

operant conditioning could be learning to eat ice cream slowly after getting brain freeze 

from consuming more rapidly. This full breakdown of memory subtypes will prove useful 

in our scientific exploration of memory in specific brain systems that participate in the 

representation, storage, and recall of conscious and unconscious information. 

The undertaking to identify the substrate of memory in the brain has a long 

historical narrative, but contemporarily began with the study of patients with lesions who 

exhibited various forms of memory loss. Penfield and Milner in the 1950s examined the 

memory and other behavior and cognitive abilities of patients, including famously H.M, 

who had received unilateral or bilateral removal of parts of the frontal or temporal lobe 

to treat their epilepsy (Milner et al., 1998). Through years of work evaluating the specific 

https://paperpile.com/c/wIWppA/Ucd3
https://paperpile.com/c/wIWppA/Ucd3
https://paperpile.com/c/wIWppA/Pyd9
https://paperpile.com/c/wIWppA/GNHr
https://paperpile.com/c/wIWppA/GNHr
https://paperpile.com/c/wIWppA/GNHr
https://paperpile.com/c/wIWppA/GNHr
https://paperpile.com/c/wIWppA/5dwQ
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areas disabled or at least modified through surgery and the exact subtypes of memory 

impacted by the operations, these studies implicated the hippocampus as potentially the 

fundamental hub in the formation of declarative memory, and then specifically episodic 

memory rather than semantic memory (Rosenbaum et al., 2000; Squire, 1992).  

 
Early characterizations of hippocampal function: spatial memory 

 Following these lesion studies, in the following decades researchers directly 

recording from neurons in the hippocampus of animal models made landmark studies 

suggesting that the hippocampus might be an essential locus for spatial memory, which 

could be considered a specific kind of spatial memory (O’Keefe & Nadel, 1978). In 

1971, John O’Keefe and John Dostrovsky found that when a rat explored an open 

platform they observed using extracellular electrophysiological recordings from 

pyramidal cells in the hippocampus that a subset of these neurons fired especially when 

a rat was in a particular location of its environment (O’Keefe & Dostrovsky, 1971). 

These cells became famously referred to as “place cells” because of their consistent 

activity when an animal (or later a similar property was found in humans) traversed 

through a specific area (Niediek & Bain, 2014). Later research has shown these cells 

exist throughout the subregions of the hippocampus, though many differences in the 

ways these cells represent space have been found across these subregions (Almeida et 

al., 2012; K. B. Kjelstrup et al., 2008; Leutgeb et al., 2004; Stefanini et al., 2020; 

Strange et al., 2014). O’Keefe hypothesized that animals create a neural representation 

of their external world, termed a “cognitive map” (O’Keefe & Nadel, 1978). This theory 

was earlier developed by Edward Tolman, who observed that animals learned the 

optimal path through a maze using cues in their environment without exploring every 

https://paperpile.com/c/wIWppA/PCZQ+siEJ
https://paperpile.com/c/wIWppA/0oSc
https://paperpile.com/c/wIWppA/QpZ2
https://paperpile.com/c/wIWppA/d5qG
https://paperpile.com/c/wIWppA/WQwo+h1Dt+Fza5+P20i+c8Us
https://paperpile.com/c/wIWppA/WQwo+h1Dt+Fza5+P20i+c8Us
https://paperpile.com/c/wIWppA/WQwo+h1Dt+Fza5+P20i+c8Us
https://paperpile.com/c/wIWppA/0oSc
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possible route through the maze (McNaughton et al., 2006; Tolman, 1948). He 

suggested this ability could only exist if the cues in the environment were somehow 

represented in the brain into an internally-oriented map. O’Keefe and Dostrovsky’s 

discovery of place cells provided the first neural evidence for this cognitive map theory 

and specifically implicated the hippocampus as the locus for where such an internal 

representation might be formed. Importantly, because place cells precisely map the 

environment externally without respect to only the mouse’s location but rather with 

respect to objective spatial relationships in the environment that suggests that this 

cognitive map operates through allocentric, or an external, relationship to the 

environment. This is in contrast to an egocentric, or self-oriented, map to the 

environment which has been found for other types of mapping, including touch but also 

there is evidence of egocentric spatially tuned cells in parahippocampal areas (Kunz et 

al., 2021; Stein, 1989).  

 This discovery of place cells has ushered in an era of spatial memory exploration 

in the brain and in the hippocampus in particular; how might this spatial signal in these 

pyramidal neurons arise? Entorhinal cortex, an adjacent subregion of the allocortex to 

the hippocampus, provides the main excitatory input to these spatially tuned cells, and 

May-Britt Moser, Edvard Moser, and colleagues found that a subset of cells in the 

medial entorhinal cortex (MEC) specifically send the spatial signals necessary for place 

cell spatial mapping (Hafting et al., 2005). The Mosers labeled this subset of cells in the 

MEC as “grid cells” due to their firing with “any vertex of a regular grid of equilateral 

triangles spanning the surface of the environment” and that the clustering of these cells 

into groups that shared common orientations but with different positions (Hafting et al., 

https://paperpile.com/c/wIWppA/GDE6+Xx4r
https://paperpile.com/c/wIWppA/CWFn+IuQI
https://paperpile.com/c/wIWppA/CWFn+IuQI
https://paperpile.com/c/wIWppA/rrhq
https://paperpile.com/c/wIWppA/rrhq
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2005). Additionally, the grid cell spatial map was also found to be allocentric, much like 

the place cell mapping (Hafting et al., 2005). Further studies demonstrated changes in 

the grid cell activity directly correlated with changes in the formation and stability of 

place cells in the hippocampus (Fyhn et al., 2007) 

These exciting findings provided further momentum for the study of the 

hippocampus as a hub of spatial memory. Importantly, other significant discoveries 

revealed potential mechanisms for how place cells might have stable, long-term 

representations of spatial maps. Before the examination of place cells, Bliss and Lomo 

in 1973 found when recording from neurons in a subregion of the rabbit hippocampus 

that stimulating a subset of these cells led to a long-term, 30 minutes to 10 hours, of 

potentiated (LTP) response (Bliss & Lomo, 1973). Kandel and colleagues later found 

that the absence of this LTP mechanism inhibited the formation of stable place cells, 

suggesting that LTP might allow for long-term spatial memory in the hippocampus 

(Rotenberg et al., 1996). Additionally, the long-term stability of place cells has been 

repeatedly demonstrated, with spatial tuning remaining consistent across weeks of time 

(Wirtshafter & Disterhoft, 2022; Ziv et al., 2013). 

 
Oscillatory organization of spatial information 

Another key feature of spatial processing of increasing interest in recent work is 

the organization of spatial representation through neural oscillations. In 1938, Richard 

Jung and Alois Kornmüller observed using electroencephalogram (EEG) a large-

amplitude, sinusoidal wave pattern in the rabbit hippocampus between 4 and 7 Hz 

(though contemporary definitions for theta would broaden this range to 4-12 Hz), which 

they named “theta” activity (Andersen et al., 2007). Initially, theta activity was thought to 

https://paperpile.com/c/wIWppA/rrhq
https://paperpile.com/c/wIWppA/rrhq
https://paperpile.com/c/wIWppA/sqY4
https://paperpile.com/c/wIWppA/VMkj
https://paperpile.com/c/wIWppA/UNnt
https://paperpile.com/c/wIWppA/YTN6+IqB0
https://paperpile.com/c/wIWppA/nPtA
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be related to attention and movement behaviors, could be related to different learning 

states, and was regulated through neuromodulatory signals (Grastyan et al., 1959; 

Green & Arduini, 1954; Holmes & Adey, 1960; Vanderwolf, 1969). Later work has 

shown theta synchronizes across the hippocampus and place cells fire at shifting 

phases of the theta cycle throughout the hippocampal population; thus theta processing 

synchronizes hippocampal spatial coding and primes LTP for sequential structure 

(Jensen & Lisman, 2000; Lisman, 2005; Mitchell & Ranck, 1980; O’Keefe & Recce, 

1993; Skaggs et al., 1996). Furthermore, there is some evidence that hippocampal 

activity occurring at the positive phase of theta is potentiating while activity during the 

negative phase is de-potentiationing, including an elegant study by Siegle and Wilson 

(Hölscher et al., 1997; Huerta & Lisman, 1995; Hyman et al., 2003; Pavlides et al., 

1988; Siegle & Wilson, 2014). Finally, it has been suggested that place cell activity 

during theta phase precession predicts future behavior by rapidly sweeping through 

potential paths before an animal moves through them (Johnson & Redish, 2007; Pfeiffer 

& Foster, 2013). 

In addition to theta rhythms, other activity states including 100 ms duration “sharp 

wave” activity and associated higher frequency ~100 ms “ripple” oscillations (SWR) in 

the high gamma 100 to 200 Hz range have been identified in the hippocampus during 

both awake and sleep states (Karlsson & Frank, 2009; O’Keefe & Nadel, 1978; 

Vanderwolf, 1969; Wilson & McNaughton, 1994). Recordings at different points along 

the hippocampus have shown that sharp waves are in phase over the entire extent and 

might originate in the CA3 subregion of the hippocampus (Chrobak & Buzsáki, 1996; 

Csicsvari et al., 2000). During SWR there are synchronous bursts in most hippocampal 

https://paperpile.com/c/wIWppA/wtxE+Zyuj+vOyX+nKWK
https://paperpile.com/c/wIWppA/wtxE+Zyuj+vOyX+nKWK
https://paperpile.com/c/wIWppA/Vnke+eQ4x+mGsB+zaRA+ce60
https://paperpile.com/c/wIWppA/Vnke+eQ4x+mGsB+zaRA+ce60
https://paperpile.com/c/wIWppA/k9C2+ktMX+J3Uf+IZY8+YrW0
https://paperpile.com/c/wIWppA/k9C2+ktMX+J3Uf+IZY8+YrW0
https://paperpile.com/c/wIWppA/i05j+UgZw
https://paperpile.com/c/wIWppA/i05j+UgZw
https://paperpile.com/c/wIWppA/nKWK+0oSc+RLL0+L7hw
https://paperpile.com/c/wIWppA/nKWK+0oSc+RLL0+L7hw
https://paperpile.com/c/wIWppA/ZQz0+86ZA
https://paperpile.com/c/wIWppA/ZQz0+86ZA
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interneurons and subsets of place cells, specifically cells that contain previous or 

potential future spatial trajectories, including both reactivation of remote experiences 

and immediate future navigational behavior that may not be tied to experience from the 

current environment (Buzsaki et al., 1992; Diba & Buzsáki, 2007; Foster & Wilson, 

2006; Gupta et al., 2010; Karlsson & Frank, 2009; Pfeiffer & Foster, 2013). This 

suggests SWRs and “replay” may play a role in memory consolidation (Jadhav & Frank, 

2009). Elimination or interruption of SWRs can impair behavior in memory tasks 

(Girardeau et al., 2009; Jadhav et al., 2012). SWRs appear to engage cortical and 

subcortical areas through hippocampal outputs, thus providing a mechanism for 

memory retrieval across the brain (Girardeau et al., 2017; Gomperts et al., 2015; 

Jadhav et al., 2016; Ji & Wilson, 2007; Pennartz et al., 2004; Rothschild et al., 2017; 

Sosa et al., 2020). A holistic hypothesis posits SWRs and replay might engage in both 

consolidation and retrieval through local hippocampal and target cortical activation (Carr 

et al., 2011; Joo & Frank, 2018). While SWR and replay offer a compelling 

organizational mechanism for hippocampal memory processes, other gamma-theta 

oscillations extraneous to SWRs also appear to temporally organize spatial information 

between different hippocampal inputs (Colgin et al., 2009; Johnson & Redish, 2007). 

While the enthusiasm for exploring the role of the hippocampus as specifically a 

spatial map has led to transformative advances in molecular, cellular, systems, and 

computational neuroscience, it has also led to a relative lack of experiments examining 

how the area might support non-spatial memory (Aronov et al., 2017). This summary of 

research focused on spatial mapping in the hippocampus provides context for the 

perhaps constrained understanding that developed of all hippocampal functioning 

https://paperpile.com/c/wIWppA/tl8t+L7hw+i05j+daCx+EKZl+Gbt2
https://paperpile.com/c/wIWppA/tl8t+L7hw+i05j+daCx+EKZl+Gbt2
https://paperpile.com/c/wIWppA/2oEv
https://paperpile.com/c/wIWppA/2oEv
https://paperpile.com/c/wIWppA/XyWl+gGen
https://paperpile.com/c/wIWppA/o8fz+afWC+9oCA+4TRh+bDhc+Uemv+tB5m
https://paperpile.com/c/wIWppA/o8fz+afWC+9oCA+4TRh+bDhc+Uemv+tB5m
https://paperpile.com/c/wIWppA/o8fz+afWC+9oCA+4TRh+bDhc+Uemv+tB5m
https://paperpile.com/c/wIWppA/XkYG+eBiS
https://paperpile.com/c/wIWppA/XkYG+eBiS
https://paperpile.com/c/wIWppA/ypzG+UgZw
https://paperpile.com/c/wIWppA/V4yq
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(Wood et al., 1999). There are many benefits of studying the hippocampal coding for 

non-spatial memory (the research for which is discussed below) including that looking at 

such coding might reveal other roles for individual or populations of neurons in non-

spatial memory processes. The dominance of spatial research in experiments across 

these subregions indicates this is particularly likely considering that each subregion of 

the hippocampus is thought to have its own defined role (Knierim & Neunuebel, 2016). 

Interestingly, recent studies suggest that specifically the non-spatial hippocampal and 

associated circuits might change in the earlier stages of neurodegenerative disease, 

including Alzheimer’s disease, and that their differences compared to spatial circuits 

might provide insight into vulnerability under these disease states (Khan et al., 2014; 

Knierim & Neunuebel, 2016). 

 
Hippocampal anatomy and signaling through subregions 

 The hippocampus is a bilateral structure in the mammalian forebrain (O’Keefe & 

Nadel, 1978). In the rat, it’s a curved sausage-like formation, lying behind the septum 

and is further categorized into subregions through its various axes. Its name however, 

comes from the typical shape seen through cross section in humans that has the 

appearance of a “seahorse” which is the latin meaning of hippocampus ( Figure 1.1 ). In 

the rat and mouse, where most hippocampal studies have been conducted, the top 

portion is referred to as the dorsal region, while the bottom portion is referred to as the 

ventral region and lies in the temporal part of the brain. Throughout the dorsal-ventral 

axis the hippocampus consists of a three-layered structure made up of plexiform, 

principal cell, and diffuse fiber layers ( Figure 1.1 ). This is in contrast to the typical six-

layered structure in the neocortex (Chauhan et al., 2021). The hippocampus follows this 
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layering through the dentate gyrus, the hippocampus proper (also known as the cornu 

ammonia, abbreviated CA), and the subiculum. In 1934, Lorente de No further 

subdivided the CA into CA1, CA2, CA3, and CA4, which is still used today to categorize 

the subareas containing principal glutamatergic cells (Andersen et al., 2007).  

While the hippocampus has a variety of circuits fundamental to its operation, the 

primary classical circuit is known as the trisynaptic loop and goes through the dentate 

gyrus, CA3, and CA1 ( Figure 1.2 ). This circuit begins with the sensory information from 

the entorhinal cortex being sent to the hippocampus via the perforant path, which has 

direct and indirect subcomponents (Hjorth-Simonsen & Jeune, 1972; Witter et al., 

2017). In the direct pathway, layer III cells of the entorhinal cortex project onto the apical 

dendrites of CA1 pyramidal cells, which are the main output neurons of the 

hippocampus and project back to deeper layers of entorhinal cortex ( Figure 1.2 )(van 

Groen, 2001). CA1 cells project to many other areas beyond the entorhinal cortex, 

including importantly the previously mentioned subiculum which also projects to the 

entorhinal cortex and many other regions (Naber et al., 2001). The direct pathway in 

particular has received a lot of attention due the ease of accessing it near CA1; this 

research has helped explain how spatial memory in the subset of cells in CA1 that form 

place cells might be differentiated based on divergent projections (Brun et al., 2008; 

Igarashi et al., 2014; Masurkar et al., 2017).  

The indirect pathway is made up of projections from layer II of the entorhinal 

cortex, and these axons synapse onto granule cells and interneurons in the dentate 

gyrus ( Figure 1.2 )(Andersen et al., 1966; Lomo, 1971). This synapse is the first stage 

of the trisynaptic loop. Granule cells exhibit sparse activity patterns, with high levels of 

https://paperpile.com/c/wIWppA/nPtA
https://paperpile.com/c/wIWppA/wKX9+6QMl
https://paperpile.com/c/wIWppA/wKX9+6QMl
https://paperpile.com/c/wIWppA/1eQ3
https://paperpile.com/c/wIWppA/1eQ3
https://paperpile.com/c/wIWppA/AJjH
https://paperpile.com/c/wIWppA/DL2j+yrWS+lIx5
https://paperpile.com/c/wIWppA/DL2j+yrWS+lIx5
https://paperpile.com/c/wIWppA/Byn5+zwjY
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network inhibition such that granule cell activity is thought to result in the inhibition of 

nearby granule cells (Hashimotodani et al., 2017; Luna et al., 2019). This feature of 

granule cells in the dentate gyrus allows for the separation of similar inputs into non-

overlapping population activity (Aimone et al., 2011). A crucial feature of memory 

encoding is the ability to distinguish between similar stimuli, contexts, and complete 

episodic memories. The dentate gyrus through this sparse encoding ability has been 

hypothesized to pattern separate by which salient and non-salient information can be 

effectively distinguished (Kesner, 2013; Rolls, 2013b). Medial and lateral entorhinal 

cortex (LEC) project to exclusive and respectively to the middle and outer molecular 

layers of granule cell dendrites, thus sending spatial and contextual information through 

distinct pathways (Treves & Rolls, 1992; Witter, 2007; Woods et al., 2018; Yasuda & 

Mayford, 2006). Granule cells dramatically outnumber the entorhinal cells they receive 

projections from, allowing for an ease of non-overlapping representation of entorhinal 

input (Amaral & Witter, 1989; McNaughton & Morris, 1987; Scharfman & Myers, 2012; 

Treves & Rolls, 1994). Also these cells fascinatingly have the unusual feature of 

continuing to develop through adulthood, a process known as neurogenesis,  leading to 

classification of granule cells into mature and immature categories depending on their 

age (Gage et al., 1995; Ming & Song, 2011; Overstreet-Wadiche & Westbrook, 2006). 

These immature or adult-born granule cells have been shown to possess an outsized 

role relative to their population size specifically in pattern separation–disrupting 

neurogenesis affects discrimination between highly similar but not very different 

contexts–and are also thought to inhibit mature granule cell activity (Danielson et al., 

2016; Drew et al., 2016; Kheirbek, Tannenholz, et al., 2012; Sahay et al., 2011).  
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 Granule cells also receive excitation and inhibition from both ipsi- and 

contralateral glutamatergic mossy cells and gabaergic inhibitory cells in the hilus ( 

Figure 1.2 )(Freund & Buzsáki, 1996; Scharfman, 2016). Recent work has 

demonstrated mossy cells also have spatial tuning properties, though they are less 

specifically tuned compared to the surrounding granule cells and interestingly show 

broader firing across contexts (Danielson et al., 2017; GoodSmith et al., 2017; Senzai & 

Buzsáki, 2017). Additionally, in circuit with the interneurons in the dentate that mossy 

cells also synapse onto, it has been found that the mossy cells primary effect on granule 

cells is to provide feedforward inhibition, likely through HIPP cells, a group of 

interneurons that express somatostatin and neuropeptide Y (Galloni et al., 2022; Jinde 

et al., 2013; Scharfman & Myers, 2012). This feedforward inhibition appears to enhance 

granule cell sparse encoding; removal of mossy cell activity impairs pattern separation 

ability (Jinde et al., 2013). Organization of this inhibition might be achieved through 

mossy cell activity during theta oscillations, leading to the phase-locking synchronization 

of target granule cells and interneurons (Soltesz et al., 1993) Mossy cells also appear to 

influence neurogenesis in the dentate gyrus through a complicated mix of excitation and 

inhibition as well as the excretion of sonic hedgehog, a multifunctional signaling protein 

governing pattern formation, proliferation and cell survival during embryogenesis 

(Antonelli et al., 2019; Yeh et al., 2018). Additionally they may have a unique role in 

priming adult born granule cell activity and connectivity (Chancey et al., 2014). 

Returning to the trisynaptic loop, granule cells send axons through the hilus 

which form the mossy fiber pathway ( Figure 1.2 ). These axons terminate onto CA3 

pyramidal cells via large mossy terminals, often contacting 11-15 CA3 cells and 7-12 

https://paperpile.com/c/wIWppA/LjsH+2SyS
https://paperpile.com/c/wIWppA/lXwu+gVbX+8KpE
https://paperpile.com/c/wIWppA/lXwu+gVbX+8KpE
https://paperpile.com/c/wIWppA/Wk0v+ErSd+0HY1
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https://paperpile.com/c/wIWppA/ErSd
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https://paperpile.com/c/wIWppA/9zCd+YOvX
https://paperpile.com/c/wIWppA/alal
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mossy cells with a single granule cell, leading to the reliable activation of CA3 and 

mossy cells (Acsády et al., 1998; Henze et al., 2002). CA3 pyramidal cells also are the 

most highly recurrent excitatory connections among principal cells in the hippocampus, 

which has been suggested to allow for an “auto-associative” network in which a few 

cells can readily excite the populations of cells that might encode for different features 

of the environment, including space, time, context, and others (Le Duigou et al., 2014; 

Rolls, 2013a; van Strien et al., 2009). Through this recurrent excitation its hypothesized 

that CA3 pattern completes, meaning the representation of individual and separate 

pieces of information can lead to the rapid reactivation or initial association of 

ensembles coding for the previously described features (Kondo et al., 2009; Leutgeb & 

Leutgeb, 2007; McHugh et al., 2007).  

CA3 axons, in a formation known as the schaffer collaterals, synapse onto 

proximal dendrites of CA1 pyramidal cells in the third and final synapse in the trisynaptic 

circuit ( Figure 1.2 )(van Strien et al., 2009). While the dentate gyrus and CA3 have 

been both theorized and results suggest they pattern separate and pattern complete the 

precise role for CA1 aside from being the output node for the hippocampus has been 

less certain. Some proposed functions include novelty detection, enrichment of CA3 

encodings, or redistributing information during recall (Hasselmo et al., 2000; Kaifosh & 

Losonczy, 2016; McClelland & Goddard, 1996; Treves & Rolls, 1994). Further recent 

work shows CA1 representations have a higher correlation with behavioral 

discrimination compared to granule cell representations, suggesting that CA1 weighs 

decorrelated information from the dentate gyrus, through CA3, and produces a map of 

memory representations that can be used to guide behavior (Allegra et al., 2020) 

https://paperpile.com/c/wIWppA/4AMm+wao7
https://paperpile.com/c/wIWppA/vfqs+ruXR+Mj5B
https://paperpile.com/c/wIWppA/vfqs+ruXR+Mj5B
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As previously mentioned, the trisynaptic circuit spans along the dorsal-ventral 

axis of the hippocampus, however almost all of the previously described functionality of 

this circuit has been determined through experiments focused on the dorsal portion of 

the hippocampus. In rodents, the dorsal hippocampus lies directly under the cortex and 

the principal neurons are aligned with the skull which provides an ease of surgical and 

recording access. In contrast, experiments targeting the ventral hippocampus, 

particularly in vivo experiments, are far more difficult to acquire (Jung et al., 1994) 

Nonetheless, a variety of experiments have attempted to dissect potential differences 

across this axis to ascertain if the areas have a functional subdivision which has been 

an open question in the field since Ramón Y Cajal (1901) and Lorente de Nó (1934) 

both observed differences in dorsal-ventral anatomy as they established the trisynaptic 

circuit and other basic features of hippocampal anatomy (Fanselow & Dong, 2010).   

Further experimental anatomy work has established that different transverse 

levels along the dorsoventral axis establish axonal connections in a highly differentiated 

manner (Cenquizca & Swanson, 2007). Separate projections from entorhinal cortex 

have been shown to specifically synapse onto separate dorsal and ventral areas within 

the dentate gyrus, resulting in information from infralimbic and prelimbic cortices routing 

to ventral hippocampus, and cingulate cortex and other areas being routed to dorsal 

hippocampus. Not only does this show that the dorsal and ventral hippocampus receive 

separate inputs, but also because these projecting areas have differing functions, 

namely that spatial and contextual versus emotional functionality, this suggests dorsal 

and ventral hippocampus may also preferentially process different types of information 

(Komorowski et al., 2013; Strange et al., 2014). Interestingly the map of these 

https://paperpile.com/c/wIWppA/FqDm
https://paperpile.com/c/wIWppA/PImd
https://paperpile.com/c/wIWppA/MKTd
https://paperpile.com/c/wIWppA/nqDQ+c8Us


14 
 

projections is continuous rather than discretized, suggesting a potential gradient of 

dorsal-ventral function rather than discrete subareas (Amaral & Witter, 1989). 

Projections from other areas and cell types have also been shown to predominantly 

target only dorsal or ventral hippocampus, including a long-range inhibitory projection 

from medial prefrontal cortex (Malik et al., 2022; Rajasethupathy et al., 2015). There 

also are differences in neuromodulatory input: cholinergic afferents from the fornix more 

strongly innervate dorsal hippocampus, whereas serotoninergic and dopaminergic 

afferents provide their strongest innervation to ventral hippocampus (Gage et al., 1983; 

Pitkänen et al., 2000; Verney et al., 1985; Witter et al., 1989). Similarly, the projections 

from the dorsal and ventral hippocampus differ, including their projections to the lateral 

septum (Risold & Swanson, 1996). Also, ventral hippocampus but not dorsal 

hippocampus projects directly to medial prefrontal cortex (mPFC) (Burwell & Witter, 

2002; Hoover & Vertes, 2007; Verwer et al., 1997). Recently, cutting-edge techniques 

have been applied to mapping hippocampal inputs and outputs, the results of which 

have show that there are separate populations of neurons in ventral hippocampus that 

project to both multiple and individual targets in a non-random fashion (Arszovszki et al., 

2014; Gergues et al., 2020). In contrast to these anatomical studies, genomic 

experiments have found sharp divides between potential dorsal and ventral subregions 

(Fanselow & Dong, 2010; Thompson et al., 2008). Thus, while it remains unclear 

exactly how the border between these subareas might be delineated, perhaps there are 

both gradual and sharp divisions in differing functionalities along the dorsal-ventral axis, 

understanding the functional differences of these two poles of the hippocampus may 
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provide a useful perspective for better understanding how different types of memory 

processing are enabled via anatomical segregation (Komorski et al., 2020).  

 
Differential coding along the hippocampal dorsal-ventral axis 

 If spatial coding exists throughout the dorsal hippocampus, does ventral 

hippocampus also code for spatial location and do these subareas diverge in their 

spatial coding qualities? Early lesion studies suggest that lesions of the dorsal 

hippocampus had greater effects on spatial memory, while lesions of the ventral 

hippocampus had greater effects on emotional memory, particularly shown in fear 

conditioning experiments (K. G. Kjelstrup et al., 2002; Komorowski et al., 2013; Moser 

et al., 1993; Pothuizen et al., 2004; Rogers et al., 2006; Rogers & Kesner, 2006). 

However, there could be variability in these studies to the extent of how much of the 

dorsal or ventral hippocampus might be affected, so their overall effectiveness is difficult 

to determine.  

Initial electrophysiological recording experiments in ventral hippocampus suggest 

that place cells also exist but contain less finely tuned spatial information and have 

lower stability compared to dorsal hippocampus (Jung et al., 1994; Poucet et al., 1994). 

A study by Royer and colleagues suggests not only a progressive diminishment of 

spatial encoding, but also found the ventral CA3 differentially encoded positively and 

negatively valenced spatial locations or contexts, specifically rewarded or avoided 

areas, in a biased manner compared to dorsal CA3. In addition to less spatial tuning in 

ventral CA3, they found less theta power and fewer theta-locked spatially tuned 

pyramidal cells and interneurons, similar to the change in spatial tuning and theta 

through the corresponding projections in the dorsal-ventral gradient in entorhinal cortex 
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(Hafting et al., 2005; Royer et al., 2010). SWRs from dorsal or ventral hippocampus are 

asynchronously activated and activate distinct and opposing patterns of nucleus 

accumbens activity (Sosa et al., 2020). Other experiments recording from dorsal and 

intermediate CA1 have also shown enhanced and rapid remapping of place cells in 

intermediate CA1 to reward locations by specific reward location cells rather than 

increased place cell density (Jarzebowski et al., 2022; Jin & Lee, 2021). Finally, dorsal 

and ventral CA1 (dCA1 and vCA1) and dentate gyrus neurons appear to have a variety 

of differences in synaptic transmission and plasticity, including differences in LTP 

induction, leading to divergent input-output functionality (Koutsoumpa & 

Papatheodoropoulos, 2019; Malik & Johnston, 2017; Trompoukis & 

Papatheodoropoulos, 2020). Cumulatively, this demonstrates a substantial set of 

differences in spatial encoding and other basic properties between dCA1 and vCA1. 

If vCA1 spatial coding is less richly tuned then dCA1, might it have some other 

specialized functionality? Lesion and pharmacological studies first suggested ventral 

hippocampus but not dorsal hippocampus might be involved in anxiety, trace fear, and 

unconditioned fear behavior, including avoidance behavior in the elevated plus maze 

and similar innate anxiety tasks (Bannerman et al., 2004; Deacon et al., 2002; File et 

al., 1996; Gray & McNaughton, 2003; Maren & Holt, 2004; Trent & Menard, 2010; 

Trivedi, 2004). Studies manipulating and recording from ventral hippocampus neurons 

in vCA1 and the dentate gyrus and inputs have confirmed this, demonstrating that 

exciting/inhibiting these cells drives/suppresses innate anxiety behavior, preferentially 

represent anxiogenic features, and selectively route anxiety-related information to 

specific downstream targets (Ciocchi et al., 2015; Jimenez et al., 2018, 2020; Kheirbek 
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et al., 2013; Parfitt et al., 2017; Yeates et al., 2020). Similarly, many experiments have 

shown manipulating ventral neurogenesis affects emotional behaviors and contextual 

memory: manipulating neurogenesis through behavior, x-irradiation, genetically and 

through modifying cellular plasticity can lead to neurogenesis suppression which 

increases anxiety behavior, and/or stimulating neurogenesis which dampens anxiety 

behavior (Hill et al., 2015; Kheirbek, Klemenhagen, et al., 2012; Kheirbek, Tannenholz, 

et al., 2012; Kheirbek & Hen, 2011; Oliveira et al., 2020; Sahay et al., 2011; Santarelli et 

al., 2003; Schloesser et al., 2009; Surget et al., 2011; Tannenholz et al., 2014; Tronel et 

al., 2012). Additionally, neurogenesis is necessary for the anxiolytic effects of certain 

antidepressants, and antidepressant treatment reverses behaviorally depleted stressed 

mouse neurogenesis (Tanti et al., 2012). Collectively, these studies demonstrate the 

differential role of ventral and not dorsal hippocampus in anxiety-related and other 

behaviors. 

Beyond internal hippocampal signaling, the circuitry between the ventral 

hippocampus and other areas have also been found to be crucial for anxiety and other 

emotion-related behaviors. Again, ventral hippocampus has many outputs and a large 

body of literature has established that many of these connections control various 

anxiety, fear, and other memory processes and behaviors, but of particular interest are 

the vCA1-NAc, vCA1-mPFC, vCA1-amygdala pathways (Gergues et al., 2020; Jacinto 

et al., 2016). In studies recording from both ventral hippocampus and mPFC, mPFC 

neuron and local field potential anxiety-related activity was influenced by phase-locking 

to ventral hippocampal theta (Adhikari et al., 2010, 2011). Activation and inhibition of 

this vCA1-mPFC pathway can bidirectionally modulate anxiety behavior and vasoactive 
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intestinal polypeptide (VIP) interneurons and serotonin 1B receptors appear to control 

this information flow during avoidance behavior (Kjaerby et al., 2016; Lee et al., 2019; 

Padilla-Coreano et al., 2016, 2019). Similarly, optogenetic inhibition of the basal lateral 

amygdala (BLA)-vCA1 projection is anxiolytic, and BLA and vCA1 and BLA-mPFC theta 

synchrony are increased during innate forms of anxiety (Felix-Ortiz et al., 2013, 2016; 

Lesting et al., 2011; Likhtik et al., 2014; Stujenske et al., 2014). Broader circuits tying all 

of these areas together have been identified as related to fear and reward learning, and, 

in one case, predictive of the emergence of major depressive disorder-related behavior 

in mice subject to chronic social defeat (Beyeler et al., 2018; Burgos-Robles et al., 

2017; Hultman et al., 2018).  

While vCA1-NAc projections also appear to carry a certain form of anxiety-

related information, for example, vCA1-NAc activity regulates susceptibility to chronic 

social defeat stress in mice, vCA1-NAc circuitry also has been heavily implicated in 

reward-seeking and social behavior (Bagot et al., 2015; Bryant & Barker, 2020; 

Okuyama et al., 2016; Sosa et al., 2020). Specifically ventral hippocampus but not 

dorsal hippocampus inactivation impairs reward-seeking behavior and memory retrieval 

(Riaz et al., 2017). Ventral hippocampus projections to NAc are crucial for driving NAc 

activity which is gated by prefrontal input, are more likely to be active near rewards, are 

necessary for acquisition of contextual reward conditioning, and inactivation of this 

projection restores reward-seeking habitual behavior (Barker et al., 2019; Britt et al., 

2012; Charara & Grace, 2003; Ciocchi et al., 2015; Ito et al., 2008; LeGates et al., 

2018). Interestingly, NAc neurons activated during hippocampal SWRs were only tuned 

to task- and reward-related information during dorsal but not ventral SWRs, and ventral 
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SWRs were insensitive to reward learning in an appetitive spatial task (Sosa et al., 

2020). The studies on vCA1-NAc/mPFC/BLA circuits suggest the ventral hippocampus 

plays a variety of important roles in approach- and avoidance-based behaviors in a 

variety of multi-area networks. 

 
Associative learning in the hippocampus 

How might we further differentiate dorsal and ventral hippocampus not only 

through information type (spatial vs. emotion-related information), but also through 

processing through memory and learning? From Marr’s early modeling of the 

hippocampal autoassociation to initial studies of conditioned and unconditioned learning 

in rabbits and other animals, it has long been theorized that the hippocampus is 

involved in memory and learning tasks that have an inherent temporal discontinuity that 

needs to be bridged so that associations between disparate pieces of information can 

be formed (Eichenbaum et al., 1987; McEchron & Disterhoft, 1997; Segal et al., 1972; 

Wallenstein et al., 1998; Willshaw et al., 2015). Studies lesioning the hippocampus or 

fornix, even specifically ventral hippocampus, found impaired associative memory, thus 

further supporting this hypothesis, and also suggesting that hippocampal encoding of 

associative memory need not be reliant on a spatial feature in the associated 

information (Brasted et al., 2003; Macedo et al., 2012). Eichenbaum and colleagues 

recording in dCA1 during a odor-reward associative learning task in rats found individual 

neuron responses were at least as correlated with odor cue sensing and reward 

approach as they were to other spatial information (Eichenbaum et al., 1987, 1999). 

These results indicate specific cell types in the hippocampus might play complementary 

roles: cue-encoding cells might compare relative cue valence, reward-encoding cells 
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might enable goal-seeking behavior across successive trials, and theta-locked 

interneurons might synchronize these representations. Other groups have elaborated 

upon hippocampal involvement in odor processing--especially in the context of odor-

object associations and sequence learning (Ahmed et al., 2020; Igarashi et al., 2014; Li 

et al., 2017; MacDonald et al., 2013; Taxidis et al., 2020). Interestingly, Taxidis and 

colleagues found not only high stable odor responsive cells, but also time-cells that 

exhibited sparse and dynamic fields that remapped in both cases, including into new 

population sequences. However, this body of work has exclusively examined 

associative learning in dorsal CA1 pyramidal cells. 

Taken together, the existence of a dorsal-ventral functional axis in the 

hippocampus and its potential role in non-spatial associative learning is well-evidenced, 

and it could be studied with a similar type of scrutiny as the spatial cognitive map in 

dorsal hippocampal networks. Thus, the purpose of this thesis is to further contribute to 

the understanding of how dCA1 and vCA1 represent non-spatial associative learning, in 

our case primarily in response to odors. 

 

Relevance to human hippocampal functioning 

This introduction has focused on hippocampal function primarily in animal 

models, particularly rodents, but many of the findings have been replicated in humans 

and the animal model literature has often extended observations and hypotheses 

originally derived from human experiments. While there are a variety of basic 

differences in human and rodent hippocampal anatomy, the basic structure of the 

hippocampus, its dorsal-ventral axis (posterior-anterior in humans), and these regions 
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various general functions appear to be preserved ( Figure 1.1 )(Castelhano et al., 2022; 

Poppenk et al., 2013; Strange et al., 2014). Additionally, many studies have found with 

regard to the dorsal-ventral split of spatial and emotion information processing, place 

cells and place-related theta activity, episodic and associative memory functioning, 

general similarities to the rodent literature (Bach et al., 2019; Castelhano et al., 2022; 

Ekstrom et al., 2003; Goyal et al., 2020; Ito & Lee, 2016; Khemka et al., 2017; Kirkby et 

al., 2018; Miller et al., 2013; Wixted et al., 2018). Better understanding of associative 

learning in the hippocampus will hopefully enable improved treatment for a range of 

conditions. For example, it has been suggested that post-traumatic stress disorder 

(PTSD) impairs and may also be exacerbated by hippocampal-related associative 

learning for multiple types of information. Further understanding mechanisms in different 

PTSD subtypes will enable tailored interventions, particularly for treatment-resistant 

PTSD (Lambert & McLaughlin, 2019). 
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Figure 1.1: (a) Schematic of the orientation of the hippocampal long axis in rats, 
macaque monkeys and humans. The longitudinal axis is described as ventrodorsal in 
rodents and as anteroposterior in primates. The precise anatomical definition for a 
dorsal versus ventral portions of the hippocampus are undetermined, although in 
general, topologically, the former is positioned close to the retrosplenial cortex and the 
latter close to the amygdaloid complex. (b) The full long axis of the hippocampus (red) 
can be seen in brains of rats, macaque monkeys and humans, with the entorhinal cortex 
(EC) shown in blue. c) Drawings of Nissl cross-sections of mouse, rhesus and human 
hippocampi. A, anterior; C, caudal; D, dorsal; DG, dentate gyrus; L, lateral; M, medial; 
P, posterior; R, rostral; V, ventral. Adapted from (Strange et al., 2014) 
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Figure 1.2: (a) The canonical trisynaptic loop is shown (solid arrows show 
EC-DG-CA3-CA1-EC unidirectional flow of information along principal cell layers of 
hippocampus), with layer II entorhinal fibers innervating the dentate gyrus and layer III 
axons synapsing onto CA1 pyramidal cells. Layer II fibers from the MEC target the 
middle third of granule cell dendrites, and LEC fibers synapse on the outer third of 
granule cell dendrites in the molecular layer of the dentate gyrus. Granule cell axons 
form the mossy fiber pathway and synapse onto CA3 pyramidal cells. CA3 
pyramidal cell axons comprise the schaffer collateral pathway and synapse onto CA1 
pyramidal cells. Finally, CA1 pyramidal cells send projections that exit the 
hippocampus and target deep layers of entorhinal cortex. (b), the schematic 
organization of the trisynaptic loop is shown. Granule cell activity in the dentate gyrus 
is modulated by the excitation/inhibition balance established through the activity of 
mossy cells and inhibitory interneurons, which provide feedforward and feedback 
inhibition onto granule cells. Figure adapted from (Deng et al., 2010). 
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Figure 1.3: Idealized neuronal firing patterns of an ensemble of hippocampal neurons. 
(a) Schematic firing patterns of place cells from a rat performing a spatial working 
memory task in an open arena. Arrows indicate place cell directionality. (b) Schematic 
nonspatial firing patterns of cells from a rat performing an olfactory discrimination task. 
Each panel illustrates the increased firing of a cell at a particular time during trial 
performance. The two curves with different closed patterns indicate cells that fire only 
during the presentation of a particular odor configuration. The arrow at the right of one 
curve indicates a cell that encodes the sequence of odor sampling and the behavioral 
response. Figure adapted from (Eichenbaum et al., 1987, 1999). 
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Chapter 2: Neural dynamics underlying associative learning in the dorsal and 

ventral hippocampus 

 
Introduction 

As a child, an unexpected encounter with an ice cream truck can be a highly 

rewarding experience. To better predict the circumstances that led to this occurrence, 

the brain gathers information surrounding the incident, from broad cues associated with 

the availability of reward (the presence of music, the neighborhood in which the 

encounter occurred), to more detailed stimulus representations (the specific melody 

played, the precise location of the encounter), to the positive outcome from the 

experience of consuming ice cream. Following repeated encounters, the most predictive 

features are identified and used to inform behavior, such as grabbing your parents’ 

money and running outside when the learned melody is heard. 

The above illustrates a fundamental objective of the brain: to extract the 

underlying structure of the world and model its causal relationships. Moreover, the brain 

must be able to flexibly update these models as cue-outcome relationships change 

(e.g., when the melody is replaced, or the truck no longer carries your favorite flavors). 

While the importance of examining the population dynamics underlying cognitive 

processes is becoming increasingly appreciated (Ahmed et al., 2020; Ebitz & Hayden, 

2021; Stefanini et al., 2020), it is still unclear how learned associations are represented 

at the population level and how these representations change as a function of learning. 

One area heavily implicated in encoding learned associations is the 

hippocampus. Genetic, anatomical, and functional data suggest the dorsal and ventral 

subdivisions of the rodent HPC (dHPC and vHPC) play distinct roles when learning 
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about the world (Fanselow & Dong, 2010; Strange et al., 2014). Previous studies show 

neuronal responses in dHPC are relatively specific, encoding properties such as 

position within an environment, elapsed time, the identity of individual stimuli, and 

conjunctive representations such as object-location couplings (Kay & Frank, 2019; 

Komorowski et al., 2009; O’Keefe & Dostrovsky, 1971; Pastalkova et al., 2008; Taxidis 

et al., 2020; Wood et al., 2000; Yu et al., 2018). In contrast, vHPC representations 

respond to more abstract elements that generalize across distinct objects and events 

(Harland et al., 2018; Knudsen & Wallis, 2021; Komorowski et al., 2013; Royer et al., 

2010), which may reflect the overall valence of an experience (Ciocchi et al., 2015; 

Jimenez et al., 2018). Thus, during learning detailed representations by dHPC may 

support the formation of associative memories based on local cues, such as the precise 

identity of an object in an environment, while broad vHPC representations may 

generalize knowledge across multiple experiences and/or attach significance to 

contexts in which associations occur. 

While dHPC and vHPC may encode unique features of an explored environment, 

it remains unknown how these areas may be differentially engaged during the encoding 

of associative memories. Furthermore, how neural responses are further transformed 

when learned relationships are manipulated and updated is also unclear.  

Here, we used 2-photon in vivo imaging of population activity in dCA1 or vCA1 to 

track the activity of the same neurons across multiple stages of learning as mice 

learned to associate odor stimuli with appetitive or aversive outcomes. This allowed us 

to examine how task-related information is differentially represented across the 

dorsoventral hippocampal axis and how these representations evolve with learning. 
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Further, we examined the stability of representations across training, the influence of 

different outcomes on these encoding properties, and how neural representations adapt 

when cue-outcome relationships are altered. 

 
Results 

 
Representations of odor identity across the dorsoventral axis of CA1  

We imaged odor-evoked neural responses in dCA1 and vCA1 using high 

resolution 2-photon microscopy in mice expressing the calcium indicator GCaMP6f 

(Figure 2.1a-c). In dCA1, we found that both odors elicited robust neuronal responses 

(Figure 2.1e). To examine whether population responses were distinct for each odor, 

we trained a linear classifier to distinguish trial-type activity patterns (Figure 2.1f) and 

then tested classification accuracy using held-out trials. As the number of dimensions 

(ie, neurons) influences decoder performance, this parameter was held constant across 

comparisons (Supplementary Table 1). Decoding analyses showed that odor identity 

could be decoded from dCA1 population activity with high accuracy (Figure 2.1g 

and  S1-2). Moreover, odor-evoked population responses could be accurately 

discriminated from ITI (baseline) activity (Figure 2.1h-i). Conversely, odor responses in 

vCA1 neurons were significantly weaker than in dCA1, and linear decoders performed 

significantly worse compared to dCA1 when reading out trial identity or discriminating 

odor-evoked activity from baseline activity (Figure 2.1e-i and S1 -2). Importantly, the 

number of neurons used for decoding was held constant across dCA1 and vCA1. While 

there was no difference in how well each odor could be discriminated from baseline 

activity for dCA1, we did observe a significant difference between odors for vCA1 
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(dCA1: Mann-Whitney U = 70.5, p = 0.13; vCA1: U = 18, p = 0.017), with the eventual 

CS- odor (odor 2) showing higher decoding accuracy. However, accuracy for this odor 

was still well below that observed for dCA1. Collectively, these data suggest that, during 

initial exposure to odorants that lack behavioral relevance or meaningful associations, 

odor identities are strongly represented in dCA1 but less so in vCA1. 

 
Attaching behavioral significance to odors enhances their representations in vCA1  

Given the role of the ventral hippocampus in emotional and motivational 

processes (Tannenholz et al., 2014), we reasoned that odor representations may be 

enhanced in vCA1 if paired with a salient outcome. To disambiguate odor 

representations from potential reward anticipation signals, we used a two-odor trace 

appetitive conditioning paradigm wherein the CS+ odor was separated from sucrose 

reward delivery by a 2s trace period. Following ~4 days of training, mice displayed 

anticipatory licks during the CS+ trace period, with minimal licking during all other task 

periods (Figure 2.2a-d). 

In vCA1, learning of the odor-reward association was accompanied by an overall 

increase in mean activity during the CS+ odor presentation (Figure 2.2e and S2a-c) 

and heightened ability to discriminate population activity during the odor period (Figure 

2.2g,h and S2e). This increase in trial-type decoding accuracy in vCA1 appeared to be 

driven by altered processing of the now-salient CS+ odor, as both odor-responsivity 

(Figure 2.2e and S2c) and accuracy for decoding odor period vs baseline activity 

(Figure 2.2i,j, S2d) increased with learning for the CS+ odor, but not CS-odor. Thus, 

assigning value to a stimulus leads to increased odor-evoked activity and encoding in 

ventral CA1. This was in contrast to dCA1, where odor decoding accuracy was high 

https://paperpile.com/c/sRfeqa/zYPx
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prior to training and remained so with learning (Figure 2.2g,h and S4a,c). However, 

dCA1 did show a learning-related increase in the proportion of cells responsive to the 

CS+ odor, but not CS- odor (S3d), suggesting that stimulus representations in dCA1 

may also be sensitive to perceived value. 

We next examined representations in the trace period, during which learned 

animals anticipate reward availability. We found parallel changes in trace-period 

representations in dCA1 and vCA1 with learning (Figure 2.2g-j and S4a-d). Mean 

trace-period-evoked activity in both dCA1 and vCA1 markedly increased following CS+ 

delivery, but not CS- delivery. Correspondingly, CS+/CS- trial-type decoding accuracy 

during the trace period was significantly higher in both regions following learning. These 

trace-period representations emerged in concert with the initial signs of behavioral 

learning (S4e,f), and could not be explained solely by licking behavior (S3c), and were 

distinct from odor-period representations (Figure 2.2k). 

Together, these data suggest that a representation of odor identity is present in 

dCA1, independent of learning, while representations in vCA1 show greater 

dependence on learned behavioral significance. In addition, with learning both vCA1 

and dCA1 are recruited during the trace period prior to reward delivery, seemingly 

encoding information related to the expectation of reward. 

 

Learned representations of task elements are modality-independent and learning-

dependent 

We next determined whether our results in CA1 generalized to other stimulus 

modalities, and whether neuronal changes that emerged with training were indeed 



62 
 

learning dependent. For this, we trained a separate cohort of mice on a more difficult 

auditory cue discrimination task (Figure 2.3A,B), where an auditory cue (CS+) and a 

sucrose reward were separated by a 2s trace period, while a distinct CS- auditory 

stimulus was unrewarded. Reward delivery was contingent on licking during a 2-second 

reward availability window directly following the trace period. Unlike the odor-based 

task, which all animals quickly learned, mice took longer to learn this task (11.7 ± 1.9 

days) with some failing to learn altogether (Figure 2.3C and S5E). 

As with the olfactory-based task, CS+ activity during tone presentation was more 

accurately classified from baseline activity in vCA1 after learning (Figure 2.3D,E and 

S5C), and classification of CS+/CS- tone identities likewise improved with learning 

(Figure 2.3F,G). This suggests that CS+ and CS- representations become more distinct 

in vCA1 over the course of discrimination training, regardless of the CS modality. In line 

with the odor-based task, we also found that decoding of CS+/CS- during the trace 

period was improved with learning in both regions (Figure 2.3D-G). 

Interestingly, although the CS+ and CS- tones could each be decoded from 

baseline activity with moderate accuracy in dCA1 (Figure 3D,E), tone identity could not 

be decoded accurately from dCA1 population activity either before or after learning 

(both ~50% accuracy; Figure 3F,G). This contrasts with odorant identities, which could 

be consistently decoded with high accuracy, and is likely due to the greater ethological 

salience of odors vs tones. Despite this lack of strong encoding of tones in dCA1, these 

results are consistent with our odor task in that learning enhances the separability of 

cues in vCA1, but not dCA1. 
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A subset of vCA1 mice (n=3) failed to learn the tone-based version of the task, 

even after 20 days of training. In these “nonlearners” we found classification accuracy of 

CS+/CS- trial type during the tone or trace periods did not change between Early and 

Late sessions (S5F,G).Thus, representations that emerge with learning are not simply 

driven by repeated exposure to task stimuli. 

 
Learned odor representations in vCA1 are sensitive to extinction but can be rapidly 

reinstated  

While imbuing a stimulus with value enhances its representation in vCA1, how 

might stimulus representations change upon extinction of the odor-reward contingency? 

Would vCA1 continue to exhibit strong representations of odor, perhaps reflecting an 

enduring memory of the CS-US association, or would decoding performance fall back to 

baseline levels, suggesting vCA1 signals track current stimulus value?  

After mice learned the odor-reward association, we extinguished it, omitting 

reward from CS+ trials. Mice rapidly extinguished the conditioned response early in the 

first session of extinction (Figure 2.4a-c). In an extinction retrieval session 24 hours 

later, we found that odor classification accuracy resembled that of early, pre-learning 

sessions; that is, low in vCA1 but high in dCA1 (Figure 2.4d,e and 6a).  

The following day we reinstated conditioned responses in a reacquisition 

session. Animals rapidly resumed anticipatory licking behavior during CS+ trials, 

indicating an intact memory of the rewarded task structure. Correspondingly, odor 

identity classification accuracy increased in vCA1 (Figure 2.4d,e and S6b). These data 

indicate that the discriminability of odor representations in vCA1, is sensitive to the 

current value associated with an odor. 
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Task representations initially reorganize with learning, then stabilize 

To probe the stability of odor and trace representations across different phases 

of training, we applied a cross-session classifier to neurons tracked across sessions 

(Figure 2.5a,b). For this, a linear classifier was trained to discriminate trial type in one 

session, and classification accuracy was tested using data from a separate session. 

When examining the odor period, we found a cross-session decoder performed poorly 

across initial learning (Early vs Late) in vCA1, in line with our observations that odor 

decoding accuracy increases in late sessions (Figure 2.5c).  In dCA1, although odor 

identities were reliably represented both before and after discrimination training, we 

found that a cross session decoder performed poorly across learning, indicating that, as 

in vCA1, odor representations in this region are transformed with learning. Cross-

session decoding of CS+/CS- using trace-period activity from Early to Late sessions 

was poor for both dCA1 and vCA1, suggesting a change in trace-period representations 

with learning (Figure 2.5c). 

We next used cross-session decoding to examine the stability of task 

representations once learned. Using data from cells tracked across Late and 

Reacquisition sessions, we found that odor- and trace-period representations remained 

relatively stable across extinction in both vCA1 and dCA1, as trial type could be 

accurately classified across sessions during both periods (Figure 2.5c). This contrasts 

with the instability of odor representations observed during initial learning and indicates 

that, once learned, representations of odor and trace are to a large extent stable across 

days and across the degradation and reinstatement of odor-reward contingencies, This 

was also true in the absence of any additional learning (ie, no extinction training 
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between sessions, as similar results were found in a separate cohort of mice that were 

imaged in an odor-reward learning task in Early/Late sessions and an additional session 

(Post) four days following the Late session (S9g,h) Cross-session decoding results 

mirrored our previous findings; decoding accuracy was significantly lower from 

Early/Late sessions compared to Late/Post. Collectively these results indicate that CA1 

may be a storage site for these odor-outcome representations . 

To further probe how population activity changed across training, we used 

multidimensionality scaling (MDS) to visualize the geometric architecture of the 

representations (Figure 2.5d,e). When examining vCA1 odor-period representations, 

we found that CS+ representations, and to a lesser extent CS- representations, were 

modified with initial learning (Early vs Late) but remained relatively stable across 

extinction sessions (Late vs Reacquisition: Figure 2.5d). Intriguingly, this was not the 

case for dCA1, where the euclidean distance between CS+ or CS- representations did 

not differ across sessions. Analysis of trace-period representations produced similar 

results for both dCA1 and vCA1. Here, CS- representations showed little separation 

throughout training, while CS+ representations displayed a large change with initial 

learning that then stabilized across Late and Reacquisition sessions (Figure 2.5e). 

Analysis of single-cell responses showed a similar pattern; high turnover in the identity of 

odor- and trace-responsive cells during initial learning that subsequently stabilized across 

Late and Reacquisition sessions (S7a-h). Finally, we compared how decoder weights 

assigned to each cell changed across sessions in order to identify training-related 

changes in the contribution of individual cells to decoding. This analysis also revealed a 

stabilization of task representations following initial learning (S7i,j). 
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 Long-timescale representations in vCA1 
 

In vCA1, place fields are broader than those in dHPC, which has been 

hypothesized to allow vCA1 to contain global representations of behaviorally relevant 

contexts(Chockanathan & Padmanabhan, 2021; Harland et al., 2018; Jung et al., 1994; 

K. B. Kjelstrup et al., 2008) . We likewise examined whether vCA1 contained more 

diffuse representations than dCA1 in our task as the mouse “moved” through the trial. 

We trained a linear classifier to discriminate trial type (CS+ vs CS-) using data from a 

single time bin, then tested classification accuracy on every other time bin (Figure 

2.6A). We found that in vCA1, but not dCA1, there was a persistent trial-type 

representation throughout the trial duration, and trial-type could be decoded even when 

training and testing on time bins separated by +/- 5s seconds (Figure 2.6B,C). 

Importantly, this was only observed for time bins within the trial duration (1s post odor 

onset through 4s post reward delivery), and most prominently for sessions where the 

CS-US contingency had been learned and was actively being rewarded. 

 
Pre-reward signals generalize across distinct predictive cues 

Our results thus far show that, with learning, both hippocampal regions display 

strong representations during the odor and trace periods, and that these odor and trace 

representations can be well discriminated from one another. However, what information 

is being encoded during these epochs is not well elucidated by the two-odor task. Thus, 

to better address this question , we trained mice with four odor stimuli; two that were 

always followed by sucrose reward (CS1+ and CS2+), and two that were followed by no 

outcome (CS3- and CS4-). This design allowed us to directly test the similarity of 

https://paperpile.com/c/sRfeqa/Ufcm+ZDcC+kBS4+9DsZ
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representations across trial types with distinct cue identities but the same outcome 

(Figure 2.7a,b). 

We first tested how well a linear classifier could predict each of the four trial types 

using population activity during the odor or trace periods (Figure 2.7c-f). We found that, 

following learning (Late), odor identity could be predicted with high accuracy during the 

odor-delivery period for both dCA1 and vCA1. Conversely, although individual trial types 

remained discriminable during the trace period, classification accuracy was lower in 

both regions during this period, with classifier errors predominantly occurring between 

trial types with the same outcome (e.g., CS1+ vs CS2+). Thus, after learning, trace 

period activity is highly discriminable between trial type categories (CS+ vs CS-), but 

less so within each category. 

The reduced decoding accuracy between CS1+ and CS2+ trial types during the 

trace period suggests a common signal across these trials. To more directly test this, 

we trained a linear classifier to discriminate activity between a reward-predictive trial 

type (e.g., CS1+) versus a non-predictive trial type (e.g., CS3-), then tested 

classification accuracy using data from the complementary trial types (CS2+ and CS4-), 

which the decoder had never seen (“outcome decoding”; see Figure 2.7g). Here, high 

decoding accuracy would indicate similar neural states across related trial types (e.g., 

CS1+ and CS2+). 

Such outcome decoding was no better than chance for either task period prior to 

learning (Figure 2.7h). After learning, however, we found high outcome decoding 

accuracy during the trace period in both dCA1 and vCA1 (Figure 2.7h), further 

indicating that there exists a representation related to reward expectancy that is 
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independent of the identity of the cue that precedes it. Outcome decoding accuracy 

during the odor period was also high for vCA1, indicating that, in addition to encoding 

cue identity during this period, vCA1 populations simultaneously represent the predicted 

outcome associated with those cues. Together, these data suggest neural 

representations transition from encoding cue identity to outcome expectation in dCA1, 

while in vCA1 expected outcome is represented throughout the entire task period, and 

is multiplexed with information about specific cue identity during odor exposure. This 

was further corroborated by examining the similarity of population activity patterns 

across 1-second time bins that spanned the task duration (Figure 2.7i). Moreover, 

dimensionality reduction analysis returned results that were analogous with the 

decoding results above (Figure 2.7j). 

 
Aversive conditioning and reversal learning 

We next examined whether the neural changes associated with appetitive 

learning are also present during aversive (shock) conditioning, and how task 

representations might change when learned cue-outcome pairings were reversed. For 

this, we trained mice in an associative learning task with three novel CS odors (Figure 

2.8a) that were paired with either sucrose (CS+rew), tail shock (CS+sh), or nothing (CS-

). Once these pairings were well learned, we reversed the contingencies, where the 

previously rewarded odor was now paired with shock and vice-versa (Figure 2.8c). 

Our behavioral data showed mice were able to more rapidly discriminate CS+ 

from CS- trials compared to the 2-odor task, likely because animals had formed a 

schema of the general task parameters during 2-odor training (ie, some odors are 

rewarded, others are not). Importantly, however, our 3-odor results examining CS+rew 
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and CS- trials closely mimicked 2-odor results, suggesting formation of a task schematic 

did not appreciably impact neural encoding of the learned task parameters. 

Analysis of the odor period neural data revealed that CS+sh results were 

qualitatively similar to those for the CS+rew condition, with both trial types showing an 

increase in encoding with learning. (Figure 2.8c and S10a-e). Of note, however, was a 

difference in trace period decoding accuracy; although shock-trial accuracy increased 

with learning, it was significantly lower than reward (Figure 2.8c).  

Following initial learning (Late session), animals were trained on reversed 

contingencies until anticipatory licks were only observed during the CS+rew trial (Late 

Reversal session. Figure 2.8e).Using neurons tracked across Late and Late Reversal, 

we first asked whether odor representations were dissociable from specific paired 

outcomes. We approached this using two methods: 1) training a classifier to 

discriminate odor period activity from ITI baseline activity during the final session prior to 

reversal (Late) and testing odor/ITI classification accuracy after the reversed 

contingencies had been learned (Late Reversal; Figure 2.8g); 2) training a linear 

classifier to discriminate reward and shock trials during Late and testing classification 

accuracy using Late Reversal data (S10f-i). In vCA1 and dCA1, both methods indicated 

that the neural representation for a specific odor remained intact regardless of whether 

the odor predicted sucrose or shock. 

Next, we assessed whether outcome expectation signals during the trace period 

remained stable following reversal learning. For this, we performed the same analysis 

as above, but using trace period data. In both dCA1 and vCA1, the cross-session 

decoders performed well when decoding reward anticipation signals across reversal 
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(Figure 2.8h and S10j). These results mirrored our 4-odor results and suggest the 

hippocampus encodes a signal related to reward anticipation that is independent of the 

odor that precedes it. Surprisingly, there was not a conserved representation across 

reversal learning when anticipating shock (Figure 6h and S10j). Additional analyses 

revealed this was due to the absence of trace-period encoding during Late Reversal 

shock trials (Figure 6f). These results indicate that odor representations in both dCA1 

and vCA1 are independent of the nature of the associated US, and that stable signals 

preceding reward, but not shock, emerge with learning in these regions. 

Instrumental control of outcome increases task-related representations in associative 

learning 

Why was pre-reward signaling so strong in dCA1 and vCA1, whereas pre-shock 

was not? A potential cause, we reasoned, may be the difference in the behavioral 

relevance of these outcomes; whereas reward trials required an operant response 

(licking), shock delivery was inescapable and thus behaviorally irrelevant. We thus 

developed a headfixed approach/avoidance task (Figure 2.9a). Here, mice headfixed on 

a running wheel were exposed to the 3-odor task from above, but could now run (> 4 

cm/sec) during the odor and trace period to either escape shock or enable reward 

delivery, depending on the odor presented. Importantly, both shock escape and reward 

delivery required the same operant response. 

Mice learned to escape shock and enable reward delivery over the course of ~5 

days (Figure 2.9b-d and S11a,b), at which time we imaged neural activity. To minimize 

variability across trials and trial types, we only analyzed trials where animals displayed 

suprathreshold running (eg, avoided shock or earned sucrose reward). As opposed to our 
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previous data, we now were able to decode trace period activity with very high accuracy 

for shock trials (Figure 2.9e). Moreover, suprathreshold shock and reward trials could 

also be discriminated with high accuracy (S11c,d), indicating that the shared operant 

response (running) was not driving these results. Interestingly, CS- trace-period activity 

could be well discriminated from reward trials, but less so shock trials. Due to the fact that 

mice routinely ran above threshold during CS- trials (Figure 2.9b and S11b), it is possible 

that animals had not fully learned the task structure and/or interpreted the CS- odor as a 

potential cue for shock. 

Finally, given recent reports describing the widespread influence of movement on 

neural activity (Musall et al., 2019; Stringer et al., 2019), we further probed whether 

running behavior may have contributed to our results. These analyses suggest running 

may indeed influence hippocampal activity, specifically in dCA1 (S11e). However, even 

in dCA1, high-speed vs low-speed running epochs during the ITI could only be weakly 

discriminated from one another (S11g), suggesting our main findings are driven by task 

properties and not running, per se, and that making an outcome behaviorally relevant 

may boost engagement of the hippocampus. 

 
Discussion 

Prior to cue-reward training, we found that dCA1 strongly encodes the identity of 

individual odors, in line with previous findings showing that environmental stimuli need 

not be paired with reward or other salient outcomes to be represented in dCA1 (Li et al., 

2017; Taxidis et al., 2020). In contrast, vCA1 was less reactive to odors prior to training, 

and decoding of odor identity using population activity was inferior to that of dCA1. 

Instead, odor decoding was heavily influenced by salience, increasing for odors 

https://paperpile.com/c/sRfeqa/r8GI+97hR
https://paperpile.com/c/sRfeqa/Rus4+UhAk
https://paperpile.com/c/sRfeqa/Rus4+UhAk
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predictive of salient outcomes (e.g., reward or shock), and decreasing in the absence of 

these outcomes (e.g., extinction). Such salience processing in vCA1 may be important 

for conveying stimulus-value information to the frontal cortex (Burton et al., 2009; 

Wikenheiser & Schoenbaum, 2016), passing information to emotional centers, such as 

the amygdala, for further processing (Felix-Ortiz et al., 2013; Graham et al., 2021; C. Xu 

et al., 2016), or alerting downstream regions mediating approach/avoidance behaviors 

(LeGates et al., 2018; Trouche et al., 2019). Although the accuracy of odor decoding in 

dCA1 was not influenced by salience (Figure 2.4e), at the single-cell level we found an 

increase in CS+ odor responsive cells following learning. These data extend previous 

findings showing the dorsal and intermediate HPC intensify activity for stimuli and 

locations with learned significance (Eichenbaum et al., 1987; Jin & Lee, 2021). 

Following learning, odor representations remained relatively stable across 

sessions, including across extinction training, through three days devoid of additional 

training, or when the valence of the paired outcome was switched, indicating CA1 is a 

storage site for odor representations with learned relevance. Of note, however, across-

session decoding was appreciably lower than within-session decoding.  This would 

suggest that the level of representational drift between sessions is greater than that 

observed within a session similar, to what has been reported for CA1 spatial codes (Cai 

et al., 2016; Gonzalez et al., 2019; Hainmueller & Bartos, 2018; Kennedy & Shapiro, 

2009; Mankin et al., 2012; Radvansky et al., 2021; Ziv et al., 2013). However, we also 

find that once the task is learned, the representation is stabilized as the level of drift is 

reduced as compared to changes seen early in learning, providing support for a stable 

hippocampal code after learning and in familiar environments (Liberti et al., 2022). 

https://paperpile.com/c/sRfeqa/SxwW+32vw
https://paperpile.com/c/sRfeqa/SxwW+32vw
https://paperpile.com/c/sRfeqa/0rRD+GUuw+aw5t
https://paperpile.com/c/sRfeqa/0rRD+GUuw+aw5t
https://paperpile.com/c/sRfeqa/CHoI+8d6s
https://paperpile.com/c/sRfeqa/dPkj+M6Dg
https://paperpile.com/c/sRfeqa/skAF+ypih+6NXS+3ROf+tWyY+j34n+xGC2
https://paperpile.com/c/sRfeqa/skAF+ypih+6NXS+3ROf+tWyY+j34n+xGC2
https://paperpile.com/c/sRfeqa/skAF+ypih+6NXS+3ROf+tWyY+j34n+xGC2
https://paperpile.com/c/sRfeqa/A4X4
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Specifically, what information is being encoded during odor presentation? Our 

results point to odor identity as the dominant representation in both dCA1 and vCA1. 

This is well supported by two findings: 1) two odors with the same outcome can be 

discriminated from one another with high accuracy, and 2) an odor’s representation 

remains stable when its associated outcome is altered (eg, from reward to shock). In 

addition to odor identity representations, our “outcome decoding” analysis revealed that 

neuronal populations in vCA1 also multiplex information about the outcome associated 

with an odor. Consequently, a downstream recipient of these signals could not only 

decode whether reward is forthcoming, but at the same time the identity of the cue that 

preceded it, which may be important for updating cue value. Alternatively, it is possible 

that outcome and cue identity signals are each routed to distinct downstream targets 

(Beyeler et al., 2016; Namboodiri et al., 2019; Otis et al., 2017), consistent with vCA1 

circuitry, where specialized functions are parsed across vCA1 projection pathways 

(Ciocchi et al., 2015; Jimenez et al., 2018; Shpokayte et al., 2022; Xia & Kheirbek, 

2020; C. Xu et al., 2016). 

In vCA1, we also found that a representation of outcome was not only present 

during odor delivery, but throughout the entire trial duration (Figure 2.7i and S9f), 

analogous to spatial representations in vCA1 that generalize across large swaths of 

space (Chockanathan & Padmanabhan, 2021; Jung et al., 1994; K. B. Kjelstrup et al., 

2008). Thus, the broad firing observed in vCA1 during spatial exploration may reflect a 

more general property of this region that extends beyond representations of physical 

space. The currently observed representations stretching across cue, trace, and US 

periods may serve to link discontinuous cue-reward events, providing a neural substrate 

https://paperpile.com/c/sRfeqa/8P7J+Oq5Y+DpWS
https://paperpile.com/c/sRfeqa/ZVW1+QWsr+aw5t+FlPY+vGpg
https://paperpile.com/c/sRfeqa/ZVW1+QWsr+aw5t+FlPY+vGpg
https://paperpile.com/c/sRfeqa/kBS4+ZDcC+9DsZ
https://paperpile.com/c/sRfeqa/kBS4+ZDcC+9DsZ
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through which credit can be assigned to the stimuli or actions that preceded reward 

delivery (Petter et al., 2018; Sosa & Giocomo, 2021; Stachenfeld et al., 2017). 

Alternatively, this signal may serve to “locate” the animal within the task space 

(Knudsen & Wallis, 2021), such as the task context currently being occupied (i.e., 

reward trial), and broadcast this information to downstream regions, such as the frontal 

cortex to retrieve context-relevant memories and guide behavior (Komorowski et al., 

2013; Wikenheiser et al., 2017; Wikenheiser & Schoenbaum, 2016). These results are 

also in line with human studies of memory that suggest posterior (dorsal) HPC is 

associated with recall of detailed information, such as the temporal sequence of events, 

while anterior (ventral) HPC represents higher level information, such as the location of 

where the collection of events occurred (Harland et al., 2018; Poppenk et al., 2013) 

In contrast to learning-related changes to cue representations that differed 

across hippocampal regions, neural transformations during the trace-period were 

remarkably similar across dorsal and ventral CA1. Here, both regions displayed robust 

increases in hippocampal recruitment and encoding of behaviorally relevant outcomes 

with learning. Changes in reward-related activation with learning has been well 

documented in HPC. In dCA1, neuronal activity has been shown to be modulated in 

rewarded tasks through various means, including accumulation of place fields at 

rewarded locations (Danielson et al., 2016; Dupret et al., 2010; Kaufman et al., 2020; 

Sato et al., n.d.; H. Xu et al., 2019) and, in tasks where goal location is dissociated from 

reward, an increase in out-of-field firing at the goal (Duvelle et al., 2019; Hok et al., 

2007). Further, dedicated populations of goal-approach cells have been identified 

across the dorsoventral axis (Ciocchi et al., 2015; Eichenbaum et al., 1987; Gauthier & 

https://paperpile.com/c/sRfeqa/obys+0pgJ+pxVI
https://paperpile.com/c/sRfeqa/bIFI
https://paperpile.com/c/sRfeqa/SxwW+Y2d7+URBZ
https://paperpile.com/c/sRfeqa/SxwW+Y2d7+URBZ
https://paperpile.com/c/sRfeqa/Ufcm+PUID
https://paperpile.com/c/sRfeqa/GU9R+EJ8Z+51KX+PdeI+1H9Q
https://paperpile.com/c/sRfeqa/GU9R+EJ8Z+51KX+PdeI+1H9Q
https://paperpile.com/c/sRfeqa/tGwd+CTWT
https://paperpile.com/c/sRfeqa/tGwd+CTWT
https://paperpile.com/c/sRfeqa/ZVW1+dPkj+755r+ba8V+2ZEH
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Tank, 2018; Markus et al., 1995; Royer et al., 2010). Our results extend these findings 

beyond the spatial domain and show that ventral CA1 also contains a dedicated signal 

during reward anticipation that generalizes across predictive cues and is stable across 

days. 

Considering the strong pre-reward signal observed with our appetitive 

conditioning tasks, we were surprised that anticipation of inescapable shock was only 

weakly encoded by both dCA1 and vCA1, despite robust activation of both regions in 

response to cue and shock deliveries. Moreover, shock anticipation signals were further 

diminished with subsequent training (from Late to Late Reversal sessions), eventually 

becoming indistinguishable from ITI activity. Although previous reports examining 

anticipation of aversive stimuli are mixed for dCA1 (Ahmed et al., 2020; MacDonald et 

al., 2013; Mount et al., 2021; Zhang et al., 2019), this finding is particularly surprising for 

vCA1, which is known to mediate anxiety and trace fear conditioning (Bangasser et al., 

2006; Jimenez et al., 2018; K. G. Kjelstrup et al., 2002; McEchron et al., 1998). As the 

hippocampus is known to form a cognitive map of behaviorally relevant relationships, 

we reasoned a potential cause may be the lack of behavioral relevance of the 

inescapable shock (McKenzie et al., 2014; Nieh et al., 2021). Indeed, when mice were 

able to avoid shock via instrumental response, shock anticipation was strongly encoded 

in both dCA1 and vCA1. Whether the threat of shock (aversive) or anticipation of 

escape (potentially rewarding) best reflects animals’ internal state during the trace 

period is uncertain, but it should be noted that sucrose and shock trials were well 

discriminated from one another during this time. 

https://paperpile.com/c/sRfeqa/ZVW1+dPkj+755r+ba8V+2ZEH
https://paperpile.com/c/sRfeqa/WpRS+lY9H+2xHk+Fdez
https://paperpile.com/c/sRfeqa/WpRS+lY9H+2xHk+Fdez
https://paperpile.com/c/sRfeqa/QWsr+54Wq+Qv9T+seuE
https://paperpile.com/c/sRfeqa/QWsr+54Wq+Qv9T+seuE
https://paperpile.com/c/sRfeqa/GHOI+tFis
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Our results show vast reorganization of hippocampal activity networks during 

associative learning. Unknown, however, are the mechanisms responsible for 

implementing this change. Dopaminergic, cholinergic, serotonergic, and adrenergic 

signals are all present to varying degrees across the DV axis of the hippocampus (Basu 

& Siegelbaum, 2015; Palacios-Filardo & Mellor, 2019), and each is integral for 

hippocampal plasticity and learning (Gu & Yakel, 2011; Kaufman et al., 2020; 

McNamara et al., 2014; Palacios-Filardo & Mellor, 2019; Teixeira et al., 2018). Locus 

coeruleus signaling, for one, mediates reward-dependent reorganization of place fields 

and may analogously promote changes in CS+ representations by integrating stimulus 

identity signals with reward-induced release of neuromodulators (Kaufman et al., 2020). 

In addition to modulatory inputs, the HPC receives information from a multitude 

of extrahippocampal areas that may further shape CA1 network activity. The 

orbitofrontal cortex (OFC) is postulated to provide the hippocampus with information 

about expected outcomes (Wikenheiser & Schoenbaum, 2016), and may contribute to 

the reward-anticipation signals seen here. Input from the medial thalamus and/or 

amygdala to vCA1 could provide additional information regarding the learned salience 

or valence of stimuli (Beyeler et al., 2016; Felix-Ortiz et al., 2013; Gergues et al., 2020; 

Ramanathan et al., 2018). Additionally, we recently showed that odor representations in 

lateral entorhinal cortex (LEC) become more separable with learning (Woods et al., 

2020) and may thus influence changing odor representations in CA1 across training. 

Intrahippocampal signaling may also contribute to changes seen here. Although 

recurrent connectivity in CA1 is sparse (Deuchars & Thomson, 1996; Knowles & 

Schwartzkroin, 1981; Yang et al., 2014), learning is known to augment recurrent 

https://paperpile.com/c/sRfeqa/wIeZ+83Yj
https://paperpile.com/c/sRfeqa/wIeZ+83Yj
https://paperpile.com/c/sRfeqa/83Yj+51KX+fPVY+kGLv+DrBC
https://paperpile.com/c/sRfeqa/83Yj+51KX+fPVY+kGLv+DrBC
https://paperpile.com/c/sRfeqa/51KX
https://paperpile.com/c/sRfeqa/SxwW
https://paperpile.com/c/sRfeqa/gGTG+8P7J+0rRD+CQh2
https://paperpile.com/c/sRfeqa/gGTG+8P7J+0rRD+CQh2
https://paperpile.com/c/sRfeqa/6XmE
https://paperpile.com/c/sRfeqa/6XmE
https://paperpile.com/c/sRfeqa/2BJs+n2pA+PMys
https://paperpile.com/c/sRfeqa/2BJs+n2pA+PMys
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interactions in the brain (Albieri et al., 2015; Biane et al., 2019) which can amplify inputs 

and induce attractor networks (Douglas & Martin, 2007; Lien & Scanziani, 2013), 

developments that could mediate the separation of odor representations we observed in 

vCA1. Additionally, inhibitory and astrocytic signaling may contribute to these changes 

(Bazargani & Attwell, 2016; Doron et al., 2022; Turi et al., 2019). 

Recent work has highlighted functional differences that correlate with neurons’ 

anatomical location within the CA1 network. For example, neural populations residing in 

superficial vs deep locations of CA1 display unique physiological properties and may 

also be preferentially tuned to distinct aspects of learning and environmental encoding 

(Danielson et al., 2016; Gava et al., 2021; Grosmark & Buzsáki, 2016; Navas-Olive et 

al., 2020; Soltesz & Losonczy, 2018). Future studies examining layer-specific 

differences in the representations reported here will be of considerable interest. 

Finally, although previous reports have shown a positive relationship between 

movement and neural activity for a variety of “non-motor” brain regions (Musall et al., 

2019; Stringer et al., 2019), we find mostly weak correlations between neural activity 

and licking, breathing or running behaviors in dCA1 and vCA1. Future studies can 

further elucidate how ongoing or task evoked behaviors such as postural adjustments 

and paw movement beyond running, or orofacial movements beyond licking or 

breathing may contribute to the hippocampal code for learning. 

Here we have shown that dCA1 and vCA1 are largely attuned to different 

aspects of the world. In simplest terms, the hippocampus might thus be thought of as 

undergoing a shift from externally biased to internally biased encoding of environmental 

variables along the DV axis. Such a division of labor could facilitate learning (Harland et 

https://paperpile.com/c/sRfeqa/MrvJ+XOED
https://paperpile.com/c/sRfeqa/p9Yc+wNUJ
https://paperpile.com/c/sRfeqa/WPvD+ho2z+Xcpu
https://paperpile.com/c/sRfeqa/GU9R+dGMf+mmRS+dGjw+3dv4
https://paperpile.com/c/sRfeqa/GU9R+dGMf+mmRS+dGjw+3dv4
https://paperpile.com/c/sRfeqa/97hR+r8GI
https://paperpile.com/c/sRfeqa/97hR+r8GI
https://paperpile.com/c/sRfeqa/Ufcm+obys+nV8l
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al., 2018; Petter et al., 2018; Staresina & Davachi, 2009) and support the creation of a 

rich internal model that not only charts relationships in the world (dHPC), but also 

imbues certain relationships with meaning and emphasizes relevant stimuli (vHPC) 

(Collin et al., 2015; Harland et al., 2018; Shohamy & Wagner, 2008). Moreover, this 

simplified model is consistent with hippocampal lesion studies, where dHPC damage 

disproportionally affects declarative memory, and vHPC dysfunction is more closely 

associated with a failure to properly assign/update value, such as in PTSD, addiction, 

and depression (Fanselow & Dong, 2010; Strange et al., 2014).  

On the other hand, we also saw a clear overlap in how some task variables are 

represented in dCA1 and vCA1. Why might these functionally distinct regions encode 

information that is seemingly redundant? As efferent connectivity patterns of dCA1 and 

vCA1 differ considerably (Bienkowski et al., 2018; Cenquizca & Swanson, 2007; 

Gergues et al., 2020; Strange et al., 2014), it is likely that each region is broadcasting 

this information to distinct downstream targets. When dCA1 and vCA1 outputs do 

converge onto the same region, these inputs may be handled differently, as appears to 

be the case with the NAc in reward learning (Sosa et al., 2020). Therefore, redundancy 

of representations across dorsal and ventral CA1 may be processed distinctly and 

uniquely influence ongoing operations. An interesting question for future inquiry is 

whether dCA1 and vCA1 inherit these overlapping representations from common or 

separate input source(s), or perhaps inform one another.   

 
 

 

 

https://paperpile.com/c/sRfeqa/Ufcm+obys+nV8l
https://paperpile.com/c/sRfeqa/Ufcm+Y7wv+aEfX
https://paperpile.com/c/sRfeqa/FRKT+4iqf
https://paperpile.com/c/sRfeqa/gGTG+4iqf+cEii+KtOw
https://paperpile.com/c/sRfeqa/gGTG+4iqf+cEii+KtOw
https://paperpile.com/c/sRfeqa/dZf6
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Methods 

Mice  

All procedures were conducted in accordance with the NIH Guide for the Care 

and Use of Laboratory Animals and institutional guidelines. Adult male C57BL/6J mice 

were supplied by Jackson Laboratory. Mice were kept on a 12-hour light cycle, with 

experiments conducted during the light portion.  

 
Surgery  

Animals were 11 – 15 weeks postnatal at time of surgery. Mice were 

anesthetized with 1.5% isoflurane with an O2 flow rate of 1 L / min, and head-fixed in a 

stereotactic frame (David Kopf, Tujunga, CA). Eyes were lubricated with an ophthalmic 

ointment, and body temperature was maintained at 37°C with a warm water recirculator 

(Stryker, Kalamazoo, MI). The fur was shaved and incision site sterilized prior to 

beginning surgical procedures. Lidocaine, meloxicam, and slow-release buprenorphine 

were provided for analgesia.  

GCaMP6f (2-odor and 3-odor experiments) or GCaMP8m (4-odor and approach-

avoidance experiments) virus injection and GRIN lens implantation were conducted 

using methods previously described (Jimenez et al., 2018). Briefly, a craniotomy was 

made over the lens implantation site and dura was removed from the brain surface and 

cleaned with sterile saline and absorptive spears (Fine Science Tools, Foster City, CA). 

A nanoject syringe (Drummond Scientific, Broomall, PA) was used to deliver GCaMP6f 

to vCA1 or dCA1 (left hemisphere for both). vCA1 coordinates were -3.16 A/P and -3.25 

M/L. 150nl of virus was injected at each depth of -3.85, -3.55 and -3.3 (450nl total 

volume) with respect to bottom of skull at the medial edge of the craniotomy. dCA1 

https://paperpile.com/c/sRfeqa/QWsr
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coordinates were -2 A/P, -1.65 M/L and -2.1 A/P, -1.45 M/L at depths -1.5, -1.25 D/V 

with respect to bregma. The needle was held in place for > 5 minutes prior to moving to 

the next D/V coordinate and remained in place for 10 minutes following the final 

injection before slowly removing from the brain. AAV1-SYN-GCaMP6f-WPRE-Sv40 

(titer: 1.97E+13) was supplied from University of Pennsylvania viral vector core and 

diluted 1:3 in 1x sterile PBS before injections. AAV1-SYN-jGCaMP8m-WPRE (titer: 

2.4E+13) was supplied from Addgene and diluted 1:3 in 1x sterile PBS before injections. 

For dCA1, prior to virus injection the overlying cortex was slowly aspirated until axonal 

fibers of the external capsule/alveus were visualized. Following virus injection, a 0.6mm 

(vCA1) or 1.0mm (dCA1) diameter GRIN lens (Inscopix, Palo Alto, CA) was slowly 

lowered in 0.1 mm D/V steps and then fixed to the skull with Metabond adhesive 

cement (Parkell, Edgewood, NY). vCA1 lens coordinates were -3.16 A/P, -3.5 M/L and -

3.5 D/V (from bottom of skull at craniotomy; S1a). dCA1 lens coordinates were -2.05 

A/P, -1.5 M/L, -0.95 D/V (from bregma; S1b). A custom-made titanium headbar was 

then attached to the skull using dental cement (Dentsply Sinora, Philadelphia, PA). A 

baseplate and cover (Inscopix, Palo Alto, CA) was also cemented on to protect the 

lens.  

For dCA1 animals in the tone discrimination paradigm, a 3mm craniotomy was 

made, and the overlying cortex was aspirated until axonal fibers of the external 

capsule/alveus were visualized. The aspiration site was continuously irrigated with cold, 

sterile saline. Viral injections (120 nl per site) were performed at the same sites as 

above. A custom made dCA1 imaging window was implanted, which consisted of a 

3mm round coverslip, #0 thickness (Warner Instruments, Hamden, CT) attached with 
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optical adhesive (#81, Norland Products, Cranbury, NJ) to a metal cannula containing 

1/8” outer diameter and 1/16” in length (McMaster-Carr, Santa Fe Springs, CA). This 

window was carefully lowered into place, until it rested on top of the exposed tissue 

(S5b). The cannula was then cemented into place with Metabond adhesive, and a 

custom titanium headbar was cemented in place.  

 
Verification of imaging sites and histological analysis  

Dorsal and ventral CA1 imaging sites were verified in each animal included in 

final analysis (S1a,b and S5a,b). After all imaging sessions were completed, mice were 

injected with a lethal dose 2:1 ketamine/xylazine solution intraperitoneally. While the 

heart was still beating, mice were perfused transcardially using 4% PFA solution. Brains 

were extracted and placed in 4% PFA solution for 2-3 days to allow further fixation. After 

saturating with a 30% sucrose solution, coronal slices of 50-micron width were collected 

using a Leica SM2000 microtome. Slices were collected in 1x PBS solution and 

mounted onto glass slides, coverslipped with Fluoromount G with DAPI (Southern 

Biotech, Birmingham, AL).  

 
Behavioral training  

Four-to-six weeks following surgery, animals were handled and habituated to the 

experimenter, training environment and head fixation for one week. Following 

habituation, animals were water restricted to ~85-90% ad lib weight and underwent a 2-

3 day pretraining period designed to introduce the liquid delivery apparatus, with free 

water rewards (~2 µl each) intermittently delivered upon licking (up to 80 rewards in a 

20 min session). Sucrose rewards (10% sucrose, 0.03% NaCl in water) were delivered 
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via a solenoid-gated gravity feed. Contact with a lick spout positioned in front of the 

mouth was measured using a capacitive touch MPR121 sensor (SparkFun, Boulder, 

CO). Stimulus delivery and sensor reading was controlled by an Arduino Mega with 

custom circuit boards (adapted from OpenMaze.org) and recorded via CoolTerm 

software. Once animals displayed consistent and motivated licking (80 rewards 

collected in a single session), lick training was complete and the pretraining odor 

exposure session was initiated the following day. Throughout training, animals were 

water restricted to ~85-90% ad lib weight. All training paradigms consisted of one 

training session/day, occurring at roughly the same time each day. Learning of the 

discrimination tasks was assessed using lick discriminability (d’) for each session, which 

compares the rate of anticipatory licks during the trace period of CS+ trials with CS- 

trials:   

𝑑𝑑′ =
(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶 +  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶𝐶𝐶 −  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)

[𝜎𝜎(𝐶𝐶𝐶𝐶 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) +  𝜎𝜎(𝐶𝐶𝐶𝐶 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)]
2

 

 

Learning was determined as a d’ score > 1.5 for a session, with all Late session mice 

meeting this criterion.  

 
Pretraining odor exposure 

One day prior to conditioning, animals underwent a single session where they 

were passively exposed to neutral odors that would subsequently serve as CS+ and 

CS- odors during training. Each session consisted of 30 trials (15 of each odor) of 2 

second odor presentations. There was no lick spout present during these sessions. The 

inter-trial interval between subsequent odor deliveries was chosen as a random sample 

from a uniform distribution between 17.5 and 27 seconds. Odors were delivered via a 
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custom-made olfactometer equipped with a mass flow controller (Alicat Scientific, 

Tucson, AZ) that maintained air flow at 2 liters per minute and prevented momentary 

pressure changes from solenoid valve switches (Clippard, Cincinnati, OH) upstream of 

the controller. Odors were delivered to mice via a customized nose cone, which 

contained an outlet where a gentle vacuum was applied to evacuate residual odor. 

Additionally, an ongoing charcoal filter vacuum system (Hydrobuilders Inc.) was used to 

evacuate any residual odors.  

 
2-odor paradigm 

Each associative learning session consisted of 120 trials (60 CS+ and 60 CS-, 

pseudo randomly presented). Two neutral odors served as CS+ and CS- cues 

(benzaldehyde or eugenol, 2s) with cue contingencies counterbalanced across mice. 

Presentation of the CS+ cue was followed by a 2s trace period and subsequent reward 

delivery (~2 µl). No reward was available following the presentation of the CS- cue. 

Animals were not punished for off-target licking. The inter-trial interval between 

subsequent cues was chosen as a random sample from a uniform distribution between 

17.5 and 27 seconds.  

This task structure was administered over a period of ~7 days, in which day 1 

and 4 were termed “Early” and “Late” learning, respectively. If an animal did not meet 

the learning criterion (d’ > 1.5) on day 4 (n=3 animals), training continued until this 

criterion was met. The two days following the Late session extinction sessions, labeled 

as “Ext1” and ”Ext2”, respectively, in which the odor-reward association was 

extinguished by removing the sucrose reward for CS+ trials (the lick spout remained in 

place). Ext2 was followed by a one-day reacquisition session, labeled as 
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“Reacquisition”, in which the sucrose reward was reintroduced for CS+ trials. A total of 

11 vCA1 and 5 dCA1 animals were included in the data set.  

 
2-tone paradigm 

Each associative learning session consisted of 160 trials (80 CS+ and 80 CS-, 

pseudo randomly presented). Two auditory tones served as CS+ and CS- cues (2.5 kHz 

and 13kHz pulsing tones, 2s, 70 dBs) with cue contingencies counterbalanced across 

mice. Presentation of the CS+ cue was followed by a 2s trace period, then a 2s reward 

window which required a lick for sucrose reward delivery (~2 µl, maximum one reward 

per trial). No reward was available following the presentation of the CS- cue. Animals 

were not punished for off-target licking. The inter-trial interval between subsequent cues 

was chosen as a random sample from a uniform distribution between 17.5 and 27 

seconds. A total of 7 vCA1 and 2 dCA1 animals were included for analysis (a separate 

cohort of mice than that used for the odor-based experiments). In a subset of animals 

(n= 4 vCA1 and n = 2 dCA1), multiple z-planes were imaged across sessions. Imaging 

planes were separated by > 60 µm to ensure there was no overlap of cells present 

across different z-planes.  

 
3-odor paradigm 

Following completion of 2-odor training, mice underwent 3-odor conditioning. 

Each session consisted of 120 trials (40 CS+rew. 40 CS+shock, 40 CS-, pseudo 

randomly presented). Three new neutral odors served as cues (o-toluidine, 2-

heptanone, or +carvone; 2s). Presentation of the CS+ cue was followed by a 2s trace 

period and subsequent delivery of US (reward US = ~2 µl 10% sucrose solution; shock 
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US = 0.125mA amplitude, 250ms duration). No US was presented following the 

presentation of the CS- cue. Animals were not punished for off-target licking. For 

reversal learning, CS+reward and CS+shock odor cues were switched, while the CS- 

odor remained the same. Shocks were delivered via a custom-made tail cuff driven by a 

precision animal shocker (Coulbourn Instruments, Holliston, MA). The inter-trial interval 

between subsequent cues was chosen as a random sample from a uniform distribution 

between 17.5 and 27 seconds. A total of 11 vCA1 and 3 dCA1 animals were included in 

the data set.  

 
4-odor paradigm 

A new cohort of animals without any previous discrimination training underwent 4-odor 

conditioning. Each session consisted of 120 trials (30 of each trial type, pseudo randomly 

presented). Four neutral odors served as cues (methylbutyrate, isoamyl acetate, eugenol, 

eucalyptol). Presentation of the CS+ cue was followed by a 2s trace period and subsequent 

delivery of 10% sucrose solution (~2 µl). No US was presented following the presentation of the 

CS- cue. Animals were not punished for off-target licking. The inter-trial interval between 

subsequent cues was chosen as a random sample from a uniform distribution between 17 and 

23 seconds. A total of 8 vCA1 and 5 dCA1 animals were included in the data set.  

 
3-odor approach-avoidance paradigm.  

Following 4-odor training, mice were habituated to head-fixed running on a 13 cm 

diameter wheel for ~20 minutes/day. Rotational speed was tracked using a rotary 

encoder (Yomo Electric Co., model E6A2) and assessed every 200 msec. Following 5-7 

days of running wheel habituation, training began. Three new odors (o-toluidine, 2-

heptanone, carvone) were used for this experiment. Each trial type (CS+ reward, CS+ 
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shock, CS-) was presented 40 times/session, and were pseudo-randomly interleaved. 

Following ITI time elapse, animals were required to cease running for >= 0.6 sec before 

a trial could begin. Throughout training, a 4 cm/sec running speed threshold was used. 

Animals who displayed running speeds above this value at any point 0-3.4 sec following 

the onset of odor delivery would trigger reward delivery for CS+ reward trials, or cancel 

tail shock for CS+ shock trials. For this experiment, a lick spout remained out of reach of 

the animal, and was rotated into place at 3.4 sec post odor onset only on trials where 

animals exhibited suprathreshold speed at any point 0-3.4 sec following the onset of 

odor delivery. Rotation of spout into place took ~200 ms. The lick spout was rotated into 

place if suprathreshold running was exhibited regardless of the trial type during which 

running occurred (eg, spout was still rotated into place for suprathreshold shock and 

CS- trials, but no reward was delivered). This was to keep all trial types as similar as 

possible. If applicable, the lick spout was rotated back to home position at 8 sec. 

Animals were not punished for off-target licking or running, nor was subthreshold 

running punished for reward or CS- trials. The inter-trial interval between subsequent 

cues was chosen as a random sample from a uniform distribution between 17 and 23 

seconds. A total of 8 vCA1 and 4 dCA1 animals were included in the data set.  

  

2-photon imaging  

Genetically encoded calcium imaging of GCaMP6f was used to assess the 

functional activity of individual neurons. Images were captured using an Ultima IV laser 

scanning microscope (Bruker Nano, Middleton, WI) equipped with resonant scanning 

mirrors and high-speed scan electronic controller, dual GaAsP PMTs (Hamamatsu 
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model 7422PA-40), and motorized z focus (100 nm step size). GCaMP signal was 

filtered through an ET-GFP (FITC/CY2) filter set. Laser signal was provided by a MaiTai 

DeepSee mode-locked Ti:Sapphire laser source (Spectra-Physics, Irvine, CA) providing 

> 150kW max output at 920 nm. Acquisition speed was 30Hz for 512 x 512 pixel 

images. Images were averaged both online and offline, yielding a final frame rate of 

3.75Hz.  

Prior to each conditioning session, the imaging field of view (FOV) was 

determined, and imaging was conducted at that FOV for the entire session. For animals 

with multiple FOVs across sessions, each FOV was separated by > 60 µm in the z-

dimension (dorsal-ventral) to ensure no overlap of cells across different FOVs. To 

facilitate re-identification of a specific FOV across sessions, the top of the GRIN lens 

served as a reference z-plane. Optimal laser power was determined for each FOV 

based on GCaMP expression level and was kept constant across sessions for a specific 

FOV. For each trial, imaging began 8 sec prior to cue onset and was terminated 11 sec 

afterward (19 sec total).  

 
Signal extraction and cross-session registration  

Videos were motion corrected offline using non-rigid motion correction based on 

template matching (NoRMCorre or Suite2p  (Pachitariu et al., 2018; Pnevmatikakis & 

Giovannucci, 2017). Cell segmentation and calcium transient time series data were 

extracted using Constrained Non-negative Matrix Factorization for microEndoscopic 

data (CNMF-e), a semi-automated algorithm optimized for GRIN lens Ca2+ imaging to 

denoise, deconvolve and demix calcium imaging data (Zhou et al., 2018). Putative 

neurons were manually inspected for appropriate spatial properties and Ca2+ dynamics, 

https://paperpile.com/c/sRfeqa/cmOG+dtEr
https://paperpile.com/c/sRfeqa/cmOG+dtEr
https://paperpile.com/c/sRfeqa/ximL
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and were visually checked against the corresponding motion corrected video in ImageJ. 

Ca2+ transient events were extracted using the OASIS algorithm embedded within 

CNMFe (Friedrich et al., 2017). We used these inferred calcium events for all analyses, 

unless otherwise noted. Denoising (CNMFe) and deconvolution (OASIS) steps were 

applied identically to vCA1 and dCA1. 

Registration of cells across sessions imaged at the same FOV used probabilistic 

modeling of similarities between cell pairs across sessions (CellReg, (Friedrich et al., 

2017; Sheintuch et al., 2017)). Briefly, spatial footprint maps were generated for each 

session by projecting the spatial filter of each cell onto a single image. Spatial footprint 

images from sessions imaged at the same FOV were then aligned. The distribution of 

similarities between pairs of neighboring cells were subsequently modeled via centroid 

distance to obtain an estimation for their probability of being the same cell (Psame). 

Cells were then registered across sessions via a clustering procedure that utilizes the 

previously obtained probabilities, with a probability threshold of 0.8. The average Psame 

value for registered cells was 0.95. All putative matches were visually inspected. There 

was no difference across regions for the proportion of cells registered (mean+/- StDev: 

dCA1: 0.46 +/- 0.13; vCA1: 0.49 +/- 0.14; U test, p = 0.4). 

 
Data analysis  

For statistical analyses and figures, calcium event activity was separated into 1-

second bins and average activity during each bin was used. When reporting specific 

epochs of task results, “odor period” constituted the final 1-second bin of odor delivery 

(1-sec to 2-sec post odor onset), while “trace period” constituted the final 1-second bin 

of the trace period prior to reward delivery (1-sec to 2-sec post odor offset), unless 

https://paperpile.com/c/sRfeqa/g6KK
https://paperpile.com/c/sRfeqa/g6KK+vk3w
https://paperpile.com/c/sRfeqa/g6KK+vk3w
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otherwise noted. These time bins were chosen to ensure odor was being experienced 

throughout the entire odor bin and to minimize any residual odor effects during trace 

period analysis. All statistical analyses were two-sided. For all figures: * p< 0.05, ** p < 

0.01, *** p < 0.001. See Table S1 for all statistical analysis details. 

 
Population decoding  

A linear decoder was used to discriminate activity patterns into two discrete 

categories (Bishop, 2006):  

𝑦𝑦(𝑡𝑡) =  𝜃𝜃(𝑊𝑊𝑟𝑟(𝑡𝑡) + 𝑏𝑏) 

where 𝑦𝑦 is the predicted label of the population activity pattern 𝑟𝑟 recorded at time 𝑟𝑟 and 

takes two values corresponding to two classes of patterns to decode (for example, two 

odor identities), 𝑊𝑊 is the vector of weights assigned to each cell, and 𝑏𝑏 is a bias term 

constant. Decoding parameters were attained via a supervised learning protocol with 

labeled data and used a support-vector machine (SVM) with a linear kernel 

(python/scikit/linearSVC). Results are reported as the generalized performance of the 

decoder using cross-validation, a standard machine learning procedure to avoid data 

overfitting. When multiple categories were involved, e.g., more than two trial types, 

multiple linear decoders were trained on pairs of discrete categories combined using 

majority-based error-correction codes.  

We defined the patterns of calcium activity by computing the mean event rates 

for each individual cell during one-second time bins. Pseudo-population recordings were 

generated by combining cell datas across multiple animals/FOVs. For decoding, one-

half of trials were randomly selected from each class and pseudo-population activity 

from these trials was used to train the decoder, while the remaining held-out half was 

https://paperpile.com/c/sRfeqa/GozK
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used to evaluate the decoder’s generalization performance. When comparing decoding 

accuracy between neural populations of different size, we trained our decoder on a 

random subsample of cells from the more numerous population equal to that of the 

smaller population. We repeated the operation 100 times and then combined the cross-

validated decoding accuracies of all random choices together to get a single sample of 

decoding accuracies (i.e. single data point reflecting the mean of all 100 iterations). We 

repeated the procedure 10 times to perform statistical comparisons across groups and 

against chance performance. A two-sided Mann-Whitney U Test was used to compare 

decoding accuracies between groups, and Bonferroni correction used for multiple 

comparisons.  

For decoding against baseline, we used population activity during the 1-second 

time bin that began three seconds prior to CS onset as baseline data. Cross-time-bin 

and cross-session decoding followed the same procedure as within-session decoding. 

In the case of cross-session decoding, only cells registered across the compared 

sessions were included.  

In all decoding line plots (eg, Figure 2.1g), each data point represents the 

decoding accuracy for the 1-second time bin ending at that point. For example, a data 

point at 2 seconds post odor onset represents decoding accuracy using activity 

extracted from 1-2 seconds post odor onset. 

For decoder weights analysis, we used the weight assigned to individual cells by 

the decoder after fitting the model to the data. Similar to previous findings we found a 

strong correlation between decoder weight and cell activity (Stefanini et al., 2020). To 

thus minimize the effect of activity, we regressed out the components explained by 

https://paperpile.com/c/sRfeqa/3mNt
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activity. For this, for each time bin that we analyzed we linearly regressed mean total 

activity for each cell vs the decoder weight assigned for that cell. We used the residuals 

from this analysis for comparisons of decoder weights across sessions. 

For decoding distant time bins in our cross-time-bin decoding analysis (Figure 

2.6 and 2.7i), we took the average of all decoding runs for each cross-time-bin 

comparison that was separated by 3 or more bins. Further, we only included 

comparisons where both train and test data occurred at least 1 second after odor onset 

(that is, pre-trial data was excluded).  

 

Multidimensional Scaling (MDS)  

We performed 2-dimensional MDS scaling of event data using 

python/scikit/MDS. As with decoding, we combined all cells recorded from a particular 

region (e.g., vCA1) across all mice into one pseudo-population. For each trial type, 100 

trials were randomly selected for analysis, and MDS was performed. The Euclidean 

distance was taken between each trial type, and this process was repeated 100 times. 

Bar charts of Euclidean distance show the mean ± SD of all runs.  

 

Pattern similarity 

To compute pattern similarities, we computed mean event rates during each time bin. 

We then computed the mean cosine similarities (Pearson correlation) between every 

pair of patterns as: 
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where 𝑟𝑟𝚤𝚤��⃗  and 𝑟𝑟𝚥𝚥��⃗  are the patterns of population activities for trial/time bin 𝑖𝑖 and 𝑗𝑗, 

and N is the total number of pairs of patterns counted once.(McKenzie et al., 2014). 

 
Single-cell responsivity  

Data used for heatmaps of calcium-traces or inferred events were not binned. 

For each cell, z-scores were computed over the entire dataset for a specific condition 

(e.g., CS+ trials). To identify cells whose activity was modulated during specific epochs 

(e.g., CS+ period, trace period, etc.), for each trial containing the specified epoch the 

average event magnitude during the 1s epoch was compared to the average event 

magnitude during a 1s baseline period immediately prior to cue onset for that trial. P-

values were determined using a two-tailed Mann Whitney U test and the False 

Discovery Rate (FDR) was applied to correct for multiple comparisons. Cells with an 

adjusted p-value < 0.05 were classified as responsive. Fisher’s exact test was used to 

compare whether the proportion of selective cells for a specific epoch (e.g., CS+ Early 

vs CS+ Late) significantly differed (p < 0.05).  

To compare the persistence of CS+-trial-related activity in vCA1 vs dCA1 

neurons, we first parsed CS+ trial data into odd or even trials and averaged activity for 

each cell across these trials. We then extracted cells whose peak activity during odd 

trials occurred between odor onset and US onset. Average activity for these cells during 

even trials was then collected +/- 4 seconds around the time point of odd-trial peak 

activity, normalized to the amplitude of odd-trial peak activity, and plotted (S2d). 

https://paperpile.com/c/sRfeqa/tFis
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Behavior-neural activity correlation  

We determined whether activity of dCA1 or vCA1 neurons were correlated with 

licking, breathing, and running. We regressed the lick and breath rates across the 

session against calcium events. We also regressed the velocity against calcium events 

but only during 4-7.5 seconds after odor exposure to remove arduino-related artifacts in 

velocity recording when lick spout was rotated in or out of position (rotated in at 3.4 s; 

rotated out at 8 s). We fitted a linear regression model to predict lick, breathing, or 

running rates and used the explained variance (R2) as a measure of goodness of fit to 

compare the results across animals and days. We divided each analyzed session in 10 

time-contiguous blocks and computed the generalization performance of the model with 

10-fold cross-validation over these blocks to avoid overfitting. Regression was 

performed with regular linear regression with Lasso, and verified that there are low 

correlations across behavior and calcium activity and lick and breathing results are not 

qualitatively different. 

 
Decoding high- vs low-speed running 

Neural activity and running speed during the ITI (5-10s post odor onset) were 

averaged in 1 sec time bins. For each of the five bins, the median running speed was 

assessed for each individual animal and trials with speeds above or below this value 

were separated (trials with no running were excluded). The number of trials included for 

each condition (ie, low or high-speed) was matched by subsampling from the condition 

with larger trial number. Linear decoding followed the same procedures as above. 

Statistical comparisons of accuracy vs theoretical chance or across hippocampus 



94 
 

regions used the average decoding accuracies obtained for individual time bins for each 

trial type (reward, shock, or CS- trial). Thus, in total 15 data points were included for 

statistical comparisons per region. (5 time bins x 3 trial types = 15 data points/region). 

 
Aha analysis  

We identified the first moment of distinguished licking behavior between CS+ and 

CS- trials by locating in all mice in the 2-odor paradigm an “aha” moment. This was 

calculated by averaging across every 4 trials the cumulative CS+ and CS- lick rates, 

taking the slope of the difference in cumulative licking between these bins, and checking 

if 1) the difference exceeded the previous bin’s slope >= 1 standard deviation of the 

difference line up to that bin, and 2) the slope increase exceeded 1/3 of the difference 

between the previous set of trials. The averaging and thresholding with an increased 

slope relative to previous trials limited detection of instances where a short sequence of 

successfully discriminated trials were followed by a return to incorrect lickings, which 

would not represent a true aha moment. For potential aha moments detected on the first 

day of learning, we set a threshold of a minimum of 80 licks so that only mice who 

demonstrated lick rates similar to or above the baseline we required during lick training 

could be considered to have learned. All aha moments detected by this method were 

cross-checked with examining the raw licking data to ensure accuracy. Aha moments 

across mice spanned the first two days of learning, with 62% of mice reaching an aha 

moment on the first day or learning, and all mice reaching an aha moment by the end of 

the second day.  

For aha population decoding analysis, we used 30 trials before or after the aha 

moment. For mice where the aha moment was < 30 trials from the end of the first or 
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beginning of the second day of learning, trials from both days were included in order to 

reach the full 30 trials, and only cells registered across both sessions were included. 

 
Active time bins analysis 

For this analysis, time series data were binned into 0.25 sec time bins to provide 

greater resolution. Because the Pre session only contained 15 trials of each trial type, 

only the first 15 trials of each trial type were included for all sessions examined. For 

each trial (defined as 0 - 8 seconds post odor onset) and each time bin within that trial 

(32 time bins total) we examined whether an event was present. The data presented 

show the number of time bins where an event was detected for at least one trial. For 

example, a cell that fired during time bin 5, and only time bin 5, on every trial would 

produce a score of 1. A cell firing on time bin 5 and 10 on trial 1, bins 7 and 10 on trial 7, 

and no firing on all other trials would produce a score of 3. A maximum score of 32 

indicates that each of the 32 individual time bins registered an event on at least one of 

the 15 trials. This analysis was repeated for each cell. To compare whether individual 

cells changed with learning, we only included cross-registered cells. 
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Effect size estimation 

For Mann Whitney U tests and Wilcoxon tests versus chance, effect size was 
determined using: 

𝑟𝑟 = |𝑧𝑧|/√𝑁𝑁 

where 𝑁𝑁 is the total sample size and 

𝑧𝑧 =
𝑈𝑈 − (𝑛𝑛1𝑛𝑛2)

2

�𝑛𝑛1𝑛𝑛2(𝑛𝑛1 + 𝑛𝑛2 + 1)
12

 

Where 𝑛𝑛1 is the sample size of sample 1, 𝑛𝑛2 the sample size of sample2, and 𝑈𝑈 is the U 

test statistic obtained from the statistical test output. For t-test analysis, Cohen’s d was 

used, defined as the difference between group means, divided by their pooled 

variance.  

For Fisher's analysis, the odds ratio was obtained directly from the test output.  

For one-way ANOVA, ETA^2 was obtained directly from the test output. 
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Figure 2.1 Prior to conditioning, odor stimuli are more strongly represented in 
dCA1 versus  vCA1. 

 

a. AAV virus expressing GCaMP6f was targeted to dCA1 or vCA1, and a GRIN lens 
was implanted above the injection site. b and c. Sample FOVs demonstrating (B) 
GCaMP expression and (C) time series data of denoised fluorescent traces. Scale bar 
in (B) = 25 µm. d. Calcium signals were imaged while mice received 30 trials of 2 sec 
odor exposures (15 of each odor). e. Population mean (±SEM) of z-scored fluorescent 
signals occurring around the onset of odor1 (purple) or odor2 (cyan). Grey bar = odor 
delivery period. n = 11 vCA1 and 5 dCA1 mice. f. (left) Simplified schematic of decoding 
procedure illustrated using only 2 neurons. Each dot represents the single-trial 
“population” activity vector during odor 1 (purple) or odor 2 (cyan) delivery. (right) Linear 
classifiers were trained to distinguish population activity patterns occurring during odor 1 
trials versus odor 2 trials  for each 1-second time bin. g. Population-activity decoding 
accuracy for odor 1 versus odor 2 trials  (±SD). Colored-coded bar above the graph 
denotes time bins where accuracy is significantly higher for dCA1 compared to vCA1 (p 
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< 0.01, Mann-Whitney U test; n= 454 cells for each region). h. (left) Simplified decoding 
schematic. Each dot represents the single-trial “population” activity vector during 
baseline (grey) or odor delivery (purple) periods. (right) Linear classifiers were trained to 
distinguish population activity patterns occurring during baseline from those occurring at 
time bin t. i. Same as g above, but decoding versus baseline for each time bin t. Color-
coded bars above the graph denote time bins for each hpc region where decoding 
accuracy is significantly greater than chance (p < 0.01, Mann-Whitney U test; n= 454 
cells for each region). 
  
  
  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 



99 
 

 
Figure 2.2 Discrimination training enhances task representations. 

 

a-b. Task schematics. Calcium activity was imaged while headfixed mice were trained 
on an cue-outcome discrimination task over the course of ~4 days. Neurons were 
tracked over the duration of training. c. Lick rasters for an individual animal. Black tick = 
lick. During the first session of training (Early) licking is unstructured but becomes 
restricted to the time periods directly before and after reward delivery following CS+/CS- 
discrimination learning (Late). d. Mean lick rates during the 2-second pre-reward (trace) 
period for all animals (±SEM, Mann-Whitney U test; n = 11 vCA1, 5 dCA1). e. (left) 
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Mean z-scored fluorescent signals for all vCA1 cells during Late session, ordered by 
peak time bin. See S3A for Early session. (right) Population mean (±SEM). f. Same as 
in e, but for dCA1. g. Trial type decoding accuracies (±SD). Analyses used 454 cells. 
Odor delivery period = vertical grey bar. Sucrose delivery period (CS+ trials only) = 
vertical blue bar. Odor-period encoding selectively increases in vCA1, while trace period 
representations increase in both vCA1 and dCA1. h.  Decoding accuracies for CS+ vs 
CS- during odor (left) or trace (right) periods (±SEM, Mann-Whitney U test). Individual 
data points represent individual decoding iterations. i. Decoding accuracies for each trial 
type vs ITI baseline (±SD). Color-coded bar above shows periods where the CS+ 
decoding accuracy vs baseline is significantly greater than that of CS- (p < 0.01, Mann-
Whitney U test). Note the low decoding accuracy for CS- trials in vCA1 animals, 
suggesting trial type decoding in g is largely being driven by increased responsiveness 
to the behaviorally meaningful CS+ trials. j. same as h, but decoding CS+ vs ITI 
baseline. k. Decoding analysis shows population activity patterns during odor and trace 
periods could be well distinguished from one another in both areas. For all figures: * p< 
0.05, ** p < 0.01, *** p < 0.001. See Table S1 for all statistical analysis details. 
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Figure 2.3 Learned odor representations are sensitive to extinction but can be 
rapidly reinstated. 

 

A-B. Task schematics. C. Mean lick rates during the 2-second pre-reward (trace) period 
for all animals (±SEM, Mann-Whitney U test). D. Decoding accuracies vs baseline 
(±SD). Color-coded bar above shows periods where the corresponding trial type 
accuracy is significantly greater than the opposing trial type (p < 0.01, Mann-Whitney U 
test). E. CS+ vs baseline decoding accuracies during odor (left) or trace (right) periods 
(±SEM, Mann-Whitney U test). F and G. Same as D. and E. but decoding trial type.  
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Figure 2.4 Learned odor representations are sensitive to extinction but can be 
rapidly reinstated. 
 
 

a.  Task schematic. Following acquisition of the cue-outcome discrimination task, mice 
were run through 2 days of extinction training where reward was omitted from all trials. 
The following day, animals underwent a Reacquisition session where the odor-sucrose 
contingency was restored. b.  Lick rasters from an individual animal. Mice displayed a 
near absence of licking during the second day of extinction training and rapid 
resumption of anticipatory licking during the reacquisition session, illustrating an intact 
memory of the task structure c.  Mean trace-period lick rates (±SEM) across all animals 
(n = 11 vCA1, 5 dCA1). d.  Trial-type decoding accuracies (±SD). Analyses used 454 
cells for each region. Early and Late are as in Figure 2.2g and are shown for reference. 
e.  Trial type decoding accuracies during odor (left) or trace (right) periods (±SEM, 
Mann-Whitney U test). Odor-period decoding accuracy tracked with odor-value in vCA1, 
but not dCA1. Trace-period accuracy tracked reward expectation in both hippocampal 
regions. 
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Figure 2.5 Task representations stabilize with learning 
 

 

a. Example of cells from the same FOV registered across Early and Late sessions. b. 
Across-session trial-type decoding schematic. A linear decoder was trained to 
discriminate CS+ vs CS- population activity during one session, and classification 
accuracy was tested using activity patterns from a different session. c. Across-session 
decoding is significantly higher for odor and trace periods following learning 
(Late/Reacquisition), indicating a stabilization of task representations with learning. 
Despite high odor-period decoding accuracy in dCA1 for Early and Late sessions 
individually (Figure 2.4e), decoding across these sessions was comparatively low. 
Thus, while dCA1 activity distinguishes odors robustly at all training points, odor 
representations are transformed with learning. d. To analyze within-and across-session 
similarity between trial type population activity patterns, we projected the hyper-



104 
 

dimensional neural data onto 2-dimensional space via multidimensional scaling (MDS; 
see Methods). Here, the relationship between activity patterns is represented in 
geometrical space; the closer two points are in space, the more similar their activity 
patterns are. (top) 2-D dot plots showing an individual MDS run. (bottom) Average 
Euclidean distance  (±SD) between specified points for 10 MDS runs. In vCA1, CS+ 
odor representations show considerable transformation with initial learning (Early/Late), 
but then largely stabilize (Late/Reacquisition), while CS- odor representations show 
comparatively little change with learning. dCA1 odor representations fluctuate across all 
sessions. e. Same as in d, but for trace-period representations. CS- trace 
representations show little change with learning, while CS+ representations show large 
initial changes with learning that then stabilize. 
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Figure 2.6 Long timescale representations in vCA1. 

 

A. A linear classifier was trained to discriminate trial type using data from a single time 
bin, then tested for decoding accuracy on all other time bins. Each square is the 
decoding accuracy for the corresponding time bins on the x- and y-axes. The blue 
square shows the result corresponding to training the classifier on activity three seconds 
post odor onset and testing five seconds post odor onset. B. Decoding across time bins 
during different sessions of the 2-odor task. Closed white square denotes odor period 
(CS). Dashed square denotes trace period (Tr). Matrix at bottom reports p-values 
comparing the decoding accuracies of vCA1 and dCA1 (Mann-Whitney U test). C. 
Analysis of cross-time-bin decoding results for comparisons separated by at least 2 time 
bins (±SEM, Mann-Whitney U test). Inset: blue filling shows data bins that were included 
for analysis. 
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Figure 2.7 Individual odor representations dominate dCA1, while vCA1 
incorporates information about future outcome. Both regions represent 
anticipated outcome during the trace period.   
 

a. 4-odor task schematic. Each trial, animals received 1 of 4 odor cues, 2 of which 
predicted sucrose reward, while the remaining 2 odors were not associated with an 
outcome. b. Mean trace-period lick rates during the Late session (±SEM, Mann-Whitney 
U test). Data points represent individual animals (n = 8 vCA1, 5 dCA1). c. Confusion 
matrices for decoding trial type from population activity (analyses used 150 cells for 
each region). The y-axis denotes the actual trial type experienced and the x-axis 
indicates the proportion of trials that each trial type was classified as. The ascending 
diagonal represents the proportion of trials correctly classified, while other row entries 
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indicate the proportion of trials where the actual state was incorrectly identified as  the 
corresponding trial type. d. Consistent with results from the 2-odor experiment, average 
trial-type classification accuracy during the odor period was unchanged with learning in 
dCA1, but significantly increased in vCA1. e. Same as in c, but decoding using trace-
period activity patterns. Unlike the odor period, there is an   increased incidence of 
parallel trial types (e.g., CS1+ and CS2+) being confused during trace, indicative of 
similar representations. f. CS+ trial types could be better discriminated from CS- trial 
types with learning in both vCA1 and dCA1. g and h. A linear classifier was trained to 
discriminate activity between reward-predictive and non-predictive trial types (e.g., 
CS1+ vs CS3-), then tested using data from the complementary trial types (CS2+ and 
CS4-). The mean for all combinations of trial-type pairs is presented in h (±SEM, Mann-
Whitney U test), with individual data points reporting individual decoding iterations. 
Although individual odor representations in vCA1 are well discriminated in the Late 
session (as seen in d), future outcome can also be decoded with high accuracy during 
this time, suggesting vCA1 multiplexes information about odor identity and its 
associated outcome when presented with an odor cue. i. Pearson’s correlation of neural 
activity patterns across CS+ (top) or CS- (bottom) trial types. Correlations were 
assessed both within (across the diagonal) and across time bins. White box shows time 
of odor presentation (CS); dashed box shows 2-second trace period (Tr). vCA1 
displayed elevated pattern similarity between CS1+ and CS2+ trials that spanned 
across all task time bins. Blue boxes denote the data points that report similarity 
between odor-period and sucrose representations. j. Visualization of within-session 
pattern similarities via MDS. (top) example MDS run. (bottom) Average (±SEM, Mann-
Whitney U test) of 10 runs. Following training, trace-period representations cluster into 
groups based on trial type. 
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Figure 2.8 Aversive conditioning and reversal learning. 
 

 

a. Task schematic. Three novel odors were used, each predicting either sucrose reward 
(CS+rew), inescapable tail shock (CS+sh), or nothing. b. Mean trace-period lick rates 
across all animals (±SEM, Mann-Whitney U test). c. Comparison of trial type decoding 
accuracy for Early and Late sessions. Analyses used  444 cells. See S10d,e for 
confusion matrices. Odor-period changes mirrored those of the 2-odor task (ie, 
increased decoding accuracy for odors with learned value; CS+rew and CS+shock). 
Interestingly, trace-period analysis showed decoding accuracy was lower for CS+sh 
trials compared to CS+rew. Statistics compare Early vs Late decoding accuracies 
(±SEM, Mann-Whitney U test) d. Reversal learning schematic. The identity of odors 
predicting sucrose and shock was swapped, while CS- odor remained the same. e. 
Mean trace lick rates across all animals (±SEM, Mann-Whitney U test; ). Data points 
represent individual animals (n = 11 vCA1, 3 dCA1). f. Within-session decoding 
accuracies for each trial type vs baseline during odor (left) or trace (right) periods 
(±SEM, Mann-Whitney U test). Note the near absence of decoding accuracy above 
chance during the trace period for CS+sh trials. g. (left) Schematic showing cross-
session odor vs baseline decoding for a specific odor paired with different outcomes. 
(right) Cross-session decoding accuracies indicate that an odor’s representation is 
conserved even when the outcome associated with the odor changes (±SEM, Mann-
Whitney U test). Analyses used 281 cells for each region. h. Same as in g, but decoding 
during outcome anticipation (trace period) for a specific outcome preceded by different 
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odors. Reward-anticipation-like signals are conserved across different predictive cues, 
while shock anticipatory coding, which is only weakly present in Late Reversal (f), are 
not. 
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Figure 2.9 Instrumental control of outcomes increases task-related 
representations in associative learning 
 

    

a. To assess whether the behaviorally irrelevant nature of the inescapable shock 
contributed to the decoding accuracy differences observed for CS+sh and CS+rew 
(Figure 2.8), we implemented a new task, headfixed approach-avoidance. Mice running 
on a wheel could escape shock delivery or enable sucrose delivery if running velocity 
reached >= 4 cm/s during the odor and trace periods. b. Mean task running velocity 
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across all animals for each trial type (mean ±SD). c. The percentage of trials with 
suprathreshold running significantly increased for all trial types from Early to Late 
sessions. d. Mean trace lick rates across all animals (±SEM, Mann-Whitney U test). 
Data points represent individual animals (n = 8 vCA1, 4 dCA1). e. With the shock 
outcome behaviorally relevant, CS+sh trials can now be decoded from baseline activity 
with high accuracy during the trace period (±SEM, Mann-Whitney U test). Analyses 
used 340 cells for each region. Subthreshold trials excluded. 
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Supplementary Figure 1 Implant localization and pre-training neural activity. 
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(Continued) Supplementary Figure 1 (related to Figure 2.1) a-b. Reconstructed 
GRIN lens implant locations for all vCA1 a. and dCA1 b. animals used in odor-based 
studies. Colored lines indicate the estimated location of the lens impression left on the 
tissue. Atlas images adapted from (Paxinos & Keith B. J. Franklin, 2019). c.  Time 
course of odor presence at the nose cone. d. Cross-validated neural activity during the 
Pre session. Each trial type (odor1 or odor2) was separated into odd and even trials, 
and vCA1 neural activity was z-scored. For each time bin, z-scores were averaged 
across all trial subsets, and sorted by peak firing rate latency during odd trials. 
Population mean is shown below (±SEM). e. same as d, but for dCA1. 
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Supplementary Figure 2 Population decoding of odor presentations prior to 
training. 

 

Supplementary Figure 2 (related to Figure 2.1) a-b. Decoding confusion matrices. 
Actual trial type is on y-axis, trial type predicted by classifier is denoted by x-axis. Odor 
delivery period = 0-2s; trace period = 2-4s; sucrose delivery = 4s (CS+ trials only). c-d. 
Decoding trial type when using different time bin durations over which cell activity is 
averaged. Regardless of time bin duration used, dCA1 shows significantly higher 
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decoding accuracy than vCA1 both during and soon after odor presentation. Color-
coded bars above the plot show time bins where the correspondingly colored region is 
significantly greater (n=454 cells). e. Odor-period decoding. Population activity during 
the last second of odor delivery was used to decode odor 1 or odor 2 from baseline. 
Data points report results of individual decoding iterations. 
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Supplementary Figure 3 Learning-related changes in neural activity. 

 
Supplementary Figure 3 (related to Figure 2.2) a. (left) Mean z-scored fluorescent 
signals for all recorded cells during the Late session, ordered by peak time bin. See Fig. 
2E and 2F for Late session. (right) Population mean (±SEM). b. Cross-validated neural 
activity. Each trial type (CS+ or CS-) was separated into odd and even trials, and neural 
activity was z-scored. For each time bin, z-scores were averaged across all trial 
subsets, and sorted by peak firing rate latency during odd trials. Population mean is 
shown directly below heatmap (±SEM). c. Linear regression of lick rates and Ca2+ in 
vCA1 (n = 11) and dCA1 (n = 5) during Early and Late associative learning sessions 
(see Methods). We found that neural activity is not significantly correlated to lick rates 
(R2 is approximately zero for all animals in both sessions; t-test, p>0.05). d. Proportion 
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of neurons whose activity was significantly modulated during odor- or trace-period 
compared to pre-odor baseline (deemed “responsive cells”). Numerator denotes the 
number of responsive cells. Denominator denotes the total number of cells recorded. 
Fisher’s exact test. Statistical power for the pre-training session (Pre) was too low for 
meaningful analysis (only 15 trials/trial-type in Pre vs 60 trials/trail-type in Early and 
Late). 
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Supplementary Figure 4 Learning-related changes in population decoding. 
 

 
Supplementary Figure 4 (related to Figure 2.2) a. Relationship between trial-type 
decoding accuracy and total number of cells included in analysis (±SD). b. Trial-type 
decoding accuracy for individual animals during the Late session. Here, individual data 
points correspond to performance of individual mice (±SEM, Mann-Whitney U test vs 
chance). c. Population-activity decoding accuracy for CS+ or CS- trials from baseline 
(±SD). Color-coded bar above shows periods where the corresponding trial type 
accuracy is significantly greater than the opposing trial type (p < 0.01, Mann-Whitney U 
test). d. Visualization of population activity pattern similarity for CS+ and CS- trials via 
MDS dimensionality reduction. Dot plots show a sample MDS run, bar charts plot the 
average of 10 runs (±SEM, Mann-Whitney U test). e. Sample cumulative licking during 
the trace period for CS+ and CS- trials from the Early and second day of learning. The 
Aha point, in this example at trial 20, represents the first moment the difference between 
the cumulative licking in CS+ and CS- trials exceeded the learning threshold (see 
Methods). f. Trial-type decoding accuracy during odor or trace periods using 30 CS+ 
and CS- trials before and after the Aha point. In vCA1, decoding accuracy significantly 
increases after the aha point for the odor and trace periods (p < .01 and p<.001, 
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respectively, Mann-Whitney U test). Before the aha point, decoding during trace is not 
significantly different from chance (p = .88, Wilcoxon test). In dCA1, aha decoding does 
not significantly increase during the odor period and increases by a small but significant 
amount during trace period (p<.05, Mann-Whitney U test). dCA1 trace period decoding 
before the aha point is already significantly above chance (p < .01, Wilcoxon test).  
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Supplementary Figure 5 Mice that fail to learn the task do not show 
representational changes. 

 
Supplementary Figure 5 (related to Figure 2.3) A.-B. Location of GRIN lens implants 
in vCA1 A. and window implants in dCA1 B. for animals used in the tone associative 
learning study. Atlas images adapted from (Paxinos & Keith B. J. Franklin, 2019). C. 
and D. Population decoding CS+ (C) or CS- (D) tone vs ITI baseline E. Average trace-
period lick rates for vCA1 animals who failed to learn the discrimination task. F. Trial-
type decoding accuracy (±SD). Because decoding performance is correlated with the 
number of cells included for analysis (see Extended Data Fig. 2E), we downsampled the 
number of cells in vCA1 and dCA1 “learners” to each match “nonlearners” (n=71 cells). 
Color-coded bar above shows periods where the corresponding trial type accuracy is 
significantly greater than the opposing trial type (p < 0.01, Mann-Whitney U test). Note 
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the absence of odor- and trace-period decoding in nonlearners during the Late session. 
G. Trial-type decoding performance during the odor- (left) and trace-period (right) 
epochs (±SEM, Mann-Whitney U test).  
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Supplementary Figure 6 Decoding Confusion Matrices  
 

Supplementary Figure 6 (Related to Figure 2.4) a.-b. Decoding confusion matrices 
for a. Extinction day 2 and b. Reacquisition sessions. 
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Supplementary Figure 7 Tracking Single-cell and population dynamics across 
training reveals stability of task encoding accompanies learning. 
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(Continued) Supplemental Figure 7 (related to Figure 2.5) a,c. Activity during CS+ 
trials for neurons registered across specific session pairs. For each time bin, activity z-
scores for each neuron were averaged across all trials within a session, and neurons 
were sorted by peak firing rate latency during the indicated session. Note the changing 
subset of task-responsive cells from Early to Late, and the relative stability following 
learning (Late to Reacquisition). b,d. Quantification of cells with increased 
responsiveness to different task epochs. Individual cells show high remapping of 
responsiveness to CS+ task epochs across Early and Late sessions, but increased 
stability from Late to Reacquisition. e-h. Same as in a-d, but for CS- trials. i, j. 
Comparison of weights assigned to individual cells during decoding analysis; higher 
weight indicates greater importance for encoding (Stefanini et al., 2020). As activity is 
correlated with assigned weight, we plotted weights values after regressing out the 
components explained by the activity. We find an increased correlation of weight values 
after learning (Late and Reacquisition) compared to initial training (Early/Late), 
supporting a stabilization of task representations accompanies learning. k, l. Confusion 
matrices for across-session decoding. 
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Supplemental Figure 8. Confusion matrices and breath correlation 

Supplemental Figure 8 (related to Figure 2.7) a-b. Confusion matrices for CS+ vs 
CS- trial type classification. c. Breathing rate was not correlated with calcium event 
activity in either hippocampal region. Data points represent individual animals (n= 11 
vCA1, 5 dCA1). Data taken from Late session. 
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Supplemental Figure 9 Task representations show increased stability with 
learning following a break in training. 

 
Supplemental Figure 9 (related to figure 2.7) a. In the 2-odor task, Late and 
Reacquisition sessions were separated by multiple extinction sessions. To assess how 
task representations may change across a similar time period, but with no additional 
task experience, following learning of the 4-odor task, mice were kept in their homecage 
and rerun on the learned task 4 days later (Post). b. Mean lick rate during the trace 
period for all animals (±SEM, Mann-Whitney U test). Data points represent individual 
animals (n = 8 vCA1, 5 dCA1). c-d. Trial-type and CS+ vs CS- decoding accuracies 
were similar for the Post session (shown here) compared to Late (Fig. 5c and Extended 
Data Figure 7 a, b; Analyses used 150 cells for each region). e, f. Also similar to the 
Late session, odor and outcome information were multiplexed in vCA1 during the odor 
delivery period, while outcome information was present in both vCA1 and dCA1 during 
trace (±SEM, Mann-Whitney U test). g. Task representations showed greater stability 
once learned. Analyses used cells registered across all 3 sessions (Analyses used 100 
cells for each region). Each data point represents an individual decoding run. h. Same 
as in g, but decoding CS+ vs CS- across sessions. 
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Supplemental Figure 10 Odor ID and reward expectation representations remain stable 
across reversal learning, while shock anticipation signals fade. 
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(Continued) Supplemental Figure 10 (related to Figure 2.8) a.  Trial-type decoding accuracy 
(±SD). Analyses used 444 cells for each region in a - e. Rew = reward trial. Sh = shock trial. b. 
Change in odor-period (left) or trace-period (right) decoding accuracies for CS+shock vs CS- 
trials from Early to Late sessions (±SEM). Statistics compare Early and Late sessions for a 
specific hippocampal region (Mann-Whitney U test). c. Same as in b but decoding CS+reward 
from CS- trials. d-e. Confusion matrices for trial-type decoding accuracy during Early (upper) or 
Late (lower) sessions. f. Schematic illustrating trial-type decoding across reversal learning. g. 
Hypothetical results for decoding CS+reward from CS+shock trials across reversal learning (for 
this set of results, stable encoding of US identity across reversal is assumed). Because data 
classes were labeled with respect to the outcome of a trial, and not the odor identity, stable 
neural representations of odor identity will manifest as cross-session decoding accuracies that 
are below chance (middle graph). h. Actual results for decoding trial type across reversal 
learning (±SD). The below chance decoding accuracy for CS+reward vs CS+shock during the 
odor period indicates representations of odor identity dominate the population activity during this 
time. Analyses used 281 cells for each region. i. Across-reversal odor ID decoding accuracy 
during the odor period (±SEM, Mann-Whitney U test). j. Across-reversal trial type decoding 
accuracy during the trace period (±SEM, Mann-Whitney U test). 
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Supplemental Figure 11 Headfixed active avoidance task results. 

Supplemental Figure 11 (related to Figure 2.9) a. Lick (top) and running (bottom) behavior 
from an example mouse during the first day of training. Trial number is color-coded, yellow to 
black. During the first day of training, the mouse had very few trials with suprathreshold running, 
leading to few rewards and numerous shock deliveries. Shock delivery resulted in rapid, 
transient running. Vertical grey bar = odor delivery period; vertical blue/red bar = time of 
sucrose/shock delivery onset (on applicable trials). Blue ticks = time point when running 
exceeded threshold. Green ticks denote trials where shock was delivered. Light blue trace = 
average running speed. Sh = shock odor trial. b. Same as in a, but Late session for the same 
mouse. c. Confusion matrices for Late session. Only suprathreshold trials were included for 
analysis. Overall, classification accuracy was high for all trial types. However, there was a 
tendency for active avoidance (AA) and CS- trials to be confused with one another. 
Interestingly, animals also exhibited suprathreshold running during CS- trials (Figure 2.8c), 
despite it being inconsequential for the task, suggesting animals may have interpreted CS- trials 
as a potential predictor of shock. Analyses used 340 cells for both regions. d. Pairwise decoding 
trial type. While active avoidance trials are well discriminated from rewarded trials, decoding 
accuracy was lower for AA vs CS- trials during the trace period (±SEM, Mann-Whitney U test). 
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e. Running was not correlated with vCA1 neural activity, but was moderately correlated with 
dCA1 activity (±SEM, Mann-Whitney U test). Data is from Late session. f. To further assess how 
running may have contributed to our results, we trained a linear classifier to decode high vs low 
speed running trials during time bins outside of the task (5-10 seconds post odor delivery). 
While running speed could be decoded above chance in both regions, decoding was relatively 
weak. Significance stars above individual bars report significance level versus 50% chance 
decoding accuracy (±SEM, Wilcoxon signed-rank test). 
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Supplementary Table 1 (related to all Figures). Summary of statistics in all figure panels in 
manuscript. 

Figure Variable Unit of Comparison n Test Results 

Fig. 2.1g 

odor1/odor2 decoding accuracy, 
vCA1 vs dCA1 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 5 
dCA1 mice 

Mann-Whitney U colored-coded bar 
above graph 
shows time bins 
where p < 0.01 

Fig. 2.1i 

decoding accuracy vs chance 10 decoding iterations for 
each region 

pseudopopulation (see methods) 
of 454 cells (n-matched in vCA1 
and dCA1) from 11 vCA1 and 5 
dCA1 mice 

Wilcoxon color-coded bars 
above graph show 
time bins where p 
< 0.01 

Fig. 2.2D 
mean lick rate (Hz) Trial type (Early session) 16 mice (11 vCA1 and 5 dCA1 

mice) 
Mann-Whitney U U =75.5, p =0.13, 

effectsize (r)  = 
0.28 

Fig. 2.2D 
mean lick rate (Hz) Trial type (Late session) 16 mice (11 vCA1 and 5 dCA1 

mice) 
Mann-Whitney U U =0, p < 0.0001, 

effectsize (r)  = 
0.85 

Fig. 2.2h 

vCA1 vs dCA1 CS+/CS- decoding 
accuracies during odor period (Pre 
session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 4 
dCA1 mice 

Mann-Whitney U U = 0, p = 
0.00018, effect-
size (r)  = 0.85 

Fig. 2.2h 

vCA1 vs dCA1 CS+/CS- decoding 
accuracies during odor period (Late 
session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 5 
dCA1 mice 

Mann-Whitney U U = 44, p = 0.68, 
effectsize (r)  = 
0.10 

Fig. 2.2h 
vCA1 vs dCA1 CS+/CS- decoding 
accuracies during trace period (Pre 
session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 4 
dCA1 mice 

Mann-Whitney U U = 25, p = 0.064, 
effect-size (r)  = 
0.42 

Fig. 2.2h 

vCA1 vs dCA1 CS+/CS- decoding 
accuracies during trace period (Late 
session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 5 
dCA1 mice 

Mann-Whitney U U = 32, p = 0.18, 
effectsize (r)  = 
0.30 

Fig. 2.2i 

CS+/baseline vs CS-/baseline 
decoding accuracies, vCA1 or dCA1 

10 decoding iterations for 
each trial type 

n-matched pseudopopulation of 
454 cells from 11 vCA1 or 5 
dCA1 mice 

Mann-Whitney U color-coded bars 
above graph show 
time bins where p 
< 0.01 

Fig. 2.2j 
vCA1 vs dCA1 CS+/baseline 
decoding accuracies during odor 
period (Pre session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 4 
dCA1 mice 

Mann-Whitney U U =0, p = 0.00017, 
effect-size (r)  = 
0.85 

Fig. 2.2j 
vCA1 vs dCA1 CS+/baseline 
decoding accuracies during odor 
period (Late session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 5 
dCA1 mice 

Mann-Whitney U U =69.5, p = 0.15, 
effect-size (r)  = 
0.33 

Fig. 2.2j 

vCA1 vs dCA1 CS+/baseline 
decoding accuracies during trace 
period (Pre session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 4 
dCA1 mice 

Mann-Whitney U U =25.5, p = 
0.069, effect-size 
(r)  = 0.41 

Fig. 2.2j 
vCA1 vs dCA1 CS+/baseline 
decoding accuracies during trace 
period (Late session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 5 
dCA1 mice 

Mann-Whitney U U =56, p = 0.68, 
effectsize (r)  = 
0.10 

Fig. 2.2k 
odor period vs trace period decoding 
accuracy vs chance 

10 decoding iterations pseudopopulation of 454 cells 
from 11 vCA1 mice 

Wilcoxon W = 0, p = 0.005, 
effectsize (r) = 
0.85 

Fig. 2.2k 

odor period vs trace period decoding 
accuracy vs chance 

10 decoding iterations pseudopopulation of 454 cells 
from 5 dCA1 mice 

Wilcoxon W = 0, p = 0.005, 
effectsize (r) = 
0.85 

Fig. 2.3C 

mean lick rate (Hz) Trial type (Early session) 6 mice (4 vCA1, 2 dCA1) Mann-Whitney U U =82, p =0.21, 
effectsize (r)  = 
0.22 

Fig. 2.3C 
mean lick rate (Hz) Trial type (Late session) 6 mice (4 vCA1, 2 dCA1) Mann-Whitney U U =0, p < 0.0001, 

effectsize (r)  = 
0.85 

Fig. 2.3D 

decoding accuracy vs chance, vCA1 
vs dCA1 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
537 cells from 4 vCA1 and 2 
dCA1 mice 

Wilcoxon color-coded bars 
above graph show 
time bins where p 
< 0.01 
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Figure Variable Unit of Comparison n Test Results 

Fig. 2.3E 
vCA1 vs dCA1 CS+/baseline 
decoding accuracies during tone 
period (Early session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
537 cells from 4 vCA1 and 2 
dCA1 mice 

Mann-Whitney U U = 15, p = 0.009, 
effect-size (r)  = 
0.59 

Fig. 2.3E 

vCA1 vs dCA1 CS+/baseline 
decoding accuracies during tone 
period (Late session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
537 cells from 4 vCA1 and 2 
dCA1 mice 

Mann-Whitney U U = 38, p = 0.38, 
effectsize (r)  = 0.2 

Fig. 2.3E 

vCA1 vs dCA1 CS+/baseline 
decoding accuracies during trace 
period (Early session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
537 cells from 4 vCA1 and 2 
dCA1 mice 

Mann-Whitney U U = 89, p = 0.004, 
effect-size (r)  = 
0.66 

Fig. 2.3E 
vCA1 vs dCA1 CS+/baseline 
decoding accuracies during trace 
period (Late session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
537 cells from 4 vCA1 and 2 
dCA1 mice 

Mann-Whitney U U = 40.5, p = 0.5, 
effectsize (r)  = 
0.16 

Fig. 2.3F 

CS+/CS- decoding accuracy, vCA1 
vs dCA1 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
537 cells from 4 vCA1 and 2 
dCA1 mice 

Mann-Whitney U colored-coded bar 
above graph 
shows time bins 
where p < 0.01 

Fig. 2.3G 

vCA1 vs dCA1 CS+/CS- decoding 
accuracies during tone period (Early 
session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
537 cells from 4 vCA1 and 2 
dCA1 mice 

Mann-Whitney U U = 52, p = 0.91, 
effectsize (r)  = 
0.03 

Fig. 2.3G 

vCA1 vs dCA1 CS+/CS- decoding 
accuracies during tone period (Late 
session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
537 cells from 4 vCA1 and 2 
dCA1 mice 

Mann-Whitney U U = 99, p < 0.001, 
effect-size (r)  = 
0.82 

Fig. 2.3G 
vCA1 vs dCA1 CS+/CS- decoding 
accuracies during trace period (Early 
session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
537 cells from 4 vCA1 and 2 
dCA1 mice 

Mann-Whitney U U = 77, p = 0.045, 
effect-size (r)  = 
0.46 

Fig. 2.3G 

vCA1 vs dCA1 CS+/CS- decoding 
accuracies during trace period (Late 
session) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
537 cells from 4 vCA1 and 2 
dCA1 mice 

Mann-Whitney U U = 51, p = 0.97, 
effectsize (r)  = 
0.02 

Fig. 2.4e 

Ext vs Reacq CS+/CS- decoding 
accuracies during odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=3 

U = 42, p = 1, 
effect-size (r)  = 
0.13 

Fig. 2.4e 
Early vs Late CS+/CS- decoding 
accuracies during odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 11 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=3 

U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.4e 

Early vs Ext CS+/CS- decoding 
accuracies during odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 11 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=3 

U = 58.5, p = 1, 
effectsize (r)  = 
0.14 

Fig. 2.4e 

Early vs Reacq CS+/CS- decoding 
accuracies during odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 11 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=3 

U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.4e 
Late vs Ext CS+/CS- decoding 
accuracies during odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 11 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=3 

U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.4e 

Late vs Reacq CS+/CS- decoding 
accuracies during odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 11 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=3 

U = 46.5, p = 1., 
effectsize (r)  = 
0.14 

Fig. 2.4e 

Ext vs Reacq CS+/CS- decoding 
accuracies during odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 11 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=3 

U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.4e 
Early vs Late CS+/CS- decoding 
accuracies during odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=3 

U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.4e 

Early vs Ext CS+/CS- decoding 
accuracies during odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=3 

U = 26, p = 0.23, 
effectsize (r)  = 
0.41 

Fig. 2.4e 

Early vs Reacq CS+/CS- decoding 
accuracies during odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=3 

U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.4e 
Late vs Ext CS+/CS- decoding 
accuracies during odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=3 

U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Figure Variable Unit of Comparison n Test Results 
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Fig. 2.4e 

Late vs Reacq CS+/CS- decoding 
accuracies during odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=3 

U = 80.5, p = 0.07, 
effect-size (r)  = 
0.52 

Fig. 2.4e 

Ext vs Reacq CS+/CS- decoding 
accuracies during odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=3 

U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.5c 

Across-session Early/Late vs 
Late/Reacq CS+/CS- decoding 
accuracies during dodr period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
241 cells from 10 vCA1 mice 

Mann-Whitney U U = 10, p = 0.003, 
effect-size (r)  = 
0.68 

Fig. 2.5c 

Across-session Early/Late vs 
Late/Reacq CS+/CS- decoding 
accuracies during odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
241 cells from 4 dCA1 mice 

Mann-Whitney U U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.5c 

Across-session Early/Late vs 
Late/Reacq CS+/CS- decoding 
accuracies during trace period 
(vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
241 cells from 10 vCA1 mice 

Mann-Whitney U U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.5c 

Across-session Early/Late vs 
Late/Reacq CS+/CS- decoding 
accuracies during trace period 
(dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
241 cells from 4 dCA1 mice 

Mann-Whitney U U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.5d 
Early/Late vs Late/Reacq, odor 
period, CS- trials (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 78, p = 0.038, 
effect-size (r)  = 
0.47 

Fig. 2.5d 

Early/Late vs Late/Reacq, odor 
period, CS+ trials (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 100, p = 
0.0002, effect-size 
(r)  = 0.85 

Fig. 2.5d 
Early/Late vs Late/Reacq, odor 
period, CS- trials (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 37, p = 0.35, 
effectsize (r)  = 
0.22 

Fig. 2.5d 
Early/Late vs Late/Reacq, odor 
period, CS+ trials (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 46, p = 0.79, 
effectsize (r)  = 
0.07 

Fig. 2.5e 

Early/Late vs Late/Reacq, trace 
period, CS- trials (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 58, p = 0.57, 
effectsize (r)  = 
0.14 

Fig. 2.5e 
Early/Late vs Late/Reacq, trace 
period, CS+ trials (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 81, p = 0.021, 
effect-size (r)  = 
0.52 

Fig. 2.5e 
Early/Late vs Late/Reacq, 
traceperiod, CS- trials (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 56, p = 0.68, 
effectsize (r)  = 0.1 

Fig. 2.5e 

Early/Late vs Late/Reacq, trace 
period, CS+ trials (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 97, p = < 
0.001, effect-size 
(r)  = 0.79 

Fig. 2.6B 

CS+/CS- decoding accuracy, vCA1 
vs dCA1 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
339 cells from 7 vCA1 and 2 
dCA1 mice 

Mann-Whitney U see figure for 
colorcoded p-
values 

Fig. 2.6C 

CS+/CS- Early decoding accuracy, 
vCA1 vs dCA1 

n = 19 (mean of each time 
bin x vs time bin y 
decoding result (each blue 
square in fig)) 

n-matched pseudopopulation of 
339 cells from 7 vCA1 and 2 
dCA1 mice 

Mann-Whitney U U = 254, p = 
0.033, effect-size 
(r)  = 0.35 

Fig. 2.6C 

CS+/CS- Late decoding accuracy, 
vCA1 vs dCA1 

n = 19 (mean of each time 
bin x vs time bin y 
decoding result (each blue 
square in fig)) 

n-matched pseudopopulation of 
339 cells from 7 vCA1 and 2 
dCA1 mice 

Mann-Whitney U U =313 , p < 
0.001., effect-size 
(r)  = 0.63 

Fig. 2.6C 

CS+/CS- Extinction decoding 
accuracy, vCA1 vs dCA1 

n = 19 (mean of each time 
bin x vs time bin y 
decoding result (each blue 
square in fig)) 

n-matched pseudopopulation of 
339 cells from 7 vCA1 and 2 
dCA1 mice 

Mann-Whitney U U = 236.5, p = 
0.11, effect-size (r)  
= 0.27 
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Fig. 2.6C 

CS+/CS- Reacquisition decoding 
accuracy, vCA1 vs dCA1 

n = 19 (mean of each time 
bin x vs time bin y 
decoding result (each blue 
square in fig)) 

n-matched pseudopopulation of 
339 cells from 7 vCA1 and 2 
dCA1 mice 

Mann-Whitney U U = 321, p < 
0.001, effect-size 
(r)  = 0.67 

region F = 35.2, p < 
0.001, effect size 
(ETA^2) = .31 

odor F = 1.21, p = 0.31, 
effect size (ETA^2) 
= .03 

region*odor F = 1.4, p = 0.25, 
effect size (ETA^2) 
= .04 

Fig. 2.7d 

Trial type decoding accuracy, Pre vs 
Late, odor period (vCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
150 cells from 8 vCA1 mice 

Mann-Whitney U U = 19.5, p = 
0.023, effect-size 
(r) = 0.52 

Fig. 2.7d 
Trial type decoding accuracy, Pre vs 
Late, odor period (dCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
150 cells from 5 dCA1 mice 

Mann-Whitney U U = 37.5, p = 0.36, 
effect-size (r) = 
0.21 

Fig. 2.7e trial type decoding accuracy, Late 
session 

10 decoding iterations 
each  

n-matched pseudopopulation of 
150 cells from 8 vCA1 mice 

One-way ANOVA  

region F = 36.5, p < 
0.001, effect size 
(ETA^2) = .34 

odor F = 1.17, p = 0.33, 
effect size (ETA^2) 
= .03 

region*odor F = 1.15, p = 0.22, 
effect size (ETA^2) 
= .04 

Fig. 2.7f 

CS+ vs CS- decoding accuracy, Pre 
vs Late, odor period (vCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
150 cells from 8 vCA1 mice 

Mann-Whitney U U = 1.0, p < 0.001, 
effect-size (r) = 
0.83 

Fig. 2.7f 

CS+ vs CS- decoding accuracy, Pre 
vs Late, odor period (dCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
150 cells from 5 dCA1 mice 

Mann-Whitney U U = , p < 0.001, 
effectsize (r) = 
0.85 

Fig. 2.7h 
outcome decoding, Pre vs Late, odor 
period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
150 cells from 8 vCA1 mice 

Mann-Whitney U U = 11.5, p = 
0.004, effect-size 
(r)  = 0.65 

Fig. 2.7h 
outcome decoding, Pre vs Late, odor 
period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
150 cells from 5 dCA1 mice 

Mann-Whitney U U = 48, p = 0.91, 
effectsize (r)  = 
0.03 

Fig. 2.7h 

outcome decoding, Pre vs Late, trace 
period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
150 cells from 8 vCA1 mice 

Mann-Whitney U U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.7h 
outcome decoding, Pre vs Late, trace 
period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
150 cells from 5 dCA1 mice 

Mann-Whitney U U = 9.5, p = 0.002, 
effect-size (r)  = 
0.68 

Fig. 2.7j 
CS+/CS- vs CS1+/CS2+, odor period, 
Pre session (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 91, p = 0.004, 
effect-size (r)  = 
0.69 

Fig. 2.7j 

CS+/CS- vs CS3-/CS4-, odor period, 
Pre session (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 27, p = 0.18, 
effectsize (r)  = 
0.39 

Fig. 2.7j 
CS1+/CS2+ vs CS3-/CS4-, odor 
period, Pre session (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 11, p = 0.007, 
effect-size (r)  = 
0.66 

Fig. 2.7j 
CS+/CS- vs CS1+/CS2+, odor period, 
Late session (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 93, p = 0.002, 
effect-size (r)  = 
0.72 

Fig. 2.7j 

CS+/CS- vs CS3-/CS4-, odor period, 
Late session (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 
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Fig. 2.7j 
CS1+/CS2+ vs CS3-/CS4-, odor 
period, Late session (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.7j 

CS+/CS- vs CS1+/CS2+, odor period, 
Pre session (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 98, p < 0.001, 
effect-size (r)  = 
0.81 

Fig. 2.7j 

CS+/CS- vs CS3-/CS4-, odor period, 
Pre session (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.7j 
CS1+/CS2+ vs CS3-/CS4-, odor 
period, Pre session (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 74, p = 0.15, 
effectsize (r)  = 
0.41 

Fig. 2.7j 

CS+/CS- vs CS1+/CS2+, odor period, 
Late session (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 50, p = 1.0, 
effectsize (r)  = 0.0 

Fig. 2.7j 

CS+/CS- vs CS3-/CS4-, odor period, 
Late session (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 25, p = 0.13, 
effectsize (r)  = 
0.42 

Fig. 2.7j 
CS1+/CS2+ vs CS3-/CS4-, odor 
period, Late session (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 26, p = 0.15, 
effectsize (r)  = 
0.41 

Fig. 2.7j 

CS+/CS- vs CS1+/CS2+, trace 
period, Pre session (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 58, p = 1.0, 
effectsize (r)  = 
0.13 

Fig. 2.7j 

CS+/CS- vs CS3-/CS4-, trace period, 
Pre session (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 43, p = 1.0, 
effectsize (r)  = 
0.12 

Fig. 2.7j 
CS1+/CS2+ vs CS3-/CS4-, trace 
period, Pre session (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 41, p = 0.94, 
effectsize (r)  = 
0.15 

Fig. 2.7j 

CS+/CS- vs CS1+/CS2+, trace 
period, Late session (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 100, p < 
0.001., effect-size 
(r)  = 0.85 

Fig. 2.7j 

CS+/CS- vs CS3-/CS4-, trace period, 
Late session (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 100, p < 
0.001., effect-size 
(r)  = 0.85 

Fig. 2.7j 
CS1+/CS2+ vs CS3-/CS4-, trace 
period, Late session (vCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 34, p = 0.48, 
effectsize (r)  = 
0.27 

Fig. 2.7j 

CS+/CS- vs CS1+/CS2+, trace 
period, Pre session (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 41, p = 1.0, 
effectsize (r)  = 
0.15 

Fig. 2.7j 

CS+/CS- vs CS3-/CS4-, trace period, 
Pre session (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 22, p = 0.08, 
effectsize (r)  = 
0.47 

Fig. 2.7j 
CS1+/CS2+ vs CS3-/CS4-, trace 
period, Pre session (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 27, p = 0.18, 
effectsize (r)  = 
0.39 

Fig. 2.7j 

CS+/CS- vs CS1+/CS2+, trace 
period, Late session (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.7j 

CS+/CS- vs CS3-/CS4-, trace period, 
Late session (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.7j 
CS1+/CS2+ vs CS3-/CS4-, trace 
period, Late session (dCA1) 

Euclidean distance 
between MDS values 

10 MDS runs Mann-Whitney U, 
bonferroni 
correction for n=2 

U = 21, p = 0.06, 
effectsize (r)  = 
0.49 

Fig. 2.8b 

mean lick rate (Hz) Trial type (Rew vs Shock; 
Early session) 

13 mice ( 10 vCA1 and 3 dCA1 
mice) 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 133, p = 
0.028, effect-size 
(r)  = 0.49 
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Fig. 2.8b 
mean lick rate (Hz) Trial type (Rew vs CS-; 

Early session) 
13 mice ( 10 vCA1 and 3 dCA1 
mice) 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 13, p < 0.001, 
effect-size (r)  = 
0.71 

Fig. 2.8b 

mean lick rate (Hz) Trial type (Shock vs CS-; 
Early session) 

13 mice ( 10 vCA1 and 3 dCA1 
mice) 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 12.5, p 
<0.001, effect-size 
(r)  = 0.72 

Fig. 2.8b 

mean lick rate (Hz) Trial type (Rew vs Shock; 
Late session) 

13 mice ( 10 vCA1 and 3 dCA1 
mice) 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 256, p = < 
0.001, effect-size 
(r)  = 1.7 

Fig. 2.8b 
mean lick rate (Hz) Trial type (Rew vs CS-; 

Late session) 
13 mice ( 10 vCA1 and 3 dCA1 
mice) 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.8b 

mean lick rate (Hz) Trial type (Shock vs CS-; 
Late session) 

13 mice ( 10 vCA1 and 3 dCA1 
mice) 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 0, p = 1, effect-
size (r)  = 0.56 

Fig. 2.8c 

CS+Rew Decoding Accuracy, Early 
vs Late, odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Fisher's Exact p < 0.001, effect-
size (odds ratio)  = 
0.23 

Fig. 2.8c 
CS+Shock Decoding Accuracy, Early 
vs Late, odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Fisher's Exact p < 0.001, effect-
size (odds ratio)  = 
0.24 

Fig. 2.8c 

CS- Decoding Accuracy, Early vs 
Late, odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Fisher's Exact p = 0.14, effect-
size (odds ratio)  = 
0.72 

Fig. 2.8c 

CS+Rew Decoding Accuracy, Early 
vs Late,trace period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Fisher's Exact p < 0.001, effect-
size (odds ratio)  = 
0.26 

Fig. 2.8c 
CS+Shock Decoding Accuracy, Early 
vs Late, trace period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Fisher's Exact p < 0.001, effect-
size (odds ratio)  = 
0.40 

Fig. 2.8c 

CS- Decoding Accuracy, Early vs 
Late, trace period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Fisher's Exact p = 0.24, effect-
size (odds ratio)  = 
0.76 

Fig. 2.8c 

CS+Rew Decoding Accuracy, Early 
vs Late,odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Fisher's Exact p = 0.003, effect-
size (odds ratio)  = 
0.18 

Fig. 2.8c 
CS+Shock Decoding Accuracy, Early 
vs Late, odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Fisher's Exact p = 0.32, effect-
size (odds ratio)  = 
0.63 

Fig. 2.8c 

CS- Decoding Accuracy, Early vs 
Late, odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Fisher's Exact p = 0.73, effect-
size (odds ratio)  = 
0.88 

Fig. 2.8c 

CS+Rew Decoding Accuracy, Early 
vs Late,trace period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Fisher's Exact p < 0.001, effect-
size (odds ratio)  = 
0.17 

Fig. 2.8c 
CS+Shock Decoding Accuracy, Early 
vs Late, trace period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Fisher's Exact p = 0.003, effect-
size (odds ratio)  = 
0.48 

Fig. 2.8c 

CS- Decoding Accuracy, Early vs 
Late, trace period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Fisher's Exact p = 0.003, effect-
size (odds ratio)  = 
0.52 

Fig. 2.8e 

mean lick rate (Hz) Trial type (Rew vs Shock; 
Early Reversal session) 

13 mice ( 10 vCA1 and 3 dCA1 
mice) 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 82, p = 1, 
effect-size (r)  = 
0.02 

Fig. 2.8e 
mean lick rate (Hz) Trial type (Rew vs CS-; 

Early Reversal session) 
13 mice ( 10 vCA1 and 3 dCA1 
mice) 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 21.5, p = 
0.003, effect-size 
(r)  = 0.62 

Fig. 2.8e 

mean lick rate (Hz) Trial type (Shock vs CS-; 
Early Reversal session) 

13 mice ( 10 vCA1 and 3 dCA1 
mice) 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 10, p <0.001, 
effectsize (r)  = 
0.74 
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Fig. 2.8e 
mean lick rate (Hz) Trial type (Rew vs Shock; 

Late Reversal session) 
13 mice ( 10 vCA1 and 3 dCA1 
mice) 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 255, p = < 
0.001, effect-size 
(r)  = 1.7 

Fig. 2.8e 

mean lick rate (Hz) Trial type (Rew vs CS-; 
Late Reversal session) 

13 mice ( 10 vCA1 and 3 dCA1 
mice) 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 3, p < 0.001, 
effectsize (r)  = 
0.81 

Fig. 2.8e 

mean lick rate (Hz) Trial type (Shock vs CS-; 
Late Reversal session) 

13 mice ( 10 vCA1 and 3 dCA1 
mice) 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 110, p = 1, 
effectsize (r)  = 
0.26 

Fig. 2.8f 

CS+Rew/baseline vs  
CS+Shock/baseline decoding  
accuracies, Late Reversal, odor 
period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.8f 
CS+Rew/baseline vs CS-/baseline 
decoding accuracies, Late Reversal, 
odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.8f 

CS+Shock/baseline vs CS-/baseline 
decoding accuracies, Late Reversal, 
odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 97, p < 0.001, 
effect-size (r)  = 
0.79 

Fig. 2.8f 

CS+Rew/baseline vs  
CS+Shock/baseline decoding  
accuracies, Late Reversal, odor 
period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 17.5, p = 0.03, 
effect-size (r)  = 
0.55 

Fig. 2.8f 
CS+Rew/baseline vs CS-/baseline 
decoding accuracies, Late Reversal, 
odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 27.5, p = 0.19, 
effect-size (r)  = 
0.38 

Fig. 2.8f 

CS+Shock/baseline vs CS-/baseline 
decoding accuracies, Late Reversal, 
odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 55.5, p = 1, 
effectsize (r)  = 
0.09 

Fig. 2.8f 

CS+Rew/baseline vs  
CS+Shock/baseline decoding  
accuracies, Late Reversal, trace 
period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.8f 

CS+Rew/baseline vs CS-/baseline 
decoding accuracies, Late Reversal, 
trace period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.8f 
CS+Shock/baseline vs CS-/baseline 
decoding accuracies, Late Reversal, 
trace period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 22.5, p = 0.08, 
effect-size (r)  = 
0.46 

Fig. 2.8f 

CS+Rew/baseline vs  
CS+Shock/baseline decoding  
accuracies, Late Reversal, trace 
period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.8f 

CS+Rew/baseline vs CS-/baseline 
decoding accuracies, Late Reversal, 
trace period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.8f 
CS+Shock/baseline vs CS-/baseline 
decoding accuracies, Late Reversal, 
trace period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 23.5, p = 
0.095, effect-size 
(r)  = 0.45 

Fig. 2.8g 
Odor A/baseline vs odor B/baseline 
decoding accuracies across reversal 
training, odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
281 cells from 10 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 42.5, p = 1, 
effectsize (r)  = 
0.13 

Fig. 2.8g 

Odor A/baseline vs odor C/baseline 
decoding accuracies across reversal 
training, odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
281 cells from 10 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.8g 

Odor B/baseline vs odor C/baseline 
decoding accuracies across reversal 
training, odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
281 cells from 10 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.8g 
Odor A/baseline vs odor B/baseline 
decoding accuracies across reversal 
training, odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
281 cells from 3 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 36, p = 0.61, 
effectsize (r)  = 
0.24 
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Fig. 2.8g 
Odor A/baseline vs odor C/baseline 
decoding accuracies across reversal 
training, odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
281 cells from 3 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 39.5, p = .9, 
effectsize (r)  = 
0.18 

Fig. 2.8g 

Odor B/baseline vs odor C/baseline 
decoding accuracies across reversal 
training, odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
281 cells from 3 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 28, p = .21, 
effectsize (r)  = 
0.37 

Fig. 2.8h 

CS+Rew/baseline vs  
CS+Shock/baseline decoding 
accuracies across reversal training, 
trace period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
281 cells from 10 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.8h 
CS+Rew/baseline vs CS-/baseline 
decoding accuracies across reversal 
training, trace period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
281 cells from 10 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.8h 
CS+Shock/baseline vs CS-/baseline 
decoding accuracies across reversal 
training, trace period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
281 cells from 10 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 55, p = 1, 
effect-size (r)  = 
0.08 

Fig. 2.8h 

CS+Rew/baseline vs  
CS+Shock/baseline decoding 
accuracies across reversal training, 
trace period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
281 cells from 3 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.8h 

CS+Rew/baseline vs CS-/baseline 
decoding accuracies across reversal 
training, trace period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
281 cells from 3 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

Fig. 2.8h 
CS+Shock/baseline vs CS-/baseline 
decoding accuracies across reversal 
training, trace period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
281 cells from 3 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 49, p = 1, 
effect-size (r)  = 
0.17 

Fig. 2.9c 

propotion of reward trials with 
suprathreshold running 

Early vs. Late sessions 12 mice (8 vCA1, 4 dCA1) Mann-Whitney U U = 36, p = 0.004, 
effect-size (r)  = 
0.2 

Fig. 2.9c 

propotion of CS- trials with 
suprathreshold running 

Early vs. Late sessions 12 mice (8 vCA1, 4 dCA1) Mann-Whitney U U = 43.5, p = 0.01, 
effect-size (r)  = 
0.18 

Fig. 2.9c 
propotion of shock trials with 
suprathreshold running 

Early vs. Late sessions 12 mice (8 vCA1, 4 dCA1) Mann-Whitney U U = 0, p < 0.001, 
effectsize (r)  = 
0.32 

Fig. 2.9d 

mean lick rate (Hz) Trial type (Rew vs Shock) 12 mice (8 vCA1, 4 dCA1) Mann-Whitney U U = 139.5, p < 
0.001, effect-size 
(r)  = 0.8 

Fig. 2.9d 

mean lick rate (Hz) Trial type (Rew vs CS-) 12 mice (8 vCA1, 4 dCA1) Mann-Whitney U U = 138, p < 
0.001, effect-size 
(r)  = 0.78 

Fig. 2.9d 
mean lick rate (Hz) Trial type (CS- vs Shock) 12 mice (8 vCA1, 4 dCA1) Mann-Whitney U U = 71.5, p = 1.0, 

effectsize (r)  = 
0.006 

Fig. 2.9e 

CS+Rew/baseline vs  
CS+Shock/baseline decoding 
accuracies, Late, odor period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
340 cells from 8 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 44.5, p = 1.0, 
effectsize (r)  = 
0.09 

Fig. 2.9e 

CS+Rew/baseline vs CS-/baseline 
decoding accuracies, Late, odor 
period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
340 cells from 8 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 98, p < 0.001, 
effect-size (r)  = 
0.81 

Fig. 2.9e 
CS+Shock/baseline vs CS-/baseline 
decoding accuracies, Late, odor 
period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
340 cells from 8 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.9e 
CS+Rew/baseline vs  
CS+Shock/baseline decoding 
accuracies, Late, odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
340 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 20.5, p = 
0.049, effect-size 
(r)  = 0.5 

Fig. 2.9e 

CS+Rew/baseline vs CS-/baseline  
decoding accuracies, Late, odor 
period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
340 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 36.5, p = 0.64, 
effect-size (r)  = 
0.23 

Fig. 2.9e 
CS+Shock/baseline vs CS-/baseline  
decoding accuracies, Late, odor 
period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
340 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 65.5, p = 0.47, 
effect-size (r)  = 
0.26 



154 
 

Figure Variable Unit of Comparison n Test Results 

Fig. 2.9e 
CS+Rew/baseline vs  
CS+Shock/baseline decoding 
accuracies, Late, trace period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
340 cells from 8 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.9e 

CS+Rew/baseline vs CS-/baseline  
decoding accuracies, Late, trace 
period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
340 cells from 8 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

Fig. 2.9e 

CS+Shock/baseline vs CS-/baseline  
decoding accuracies, Late, trace 
period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
340 cells from 8 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 60, p = 0.94, 
effectsize (r)  = 
0.17 

Fig. 2.9e 
CS+Rew/baseline vs  
CS+Shock/baseline decoding 
accuracies, Late, trace period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
340 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 40, p = 0.92, 
effectsize (r)  = 
0.17 

Fig. 2.9e 

CS+Rew/baseline vs CS-/baseline  
decoding accuracies, Late, trace 
period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
340 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 76, p = 0.1, 
effectsize (r)  = 
0.44 

Fig. 2.9e 

CS+Shock/baseline vs CS-/baseline  
decoding accuracies, Late, trace 
period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
340 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 81.5, p = 
0.035, effect-size 
(r)  = 0.53 

S2c 

odor1/odor2 decoding accuracy, 
vCA1 vs dCA1 (0.5 sed time bins) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 5 
dCA1 mice 

Mann-Whitney U colored-coded bar 
above graph 
shows time bins 
where p < 0.01 

S2d 

odor1/odor2 decoding accuracy, 
vCA1 vs dCA1 (2 sec time bins) 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 5 
dCA1 mice 

Mann-Whitney U colored-coded bar 
above graph 
shows time bins 
where p < 0.01 

S2e decoding accuracy vs baseline 10 decoding iterations 
each  

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 5 
dCA1 mice 

One-way ANOVA  

region F = 107, p < 
0.001, effect size 
(ETA^2) = .70 

odor F = .47, p = 0.5, 
effect size (ETA^2) 
= .003 

region*odor F = 9.92, p = 
0.003, effect size 
(ETA^2) = . 
065 

S2e 
vCA1 vs dCA1 odor1/baseline 
decoding accuracies 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 5 
dCA1 mice 

Mann-Whitney U U = 0, p = 
0.00017, effect-
size (r)  = 0.85  

S2e 

vCA1 vs dCA1 odor2/baseline 
decoding accuracies 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
454 cells from 11 vCA1 and 5 
dCA1 mice 

Mann-Whitney U U = 12.0, p = 
0.0046,  effect-
size (r)  = 0.64 

S3c 

Early vs Late linear regression of 
calcium activity and lick rate 

Early vs Late sessions 10 vCA1 mice T-test t = 1.86, p = 
0.079, effect-size 
(Cohen's d) =  
0.88 

S3c 
Early vs Late linear regression of 
calcium activity and lick rate 

Early vs Late sessions 5 dCA1 mice T-test t = 1.51 p = 0.17, 
effectsize 
(Cohen's d) = 1.07 

S3d 

CS+ responsive cells during odor 
period, Early vs Late (vCA1) 

total combined cells from 
11 vCA1 mice 

see figure for exact cell numbers Fisher's Exact p = 0.003, effect-
size (odds ratio)  = 
2.02 

S3d 

CS- responsive cells during odor 
period, Early vs Late (vCA1) 

total combined cells from 
11 vCA1 mice 

see figure for exact cell numbers Fisher's Exact p = 0.13, effect-
size (odds ratio)  = 
0.6 

S3d 
CS+ responsive cells during trace 
period, Early vs Late (vCA1) 

total combined cells from 
11 vCA1 mice 

see figure for exact cell numbers Fisher's Exact p < 0.001, effect-
size (odds ratio)  = 
4.56 

S3d 
CS- responsive cells during trace 
period, Early vs Late (vCA1) 

total combined cells from 
11 vCA1 mice 

see figure for exact cell numbers Fisher's Exact p = 0.055, effect-
size (odds ratio)  = 
6.96 
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S3d 
CS+ responsive cells during odor 
period, Early vs Late (dCA1) 

total combined cells from 4 
dCA1 mice 

see figure for exact cell numbers Fisher's Exact p < 0.001, effect-
size (odds ratio)  = 
2.7 

S3d 

CS- responsive cells during odor 
period, Early vs Late (dCA1) 

total combined cells from 4 
dCA1 mice 

see figure for exact cell numbers Fisher's Exact p = 0.38, effect-
size (odds ratio)  = 
0.79 

S3d 

CS+ responsive cells during trace 
period, Early vs Late (dCA1) 

total combined cells from 4 
dCA1 mice 

see figure for exact cell numbers Fisher's Exact p < 0.001, effect-
size (odds ratio)  = 
8.24 

S3d 
CS- responsive cells during trace 
period, Early vs Late (dCA1) 

total combined cells from 4 
dCA1 mice 

see figure for exact cell numbers Fisher's Exact p = 0.004, effect-
size (odds ratio)  = 
11.3 

S4c 

CS+/baseline (upper) or CS-/baseline  
(lower) decoding accuracies, Pre vs  
Late sessions 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
454 cells from 11 vCA1 or 5 
dCA1 mice 

Mann-Whitney U color-coded bars 
above graph show 
time bins where p 
< 0.01 

S4d 

Early vs Late, odor period (vCA1) Euclidean distance 
between CS+ and CS- 
MDS values 

10 MDS runs Mann-Whitney U U = 2, p < 0.001, 
effectsize (r)  = 
0.81 

S4d 
Early vs Late, trace period (vCA1) Euclidean distance 

between CS+ and CS- 
MDS values 

10 MDS runs Mann-Whitney U U = 3, p < 0.001, 
effectsize (r)  = 
0.79 

S4d 
Early vs Late, odor period (dCA1) Euclidean distance 

between CS+ and CS- 
MDS values 

10 MDS runs Mann-Whitney U U = 25, p = 0.064, 
effect-size (r)  = 
0.42 

S4d 

Early vs Late, trace period (dCA1) Euclidean distance 
between CS+ and CS- 
MDS values 

10 MDS runs Mann-Whitney U U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

S4f 
CS+/CS- decoding accuracy, odor 
period 

pre vs post 'aha' point 11 vCA1 mice Mann-Whitney U U = 21 , p = .031, 
effectsize (r)  = 
0.49 

S4f 
CS+/CS- decoding accuracy, trace 
period 

pre vs post 'aha' point 11 vCA1 mice Mann-Whitney U U = 0 , p < .001, 
effectsize (r)  = 
0.84 

S4f 

CS+/CS- decoding accuracy, odor 
period 

pre vs post 'aha' point 4 dCA1 mice Mann-Whitney U U = 27, p = 0.089., 
effect-size (r)  = 
0.39 

S4f 

CS+/CS- decoding accuracy, trace 
period 

pre vs post 'aha' point 4 dCA1 mice Mann-Whitney U U = 19 , p = .021., 
effect-size (r)  = 
0.52. 

S5C 

CS+/baseline decoding accuracies 
during tone period, Early vs Late 
session (vCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
537 cells from 4 vCA1 mice 

Mann-Whitney U U = 24, p = 0.054, 
effect-size (r)  = 
0.44 

S5C 

CS+/baseline decoding accuracies 
during tone period, Early vs Late 
session (dCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
537 cells from 2 dCA1 mice 

Mann-Whitney U U = 40, p = 0.47, 
effectsize (r)  = 
0.17 

S5D 
CS-/baseline decoding accuracies 
during tone period, Early vs Late 
session (vCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
537 cells from 4 vCA1 mice 

Mann-Whitney U U = 47, p = 0.85, 
effectsize (r)  = 
0.05 

S5D 

CS-/baseline decoding accuracies 
during tone period, Early vs Late 
session (dCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
537 cells from 2 dCA1 mice 

Mann-Whitney U U = 29.5, p = 0.13, 
effect-size (r)  = 
0.35 

S5E 
mean lick rate (Hz) Trial type (Early session) 3 vCA1 mice (non-learners only) Mann-Whitney U U = 4, p = 1, 

effect-size (r)  = 
0.0 

S5E 
mean lick rate (Hz) Trial type (Late session) 3 vCA1 mice (non-learners only) Mann-Whitney U U = 2, p = 0.38, 

effectsize (r)  = 
0.37 

S5F 

CS+/CS- decoding accuracy. Early vs 
Late 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
71 cells from 4 vCA1 (learner), 3 
vCA1 (nonlearner), or 2 dCA1 
(learner) mice 

Mann-Whitney U color-coded bars 
above graph show 
time bins where p 
< 0.01 
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Figure Variable Unit of Comparison n Test Results 

S5G 

CS+/CS- decoding accuracy, tone 
period, vCA1 nonlearners vs vCA1 
learners (Early) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
71 cells from 4 vCA1 (learner), 3 
vCA1 (nonlearner), or 2 dCA1 
(learner) mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 30, p = 0.28, 
effectsize (r)  = 
0.34 

S5G 

CS+/CS- decoding accuracy, tone 
period, vCA1 nonlearners vs dCA1 
learners (Early) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
71 cells from 4 vCA1 (learner), 3 
vCA1 (nonlearner), or 2 dCA1 
(learner) mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 70, p = 0.27, 
effectsize (r)  = 
0.34 

S5G 

CS+/CS- decoding accuracy, tone 
period, vCA1 learners vs dCA1 
learners (Early) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
71 cells from 4 vCA1 (learner), 3 
vCA1 (nonlearner), or 2 dCA1 
(learner) mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 83, p = 0.028, 
effect-size (r)  = 
0.56 

S5G 

CS+/CS- decoding accuracy, tone 
period, vCA1 nonlearners vs vCA1 
learners (Late) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
71 cells from 4 vCA1 (learner), 3 
vCA1 (nonlearner), or 2 dCA1 
(learner) mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 3, p < 0.001, 
effectsize (r)  = 
0.79 

S5G 

CS+/CS- decoding accuracy, tone 
period, vCA1 nonlearners vs dCA1 
learners (Late) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
71 cells from 4 vCA1 (learner), 3 
vCA1 (nonlearner), or 2 dCA1 
(learner) mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 29.5, p = 0.26, 
effect-size (r)  = 
0.35 

S5G 

CS+/CS- decoding accuracy, tone 
period, vCA1 learners vs dCA1 
learners (Late) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
71 cells from 4 vCA1 (learner), 3 
vCA1 (nonlearner), or 2 dCA1 
(learner) mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 92, p = 0.003, 
effect-size (r)  = 
0.71 

S5G 

CS+/CS- decoding accuracy, trace 
period, vCA1 nonlearners vs vCA1 
learners (Early) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
71 cells from 4 vCA1 (learner), 3 
vCA1 (nonlearner), or 2 dCA1 
(learner) mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 58.5, p = 0.1, 
effectsize (r)  = 
0.14 

S5G 

CS+/CS- decoding accuracy, trace 
period, vCA1 nonlearners vs dCA1 
learners (Early) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
71 cells from 4 vCA1 (learner), 3 
vCA1 (nonlearner), or 2 dCA1 
(learner) mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 36.5, p = 0.65, 
effect-size (r)  = 
0.23 

Fig. S3G 

CS+/CS- decoding accuracy, trace 
period, vCA1 learners vs dCA1 
learners (Early) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
71 cells from 4 vCA1 (learner), 3 
vCA1 (nonlearner), or 2 dCA1 
(learner) mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 30.5, p = 0.3, 
effectsize (r)  = 
0.33 

S5G 

CS+/CS- decoding accuracy, trace 
period, vCA1 nonlearners vs vCA1 
learners (Late) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
71 cells from 4 vCA1 (learner), 3 
vCA1 (nonlearner), or 2 dCA1 
(learner) mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 1, p < 0.001, 
effectsize (r)  = 
0.83 

S5G 

CS+/CS- decoding accuracy, trace 
period, vCA1 nonlearners vs dCA1 
learners (Late) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
71 cells from 4 vCA1 (learner), 3 
vCA1 (nonlearner), or 2 dCA1 
(learner) mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 11, p = 0.007, 
effect-size (r)  = 
0.66 

S5G 

CS+/CS- decoding accuracy, trace 
period, vCA1 learners vs dCA1 
learners (Late) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
71 cells from 4 vCA1 (learner), 3 
vCA1 (nonlearner), or 2 dCA1 
(learner) mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 83, p = 0.028, 
effect-size (r)  = 
0.56 

S9g 

Across-session Early/Late vs 
Late/Reacq trial type decoding 
accuracies during trace period 
(dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
100 cells from 5 dCA1 mice 

Mann-Whitney U U = 10, p = 0.003, 
effect-size (r)  = 
0.68 

S9h 
Across-session Early/Late vs 
Late/Reacq CS+/CS- decoding 
accuracies during dodr period (vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
100 cells from 8 vCA1 mice 

Mann-Whitney U U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

S9h 

Across-session Early/Late vs 
Late/Reacq CS+/CS- decoding 
accuracies during odor period (dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
100 cells from 5 dCA1 mice 

Mann-Whitney U U = 3, p < 0.001, 
effectsize (r)  = 
0.79 

S9h 

Across-session Early/Late vs 
Late/Reacq CS+/CS- decoding 
accuracies during trace period 
(vCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
100 cells from 8 vCA1 mice 

Mann-Whitney U U = 6, p = 0.001, 
effectsize (r)  = 
0.74 
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Figure Variable Unit of Comparison n Test Results 

S9h 

Across-session Early/Late vs 
Late/Reacq CS+/CS- decoding 
accuracies during trace period 
(dCA1) 

10 decoding iterations for 
each 

n-matched pseudopopulation of 
100 cells from 5 dCA1 mice 

Mann-Whitney U U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

S10b 
CS+Shock/CS- decoding accuracy, 
odor period, Early vs Late (vCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Mann-Whitney U U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

S10b 

CS+Shock/CS- decoding accuracy, 
odor period, Early vs Late (dCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Mann-Whitney U U = 49.5, p = 1, 
effectsize (r)  = 
0.008 

S10b 
CS+Shock/CS- decoding accuracy, 
trace period, Early vs Late (vCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Mann-Whitney U U = 9, p = 0.002, 
effectsize (r)  = 
0.69 

S10b 
CS+Shock/CS- decoding accuracy, 
trace period, Early vs Late (dCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Mann-Whitney U U = 12, p = 0.005, 
effect-size (r)  = 
0.64 

S10c 

CS+Rew/CS- decoding accuracy, 
odor period, Early vs Late (vCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Mann-Whitney U U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

S10c 
CS+Rew/CS- decoding accuracy, 
odor period, Early vs Late (dCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Mann-Whitney U U = 0, p < 0.001, 
effectsize (r)  = 
0.77 

S10c 
CS+Rew/CS- decoding accuracy, 
trace period, Early vs Late (vCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
444 cells from 10 vCA1 mice 

Mann-Whitney U U = 11, p = 0.004, 
effect-size (r)  = 
0.66 

S10c 

CS+Rew/CS- decoding accuracy, 
trace period, Early vs Late (dCA1) 

10 decoding iterations for 
each session 

n-matched pseudopopulation of 
444 cells from 3 dCA1 mice 

Mann-Whitney U U = 0, p < 0.001, 
effectsize (r)  = 
0.85 

S10d,e trial type decoding accuracy, odor 
period, Late session 

10 decoding iterations 
each  

n-matched pseudopopulation of 
444 cells from 10 vCA1 and 3 
dCA1 mice 

One-way ANOVA  

region F = 47.7, p 
<0.001, effect size 
(ETA^2) = .24 

odor F = 33.8, p 
<0.001, effect size 
(ETA^2) = .34 

region*odor F = 14.6, p 
<0.001, effect size 
(ETA^2) = .15 

S10d,e trial type decoding accuracy, trace 
period, Late session 

10 decoding iterations 
each  

n-matched pseudopopulation of 
444 cells from 10 vCA1 and 3 
dCA1 mice 

One-way ANOVA  

region F = 2.5, p = 0.12, 
effect size (ETA^2) 
= .02 

odor F = 28.4, p < 
0.001, effect size 
(ETA^2) = .52 

region*odor F = .94, p = 0.4, 
effect size (ETA^2) 
= .03 

S10i 

Odor identity decoding accuracy 
across reversal learning (Late/Late 
Reversal), vCA1 vs dCA1 

10 decoding iterations for 
each region 

n-matched pseudopopulation of 
281 cells from 10 vCA1 and 3 
dCA1 mice 

Mann-Whitney U U = 41, p = 0.52, 
effectsize (r)  = 
0.15 

S10j 

Trial type decoding accuracy across 
reversal learning, trace period,  
Rew/CS- accuracy vs Sh/CS- 
accuracy (vCA1) 

10 decoding iterations 
each  

n-matched pseudopopulation of 
281 cells from 10 vCA1 mice 

Mann-Whitney U U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

S10j 

Trial type decoding accuracy across 
reversal learning, trace period,  
Rew/CS- accuracy vs Sh/CS- 
accuracy (dCA1) 

10 decoding iterations 
each  

n-matched pseudopopulation of 
281 cells from 3 dCA1 mice 

Mann-Whitney U U = 100, p < 
0.001, effect-size 
(r)  = 0.85 
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Figure Variable Unit of Comparison n Test Results 

S11c trial type decoding accuracy, odor 
period 

10 decoding iterations 
each  

n-matched pseudopopulation of 
340 cells from 8 vCA1 and 4 
dCA1 mice 

One-way ANOVA  

region F = 1.6, p = 0.21, 
effect size (ETA^2) 
= .03 

odor F = 0.95, p = 0.39, 
effect size (ETA^2) 
= .03 

region*odor F = 1.44, p = 0.25, 
effect size (ETA^2) 
= .05 

S11c trial type decoding accuracy, trace 
period 

10 decoding iterations 
each  

n-matched pseudopopulation of 
340 cells from 8 vCA1 and 4 
dCA1 mice 

One-way ANOVA  

region F = 5.16, p = 
0.027, effect size 
(ETA^2) = . 
048 

odor F = 15.3, p < 
0.001, effect size 
(ETA^2) = .29 

region*odor F = 9.4, p < 0.001, 
effect size (ETA^2) 
= .17 

S11d 

comparison of Rew vs CS- and Sh vs 
CS- decoding accuracies during odor  
period (vCA1; suprathreshold running 
trials only) 

10 decoding iterations 
each 

n-matched pseudopopulation of 
340 cells from 8 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 10, p = 0.005, 
effect-size (r)  = 
0.68 

S11d 

comparison of Rew vs Sh and Sh vs 
CS- decoding accuracies during odor  
period (vCA1; suprathreshold running 
trials only) 

10 decoding iterations 
each 

n-matched pseudopopulation of 
340 cells from 8 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 33.5, p = 0.34, 
effect-size (r)  = 
0.28 

S11d 

comparison of Rew vs CS- and Rew 
vs Sh decoding accuracies during 
odor  
period (vCA1; suprathreshold running 
trials only) 

10 decoding iterations 
each 

n-matched pseudopopulation of 
340 cells from 8 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 90, p = 0.003, 
effect-size (r)  = 
0.68 

S11d 

comparison of Rew vs CS- and Sh vs 
CS- decoding accuracies during trace  
period (vCA1; suprathreshold running 
trials only) 

10 decoding iterations 
each 

n-matched pseudopopulation of 
340 cells from 8 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 100, p < 
0.001, effect-size 
(r)  = 0.85 

S11d 

comparison of Rew vs Sh and Sh vs 
CS- decoding accuracies during trace  
period (vCA1; suprathreshold running 
trials only) 

10 decoding iterations 
each 

n-matched pseudopopulation of 
340 cells from 8 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 0, p < 0.001., 
effectsize (r)  = 
0.85 

S11d 

comparison of Rew vs CS- and Rew 
vs Sh decoding accuracies during 
trace  
period (vCA1; suprathreshold running 
trials only) 

10 decoding iterations 
each 

n-matched pseudopopulation of 
340 cells from 8 vCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 39.5, p = 0.56, 
effect-size (r)  = 
0.18 

S11d 

comparison of Rew vs CS- and Sh vs 
CS- decoding accuracies during odor  
period (dCA1; suprathreshold running 
trials only) 

10 decoding iterations 
each 

n-matched pseudopopulation of 
340 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 27.5, p = 0.19, 
effect-size (r)  = 
0.38 

S11d 

comparison of Rew vs Sh and Sh vs 
CS- decoding accuracies during odor  
period (dCA1; suprathreshold running 
trials only) 

10 decoding iterations 
each 

n-matched pseudopopulation of 
340 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 29, p = 0.23, 
effectsize (r)  = 
0.35 

S11d 

comparison of Rew vs CS- and Rew 
vs Sh decoding accuracies during 
odor  
period (dCA1; suprathreshold running 
trials only) 

10 decoding iterations 
each 

n-matched pseudopopulation of 
340 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 83.5, p = 
0.024, effect-size 
(r)  = 0.57 
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S11d 

comparison of Rew vs CS- and Sh vs 
CS- decoding accuracies during trace 
period (dCA1; suprathreshold running 
trials only) 

10 decoding iterations 
each 

n-matched pseudopopulation of 
340 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 74.5, p = 0.14, 
effect-size (r)  = 
0.41 

S11d 

comparison of Rew vs Sh and Sh vs 
CS- decoding accuracies during trace 
period (dCA1; suprathreshold running 
trials only) 

10 decoding iterations 
each 

n-matched pseudopopulation of 
340 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 2, p < 0.001, 
effectsize (r)  = 
0.81 

S11d 

comparison of Rew vs CS- and Rew 
vs Sh decoding accuracies during 
trace  
period (dCA1; suprathreshold running 
trials only) 

10 decoding iterations 
each 

n-matched pseudopopulation of 
340 cells from 4 dCA1 mice 

Mann-Whitney U, 
Bonferroni 
correction for n=2 

U = 78.5, p = 
0.068, effect-size 
(r)  = 0.48 

S11e 

Late session linear regression of 
calcium activity and running velocity 
(47.5 sec post odor onset) 

imaging sessions 11 vCA1, 5 dCA1 T-test t = 6.68, p < 0.001, 
effect-size 
(Cohen's d) =  
3.38 

S11f 

Late session speed decoding 
accuracy, vCA1 vs dCA1 

for each trial type, 
decoding accuracy for 
each 1 sec time bin 
spanning a 5 sec ITI 
period 

15 each region (3 trial types x 5 
time bins) 

Mann-Whitney U U = 75.5, p = 0.13, 
effect-size (r)  = 
0.43 

S11f 

Late session speed decoding 
accuracy vs chance (50%), vCA1 

for each trial type, 
decoding accuracy for 
each 1 sec time bin 
spanning a 5 sec ITI 
period 

15 Wilcoxon 
signedrank test 

W = 16, p = 0.012, 
effect-size (r)  = 
0.57 

S11f 

Late session speed decoding 
accuracy vs chance (50%), dCA1 

for each trial type, 
decoding accuracy for 
each 1 sec time bin 
spanning a 5 sec ITI 
period 

15 Wilcoxon 
signedrank test 

W = 2, p < 0.001, 
effectsize (r)  = 
0.81 

N/A total cells registered across sessions dCA1 2odor Early-Late 337 
N/A total cells registered across sessions dCA1 2odor Late-

Reacquisition 
377 

N/A total cells registered across sessions vCA1 2odor Early-Late 241 
N/A total cells registered across sessions vCA1 2odor Late-

Reacquisition 
253 

N/A total cells registered across sessions dCA1 4odor Pre-Late 503 
N/A total cells registered across sessions dCA1 4odor Late-Post 503 
N/A total cells registered across sessions vCA1 4odor Pre-Late 104 
N/A total cells registered across sessions vCA1 4odor Late-Post  104   

N/A total cells registered across sessions dCA1 3odor Late-Reversal 
Late  281 

N/A total cells registered across sessions vCA1 3odor Late-Reversal 
Late  392 
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Chapter 3: Conclusions 

 

 Using head-fixed 2-photon imaging in adult, behaving mice the results have 

demonstrated odor- and tone-evoked encoding in dCA1 and vCA1 in a range of 

associative learning tasks. This is similar to previous findings showing that before 

training stimuli and cues, particularly odors, are represented in dCA1 (Eichenbaum et 

al., 1987; Y. Li et al., 2017; Taxidis et al., 2020) is required for olfactory associative 

learning (Eichenbaum et al., 1987; Y. Li et al., 2017; Taxidis et al., 2020). In vCA1, 

responses to and population decoding of initial odor exposure was considerably inferior 

compared to dCA1, suggesting a continuous odor representation in dCA1 over this 

period. This extends the study of odor encoding in vCA1, which has primarily previously 

been studied in aversive behavior experiments, particularly avoidance behavior 

(Esclassan et al., 2009; McEchron et al., 1999; Mikulovic et al., 2018; Phillips & LeDoux, 

1992; Wang et al., 2013; Zhang et al., 2014). When the 2 odors were associated with a 

sucrose reward or nothing, dCA1 continued to easily distinguish between the odors and 

the odor and baseline period, while vCA1 decoding only achieved significance above 

chance once the task was learned. Single cell, decoding by increasing cell count, and 

MDS analyses generally follow these results, but offer two further nuances: 1) Though 

the percentage of responsive cells was roughly the same for both areas during the early 

and late sessions sessions, the higher rate in enhanced CS+/CS- discriminability over 

the first 100 cells added to the decoder suggests either a subset of and/or on average, 

cells in dCA1 during early learning contains more information decoder-relevant 

information than in vCA1. 2) While high levels of odor decoding appear similar for dCA1 

across early and late sessions, a significant increase in percentage of responding cells 

https://paperpile.com/c/nlQX00/hQvs+EXjk+pvTd
https://paperpile.com/c/nlQX00/hQvs+EXjk+pvTd
https://paperpile.com/c/nlQX00/hQvs+EXjk+pvTd
https://paperpile.com/c/nlQX00/4NmX+Dia1+tuR6+VA2D+2CUC+PCCb
https://paperpile.com/c/nlQX00/4NmX+Dia1+tuR6+VA2D+2CUC+PCCb


161 
 

and an increase, though not significant, in euclidean distance across early and late 

sessions suggest improvements in dCA1 odor encoding with learning that are not 

clearly present in the decoding results, likely due to a ceiling effect. These findings in 

dCA1 suggest a lack of encoding salience due to CS- encoding, while also changes in 

learning extend current literature which has shown remapping of dCA1 activity and 

selectivity with changing stimuli, particularly reward (Bast et al., 2009; Gauthier & Tank, 

2018; Jarzebowski et al., 2022; Jin & Lee, 2021; Zaremba et al., 2017). Cumulatively, 

dCA1 and vCA1 can encode odor representations, though their ability to do so appears 

to be differentially dependent on learned association. 

In contrast to the many differences in odor decoding, both areas decoding during 

the trace period similarly increased with learning. However, the Aha analysis suggests 

that 1) odor decoding in both areas increases before mice fully learn the task, and 2) 

vCA1 trace decoding increases sharply around the most rapid behavioral learning, 

which often occurred at the end of the early session or in the second session. This 

suggests a closer connection between trial-to-trial learning of the association and vCA1 

encoding. Perhaps, this could be do a representation in dCA1 of increased licking 

behavior to reward in the 10 trials immediately before the aha point, though lick 

behavior does not closely correlate with activity in vCA1 or dCA1, suggesting that dCA1 

rapidly learned trace decoding might represent something beyond licking behavior, 

possibly a prolonged odor representation. These findings extend previous work 

suggesting that vCA1 might have a larger role in working memory and trial-to-trial in 

specifically olfactory associative learning behavior than dCA1 (Hauser et al., 2020; 

Kesner et al., 2011; J. Li et al., 2022; Salimi et al., 2022). Surprisingly, the results show 

https://paperpile.com/c/nlQX00/EQYb+E6pn+YELs+ae0u+x8l4
https://paperpile.com/c/nlQX00/EQYb+E6pn+YELs+ae0u+x8l4
https://paperpile.com/c/nlQX00/bl8k+O93r+UYBh+tmNJ
https://paperpile.com/c/nlQX00/bl8k+O93r+UYBh+tmNJ
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mostly weak correlations between neural activity and licking, breathing or running 

behaviors in dCA1 and vCA1, particularly in vCA1, despite recent papers suggesting 

brain-wide signals for these types of behaviors, though other papers have also 

suggested a decorrelation between licking behavior and dCA1 activity (Ahmed et al., 

2020; Musall et al., 2019; Stringer et al., 2019). Due to the correlation found by multiple 

labs between specific behavior actions in anxiety-based tasks and ventral hippocampal 

activity, the literature increasingly reflects the theory that ventral hippocampus drives 

approach behavior (Bryant & Barker, 2020; Jimenez et al., 2018; Padilla-Coreano et al., 

2016; Parfitt et al., 2017; Pi et al., 2020; Sánchez-Bellot et al., 2022) Further studies 

should determine if other task evoked behaviors or measures of physiological correlates 

of salience, such as orofacial movements beyond licking, changes in pupil diameter, or 

heart rate, may contribute to correlate with hippocampal representations of associatively 

learned stimuli on a trial-by-trial basis.  

The tone version of the experiment demonstrated that these learning-based 

differences in dCA1 and vCA1 are generally consistent across modality, with vCA1 tone 

encoding beginning significantly lower than in dCA1 and rising to parity with learning. 

Tone trace period decoding also was the same across experimental modalities in terms 

of relative change with learning. Notably, mice who failed to learn the tone task were 

unable to decode in odor or trace periods, suggesting decoding ability is related to 

behavioral learning specifically rather than accumulated task experience. This 

comparison between learners and non-learners emerged due to the considerably higher 

difficulty in tone association compared to the odor task, with mice taking up to 6 times 

longer to learn and some mice failing to learn the task even over 20 days. This difficulty 

https://paperpile.com/c/nlQX00/uqki+iVWg+ne7m
https://paperpile.com/c/nlQX00/uqki+iVWg+ne7m
https://paperpile.com/c/nlQX00/I7M0+qsmL+BG64+XU7r+Om6p+ar8D
https://paperpile.com/c/nlQX00/I7M0+qsmL+BG64+XU7r+Om6p+ar8D
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also likely explains the reduced decoding accuracies during the odor and trace periods, 

though it is interesting to note dCA1 does not discriminate between CS+/- tones in this 

task, while vCA1 can discriminate between the tones with learning. Perhaps this 

suggests a further difference between areas, that during more difficult discriminations, 

dCA1 will readily represent both stimuli before and after association learning, but vCA1 

creates more specialized representations through different valence associations. The 

tone results offer some contrast to previous studies that have found tone encoding in 

dCA1 to be dependent on spatial features, whereas the results in a non-spatial task 

suggest dCA1 and vCA1 can encode tones, though more weakly than odorants, and 

vCA1 encoding is likely dependent on association to a rewarding or punishing stimulus 

(Itskov et al., 2012; Shan et al., 2016). 

As the mice progressed through extinction and reinstatement sessions in the 

2odor experiment, dCA1 encoding of odor remained stable, while vCA1 odor encoding 

varied with the presence of reward, further suggesting that vCA1 stimulus encoding is 

dependent on learned association with a value-based or behaviorally-relevant outcome. 

Additionally, both areas demonstrated stability in decoding across learned sessions with 

or without intervening extinction sessions, particularly during the trace period. This 

provides an interesting contrast to findings demonstrating vCA1 place cells remap 

readily, while vCA1 anxiety or avoidance behavior representations appear to be more 

stable (Chockanathan & Padmanabhan, 2021; Ciocchi et al., 2015; Forro et al., 2022; 

Jimenez et al., 2018; Keinath et al., 2014; Poppenk et al., 2013). Results from the shock 

outcome experiments, both unavoidable and instrumentally controlled shock outcomes, 

provide further evidence for the importance of behavioral relevance for vCA1 cue and 
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outcome encoding. This suggests a range of vCA1 stable encoding tied to direct 

behavioral relevance of the outcome. 

Previous studies have found odor encoding in vCA1, but the relationship 

between this single and other potentially encoded variables, such as associated 

outcome remain unclear, particularly at population level analyses (Eichenbaum et al., 

1987; Kesner et al., 2011; Radvansky et al., 2021). The 4 odor paradigm allowed testing 

of this specific question, demonstrating through decoding the outcome that neuronal 

populations in vCA1 but not dCA1 also encode the outcome associated with an odor in 

addition to odor identity, allowing downstream regions to have a stable representation of 

odor identity and associated outcome. This increased informational density was also 

evident in the comparison between areas; vCA1, but not dCA1, represented outcome 

beyond the odor and trace periods, throughout the entire trial duration, even into the 

inter-trial interval. These stretched representations across odor, trace, and US periods 

may link discontinuous cue-reward events, providing a measure of value throughout a 

rewarded trial type ( Figure 3.1 ). These two results, the mixing of outcome and cue 

information and trial-length outcome representation, extend results from many 

experiments, particularly in human literature that have found value-based representation 

in anterior hippocampus and generalizing encoding properties in ventral hippocampus 

(Bakkour et al., 2019; Knudsen & Wallis, 2021; Komorowski et al., 2013; Nguyen et al., 

2018). There are many hypothesized uses for such a cohesive representation of task 

variables through the environment, including a (Çavdaroğlu et al., 2021). 

While this study helps elucidate the potential roles for vCA1 and dCA1 population 

dynamics in associative learning, the underlying encoding mechanisms remain unclear. 
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Previous studies have found populations of dCA1 neurons coding for time in similar 

tasks via sequential ensemble firing (Taxidis et al., 2020). vCA1 could employ similar 

rotating ensembles of sequentially patterned activity to encode for outcome over trial-

long epochs, but the observed stability of broadened of vCA1 firing suggests rather that 

a dedicated subpopulation of cells might perform this role, though the low correlation 

between cue selectivity and decoder weight may complicate this interpretation of vCA1 

network encoding properties (Jarzebowski et al., 2022). As has been identified studying 

spatial encoding in dCA1, it has also been found that neural oscillations likely organize 

vCA1 and dCA1 activity during olfactory associative learning and social behavior 

encoding, as well as playing a role in hippocampal development (Ahlbeck et al., 2018; 

Martin et al., 2007; Rao et al., 2019; Salimi et al., 2022; Schoepfer, 2020). Further study 

of the ensemble dynamics and neural oscillations underlying the observed differences 

across areas in associative learning encoding will enable targeted manipulation of these 

mechanisms and advance understanding of downstream processing. 

Enhanced targeted manipulation of associative learning is particularly of interest 

in the context of hippocampal-associated post traumatic stress disorder (PTSD) 

(Kheirbek & Hen, 2011; Turner et al., 2022). Many studies have demonstrated 

correlational differences in human patients with PTSD with general hippocampal, as 

well as specifically anterior and posterior hippocampal, connectivity and activity (Chen & 

Etkin, 2013; Malivoire et al., 2018; Morey et al., 2016). Future work should examine the 

change in population encoding of associative learning in animal models of PTSD to 

determine how manipulating specifically dCA1 or vCA1 encoding can recover 

associative learning ability. 
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Figure 3.1 Summary Schematic 

 

 

a-b. Summary schematic illustrating learned task representations in dCA1 (C) and vCA1 
(D). Each dot represents a single-trial population activity vector during odor (blue), trace 
(red) or US (green) task epochs. In both dCA1 and vCA1, neural representations of CS+ 
and CS- trials are highly separable during each epoch. Task epochs are also generally 
separable from one another in both regions, particularly for CS+ trials and comparisons 
farther apart in time. In dCA1 there is less overlap of representations across epochs 
than there is in vCA1, owing in part to neural activity with greater temporal specialization 
in dCA1.   
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