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Introduction: The Mnemonic Similarity Task (MST) is a widely used measure

of individual tendency to discern small di�erences between remembered and

presently presented stimuli. Significant work has established this measure as a

reliable index of neurological and cognitive dysfunction and decline. However,

questions remain about the neural and psychological mechanisms that support

performance in the task.

Methods: Here, we provide new insights into these questions by fitting seven

previously-collected MST datasets (total N = 519), adapting a three-choice

evidence accumulation model (the Linear Ballistic Accumulator). The model

decomposes choices into automatic and deliberative components.

Results: We show that these decomposed processes both contribute to the

standard measure of behavior in this task, as well as capturing individual

variation in this measure across the lifespan. We also exploit a delayed test/re-

test manipulation in one of the experiments to show that model parameters

exhibit improved stability, relative to the standard metric, across a 1 week delay.

Finally, we apply the model to a resting-state fMRI dataset, finding that only

the deliberative component corresponds to o�-task co-activation in networks

associated with long-term, episodic memory.

Discussion: Taken together, these findings establish a novel mechanistic

decomposition of MST behavior and help to constrain theories about the

cognitive processes that support performance in the task.

KEYWORDS

memory, pattern separation, Linear Ballistic Accumulator model, response times, fMRI

1 Introduction

How do individuals encode objects in memory, and how does the distinctiveness

of encoding affect behavioral expressions of recognition? These functions are

thought to be supported by a process known as pattern separation, whereby

similar sensory or latent inputs are projected into higher-dimensional space

to create highly distinct patterns that support later discrimination among
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fine degrees of difference (Stark et al., 2019). Traditionally, this

process has been attributed to the hippocampus, a critical brain

structure for learning and memory (Marr, 1971; Long et al.,

2016; Leal and Yassa, 2018; Stark et al., 2019), though more

recent work suggests that the computation may be widely reflected

across cortex (Amer and Davachi, 2023) and that mnemonic

discrimination itself also depends on the whole brain (Nash et al.,

2021; Wahlheim et al., 2022). Computational models predict that

the more distinct object representations are (i.e., the “better” an

individual is at pattern separating), the better an individual will be

able to discriminate between objects that were seen previously and

those that weren’t. In particular, people who are better at pattern

separating should be less susceptible to interference when novel

stimuli are similar to previously seen stimuli. The ability to create

distinct representations is of critical importance for behaviors that

depend on episodic memory, such as context-sensitive decisions—

if the decisions wemake are guided by our previous experiences, we

need amechanism in place to be able to distinguish the appropriate,

relevant experiences (Noh et al., 2023a,b).

The Mnemonic Similarity Task (MST) is a commonly used

experimental task that aims to provide a behavioral index of an

individual’s tendency to pattern separate (Stark et al., 2019). The

MST is a modified object-recognition task; in a popular variant

it is often split into two distinct phases: study and test. During

study, participants are given an incidental encoding task where

they are presented with images of objects which they need to

classify as belonging “indoors” or “outdoors.” Then, during test,

participants are again presented with images, and their task is now

to identify whether these images have been seen during the current

experimental session. However, they are presented three different

types of objects, each with the same frequency: Repeats, which are

exactly the same objects they saw during study, Lures, which are

objects similar to but not exactly the same as the study images,

and Foils, which are objects that have never been seen before in

the context of the experiment. There are multiple variants of the

MST which differ in study design (two phase vs. continuous),

number of responses (3: Repeat/Lure/Foil or 2: Repeat/Foil), and/or

stimulus sets. In this paper, we consider only the “standard” three-

alternative forced-choice (3AFC) two phase version of the MST.

Subjects across experiments were not necessarily shown the same

stimulus sets, but all stimulus sets were matched in their difficulty

(Lacy et al., 2011).

The primary measure of memory discriminability used in the

MST is the Lure Discrimination Index (LDI; Stark et al., 2019).

Since the development of the MST, the LDI has been formalized

in several ways. The most common formulation, and the one we

employ in this study, is:

LDI = P(Lure Response | Lure Trial)−P(Lure Response | Foil Trial)

(1)

Equation (1) can be thought of as the “hit rate” on lure trials

corrected for the “bias” of incorrectly saying the foil is a lure

(but correctly identifying the higher-order category of haven’t-

seen-before-in-the-experiment). This LDI has been shown to vary

with age and across a wide range of clinical measures (Stark

et al., 2019). However, while there is rich evidence for the external

validity of the LDI insofar as correlating with activity in the

hippocampal subfields ascribed to pattern separation (Stark et al.,

2019), there has also been extensive debate about whether the

LDI is “process pure,” as much as any cognitive parameter can

be. Specifically, there is an open question as to whether LDI

reflects pattern separation per se as opposed to distinguishing

variation at both encoding and recollection (Liu et al., 2016).

Indeed, it may be more precise to say that the LDI is a measure of

mnemonic discrimination and its concomitant processes. Further,

across the various parameterizations of the LDI, there is necessarily

information loss. Any formulation of the LDI considers only one

response type (out of three) and two trial types (out of three).

If the key question of interest has to do with discrimination

across various degrees of fidelity between old and new objects,

it may make sense to use a measure that captures information

about all three response types. In this paper, we propose a

joint model of choice and response time that incorporates this

full set of trials to estimate parameters linked to psychological

mechanisms with distinct relationships to behavior. This model

further allows us to decompose the LDI in order to begin to

consider—through behavioral and neural data—what facets of

mnemonic discrimination it is actually capturing.

2 Methods

2.1 Experiments and data

We analyze data from seven experiments collected by several

researchers at different universities. We summarize them in the

Table 1.

Experiments 1 − 4: Stark et al. The first set of experiments

we analyze are from Dr. Craig Stark and colleagues (Stark et al.,

2023). In this paper, Stark and colleagues contrasted several variants

of the MST to assess the reliability and efficacy of measures. We

consider a subset of these experiments that include the “full”

or baseline version of the MST (number of test trials = 192,

number of responses = 3). These experiments were collected across

different individuals and did not necessarily use the same stimulus

sets. However, all stimuli were matched for difficulty across each

experiment. Here, we include analyses from four experiments in the

paper.

Experiments 5: Noh et al. We analyze a subset of the data

collected byDr. SharonNoh and colleagues (Noh et al., 2023a). This

is again the baseline version of the MST but consists of a lifespan

sample (age 18–84, number of test trials = 192, number of responses

= 3), collected online via Amazon Mechanical Turk. We therefore

also consider the relationship between the LDI, LBA parameters,

and age.

Experiments 6: Wahlheim et al. We include data collected

by Dr. Christopher Wahlheim and colleagues (Wahlheim et al.,

2022). This is the baseline version of the MST but consists of

fewer trials and a lifespan sample (age 18–80, number of test

trials = 108, number of responses = 3). These data were also

collected in participants who had, separately, undergone functional

MRI during rest. Therefore, we also consider the relationship

between the LDI, LBA parameters, age, and resting state functional

connectivity. Functional neuroimaging data is analyzed on the

basis of parcellated regions of interest including 37 regions that

together comprise the default mode network, and 8 hippocampal
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TABLE 1 MST experiments modeled.

Experiment Number of
subjects

Number
of trials

Source

E1 n = 53 192 Stark-1

E2 n = 46 192 Stark-2

E3 n = 81 192 Stark-3

E4 n = 53 192 Stark-4

E5 n = 177 192 Noh-Lifespan

E6 n = 62 108 Wahlheim-

Lifespan,

RSFC

E7a n = 47 192 Kirwan-Test-1

E7b n = 47 192 Kirwan-Test-2

The Source column indicates the researchers who originally collected the data and any

additional relevant information about the dataset. Experiment 5 contains a lifespan sample.

Experiment 6 contains both a lifespan sample and resting state functional connectivity

measures. Experiments 7a and 7b comprise of the same subjects who completed test twice—at

least once after a one week delay (7b).

subdivisions. The hippocampal ROIs were derived from the

Schaefer parcellation of the MNI template (Schaefer et al., 2018),

and the eight hippocampal regions were defined according to

the Melbourne Subcortex Atlas (Tian et al., 2020, 2 mm group

parcellation).

Experiments 7a & 7b: Kirwan. Finally, we analyze data

provided by Dr. C. Brock Kirwan. This is the baseline version of

the MST (number of test trials = 192), however, it was collected

at two time points, the order of which was counterbalanced across

conditions: all subjects completed a total of 2 study and 2 test

segments. One half of subjects completed test immediately after

study on session 1 (7a) followed by another study in the same

session. They then took the test again one week after (7b). The

other half of the subjects completed only study in session 1 and first

completed test one week after (7a). They then completed another

study and test (7b) in the same session. We examine the relative

test-retest reliability of the LDI and LBA parameters.

2.2 Response time model: the Linear
Ballistic Accumulator

We adapt the Linear Ballistic Accumulator (LBA; Brown and

Heathcote, 2008) to model choices and response times in the MST.

As with all sequential sampling models, the core process explained

by the LBA is as follows. First, the stimulus is presented at the

beginning of the trial. Then, after some initial processing e.g.,

identifying the trial image relative to its background, individuals

start to accumulate evidence—sampling both the trial image and

memory—until they have enough evidence to make a choice of

either Repeat, Lure, or Foil. Finally, after they reach their internal

decision, individuals may additionally take further time to execute

their choice through motor movement. The time taken to do

this, in addition to the initial processing, is called the “Non-

Decision Time.” The LBA is a simple sequential sampling model

that has the benefit of accommodating n-AFC experiments: we

can fit n accumulators for n response types. It further assumes

that evidence is independently and noiselessly accumulated for

each response type. The LBA is a powerful accumulator that

performs on par with more complicated sampling models that

do not have the same assumptions (Brown and Heathcote, 2008).

We further clarify that we use the LBA as a tool for measuring

behavior that follows from representations that have ostensibly

been pattern separated or not—not as an explicit model of pattern

separation itself.

There are four main parameters of the LBA, all common

to most models of sequential sampling: the drift rate v,

or the rate of evidence accumulation/signal strength, the

boundary b, or the amount of information needed for

a response to be made, the non-decision time (NDT)

τ , or the amount of time for perceptual and motor

processing unrelated to decision deliberation, and the

upper limit of the start point A—the bias toward making a

particular response.

As shown in Figure 1, we allow the drift rate and start point to

vary per subject and per accumulator, while allowing the boundary

and NDT to only vary across subjects. As the three responses in the

MST are distinct, it stands to reason that the evidence accumulated

in favor of each response should be different. Similarly, the bias

or predisposition to making one response over another should

also intuitively vary as a function of response type. Otherwise,

a fixed bias might suggest that subjects have uniform tendencies

to respond Repeat, Lure, and Foil. As we discuss in the Results

section, this indeed turns out not to be the case, with most subjects

across experiments tending to respond Repeat disproportionately

more often.

The LBA assumes that the drift rates are drawn from

some Normal distribution and are sampled on each trial:

Drift Rate ∼ Normal(vi,r , si,r) for subject i and response type

r. In this paper, when we report values associated with the

drift rate, we are talking specifically about the mean drift

rate (vi,r). We fix the standard deviation of the drift rate

(si,r) to be 1 across all subjects and accumulators for model

identifiability purposes.

The LBA assumes that starting points are uniformly distributed,

sampled on each trial, and are numerically lower than the

boundary: Start Point ∼ Uniform[0,Ai,r]T(0,Bi) for subject i and

response type r.

To further keep the model identifiable, we impose the same

constraint on the mean of the drift rates and start point upper

boundaries for each subject i: 6
3
r=1vi,r = 1, 6

3
r=1Ai,r = 1.

We fit a Bayesian implementation of the LBA in RStan (Stan

Development Team, 2023). Stan uses a no U-turn sampling

Hamiltonian Monte Carlo algorithm. In all our implementations,

we run three chains for 7,000 iterations and allow for a burn-in

of 3,500. The sum to one constraint is operationalized by allowing

the drift rate mean and start point upper bound to be simplex

types. We use the following relatively uninformative priors for the

LBA parameters:

Boundary ∼ Normal(0.5, 1) NDT ∼ Normal(0.5, 1)

Drift Rate Mean ∼ Normal(0.5,0.5)

Start Point Upper Bound ∼ Normal(0.5,0.5)
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FIGURE 1

Schematic of the Linear Ballistic Accumulator. As the standard MST is 3AFC, we allow for three accumulators for each response type. We further

allow the drift rate (rate of evidence accumulation) and the upper limit of the starting point (tendency to make a type of response) to vary for each

subject and accumulator. Boundary (amount of evidence needed to make a response) and non-decision time (non-decision-relevant processes, not

pictured) vary only at the subject level. Note this is a schematic and we do not impose any order constraints on drift rates or start points.

TABLE 2 Subjects more accurately identify repeat and foil stimuli

compared to lures across all standard experiments.

Experiment Accuracy:
repeat

Accuracy:
lure

Accuracy: foil

E1 0.86 (0.18) 0.40 (0.32) 0.77 (0.30)

E2 0.87 (0.09) 0.41 (0.29) 0.78 (0.18)

E3 0.84 (0.15) 0.54 (0.23) 0.80 (0.13)

E4 0.84 (0.18) 0.44 (0.22) 0.82 (0.13)

E5 0.81 (0.14) 0.52 (0.24) 0.88 (0.13)

E6 0.92 (0.12) 0.31 (0.27) 0.86 (0.16)

E7a 0.87 (0.14) 0.64 (0.18) 0.87 (0.11)

E7b 0.34 (0.27) 0.29 (0.12) 0.71 (0.20)

We show median (IQR) accuracy for each response type. Across most experiments, subjects

are more accurate when identifying repeat and foil stimuli vs. lure stimuli (Wilcoxon Rank

Sign Test comparing repeat vs lure accuracy and foil vs. lure accuracy, E1−E7a: p < 0.001).

This is not the case for experiment 7b, delayed test, where subjects were most accurate at

identifying foil stimuli (though see Table 4: they were also most often making Foil responses).

3 Results

3.1 Raw response times and choices

To motivate the model-based analysis that is the main focus of

our investigation, we first examined the pattern of response times

and accuracy across stimulus types and experiments.

We see that across accuracy, median RT, response proportion,

and LDI, experiments are comparable for all “standard”

experiments where subjects completed test immediately after

study (Tables 2–5). Summary statistics for subjects in Experiment

7b, which consists of a second test session, deviate. For example, in

Table 2, we see that subjects performing this second test are most

accurate at identifying foil stimuli as opposed to repeats and lures

(p < 0.001).

Another point of interest concerns the evolution of choice and

response time over the course of the experiment. Previous research

on memory and response time suggests that choices that are easier

TABLE 3 Subjects are faster when making Repeat and Foil responses

compared to Lure across all standard experiments.

Experiment Med RT:
repeat

Med RT:
lure

Med RT: foil

E1 1.17 (0.28) 1.34 (0.32) 1.31 (0.28)

E2 1.21 (0.22) 1.34 (0.24) 1.26 (0.23)

E3 1.25 (0.23) 1.38 (0.29) 1.35 (0.31)

E4 1.72 (0.36) 1.99 (0.42) 1.80 (0.36)

E5 1.11 (0.20) 1.37 (0.31) 1.13 (0.22)

E6 1.05 (0.21) 1.30 (0.34) 1.11 (0.26)

E7a 1.09 (0.16) 1.29 (0.18) 1.17 (0.17)

E7b 1.34 (0.20) 1.37 (0.14) 1.15 (0.20)

We show median (IQR) RT for each response type. We find that, on average, participants

tend to take longer when they make a Lure response, especially when compared to when they

make a Repeat response (Wilcoxon Rank Sign Test comparing median RT for repeat vs. lure

responses and foil vs. lure responses for experiments 1− 7a, p < 0.001 except for E1,2,3 Lure

vs. Foil which were not statistically significant).

(more accessible in memory) should be faster, and choices that are

more difficult should take longer (Collins and Loftus, 1975). In the

MST, the repeated stimuli are typically considered the easiest to

identify (after all these are the stimuli that have already been seen

before in the context of the experiment). Indeed, as we demonstrate

in Figure 2, this appears to be the case, though there is variability

across experiments. When we collapse across Experiments 1 −

4, with the exception of the very fastest responses, we find that

subjects tended to label a stimulus as a Repeat most often when

making a quick decision (RT < 1.38s, the median RT). For slower

decisions (RT > 1.38s), the highest frequency response was Foil. In

Experiment 5, we find that decisions faster than the median RT of

1.19swere similarly majority Repeat, but that slower responses were

most often Lures. As shown in Table 3, the median RTs for Repeat

and Foil responses are lower than themedian RT for Lure responses

in most experiments, explaining why we see a majority of slow Lure

responses despite Table 4 showing a low overall proportion of Lure

responses. In contrast, in Experiment 6, we found that the majority

of responses over time were Repeats (with the exception of 4 later
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TABLE 4 Subjects most often make Repeat responses across all

experiments.

Experiment Prop:
repeat

Prop:
lure

Prop: foil

E1 0.44 (0.19) 0.26 (0.13) 0.30 (0.09)

E2 0.47 (0.12) 0.23 (0.12) 0.30 (0.06)

E3 0.41 (0.12) 0.28 (0.12) 0.31 (0.06)

E4 0.43 (0.11) 0.24 (0.09) 0.33 (0.05)

E5 0.40 (0.11) 0.25 (0.12) 0.34 (0.06)

E6 0.51 (0.11) 0.19 (0.13) 0.32 (0.06)

E7a 0.39 (0.08) 0.28 (0.08) 0.31 (0.05)

E7b 0.22 (0.17) 0.25 (0.09) 0.51 (0.19)

We show median (IQR) choice proportions for each response type. We see that in

Experiments 1–7a, participants to most often classify stimuli as repeat (Wilcoxon Rank

Sign Test comparing response proportions for repeat vs. lure responses and repeat vs. foil

responses, p < 0.001 for all experiments). Recall that the true proportion of repeated stimuli

presented during test is 0.33. Interstingly, in Experiment 7b, subjects most often classify

stimuli as Foil (p < 0.001).

TABLE 5 Lure discrimination indices for each experiment.

Experiment Lure discrimination index

E1 0.18 (0.40)

E2 0.21 (0.33)

E3 0.34 (0.28)

E4 0.28 (0.25)

E5 0.36 (0.30)

E6 0.17 (0.30)

E7a 0.50 (0.23)

E7b 0.08 (0.12)

We showmedian (IQR) LDI, the current standard metric for summarizing choice behavior in

the MST. We find no statistical differences in median LDI across experiments, excepting 7b,

which was performed at a delay.

RT bins out of 15 (RT > 1.29s) which had a majority response of

Foil), In Experiment 7a, we found that responses faster than the

median were, like Experiments 1–6, Repeats and that the majority

of slow responses were Lure. Interestingly, in Experiment 7b, with

the exception of the 13th and 14th RT bins where themost common

response was Lure, the overwhelmingly common response was Foil.

3.2 Model fits

All results reported are from models that pass all metrics of

convergence: Rhat < 1.01, chains converge in traceplots, and no

autocorrelation.

3.2.1 Posterior summaries
We find that the LBA parameters across the experiments show

generally the same patterns: start point upper limits and drift

rates for Lure responses tend to be the lowest (median SP E1–4:

0.12, E5: 0.05, E6: 0.08 and median drift E1–4: 0.23, E5: 0.24, E6:

0.12), whereas start point upper limits and drift rates for Repeat

responses (median SP E1–4: 0.49, E6: 0.47, E6: 0.47 and median

drift E1–4: 0.47, E5: 0.45, E6: 0.63), tend to be comparable with Foil

responses (median SP E1–4: 0.30, E5: 0.46, E6: 0.43 and median

drift E1–4: 0.27, E5: 0.30, E6: 0.25; Figure 3). This is consistent

with our expectations given the patterns observable in the response

times. We also believe that this suggests reasonable recovery of

information by our model: while there can be great heterogeneity

across individuals, with the exception of E5 and E6, which contain

a subset of older adults, there is no reason to expect qualitative

differences in model fits across experiments. After all, the test

phase of the experiment has the same structure across all the

datasets we consider, with the exception of E6 which has fewer

trials. This consistency is particularly of interest given how much

variability there is in the LDI across experiments (see Table 5),

suggesting that the parameters estimated using the LBA may be

more stable individual-difference measures. We now turn to this

question more directly.

3.2.2 Relating the LDI to LBA parameters
A key goal of this work is to try to compare the relationships

between the LDI and our model parameters. Of particular interest

is the relationship between LDI and drift rate, and LDI and start

point upper bound. This relates to the question briefly considered

in the introduction: is the LDI capturing a signal of recognition

memory? How much of it is conflated with other processes? If the

LDI correlates only with the drift rate, which is the LBA’s measure

of signal strength, it suggests that the LDI may indeed be largely

a measure of how distinct people’s internal representations are.

The more distinct the internal representation, the stronger the

internal signal during evidence accumulation. Conversely, if the

LDI correlates only with the start point upper bound, which is

the LBA’s measure of a tendency to make a particular response, it

suggests that the LDI may be largely capturing something else, such

as an individual or ephemeral tendency to respond one way rather

than the others. However, it is rare for any one cognitive process

to work in isolation, and indeed we find that the LDI correlates

with both the accumulator drift rates and the accumulator starting

point upper bounds in Experiments 1 − 4 (Figure 4). We collapse

data across all four experiments as they were not designed to be

meaningfully different across from each other. This results in a total

sample size of 233 subjects.

Across experiments, we found strong statistically significant

correlations between the LDI and drift rates for each accumulator

[Kendall’s tau all: corr(LDI, Repeat drift rate) = −0.35 (p < 0.001),

corr(LDI, Lure drift rate) = 0.29 (p < 0.001), corr(LDI, Foil

drift rate) = 0.19 (p < 0.001)]. Similarly, we found statistically

significant correlations between the LDI and start point upper

bounds for the Repeat and Foil accumulators [Kendall’s tau:

corr(LDI, Repeat start point upper bound) = −0.11 (p = 0.01),

corr(LDI, Foil start point upper bound) = 0.16 (p < 0.001)].

We speculate that the lack of significant relationship between

the LDI and start point upper bounds for Lure accumulators

may be driven by the fact that there are overwhelmingly fewer

lure responses compared to the other response types across all

experiments. We corrected for multiple comparisons using the
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FIGURE 2

Choice proportions change as a function of response time. We find, in general, that faster choices tend to be Repeats. The empty bar in E7a indicates

that no responses were made with a RT that fit in the time bin.

Bonferroni-Holm procedure. We note that the sign differences in

the correlations between Repeat vs. Lure and Foil are as expected

because the LDI, as defined in this paper, is parametrized to only

capture signal from Lure and Foil stimuli. The LDI is explicitly

calculating a “signal” of how well an individual discriminates

between items that haven’t in their totality been seen before in

the context of the experiment. This is the complementary process

to recognizing old items. Finally, we find a positive correlation

between LDI and Non-Decision Time (τ = 0.17, p < 0.001):

the better the memory discrimination, the longer the non-decision

relevant processing.

The degree to which these correlational relationships hold

across experiments is, however, variable. In particular, in the

datasets with older adult participants—E5 (Figure 5) and E6

(Figure 6)—we find that the Repeat and Lure accumulator drift

rates correlate significantly in the same way as in Figure 4 [Kendall’s

τ : E5: corr(LDI, Repeat drift rate) = −0.26, p < 0.001 and E6:

corr(LDI, Repeat drift rate) =−0.31, p < 0.001; E5: corr(LDI, Lure

drift rate) = 0.28, p < 0.001 and E6: corr(LDI, Lure drift rate) =

0.28, p = 0.001], but that there is no significant linear relationship

between the LDI and Foil accumulator drift rate (Figures 5, 6).

Conversely, we find exactly the same statistical patterns in the

relationship between LDI and the starting point upper bounds

[Kendall’s tau: E5: corr(LDI, Repeat start point upper bound) =

−0.21, p < 0.001 and E6: corr(LDI, Repeat start point upper

bound) = −0.27, p = 0.002; E5: corr(LDI, Foil start point upper

bound) = 0.20, p < 0.001 and E6: corr(LDI, Foil start point upper

bound) = 0.24, p = 0.005]. We also find no relationship between

NDT and LDI (E5: τ = 0.03, p = 0.59 and E6: τ = −0.04, p =

0.64) and likewise between Boundary and LDI (E5: τ = −0.13, p =

0.009 not significant after multiple comparison correction and

E6: τ = −0.04, p = 0.64). We explicitly consider LDI-LBA

correlations for Experiments 7a and 7b later when examining

external validity.
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FIGURE 3

Model posteriors for all experiments. We find overall that LBA posteriors follow qualitatively the same patterns across experiments. The left most

three gray violins are the start point upper bound (color coded by response type: Repeat, Lure, and Foil). Next are the drift rates, similarly color

coded. Finally, we have the boundary and non-decision time.

3.2.2.1 Comparing correlation strengths

To formally compare correlation strengths, we resampled the

data and calculate Kendall’s τ s and the differences between each

pair of τ s (e.g., τA − τb). In particular, we wanted to test whether

the correlations between the LDI and Drift Rates were stronger

than the correlations between the LDI and Start Points. We then

examined whether the 95% confidence interval distributions of the

differences between each pair of correlations included zero. If they

did not include zero, we interpreted this as evidence for rejection of

the null (no difference between the correlations).

For Experiments 1–4, we found that the 95% CIs for the

correlation difference between LDI-Drift Rate and LDI-Start

Point for the Repeat and Lure accumulators did not contain

0 [Repeat accumulator correlation difference (0.13, 0.35), Lure

accumulator correlation difference (0.16, 0.36), Figure 7]. However,

this was not the case for the Foil accumulator [Foil accumulator

correlation difference (−0.10, 0.15)]. We therefore reject the null

hypothesis that the correlations between the LDI-Drift Rate

and LDI-Start Point for the Repeat and Lure accumulator are

the same. For Experiment 5, we find that the 95% CIs for

the LDI-Drift Rate and LDI-Start Point correlation differences

for Lure and Foil did not contain 0 [Lure: (0.20, 0.46), Foil:

(−0.47,−0.13)]. This corresponds to the correlations shown

in Figure 5—we find significant correlation with LDI for Lure

responses only with drift rate, and with Foil responses only

with start point. There we reject the null hypothesis equating

correlation strengths for Lure and Foil responses but not for Repeat

[95% CI (−0.21, 0.11)]. For Experiment 6, however, we found

that none of the 95% CIs excluded zero [Repeat accumulator

correlation difference (−0.29, 0.21), Lure accumulator correlation

difference (−0.05, 0.37), Foil accumulator correlation difference

(−0.39, 0.09)]. Formally, this suggests that we cannot reject the

null of no difference in correlation strength between LDI and

respective accumulator drift rate/start point upper boundary,
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FIGURE 4

LDI correlates with drift rate and start point upper bounds in E1–E4. We collapse across all four experiments (n = 233) and correlate mean drift rate

and start point upper bound with LDI. Kendall tau correlations shown in plots are statistically significant (all p < 0.001 except Start Point Repeat-LDI

which has p = 0.01) after adjusting for multiple comparisons. We find statistically significant correlations between the LDI and drift rates for all

accumulators. We also find significant correlations between the LDI and Repeat and Foil accumulator start point upper bounds.

FIGURE 5

E5: LDI correlates with drift rate and start point upper bounds in lifespan sample 1. In the first dataset comprised of older and younger adults, we find

similar qualitative relationships between the LDI and accumulator drift rates/start point upper bounds. Kendall tau correlations shown in plots are

statistically significant (all p < 0.001) after adjusting for multiple comparisons.

FIGURE 6

E6: LDI correlates with drift rate and start point upper bounds in lifespan sample 2. In the second, unrelated, dataset comprised of older and younger

adults, we find similar qualitative relationships between the LDI and accumulator drift rates/start point upper bounds. Kendall tau correlations shown

in plots are statistically significant (all p < 0.001) after adjusting for multiple comparisons.
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FIGURE 7

Histograms of bootstrapped correlation di�erences between LDI and drift rate, and LDI and start point. E1–E4: LDI-Drift rate correlations for Repeat

and Lure accumulators are stronger than LDI-Start Point correlations. In E5, we find that LDI-Drift Rate for Lure and Foil accumulators are stronger

than LDI-Start Points. E6, 7a, 7b show no significant correlation di�erences.

FIGURE 8

E5: Posterior model fits as a function of age group. Overall, parameter estimates are largely comparable across the two age groups. We only find

significant group di�erences in the Non-Decision Time parameter.
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however, we point out that for the Lure and Repeat accumulators,

the 95% CIs only just include 0. Likewise, all constructed

intervals include 0 for Experiments 7a and 7b, as is evident in

Figure 7.

Overall, this analysis suggests that the LDI may indeed be more

of a measure of signal strength than response bias, consistent with

recent work in the two-choice version of this task (Chwiesko et al.,

2023), though with considerable variability in this relationship

across populations.

3.3 Age, the LDI, and LBA parameters

Another way to consider how valuable our model is is to

consider measures outside the LDI. Experiments 5 and 6 are

both lifespan samples, containing subjects as young as 18 and

as old as 84. Given the typically demonstrated relationship

between age and LDI (and mnemonic discrimination more

broadly) (Stark et al., 2019; Foster and Giovanello, 2020;

Koen et al., 2020), we considered whether the relationship

between the LDI and LBA parameters was modulated

by age.

For both experiments, we dichotomize adults into one of

two age groups: younger or older (as in Wahlheim et al., 2022).

These groups are comparable across both experiments: younger

E5 median age 23 (IQR = 12) and n = 98; E6 median age 21

(IQR = 3) and n = 34 and older E5 median age 62 (IQR = 7)

and n = 79; E6 median age 69.5 (IQR = 8.5) and n = 28. We split

age into two groups due to bimodality in the spread of the ages in

both experiments.

Younger adults had a median accuracy of E5: 0.73 (IQR = 0.10)

and E6 0.69 (IQR = 0.11) compared to older adults E5: 0.69

(IQR = 0.09) and E6: 0.66 (IQR = 0.08). Younger adults were

also faster than older adults [E5: median RT young = 1.11 (0.15)

vs. median RT old = 1.27 (0.16); W = 6,125.5, p < 0.001 and E6:

median RT young = 1.03 (0.16) vs. median RT old = 1.19 (0.16);W

= 779.5, p < 0.001—we report the results of a Wilcoxon Rank Sum

Test due to non-normality in the distribution of untransformed

RTs.].

We find significant differences in lure discrimination as a

function of age group, as Wahlheim et al. (2022) also find in their

original analysis of E6. Younger adults have a significantly higher

LDI than older adults [E5: median LDI young = 0.41 (0.26) vs.

median LDI old = 0.32 (0.28); W = 3,003.5, p = 0.01 and E6:

median LDI young = 0.27 (0.26) vs. median LDI old = 0.09 (0.18);

W = 693.5, p < 0.001].

3.3.1 Di�erences in LBA parameters
In E5 (Figure 8), and E6, we only find statistically significant

differences in non-decision time, with older adults taking longer

with non-decision-related processes than younger adults [E5:

median NDT young = 0.56 (0.12) vs. median NDT old = 0.65 (0.16);

W = 5,525 and E6: median NDT young = 0.49 (0.08) vs. median

NDT old = 0.60 (0.16);W = 794, both p < 0.01]. As we show in our

earlier analysis, the LDI is meaningfully correlated with both drift

rates and start point upper boundaries. Therefore, while the LDI is

TABLE 6 Younger adult LDI-LBA correlations follow the same qualitative

patterns as in E1–E4 for drift rate and start point.

Parameters
correlated

E5 p-
value

E6 p-
value

Correlation Correlation

LDI-drift Repeat −0.35 <0.001 −0.26 0.03

LDI-drift Lure 0.41 <0.001 0.28 0.02

LDI-drift Foil −0.14 0.04 0.07 0.57

LDI-start point

Repeat

−0.15 0.03 −0.18 0.14

LDI-start point

Lure

−0.02 0.76 −0.04 0.72

LDI-start point Foil 0.15 0.03 0.13 0.27

LDI-boundary −0.18 0.01 −0.02 0.86

LDI-NDT 0.19 0.01 0.05 0.68

The LDI-Drift Repeat and LDI-Drift Lure correlations are statistically significant after

multiple comparison corrections only in E5, which has 64 more subjects than E6. The

remaining Kendall τ correlations are not statistically significant, however, after the correction.

different as a function of age group, it is not necessarily surprising

that its relationship with the relevant LBA parameters do not differ

across age groups: they are putative components of the LDI. We

further assessed how age directly correlated with LBA parameters.

We found, in E5, that age differentially correlates with lure drift rate

(younger τ = 0.21 and older τ = −0.22, p < 0.001) and, only in

the younger group, also correlates with repeat drift rate (τ = −0.26,

p < 0.01) and NDT (τ = 0.28, p < 0.001).

Interestingly, when we compared correlations between the LDI

and LBA parameters as a function of age group, only a handful

of statistically significant correlations remain after adjusting for

multiple comparisons, and only in E5 (Tables 6, 7). In younger

adults, the Repeat and Lure drift rates correlate significantly with

LDI in the same manner as Experiments 1 − 4 whereas in older

adults, the Repeat and Foil start points correlate significantly with

LDI. However we note that several correlations are marginally

significant, in particular the LDI and Repeat accumulator drift rate

in older adults. Finally, we did not find any meaningful differences

in the correlations between age groups (e.g., the LDI-Drift Repeat

correlation for younger adults was not significantly different from

the LDI-Drift Repeat correlation for older adults; this was the case

for all parameter correlations).

3.4 Test-retest and external validity

3.4.1 Test immediately and test after delay
To first consider the consistency of the LDI and LBA

parameters, we compare model fits between Experiments 7a and

7b. The same subjects completed the standard MST twice where

the second test session took place one week after the first study

session. Our key question of interest lies in how our choice-

only and choice-and-rt parameters vary over these two sessions.

First, we note that in both experiments, we do not see the same

qualitative relationships between LDI and the LBA parameters
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TABLE 7 Older adult LDI-LBA correlations also follow similar qualitative

patterns as in E1–E4.

Parameters
correlated

E5 p-
value

E6 p-
value

Correlation Correlation

LDI-drift Repeat −0.14 0.08 −0.36 0.01

LDI-drift Lure 0.20 0.01 0.16 0.24

LDI-drift Foil −0.04 0.59 0.20 0.14

LDI-start point

Repeat

−0.32 <0.001 −0.22 0.10

LDI-start point

Lure

−0.07 0.37 0.11 0.40

LDI-start point Foil 0.30 <0.001 0.20 0.13

LDI-boundary −0.02 0.76 −0.06 0.68

LDI-NDT −0.06 0.46 0.34 0.01

The only significant correlations are again in E5 but, interestingly, between LDI and start point

for Repeat and Foil responses. None of the remaining correlations are statistically significant,

however, after adjusting for multiple comparisons.

(e.g., negative correlation with Repeat responses and positive for

Lure/Foil). Interestingly, the LDI does not significantly correlate

with any LBA parameters in either the immediate test (E7a) or the

delayed test (E7b). However, as our primary interest in these data

lies in the difference in parameter values, we do not believe this lack

of correlation to be a principal problem.

We then calculated how well the parameters rank-correlated

within subject. We found no significant correlation between the

LDIs across both experiments (τ = 0.09, p = 0.39). However,

we found several significant correlations within LBA parameters

including start point for the Repeat and Foil accumulators, non-

decision time, and boundary (start point repeat accumulator τ =

0.34, start point foil accumulator: τ = 0.30, NDT: τ = 0.36;

Boundary: τ = 0.41 all p < 0.001). We note that none of

the significant correlations include any of the parameters that

measure signal strength. Systems consolidation theory suggests that

mnemonic representations transfer to long-term storage across the

delay. Thus we may expect subjects to rely more on “gisty” memory

for weakly-encoded items, while more strongly encoded items may

undergo sharpening, consistent with our interpretation of start

point.

Finally, we compared differences in the posterior means for

each subject for all parameters of interest. That is, we subtracted

the posterior value inferred during the second test from the

posterior value inferred during the first test. Recall that the previous

paragraph considered rank correlations while here we consider the

magnitude of the parameter. The more variable a parameter, the

greater the magnitude of the summary level difference. As we find

in Figure 9, the start point for Lure responses and the NDT have

the smallest magnitude of difference [median difference(IQR) start

point Lure:−0.05 (0.12) and NDT:−0.01 (0.13)]. Interestingly, the

drift rate for the Foil accumulator and the LDI have the largest

magnitude of difference [median difference(IQR) drift rate Foil:

−0.31 (0.36) and LDI: 0.42 (0.33)]. This seems consistent with our

model free analyses earlier: in Tables 2, 3 we saw that subjects were

most accurate and fastest when making Foil responses in E7b and

that there was a large difference in median LDI between E7a and

FIGURE 9

E7a,b: Posterior di�erences between immediate test and delayed

test. We plot median (IQR) di�erences and find that the Lure

accumulator start point and NDT have the smallest magnitude

changes across the two experimental sessions.

FIGURE 10

E6: LDI tends to correlate negatively with posterior hippocampal

RSFC and positively with other regions. We show a symmetric

correlation matrix plot where each square represents the correlation

between the row-column hippocampal resting state functional

connectivity and the LDI. Cells colored darker yellow show stronger

positive correlations, and darker purple stronger negative

correlations.

E7b (Table 5). This analysis provides initial evidence suggesting that

parameters inferred via the LBAmay be more stable than using just

the LDI.

3.4.2 Hippocampal resting state functional
connectivity

We finally consider the more explicit question of external

validity. As the LDI has been shown to be connected to not

only hippocampal activity (Stark et al., 2019) but also more

broadly neural activity across the brain (Wahlheim et al., 2022),

we explore how our model-derived parameters correlate with

these regions. In particular we compare and contrast how the

LDI relates to neural activity with our LBA parameters. In their

original paper, Wahlheim and colleagues demonstrated that resting
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FIGURE 11

E6: Lure accumulator drift rates mostly correlate positively with hippocampal RSFC while Repeat accumulator drift rates correlate negatively. We

show a symmetric correlation matrix plot where each square represents the correlation between the row-column hippocampal resting state

functional connectivity and the respective accumulator drift rate.

FIGURE 12

E6: Start point—hippocampal RSFC correlations. We show a symmetric correlation matrix plot where each square represents the correlation between

the row-column hippocampal resting state functional connectivity and the respective accumulator drift rate. We also see greater variability in the

qualitative patterns in the start point—RSFC correlations (i.e., evidence of both negative and positive correlations), compared to drift

rate—hippocampal RSFC.

state functional connectivity (RSFC) in the Default Mode Network

predicts LDI (Wahlheim et al., 2022). We use exactly the same

regions and parcellations as (Wahlheim et al., 2022). Our analyses

are exploratory, constrained by the data from the initial paper,

and uncorrected. Here, we first examine the relationship between

resting state functional connectivity in the hippocampus (eight

regions: left/right medial head, left/right lateral head, left/right

body, and left/right tail) and the LDI/LBA parameters.We correlate

LDI and LBA parameters with a matrix of Fisher’s z-transformed

correlation coefficients of hippocampal connectivity [procured

from OSF and preprocessed by Wahlheim et al. (2022)].

As the MST is designed to capture a process most often

attributed to the hippocampus, and we see a behavioral relationship

between the LDI and some LBA parameters, we first considered if

the LDI and LBA parameters correlated with hippocampal RSFC.

Recall from the previous section that in this dataset (not

accounting for the differently aged subgroups), we found that

LDI correlated with both mean drift rate (Repeat, Lure) and

start point upper bound (Repeat, Foil). We therefore wanted to

examine whether similar patterns held with resting state functional

connectivity: how does LDI correlate with hippocampal RSFC, how

do LBA parameters correlate with hippocampal RSFC, and what is

the intersection and nodes of divergence between the two?

We first computed raw Pearson correlations between

hippocampal RSFC and our behavioral parameters of interest.

In Figure 10, we find that the LDI correlates negatively with

posterior hippocampal RSFC and positively with other, more

anterior, regions, perhaps in line with the empirically observed

representational specificity gradient within the hippocampus.

In Figure 11, we show that Repeat and Lure accumulator drift

rates differentially correlate with hippocampal RSFC: with Repeat

drifts correlating negatively and Lure drifts correlating mostly

positively. Finally, in Figure 12, we find less clear directional

patterns between accumulator start points and hippocampal RSFC.

Further, absolute values of the correlations suggest that start

point—RSFC correlations may be weaker than drift rate—RSFC.
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TABLE 8 Thresholded hippocampus resting state functional connectivity

and LDI/LBA parameters:Only drift rates correlate with same RSFC

regions as LDI.

Parameter Regions Correlation

LDI Anterior lateral LH - Anterior

lateral RH

τ = 0.21

Anterior medial LH - Anterior

lateral LH

τ = 0.20

Drift: Repeat Anterior lateral LH - Anterior

lateral RH

τ = −0.24

Anterior lateral RH - Middle LH τ = −0.23

Middle LH - Posterior LH τ = −0.17

Drift: Lure Anterior medial LH - Anterior

lateral LH

τ = 0.18

Anterior medial RH - Middle LH τ = 0.20

Drift: Foil Anterior lateral RH - Middle LH τ = 0.17

Middle LH - Posterior LH τ = 0.18

Start point: Repeat Anterior medial RH - Middle LH τ = 0.18

Start point: Lure - -

Start point: Foil - -

Boundary - -

Non-decision time Anterior medial LH - Anterior

lateral LH

τ = −0.19

Anterior lateral LH - Anterior

lateral RH

τ = −0.21

Each row delineates which parameter correlated significantly (p < 0.05) with RSFC between

the two listed hippocampus subregions. LH and RH are shortform for Left Hemisphere and

Right Hemisphere, respectively.

We find that the LDI, drift rates for all accumulators, upper

boundary for the Repeat accumulator start point, and non-decision

time all show uncorrected thresholded (p < 0.05) Kendall

τ correlations with various RSFC regions in the hippocampus

(Table 8). Of particular interest is that only the drift rate for

the Repeat and Lure accumulator correlated with the same

RSFC regions as the LDI (and in directions consistent with

previous independent datasets, Experiments 1 − 4: LDI negatively

correlated with Repeat accumulator and positively correlated with

Lure). We further highlight that each parameter correlated with

hippocampal RSFC correlates in the same direction—for example,

Repeat accumulator drift rates are always negatively correlated

with RSFC but Lure accumulator drift rates are all positively

correlated. This suggests that the correlations we recover are not

necessarily spurious (in which case we may expect variability in the

directionality of the correlations—contrast for example, Figure 11

vs. Figure 12). The thresholded analysis, then, could further

support our boostrapped correlation analysis which suggested that

LDI be relatively more a measure of signal strength compared to

response bias.

3.4.2.1 Default mode network resting state functional

connectivity

Given, however, the evidence suggesting pattern separation

occurs throughout the brain (Amer and Davachi, 2023), we

repeated the same analysis examining the relationship between

LBA parameters/LDI and resting state functional connectivity

in the entirety of the Default Mode Network (DMN). As in

the section detailing our behavioral results, we are interested in

contrasting the difference in correlations between the respective

accumulator drift rates and DMN RSFC with the respective

accumulator start points and DMN RSFC. As the drift rates are

the parameters that represent signal strength in the MST, we may

expect that there will be stronger correlations between the drift

rates and DMN RSFC than the start points and DMN RSFC

in regions that may support mnemonic discrimination and/or

pattern separation. To formally compare dependent (i.e., paired)

overlapping (i.e., both relating to RSFC) correlations, we use the R

package cocor (Diedenhofen and Musch, 2015) and report results

of significance based on the Pearson and Filon’s z statistic. We show

the unthresholded correlation differences between RSFC-Drift and

RSFC-Start Point for the Repeat (Figure 13), Lure (Figure 14), and

Foil (Figure 15) accumulators.

We then thresholded these correlations using the

False Discovery Rate (FDR) via the R package fdrtools

(Strimmer, 2008). Across all the accumulators, however,

we do not find any correlations where the RSFC-

Drift is significantly different from the RSFC-Start

Point correlation.

We performed a final RSFC correlation difference analysis

where we compared RSFC-LDI correlations with RSFC-Drift and

RSFC-Start Point (Figure 16). Here we found 16 connectivity

regions where the correlation differences survived the statistical

signficance threshold via FDR for the Repeat accumulator

only. All but one of these regions showed that the RSFC-

Drift correlation was more negative than the RSFC-LDI

correlation. Of these regions, the most frequently occurring

brain region was the Anterior Temporal (Right Hemisphere,

RH ANT-TEMP 1, in Figure 16). Specifically, we found RH

ANT-TEMP connectivity with 6 (dorsal prefrontal, temporal,

and parietal) regions were more negatively correlated with

drift than LDI. The only region where RSFC-Drift is more

positively correlated than RSFC-LDI is the Posterior Hippocampus

(Left Hemisphere) and the Inferior Parietal Lobule (IPL,

Right Hemisphere).

4 Discussion

In this paper, we have introduced a way to model

choice and response time in the Mnemonic Similarity Task.

We adapt a version of the Linear Ballistic Accumulator

to model each response distinctly: Repeat, Lure, and

Foil. A primary contribution of this work is to introduce

psychologically interpretable parameters, allowing us to separate

signal strength (i.e., drift rate) from other processes (e.g.,

response bias).

We also demonstrate that the LBA parameters relate

systematically with the standard choice-based measure, the

LDI. Specifically, that the LDI correlates with both signal strength

and response bias: it is capturing facets of recognition memory,

response tendencies, and other behaviors that evolve over the

course of an experiment. The drift rate is a measure of signal
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FIGURE 13

E6: Correlation di�erences between RSFC and Drift Rate vs. RSFC

and Start Point for Repeat accumulator. We show a symmetric

correlation matrix plot where each square represents the correlation

between the row-column DMN resting state functional connectivity

and the respective correlation di�erence between Drift Rate and

Start Point.

FIGURE 14

E6: Correlation di�erences between RSFC and Drift Rate vs. RSFC

and Start Point for Lure accumulator. We show a symmetric

correlation matrix plot where each square represents the correlation

between the row-column DMN resting state functional connectivity

and the respective correlation di�erence between Drift Rate and

Start Point.

FIGURE 15

E6: Correlation di�erences between RSFC and Drift Rate vs. RSFC

and Start Point for Foil accumulator. We show a symmetric

correlation matrix plot where each square represents the correlation

between the row-column DMN resting state functional connectivity

and the respective correlation di�erence between Drift Rate and

Start Point.

FIGURE 16

E6: Correlation di�erences between RSFC and Drift Rate (Repeat

Accumulator) vs. RSFC and LDI. We show a symmetric correlation

matrix plot where each square represents the correlation between

the row-column resting state functional connectivity and the

respective correlation di�erence between Drift Rate and Start Point.

Brown squares highlight regions of connectivity where the

correlation di�erences are statistically significant (p < 0.05).
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strength, or deliberation. In this paper we interpret it as the

memory-dependent signal present in mnenomic discrimination.

We can further speculate that the decision-related signal

captured by the LDI could provide a mechanistic link via evidence

accumulation between the LDI and pattern separation itself, though

further research is necessary to test this claim. Importantly, while

we found variability across experiments in which accumulator

drift rates and start point upper bounds correlated with the LDI,

our secondary analysis quantifying the difference in correlation

strengths showed that the LDI may indeed be capturing more

“signal” than response bias (Experiments 1− 4 only).

To further explore what insights our modeling approach could

provide, we considered several other datasets. First, we considered

two lifespan samples as age is known to correlate with LDI

(Stark et al., 2019). In one experiment (E5), we found differential

correlations with LDI and its putative decompositions as a function

of age group: LDI correlated with the drift rates for the Repeat

and Lure accumulators only for the younger adults, while the start

points for Repeat and Foil accumulators only correlated with LDI

for the older adults. This suggests that the LDI might also be

capturing different processes that adults rely on as a function of

their chronological age: younger adults may have strong internal

signals, and that is why we see strong correlations with LDI and

Drift Rate but older adults may rely on more gisty processes, hence

the stronger correlations with LDI and Start Point. Another age

related differential correlation we found in E5 showed that age

positively correlated with Lure drift rate for the younger group

and negatively for the older group. The negative correlation is

perhaps unsurprising in the older age group as it is consistent

with previous results showing how age and LDI are negatively

correlated in older adults (Stark et al., 2019), insofar as the LDI and

Lure drift rate capturing similar information. As neurobiological

substrates weaken with age, we expect even older people to have

even poorer signal strength. However, the converse is not true

for the younger age group, the youngest member of which is 18.

While hippocampal development is more or less complete by that

age, the prefrontal cortex is not. This could be a reason why we

see the positive correlation with age in the younger age group

alone and could provide further evidence suggesting that a more

global neurobiological conceptualization of how/where mnemonic

discrimination and perhaps even pattern separation take place in

the brain is warranted.

We also examined a dataset that allowed us to examine within-

subject test-retest reliability. Specifically, subjects took the standard

MST twice – with the second session (E7b) taking place with a one

week delay. This dataset allowed us to address the critical notion

of information consistency: if parameters were similarly valued or

ordered across both sessions, then we may have more consistent

parameters. Indeed we found that our LBA parameters both

preserved rank correlations for several parameters and also showed

relatively small differences in magnitude, especially compared to

the LDI.

Finally, we conducted an exploratory analysis to consider

whether our model parameters correspond in any way with

neural activity. Our results in this paper are focused around

explaining the variation in an important behavioral measure of

mnemonic discrimination and, possibly, pattern separation. The

latter is, however, fundamentally a neural process. Therefore

we explored whether our LBA model parameters and LDI

differentially correlated with resting state functional connectivity.

With hippocampal RSFC, we found that, of all parameters we

model, the accumulator drift rates correlated the most with

hippocampal RSFC. Critically, we found that only the drift

rates correlate with the same connectivity regions as the LDI:

all in the anterior hippocampus. We also found statistically

significant differences between the correlations of RSFC and Repeat

accumulator drift rate and RSFC and LDI, where the former was

more negative than the latter. While the hippocampus has several

functions and there may be other brain regions whose functional

connectivity may correlate with both the LDI and start point upper

bound, we find these results to be an encouraging step toward

beginning to address how “process pure” the LDI may be.

Our findings may enhance the application of MST in several

ways. First, the use of sequential sampling models can allow

researchers to extract trial-by-trial timeseries reflecting putative

underlying computations that drive behavior, which should

support analysis of more precisely defined functional neuroimaging

measures (Long et al., 2016). Secondly, the robust statistical

frameworks often used to fit these sorts of models may allow

further refinement of the approach, producing even more stable

trait-level estimates by, e.g., incorporating informative priors

and models of contaminant behavior, and integrating trial-wise

neural measures to simultaneously test mechanistic hypotheses and

improvemodel fit to behavior (Turner et al., 2019). Finally, we draw

general attention to how response times can provide meaningful

information about an individual’s memory discrimination –

regardless of whether RT is explicitly modeled and perhaps

especially when considering vulnerable or clinical populations.

Our work fits in with other recent process models of

performance in this task. One such approach used Multinomial

Processing Trees to distinguish remembering and discrimination

from each other and from guessing (Lee and Stark, 2023). A key

advantage of this model is that it leverages previous psychometric

calibrations of lure item similarity (Lacy et al., 2011) to support the

distinction of discrimination-based processing, as discrimination

should get progressively more difficult with higher-similarity items.

However, because it is only fit to choice data, that model may not

capture degrees of discrimination processing that doesn’t result in

meaningful differences in choice probabilities. Thus, a useful future

direction for the present model is to adjust our specification of drift

rate to account for these levels of similarity.

A second approach used a two-choice evidence accumulation

model to identify age-related differences in discrimination, rather

than response bias, in the two-response version of the task

(Chwiesko et al., 2023). This model is more directly analogous

to ours, with the key distinction being in the choice of

evidence accumulation framework—namely, the drift-diffusion

model (DDM) employed there cannot in principle handle

more than two responses. However, the non-ballistic evidence

accumulation model may have important advantages over the

LBA employed here, namely in that the former captures additive

effects of noise during the deliberation process that may explain

left-skewed response times in the presence of highly noisy

mnemonic information—in other words, capturing errors when
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our framework might instead identify highly variable drift rates.

Here, too, the addition of known similarity structure to the model

specification should clarify the distinction between response types

and the influence of model assumptions.

Taken together, we believe these findings combine to establish

the value of modeling process-level contributions to performance

in this widely used task. Further work using sequential sampling

frameworks can examine whether these process-level components

shed further light on the cognitive (Gallo et al., 2004; Bowman and

Dennis, 2016) and neural (Kirwan and Stark, 2007; Bowman and

Dennis, 2016) underpinnings of lure discrimination, and whether

they can contribute to the growing literature using behavioral

markers of mnemonic discrimination to predict neurocognitive

degeneration (Berron et al., 2019; Maass et al., 2019; Stark et al.,

2019; Webb et al., 2020; Trelle et al., 2021; Kim et al., 2023).
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Turner, B. M., Palestro, J. J., Miletić, S., and Forstmann, B. U. (2019). Advances
in techniques for imposing reciprocity in brain-behavior relations. Neurosci. Biobehav.
Rev. 102, 327–336. doi: 10.1016/j.neubiorev.2019.04.018

Wahlheim, C. N., Christensen, A. P., Reagh, Z. M., and Cassidy, B. S. (2022).
Intrinsic functional connectivity in the default mode network predicts mnemonic
discrimination: a connectome-based modeling approach. Hippocampus 32, 21–37.
doi: 10.1002/hipo.23393

Webb, C. E., Foster, C. M., Horn, M. M., Kennedy, K. M., and Rodrigue, K. M.
(2020). Beta-amyloid burden predicts poorer mnemonic discrimination in cognitively
normal older adults. Neuroimage 221:117199. doi: 10.1016/j.neuroimage.2020.
117199

Frontiers inHumanNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnhum.2024.1379287
https://doi.org/10.1016/j.cobeha.2020.01.006
https://doi.org/10.1101/lm.1971111
https://doi.org/10.1038/s41593-017-0065-1
https://doi.org/10.1007/s41237-023-00193-3
https://doi.org/10.1002/hipo.22561
https://doi.org/10.1523/JNEUROSCI.1850-16.2016
https://doi.org/10.1093/brain/awz154
https://doi.org/10.1098/rstb.1971.0078
https://doi.org/10.1002/hipo.23299
https://doi.org/10.31234/osf.io/3mhj6
https://doi.org/10.1038/s41598-023-44107-5
https://doi.org/10.1093/cercor/bhx179
https://mc-stan.org/
https://doi.org/10.3389/fnbeh.2023.1080366
https://doi.org/10.1016/j.tics.2019.08.003
https://doi.org/10.1093/bioinformatics/btn209
https://doi.org/10.1038/s41593-020-00711-6
https://doi.org/10.1212/WNL.0000000000011477
https://doi.org/10.1016/j.neubiorev.2019.04.018
https://doi.org/10.1002/hipo.23393
https://doi.org/10.1016/j.neuroimage.2020.117199
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

	A response time model of the three-choice Mnemonic Similarity Task provides stable, mechanistically interpretable individual-difference measures
	1 Introduction
	2 Methods
	2.1 Experiments and data
	2.2 Response time model: the Linear Ballistic Accumulator

	3 Results
	3.1 Raw response times and choices
	3.2 Model fits
	3.2.1 Posterior summaries
	3.2.2 Relating the LDI to LBA parameters
	3.2.2.1 Comparing correlation strengths


	3.3 Age, the LDI, and LBA parameters
	3.3.1 Differences in LBA parameters

	3.4 Test-retest and external validity
	3.4.1 Test immediately and test after delay
	3.4.2 Hippocampal resting state functional connectivity
	3.4.2.1 Default mode network resting state functional connectivity



	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References




