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Modeling Hyperpolarized 13C Pyruvate And Urea Concentration Kinetics With Multiband RF 

Excitation MRI In Prostate Cancer 

by 

Naeim Bahrami	
  

Abstract	
  
	
  

The accurate detection and characterization of cancerous tissue is still a major problem for the 

clinical management of individual prostate cancer patients and for monitoring their response to 

therapy. 𝜌! (TR times to times points per second over T1 ratio) of urea, pyruvate, lactate, and 

alanine, also the amount urea and pyruvate perfusion, and conversion constant between pyruvate to 

lactate(Kpl) and pyruvate to alanine(Kpa) are important parameters in different organs including 

cancerous and healthy tissues. 𝜌!  of urea in kidneys, prostate cancerous tissues, and liver are 

measured 0.13(1/s), 0.15(1/s),  and 0.075(1/s),  respectively and 𝜌! of pyruvate in kidneys, liver 

cancer and healthy part of liver is 0.08(1/s),  0.13(1/s),  and 0.064(1/s),  respectively with 

TR=250ms. Kpl in cancerous tissues are more than 0.44(1/s) which is significantly higher than Kpl 

of metabolites in healthy tissues (Kpl = 0.028(1/s)) with p value less than 0.001. This Kpl is 

proportional to the lactate signal to pyruvate signal ratio with Correlation Coefficient=0.95. High 

perfusion amount of the accumulation of pyruvate, lactate, and alanine in compare to urea perfusion 

has been seen in cancerous tissues (liver cancer and prostate cancer) significantly (p<0.001) less than 

in healthy tissues. 
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Introduction	
  
	
  

The accurate detection and characterization of prostate cancer is still a major problem for the clinical 

management of individual prostate cancer patients and for monitoring their response to therapy. 

Recent technological advances in 1H Magnetic Resonance Spectroscopic Imaging (MRSI) have 

made it possible to correlate in-vivo prostatic citrate concentrations with the presence of prostate 

cancer. According to the analysis of human prostate tissue samples and results obtained from animal 

models of prostate cancer, it has been hypothesized that the observed decrease in citrate with 

prostate cancer is associated with increased citrate oxidation in the citric acid cycle, increased fatty 

acid synthesis, and/or increased glycolytic lactate production[1]. MRSI with hyperpolarized 13C 

labeled substrates is a new method to study prostate cancer that may be able to simultaneously and 

noninvasively evaluate changes in metabolic intermediates from multiple biochemical pathways of 

interest and thereby explain the observed changes in prostatic citrate concentrations.  

Recent studies have shown a large amount of potential applications of hyperpolarized (HP) 13C 

MRSI for the in vivo monitoring of cellular metabolism and the characterization of disease [2, 3]. 

The low natural abundance and sensitivity of 13C compared to the protons poses a technical 

challenge using conventional approaches[4].  Dynamic nuclear polarization (DNP) of 13C labeled 

pyruvate and subsequent rapid dissolution generates a contrast agent with a four order-of-magnitude 

sensitivity enhancement that is injected and gives this ability to monitor the spatial distribution of 

pyruvate and its conversion to lactate, alanine, and bicarbonate [5]. The conversion of pyruvate to 

lactate catalyzed by the enzyme lactate dehydrogenase is of particular interest, as the kinetics of this 

process have been shown to be sensitive to the presence and severity of disease in preclinical models 

[6].   
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The assessment of early response to targeted therapies using conventional imaging methods such as 

magnetic resonance imaging (MRI) or computerized tomography (CT) remains a challenge. MRI 

and CT are mostly limited to the detection of anatomical changes, which typically occur at late time 

points post treatment initiation. These changes can be as drastic as tumor shrinkage, but treatment 

can also induce tumor stasis or inhibition of tumor growth. In such cases, anatomical imaging 

methods are unable to provide an early indication of tumor responsiveness to molecularly targeted 

treatments[7, 8]. 

The transgenic adenocarcinoma of mouse prostate (TRAMP) murine model is a well-characterized 

model of prostate cancer that mimics the rapid disease progression, histopathology and metabolic 

changes observed in human disease[9, 10]. These mice are widely used in the identification of novel 

biomarkers and molecular mechanisms associated with disease progression, as well as in the 

investigation of new strategies for characterizing and treating human prostate cancers. The use of 

histopathology as the definitive end point in evaluating disease progression and treatment efficacy is 

subjective, with significant differences between individual pathologists interpretation, and prevents 

the serial assessment of the associated cellular bioenergetic pathways over time. Mice prostate 

cancer studies would therefore greatly benefit from in vivo metabolic imaging using 13C MRSI.  We 

used these mice as a model system of human prostate cancer to test the proposed fitting methods. 

The value of T1 reflects the dynamics of nuclear spin. For low-sensitivity nuclei the estimation of 𝜌! 

(the ratio of TR to T1) with hyperpolarized samples is not made by the classical inversion-recovery 

method because repeated hyperpolarizations would be too time consuming and expensive[11]. 

Instead the measurement of T1 and 𝜌! is done with the sample hyperpolarized by subjecting it to 

multiple small angle pulses in quick (relative to T1 and 𝜌!) succession. Thus we acquire a series of 

longitudinal magnetization measurements from each RF pulse. The problem with this approach for 
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pyruvate in vivo is that each RF pulse subtracts some of the magnetization(Pyruvate) from the 

sample in addition to conversion to Lactate. Repeated sampling of small amounts of the 

magnetization at regular time intervals yields an exponentially decaying signal (even if longitudinal 

relaxation were not operating) in such a way that the relaxation time that characterizes the 

exponential decay is in general smaller than that of the intrinsic T1.  

The variation of the signal that is detected in perfusion imaging of each tissue including cancer 

reflects spatially heterogeneous changes to existing vasculature and neovascularization as tumors 

surpass the normal blood supply, including microcirculatory disturbance in some of the abnormal 

vessels[12]. Besides tumor perfusion data the metabolic data available from spectroscopic imaging 

of [1-13C]pyruvate [13] would also be of important value in exploring the complex relationship 

between perfusion and metabolism in cancer at both preclinical and clinical research levels[14].  

An important consideration for performing hyperpolarized 13C MR studies is the T1 relaxation time 

of the unrecoverable spin polarization after dissolution of the polarized sample. Specifically, if 

metabolically active substrates such as [1-13C] pyruvate are used to probe real time metabolism in 

vivo or in vitro, reduced T1 may limit the spatial resolution and temporal lifetime of the study[15]. 

In this study, the field dependence of solution state T1 relaxation times of hyperpolarized [1-13C] 

pyruvate is exploited by using a relatively low magnetic field, 3T (31MHz), to retain higher amounts 

of residual polarization.	
  

The primary purpose of this research was to model dynamic changes in HP pyruvate and urea to 

provide improved characterization of cancerous tissues when using arbitrary RF flip angles in 

dynamic MRSI.  Data was acquired on mice with prostate cancer and comparisons were made to 

normal tissues such as kidney or liver of the metabolite concentrations, including Urea, Pyruvate, 

and Lactate, the conversion constant (Kpl) between pyruvate to lactate, and the conversion constant 
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(Kpa) between pyruvate to alanine. We used two different fitting approaches to achieve this aim: an 

approach which is enabled by calculating the longitudinal magnetization and differential of 

longitudinal magnetization and extracting parameters including 𝜌! values of the metabolites, Kpa, 

and Kpl. The other fitting approach was based on a non-linear least square algorithm to fitting the 

parameters in the kinetic model (metabolite T1values, Kpa, and Kpl).  We also created novel 

parameterizations of the total pyruvate and urea perfusions in order to assess vascular delivery and 

tissue uptake.  A key new feature of these methods is their ability to detect metabolic conversion, 

magnetization exchange between compounds, and perfusion when using arbitrary RF flip angles on 

the different compounds.	
  

Methods	
  and	
  Materials	
  

Data	
  acquisition	
  	
  
	
  

The 13C MRSI data was acquired with 18-fold acceleration using a compressed sensing pulse 

sequence[16]. The repetition time (TR) was 250 ms and images were reconstructed every 2 sec. 

Imaging started at the end of a 12 sec injection of 350 µL of 80 mM [1-13C]pyruvate and 80 mM 

13C-urea.  The images had 5x5x5.4 mm spatial resolution and a matrix size of 12x12x16 for full 

mouse coverage. The sequence implemented uses multiband spectral spatial RF pulses [17] while 

allowing for different excitation angles imparted to pyruvate, lactate, alanine and urea. Small flip 

angles of 6 degrees for urea and pyruvate were used to minimally perturb their magnetization while 

larger flip angles of 12 degrees for lactate and alanine were used to increase the SNR. This small flip 

angle on pyruvate is expected to yield a greater cumulative signal on lactate since depolarization is 

reduced[18]. All imaging was acquired from a GE Healthcare 3T MRI at Byers Hall. Subjects used 
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for this study were 4 TRAMP mice with prostate cancer and 3 double transgenic mice with liver 

cancer[19]. 

Pyruvate	
  and	
  Urea	
  Kinetics	
  
The kinetics of the HP pyruvate magnetization can be modeled as: 

!
!"

𝑀𝑝(𝑡)
𝑀𝑙 𝑡
𝑀𝑎(𝑡)

=
−𝜌! − 𝐾𝑝𝑙 − 𝐾𝑝𝑎 0 0

𝐾𝑝𝑙 𝜌! 0
𝐾𝑝𝑎 0 𝜌!

𝑀𝑝(𝑡)
𝑀𝑙 𝑡
𝑀𝑎(𝑡)

       (1) 

where   𝜌!,   𝜌!, and   𝜌!, are the longitudinal magnetization relaxation rates for pyruvate, lactate and 

alanine, respectively, Kpl is the conversion rate from pyruvate to lactate, and Kpa is the conversion 

rate from pyruvate to alanine.  We assume the reverse conversion rates are negligible. 

Equations 2 through 5 show the solution to the kinetic model as well as for urea of the longitudinal 

magnetization: 

𝑀𝑧𝑢 𝑡 =   𝐶𝑢. 𝑒!(!!)!                                        (2) 

𝑀𝑧𝑝 𝑡 =   𝐶𝑝. 𝑒!(!"#!!"#!!!)!                                 (3) 

𝑀𝑧𝑙 𝑡 = !".!"#
!!!!"#!!"#!!!

   . 𝑒! !"#!!"#!!! ! + 𝐶𝑙. 𝑒!!!!    (4) 

𝑀𝑧𝑎 𝑡 = !".!"#
!!!!"#!!"#!!!

   . 𝑒! !"#!!"#!!! ! + 𝐶𝑎. 𝑒!!!!   (5) 

As it can be observed the lactate and alanine magnetization will decay based on the relaxation while 

there is some addition because of metabolite conversion from pyruvate.  

Flip angle effects on the magnetizations and decaying of the signal occur after each RF pulse. The 

flip angle effects on the longitudinal magnetization between images can be described in the 

following equation: 

Δ𝑀!" 𝑛 = !! ! !(!!" !!! . !"#!!   .    (!"#!!)!!!!
!!! )
!"#!!

 (6) 
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Where x represents pyruvate, lactate, alanine, or urea,  θ! is the appropriate flip angle for the 

metabolites (12 degrees for lactate and alanine and 6 degrees for pyruvate and urea), N is the number 

of flip angles per image (N=8 in our data), and the signal Sx.  

Linear	
  Square	
  and	
  Non-­‐Linear	
  Square	
  Method	
  
	
  

There are several numerical methods for solving the non-linear kinetics of HP pyruvate and urea in 

the presence of metabolite specific flip angles. The value of 𝜌! for urea can be estimated from data 

acquired using an RF pulse sequence with fixed time-intervals between sampling flip pulses by 

fitting (nonlinear regression) a decaying exponential function to them.  However, the pyruvate 

kinetics require a more complex approach. 

First	
  Approach	
  –	
  Linearized	
  kinetics	
  
	
  

First, we considered the magnitude of the longitudinal magnetization for extracting the parameters 

including 𝜌! values Kla, and kpl is shown in equation 1 while we are assuming that the conversion 

constant values from Lactate and Alanine(Klp and Kap, respectively) are zero.  We created a linear 

system of equations by discretizing Equation 6 as !
!"
𝑀!" ≈

!
!!
Δ𝑀!" 𝑛  combined with the flip angle 

effects in Equation 6.  This was solved using weighted least-squares (WLS) where the weighting was 

the lactate signal, SxL[n]. 

Second	
  Approach	
  	
  -­‐	
  Non-­‐linear	
  least	
  squares	
  
This approach is to use non-linear least squares (NLLS) to fit the signal based on Equations 6 and 5.  

For NLLS, the Levenberg–Marquardt’s (LM) approach has been the method of choice, perhaps, due 

due to its simple implementation. This simplicity is due in part to its approximation to the Hessian 

matrix of the NLLS objective function. Another approach is Newton’s method (or full Newton-type 

type method) where the complete Hessian matrix is required in the estimation process. It is well 
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known that Newton’s method is more robust than the LM method and can speed up convergence in 

NLLS problems [20-23], but the complete Hessian matrix is often not available or known for a given 

problem.  

This strategy entails using the WLS solution as the initial guess, adjusting the LM parameter, and 

incorporating the full Hessian matrix of the NLLS objective function.  With estimation of 𝜌! values 

for metabolites like urea, pyruvate, lactate, and Kpl from the First Approach we will have a good 

initial condition. Entering the initial T1 and subsequently 𝜌!values and Kpl to create a new signal 

and extracting estimated and predicted 𝜌! values and Kpl from a non- linear least square method to 

solve the problem directly is a great procedure to have a better and more robust values.  We also 

found that obtaining a good fit with our SNR required assuming that the relaxation rates, 𝜌!, of 

pyruvate, lactate, and alanine were identical. 

Perfusion	
  Parameterization	
  
Our studies included HP 13C-urea as an independent marker of perfusion.  To quantify, this 

perfusion, we propose perfusion parameters of urea perfusion as well as total pyruvate perfusion, 

which accounts for conversion to lactate and alanine. For total pyruvate perfusion, we propose: 

𝑃! = 𝑀!" 𝑡 +   𝑀!" 𝑡 +𝑀!" 𝑡   𝑑𝑡
!
!               (7)  

Where 𝑃!  is pyruvate perfusion accumulation and 𝑀 is the longitudinal magnetization of pyruvate, 

lactate, and alanine as calculated by the kinetic model (ie without the influence of RF pulses). For 

the urea perfusion we propose: 

𝑃! = 𝑀!" 𝑡 𝑑𝑡!
!                                       (8) 

Where P! is the urea perfusion and 𝑀 is the longitudinal magnetization of urea as calculated by the 

model. For an initial magnetization 𝑀!"[0] we have: 

𝑃! = 𝑀!" 0 . 𝑒!!  !!𝑑𝑡
!
! = 𝑀!" 0 /  𝜌!                          (9) 
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When we are assuming that   𝜌!,   𝜌!, and   𝜌! are equal as in the non-linear least squares fitting, we 

can derive the accumulation of pyruvate perfusion as: 

𝑃! = (𝑀!" 0 +𝑀!" 0 +𝑀!" 0 ). 𝑒!!  !!𝑑𝑡
!
! = (𝑀!" 0 +𝑀!" 0 +𝑀!" 0 )/  𝜌!           (10) 

(If   𝜌!,   𝜌!, and   𝜌! are not equal, the full expressions from Equations 3-5 can be used.) 

We also speculated that the ratio of total lactate signal to total pyruvate signal would be 

commensurate with Kpl. In other words, with summing all time points and assuming a constant ratio, 

we speculate: 

!"!"
!!!

!"!"
!!!

= 𝐶 ∗ 𝐾𝑝𝑙         (12) 

Where Nt is number of time points, Li and Pi are lactate and pyruvate peak values, respectively. This 

relationship is strictly true across different voxels provided we assume a constant lactate relaxation 

rate and delivery of pyruvate.   

Results	
  

Signal	
  Estimation	
  	
  
	
  

HP 13C MRSI and anatomical imaging were performed on seven mice. Fig.1 presents anatomical 

MR datasets from the prostate and kidney for one of the animals with prostate cancer and Fig. 2 

shows the healthy tissue of kidney and liver for one the animals with liver cancer. HP 13C pyruvate is 

detectable in each voxel of the grid, and is comparable between cancerous tissue and normal one. 

However, HP 13C lactate signal is much higher in the tumor region. As we could expect the amount 

of pyruvate to lactate is much higher in cancerous tissue compared to normal tissues.  
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Figure	
  1.	
  The image in the left shows a slice which is including the kidneys and the right one 
shows the prostate cancerous tissue in a TRAMP mouse. 

 

	
  

Figure	
  2.	
  The image in the left shows a slice which is including the kidneys and the right one 
shows the cancerous liver tissue in a mouse with liver cancer. 

 

The signal extracted from prostate and liver cancer voxels and the signal that was fit from the 

method using the difference longitudinal magnetization of the metabolites which was mentioned in 

the previous section are shown on Fig. 3 and Fig. 4, respectively.  

In Fig. 3 and Fig. 4 the real signal of three metabolites including Pyruvate, Lactate, and Urea is 

presented and we can observe the noisy, approximately exponential decay. Estimation of final values 
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for the parameters can be generated from the longitudinal magnetization and difference of 

longitudinal magnetization in each image.  

 

	
  

Figure	
  3.	
  Real (solid) and fit (dashed) signal curves in a prostate tumor voxel using the 
method of longitudinal magnetization difference fitting for urea(left image) and pyruvate, 

lactate, and alanine(right image). 

 

	
  

Figure	
  4. Real (solid) and fit (dashed) signal curves in a liver tumor voxel using the method 
of longitudinal magnetization difference fitting for urea(left image) and pyruvate, lactate, 

and alanine(right image). 
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Metabolites	
  Characterizations	
  

	
  	
  
Table 1 and table 2 present the average metabolites’ 𝜌! values, Kpl, and Kpa in the prostate and liver 

tumor tissues, respectively, based on the non-linear least square fitting method. According to 

previous studies[24-26] the in-vivo T1 values of HP 13C urea and pyruvate are in range of 30s and 

40s,respectively. Likewise, T1 values of lactate and alanine are in the same range as pyruvate [26, 

27].  

Table	
  1 Average 𝜌! values and conversion constant rates in prostate tumor, kidney, and liver 
for the animals with prostate cancer.	
  

 𝜌! of Urea (1/s) 𝜌!of Pyruvate and its 

products(1/s) 

Kpl(1/s) Kpa(1/s) 

Kidney 0.13 0.09 0.028 0.005 

Prostate Tumor 0.15 0.083 0.044 0.011 

Liver 0.075 0.061 0.032 0.006 

 

Table	
  2 Average ρ!  values and conversion constant rates in cancerous liver, healthy liver, 
and kidney for the animals with liver cancer.	
  

 𝜌! of Urea(1/s) 𝜌!of Pyruvate and its 

products(1/s) 

Kpl(1/s) Kpa(1/s) 

Kidney 0.08 0.084 0.022 0.003 

 Cancerous Liver 0.13 0.077 0.050 0.077 

Healthy Liver 0.064 0.071 0.026 0.0033 
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In these studies, the 𝜌!  measurements are larger than previous studies.  This is likely due to 

acquisition imperfections (flip angle calibrations, loss during refocusing pulses) and flow loss of 

signal during the experiment [28]. In Fig. 5 the mean variation of  𝜌! value of pyruvate and its 

products has been presented in different tissues of prostate tumor mice. Significant differences 

(p<0.001) were found between tumor and liver, and also between kidney and liver showing that T1 

values of the Pyruvate and its products and its metabolic products are higher in healthy tissues in 

liver with respect to cancerous prostate tissue.  

	
  

Figure	
  5. Pyruvate and its products 𝝆𝟏 (mean and standard deviation) in three different 
tissues among four animals that had prostate cancer. 

Fig. 6 illustrates values and the variation of 𝜌! of the pyruvate and its products in different tissues of 

liver cancer mice. We calculated no significant differences between regions which suggests the T1 

values of the Pyruvate and its products and its metabolic products are the same in healthy tissues in 

liver with respect to cancerous tissue.  

In Fig. 7 the amount of 𝜌! of the urea has been presented in different tissues of prostate cancer mice. 

Significant differences were observed (p<0.001) between tumor and liver, and also between kidney 
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and liver showing that T1 values of the urea are higher in healthy tissues in liver and kidney with 

respect to cancerous prostate tissue.  

 

	
  

Figure	
  6. Pyruvate and its products 𝝆𝟏 in three different tissues among three animals that 
had liver cancer. 

	
  

Figure	
  7. Urea 𝝆𝟏 in three different tissues among four animals that had prostate cancer. 
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Fig. 8 illustrates of 𝜌!  value of the urea in different tissues of liver cancer mice. Significant 

differences were found (p=0.007) between healthy tissue and cancerous tissue in liver showing that 

𝜌! values of the urea are lower in healthy voxels with respect to cancerous tissue.  

 

	
  

Figure	
  8. Urea 𝜌! in three different tissues among three animals that had liver cancer. 

The conversion rate constant between metabolites (Kpl and Kpa) are markers of the tissue metabolic profile. 

Similarly to previous studies, higher Kpl was associated with cancerous tissue. In addition, Kpa variation was 

pretty low with respect to Kpl among all voxels. In Fig. 9 and Fig. 10 are shown the varying pattern of Kpl 

between the voxels of interests across all of the subjects. A significant difference was observed (p<0.001) 

between cancerous tissues and non-cancerous tissues.  
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Figure	
  9. Kpl values in three different tissues among four animals that had prostate cancer. 

	
  

Figure	
  10. Kpl values in three different tissues among three animals that had liver cancer. 

Perfusion	
  Characterizations	
  	
  
	
  

We observed urea perfusion was relatively low in both prostate cancer and liver cancer tissue as 

presented in Fig. 11 and Fig.12.  



	
   16	
  

	
  

Figure	
  11. Urea perfusion extracted from four animals with prostate cancer.  There was 
relatively low urea perfusion in the tumor tissue, and a significant difference (p < 0.04) 
between liver and tumor. (All metabolites’ perfusion are normalized with the perfusion 

values in Kidney) 

	
  

Figure	
  12. Urea perfusion extracted from three animals with liver cancer.   There was 
relatively low urea perfusion in the tumor tissue, and a significant difference (p < 0.03) 

between kidney and tumor. (All metabolites’ perfusion are normalized with the perfusion 
values in Kidney) 

We normalized the perfusion rates to the kidney values. For this purpose the measured perfusion for 

each tissue such as healthy part of liver, tumor region of liver, prostate tumor, and kidneys are 
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divided by the measured perfusion of kidney, and this process is irritated for all metabolites 

including pyruvate and its products and urea. In Fig. 13. the ratio of Pyruvate and its products and its 

metabolic products perfusion over urea perfusion is shown.  

	
  

Figure	
  13. The perfusion ratio between metabolites.  The ratio between tumor-kidney and 
tumor-healthy liver is significantly different (p <0.001). (All metabolites’ perfusion are 

normalized with the perfusion values in Kidney) 

 

Fig. 14 shows the correlation between Kpl and this signal ratio is approximately linear. We also 

compare Kpl to this ratio map in different organs and two types of tumor showing high amounts of 

lactate to pyruvate signal in tumor regions(Fig. 15 and Fig. 16) 
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Figure	
  14. Correlation between Kpl and lactate to Pyruvate signal across kidney, liver, and 
tumor tissues which had a correlation coefficient of 0.95.  
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Figure	
  15. Mapping of the Kpl and lactate to pyruvate signal ratio in different slices of 
cancerous tissue and healthy tissue.  Anatomical images of liver cancer, kidney, and liver 

including both cancerous and healthy voxels are shown in a), b), and c), respectively. 
Kidneys(arrows) and cancer tissue(boundaries) are shown Kpl maps in d) liver cancer, e) 

kidneys, and f) whole liver slices. The lactate to pyruvate signal ratio for the same slices are 
shown at g),h), and i), respectively.  
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Figure	
  16.  Mapping of the Kpl and lactate to pyruvate signal ratio in different slices of 
cancerous tissue and healthy tissue Anatomical images of prostate cancer (red boundary), 

kidney (arrows), and healthy liver  (green boundary) slices are shown in a), b), and c), 
respectively. Kpl maps in d) prostate cancer, e) kidneys, and f) liver slices. The lactate to 

pyruvate signal ratio for the same slices are shown at g),h), and i), respectively. 

 

An appropriate way in order to validate the model fitting is to repeat fitting of simulated data for 

different SNRs by adding random noise with various rms. With no noise, the fit with our model was 

almost perfect. Fig. 17 presents the variation of the model fit Kpl with variation of noise rms 

showing the model is robust based on the very small amount of change in the fit Kpl with changing 

noise. 
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Figure	
  17. Kpl with changing the noise rms 

 

	
  

Figure	
  18. Mapping of Kpl and pyruvate and urea perfusion in different slices of cancerous 
tissue and healthy tissue, a) Kpl map on the prostate cancer, b)map of the Kpl on kidneys, 
c) Kpl maps on liver. While the pyruvate perfusion for prostate cancer, kidney, and liver 

are shown at d),e), and f), respectively. Urea perfusion for prostate cancer, kidney, and liver 
are shown at g),h), and i), respectively.  

We have changed the scale and window level of images in order to acquire better visualization of the 

metabolites’ conversion. Therefore, in Fig.18h) kidneys are marked with arrows. Kpl and perfusion 
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values of metabolites are mapped at the row image for one subject with prostate cancer in Fig. 18. 

Showing and visualizing the image and maps simultaneously helped us to follow the parameter 

changes between voxels.  As it is clear and shown with an arrow in Fig.18a) the Kpl values in the 

cancerous tissues are high. The variation of pyruvate perfusion and urea perfusion can be observed 

for the healthy and cancerous tissues.  

Mapping of the metabolites and other parameters allows us to have better interpretation of the spatial 

heterogeneity in the tumor as can be observed by varying Kpl values in fig18-a across the tumor. In 

the prostate tumor slice (Fig 18. a) we can identify a lymph node with metastatic disease in the 

bottom left of the slice which has a very high Kpl, while low Kpl and low perfusion in parts of 

primary tumor (more in the center of prostate) are likely necrosis in the animal.   

The amount of pyruvate perfusion in fig 18-f in liver is very low. In fig18-g high urea perfusion in 

the cancerous tissue can be observed and approximately correlates with Kpl.  

The same metabolite parameter mapping for one subject with liver cancer is shown in Fig. 19. 

Showing and visualizing the image and maps simultaneously helped us to follow the parameter 

changes between the voxels. Obviously, in Fig.18 the Kpl value in the cancerous tissues are high 

such as in prostate cancer subject. The variation in pyruvate perfusion and urea perfusion can be 

observed in both healthy and cancerous tissues.  

Kpl values in Fig.19a), b), and c) are significantly higher in the liver cancerous tissue(red arrow) 

with respect to the healthy part of liver(green arrow) and kidney. A small amount of pyruvate 

perfusion was observed in kidneys in Fig.19f) in comparison to the liver tumor while the urea 

perfusion as we expected is higher in kidneys(fig.19i). 
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Figure	
  19. Mapping of the Kpl, pyruvate, and urea perfusion in different slices of cancerous 
tissue and healthy tissue, a) Kpl map on the liver cancer, b)map of the Kpl on kidneys, c) 

Kpl maps on liver. While the pyruvate perfusion for prostate cancer, kidney, and liver are 
shown at d),e), and f), respectively. Urea perfusion for prostate cancer, kidney, and liver are 

shown at g),h), and i), respectively.  

 

 

Discussion	
  	
  
 

The measurement of 𝜌!  and metabolite perfusion amount are of practical importance in choosing 

optimal pulse parameters. In this study, we measured the 𝜌! of tumor hyperpolarized C13 pyruvate 

and urea. The values reported represent the average 𝜌! values in the tumor. The MRS spectra from 

which the 𝜌! values were obtained were often contaminated by other organs (partial voluming), and 

the relaxation times were obtained from all seven animals. (We have observed occasional variability 
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in the 𝜌! measurements between animals.)  

Imperfections of the RF parameters are inevitable in these experiments and they have been a source 

of many investigations leading to efforts undertaken to eliminate these errors or compensate for 

them[29]. The fit values for T1s are actually the effective T1 values, and reflect both T1 as well as 

losses due to flow and pulse sequence imperfection.  

Estimation of kinetic model parameters is challenging in vivo due physiologic effects (blood flow, 

respiratory/cardiac motion) and relatively low SNR in dynamic MRSI. Extracting the T1 of the 

metabolites is a big step toward finding a standard hallmark of cancerous versus healthy tissues. The 

range 20-45 (s) looks reasonable[25] for metabolites’ T1values which are illustrated in table 1 and 

table 2. 

Measurement of urea perfusion at each organ is proportional to urea concentration in the tissue and 

can be a marker vascular delivery since urea primarily stays in the vasculature. Liver is a very 

vascular organ and the opened capillary shape of liver vasculature likely caused high urea perfusion 

and concentration in liver.  The kidneys take up more urea due to their high vasculature and are also 

responsible for concentrating urine for removal in the urine. In tumor, the tissue request for blood is 

high but in a more uncontrolled way because of the abnormality of blood vasculature and circulation 

inside the tumor. The urea perfusion from tumors is more sporadic and random.  Urea cannot perfuse 

well in some parts of tumor particularly in suspected necrotic regions. On the other hand, some parts 

of tumor have more metabolic activity and, therefore, these parts need more blood and more vessels, 

and consequently more urea perfusion. The urea perfusion is primarily representing the vasculature 

delivery in each specific tissue and it stays in the vessels, while the pyruvate perfusion, which is the 

accumulation of all source and derived metabolites related to the pyruvate including pyruvate, 

lactate, and alanine, can also be a marker for vascular delivery but also includes tissue uptake.  We 
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hypothesize that when the pyruvate perfusion is higher in some tissues relative to urea perfusion it 

represents higher amount of uptake of the pyruvate that is flowing into the tissue. 

Fixed flip angles were used to acquire all data in this study but can be optimized to improve the 

model fitting. Future work will include flip angle optimization strategies using simulated data and 

the presented fitting methods to improve kinetic model parameterization.  

Conclusions	
  	
  
	
  

In this study we fit metabolite T1 values, Kpa, and Kpl across cancerous and normal tissues from 

data acquired with a multiband RF excitation dynamic MRSI pulse sequence using two different 

fitting models. In the first fitting approach we fit the derived longitudinal magnetization using 

weighted least-squares and for the second fitting approach we used a non-linear least squares 

algorithm to fit the kinetic model.  The conversion constant from pyruvate to lactate and alanine is 

pretty high in cancerous tissue in comparison to the healthy tissues and lactate signal to pyruvate 

signal ratio varies commensurate with Kpl, significantly. In the area is suspected to be necrotic 

tissue, the vasculature network has very low concentration and therefore the amount of urea 

perfusion is low. The ratio of pyruvate and its products, including lactate and alanine, to urea is 

significantly higher in cancerous tissues in comparison to healthy tissues which can be marked as a 

good sign and a marker for cancerous tissue detection.  

Our results show that the best prediction and detection of cancerous tissue and its progression in this 

data set of animals is using NLLS method which is so robust to noise. Analyzing the perfusion 

among the organs and tissues is also a helpful way for cancerous tissue marking. 
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