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Abstract 

In order to interact with the world, people must be able to 
predict how it will unfold in the future, and these predictions 
must be updated regularly in light of new information. Here 
we study how the mind updates these predictions over time. 
Participants were asked to make ongoing predictions about 
the destination of a simulated ball moving on a 2D bumper 
table. We modeled these decisions by assuming people 
simulate the world forward under uncertainty. This model fit 
participants’ behavior well overall, suggesting that people 
continuously update their physical simulations to inform their 
decisions. In some specific scenarios participants’ behavior is 
not fit well by the simulation based model in a manner 
suggesting that in certain cases people may be using 
qualitative, rather than simulation-based, physical reasoning. 
 
Keywords: intuitive physics; forward simulation 

Introduction 
Changing lanes while driving seems like a simple and 
ordinary task – millions of people do it everyday. But to do 
so safely requires sophisticated predictions. Drivers must 
judge where their own car and those around it will be during 
the lane change, and, crucially, they must update these 
predictions with new information: if a car in the adjacent 
lane accelerates, a driver may abort her lane change to avoid 
a collision. 

This scenario demonstrates how people typically plan 
their actions: prediction is updated as new information is 
gathered. Research spanning decades has investigated how 
people predict future object movement while objects are 
hidden (Faisal & Wolpert, 2009; Rosenbaum, 1975; 
Runeson, 1975; Smith & Vul, 2013; Téglás et al., 2011), but 
in most natural cases, observers continue to see objects 
while updating their predictions. In this study we investigate 
how people change their instantaneous predictions about 
objects over time: are ongoing predictions the result of 
online simulation?  

Recent research provides evidence that people use ‘Noisy 
Newtonian’ models of physics to simulate the world 
(Sanborn, Mansinghka, & Griffiths, 2013): peoples’ internal 
physical models are based on correct assumptions about 
physics, but uncertainties in object position, movement, and 
latent variables can cause biases and variability in 
prediction. This framework has been used to predict 
peoples’ judgments about the stability of a tower of blocks 
(Hamrick, Battaglia, & Tenenbaum, 2011), the movement of 
hidden objects (Smith & Vul, 2013), and even judgments 
about physical causality (Gerstenberg, Goodman, Lagnado, 
& Tenenbaum, 2012). These works, however, solicited 
predictions at single instances in time. In this paper, we 

investigate whether a model that assumes faithful physics 
under uncertainty is also consistent with how peoples’ 
predictions evolve over time. We show that people’s 
decisions are often consistent with online forward 
simulation, but we also find that people can use qualitative 
reasoning about the world (e.g., Forbus, 1994) when this is 
more informative than simulations. 

Experiment 
We asked participants to play a game in which they make 
predictions about the path of a ball bouncing around a 
computerized table. The ball can reach one of two targets on 
the table, and participants earn points for predicting which 
target it reaches first. Crucially, they make this prediction 
continuously throughout the trial, earning points while 
predicting the correct target but losing points while 
predicting the incorrect target. In this way, we could capture 
how uncertainty (decisions whether to choose a target) and 
choices (which target) evolved over the course of each trial. 

Methods 
Sixty-six UC San Diego undergraduates participated in this 
experiment for course credit.1 

On each trial, participants saw a ball moving around a 
‘table’ on the computer screen that contained blocks and 
both a red and a green target. The ball bounced perfectly 
elastically off of the edge of the table and blocks, ending 
when the ball reached one of the two targets. While the trial 
progressed, participants were asked to predict whether the 
ball would hit the red target or the green target first, 
indicating their guess by holding down either the ‘z’ or the 
‘m’ key (each key counterbalanced for red and green 
between participants). If they were unsure, participants 
could press neither key, and if their prediction changed mid-
trial, they were encouraged to switch keys. Holding down a 
key would fill a bar of the associated color, and at the end of 
the trial, the score would be determined by the difference 
between the proportion of time the keys for each target were 
held down: 
(1)     !"#$% = 20 + 100 ∗ !"#$ !"##$%& − !"#$ !"#$%%&#'   
 

After each trial, participants were notified of their score 
and could continue to the next trial by pressing the spacebar. 

Participants were each given the same 400 trials in a 
random order. Of these, 370 trials were randomly generated, 
and 30 were designed to consider various extreme scenarios. 

                                                             
1 We excluded one participant for holding down a single key 

through the entirety of the second half of the experiment. 
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Of special note in the hand-crafted trials are five trials in 
which the configuration of the walls made it impossible for 
the ball to ever reach one of the two targets; these are called 
the ‘qualitative’ trials as they were meant to differentiate 
between simulation-based intuitive physics and a qualitative 
assessment of the table configuration. 

Each trial lasted between 2.0s and 10.2s. Target colors 
were randomly swapped for each trial to avoid color bias 
effects.2 Responses were polled and recorded once every 
tenth of a second.  

Results 
We analyzed participants’ aggregate performance across 
trials via their total score (eq. 1). Participants showed low 
variability in their average trial scores (mean = 56.0, sd = 
5.1) and scores for each trial were very consistent across 
participants (split half correlation, r = 0.96).  

We investigated whether there were surface-level features 
of trials that make them more or less difficult. Here we use 
average score as a proxy for difficulty; high scores indicated 
that most participants could accurately predict the path of 
the ball easily (and early), while low scores indicated 
uncertainty and mis-prediction. 

The features we considered as possible predictors 
included: (1) trial duration, (2) the number of blocks on the 
table, (3) the number bounces before the ball hit the target, 
(4) the initial deviation of the ball’s path from a horizontal 
or vertical direction, (5) the proportion of the table clear of 
walls or targets, (6) the ratio of the area of the correct target 
to the incorrect target, (7) the ratio of the average distance 
of the ball to the correct target versus the incorrect target, 
and (8) the closest the ball ever was to the incorrect target. 

We found four predictive features: trials were easier when 
their trajectory was on average closer to the final target, 
involved fewer bounces, when the initial motion was along 
a cardinal direction, and when the ball never approached the 
incorrect target. These four predictors together explained 
31.9% of the variance in scores across trials. 

                                                             
2 Individual responses were corrected in swapped trials to allow 

for consistent analysis. 

Table 1: Predictors of trial difficulty. Partial correlation is 
correlation between predictor and trial score accounting for 

all other predictors. 
 

Predictor r rpartial 
(7) Distance ratio -0.51 -0.24 
(3) Bounces -0.25 -0.19 
(4) Direction deviation -0.21 -0.14 
(8) Nearness to incorrect 0.42 0.09 

 
Although, aggregate metrics of ball trajectory accounted 

for some of the variation in difficulty across trial, such an 
analysis fails to capture the rich predictions individuals 
make over time and how those change in light of the details 
of a given table configuration and ball trajectory. 

To further delve into how people make online physical 
predictions and explain why some of these features might 
make trials more difficult, we compared human behavior to 
predictions made via stochastic physical reasoning. 

Physical Prediction Model 

Description 
The model we used to predict behavior on this task has two 
parts: the physical simulator, which provides possible paths 
that the ball can take, and the decision policy, which uses 
the output of the physical simulations to decide which target 
to choose (if either). 
 
Physical simulator The part of the model that simulates the 
trajectory of the ball is based in large part on the model of 
Smith & Vul (2013). This model assumes that people base 
their physical models on real physics but must incorporate 
uncertainty about the world into their physical judgments. 

This model captures two sources of uncertainty: 1) 
perceptual uncertainty arises from the noisiness of inferring 
the position and movement of objects, and 2) dynamic 
uncertainty is uncertainty about the roughness and elastic 
properties of the table and walls that could cause the ball’s 
path to deviate from idealized Newtonian physics over time. 

The physical simulator produces 500 simulation paths3 
every tenth of a second for each trial to replicate the polling 
frequency in the experiment. These simulation paths were 
produced using the same uncertainty parameters and fits as 
Smith & Vul (2013).4 Each path terminates when the 
simulated ball reaches either the red or the green target, or 
when 10 seconds of simulated time has passed.5 

                                                             
3 We used 500 simulations to estimate the aggregate distribution 

of predictions over all individuals.  We suspect that each individual 
used far fewer simulations, but aggregate across-subject behavior 
is consistent with many simulated paths over the full set of subjects 
(see Teglas et al. for a related discussion). 

4 Due to computational limitations, these parameters could not 
be easily fit to this data. However, because they were fit to 
aggregate behavior in the prior model, we assumed that they would 
capture aggregate performance in this similar task as well. 

5 This was an upper bound nearly equivalent to the longest trial. 

Figure 1: Illustration of an ongoing trial. Participants would 
see the ball travel along the dotted line and would predict 

green or red during its motion (neither blue line was visible). 
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The physical simulator outputs a set of proportions: how 
many paths reached the green target, how many reached the 
red target, and how many did not reach a target within the 
maximum simulation time (‘uncertain’ paths).  

 
Decision policy The decision policy takes the output of the 
physical simulator and assigns belief to two decisions: 1) is 
there sufficient certainty about which target the ball will hit 
to offer any guess at all? (analogous to participants’ decision 
whether or not to press any button at all), and if so, 2) which 
target should be guessed? 

The decision of whether any prediction should be made is 
based on the proportion of simulation paths that reached 
either target. These are combined and fit with two 
parameters: a parameter α representing a Luce choice soft-
max weighting, and a parameter γ to capture a bias towards 
making any guess at all: 
(2)      ! !"# = !"# !"#  !"  !"##$ !!!

!"# !"#  !"  !"##$ !!!"# !"!"#$%&' !!!
 

 
Conditioned on the decision to make any guess at all, the 

decision whether to guess red or green is based on the 
relative proportion of simulated paths that reached each 
color target. Here, there is a single Luce choice soft-max 
weighting parameter (β), but because experimental trial 
colors were randomized, we assumed no bias: 

(3) ! !"# !"# = !"# !"# !

!"# !"# !!!"# !"##$ ! 
 
Finally, we assume there is a decision offset: people 

cannot immediately use simulation information, but instead 
must take time to process it, come to a decision, and move 
their hand to push a button. Thus we fit a single parameter t 
to determine how long the model should wait to use 
simulation information.6 

These four parameters were optimized to fit the empirical 
data at each polling time point for each trial. At each point, 
we created a vector of the empirical probabilities of pressing 
each of the two keys at time point i of trial j: [prop(Red)ij, 
prop(Green)ij]. We then calculated a similar vector of model 
predictions: [P(Red)ij, P(Green)ij]. The parameters were fit 
to minimize the total Euclidean distance between these 
points over all time points of all trials: 
(4)  (!"#! !"# !" − ! !"# !")! + (!"#! !"##$ !" − ! !"##$ !")!!!  

 
Model performance 
How do predictions change over time? Participants often 
changed their decisions as trials progressed, either from 
uncertain to certain or one color to the other. We first ask 
whether we can capture changes in participants’ predictions 
over time. We compared model decision probabilities to the 
distribution of participants’ choices at each time point: what 

                                                             
6 Although the model only simulated once every tenth of a 

second, this parameter could take on continuous values. If it fell 
between two simulation times, the model decision would be a 
weighted average of each of those two decisions. 

proportion of participants guessed the ball would end in the 
red target or the green target, or were too uncertain to offer a 
guess. Although there were differences in individual 
predictions, we believe aggregation is appropriate given the 
low variability in total scores and high consistency within 
trials (split half correlation, r = 0.96). 

 
Figure 2: Joint histogram of model (x-axis) and human (y-
axis) decisions. (Top) The probability of making any guess 
(pushing a button). (Bottom) The probability of choosing 

‘red’ given a decision. Colors indicate log-frequency of time 
points in each bucket, with hotter colors indicating more 

observations. Observations along the diagonal indicate the 
model is accurately capturing the exact proportions of 

participants making decisions. 
 

If people make decisions based on similar uncertainty and 
decision policies to those of the model, then the model 
should be able to predict both (a) when people make any 
decision and (b) which choice they make (red or green) 
when they do. Figure 2 shows the correlation between 
model predictions and participants’ behavior.  In the top 
panel, we see that participants’ decisions whether to push 
either button are well predicted by the model (r = 0.84): at 
most time points either our model believes that no guess 
should be made and nearly no participants offer a guess 
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(bottom-left), or our model believes that a guess should 
definitely be made and nearly all participants offer a guess 
(top-right). Moreover, even when participants are not 
unanimous in their decision to offer a guess, the model 
captures the variation in the proportion of people making 
guesses. In the bottom panel, we see that the choice people 
make (red or green) at time points when they do offer a 
guess, is well explained by the model (r = 0.92): again much 
of the time participants are nearly unanimous in their choice 
of one of the targets, as is the model. But again the model 
also captures the gradations in beliefs when participants are 
split on which target to choose  
 
What makes trials difficult? We also wanted to know if 
we could better explain what makes trials easier or harder. 
To do so, we calculated the average model score for each 
trial in an equivalent way to participants’ scores: 
(5) !"#$%&'"($ = 20 + 100 ∗ ! !"##$!% ! − ! !"#$%%&#' !!  
 

The model predicts the difficulty of the trials better (R2 = 
0.675; see Figure 3) than using superficial trial features, as 
we first investigated (R2 = 0.319). It is noteworthy that our 
model was never explicitly informed about how the trial 
would unfold, which characteristics should make a trial 
more difficult, or even how scoring works; nor was the 
model fit to capture trial scores. Instead simply by 
considering variations in moment-by-moment physical 
predictions, we could capture variation in trial difficulty.  

 
Figure 3: Modeled versus empirical trial scores. Each point 

represents a single trial, where bars are 95% confidence 
intervals on empirical scores. 

 
There remains reliable variability in participants’ average 

scores that is not explained by the model. To investigate 
what might be causing this, we again predicted participants’ 
scores on each trial, using the same features that we had 
before, but physical model’s score included as a predictor. 
With the model score added, no new features became 
significant predictors (indicating that the model is unbiased 
with respect to those features), and two features – the 
number of bounces and the smallest distance to the incorrect 
target – were no longer good predictors (indicating that the 
model accounts for these difficulties well). Two features did 
remain though: the deviation of the path from the horizontal 
or vertical, and the ratio of the average distance of the ball 

to each of the targets. Including these two predictors did 
provide a statistically significantly better fit (F(2,393)=12.9, 
p<0.001), but only explained slightly more variability in 
participants’ scores (R2 = 0.695). 

The remaining feature predictors inform us about what 
aspects of human cognition the model is not capturing. First, 
the model does not capture the additional difficulty 
introduced when the ball is traveling at an angle. The 
physical model assumes that directions of movement are 
equally difficult to simulate, but this indicates that people 
may find it difficult to predict the path of objects travelling 
at an angle, in the same way people have difficulty 
discriminating oblique motion (Matthews & Quin, 1999). 
The ratio of the distances between the targets also remains 
as a predictor, but the correlation is attenuated as compared 
to the relationship without the model predictions, perhaps 
suggesting that there is a bias to believe the ball will hit the 
nearer target beyond simulations. 

 
Table 2: Predictors of trial difficult including the physical 

model. Partial correlation is correlation between predictor 
and trial score after all other predictors have been included. 
Prior partial correlation is partial correlation of prediction 

not including the physical model (see Table 1) 
 

Predictor r rpartial Prior rpartial 
Physical model 0.82 0.65 N/A 
(4) Direction deviation -0.21 -0.17 -0.14 
(7) Distance ratio -0.51 -0.15 -0.24 

 
Why do human and model predictions differ? 
Participants’ predictions were overall consistent with the 
model, but this fit varied by trial. To explain how people 
might be consistent with or deviate from simulation using 
noisy physics, we investigated how well the model fit 
empirical data on each trial. Our metric of trial fit was the 
average deviation between participants’ decisions and 
model predictions over the trial, similar to eq. 4: 
(6) !"#! = (!"#! !"# !" − ! !"# !")! + (!"#! !"##$ !" − ! !"##$ !")!! !! 

 

 
Figure 4: Model deviation from empirical decisions as a 

function of trial difficulty. 
 
Well-fit trials had lower average deviations, whereas poor 

fits were characterized by high deviation. As can be seen in 
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Figure 4, the model predicted participants’ decisions better 
on trials that the participants found easy, with a slight 
reduction in performance as the trials became more difficult. 

Many of the highest scoring and best fitting trials were 
straightforward, as people quickly decided on the correct 
target, and the model captured this behavior. We first review 
two trials with average model fit (the green points, Figure 4) 
to discuss the strengths of the model, then review where the 
model deviates from human performance: two trials that 
people find difficult but the model does not (the purple 
points), and the five ‘qualitative’ trials that the model finds 
difficult but people do not (the red points). Information on 
all other trials can be found online at 
experiments.evullab.org/physovertime/trials.html 

 

 
Figure 5: (Left) Image of average fitting trials. Numbers 
represent the time in seconds when the ball passes that 
point. (Right) Associated proportion of red, green, or 

undecided decisions by participants (top) or the model 
(bottom). Time on the x-axis is matched to the associated 

point in the trial diagram. The model tends to capture human 
behavior, erring only in confidence (top trial) or timing 

(bottom trial). 
 

Moderately difficult trials were those in which the correct 
target was not immediately obvious, requiring participants 
to either resolve their belief over time (see Figure 5-top), or 
change their beliefs when more information arrived (see 
Figure 5-bottom). The model predicted these types of 
decisions well, typically erring only in either the amount of 
uncertainty or the timing of decision changes. This suggests 
that in aggregate, the model captures the way that people 
resolve uncertainty: certainty increases as the ball travels or 
when people see the outcome of a bounce.  

There were also trials that participants did poorly on that 
the model did not fit well. These were typically trials where 
(a) the ball was traveling at a steep angle, and (b) small 
changes in the perceived layout of the table could cause a 
difference in the ending target. For instance, the top trial in 
Figure 6 was the trial for which the model performed the 
worst. Here, if the wall just below the green target were 

slightly larger, the ball would miss that target and hit red. 
The model assumes perfect knowledge of the table, but it is 
likely that people have uncertainty about the area of the 
bumpers and target-areas as well – uncertainty that the 
model does not have. 

 

 
Figure 6: Image of trial path (left) and associated empirical 

and model predictions (right) for difficult, poor-fitting trials. 
Slight changes in the layout of the table would have 

significant consequences for both trials, which the model 
does not capture. 

 
We also specifically created ‘qualitative’ trials in which 

one target was difficult for the ball to get to, but the other 
was unreachable (see Figure 7). These trials comprised a 
large portion of the trials that the model found difficult but 
participants found easy. If participants are deciding between 
the two targets based solely on the output of a physical 
simulator, then they should show large amounts of 
uncertainty until near the end of the trial.  On the other hand, 
if people can qualitatively analyze the structure of the table 
and determine that one target is unreachable, then they 
should quickly show high confidence for the possible but 
unlikely target. On these trials, participants tended to be 
much more confident than model predictions starting early 
in the trial, suggesting that they were performing a 
qualitative, topological analysis of the possible trajectories 
and outcomes on the table.  

Discussion 
In this study we demonstrated that human online predictions 
about the world can be well captured by a model that 
continually simulates the world forward using noisy 
physical principles. This physical simulation model could 
better predict which trials were easy and which were 
difficult than a simple analysis of trial features. Likewise, it 
well predicted how often people would decide on one of the 
two target, and which target they would decide on. 
Together, these results suggest that people are performing 
forward physical simulation online as the trial unfolds. 
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Furthermore, we found aspects of human behavior that 
the model missed, for instance difficulty with balls traveling 
at oblique angles or uncertainty about the state of the table. 
These factors are consistent with a forward simulation 
model, and suggest refinements to our knowledge of how 
people simulate object movement.  

The qualitative trials, on the other hand, are inconsistent 
with a pure simulation account. On these trials, simulations 
would have difficulty reaching the incorrect target, and thus 
pure simulation would predict uncertainty throughout the 
trial, as our model does. Instead, people quickly grow 
certain, reasoning that if the ball cannot reach one target, it 
must eventually reach the other. This suggests that people 
may use qualitative spatial reasoning (e.g. Forbus, 1994) 

when it provides a clear answer about their environment, but 
otherwise use simulations to reason about the future. Further 
investigation is required to understand how and when 
people decide to switch between modes of prediction. 

Finally, our model made predictions by generating a new 
set of simulated paths at each time step. However, people 
probably conserve computation and only slightly update a 
single set of simulations at each time step (e.g., using a 
particle filtering algorithm). Details of the exact prediction 
algorithm are a fruitful area for future research. 

We can predict the future state of the world and integrate 
new information to make better predictions. This study 
suggests these predictions often come from continuously 
updating our vision of how the world will unfold, but also 
leaves tantalizing clues that we can overlay our simulations 
with qualitative reasoning about our environment as well. 
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