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A Hybrid Physics-Based and Data Driven Approach
to Optimal Control of Building
Cooling/Heating Systems

S. A. Vaghefi, M. A. Jafari, Member, [EEFE, J. Zhu, J. Brouwer, and Y. Lu

Abstract—This work integrates a physics-based model with a
data driven time-series model to forecast and optimally manage
building energy. Physical characterization of the building is
partially captured by a collection of zonal energy balance equa-
tions with parameters estimated using a least squares estimation
(LSE) technique and data initially generated from the Energy-
Plus building model. A generalized Cochran—Orcutt estimation
technique is adopted to describe the data generated from these
simulations. The combined forecast model is then used in a
model predictive control (MPC) framework to manage heating
and cooling set points. This work is motivated by the practical
limitations of simulation-based optimizations. Once the forecast
model is established capturing sufficient statistical variability and
physical behavior of the building, there will be no more need to
run EnergyPlus in the optimization routine.

Note to Practitioners—The proposed methodology lends itself for
real-life implementation of building energy management systems
where predictive control is desired to reduce energy use and avoid
demand charges and occupant discomfort. At each time step, it de-
termines the optimal set point values of all building's zones and
updates these values over time. In practice, the proposed control
strategy can be implemented in commercial smart energy boxes to
optimally control total daily energy-use costs.

Index Terms—Building energy management, model predic-
tive control (MPC), multiobjective mathematical programming
(MMP), thermal comfort.

I. INTRODUCTION

N THIS PAPER, we introduce a forecast model of a
building cooling/heating system and use it in conjunction
with an adaptive Model Predictive Control (MPC) algorithm to
optimize building HVAC set points. The forecast combines a
physics-based model of building zone energy balances with a
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statistical time series approach. In practice, the initial training
of the model parameters is carried out using building simulation
data. These estimates can then be refined and updated using
actual data from the building of interest. The formulation of
the MPC algorithm includes a multi-objective mathematical
programming model that minimizes total operating energy cost
and daily as-used demand charges as well as total deviation
from thermal comfort bounds. Optimal control strategies (i.c.,
for the zonal set points) are updated every time that new esti-
mates are available; this ensures that internal zone temperatures
remain within prespecified limits over time. The novelty of
this paper is on the specific combination and application of
existing methods to optimize energy control of large buildings
which are subject to stochastic externalities. In particular, the
methodology integrates a physics-based zonal model with an
advanced time series model to ensure enhanced accuracy and
sensitivity of energy forecasts to incremental changes in con-
trol variables. Internal temperature measurements of different
zones in the building are used in calculations. Initial training
of the model parameters is carried out using highly granular
building energy simulation (EnergyPlus or similar models).
Unlike the current practices that run different scenarios to deal
with stochastic externalities, the proposed forecasting model is
adaptive and uses actual measurements to refine and update its
forecast values.

The basic idea of MPC is to form a model that is able
to represent the future behavior of building cooling/heating
dynamics and to provide optimal control actions for a specific
time horizon [1]-[3]. Different modeling approaches can be
employed for implementation of an MPC strategy. The first
approach is based upon detailed physical modeling of cooling
and heating dynamics. In this approach, physical characteristics
of a building and its HVAC components are extracted and
fed into a series of energy balance equations. The balance
equations are then used for prediction of the future evolution
of cooling/heating dynamics. For instance, references [4]—[7]
present models for the cooling/heating dynamics using the
resistance-capacitance (RC) network analogy. In these works,
thermal capacitance and resistance between different compo-
nents of a building or a zone, such as air, inside and outside
surfaces of walls, windows and ceilings as well as heat flux due
to solar radiation are represented through RC-network diagrams
and heat transfer equations. The equations are then employed
for prediction of cooling/heating dynamics and optimization
of setpoint values. Models presented in [6]-[8] account for the
effect of other dynamic variables or physical components such

1545-5955 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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as occupancy, relative humidity, chilled/hot water tempera-
ture supplied to or returned from each building/zone, thermal
storage equipment, etc.

The physical MPC approach is typically too complex to solve
analytically for large granular building models. Therefore, re-
searchers often apply physical MPC models for simpler prob-
lems, e.g., a single zone or a single room [3], [4]. An alterna-
tive is to use a data-driven approach to MPC by simply fitting
a metamodel to the cooling/heating data regardless of the par-
ticular physical structure of the building. A number of studies
have focused on linear statistical models where input and output
data have linear forms. Autoregressive with exogenous vari-
able (ARX) and autoregressive moving average with exoge-
nous variable (ARMAX) are two examples of this approach [9],
[10]. State-space modeling is another example of such an ap-
proach where model parameters are estimated over a number of
specified system states [11], [12]. In other studies, researchers
employ soft computing techniques, particularly artificial neural
networks (ANNs), to address the complexity of building energy
forecast modeling and optimization [13], [14]. ANNs provide
linear or nonlinear model-free structures for prediction of en-
ergy demand using different input vectors, i.e., weather condi-
tions or wall insulation thickness [15]. These predictions can
then be used for optimization of cooling/heating loads [13].

Although data-driven models are typically simple to use, their
implementation is often accompanied by a number of problems
that may negatively influence their performance. ARX and
ARMAX models, for instance, follow linear autoregressive
structures that are not necessarily able to explain full variations
of load dynamics. In addition, most soft computing techniques
cannot guarantee full capture of complex interactions amongst
building components, dynamic variables, and cooling/heating
load, especially when the available real data is limited and
the building includes a complicated multi-zone structure. To
overcome such problems, a number of researchers employ a
simulation-based approach to capture the dynamic behavior
of buildings and thereby optimize energy use [16]-[18]. In
this approach, first, a highly granular physics-based simulation
model of the building is developed. Then, by designing and
running different experiments, the behavior of building energy
systems is captured over time. Simulation-based optimiza-
tion techniques are applied to minimize the energy used to
meet cooling/heating loads. However, this is costly and time
consuming particularly for larger models where simulation op-
timization must run over a large spectrum of possible scenarios
and run in near real time. Consequently, a number of recent
works combine the benefits of both simulation and data-driven
approaches to provide fast and effective control solutions [9].
These approaches are similar to that developed and used herein.

II. MODEL FRAMEWORK

Our proposed framework for optimal control of a building
heating/cooling system is presented in Fig. 1. Model execution
consists of two main phases: an offline phase and an online
phase. The offline phase includes analysis using a set of histor-
ical data either generated by EnergyPlus, or directly gathered
from buildings with the objective of constructing and training a
heating/cooling dynamic model for the building. This heating/
cooling model is then used in a building energy forecast model

building characteristics weather <
EnergyPlus |—— .
. . '

Heating/Cooling
Model

o) Energy forecast
. models validated
i ~@ - - model
3 time-series

____________ regression model
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Fig. 1. General framework of the proposed control strategy.

to calculate the 24-h look-ahead forecast values for building en-
ergy consumption. In the online phase, both the heating/cooling
model and energy forecast model are fed into an MPC scheme
that is designed to provide the optimal cooling/heating set points
for the next 24 h ahead. The MPC scheme is based on a dynamic
programming approach, which runs every time that it receives
new actual data from the building under study.
The following algorithm summarizes the proposed steps:

1) Create and run an EnergyPlus model for building energy

management:
For newly designed buildings this step is self-explanatory.
For existing buildings, there are often not sufficient data
available to capture operational variations. A valid Ener-
gyPlus model running under a statistically proper design of
experiments can provide the initial base for reducing statis-
tical noise in the estimation of model parameters [19]-[21].

2) Develop heating/cooling model and estimate the model

parameters:
This is a set of heat balance equations, which provides
explicit relationships between zonal internal temperatures
and effective power rate. The effective power rate repre-
sents the amount of cooling/heating rate in kW that the
HVAC system supplies to each building zone during any
specific time period. The model is used to forecast the
k-step-ahead internal temperature for each zone.

3) Create an energy forecast model:

This combines the model from Step 2 with a time series
model, and returns 24-h look-ahead forecast values for
building total energy demand. We apply a generalized form
of Cochran—Orcutt technique to estimate the model param-
eters [22]. Once the total energy demands for the next 24 h
are forecasted, then one can calculate the total energy op-
erating costs, which are then used in the next step.

4) Develop and run an MPC-based optimal control strategy:
We formulate a multi-objective dynamic programming
code to search for optimal control set points for the next
24-h. The total operating costs of Step 3 as well as the
total penalty for exceeding the thermal comfort bounds
define the objective functions, and the heat balances in
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Step 2 form the state constraints. In conjunction with the
thermal comfort objective function, an additional set of
constraints are imposed to maintain the thermal comfort
between specified bounds. As shown in Fig. 1, we find, at
time £, the optimal control set point values for times £ + 1,
t+ 2,...,t 4+ 24. Then, in the next hour, we update the
optimal solutions for £ + 2,...,¢ 4+ 25, when we receive
feedback of new information on the building (i.e., from
the building energy management system or real building).

III. HEATING/COOLING MODEL

Assume that a day is divided into a set of discrete time pe-
riods, k = 0,1,2,..., N —1. Then, according to the first law of
thermodynamics, the total energy exchange associated with the
ith thermal zone, + = 1,2, ..., Z, at time step ¢ + k is given by

AQ" (i) = QL) — Qe () (1
where Q%1% (7), and Q1F (i), are the amounts of input and

output energy at step ¢ + k, and AQ**# (i) is the amount of
energy gained or lost at time ¢ + k& by Zone i. In this study,
we assume that Qgﬁf (i), is a function of internal and external
temperatures [23] and can be calculated as follows:

QL) = oF (TR () — THF(0)) (2)

Tk (7)) and T % (1) are the internal and the external tempera-
ture of the ¢th zone at time ¢+ k, respectively. Assuming that the
ith zone is air conditioned by an HVAC system with effective
power rate of Rt“‘( ) (in kW) at time ¢ 4 k, we can rewrite (1)
as follows:
AQTH()

= RIE(E) — o (T G) — TE @) + ot

)

where a*** is a white noise representing the additional unpre-
dictable effects of convective internal loads, convective heat
transfer from the zone surfaces, interzone air mixing effects and
occupancy. In this study, we assume that such additional effects
are normally distributed. In addition, according to [23], the in-
ternal temperature of the ith zone at time £ 4k +1 can be written
as

T (1) =TT + (AQ () AY /(Cuir - Mair)  (4)
where At is the duration of time period and is set equal to 1 h in
this study. Furthermore, Cy;, and my,;, are the heat capacity and
the mass of air of the ith zone in J/kg®C, and kg, respectively.
The unit of AQ is J and THI‘( ) is °C. Combining (3) and (4),

we have

Tt+k+1( ) Tt+k(')
REGAL - of (TEF6) — Tei" () At Ly
+ Chair Mair Clair Meair e )

£k — Ata*t* /(Chyymai) are independently and identically
distributed. Cy;, and my;, cannot easily and accurately be de-
termined in practice, since the mass of air and heat capacity are

different for multiple points in a zone. Rather, the thermal bal-
ance model presented in (5) can be explained in terms of lost
and delivered energy and the internal and external temperatures
of the ith zone as follows:

Tt+k( ) + at+th+k( )
+¢k: (Tt+k:( )

Tt+k'+1( )
THF (@) +¢F (6)

where o represents the amount of unit increase (decrease) in
the 7th zone internal temperature by one unit increase (decrease)
in effective power rate over a time period. Hence, the effects
of Cyir and m,;, are hidden in af and ¥, which are explicit
and can be estimated using statistical techniques. For cooling
seasons, it is logical to assume that &¥, ©¥ € R and for heating
seasons ¥, ¢¥ ¢ R~ . Equation (6) can then be used to forecast
the ¢th zone internal temperature at time ¢ + k given that T}, (¢)
and T, (i) are known [23]. The forecast values are calculated
by

TH () = T 160 + af R ()

gk (TEH20) - TH6) - 0

where T.7* (i) is the forecast of internal temperature for the
ith zone at time ¢ + k, £k = 1,2,...24. Assume that v; is
the set point value of the iy, zone and that v; € [l;u;]; where
I; and w; are the lower and upper values for the possible set
poins. In optimization phase, we set Tt+k( ) = v; and find the
corresponding R*+%~1(i) by (7). &% and ¢¥ can be estimated
using the least squares estimation (LSE) technique by mini-
mizing Q¥ = |'T% (i) — T (4)||?, where TE (i) and TE (i) are
the vectors of actual and forecasted 1nterna1 temperature values
for the ith zone, and ||x]| is the /2-norm of x. &¥ and ¢¥ can be
calculated using numerical methods (see, e.g., [23]) or solving
the following equations:

n—1

0Q;
= 2 (BTG (T ) - T 6))
P k=1
oF FR(i)? — Gk (TEHG) = TEEE () REHHG) )
(®)
aQZ n-1
Bl Yo (T @) - TEF ) (T F @) - T )
b k=1
— af R (T () — THERG)
Gk (T G) - 15 )) ©)
Let ATt+k+1 TlthrkJrl( ) Tt+k( )and ATtJrk Titn+k(i)_
THEG ) and (8) and (9) to zero; then we have
n—1 . 2 n—1 .
| S (BG) S AR |
tHh=1 t+h=1
n—1 . n—1
{ ST ArETERER () D (ATit—Q—k)Q |
t+h=1 t+h=1
. nil ATt+k+1Rt+k(i)
G- 10

Y AT AL
t+k=1
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letting X¥ = [R***(3) Ar/T*] and YF =
(10) can be rewritten in matrix form

(Xf’xf)fl (XE'xE) bl = (Xf’xf)fl XEYE (1)

[ATHFH1 then,

where bf is the 2 x 1 vector of coefficients &* and ¢¥. Equation
(1 1) is given by multiplying both sides of (10) by the inverse of

XE'XE Accordmg to (11), &* and ¢¥i = 1,2,...,7 and k
=1,2,..., NN, are obtained as follows.
1
bt = (Xf'xf) XkyE, (12)

As mentioned in the previous section, the effective power
rate, R”k( ) supplied to the ith zone is not often measurable
directly in real-world applications. We note that Rt+k(z) can
be different from the electrical power that can be computed
from EnergyPlus or metered from real devices. In fact, sum-
ming up the delivered heating/cooling to all zones, R!**'s will
not necessarily give the total electrical energy consumption of
the building. Therefore, in this paper, we will use a combined
statistical and EnergyPlus approach to estimate the actual en-
ergy consumed by the building. The approach will be discussed
in Section IV.

We estimate the building total power as a function of R¥ % (i)
and T}¥ (i) with the latter one usually having sufficient histor-
ical data. Let us denote by %' the total power at time ¢ + k;
then the relationship between aforementioned variables can be
shown by y'*% = f(TLLF, R** - J), where Rl isal x p
vector of R*t¥(i)'s and J is a p x 1 vector of ones. Next,
we will present how to estimate f using a generalized form of
Cochrane—Orcutt estimation technique.

IV. ENERGY FORECAST MODEL

The relationship between y?, total power at time ¢, R! and
T!.. can be modeled through a simple linear regression as fol-
lows:

vt = Bo+ BIR\T + BoTL, + € (13)
where £ is the error term at time ¢ and 3;'s are linear model pa-
rameters. If the assumption of linearity were met, then * would
typically be assumed independent and the model parameters,
3i's, would be estimated using Least Squares Estimation (LSE)
technique. However, the actual relationship between total power
consumption at time £ with effective cooling power and external
temperature may follow an unknown nonlinear model. In addi-
tion, there are more variables such as occupancy and cooling
fans power that can affect the total power consumption. These
effects cannot be explained through the linear structure of (13),
and as a result, they emerge into the error terms. In this situa-
tion, the assumption of independency is no longer met and the
ordinary LSE technique cannot be applied [22]. To avoid this
problem, we employ the Cochran—Orcutt technique by rewriting
(13) as follows:

y' = Bo+ SR T + Bo T, + €,

el =g(et et ) el

(14)

e’ is an independent and identical white noise and £( - ) is a func-
tion of past error terms representing the structure of an autocor-
relation. Following [24], we obtain transformed variables:

Y: = ¢p(B)23(B)Y:,

Bo = ¢p(B)2p(B)Bo

Xy = QSP(B)(I';(B) [TgxthJ]
(15)

where ¢,(B) and ®%(B) are autoregressive operators with or-
ders of p and P that are applied to both the external temperature
and the vector of zonal effective power to find the building total
energy demand. Hence, (14) is replaced by

= Bo+X4B; + as. (16)
This is a typical linear regression with independent error terms

and parameters that can be estimated iteratively as proposed in
[24].

V. OPTIMAL CONTROL STRATEGY

In this section, we propose an optimal control strategy that
includes developing a mathematical programming formulation
that is solved dynamically over time. The cooling/heating model
presented in (6) is a dynamic model that describes how the
state variables, T”"( )'s, evolve over time by starting from an
initial condition 7?2 (- } and by manipulating control variables,
RUMF(i)'s. At time ¢ + k — 1, the actual internal temperature,
TEVE(i) is unknown and is specified by replacing it with any
arbitrary set point value, i.e., TP %(i) = v; € [lus]. Then,
R¥#-1(j) can be calculated accordingly using (7). R*+*~1()
is then fed into (13) to calculate the corresponding building total
energy use. This is repeated for the next 24 h and for all com-
binations of set point values between /; and u; and all zones to
find the optimal combination of set points that minimize total
energy use and total deviation from the thermal comfort.

The dynamic model requires a dynamic programming
scheme to find the optimal control variables in such a way
that the objective function is optimized over a specific time
horizon N. In this study, we set N = 24, so that the control
scheme can provide the optimal control variables for any 24
look-ahead periods (hours in the current case). At any given
hour, the optimization procedure is repeated for the next 24 h by
updating the state variables Tt“”( )'s, and external temperature
values. At each time step, the optimal control scheme solves
the following multi-objective problem:

Rt-‘rk Tt+k Tt+k)

ext 7 “in

min G1(N
Rt

= Z Cornyerk(RTF TR ToEF) At

+ v maxper, {yern(RTF, T TEF At} (01)

min  G2(N, 0 ks 5t+k)

u
5t+k'5t+k~

=P kE:t+k

k=0

2

t+k) (02)
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subject to the following constraints:

TLRG) = 01,y < TEFG) < THEG) + 074, (C)

Tt+k+1( ) Tt+lc( )
+GERITRG) + of (TERG) - T58G))  (C)
T0(i) = T, (Cs)
3tir > 0,88, >0,R >0 (Cy)
k=1,2,.... N—1;i=1,2,....,2

where 77 (i) and T5:% (i) are the thermal comfort upper and
lower bounds for the ith zone internal temperature at time £ 4 k.
st 1 1s the temperature violation below the lower bound and
i is the temperature violation above the upper bound. Tj
is the internal temperature at time 0 and At is the length of
the time period that is set equal to 1 h. The thermal comfort
constraint is imposed to each single zone based on the current
zone temperature. There are two objective functions: (1) G1(-)
is the total cost of energy, which includes 7otal Usage Cost (cost
per kWh) and Daily As-Used Demand Charges. The latter cost
is determined for each weekday in the billing period and applied
to the daily peak demand during each time period. The Monthly
As-Used Demand Charges for the billing period are equal to the
sum As-Used Daily Demand charges for the time periods [28].

Here, ¢4y 1, is unit price of electricity at time ¢ + &k and G2 ( - )
is the total penalty for exceeding the thermal comfort bounds.
This function penalizes any deviation from the predefined com-
fort bounds at any given time. v is the penalty applied on peak
energy demand, ¢4 is a set representing the on-peak period, and
Pty 1s the penalty that is applied to any violation from the
comfort bounds at time ¢ + &. The latter parameter indicates
different discomfort costs for different hours of a day. Since
G1(-) and G3(-) do not match in units and scale, it is not
possible to integrate them into a single objective function by
simply adding their values. Hence, we build a Multiobjective
Mathematical Programming (MMP) structure using a weighted
1, metric method. This method requires less restrictive assump-
tions (see, e.g., [25]) compared to other methods. This method
scales G1(-) and G5 (- ) into a single objective function that is
in an [, metric form as follows:

G (N, R*F THEF % 620,60 0)
_ {wl <G1( Rt+k Té;rtk7Tt+k) Grlnm>q

Grlnax . Gﬁnll’l
Gy (N, 6" n,dl .
+w2< ( t+k t+k)

Gmin 7y /4

M2

- . 17
Gy — Gy ) } (47

Both G1(-) and G2( - ) in O1 and O, are replaced with (17). In
this equation, wy and ws are the non-negative weights for G ( - )
and G»( - ), respectively, such that wy + w2 = 1. w; and ws rep-
resent the relative importance of the objective functions and are
determined by the decision maker. ¢ € [1, o) indicates the type
of metric we use in our problem. For example, ¢ = 1 is equiva-
lent to solving the weighted sum of deviations from ideal values,

whereas, ¢ = 2 means minimizing the weighted Euclidean dis-
tance of any point in the objective space from its ideal point. It
is proven that if there exist bounded solutions for G; and G3,
then for any combinations of w;'s and g(> 1) values, there is
one or more Pareto solutions [25], [26]. A Pareto solution has
the property that, for any point in the Pareto set, there does not
exist another point that results in better performance for both
objectives simultaneously [26].

G;-ni“ and G7** are the minimum and maximum possible
values of the jth objective function. It is easy to find the min-
imum and maximum possible values for the second objective
function. The minimum penalty for exceeding the thermal
comfort bounds is 0, when the internal temperature is within
thermal comfort (ﬂ;ﬁ( ) < TEPR() < THEE(D)) or equiva-
lently &}, = ¢, , = 0. The maximum penalty for exceeding
thermal comfort, G5'**, can be calculated by multiplying the
maximum penalty, p;1r and the maximum deviation form
thermal comfort as follows:

Gy = /ka/x e N}

(18)
Similarly, the minimum value of the first objective function,
G™in is set equal to zero. This is because the first objective func-
tion is the total energy cost, and when there is no demand, the
cost is zero. G7"®* can be found using EnergyPlus by calculating

the maximum energy consumed by HVAC. That is

{peintx g}f‘x {5t+lm ok =1,2,.

G (t+k) = 11<r}€a<xN{Ct+k}yt+k(Rmax T;?X( ) At

v max (g (R T At} (19)
tCld

where R™2* is the maximum load that can be generated by
HVAC at any time and 72%(4) is the highest external temper-
ature. Note that (19) calculates the maximum cost for the max-
imum energy consumed by HVAC for the case of the highest
daily temperature. This gives an upper limit for total energy cost
at any time.

Both components of (17) are normalized be-
tween 0 and 1 and as a result the metric function
G(N,RFR TLEF TIHF §e 6L, ) varies between 0 and
1. One disadvantage of the weighted metric method is that
its performance highly depends upon the values of G;mn and
G, For example, the maximum HVAC capacity and the
highest external temperature may result in an extremely large
value of GT®*, that is, the first component of (19) becomes
much smaller than the second component (thermal comfort).
Subsequently, the thermal comfort influences the optimization
results more than is desired. This undesirable effect can
significantly be reduced by incorporating domain specific
knowledge on G***.

Replacing G (-) and Ga(-) with G(-) in (17), the model
now comprises an ordinary mathematical program with a single
objective function that can be solved using Dynamic Program-
ming. At time ¢, the model is solved and the optimal control
values for the next 24-h are obtained. Then, in the next hour,
once some new data from each of the zones' internal tempera-
ture are received, we update all of the state variables and solve
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TABLE 1
LEAST SQUARE ERROR (LSE) ESTIMATES FOR COOLING/HEATING MODEL PARAMETERS
Zone
1 2 3 4 5 6 7 8 9 10 11 12
a, -0.38 -0.18 -0.32 -0.28 -0.37 -0.16 -0.30 -0.27 -0.38 -0.14 -0.32 -0.28
0, -0.26 -0.10 -0.22 -0.19 -0.25 -0.09 -0.21 -0.18 -0.26 -0.09 -0.22 -0.19

the model with the updated forecast values. This process is re-
peated every hour and once new information is received, the
optimization process will repeat for the next 24 h.

VI. NUMERICAL EXAMPLE

In this section, we evaluate the performance of our proposed
control strategy using an illustrative large size office building.
This is a commercial reference-building developed by the U.S.
Department of Energy (further details can be found in [27]).
In Offline Phase (see Fig. 1), we select 12 main zones of the
building and run the simulation using 2009 Phoenix weather
data. We collect one-month of hourly data (July 2009) and ex-
tract 744 hourly basis simulated output data for the following
variables: zonal internal temperatures, building external tem-
perature, zonal cooling power rate values, and the building total
energy demand. As mentioned in Section II, in Online Phase,
the proposed model can be updated using actual data. However,
in this study, since we do not access to such information, we
again use simulation model to generate required data over time.
We mimic the Online Phase (see Fig. 1), by using one-month
of simulation data for August 2009. For each hour, the simu-
lation model is run once, the model parameters and optimiza-
tion model are solved, and optimal set point values are updated.
Phase 2 outputs are: the total energy cost including usage cost,
daily as-used demand charges and thermal discomfort penalty,
and the set of optimal set point values for each zone at time ¢+
to time ¢ + k.

The estimated parameters of the proposed cooling/heating
model are presented in Table I. Without loss of generality, we as-
sume that &F and ¢¥ are constant over time or equivalentlya? =
&; and pF = p; fork = 1,2, ..., 24. Tt implies that during sim-
ulation the overall weather pattern does not radically change,
and there is no latent variables (such as heat gain/lost by low-
quality insulation or other unknown parameters). This assump-
tion may work for a short time; however, for a long-term optimal
control strategy one should estimate the parameters adaptively
(e.g., as a function of measured or forecast weather conditions).
As shown in Table I, a's are all (< 0) showing negative cor-
relations between the next hour internal temperature and zonal
effective power. This is because the simulated dataset is run for
a summer month and the effective power is used for cooling of
the building. Similarly, ¢'s (< 0) show negative correlation be-
tween current internal temperature and external temperature.

Fig. 2 displays a radar chart for the correlations between
the actual internal temperature values and their corresponding
k-step-ahead forecast values for each zone. In this figure, the
ith radius represents the ith zone and the kth irregular polygon
represents the correlation between the k-step-ahead forecasted
internal temperature and its corresponding actual temperature.
It shows that the correlations between actual internal temper-
ature values and their corresponding one-step-ahead forecast

Fig. 2. Correlation values between actual internal temperature and its corre-
sponding k-step-ahead forecasted values.
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Fig. 3. Comparison of simulated and forecasted values for the first zone in-
ternal temperature.

values (—*—4=1) vary between 0.75 and 0.85. This also shows
that the proposed cooling/heating model can appropriately
provide the one-step-ahead forecast for the zonal internal
temperature. Furthermore, it is observed that the performance
of the proposed heating/cooling model decreases as the lag
increases. For instance, the correlation between the actual and
forecasted internal temperature for the third lag ( —e—#/=3)
varies around 0.5, which is expected. This also can be seen in
Fig. 3. In this figure, we plot the first zone's actual and fore-
casted internal temperature values for the first and fifth lags.
The one-step-ahead forecast values are quite close to the actual
data while the five-step-ahead forecast values are relatively far
from the actual internal temperature. As previously discussed,
this is mainly because we assume that the parameter values
do not vary during every 24 h or equivalently 4* = &; and
oF @; for B = 1,2,...,24. It means that the structure
of balance equations does not change as time passes. The
performance of the proposed forecast values can be improved
by applying a time-dependent parameter estimation method.
To evaluate the performance of the energy forecast model we
use simulated data. Table II presents the estimated parameters of
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TABLE 11
ESTIMATED PARAMETERS OF ENERGY DEMAND FORECAST MODEL
Parameters
B B 4 P2 ?3 P4 ?s Pe ] 83 () P10 ?n
Estimates 43528 0.4808 0.078 -0.012 0.014 0.019 -0.028 0.002 -0.002 -0.006 -0.003 -0.012 0.005
Std. Error 0.3922 0.1015 0.0238 0.0243 0.0242 0.0239 0.0240 0.0241 0.0240 0.0237 0.0239 0.0241 0.0241
Hour 1 2 3 4 5 6 7 8 9 10 11
R’ 96.37 96.00 96.03 96.01 9595 96.018  96.02 96.02 96.02 96.02 96.03
R 96.18 95.8 95.83 95.80 95.74 95.81 95.81 95.81 95.81 95.81 95.82
Parameters
P12 913 P14 P15 P16 P17 P18 P19 920 P21 P22 $23 P24
Estimates -0.027 0.026 -0.018 0.016 0.004 -0.009  -0.004 0.003 0.002 -0.022  -0.026  0.007 0.936
Std. Error 0.0241 0.0242 0.0242 0.0241 0.0240 0.0239 0.0237 0.0237 0.0238 0.0238 0.0237 0.0239 0.0239
Hour 12 13 14 15 16 17 18 19 20 21 22 23 24
Ri 96.02 96.04 96.02 96.02 96.01 96.01 96.0 95.99 96.00 95.99 95.98 95.96 95.97
R adj 95.81 95.83 95.81 95.8 95.8 95.80 95.79 95.78 95.78 95.78 95.76 95.75 95.75
TABLE III
CoST COEEFICIENTS AND THERMAL DISCOMFORT PENALTY VALUES
K
1 2 3 4 5 6 7 8 9 10 11 12
Crk 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.21
Prak 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.09 0.09 0.09 0.09
K
13 14 15 16 17 18 19 20 21 22 23 24
Crik 0.25 0.35 0.45 0.35 0.35 0.35 0.25 0.25 0.25 0.11 0.11 0.11
Drik 0.093 0.093 0.093 0.093 0.074 0.037 0.037 0.019 0.019 0.019 0.009 0.000
500+ Ptk 1s normalized based upon the number of people working

Energy use (kWh)

20 40 60 80 100
Time (h)

Fig. 4. Comparison of simulated and forecasted values for the whole-building
energy demand.

the proposed energy demand model and performance measure
values. The correlation values for all lags are greater than 0.95.
The coefficient of determination R? and the adjusted coefficient
of determination Rgdj for the 24th lag are 95.9% and 95.7%,
respectively. This indicates that the proposed model can pro-
vide high quality 24-h-step-ahead forecast values for total en-
ergy demand, which are very close to the actual energy demand.
Fig. 4 presents a comparison between the actual and forecasted
total energy demand for the 24th lag. This forecast model can
well capture the majority of the variations. Thus, the proposed
forecast model is deemed a reasonable replacement for the sim-
ulation, particularly well-suited for optimization purposes.

We now investiage the performance of the proposed
optimal control strategy for the above illustrative model.
Table III presents the input parameters of the proposed mathe-
matical model. Note that p,, the thermal discomfort penalty
is a normalized multiplier, defined by the decision maker (e.g.,
building energy manager), to weigh the importance of keeping
the internal temprature within the thermal comfort at time ¢ + k.

in each zone such that the total thermal discomfort penalty over
24 h is equal to 1.0.

We assume that the internal temperature values can vary be-
tween 62 °F and 76 °F with an increment rate of 0.5 units.
However, T51¥(i) and T4E% (i) in (C1) are fixed and set equal
to 68 °F and 72 °F, respectively. Therefore, any internal tem-
perature value less than 68 °F or greater than 72 °F is penal-
ized by applying a thermal discomfort cost. Besides, w; and
w3, the importance factors associated with objective functions
G1(-) and G2(-) are set equal to 0.7 and 0.3, indicating that
the energy cost is relatively more important than the thermal
discomfort penalty. Without loss of generality, we assume g
= 1, which turns the problem into a weighted sum of nor-
malized deviations. Fig. 5 illustrates the effect of the proposed
weighted metric method in combining both objective functions.
The figure plots the minimum cost-to-go values (minimum total
cost from step 1 to step k) in dynamic programming. The x axis
shows the feasible set point values ranging between 62 °F to 78
°F and the y axis shows the minimum values of the combined
function, G( - ), over the reduced horizon from ¢ + 1 to t + &
when & < N. For the first 6 h, as set point values increase, the
minimum cost-to-go value decreases. This is because we set the
thermal discomfort penalty equal to zero for the first 6 h (see
Table III). This implies that for the first 6 h, the only active ob-
jective function is G ( - ). In this case, higher temperature values
result in lower demands without increasing the thermal discom-
fort objective function.

Fig. 6 presents values of optimal set point, energy demand,
and operating costs versus time for a period of 72 h. Fig. 6(a) for
instance, depicts the optimal set point values and their corre-
sponding values of internal temperature.

As shown in Fig. 6(a), the optimal set point values are very
low just before the on-peak period begins. This means that the
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Fig. 5. The minimum cost-to-go profile over different internal temperatures for & = 1,2, ..., 24. For each subplot x axis is the feasible set point values ( °F)

and y axis is the sum of the minimum values of the combined function, G( - ), over the reduced horizon from ¢ + 1 to t + k for k < 24.

proposed control scheme suggests precooling the building be-
fore the price goes up and before the daily as-used demand
charge becomes effective. Then during the first hours of the
on-peak period, the cooling stored in the zone thermal masses is
discharged. This helps the building save the most possible en-
ergy during peak time.

It is worth noting that in an ideal HVAC system, the optimal
set points and internal temperature are same values. However,
in the real world, many unknown or uncontrollable factors can
significantly cause the actual internal temperature to be deviated
from the set point values. This is particularly obvious when the
proposed control scheme select a very low set point at time ¢
after a higher set point value at time ¢ — 1 [e.g., see { = 11
in Fig. 6(a)]. In this situation, HVAC system cannot reach the
optimal set point value in such a short time frame. In fact, this
is one reason that the model is updated when new information
from internal temperature is received.

Fig. 6(b) illustrates that total building energy demand oscil-
lates according to the zone effective power and set point values.

Fig. 6(c) includes separate profiles for total use cost per kWh,
the daily as-used demand charge cost and total energy cost. Note
that in this example, it is assumed that the daily as-used demand
charge is applied once in a day to the maximum energy con-
sumed in peak hours between 1:00 p.m. and 6:00 p.m. There-
fore, the precooling time is immediately before 1:00 p.m. and is
applied to lower the maximum energy demand after 1:00 and as
a result reduce the daily as-used demand charge cost.

Fig. 7 presents further details about how the two different
objective functions are combined to shape the single measure
that is optimized. Fig. 7(a) is the total energy cost including
energy costs and daily as-used demand charges. Fig. 7(b) de-
picts the temperature violation from the thermal comfort bounds
over time. As shown in this figure, the maximum and minimum
values for each of these functions are different. Although the vi-
olation from thermal comfort is slightly higher in off-peak pe-
riods, when less people are in the building, there are still large
violations in on-peak periods. This is because, in on-peak pe-
riods, the energy demand is very high and the proposed model
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Fig. 6. The results of the proposed control strategy: (a) The optimal set point
values (°F) and average internal temperature. (b) Optimum energy use (kWh)
profile over time. (¢) Optimum total operating cost profile including variable
cost and the daily as-used demand charges.
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Fig. 7. The results of the proposed control strategy. (a) Total energy cost. (b)
Delta value: the temperature violations below or above the thermal comfort
bounds. (c) Combined weighted metric values given by (17).

attempts to reduce the costs by allowing some violations above
or below the thermal comfort bounds. A normalized version of
this figure is presented in Fig. 8. These plots present the normal-
ized profiles associated with total energy cost, G1( - ), as well
as the total thermal comfort violation penalty G( - ). The max-
imum values of these two functions are slightly different. The
maximum values of G1(-) are in peak hours while the max-
imum values of G3(-) occur immediately before peak hours.
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Fig. 8. (a) The normalized energy cost profile. (b) The normalized thermal dis-
comfort penalty profile. (¢) The normalized combined metric profile.

This configuration leads to the minimum combined metric pro-
file that is G( - ).

We also compare our proposed control scheme with a number
of simple alternative control schemes, as shown in Fig. 9. These
configurations are set to cover different scenarios and provide
good insights about the proposed control scheme. The “Con-
stant Controller 1” and the “Highest Value” control schemes
have fixed set point values that do not change during the 24 h
period shown. The “Highest Value” controller is set equal to be
76°F and as a result, returns the lowest total energy cost but
the maximum thermal discomfort cost for this particular day
that requires cooling. The dynamic controllers vary over time
using different patterns. For example, “Dynamic Controller 2”
allows HVAC to provide more cooling before peak hours and
then during peak hours it increases the set point values. We use
different controllers to understand the characteristics of the pro-
posed control scheme. Table IV depicts the results of running
different control schemes for the medium office building model.
It shows that the proposed scheme is superior to all of the other
alternatives in the total combined metric value, i.e., G(- ). This
means that the proposed control scheme is able to find the best
compromise between energy costs and thermal comfort. The en-
ergy cost is minimal for the “Highest Value” controller. This
is obvious, because it provides the minimum possible cooling
load and keeps the internal temperature around 76 °F. However,
the normalized thermal discomfort penalty G2 ( - ), for such con-
troller is 0.81, which is significantly greater than the other con-
trollers. Such an extreme controller provides internal temper-
ature values that are often beyond the upper thermal comfort
bound and are impractical in the real world. Note that the max-
imum thermal discomfort penalty, G2 (- ), is designed to be 1,
where the internal temperature would never go below the max-
imum thermal discomfort value. To calculate average daily vi-
olation from Thermal Comfort (F), we calculate the deviation
from thermal comfort for each hour at each zone, then we take
the average of these deviations over 24 h for all zones.
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TABLE 1V
COMPARISON BETWEEN PROPOSED CONTROL STRATEGY AND OTHER CONTROL SCHEMES

Control Schemes

Proposed Constant Constant ~ Highest Dynamic Dynamic Dynamic
Scheme Controller 1 Controller2  Value  Controller 1 Controller 2 Controller 3

Total Energy Cost (Daily) 2450.12 2639.72 2508.73 2312.6 2622.52 2410.23 2658.90
Daily Usage Cost 1462.29 1613.27 1517.32 1399.2 1598.66 1457.31 1624.27
Daily As-used Demand Charge 987.83 1026.45 991.41 913.37 1023.86 952.92 1034.63
Normalized Energy Cost, Gi(.) 0.20 0.27 0.26 0.25 0.24 0.20 0.24
Average daily violation from Thermal Comfort (F) 0.06 0.02 0.02 0.81 0.02 0.45 0.02
Normalized Thermal Discomfort Penalty, G,(.) 0.01 0.00 0.00 0.22 0.00 0.08 0.00
Total Combined Metric Value, G(.) 0.08 0.11 0.11 0.17 0.10 0.11 0.10

—————— Highest Value
Dynamic Controller 2

--------- Constant Controller 1
——— Dynamic Controller 1
Dynamic Controller 3
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Fig. 9. Alternative control schemes.

The normalized energy cost, G ( - ) for the constant controller
(Set point = 69 °F) is 0.27, which is the highest energy cost
among the alternatives. The minimum normalized energy cost
is associated with the proposed control scheme (and Dynamic
Controller 2) and is equal to 0.20. This implies that the pro-
posed control scheme offers the set point values with minimum
cost while maintaining the thermal comfort in an appropriate
level, thus G( - ) is minimized. Although the energy costs for the
various control schemes are clearly different, their normalized
values of energy cost G ( - ) are very close to each other (from
0.20 to 0.26). This is because the maximum value G7*** of en-
ergy cost is very large. If GT*** is large, then the first component
of (17)—the normalized energy cost—becomes very small. To
tackle this problem, one can propose better choices for GT*** or
apply other multi-objective techniques to combine the two ob-
jective functions. Table IV reveals that the proposed framework
can adequately be employed to minimize building energy costs
and at the same time keep the internal temperature in the range
of thermal comfort bounds.

VII. SUMMARY AND CONCLUSION

The above results can be summarized as follows: (i) The
proposed heating/cooling model can appropriately forecast
the internal temperature values for the next few hours, but the
methodology needs to be improved for longer lags. (ii) The en-
ergy forecast model works quite well for total energy demand.
(iii) the proposed control scheme provides the set point values
that minimize both total energy cost and thermal discomfort
penalty at the same time. To improve the performance of the
proposed heating/cooling model, one can develop an adap-
tive approach—Bayes estimation for instance or considering

longer time history in (6)—to estimate the model parameters.
Currently, the forecast errors are adjusted once new measured
data is received. However, the heating/cooling model does
not utilize any new information to update the parameters and
forecast values, i.e., it is not currently an adaptive model. Also,
additional zonal variables such as occupancy, heat transfer
due to inter-correlation between zones, and zone surface phe-
nomena can be added into the proposed heating/cooling model
to improve the quality of forecast values in farther lags. Another
potential improvement for the proposed control strategy is to
employ more efficient methods for the MMP problem. The
Utility Function approach, for instance, can be used instead
of the weighted metric method to determine the lowest and
highest desirable values of the objective functions.
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