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Rapid concerted evolution in animal
mitochondrial DNA

Andrey Tatarenkov™® and John C. Avise

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA

Recombinational genetic processes are thought to be rare in the uniparentally inherited mitochondrial (mt)
DNA molecules of vertebrates and other animals. Here, however, we document extremely rapid concerted
microevolution, probably mediated by frequent gene conversion events, of duplicated sequences in the
mtDNA control region of mangrove Kkillifishes (Kryprolebias marmoratus). In local populations, genetic
distances between paralogous loci within an individual were typically smaller (and often zero) than those
between orthologous loci in different specimens. These findings call for the recognition of concerted
evolution as a microevolutionary process and gene conversion as a likely recombinational force in animal
mtDNA. The previously unsuspected power of these molecular phenomena could greatly impact mtDNA
dynamics within germ cell lineages and in local animal populations.

Keywords: duplicated control regions; mangrove Killifish; orthologous; paralogous;
Kryptolebias marmoratus

1. INTRODUCTION

Mitochondrial (mt) DNA is probably the single most
popular and powerful molecule for a wide range of
phylogenetic, phylogeographic and population genetics
studies. It is thus both surprising and lamentable that
several features about intracellular genetic processes in
animal mtDNA remain poorly understood (Ballard &
Whitlock 2004; Ballard & Rand 2005; Kmiec ez al. 2006).
Nowhere is this more obvious than in ongoing contro-
versies about whether genetic recombination might play
some role in the microevolution of this otherwise asexually
transmitted genome (McVean 2001). Here, we document
extreme concerted microevolution, probably indicative of
rapid gene conversion, between two duplicated mtDNA
control regions (CR1 and CR2) in local populations of the
killifish Kryptolebias marmoratus. The unexpectedly rapid
pace of this recombinational process has potential broad
implications for intracellular population dynamics and
population genetic patterns for animal mtDNA.

Portions of the mtDNA control region are duplicated in
many animal taxa (Arndt & Smith 1998; Black &
Roehrdanz 1998; Campbell & Barker 1999; Shao &
Barker 2003; Ogoh & Ohmiya 2004), and several reports
have implicated concerted evolution for those regions at
the levels of species or distinct subspecies (Kumazawa
et al. 1996; Eberhard ez al. 2001; Abbott et al. 2005; Shao
et al. 2005; Ogoh & Ohmiya 2007). Lee ez al. (2001) first
reported duplicated control regions in K. marmoratus,
and, based on high sequence similarity between CR1 and
CR2 in the single specimen examined, they also noted the
possibility of concerted evolution. However, their study
could not rule out an alternative hypothesis that the
duplication was recent and the two copies had not yet
accumulated mutational differences. To demonstrate
concerted evolution at the microevolutionary level, it
is necessary to (i) identify polymorphic duplicated
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sequences in a sample of conspecific individuals, pre-
ferably within local populations and (ii) show that the
genetic differences between paralogous loci in the same
individuals are unambiguously smaller than the
differences between orthologous loci in different individ-
uals. Here, we fulfil both of these criteria using complete
(or nearly so) CR1 and CR2 sequences from 88
specimens.

2. MATERIAL AND METHODS

Samples were collected from the following locales (with
abbreviations indicated in parentheses): Twin Cays, Belize
(TC); Exuma and San Salvador Islands, Bahamas (EI, SS);
Everglades National Park near Flamingo in Monroe County,
FL (EP); Shark River also in Monroe County, FL. (SR);
Charlotte County, FL. (CC); St Lucie County, FL (SL);
Marco Island in Collier County, FLL (MI); and No Name Key
in the Florida Keys (NK). Additional details on capturing are
provided in Mackiewicz er al. (2006).

Following Lee ez al. (2001), we refer to CR1 as the 887 bp
non-coding region between the 5’ ends of loci coding for
tRNA-Pro and tRNA-Phe, and CR2 as a 795 bp non-coding
region between the 3’ end of the locus coding for tRNA-
Leu(UUR) and the 5’ end of NDI1. For each fish specimen,
we sequenced two disjunct mtDNA regions: (i) ‘Cyrb—trnT-
trnP-CR1’, which spans 1243 bp (positions 16 060-17 300
on GenBank Accession AF283503) and (ii) ‘trnL.1-CR2-
ND1’, which spans 871 bp (positions 2791-3662 on
AF283503). A large segment (735 bp) of CR2 displays high
overall sequence similarity (greater than 99%) to CR1, and
only this region is the focus of our analysis. Region (i) was
amplified with 5-TCGCCTTACTGGCCTCAATTCT-3’
and 5'-TTTAAGCTACACGAGCCCTAAGTTC-3'. Region
(ii) was amplified with primers 5-AACGTCTTGT-
TAGGGTGGCAGA-3' and 5-AGGAAAGCAAGAGC-
TAAGAGGA-3'. GenBank accession numbers for the
nucleotide sequences analysed in this study are EF202348—
EF202523.

This journal is © 2007 The Royal Society
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Table 1. Evidence for concerted evolution in CR1 and CR2 sequences. (Shown is the common sequence in most specimens and
observed departures from it at the indicated loci in specified individuals at each of 27 polymorphic nucleotide positions. Each
letter ‘d’ is a 1 bp deletion. Cases of intra-individual genetic identity for CR1 and CR2 are shown in bold.)

nucleotides at 27 relevant positions
1112223333334444555567
111450121180000003368034563
014664144541234673765914135

specimens (and loci)

(a) TACGAATTAAGCCCTTTTGCTCCCGAC

47 specimens (CR1, CR 2); EI6 (CR1); CC5 (CR1); MI1 (CR1); MI4

(CR1); MI5 (CR1); MI7 (CR1); TC2 (CR2); TC3 (CR2); TC5 (CR2)

SR6 (CR1, CR2); SR7 (CR1, CR2); SR9 (CR1, CR2)
TC2 (CR1); TC3 (CR1); TC5 (CR1)

MII (CR2); MI4 (CR2); MI5 (CR2); MI7 (CR2)
SR2 (CR1, CR2); SR3 (CR1, CR2); SR8 (CR1, CR2); SR11 (CR1, CR2)

SR21 (CR1, CR2); SR23 (CR1, CR2); SR30 (CR1, CR2)

SS3 (CR1, CR2); SS5 (CR1, CR2); SS4 (CR2)

SR22 (CR1, CR2); SR26 (CR1, CR2)

SL3 (CR1, CR2); SL4 (CR2)

NK1 (CR1, CR2); NK3 (CR1, CR2); TC9 (CR1, CR2)

TC4 (CR1, CR2); TC8 (CR1, CR2)

O I

© == d-===————————- El6 (CR2); CC5 (CR2)
@b - T

(&) == A-——————-

® - T-—---

(g d--------- A-——————- T----A-- EP3 (CR1, CR2)
th)y - Gmmmmmmm - T-A-- TC10 (CR1, CR2)
o ------ Cmmmmmmm -

G ----- Grmmmmmm - SS2 (CR1, CR2)
k) -G--—-———————- d----- C—————- SS1 (CR1, CR2)
o ----G------——- d-d----------

(m) ----G--------- ddd---------- SS4 (CR1)

n) - G- SR5 (CR1, CR2)
(0) === C- SR10 (CR1, CR2)
P - T--—=-—======= C-

@ ------- Cmmmmmm— C—mmm——- SL4 (CR1)

) e C-mmm——-

(s) --d----- G-—mmmmm - TC7 (CR1, CR2)
© - Grmmmmmmmm -

u - Cmmmmmmm e - SL6 (CR1, CR2)
V) - CG--TT--—--—--—~ Tee-

w) -—-—----- CG-————————————- T---

TC91 (CR1, CR2); TC92 (CR1, CR2)

We aligned CR1 and CR2 sequences visually, with
assistance from CrustaL V (default parameters) as
implemented in MEGALIGN (LASERGENE v. 6, DNASTAR,
Inc.). We employed the p distance as the measure of sequence
divergence (Nei & Kumar 2000). Other distance measures
were unnecessary or inappropriate, respectively, because the
sequences were so similar and because we also included indels
as characters (these would require subjective weight assign-
ments in more complex distance metrics). Gene conversion
rates were estimated by the method of Eberhard ez al. (2001),
which assumes that genetic distances between pairs of
sequences scale with time to the most recent gene conversion
events. The haplotype network was constructed using the
method of Templeton ez al. (1992) implemented in software
TSC v. 1.21 (Clement et al. 2000).

3. RESULTS AND DISCUSSION

Alignments of the 735 bp sequences from CR1 and CR2
revealed 27 variable nucleotide positions, including five
1 bp deletions (table 1). A striking result is the near
identity of CR1 and CR2 within individuals, despite
extensive sequence differences (at as many as nine
nucleotide positions) between CR1 and CR2 in different
specimens. At nucleotide position 663, for example, most
individuals displayed an adenine in both CR1 and CR2,
but three individuals displayed a cytosine at both loci and
one showed a guanine at both CR1 and CR2. Qualitatively
similar outcomes were apparent at each of 26 other
polymorphic nucleotide sites surveyed (table 1; figure 1).
Opverall, this pattern of concerted microevolution is also
quantitatively evidenced by a 10-fold higher mean genetic
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distance (p) between orthologues in different individuals
(p=1.9X10">) vis-a-vis paralogues within individuals
(p=1.7X10"%).

CR1 and CR2 did differ in sequence within 11 out of 88
specimens, but never by more than one mutation step
(table 1). Furthermore, each of these intraindividual
sequence discrepancies was confined to a single popu-
lation, the only possible exception being a 1 bp deletion in
CR2 in specimens EI6 and CC5. The finding that most
intraspecimen differences between paralogues are con-
fined to a local population further indicates that such
discrepancies are short lived due to rapid concerted
evolution at these two loci.

Following Eberhard et al. (2001), we provisionally
estimated the pace of gene conversion by assuming a
standard vertebrate rate for CR evolution (10% change
per lineage per million years) as applied to the mean
within-individual genetic distance between CR1 and CR2.
By this approach, the mean time (+95% CI) between
gene conversion events is 8501479 years or about
eightfold shorter than the mean time-interval between
successive nucleotide substitutions within either CR
region. Although the precision of this estimate is
debatable, the fact remains that the data evidence a
stunning pace of concerted evolution in a molecule that is
normally assumed to evolve without appreciable recombi-
nant processes (Wolstenholme 1992; Birky 2001).

A high incidence of concerted evolution in mito-
chondrial sequences has both practical and conceptual
implications. Pragmatically, it means that the two CR
regions should be of equal, but redundant, utility in
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Figure 1. Haplotype network of CR1 and CR2 sequences.
The network is constructed using the method of Templeton
et al. (1992) implemented in software TSC v. 1.21 (Clement
et al. 2000). Haplotypes and their designations are shown in
table 1. Each connecting line represents a single mutation;
solid dots are inferred haplotypes.

phylogenetic or phylogeographic appraisals (much like the
members of any nuclear gene family that experiences
strong concerted evolution; Hillis & Dixon 1991). Of
potential broader significance, it documents that animal
mtDNA can display frequent if not routine recombina-
tion. The molecular mechanism itself is not revealed by
our data, but all proposed mechanisms of concerted
evolution entail genetic recombination of one sort or
another: gene turnover via frequent duplications and
losses of sequences, or, more likely in this case, some form
of gene conversion (non-reciprocal genetic exchange)
per se (Kumazawa et al. 1996, 1998).

Previous evidence for recombination in animal
mtDNA, e.g. from subtle patterns of linkage disequilibria
across the molecule (Awadalla ez al. 1999; Eyre-Walker
et al. 1999), has been indirect and hotly contested
(McVean 2001; Kmiec ez al. 2006). Our current evidence
for recombinational processes is far more compelling, but,
on the other hand, it applies at face value only to the
duplicated CR sequences. Perhaps homologous recombi-
nation is confined to this small section of mtDNA (one
hypothetical mechanism involves recombination between
parental and nascent DNA strands during replication of
the duplicate loci within the three-stranded D-loop
structure; Eberhard ez al. 2001). But the mere fact that
recombinational machinery in animal mtDNA exists
(Thyagarajan et al. 1996) and can apparently function
routinely (present study) at least raises the possibility that
the phenomenon has much wider ramifications.

We wonder, for example, whether concerted micro-
evolution might possibly have any bearing on the
phenomenon of homoplasmy. A long-standing puzzle for
most animal species is why each individual often displays a
single predominant mtDNA genotype (i.e. homoplasmic),
despite having developed from a zygote that had many
thousands of mtDNA molecules and belonging to a local
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population of animals in which mtDNA sequence
variation is normally extensive (Avise 2000). A traditional
explanation for rapid evolutionary transitions through
transient heteroplasmic states is that mtDNA numbers
undergo population bottlenecks in the germline cells that
are precursor to each mtDNA-rich oocyte (Chapman ez al.
1982; Laipis et al. 1988). However, direct empirical
evidence for such mtDNA bottlenecks in germline cells
is meagre, and another hypothetical process (that could
operate in conjunction with the first) is rapid, biased gene
conversion such that particular mtDNA molecules often
convert others to their own sequence within germline cells.

We also wonder whether concerted evolution in
mtDNA might have a bearing on mtDNA repair
mechanisms, which are generally thought to be deficient
compared with those in the cell nucleus. But if gene
conversion is widespread and routine, perhaps the
underlying mechanisms play a role in mtDNA repair as
well. The current data do not address whether the inferred
gene conversion events are intramolecular (within one
circular mtDNA molecule) or intermolecular (between
different mtDNA molecules), but if the latter is true, there
are certainly many mtDNA templates within any cell that
could, in principle, serve as useful substrates for the
recombinational repair of sequence defects.

These possibilities are admittedly highly speculative,
but they do highlight the potential significance of the
discovery that concerted microevolution does occur and
can be extremely rapid in animal mtDNA. Nevertheless,
our current findings are unlikely to challenge conventional
wisdom about the utility of mtDNA for phylogeographic
or phylogenetic inferences about matrilines. For that to be
true, routine interparent mtDNA recombination
(following paternal leakage) would have to be demon-
strated as well, and numerous studies seem to indicate that
such processes are at most very rare.

We thank Bruce J. Turner, D. Scott Taylor, William P. Davis,
William Dunson, John Grizzle and Carole Mclvor for sample
collections. Walter Fitch made helpful comments on the
manuscript. Mark Mackiewicz developed primers for CR2,
which he kindly shared. The work was supported by funds
from the University of California at Irvine to J.C.A.
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