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Abstract: Supply functions in the ubiquitous Gorman class are examined for their homo-

geneity properties. Homogeneity places surprisingly strong restrictions on functional 

forms. These forms facilitate testing of aggregability given homogeneity or homogeneity 

given aggregability or testing both. 
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HOMOGENEITY AND SUPPLY 

Economists’ motivations for choice of functional form include: ease of implementation 

and interpretation, needed flexibility, and aggregability. For demand applications, one of 

the late Terence Gorman’s great legacy is an empirically attractive generalization of pre-

vious work on representative consumers (the Gorman Polar Form), which included a 

readily aggregable demand system (e.g., Gorman 1981, Deaton and Muellbauer 1980). 

For both consumer and producer applications, this legacy is deeply embedded in agricul-

tural economics, as evidenced by the many applications which take the Gorman class of 

functions (additive in functions of the aggregated variable) as the starting point for em-

pirical analysis (e.g., Shumway 1995; Shumway and Lim 1993, Green and Alston 1990, 

Chambers and Pope 1991, LaFrance, Beatty, Pope and Agnew 2004 ). 

Gorman class functional forms are ubiquitous because they are easily interpretable, 

flexible, and have the added advantage of having convenient aggregation properties. 

However, the bulk of agricultural economic applications, particularly to agricultural pro-

ducer behavior, do not involve complete demand and supply systems and routinely in-

volve only the supply function for a single commodity of interest (Askari and Cummings 

1977). In these cases, one can employ a popular Gorman specification (without the sys-

tem restrictions) or one can specify any appropriate representation of interest. In the for-

mer case, one might use a functional form that is unnecessarily inflexible because choos-

ing a system “off of the shelf” may have imbedded restrictions that come from the eco-

nomic theory of systems, e.g., symmetry and adding up of demand, expenditure or cost, 

or symmetry from profit maximization. In either case, it is clear that one can not consider 
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symmetry in these single equation cases (or adding up if applicable) but would typically 

impose homogeneity (and expect non-negativity and monotonicity in the own price).  

One might think that the imposition of homogeneity is trivial by merely deflating by 

some price or index of prices. However, this can easily destroy aggregability (Lewbel 

1989). Further, this does not generally allow a nested approach for testing homogeneity, a 

property that is notoriously rejected in empirical work (Deaton and Muellbauer 1980; or 

Shumway and Lim 1993). The approach we take is to isolate the homogeneity condition 

within the general Gorman class of supply functions.1 Language and notation focus on 

producer supply behavior but it is readily apparent that our results apply to a variety of 

other settings, e.g., a factor demand equation and a normalized profit function.2 Further-

more, to maximize the empirical relevance of the analysis and to reduce the notational 

clutter, a single supply equation is considered. However, because homogeneity is an 

equation-by-equation concept, the results transfer immediately to any system with the 

Gorman structure.  

Our results are novel and to us, they are striking. We began this inquiry conjecturing 

that homogeneity might not substantially restrict or guide the choice of functional form. 

This turns out to be far from true. We find that supply functions must include explicit 

sums and products of power and transcendental (trigonometric) functions and must do so 

in rather explicit ways. However, this keenly depends on the number of independent 

functions of the aggregated variable, here output price, that is being utilized. That said, 

there is a great deal of flexibility remaining to usefully measure supply response and a 

great deal that is learned from considering homogeneity in isolation from other desired 
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properties of a supply function. We present a class or classes of functional forms that are 

homogeneous and can be usefully imposed directly in applied work or one can perturb 

them to test for implied homogeneity or aggregability. 

Gorman Class Functions 

The rationale and approach for specifying an aggregable supply system follows Cham-

bers and Pope 1991,1994. By focusing on supply, q, and given heterogeneity in output 

price presumably to temporal and spatial reasons, it is reasonable to specify supply as  

 
1

( ) ( )
K

k k
k

q h pα
=

=∑ w  (1) 

with K smooth linearly independent functions of input prices, w (w1,…,wn), times K 

smooth, and linearly independent functions of output price, p. We could add fixed inputs 

or technical change variables. However, in order to avoid notational clutter, for the pre-

sent such shifters can be subsumed in α  and h, but surpressed notationally. The func-

tional form in (1) defined the Gorman-class of functions. Given monotonicity from profit 

maximization, we expect or impose 1/ ( ) ( ) 0K
k kkq p h p pα=∂ ∂ = ∂ ∂ >∑ w . 

Homogeneity (0°) of q in (w,p) is most basically described by  

 ( , ) ( , ), 0.q t tp q p t= ∀ >w w  (2) 

Given the smoothness assumption, homogeneity can also be written as the Euler equation 

form (e.g., R.G.D. Allen 1938) 

 
1 1

( , ) ( , ) ( ) ( )( ) ( ) 0.
K K

k k
k k

k k

q p q p h pp h p p
p p

α α
= =

∂ ∂ ∂ ∂+ = + =
∂ ∂ ∂ ∂∑ ∑w w ww w w
w wT T  (3) 
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One could immediately impose homogeneity by dividing by p or a wi in (1). In the first 

case, deflation destroys the most common sense of aggregability (at least in the conven-

tional sense) by creating terms as functions of w/p (Lewbel 1989). In the latter case, the 

variables are p/wi and wj/wi. This also generally destroys independence of an aggregate 

price index from w. In any case, if testing homogeneity is of interest, most researchers 

would prefer a nested test and deflation would most naturally imply a non-nested test (de-

flated vs. non-deflated models). Thus, the next section focuses on what restrictions on 

each of the functions in (1) lead to homogeneity. This requires solving the differential 

equation in (3). 

The Main Result 

In the Appendix, the proof of the main result of the paper is presented. Not surprisingly, 

the results depend on the number, K, of functions included in the supply function. The 

explicit results for K ≤ 3 are highlighted because this appears to be parsimonious and suf-

ficient for most empirical representations.3 

Proposition 1 (The Main Result): Let the supply function of q take the Gorman form, 

1 ( ) ( )K
k kkq h pα==∑ w , with K smooth, linearly independent functions of input prices, w, 

and K smooth, linearly independent functions of output price, p. If q is 0° homogeneous 

in ( , )pw , then each output price function is: (i) ,pε  with ε ∈ ; (ii) (ln ) ,jp pε  with 

,ε ∈  {1,..., }j K∈ ; (iii) sin( ln ),p pε τ  cos( ln ),p pε τ  with ,ε ∈  ,τ +∈  appearing 

in pairs with the same { , }ε τ ; or (iv) (ln ) sin( ln )jp p pε τ , (ln ) cos( ln )jp p pε τ , with 

,ε ∈  {1,...,[½ ]},j K∈  ,τ +∈  and K≥4, appearing in pairs with the same { , , }jε τ , 

where [½ ]K  is the largest integer no greater than ½K. If {1,2,3}K ∈ , then the supply of 

q can be written as: 
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(a) K=1 

  [ ] 1
1( ) ;q p εα= w  

(b) K=2 

 i. [ ] [ ]1 2
1 2( ) ( ) ;q p pε εα α= +w w  

 ii. [ ] ( )1
1 2( ) ln ( ) ;q p pεα α= w w  or 

 iii. [ ] ( )( ) ( )( )1
1 2 2( ) sin ln ( ) cos ln ( ) ;q p p pεα τ α τ α⎡ ⎤= +⎣ ⎦w w w  

(c) K=3 

 i. [ ] [ ] [ ] 31 2
1 2 3( ) ( ) ( ) ;q p p p εε εα α α= + +w w w  

 ii. [ ] [ ] ( )1 2
1 2 3( ) ( ) ln ( ) ;q p p pε εα α α= +w w w  

 iii. [ ] ( ){ }1 2
1 2( ) ( ) ln ( ) ;q p pεα α α3= + ⎡ ⎤⎣ ⎦w w w  or 

 iv. [ ] [ ] [ ]( ) [ ]( ){ }1 2
1 2 3 3( ) ( ) sin ln ( ) cos ln ( ) .q p p p pε εα α τ α τ α= + +w w w w  

In each case except (c) iii. where 2( )α w  is homogeneous of degree zero, each ( )iα w  is 

positively linearly homogeneous for 1,2,3.i =  

Beginning with K=1, where there is no possibility of complex roots to (3), a rather 

simple power function of p emerges. Only a single linearly homogeneous index in w is 

required. One might consider 1/ ( )p α w >0 the “real price”, in which case monotonicity of 

supply in the output price requires 1 0ε > . If 1 1ε < , then the smaller is this elasticity, the 

greater is the concave curvature of supply in real price, while if 1 1ε > , then the larger is 

this elasticity, the greater is the convex curvature of supply in real price. 

For K=2, supply curves need not go through the origin and more flexible functional 

forms are introduced. A linear combination of power functions in p are obtained – each 
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with separate exponents ((b) i.). These are generalizations of the PIGL forms developed 

by Muellbauer (1975) and Lewbel (1987). Other generalizations include log functions 

added to power functions. For the log form, the two price functions enter in a specific 

multiplicative way, with 1pε and 1ln( )p pε  serving as the two price functions in (1). This 

introduces generalizations of PIGLOG type functions developed in Muellbauer (1975) in 

demand analysis. Finally, for K=2 (iii), the possibility of complex roots occurs and trigo-

nometric functions are introduced with output price functions involving sin( ln( ))p pε τ  

and cos( ln( ))p pε τ . These provide a pair of terms similar to the Fourier series approxi-

mations developed in Gallant (1984) and applied by Chalfant (1987) and Wohlgenant 

(1984).  

Moving on, K=3 adds an additional price function. Analogous to (b) i., an additional 

power function term is possible as noted in (c) i. A mixing of (b) i. and (b) ii. is now pos-

sible (see (c) ii.), as well as the generalizations in case (c) iv. of the trigonometric forms 

discussed under K=2. Perhaps most surprising is the addition of a (ln p)2 term as a gener-

alization of (b) ii. These cases flow from a reduction of the Euler equations to an equiva-

lent linear ordinary differential equation (ode; see equation (A.4) in the appendix). The 

solution of this ode depends in turn on whether there are unique real roots, a repeated real 

root and a unique real root, one real root with multiplicity 3, and a real root with a com-

plex conjugate pair of roots.  

A few comparisons of the forms in the Proposition and popular forms have been 

noted above but there is a large set of Gorman-class forms that could be discussed. How-

ever, the conclusion is clear even from K=1 that homogeneity defines the class of func-
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tions but allows a much more rich set of behaviors than were ε  constrained to be 1 as in 

conventional systems of demand analysis. Thus, we conclude that the set of functions 

consistent with homogeneity is flexible and appears to be empirically meaningful. Yet, it 

is surprising that homogeneity alone defines the class of output price functions that can 

be used.  

Profit Functions 

Even though a production or general equilibrium system may not be estimated, it is use-

ful to know the profit functions corresponding to Proposition 1, so that welfare analysis 

can be performed (see Hausman 1981, LaFrance 1993). That is, assuming that firms solve 

{ },( , ) max ( ) : ( , )qp pq qπ = − ∈xw w x xT Y where Y is the production set with input vec-

tor x, assuming smoothness, and integrating the supply functions in (a)-(c) obtains the 

profit function, ( , )pπ w .4 Note that if supply contains a sum of functions, sufficiency for 

monotonicity is that each function is monotonically increasing in p. However, this is not 

necessary. Hence, it is not imposed except for K=1. We present result for K=1, 2, and 

K=3 (c) iii. The results for the remaining K=3 cases can be anticipated from the results 

for K=1 and 2. We present the following without proof, as it only involves integration. 

Proposition 2: Let the supply of q take the form in Proposition 1, then homogeneity re-

quires profit functions of the following forms:  

(a) K=1   1 0ε >  

1

1 1
( , ) ( );

(1 ) ( )
p pp

ε

π β
ε α

⎛ ⎞
= −⎜ ⎟+ ⎝ ⎠

w w
w

 

(b) K=2 

 i.a.   1 2, 1ε ε ≠ −  
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1 2

1 1 2 2
( , ) ( );

(1 ) ( ) (1 ) ( )
p p p pp

ε ε

π β
ε α ε α

⎛ ⎞ ⎛ ⎞
= + −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

w w
w w

 

 i.b. 1 21, 1ε ε≠ − = −  

1

2
1 1

( , ) ( ) ln ( );
(1 ) ( ) ( )

p p pp
ε

π α γ
ε α β

⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠
w w w

w w
 

 ii.a. 1 1ε ≠ −  

1

1 1 2 1

1( , ) ln ( );
(1 ) ( ) ( ) (1 )

p p pp
ε

π β
ε α α ε

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − −⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎣ ⎦

w w
w w

 

 ii.b. 1 1ε = −  

2

1
2

( , ) ½ ( ) ln ( );
( )
ppπ α β

α
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

w w w
w

 

 iii. 

1

12 2
1 21

1
2

(1 )sin ln
(1 )

(1 )cos ln ;

p p p

p

ε

π ε τ τ
α αε τ

ε τ τ β
α

⎡ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
= + +⎢ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ + ⎢⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣

⎤⎛ ⎞⎛ ⎞
+ + − −⎥⎜ ⎟⎜ ⎟

⎥⎝ ⎠⎝ ⎠⎦

 

(c) K=3 

 iii.a. 1 1ε ≠ −  

1 2
2

1 2 13
1 31

1 (1 ) (1 ) ln 1 ;
(1 )

p p p
ε

π ε α ε β
α αε

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞ ⎪ ⎪= + + + + − −⎨ ⎬⎢ ⎥⎜ ⎟⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
 

 iii.b. 1 1ε = −  

3

1
1 2 3

3
ln ln .p pπ α α γ

β α

⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞⎢ ⎥= + −⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
 

In each case, ( )β w and ( )γ w  are positively linearly homogeneous functions of w. 
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These results can be used to develop systems or partial systems of production behav-

ior or for applied welfare analysis. For example, one could differentiate the profit func-

tions in Proposition 2 with respect to p and w and estimate a system of supply and factor 

demands.5 Admittedly some of the forms are simpler and otherwise more attractive than 

others.  

We have said little about regularity conditions such as monotonicity or non-

negativity. In single equation problems as we consider here, these conditions are seldom 

imposed but merely checked after estimation. However, it is clearly possible to impose 

either local or in some cases global monotonicity in a single equation or a system with 

constrained estimation. Finally, in any application, monotonicity should be examined. To 

illustrate its importance, in (b) ii. for 1 : nα ++ +→ , monotonicity requires that 

1 ln( ) 0p− > . Thus, the usefulness of this case hinges entirely on the domain of p.  

Fixed Inputs or Other Shifters 

Fixed inputs without heterogeneity, pose no problem. They can be included with w in the 

( )iα w  functions, i=1,2,3. When fixed inputs are heterogeneous, then one must decide 

how the aggregators enter into an aggregate supply function. One can only maintain price 

independence of the aggregator function by adding 1 ( ) ( )S
s s ss zψ γ=∑ w  to (1), where there 

are S kinds of fixed inputs. This only alters our earlier result in Proposition 1 by adding 

this term onto the forms (a)–(c) of the Proposition, where ( )sγ w are homogeneous of de-

gree zero in w, s=1, …, S. When the aggregators of fixed inputs may depend on p or w (a 

less common but perhaps more useful approach), a more complex analysis is required. 
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For example, each of the price functions hk could be written as hk(p,z), but the homogene-

ity properties of hk in p remain unchanged. 

Conclusion 

Measuring producer or consumer behavior requires selection of a functional form. The 

Gorman class of functions is flexible and aggregable and encompasses most empirical 

specifications in the literature. Yet, surprisingly little is known about how homogeneity 

of degree zero of supply and demand functions applies. We find substantial generaliza-

tions of the functional forms found in Gorman-based systems and routinely applied in 

empirical demand analysis, where homogeneity, adding up, and symmetry are imposed in 

a complete system. The functional forms in the propositions provide a coherent approach 

for empirical work using any demand or supply function in the general Gorman class. 

Finally, although the derived functional forms are substantive generalizations of those in 

the complete systems literature, we are struck with the following observation: homogene-

ity alone determines the admissible class of functional forms.  
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APPENDIX 

Proposition 1: Let the supply of q take the form 1 ( ) ( )K
k kkq h pα==∑ w , with K smooth, 

linearly independent functions of input prices, w, and K smooth, linearly independent 

functions of output price, p. If q is 0° homogeneous in ( , )pw , then each output price 

function is: (i) ,pε  ε ∈ ; (ii) (ln ) ,jp pε  ,ε ∈  {1,..., }j K∈ ; (iii) sin( ln ),p pε τ  

cos( ln ),p pε τ  ,ε ∈  ,τ +∈  appearing in pairs with the same { , }ε τ ; or (iv) 

(ln ) sin( ln )jp p pε τ , (ln ) cos( ln )jp p pε τ , ,ε ∈  {1,...,[½ ]},j K∈  ,τ +∈  K≥4, ap-

pearing in pairs with the same { , , }jε τ , where [½ ]K  is the largest integer no greater 

than ½K. If {1,2,3}K ∈ , then the supply of q can be written as: 

(a) K=1 

 [ ] 1
1( ) .q p εα= w  

(b) K=2 

i. [ ] [ ]1 2
1 2( ) ( ) ;q p pε εα α= +w w  

ii. [ ] ( )1
1 2( ) ln ( ) ;q p pεα α= w w  or 

iii. [ ] ( )( ) ( )( )1
1 2 2( ) sin ln ( ) cos ln ( ) ;q p p pεα τ α τ α⎡ ⎤= +⎣ ⎦w w w  

(c) K=3 

i. [ ] [ ] [ ] 31 2
1 2 3( ) ( ) ( ) ;q p p p εε εα α α= + +w w w  

ii. [ ] [ ] ( )1 2
1 2 3( ) ( ) ln ( ) ;q p p pε εα α α= +w w w  
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iii. [ ] ( ){ }1 2
1 2( ) ( ) ln ( ) ;q p pεα α α3= + ⎡ ⎤⎣ ⎦w w w  

iv. [ ] 1
1( )q p εα= w  

 [ ] [ ]( ) [ ]( ){ }2
2 3 3( ) sin ln ( ) cos ln ( ) .p p pεα τ α τ α+ +w w w  

In each case except (c) iii. where 2( )α w  is homogeneous of degree zero , each ( )iα w  is 

positively linearly homogeneous for 1,2,3.i =  

Proof: The Euler equation for 0° homogeneity is: 

 
1 1

( ) ( ) ( ) ( ) 0.
K K

k
k k k

k k
h p h p pα α

= =

∂ ′+ =
∂∑ ∑w w w
wT

 (A.1) 

If K=1 and 1( ) 0h p′ = , this reduces to 1( ) 0α∂ ∂ =w w wT , so that 1( )h p c=  and 1( )α w  is 

homogeneous of degree zero. Absorb the constant c into the price index and set ε=0 to 

obtain a special case of (i). If either K=1 and 1( ) 0h p′ ≠  or K≥2, then neither sum in (A.1) 

can vanish without contradicting the linear independence of the {αk(w)} or the {hk(p)}. 

Write the Euler equation as 

 1

1

( ) ( )
1.

( ) ( )

K
k kk

K
k kk

h p p

h p

α

α
=

=

′
= −

⎡ ⎤∂ ∂⎣ ⎦

∑
∑

w

w w wT
 (A.2) 

Since the right-hand side is constant, we must be able to recombine the left-hand side to 

be independent of both w and p. In other words, the terms in the numerator must recom-

bine in some way so that it is proportional to the denominator, with –1 as the proportion-

ality factor. Clearly, if these two functions are proportional, the functional forms must be 

the same. Linear independence of {h1(p),…, hK(p)} then implies that each ( )kh p p′  must 

be a linear function of {h1(p),…, hK(p)}, with constant coefficients: 

 ,1( ) ( ), 1, , .K
k kh p p c h p k K=
′ = =∑  (A.3) 
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This is a complete system of K linear, homogeneous, ordinary differential equations 

(odes), of the form commonly known as Cauchy’s linear differential equation. Our strat-

egy is the following. First, we convert (A.3) through the change of variables from p to 

lnx p=  to a system of linear odes with constant coefficients (Cohen 1933, pp. 124-125). 

Second, we identify the set of solutions for the converted system of odes. Third, we re-

turn to (A.1) with these solutions in hand and identify the implied restrictions among the 

input price functions for each K=1,2,3. 

Since ( ) xp x e=  and ( ) ( )p x p x′ = , defining ( ) ( ( )), 1,..., ,k kh x h p x k K≡ =  and applying 

this change of variables yields:  

 ,1( ) ( ), 1, , .K
k kh x c h x k K=
′ = =∑  (A.4) 

In matrix form, this system of linear, first-order, homogeneous odes is ( ) ( )x x′ − =h Ch 0 , 

and the characteristic equation is 0λ− =C I . This is a Kth order polynomial in λ, for 

which the fundamental theorem of algebra (Gauss 1799) implies that there are exactly K 

roots. Some of these roots may repeat and some may be complex conjugate pairs. Let the 

characteristic roots be denoted by , 1, ,k k Kλ = . 

The general solution to a linear, homogeneous, ode of order K is the sum of K linearly 

independent particular solutions (Cohen 1933, Chapter 6; Boyce and DiPrima 1977, 

Chapter 5; Hirsch and Smale 1974, Chapter 5; Kamien and Schwartz 1991, Appendix B), 

where linear independence of the K functions, 1, , Kf f  of a single variable x means that 

there is no nonvanishing K–vector, 1( , , )Ka a  such that 1 1 0K Ka f a f+ + =  for all 

values of the variables in an open neighborhood of any point [ ]1, ( ), , ( )Kx f x f x . Cohen, 

pp. 303-306 contains a precise statement of necessary and sufficient conditions.  

Let there be R≥0 roots that repeat and reorder the output price functions as necessary in 

the following way. Label the first repeating root (if one exists) as λ1 and let its multiplic-

ity be denoted by M1≥1. Let the second repeating root (if one exists) be the M1+1st root. 
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Label this root as λ2 and its multiplicity as M2≥1. Continue in this manner until there are 

no more repeating roots. Let the total number of repeated roots be 1 .R
kkM M==∑  Label 

the remaining 0K M− ≥  unique roots as λk for each 1, , .k M K= +  Then (without any 

loss in generality) the general solution to (A.4) can be written as 

 ( 1)
1 1 1( ) , 1, , .r r

R M Kx x
k k kr Mh x d x e d e k Kλ λ−

= = = +
⎡ ⎤= + =
⎣ ⎦∑ ∑ ∑  (A.5) 

Now substitute (A.5) into the supply of q to obtain: 

( 1)
1 1 1 1

( 1)
1 1 1 1 1

( 1)
1 1 1

( ) (ln )

( ) (ln ) ( )

( ) (ln ) ( ) .

r r

r r

r kr

K R M K
k k kk r M

R M K K K
k k k kr k M k

R M Kk
kr kr k k M

q d p p d p

d p p d p

p p p

λ λ

λ λ

λλ

α

α α

α α

−
= = = = +

−
= = = = + =

−
= = = +

⎡ ⎤= +
⎣ ⎦

⎡ ⎤ ⎡ ⎤= +
⎣ ⎦ ⎣ ⎦

≡ +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

w

w w

w w

 (A.6) 

The terms in the first double sum give cases (i) and (ii), and case (iv) when K≥4 and at 

least one pair of complex conjugate roots repeats, while the terms in the sum on the far 

right give cases (i) for unique real roots and (iii) for unique pairs of complex conjugate 

roots, completing the proof of the functional form of the output price terms.  

Turn now to the representation of the supply function for K=1,2, or 3.  

K=1: 1 1( ) ( )q h pα= w . (A.7) 

Equation (A.3) simplifies to  

 1 11 1( ) ( )h p p c h p′ = . (A.8) 

Direct integration leads to 11
1 11( ) ch p d p= . The Euler equation then reduces to  

 1 11 1( ) / ( )cα α∂ ∂ = −w w w wT . (A.9) 

Hence, the input price function must be homogeneous of degree 11c− . Set 1 11cε = , ab-

sorb the multiplicative constant d11 into the homogeneous price function, and omit the 
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subscripts to obtain the expression found in (a) of the proposition. 

K=2: 1 1 2 2( ) ( ) ( ) ( ).q h p h pα α= +w w  (A.10) 

The characteristic equation for (A.4) is 

 11 22 11 22 12 21( ) ( ) 0c c c c c cλ λ2 − + + − = . (A.11) 

The characteristic roots are  

 2
1 2 11 22 11 22 12 21, ½( ) ½ ( ) 4c c c c c cλ λ = + ± − + . (A.12) 

Three cases are possible: 

(a) unique real roots, 1 2λ λ≠ , 1 2,λ λ ∈ , and 2
11 22 12 21( ) 4 0c c c c− + > ; 

(b) one real root, 1 2 11 22½( ) ,c cλ λ λ= = + ≡ ∈  and 2
11 22 12 21( ) 4 0c c c c− + = ; or 

(c) complex conjugate roots, 1 ,λ κ ιτ= +  2λ κ ιτ= − , 11 22½( )c cκ = + , 

2
11 22 12 21½ | ( ) 4 |,c c c cτ = − +  and 2

11 22 12 21( ) 4 0c c c c− + < .  

With unique roots (whether real or complex), the general solution is 

 1 2
1 2( ) , 1,2.x x

k k kh x d e d e kλ λ= + =  (A.13) 

Substituting these expressions into the supply of q yields 

 
[ ] [ ]1 2

1 2

11 1 12 2 21 1 22 2

1 2

( ) ( ) ( ) ( )

( ) ( ) .

q d d p d d p

p p

λ λ

λ λ

α α α α

α α

= + + +

≡ +

w w w w

w w
 (A.14) 

If the roots are real, then the Euler equation is 

 1 2
1 1 1 2 2 2( ) ( ) ( ) ( ) 0.p pλ λα λ α α λ α⎡ ⎤ ⎡ ⎤∂ ∂ + + ∂ ∂ + =⎣ ⎦ ⎣ ⎦w w w w w w w wT T  (A.15) 

Linear independence of the output price functions implies that the term premultiplying 

each output price function vanishes. Hence, ( )iα w  must be homogeneous of degree iλ−  
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for i=1,2. Relabel terms so that i iε λ=  and 1( ) ( ) , 1,2,i
i i iεα α −= =w w  for case (b) i. 

If the characteristic root repeats, the general solution is 

 1 2( ) , 1,2.x x
k k kh x d e d xe kλ λ= + =  (A.16) 

Making the same substitutions as before yields: 

 1 2( ) ( ) ln .q p p pλ λα α= +w w  (A.17) 

The Euler equation now is 

 1 2
1 2 2

( ) ( )( ) ( ) ( ) ln 0.p pλα αλα α λα∂ ∂⎡ ⎤⎛ ⎞ ⎛ ⎞+ + + + =⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

w ww w w w w
w wT T

 (A.18) 

Since 0pλ >  and {1,lnp} is linearly independent, 2( )α w  must be homogeneous of de-

gree –λ. Therefore, factor it and pλ  out on the right-hand side of (A.17), 

 [ ]2 1ˆ( ) ( ) ln ,q p pλα α= +w w  (A.19) 

where 1 1 2ˆ ( ) ( ) ( )α α α≡w w w . The Euler equation then simplifies to 

 1ˆ ( ) 1.α∂ ∂ = −w w wT  (A.20) 

Let { }ˆ( ) exp ( )β α= −w w , note that 1ˆ( ) ( ) ( ) ( )β β α β∂ ∂ = − ∂ ∂ =w w w w w w w wT T  if and 

only if 1ˆ ( )α w  satisfies (A.20). Relabel terms so that 1 ,ε λ=  1 2( ) ( ),α α=w w and 

2( ) ( )α β=w w  to obtain case (b) ii.  

When the roots are complex, we first require conditions on the input price functions so 

that q is real-valued. From (A.14), we have 

 1 2( ) ( ) ,q p p pκ ιτ ιτα α −⎡ ⎤= +⎣ ⎦w w  (A.21) 

while deMoivre’s theorem implies that 

 cos( ln ) sin( ln ).p p pιτ τ ι τ± = ±  (A.22) 
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Thus, complex functions 1 0 1ˆ ˆ( ) ( ) ( )α α ια= +w w w  and 2 0 1
ˆ ˆ( ) ( ) ( )α β ιβ= +w w w  are re-

quired if q is real-valued. Substituting these definitions and (A.22) into (A.21) yields:  

 0 1 0 1 0 1 0 1
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( )cos( ln ) ( )sin( ln ) .q p p pκ α ια β ιβ τ ια α ιβ β τ⎡ ⎤= + + + + − − +⎣ ⎦  (A.23) 

We must have 1 1
ˆ ˆ( ) ( )β α= −w w  for the term in front of cos( ln )pτ  to be real-valued and 

0 0
ˆ ˆ( ) ( )β α=w w  for the term in front of sin( ln )pτ  to be real-valued, so that the input 

price functions are complex conjugates. Omitting the ^’s and the subscripts and absorbing 

the multiplicative constant 2 into the price functions for conciseness, we then have:  

 [ ]( )cos( ln ) ( )sin( ln )q p p pκ α τ β τ= +w w . (A.24) 

The Euler equation now has the form:  

 
{

}
( ) ( ) ( ) cos( ln )

( ) ( ) ( ) sin( ln ) 0.

p

p pκ

α τβ κα τ

β τα κα τ

⎡ ⎤− +⎣ ⎦

⎡ ⎤+ + + =⎣ ⎦

w

w

w w w w

w w w w

T

T

 (A.25) 

Define the smooth and invertible transformation 

 
( ) ( )
( ) ( )

( ) ) cos ln ( ) sin ln ( ) ,

( ) ( ) sin ln ( ) cos ln ( ) ,

α α τ β τ β

β α τ β τ β

⎡ ⎤= ( −⎣ ⎦

⎡ ⎤= +⎣ ⎦

w w w w

w w w w
 (A.26) 

for ( ) 0α ≠w  any smooth, homogeneous of degree κ−  function and ( ) 0β >w  any posi-

tive linearly homogeneous function. A direct calculation yields 

 
( ) ( ) ( ),  

( ) ( ) ( ),

α κα τβ

β κα τα

= − +

= − −

w

w

w w w w

w w w w

T

T
 (A.27) 

as required.  

Relabeling with 1ε κ= , 1
1( ) ( ) κα α −=w w , and 2( ) ( )α β=w w  yields: 
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[ ] ( ) ( ){

( ) ( ) }

1
1 2 2

2 2

( ) cos ln ( ) sin ln ( ) cos( ln )

sin ln ( ) cos ln ( ) sin( ln ) .

q p p

p

εα τ α τ α τ

τ α τ α τ

= −⎡ ⎤⎣ ⎦

+ +⎡ ⎤⎣ ⎦

w w w

w w
 (A.28) 

A little tedious but straightforward algebra using the trigonometric identities:  

sin( ) sin( )cos( ) cos( )sin( )a b a b a b+ = + ; 

cos( ) cos( )cos( ) sin( )sin( )a b a b a b+ = − ; 

sin( ) sin( )b b− = − ; and 

cos( ) cos( )b b− = ; 

with lna pτ=  and 2ln )b τ α= − (w  then gives the form in (b) iii of the proposition. 

K=3: 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ).q h p h p h pα α α= + +w w w  (A.29) 

In this case, the characteristic equation is a third-order polynomial in λ, and by the fun-

damental theorem of algebra, there are four mutually exclusive and exhaustive cases:  

(1) three unique real roots, 1 2 3λ λ λ≠ ≠ , 1 2 3, ,λ λ λ ∈ ; 

(2) one repeated real root, 1 2λ λ= ∈  and one unique real root, 3λ ∈ ; 

(3) one real root repeated thrice, 1 2 3λ λ λ λ= = ≡ ∈ ; and 

(4) one real root, 1λ ∈  and two complex conjugate roots, 2 ,λ κ ιτ= +  3λ κ ιτ= − .  

First, if (1) holds, the argument leading to the representation in (c) i is identical to that of 

the previous cases K=1 or K=2 when the roots are real and unique. Second, if (2) holds, 

then we have the sum of one term of the form given in (a) and a second term of the form 

given in (b) ii of the proposition, leading to case (c) ii. Third, if (4) holds, then we have 

the sum of one term of the form given in (a) and a second term of the form given in (b) iii 

of the proposition, leading to case (c) iv.  

Therefore, consider case (3), for which the general solution to (A.4) has the form:  
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 2
1 2 3( ) , 1,2,3.x x x

k k k kh x d e d xe d x e kλ λ λ= + + =  (A.30) 

Rewriting this in terms of p and the {hk(p)}, substituting the result into (A.29), and re-

grouping terms as before yields:  

 2
1 2 3( ) ( ) ln ( )(ln ) .q p p pλ α α α⎡ ⎤= + +⎣ ⎦w w w  (A.31) 

The Euler equation is:  

 

{

}

1 1 2

2 2 3

2
3 3

( ) ( ) ( )

( ) ( ) 2 ( ) ln

( ) ( ) (ln ) 0.

p

p

p

λ α λα α

α λα α

α λα

⎡ ⎤∂ ∂ + +⎣ ⎦

⎡ ⎤+ ∂ ∂ + +⎣ ⎦

⎡ ⎤+ ∂ ∂ + =⎣ ⎦

w w w w w

w w w w w

w w w w

T

T

T

 (A.32) 

As before, 0pλ >  and the linear independence of { }21, ln ,(ln )p p  requires each sum in 

square brackets to vanish. In particular, 3( )α w  must be homogeneous of degree λ− , and 

we can factor it out of the term in square brackets in (A.31), yielding:  

 2
3 1 2ˆ ˆ( ) ( ) ( ) ln (ln ) ,q p p pλα α α⎡ ⎤= + +⎣ ⎦w w w  (A.33) 

with 1 1 3ˆ ( ) ( ) ( )α α α=w w w  and 2 2 3ˆ ( ) ( ) ( ).α α α=w w w  

Now the term in brackets on the right-hand side must be homogeneous of degree zero, 

which implies:  

 
1 2ˆ ˆ( ) ( );

ˆ ( ) 2.

α α

α2

∂ ∂ = −

∂ ∂ = −

w w w w

w w w

T

T
 (A.34) 

Therefore, define the smooth and invertible transformation 

 
2

1 1ˆ ( ) ( ) [ln ( )] ,

ˆ ( ) 2 ln ( ),

α α α

α α

2

2 2

= +

= −

w w w

w w
 (A.35) 

where 1( )α w  is an arbitrary homogeneous of degree zero function and 2( ) 0α >w  is an 
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arbitrary positive linearly homogeneous function. A direct calculation shows that 1ˆ ( )α w  

and 2ˆ ( )α w  satisfy (A.34) if and only if they are related to the two homogeneous func-

tions 1( )α w  and 2( )α w  by (A.35). Substituting (A.35) into (A.33), grouping terms, and 

relabeling with ,ε λ=  1 3ˆ( ) ( ),α α=w w  2 1( ) ( ),α α=w w  and 3 2( ) ( )α α=w w  yields the 

representation in (c) iii of the proposition. ■ 

                                                 

1 One of the amazing, and at times frustrating, aspects of Gorman’s (1981) paper is that he simultaneously 

imposes symmetry, adding up, and homogeneity so that the role of each is unclear (could reference our 

paper). 

2 All of the results apply – with appropriate changes in notation – to a single consumer demand equation, as 

well as a supply or input demand equation with profit or cost replacing output price. However, we feel that 

the standard supply case is most useful and illuminating. Furthermore, when applying our results to a sys-

tem, the flexibility in the main proposition of this paper is restricted in a complete system of consumer de-

mand equations due to the added properties of symmetry and adding up. 

3 Non-negativity and monotonicity of supply in p are usually not imposed in single equation empirical im-

pelementation but clearly are expected by the researcher. 

4 In some cases, the usefulness of the results appear to be limited because a closed form solution does not 

exist. However, numerical integration is always possible in empirical work. 

5 Profit could be added but adding up as well if one takes note of the statistical properties of the errors from 

creating profit from supply and factor demand. 




