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Abstract

Quantum Phenomena in Interacting Many-Body Systems: Topological Protection,
Localization, and Non-Fermi Liquids

by

Yasaman Bahri

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Ashvin Vishwanath, Chair

This dissertation establishes and investigates new phenomena in diverse interacting many-
body quantum systems guided by three distinct, but complementary, themes: (i) symmetry
and topology, (ii) localization, and (iii) non-Fermi liquids.

The first theme concerns how the interplay of symmetry and topology can offer robust
protection for a many-body system. We investigate low-dimensional quantum fermionic mod-
els from a general structural perspective. These phases can exhibit fractionalized Majorana
zero-energy modes on their boundary. We devise experimentally relevant nonlocal measure-
ments that can be used to detect these topological phases. While our primary focus is on
quantum systems, topologically protected behavior can arise in classical mechanical models
as well. We extend a recent connection between the topological band theory of electrons and
classical physics by proposing a mechanical analogue of a topological nodal semimetal.

The second theme concerns that of many-body localization. We demonstrate that the
combination of localization, symmetry, and topology can have radical consequences for quan-
tum systems at high energies, such as the existence of protected gapless boundary modes. We
show that, even at these high energies, quantum information can be preserved, and quantum
coherence recovered. Quantum coherent dynamics in this regime is unexpected and of great
interest for quantum computation.

The third direction in our study of interacting many-body systems concerns non-Fermi
liquids. We construct a non-Fermi liquid by bringing together a spin-orbit coupled Fermi
surface and fluctuating magnetic order. Using newly developed analytic tools for strongly
coupled systems, we demonstrate the stability of the non-Fermi liquid to ordering. This
identifies an experimentally accessible candidate for exploring physics that lies beyond Fermi
liquid theory.
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Chapter 1

Introduction

The many-body interacting systems found in condensed matter settings are a fascinating
playground for theoretical study. A traveler to this domain discovers some of the richest
behavior in the physical world that is nonetheless describable by a rather unified body of
theory. Such a balance between diversity and complexity, on the one hand, and theory that
is both tractable and powerfully predictive, on the other, is a rare find in the scientific world.

This dissertation, like condensed matter itself, is rather broad in scope. Each of the
subsequent chapters here covers a distinct direction of current interest in the field. The
focus is almost entirely on quantum systems. There are a few overarching themes that we
wish to highlight because they play a fundamental role, both in this dissertation and more
broadly:

Entanglement

Quantum entanglement lies at the heart of many problems. Entanglement has shed a great
deal of light on why some states are similar and some are different, by allowing us to abstract
away particularities of a wavefunction – such as the degrees of freedom that it is composed of,
or the exact amplitudes of an expansion – and understand instead the bare structural com-
plexity, the skeleton of quantum states. As we will survey in this dissertation, entanglement
plays a fundamental role in how a quantum system thermalizes; it provides an underlying
classification for quantum phases; and an understanding of it allows us to identify correct
parameterizations for large classes of quantum states.

Identifying the “Right” Variables

Teasing out the variables that simplify a problem is a necessity across all of science and math-
ematics: in interacting many-body systems, however, the importance of this seems especially
stark. Changes in variables, and with it, perspective, are the norm; their identification, in
part, is an art. We think of quasiparticles, collective excitations, dualities, novel composite
particles, fractionalized degrees of freedom, disorder variables in an ordered setting, and
bosonization of a problem, to name just a small sample. Often the natural variables are
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not the microscopic ones. Consider the simple fermionic chain we will introduce in Chapter
2. One can identify the nontrivial physics, namely that one is dealing with a symmetry-
protected topological phase, by thinking in terms of Majorana degrees of freedom, instead of
complex fermions, and considering bond-centered, rather than site-centered, pairing of these
variables. With the chapters on topological phases and localization, we will see that we can
indeed identify new variables under which a problem simplifies. Frequently we do not have
direct access to these “right” variables in measurements. Our example of a non-Fermi liquid,
however, is an instance where we do not have yet a simple description or effective theory at
low energies.

Dichotomy between Locality and Nonlocality

Historically, it makes sense that the framework of symmetry-breaking orders was investigated
thoroughly first: our experimental probes are local, allowing for relatively easier detection of
local orders such as magnetism or charge- and spin-density waves. All physical Hamiltonians
must have some form of locality, but nonetheless, with the right combinations of interactions,
their particles can be arranged in a pattern which seems rather disjoint from this constraint.
Topology, as a subject, is by construction concerned with global properties. Likewise, the
topological aspects of quantum matter are inherently tied with nonlocality; for instance, one
may need a nonlocal change of variables for the topological order to be made apparent.

While these motifs emerge across many quantum condensed matter systems, let us in-
troduce the three primary areas of focus within this dissertation.

Topology as a New Paradigm

Notions borrowed from topology have enriched our understanding of quantum phases of
matter in recent years. The distinction between phases was believed to be mostly described
by Landau’s theory of symmetry-breaking orders. The discovery of the fractional quantum
Hall effect, topological quantum spin liquids, and topological insulators – among others –
made it clear that the separation between quantum phases can be more subtle. Indeed, there
are many different kinds of quantum topological orders, some more exotic than others. In this
dissertation, we will be interested in symmetry-protected topological order, which requires
both symmetry and topology for interesting behavior. Such systems exhibit protected zero-
energy states localized on their boundary and are featureless in their bulk. It might naively
seem as though the edge physics is the only manifestation of the nontrivial topological aspects
of the system, but this is untrue: there is hidden order in the bulk which can be measured
if one has access to nonlocal probes, a subject we will return to. We will also explore a
new connection between the topological physics of electron systems and a mechanical model
obeying Newtonian equations of motion. Evidently, distinctions arising from topology bear
consequences for the classical realm as well.
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Localization in Interacting Many-Body Systems

We still lack a full understanding of the combined effects of disorder and interactions on
a quantum system. Many-body localization, as it is termed, began as a study of the fate
of single-particle localization under the introduction of weak electron interactions. It was
shown that localization could indeed be robust, suggesting that the many-body case is, in
some ways, a partial continuation or “dressed” version of the noninteracting one. Apply-
ing a perturbative viewpoint here is, however, subtle, as it involves states and degenerate
energy levels throughout the spectrum, where naively there is no obvious notion of a pro-
tecting energy gap. Furthermore, the interactions do effect important distinctions with the
noninteracting problem.

In fact, many-body localization is more fundamental than might naively seem. It defines
a regime in which quantum systems cannot serve as a thermalizing bath for themselves. This
connects it to the fundamental tenets of quantum statistical mechanics, such as ergodicity.

A profound consequence of many-body localization is that it can, surprisingly, offer pro-
tection to quantum order. In this dissertation, we will consider a class of systems in which
many-body localization is combined with symmetry and topology to obtain protected quan-
tum behavior in regimes hitherto believed to be inaccessible.

A partial understanding of a class of localized systems comes from recognizing that they
have a “hidden” simplicity in a different set of variables. However, unlike the topological
setting, this simplicity can be accessed using local probes.

Non-Fermi Liquids

Adiabatic continuity can extend the reach of notions that originate in a simple or nonin-
teracting theory. Fermi liquid theory is perhaps the most well-known example of this. We
continue to study when and how Fermi liquid theory breaks down, and what kind of physics
might take its place. Still, a framework which can describe gapless phases outside this do-
main in some partially unified way remains elusive. Tackling the problem theoretically in
many cases is still a challenging task. Much work on non-Fermi liquids remains to be done,
but progress on this problem appears crucial for understanding many important quantum
phases.

Diverse Approaches

A simple point, well worth making, is that theoretical investigation of diverse physical phe-
nomena requires an equally diverse set of tools and approaches. In this dissertation, we are
not tied to a particular method but use a combination of theoretical arguments, exactly
solvable models and perturbations about them, and numerical methods (such as exact diag-
onalization on small systems). We further rely on dualities and nonlocal change of variables,
as well as modern field theoretic methods, which can be controlled in a certain regime but
ultimately may be uncontrolled when extended to the domain of physical interest. A guid-
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ing approach has been to pinpoint new physics, where relevant, through a combination of
interesting ingredients and explicit construction of models.

Layout

Each of the following chapters is meant to be self-contained, with an initial introduction to
the topic and review of the relevant prior works before discussing our own advances. We
begin the dissertation in Chapter 2 by looking at symmetry-protected topological phases
in quasi-one-dimensional systems of spinless fermions. When topologically nontrivial, the
surface states can be unusual, consisting of a “half” of a complex fermion – a Majorana
fermion – on a boundary. We tackle the question of how the hidden, topological order of
such phases can be detected in the bulk, given that they are featureless with respect to local
probes. This problem is experimentally relevant because of recent developments in nonlocal
measurements in ultracold atomic systems.

In Chapter 3, we combine elements of many-body localization, symmetry, and topology
in a class of models and demonstrate that it can have radical consequences for quantum
behavior in new regimes. We can store quantum information in a many-body localized
topological phase with high energy density (in a loose sense, at “infinite temperature”) and
show that it can be robustly manipulated and retrieved. This opens up a new direction for
exploring quantum coherent dynamics at high energies – involving highly excited states –
and is both of theoretical interest in condensed matter, as well as of practical interest for
quantum computation and simulation.

In Chapter 4, we discuss our work in constructing a non-Fermi liquid out of a combi-
nation of simple ingredients, by bringing together a spin-orbit coupled Fermi surface and
fluctuating magnetic order. Coupling a Fermi surface to gapless bosonic degrees of freedom
can sometimes lead to non-Fermi liquid behavior. However, the ultimate fate of the cou-
pled system may be altogether different at low energies due to interactions mediated by the
bosons. Our proposal is unique and of experimental interest in that the non-Fermi liquid
appears stable within our calculations. We rule out the most relevant instabilities with a
field theoretic analysis relying on a dual expansion in two parameters.

Finally, in Chapter 5, we explore a recently made connection between mechanical models,
consisting of lattices of masses coupled by springs, with the topological band theory of
electrons, a direction known as “topological mechanics.” We construct the first example of a
mechanical model whose spectrum hosts a bulk gapless node that is protected by topology.
This serves as a classical analogue of a topological nodal semimetal.
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Chapter 2

Nonlocal Order Parameters for
Quasi-1D Phases with Majorana Edge
Modes

In the past several decades, a new paradigm based on topology and entanglement has emerged
in the study of quantum systems. It is possible for a quantum system to be featureless with
respect to local probes, and hence to lie outside the scheme of spontaneous symmetry-
breaking order, yet nonetheless display certain hidden patterns of order. There are a myriad
of such topological phases and assembling them into a unified framework is a subject of
ongoing work. A major distinction is made between symmetry-protected topological order
and intrinsic topological order. The latter class can be associated with fractional excitations
and a robust ground state degeneracy on manifolds with nontrivial topology. In the former
case, nontrivial behavior arises only in the presence of certain symmetries which protect the
ground state by restricting the deformations that can be made to the Hamiltonian. These
symmetry-protected topological phases (SPTs) are the primary interest in this chapter.

Our work [1] examines specific classes of SPTs in low dimensions and devises simple
order parameters that can be used to identify them. These are necessarily nonlocal order
parameters (NLOPs), requiring macroscopically many simultaneous measurements of local
operators, because the distinction between the phases is nonlocal. Before diving in, we first
illustrate symmetry-protected topological order with the Haldane phase of odd-integer spin
chains, a prototypical example of a one-dimensional (1D) SPT. We then discuss efforts to
classify all possible 1D SPTs on general grounds. The insight gained from the classification
aids in devising NLOPs in low dimensions. Our work, targeting NLOPs for interacting
spinless fermion topological superconductors with Majorana edge states, begins in Section
2.3.
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Figure 2.1: Depiction of the AKLT wavefunction for the SPT phase of a spin-1 chain.
Reproduced from [2].

2.1 Symmetry-Protected Topological Phases

We illustrate the key characteristics of SPTs with the Haldane phase [3–6] of spin-1 chains.
It is instructive to examine an exactly-solvable Hamiltonian, presented by Affleck, Kennedy,
Lieb, and Tasaki (AKLT) [5] in 1987, whose ground state is in this phase. It consists of
spin-1 biquadratic interactions,

HAKLT =
1

2

∑
i

[
Si · Si+1 +

1

3
(Si · Si+1)2 +

2

3

]
(2.1)

=
∑
i

P2(i, i+ 1). (2.2)

P2(i, i + 1) is an operator projecting the total spin Stoti,i+1 = Si + Si+1 of neighboring lattice
sites i and i + 1 onto the spin-2 sector. The exact AKLT ground state can be constructed
as follows. Consider two virtual spin-1/2 degrees of freedom, |σz,iR 〉, |σz,iL 〉, labeled left L and
right R, per lattice site. Adjacent spin-1/2’s on neighboring sites are combined to form a
spin singlet; to ensure the result describes a spin-1 wavefunction, it is then projected with
operator P i

1 onto the spin-1 sector per lattice site. This can be written

|ψAKLT 〉 =
∏
i

P i
1

∏
j

(
| ↑jR〉| ↓j+1

L 〉 − | ↓jR〉| ↑j+1
L 〉

)
(2.3)

and is depicted in Figure 2.1. We can observe that this is a ground state by looking at two
neighboring lattice sites, consisting of four virtual spin-1/2s. The total spin on this pair
cannot be greater than one because of the presence of the spin singlet on the bond; the
remaining spin-1/2s at best can give rise to a total spin of one, and hence the AKLT state
is annihilated by the spin-2 projection operator. It is a unique ground state on a closed
system, is gapped, and has exponentially decaying few-point (local) correlation functions.
On an open chain, a manifestation of the symmetry-protected topological order will be the
existence of edge states: two unpaired virtual spin-1/2s, giving rise to a four-fold degeneracy.
The Haldane SPT can by protected by any one of several symmetries: the dihedral group (a
Z2 × Z2 symmetry) of π rotations about the x, y, z axes, time-reversal, or a bond-centered
inversion symmetry [7, 8].
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Classification of 1D Gapped Quantum Phases

Efforts to completely classify quantum phases of matter, encompassing systems with some
combination of intrinsic topological order, symmetry-protected topological order, and broken-
symmetry order, have been underway in recent years. Important achievements thus far
include the classification of free fermion systems [9, 10], an understanding of interaction
effects in certain symmetry classes [11–18], and general methods for many of the symmetry-
protected bosonic or fermionic systems with interactions [19–27]. Obtaining a general classi-
fication requires identifying the right mathematical structures, and it has been necessary to
bring in areas of mathematics, such as group cohomology, that are new to condensed matter
physics.

One-dimensional gapped quantum phases were the first to be classified completely [19,
20, 23] because matrix-product states provide a parameterization for ground states of gapped
local Hamiltonians. While the literature has primarily discussed bosonic phases, fermionic
phases can be incorporated because of the correspondence between bosons and fermions in
one dimension [20].

Let us first discuss some properties of matrix-product states before turning to the clas-
sification of 1D SPTs, following [19, 20]. Consider an L-site chain with local Hilbert space
of dimension d spanned by |i〉 on each site. Any state |ψ〉 can be written as a product of
matrices [28–30],

|ψ〉 =
∑

i1i2...iL

ci1i2...iL|i1i2...iL〉 (2.4)

=
∑

i1i2...iL

tr(Ai1Ai2 ...AiL)|i1i2...iL〉. (2.5)

Aik is a χ×χ matrix for each ik = 1, ..., d and hence contains d ·χ2 parameters.1 For ground
states of gapped, local Hamiltonians, this will amount to only O(poly(d)) many parameters
in total. An alternative way of writing which we will utilize later is

|ψ〉 =
∑

i1i2...iL

tr(Γi1ΛΓi2Λ...ΓiLΛ)|i1i2...iL〉, (2.6)

where Aik = ΓikΛ and Λ is a χ× χ nonnegative diagonal matrix. If the matrix elements of
Ai are Ai,αβ, we will refer to i as the physical index and α, β as bond indices.

The transfer tensor T with elements

1We have dropped the site dependence of Aik for notational simplicity. The notation would be exact
for a translationally invariant state. We have also assumed periodic boundary conditions; open boundary
conditions can be imposed by capping with appropriate vectors at each end of the matrix product rather
than taking the trace.



CHAPTER 2. NONLOCAL ORDER PARAMETERS FOR QUASI-1D PHASES WITH
MAJORANA EDGE MODES 8

Tαγ,βδ =
∑
i

Ai,αβ · A∗i,γδ (2.7)

contains much information about the quantum phase of |ψ〉. Two matrix-product states
with the same T tensor are equivalent up to unitary transformations on the physical index.
The tensor can be viewed in two ways. If the indices are grouped together as (α, γ) and
(β, δ), T plays the role of a transfer matrix: it appears in expectation values of observables,
and its spectral properties determine the behavior of multipoint correlation functions at
long distances. On the other hand, T viewed as a matrix with indices (α, β) and (γ, δ) is
positive semidefinite, and given a tensor T, a spectral decomposition based on this grouping
of indices is a simple way to recover component matrices Ai,αβ, up to unitary equivalence on
the physical index [19].

The symmetry of a state |ψ〉 constrains the matrices Ai to transform in a particular way.
Suppose we have an onsite symmetry group G, one consisting of symmetries g acting on
lattice sites. Let Σ(g) be a linear matrix representation of g. When the matrix-product
state is injective, the matrices must satisfy

∑
j

Σ(g)ijAj = α(g)U †gAjUg (2.8)

for χ× χ unitary matrices Ug which contract with Ai on the bond indices, and α(g) is a 1D
representation of G. This transformation rule ensures that that state |ψ〉 will be reproduced
up to a phase when the symmetry is applied globally, since neighboring U,U † contributions
will cancel. Let us absorb α(g) into Σ(g) to form a different representation of G. The group
composition law of G requires that Σ(g1)Σ(g2) = Σ(g1g2) for any two symmetries g1, g2, i.e.

∑
jk

Σ(g1)ijΣ(g2)jkAk = U †g2U
†
g1
AiUg1Ug2 , (2.9)∑

j

Σ(g1g2)ijAj = U †g1g2AiUg1g2 , (2.10)

and hence Ug1g2 = ω(g1, g2)Ug1Ug2 , where ω(g1, g2) ∈ C. That is, on the bond indices, the
group composition law is reproduced by Ug up to a complex number ω termed the factor
system. This is the definition of a projective representation. Some projective representations,
however, are related to each other in trivial ways. For instance, note that if Ug corresponds
to factor system ω, a representation satisfying U ′g = β(g)Ug for β(g) ∈ C will have a factor
system ω′ that is dependent on ω and derivable as

ω′(g1, g2) =
β(g1g2)

β(g1)β(g2)
ω(g1, g2). (2.11)
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The class of inequivalent projective representations, ones that are distinct even with such
redefinitions, is the second cohomology group of G, denoted H2(G,U(1)).

The phase of a quantum system can be revealed by a renormalization group transforma-
tion [31] on the ground state which removes local entanglement via local unitary transfor-
mations. Coarse-graining is accomplished by forming a block transfer tensor T̃ for multiple
neighboring sites (by contraction on all physical indices and the internal bond indices). To
find new constituent matrices Ãĩ, the block tensor can be diagonalized,

Tαγ,βδ =
∑
ĩ

λĩVĩ,αβV
∗
ĩ,γδ

(2.12)

and, retaining only eigenvalues λĩ > 0, we set Ãĩ =
√
λĩVĩ,αβ. By dropping components where

λĩ = 0, only the physical dimensions which are necessary for describing the entanglement
of the block and system have been retained [19, 20]. This procedure can be iterated until

fixed-point matrices A
(∞)
i are obtained. Two states will be in the same phase if and only if

their fixed-point states can be transformed into each other by local unitary transformations.
To obtain a classification of SPTs, the renormalization procedure must further respect the
symmetries under consideration [19, 20].

With the fixed-point form of the matrix-product state obtained under symmetry-preserving
renormalization, it is possible to show that states with different factor systems, neglecting
redefinitions, cannot be transformed into each other with any symmetry-preserving local uni-
tary transformation. Likewise, states with the same factor system can. Hence, 1D gapped
bosonic SPTs are in one-to-one correspondence with the group H2(G,U(1)) [19, 20].

Let us illustrate in physical terms the form of the fixed-point given by A(∞). The effective
degree of freedom, formerly indexed by i, on a renormalized site will split into two degrees
of freedom indexed by iL and iR; the fixed-point state will consist of a product of entangled
pairs where the right degree of freedom on site k is entangled with the left degree of freedom
on site k + 1, analogous to the pairing in the AKLT wavefunction. The fixed-point form
reveals that an SPT is not necessarily transformable to a product state on the renormalized
sites. Rather, it appears as a product state when the sites are redefined to be on the bonds,
for instance, which on an open chain would reveal unentangled degrees of freedom. One can
show that these fractional degrees of freedom transform projectively under an application of
the onsite symmetry, with opposite factor systems ω,−ω so that together they yield a linear
representation, as in Figure 2.2.

We also point out a closely related approach [13] for classifying 1D gapped symmetric
phases which is formulated so as to address fermionic SPTs directly. Consider partitioning
a closed 1D chain with ground state |ψ〉 into a segment S which shares two boundaries
with the remainder of the system, the environment E. The reduced density matrix on the
segment ρS = trE|ψ〉〈ψ| can be reinterpreted in terms of an entanglement Hamiltonian HS

defined by ρS ≡ e−HS . Upon examining the symmetry transformation properties of low-
lying entanglement energy eigenstates (the most likely states for S in the ground state |ψ〉),
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Figure 2.2: Fixed-point representation of a 1D SPT phase with an onsite symmetry group.
Entangled pairs are formed by fractionalized degrees of freedom across neighboring renor-
malized sites. Each fractional degree of freedom transforms projectively under the symmetry,
with factor system ω or −ω. Reproduced from [32].

[13] argued that a transformation on this subspace can be approximately represented as a
product of two local operators, each acting at one boundary of the segment S. Consequently,
symmetry operators will fractionalize in this subspace, with each fraction essentially forming
a projective representation of the symmetry.

In 1D, one can choose whether to work in bosonic or fermionic variables. To classify
fermionic phases with symmetry G, one can map the system to a bosonic one, determine
the nature of the order (SPT and spontaneously broken symmetries), and then map back to
fermions, as described in [20].

2.2 Nonlocal Order Parameters

Thus far, we have discussed the nature of symmetry-protected topological order, but the main
focus of this chapter is on the detection of this order using NLOPs. We first review some
prior work, beginning with the well-known string order discovered for the Haldane phase in
spin chains [33, 34, 6]. This example represents a class of NLOP with several features. It
is constructed from a product of local, physical operators. It yields a continuously varying
value within an SPT phase because it depends not just on a topological fingerprint but also
on extraneous information present in the wavefunction. A NLOP constructed in this way
has its advantages and disadvantages: it is simple to write down and to measure but may
not be robust.

In contrast, the group cohomology classification yields a mathematically precise definition
of an SPT; in many respects, it may be more ideal to design a NLOP which detects only
this signature, and nothing else, directly. Such NLOPs return fixed values throughout an
entire phase and are more robust, in the sense that they will not accidentally vanish or
acquire small values. We will not discuss these further but refer the reader to [35–38]. In our
work [1], we focused on devising NLOPs of the conventional type because we are primarily
motivated by their use in experiments with ultracold atoms (Section 2.5), for which nonlocal
measurements of this type have recently been demonstrated[39].

String Order

The string order parameter (OP)
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Figure 2.3: The hidden order of particle (+) and holes (−), about average filling (0) of the
(a) Haldane insulating and (b) Mott insulating phases of 1D lattice bosons. Reproduced
from [40].

O(i, j) = −
〈
Sαi exp

[
iπ

j−1∑
k=i+1

Sαk

]
Sαj

〉
(2.13)

was found [33, 34, 6] to take on a finite value as |i− j| → ∞ for α = x, y, z in the Z2 × Z2

symmetry-protected Haldane phase. It measures a hidden order that is apparent in the AKLT
wavefunction and persists away from the exactly-solvable point: in the spin-1 variables, the
wavefunction consists of a superposition of patterns of antiferromagnetically ordered spins
Sz = ±1 interspersed with arbitrary lengths of Sz = 0 spins. In fact, the string OP form, Eq.
2.13, can be derived [34, 6] by applying a nonlocal transformation to the spins such that,
in the new variables, the Z2 × Z2 symmetry of the Hamiltonian is spontaneously broken.
The finite two-point correlations yield finite string order when mapped back to the original
variables.

An interesting lattice boson analog of the Haldane phase, termed the Haldane insulator,
has been identified in 1D Bose-Hubbard models with power-law repulsive interactions [41,
40]. The analogy can be made precise by truncating the local boson Hilbert space to three
states about the average boson filling (n) when fluctuations are small. Here, too, there is a
string OP

OHI(i, j) ≡
〈
δni exp

[
iπ
∑
i≤k<j

δnk

]
δnj

〉
. (2.14)

(δni ≡ ni−n.) OHI(i, j) remains finite as |i−j| → ∞ in the Haldane insulator. Interestingly,
the Mott insulator can also be identified with a string OP

OMI(i, j) ≡
〈

exp

[
iπ
∑
i≤k<j

δnk

]〉
(2.15)

which remains finite.
These string OPs are designed to detect the hidden order illustrated in Figure 2.3. The

Haldane insulator is realized at an intermediate range of hopping and long-range repulsion.
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Hopping favors delocalized particles and holes while repulsion favors alternation. The com-
bined effect is that the Haldane insulator exhibits an alternating (antiferromagnetic) pattern
of particles and holes if the sites with average filling are removed, of which there can be arbi-
trarily many in between. As in the spin-1 realization of the Haldane phase, this is precisely
what Eq. 2.14 is designed to capture. In contrast, the Mott insulator is realized with strong
onsite interactions; this favors a uniform filling with fluctuations of particle and holes that
appear bound because of their common origin. Eq. 2.15 is designed to detect a uniform
background but is stable to the creation of confined particle-hole pairs because the signed
contributions of the two particles in a pair typically cancel.

The work on lattice bosons [41, 40] illustrates an important point, on which we will
elaborate: string order need not be finite only for topologically nontrivial phases. Indeed,
Eq. 2.15 also has a spin-1 version which will be finite in the trivial phase and vanish in the
Haldane phase.2

Selection Rules

Let us review a number of observations about the form of a string OP in a symmetric phase,
i.e. a phase which does not break a symmetry, following the discussion in [38, 35, 36]. A
global application of any onsite symmetry would preserve the state, so it is plausible that
application of the symmetry on a finite string leaves the bulk of the string invariant. This
motivates the general from of a string OP, involving application of a symmetry along a string,

S = lim
|i−j|→∞

〈
OA(i)

( j−1∏
k=i+1

Σ(g)

)
OB(j)

〉
, (2.16)

which will, for randomly chosen OA, OB, be finite in a symmetric phase. One is free to apply
local operators at the string edges, which may alter the value but typically keep it finite.
We can make precise the previous intuitions using the matrix-product state (Γ,Λ) form of
a wavefunction. A graphical evaluation is illustrated in Figure 2.4 [36]. Using Eq. 2.10, the
expectation reduces to an evaluation of the ladder in Figure 2.4(b). The long segments to
the left, right, and middle of the local operators OA, OB amount to computing Schmidt state
overlaps, which vanish unless the states are equal. All in all, the expectation asymptotically
results in the product of two local evaluations,

S ≈
(

tr ΛO
A

ΛU †g1

)(
tr ΛO

B
ΛUT

g1

)
, (2.17)

as shown in Figure 2.4(c). (O
A

α′α ≡ 〈α′L|OA|αL〉 and O
B

α′α ≡ 〈α′R|OB|αR〉 are matrix
elements with respect to left and right Schmidt states |αL〉, |αR〉 [36].)

2We also highlight, but will not discuss, work assessing the instability of string order to interchain
couplings [42, 43, 40].
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Figure 2.4: Evaluation of a string OP in a matrix-product state. Reproduced from [36].

Eq. 2.17 supports the observation that a string OP typically does not vanish in a sym-
metric phase. However, additional symmetry constraints could force one or both of the edge
evaluations to vanish. Suppose the system has two onsite symmetries g1, g2, with matrix
representations Σ(g1),Σ(g2). Let a symmetric phase be identified with the angle φ ∈ R in
the projective representation of bond unitaries, i.e. Ug2Ug1 = eiφUg1Ug2 . Suppose that g1 is
the symmetry applied in the string of the OP. Further, let OA not be arbitrary but chosen to
satisfy the rule Σ(g2)OAΣ(g2)† = eiσOA, under the remaining symmetry g2, for some angle

σ. On the bonds, this enforces Ug2O
A
U †g2 = eiσO

A
. The following manipulation [36] reveals

tr ΛO
A

ΛU †g1 = tr Ug2ΛO
A

ΛU †g1U
†
g2

= ei(σ−φ) tr ΛO
A

ΛU †g1 . (2.18)

Consequently, if σ 6= φ, the string OP will vanish due to the local evaluation involving OA.
This suggests that to detect an SPT phase, if one chooses σ = φ, the string OP is guaranteed
to vanish in all others phases with φ′ 6= φ.3 As in [36], we will refer to this as a selection
rule.

Indeed, the selection rule is able to explain the choice of operators for the string OP
of the Haldane phase. For instance, when eiπS

x
is used in the string, we terminate with

Sx, which is even under eiπS
x

but odd under the remaining symmetry eiπS
z
, to detect the

Haldane phase associated with angle φ = π. Likewise, terminating operators which are even
under the symmetries (for instance, in Eq. 2.15) give a string OP which is finite in the trivial
insulator and vanishes elsewhere.

Selection rules are by no means a full-proof route to constructing NLOPs; they may
vanish at special points or yield a small value, and they do not generalize to more complex
symmetry groups [36]. Nonetheless, in describing our work [1] beginning in Section 2.3,
we will construct NLOPs for spinless interactiong fermion chains by utilizing the idea of
selection rules.

2.3 String and Brane Order for Majorana Chains

In the remainder of the chapter, we discuss our construction of NLOPs for two symmetry
classes of interacting topological superconductors of spinless fermions. The nontrivial phases

3Relying on the same manipulations, note that OA should be chosen to be exactly invariant under the
symmetry g1 used in the string.



CHAPTER 2. NONLOCAL ORDER PARAMETERS FOR QUASI-1D PHASES WITH
MAJORANA EDGE MODES 14

in these classes have Majorana zero-energy modes localized on their edges. Our NLOPs lie
along a string for a single chain or cover an area (“brane” [38]) for multiple coupled 1D
chains. We will refer to string or brane OPs collectively as NLOPs. The constructions are
general in the sense that they hold for an entire phase, not just a particular Hamiltonian.
Throughout the chapter, we will see the privileged role played by the fermion parity operator,∏

i e
iπni , where ni is the fermion occupation of site i.

We first consider single chains of spinless fermionic topological superconductors with
interactions. Similar to the Haldane string OP, Eq. 2.13, the SPT phase here can be under-
stood as originating from a spontaneously broken symmetry in a nonlocal set of variables;
the string OP can be constructed accordingly from a two-point correlation function.

In Section 2.4, we consider coupled chains where we enforce an additional ZN symmetry.
The symmetric phases capture vestiges of some interesting 2D phases in a quasi-1D setting.
The additional ZN symmetry is to be viewed as a translation symmetry arising from stacking
N identical 1D chains along a direction transverse to their infinite length. In this way, we
can realize weak or strong versions of 2D SPTs. We use a free fermion model as a special
case to understand the kinds of phases that arise from this classification and place them
in correspondence with certain free fermion topological indices. NLOPs will be constructed
by choosing terminating local operators with the appropriate symmetry transformation to
identify a particular phase. We conclude that section by describing how one of the fermionic
SPT phases and its OP can be understood in terms of a binding of Ising domain walls,
defects of an Ising order.

We discuss the relevance of our NLOPs for ultracold atom experiments in Section 2.5.
The quantum gas microscope [44, 45] is a recently developed tool which allows for imaging of
an optical lattice with single-site resolution and hence simultaneous measurement of lattice
site occupations [39]. This probe is particularly well-suited for identifying topological phases.
Measuring topological aspects of free fermion band structures in ultracold atoms has been
discussed [46–50]; here, however, we will be concerned with generic interacting systems, in
particular topological superconductors. As an example of a measurement within present
experimental reach, in Section 2.5 we describe a system of two identical chains for which a
topological phase can be detected via measurements of site occupations alone.

The results that follow can be supported by working in either bosonic or fermionic vari-
ables. In the primary sections, we mainly take the bosonic point of view and discuss the
fermionic description in Section 2.8. Section 2.9 outlines a derivation of selection rules for
fermionic nonlocal OPs. Understanding the selection rules in fermionic variables directly
may be helpful for classifying phases and constructing OPs for higher-dimensional fermionic
systems, beyond the regime of correspondence.

Example: Kitaev’s Majorana Chain

Our first symmetry class is particularly simple: topological superconductors of interacting
spinless fermions with no additional symmetries. A notable property of all physical fermionic
Hamiltonians is that they must be invariant under the Z2 fermion parity operator,

∏
i e
iπni .
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This is due to a superselection rule – a fundamental constraint – and is typically not con-
sidered a symmetry. To illustrate the general form of the string OPs for this class, let us
consider Kitaev’s p-wave topological superconductor with Hamiltonian [51]

HKit =
∑
i

[(
− ta†iai+1 + |∆|aiai+1 + h.c.

)
− µ

(
a†iai −

1

2

)]
=
i

2

∑
i

[(
− t+ |∆|

)
χiχi+1 +

(
t+ |∆|

)
χiχi+1 − µχiχi

]
. (2.19)

The Majorana operators χi, χi are Hermitian operators which anticommute with each other
and square to one. The complex lattice fermions are constructed as ai = 1

2
(χi + iχi). The

phase of the superconducting order parameter ∆ = |∆|eiθ has been gauged away. For | µ
2t
| < 1,

there are gapped topological phases if |∆| 6= 0 and a gapless normal phase if |∆| = 0. If
| µ
2t
| > 1 for any |∆|, the phase is gapped and trivial.
To have an alternative view of the model, we can use the nonlocal Jordan-Wigner trans-

formation,

σxi = eiπni , σyi =
∏
j<i

eiπnjχi, σzi = −
∏
j<i

eiπnjχi, (2.20)

to map the Majorana chain onto an XY -type spin model in a transverse magnetic field. The
fermion parity operator transforms to a Z2 spin symmetry

∏
i σ

x
i . In the spin model, this

symmetry is spontaneously broken or unbroken when the corresponding fermionic model has
symmetry-protected topological or trivial order, respectively.

Consider an Ising limit of the corresponding spin Hamiltonian (by setting t = |∆|),
Hspin = −J∑i(σ

z
i σ

z
i+1 + gσxi ), with J = |∆| and g = − µ

2|∆| . A two-point spin correlation
function is nonzero when the spins are ordered and vanishes elsewhere. It maps back to a
string OP in the fermions,

〈σzi σzk〉 =

〈
(−iχi)

k−1∏
j=i+1

eiπnjχk

〉
, (2.21)

which distinguishes the SPT from the trivial phase in this limit.4

A string OP which is finite in the trivial fermionic phase can also be constructed by
relying on the self-duality of the quantum tranverse Ising model. The dual mapping,

4Note that two-point correlations are insensitive to the linear combination of ground states states used.
Fermionic ground states must always have definite fermion parity, and so the physical fermionic ground
state in the SPT phase is a cat state consisting of symmetric or antisymmetric combinations of the two Z2

symmetry-breaking spin ground states.
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τx
i+ 1

2
= σzi σ

z
i+1, τ z

i+ 1
2

=
∏
j>i

σxj , (2.22)

transforms from spin to domain wall variables which live on the bonds. The Hamiltonian
becomes

Hdual =
∑
i

(
− |∆|τx

i+ 1
2

+
1

2
µτ z

i− 1
2
τ z
i+ 1

2

)
(2.23)

in the thermodynamic limit (t = |∆|). A two-point correlation function in the τ variables
distinguishes the two phases. We therefore obtain the string OP for the trivial phase,〈

τ z
i+ 1

2
τ z
k+ 1

2

〉
∼
〈∏

j

σxj

〉
=

〈∏
j

eiπnj
〉
. (2.24)

These simple limits are indicative of the general form we will discuss next. However, before
doing so, we note that the Kitaev model, Eq. 2.19, is quite special since it has extra
symmetries, such as time-reversal defined as χ→ χ, χ→ −χ. This constrains, for instance,
the possible two-point correlation functions which can be chosen in the spin language: either
σz or σy orders in the broken symmetry regimes for t > 0 or t < 0, respectively. This in turn
restricts the fermionic operators which terminate the string: either (χi, χk) for t > 0, as in
Eq. 2.21, or (χi, χk) for t < 0.

Such constrained choices will not occur for models with strictly no other symmetries,
which is the class of fermions we are considering. While this appears to be a disadvantage,
we see it as not much different than the obstacles to choosing an order parameter to detect
a spontaneously broken symmetry: certain operators may be better to use because they
typically yield larger magnitudes, while specific models may have larger symmetry groups
which can be identified from the outset.

General Form

We used the Kitaev model, and in particular, an Ising limit of it when mapped to a spin
model, to illustrate a more general correspondence which holds for all Hamiltonians in this
class. These fermionic phases were classified in [20] precisely by mapping to spins (bosons)
and identifying the phases in those variables. With a Z2 spin symmetry (originating in the
mapping of fermion parity), only two phases are possible for bosons: symmetry-broken or
trivial order. (Bosonic symmetry-protected topological order does not occur for symmetry
group G = Z2.) Mapped back to fermions, however, since the fermion parity operator can
never be broken, the distinction between the two phases must be one of symmetry-protected
topological order.5

5Our models have translation symmetry along their infinite dimension, which can multiply the number
of possible phases by a factor [20] but we neglect this multiplicity.
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Figure 2.5: Single chain at top shows two Majorana fermions χ, χ per site (circles with same
color) with nontrivial pairing (boxes). The nonlocal order parameter Stop for the topological
phase measures this pairing by measuring all the operators within the bounds of the green
line. It measures a “fractional” part of the physical sites (red, purple) on the edges of the
region over which it acts. Bottom chain shows a phase with trivial Majorana pairings, which
is measured by Striv.

This correspondence entails string (or brane) OPs with the form

Stop =

〈
Of
L

(∏
j∈Ω

eiπnj
)
Of
R

〉
,

Striv =

〈
Ob
L

(∏
j∈Ω

eiπnj
)
Ob
R

〉
, (2.25)

where Of
L/R, O

b
L/R are local fermionic or bosonic terminating operators situated near the

left, right edges of string or brane Ω. Stop is nonzero in the topological phase and vanishes
elsewhere; the behavior of Striv is reversed. From the correspondence with bosons, the choice
of fermionic terminating operator in Stop can be seen to originate from the need to choose
operators O,O′ which are odd under the Z2 symmetry in the two-point correlation function
〈OiO

′
j〉. Striv, on the other hand, is finite in the trivial phase since it amounts to application

of the symmetry and is terminated by bosonic operators, as required by the bosonic selection
rules [36]. In Section 5.4, we elaborate on why this NLOP vanishes in the broken-symmetry
phase of spins.

The appearance of fermionic or bosonic terminations for a NLOP is the fermionic analog
of the selection rules in [36]. As an alternative to using the Jordan-Wigner mapping, in
Section 2.9 we justify fermionic selection rules for NLOPs directly using ideas from fermion
classification [13].



CHAPTER 2. NONLOCAL ORDER PARAMETERS FOR QUASI-1D PHASES WITH
MAJORANA EDGE MODES 18

Fermionic Picture

Let us take a different look at the selection rule requiring a fermionic or bosonic terminating
operator for a NLOP. Consider the Ising limit of the single Kitaev chain and introduce
bond fermions ãi = 1

2
(χi+1 + iχi) by pairing Majoranas on neighboring sites, neglecting the

nonlocal fermion ãNL = 1
2
(χ1 + iχN) by working on an infinite chain. These variables solve

the t = |∆|, µ = 0 limit exactly. The topological and trivial phase string OPs, Eqs. 2.21,
2.24, can be rewritten (k ≥ i+ 1)

Stop =

〈
(−iχi)

k−1∏
j=i+1

eiπnjχk

〉
∝
〈 k−1∏

j=i

eiπñj
〉
, (2.26)

Striv =

〈 k∏
j=i

eiπnj
〉
∝
〈

(ãi−1 + ã†i−1)
k−1∏
j=i

eiπñj(ãk − ã†k)
〉
. (2.27)

Evidently, the fermionic or bosonic nature of the terminations depends on the basis
used. The topological ground states at t = |∆|, µ = 0 have uniform bulk filling in the bond
fermion basis ãi so that Stop, which measures their parity, is nonzero. A weak perturbation
µ 6= 0 drives the system away from this bond-centered ordering by favoring onsite Majorana
pairings. In perturbation theory, this creates localized pairs of bond fermion defects with
respect to the unperturbed state. However, the defects are bound and so do not altogether
destroy the measurement of bond fermion parity Stop. The value of Stop is finite away from
this limit and all throughout the SPT phase. A similar, dual picture holds for site fermions
ai deep in the trivial phase, for which site fermions are a good basis to use and defects again
are confined pairs.

On the other hand, such string OPs vanish in the complementary phases. To see this,
consider perturbatively evaluating Stop in the trivial phase of the t = |∆| Kitaev model,
for instance. The ground state at the point H0 = µ

2

∑
i e
iπni with µ < 0 is the site

fermion vacuum |0〉 which is then corrected by the perturbation V = |∆|∑i iχiχi+1 =

|∆|∑i(ai − a†i )(ai+1 + a†i+1). V corrects |0〉 by creating bound pairs of fermion defects on
top of |0〉 and preserves fermion parity not just globally but locally, in a certain sense. On
the other hand, Stop connects states which differ in site occupation at two points i, k with
distant separation. Such states cannot arise through the effects of a local and fermion par-
ity preserving perturbation applied to an initial state with uniform occupation throughout.
Hence, Stop should remain zero as |i− k| → ∞ even when the Hamiltonian is modified, and
this holds for the entire phase.
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2.4 Quasi-1D Phases with ZN Translation Symmetry

N Coupled Chains on a Cylinder Geometry

We turn to a more complex symmetry class. The symmetry group of interest is G = Z2×ZN ,
where Z2 originates from fermion parity. For instance, this describes interacting topological
superconductors of spinless fermions, where N identical 1D chains have been coupled with
periodic boundary conditions in the transverse direction. In other words, the system has the
geometry of an infinitely long cylinder with finite circumference N . Before devising NLOPs,
let us identify all the symmetric fermionic phases that are possible in this class.

Classification

We map our system to bosons and identify the appropriate classes there. In the Jordan-
Wigner transformation, we take a winding path which transforms the cylinder into a 1D
infinite bosonic chain. Each bosonic unit cell now accounts for one ring of the fermionic
cylinder and contains N spin-1/2 degrees-of-freedom. The ZN fermion translation symmetry
for the circumference, ai,j → ai,(j+1) mod N , maps to a ZN symmetry internal to the unit
cell, which we note is not translation of the spins. The Z2 fermion parity symmetry (taking
ai,j → −ai,j) maps to a local Z2 spin symmetry. Consequently, the bosonic system has
an onsite Z2 × ZN symmetry. Ultimately, we are interested in identifying all symmetric
fermionic phases; these can originate from fully or only partially symmetric bosonic phases.
Hence, we will specify the unbroken subgroup G′ of the full group G = Z2 × ZN as well as
any symmetry-protected topological orders of G′.

The possible fully symmetric bosonic phases are determined by H2(Z2×ZN , U(1)). The
answer depends on the parity of N . Let us see why this is the case. There are two bosonic
generators corresponding to the fermionic symmetry generators, parity P and translation
T . The projective representation of the two bosonic generators, labeled UP , UT , each has an
overall phase that can be fixed so that U2

P = UN
T = 1. However, the angle φ ∈ [0, 2π) in

UPUT = eiφUTUP cannot be eliminated by redefinition of the matrices U . Moreover, it must
satisfy e2iφ = eNiφ = 1 because of our gauge fixing. Hence, there are two possible solutions,
φ = 0 and φ = π, but the latter is forbidden for N odd. The gauge-invariant scalar eiφ

is quantized and consequently preserved under smooth, gap-respecting deformations to the
wavefunctions. The two possible values of eiφ represent two gauge-inequivalent classes of
projective representations of the symmetry group Z2 × ZN . Other complex phases which
cannot be gauged away are related to this one, so specifying φ is sufficient to label a pro-
jective representation. Therefore, we obtain H2(Z2 × ZN , U(1)) = Z2,Z1 for N even, odd,
respectively. Since a product state can be represented by scalar Γj and hence scalar UP , UT ,
φ = 0 must describe the trivial phase. In contrast, φ = π characterizes a topologically
nontrivial phase.

Besides the symmetric bosonic phases identified above, there are some broken-symmetry
bosonic phases that correspond to completely symmetric fermionic phases when mapped
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Bosonic Fermionic G.S.D. Example
Label Label (µ, µ′)

1. Trivial (0, 0) 1 Trivial
symmetric G′ = G

2. Nontrivial (0, π) 4 Weak Top.
symmetric G′ = G Supercond.

3. Symmetry breaking (π, 0) 2 Strong Top.
G′ = 〈T 〉 Supercond.

4. Symmetry breaking (π, π) 2 Strong Top.
G′ = 〈PT 〉 Supercond.

Table 2.1: Quasi-1D symmetric fermionic phases for even N with symmetry group G =
Z2 × ZN . Ground state degeneracy (G.S.D.) listed is for open boundary conditions and the
generic case, where there are no additional symmetries. For odd N , only Classes 1 and 3
exist.

back. This symmetry restoration is possible because of the distinguished role of fermion
parity P : since it can not be broken in the fermionic variables, if only a small subset of the
symmetry group G is broken in the bosonic variables, those symmetries can also be restored.
We label these phases by their unbroken symmetry subgroup G′ ( G. The relevant ones are
the cyclic subgroups generated by bosonic versions of (i) translation T and, for even N only,
(ii) the product of fermion parity and translation, labeled PT . We denote these by G′ = 〈T 〉
and G′ = 〈PT 〉 respectively.

We also describe the labeling of the phases in the fermionic language of [13]. The effective
form (P̂ , T̂ ) of fermionic symmetry operators P, T will consist of two fractional pieces: P̂ ∼
PLPR and T̂ ∼ TLTR. The phases will be described by the commutation relations of these
pieces, identified by the combination of angles (µ, µ′) where PLPR = eiµPRPL and TLTR =
eiµ
′
TRTL.
The correspondence between the bosonic and fermionic labeling of all the phases of

interest is given in Table 2.1. Going forward, we will refer to the four possible phases (for N
even) or two (for N odd) by their class number 1 − 4 given in the table. Rather generally,
fractionalization of fermionic symmetry P into fermionic pieces (µ = π) means it is broken
in bosonic variables [12]. This is not true for other fermionic symmetries, such as the ZN
translation, whose behavior in bosonic variables depends in part on those of parity (see
Section 2.9).

Representative Free Fermion Models

To begin developing a picture of the phases in Table 2.1, we write down example Hamiltonians
for the three nontrivial classes, momentarily putting aside practical realizations. We work
with free fermions for mathematical convenience but emphasize that the distinction between
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the phases persists with interactions.
First, an introduction of some notation: we continue to treat the infinite dimension of

the chains in real space, with lattice sites i along x, but switch to momentum ky in the
transverse direction y with N sites and periodic boundary conditions. The occupation of the
mode with destruction operator aky(i) = N−1/2

∑N
j=1 e

ikyjai,j is nky(i), and the Majorana

operators χky(i), χky(i) are defined by the decomposition aky(i) = 1
2

[
χky(i) + iχky(i)

]
. Let

us examine the fermionic symmetry operators, P and T ,

P =
∏
i,ky

eiπnky (i), T =
∏
i,ky

eikynky (i). (2.28)

Note that the ky = 0 modes do not contribute to the translation operator; we will take
advantage of this. We would like to identify representative Hamiltonians which lead to
specific fractionalization patterns (µ, µ′) given in Table 2.1.

The operators {aky(i)}i for fixed ky can be viewed as candidate degrees of freedom for a
single realization of a Kitaev model, Eq. 2.19. We can tune each such chain to have SPT
or trivial order. Consider Class 3 in Table 2.1 as an example. If we fix the ground state to
have uniform site occupations, for instance by tuning all ky 6= 0 chains to be in the trivial
phase, then T will act as a scalar in the ground state subspace, i.e. the effective form will
be T̂ = 1 and µ′ = 0. Moreover, tuning the ky = 0 chain to be topologically nontrivial will

force P to fractionalize in the ground state subspace: that is, P̂ = iχ0(1)χ0(L) and hence
µ = π. This is accomplished with the following Hamiltonian

H3 =
∑
i

iχ0(i)χ0(i+ 1) +
∑
i,ky 6=0

iχky(i)χky(i). (2.29)

By tuning the ky = 0 degrees of freedom into the topological phase, a two-fold degeneracy
arises from the occupation or vacancy of the nonlocal complex fermion mode. In the ground
state subspace, the only distinction between the two ground states is the parity of this
single nonlocal fermion. The ground state subspace in Class 3 will be (minimally) two-fold
degenerate on the cylinder, consistent with the bosonic description since |G/G′| = 2 with
G′ = 〈T 〉.

Likewise, we can write down a model for Class 4 (which requires N to be even to exist).
By switching the treatments of the ky = 0 and ky = π chains, we can force both the P
and T symmetries to fractionalize. In this case, it originates from the ky = π chain having
symmetry-protected topological order.

H4 =
∑
i

iχπ(i)χπ(i+ 1) +
∑
i,ky 6=π

iχky(i)χky(i) (2.30)

is an example Hamiltonian.
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Finally, tuning both the ky = 0 and ky = π chains to the topological phase, while other
momentum modes are set to be trivial, yields a Hamiltonian for Class 2 (again requiring N
to be even),

H2 =
∑
i

(
iχπ(i)χπ(i+ 1) + iχ0(i)χ0(i+ 1)

)
+

∑
i,ky 6=0,π

iχky(i)χky(i). (2.31)

Since P measures contributions from both the ky = 0 and ky = π chains, with H2 there are

effectively two unpaired Majorana fermions per edge and P̂ will fractionalize into bosonic
pieces. In contrast, since T depends on ky = π modes but not on ky = 0, it will fractionalize
into fermionic pieces. Together, this gives the angles (µ, µ′) = (0, π).

Physical Free Fermion Models

The representative Hamiltonians become increasingly nonlocal for large N and hence un-
physical. Instead, we turn to connecting the phases to the ground states of a free fermion
Hamiltonian with local interactions. A nearest-neighbor interchain hopping t⊥ and, for
N > 2, a nearest-neighbor interchain pairing ∆⊥ are allowed by translational invariance. We
examine the simple lattice p + ip topological superconductor studied in [52]. Assume that
N > 2 and N is even. The Hamiltonian is

H =
∑
i

N∑
j=1

(
− ta†i,jai+1,j + |∆|ai,jai+1,j + h.c.

)
− µ

(
ni,j −

1

2

)
+(

∆⊥ai,jai,j+1 − t⊥a†i,jai,j+1 + h.c.

)
, (2.32)

with i, j indexing sites along the cylinder length and circumference, respectively. We take
fixed parameters |Im(∆⊥)| > 0,Re(∆⊥) = 0 and |∆| > 0. In this case, there are transitions
between phases including quasi-1D versions of the 2D weak and strong TSCs as t⊥/µ and
t/µ are varied [52]. The experimentally relevant two chain (N = 2) version of this model
will be considered in Section 2.5.

The phases can be identified by switching to momentum labels in the transverse direction,

H = HKit,0(µ+) +HKit,π(µ−) +H ′Kit, (2.33)

where HKit,0 and HKit,π are the Kitaev model, Eq. 2.19, built out of Majorana operators
(χ0, χ0) and (χπ, χπ), respectively, and µ± ≡ µ ± 2t⊥. The remaining piece H ′Kit contains
all ky 6= 0, π degrees of freedom. Let us change variables further by recombining the four
Majoranas for each k0 ≡ |ky| 6= 0, π into ηk0/δk0(i) ≡ 1√

2
(χk0(i) ± χ−k0(i)) and ηk0/δk0(i) ≡

1√
2
(χ−k0(i) ± χk0(i)) (upper signs for ηk0 , ηk0). With this transformation, the remainder

H ′Kit can be viewed as a collection of Kitaev chains, a pair for each k0 ∈ (0, π) with its
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own set of Majorana operators (η, η) and (δ, δ), and the chemical potential modified to
µk0 = µ + 2t⊥ cos(k0). There is an interchain coupling between the (η, η) and (δ, δ). It is
proportional to Im(∆⊥) and gaps out the Majorana zero modes of each chain. Altogether,
we have

H ′Kit =
∑

k0∈(0,π)

HKit,(ηk0 ,ηk0 )(µk0) +HKit,(δk0 ,δk0 )(µk0)−

∑
i,k0∈(0,π)

iIm(∆⊥) sin(k0)

(
ηk0δk0 + δk0ηk0

)
(i). (2.34)

Since the k0 ∈ (0, π) chains cannot exhibit symmetry-protected topological order due
to their coupling, the order of the ground states will be determined by the behavior of the
ky = 0 and ky = π chains alone. The ky = 0 chain displays nontrivial order when the
associated chemical potential is sufficiently weak, |t⊥ + µ

2
| < |t|. In this case, there is a 1D

Z2 topological invariant νky=0 = 1 [52]. Likewise, the ky = π chain displays nontrivial order
(νky=π = 1) for |t⊥ − µ

2
| < |t|. Hence, for weak |t⊥/µ| and |t/µ| > 1/2, the system has two

Majorana zero modes per edge, at ky = 0 and π. As the cylinder circumference increases,
N →∞, this phase will approach the 2D weak topological superconductor, as in this regime
the 2D Z invariant (Chern number) is ν = 0. For intermediate values |t⊥| ∼ |t| and weak
chemical potential, the system has a single Majorana zero mode per edge (either at ky = 0
or π) and in contrast will scale to a 2D strong topological superconductor as N →∞, since
the 2D Z invariant |ν| = 1. When interchain hopping t⊥ dominates over intrachain hopping
|t⊥/µ| > |t/µ|+ 1/2, the system is a weak topological superconductor in the x, rather than
y, direction. Figure 2.6 gives a phase diagram.

Since the three sets of degrees of freedom ky = 0, ky = π, and ky 6= 0, π decouple
from each other, we can tune each into topological or trivial phases independently while
maintaining translational invariance. For instance, if the ky = 0 chain exhibits nontrivial
order, treating this as a single chain with no other symmetries, we can find a path connecting
to the model

∑
i iχ0(i)χ0(i+ 1) which preserves translation symmetry since it only involves

ky = 0 operators. Hence, the quasi-1D phases of Eq. 2.32 – namely the 2D weak topological
superconductor associated with stacking along the y direction, and the two strong topological
superconductors with (νky=0, νky=π) = (1, 0) or (0, 1) – would fall into Classes 2, 3, and 4,
respectively, of our classification. It appears that for free fermions our classification identifies
the 1D Z2 invariants νky=0 and νky=π and consequently ν mod 2, since νky=0+νky=π = ν mod 2
[52].

The weak topological superconductor with νkx 6= 0 for kx = 0 or π, which is associated
with stacking in the x direction, appears as a trivial phase. This phase results with strong t⊥,
but in the momentum ky basis this coupling is an effective chemical potential, µ± = µ±2t⊥,
which favors onsite pairing of y-momentum Majoranas and drives the ky = 0 and ky = π
Majorana chains away from nontrivial pairing. It is natural that that our classification is
unable to detect the topological index associated with translation symmetry along the x
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direction (i.e. along the cylinder length), as translation symmetry along the y direction is
the one we have been strictly imposing.

Nonlocal Order Parameters for the Symmetric Phases

We next construct nonlocal order parameters to distinguish the Z2×ZN protected symmetric
fermionic phases from each other. We restrict to even N since this encompasses the results
for odd N . The NLOPs span a finite size L along the cylinder length, but, as with all order
parameters (local or not), our interest lies in the finiteness of their asymptotic L→∞ values.
We will rely on the identification of the phases in the bosonic variables. Where a symmetry
is broken, we can use a two-point correlation function. To distinguish symmetric bosonic
phases, we chose a symmetry to apply over many unit cells of the bosonic chain (a string),
and we terminate the domain with operators obeying proper symmetry transformation rules.
Note that the natural unit cell of the bosonic chain (which makes the ZN symmetry onsite)
corresponds to a cylindrical ring in the fermions. Mapped back to fermions, the NLOP
consists of a cylindrical brane in the bulk over which a symmetry is applied, and terminating
operators reside on the domain edges. We capture this general form by writing the NLOP

as 〈OL

(∏L
j=1 Σj

)
OR〉. OL/OR are possibly different operators acting near the left, right

bosonic string (fermionic brane) edges and Σj is a symmetry operation on a bosonic unit
cell (fermionic cylindrical ring).

Alternatively, we corroborate our conclusions by working directly with fermions in Section
2.9. These rules determine how the terminating operators of the fermion order parameters
should be chosen, when fermion parity P is used as the bulk symmetry, to distinguish the
symmetric fermionic phases, in analogy with the bosonic derivation [36]. The rules are listed
in Table 2.2. The even or odd transformation rule for a terminating operator under P and
T symmetries distinguishes among the symmetric phases of any interacting model in this
symmetry class.

Construction

Consider, as an example, a NLOP which applies the symmetry P over many bosonic unit
cells spanning [1, L] (a large fermionic brane). Define

S1 ≡
∏
ky

L∏
i=1

eiπnky (i). (2.35)

The expectation 〈S1〉, taken with respect to any ground state, vanishes in Classes 3 and 4
because P is broken in the bosonic variables (Section 5.4). For Classes 1 and 2, P remains
a symmetry for the bosons. The bosonic selection rules [36] inform us that the operators
OL,R which terminate the bosonic string (fermionic brane) can be chosen to transform under
symmetries in such a way as to select a quantum phase. The distinction between the two
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Phase (Bosonic Variables) P Trans. T Trans. Example
1. Trivial Even Even 〈S1〉 6= 0

symmetric G′ = G
2. Nontrivial Even Odd 〈S2〉 6= 0

symmetric G′ = G
3. Symmetry breaking Odd Even 〈S3〉 6= 0

G′ = 〈T 〉
4. Symmetry breaking Odd Odd 〈S4〉 6= 0

G′ = 〈PT 〉

Table 2.2: Transformation rules for OL, OR under parity P and translation T which would
uniquely distinguish the four symmetric fermionic phases (N even) when fermion parity is
used as the bulk symmetry operator. The examples are NLOPs which are asymptotically
finite in the listed phase and vanish in the other symmetric fermionic phases.

phases Classes 1 and 2 in the bosonic description is the angle φ = 0, π. OL,R must be
even under parity because it is the symmetry used in the bulk of the order parameter but
transform as eiφ under translation in order to be finite in the quantum phase labeled by φ.
The NLOP is guaranteed to vanish in the other symmetric bosonic phase. Mapped back to
the fermionic system, the brane termination operators should be bosonic but should be even
or odd under translation so that the OP is nonzero in Classes 1 or 2, respectively.

S1 is, for instance, an order parameter which is nonzero in Class 1 but vanishes in Class
2 since translation invariant operators terminate its bulk. To construct a candidate with
reversed behavior, we can choose operators such as O(i) = iχ0(i)χπ(i) or iχ0(i)χπ(i), which
are even under parity but odd under translation, to terminate the fermionic brane. Hence,
candidate order parameters which give a nonzero expectation value for Class 2 only include

S2 ≡ χ0(1)χπ(1)

( L−1∏
ky ,i=2

eiπnky (i)

)
χ0(L)χπ(L) (2.36)

and a similarly constructed S ′2 with fermionic ends χ0(1)χπ(1) and χ0(L)χπ(L).
Finally, we can utilize the fact that certain symmetries are broken in the bosonic variables

to construct NLOPs that are nonzero in a symmetry breaking bosonic phase but vanish
elsewhere. We use two-point functions in the bosonic variables 〈UiVj〉 with |i− j| → ∞. If
U, V are odd under P but even under T , the result is nonzero in Class 3 but vanishes in
the other symmetric fermionic phases. Likewise, operators odd under P but even under PT
yield OPs which can detect Class 4. Mapped back to fermions, a few such candidates are:

S3 ≡ −iχ0(1)
L−1∏
ky ,i=2

eiπnky (i)χ0(L), (2.37)
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S4 ≡ −iχπ(1)
L−1∏
ky ,i=2

eiπnky (i)χπ(L), (2.38)

or similar constructions defined as S ′3, S
′
4, with fermionic ends, −iχ0(1), χ0(L) and−iχπ(1), χπ(L),

respectively.

Application

We apply these order parameters to the p+ ip model with cylinder geometry. For instance,
let us work in the t = |∆| limit of the strong topological superconductor where only the
ky = 0 chain is in the topological phase. Evaluations decouple into ky = 0, π, and k0 ∈ (0, π)
contributions: 〈S3〉 = 〈Stop〉ky=0〈Striv〉ky=π〈Striv〉∏ k0∈(0,π) 6= 0. This NLOP would vanish
in the other phases because the behavior of the ky = 0, π chains (viewed as topological or
trivial) would be different. Regions where the order parameters take nonzero values are
shown in Figure 2.6.

The fermion parity operator used in the bulk of the NLOPs given in the previous section
can be reduced to parity for just the ky = 0, π DOF, since the degrees of freedom for
remaining momenta always maintain trivial order in the p + ip model. This reduction may
not be applicable in general, as when interactions are added.

We emphasize that this model, as in the case of the single Kitaev Majorana chain, has
additional symmetries beyond Z2 × ZN which puts constraints on the construction of the
NLOP. For instance, a choice of OL/R ∝ (χ, χ) is different from (χ, χ), as we saw in the single
chain. However, for models which only have Z2×ZN symmetry, only these symmetries need
to be accounted for. Therefore, order parameters constructed using the general principles
described work generically. For instance, S3, S

′
3 and similar order parameters are all suitable

choices to distinguish Class 3 from the other symmetric fermionic phases.

Dual Defect Condensate as a Model for an SPT Phase

To develop a complementary picture of one of the phases, we consider Class 2 in the bosonic
variables for the case of two chains. In this case, the symmetry group is the same as that
of the Haldane phase, G = Z2 × ZN . Our construction will be a one-dimensional version
of certain higher-dimensional constructions for SPT phases [53]. Two “dual” defects (where
one defect appears as a nonlocal object in the variables in which its partner is local) will be
bound together and then condensed. The composite object will carry a nontrivial quantum
number under the symmetries.

Let σ, τ be two Ising variables with the Z2 symmetries
∏

i σ
x
i ,
∏

i τ
x
i . Condensation of

domain walls of σ, created at site j by
∏

i<j σ
x
i , would lead to an Ising disordered phase

〈σzi 〉 = 0. Conversely, condensation of spin flips created by σz realizes the ordered phase.
Consider then condensing a bound state of a σ defect and its τ dual defect, for instance the
composite object ρj =

∏
i<j σ

x
i τ

z
j . If no symmetries are broken, this will yield a topological

phase. To preserve the symmetries, for instance, one can also condense τ domain wall and
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Figure 2.6: Phase diagram and nonlocal order parameter values for the quasi-1D p + ip
paired model (Eq. 2.32) with axes (t/µ, t⊥/µ). Phases are labeled as trivial, weak, or strong
topological superconductor (center diamond is also trivial). The labels S, S ′ refer to the order
parameters of the main text which take on nonzero values in the regions listed. (Unprimed,
primed versions require either t > 0 or < 0, respectively.)

σ spin flip pairs, δj =
∏

i≤j τ
x
i σ

z
j . A string order parameter for this topological phase will be

a product of two-point correlations functions,

〈ρiρjδiδj〉 =

〈
τ zi σ

y
i

( ∏
i<k<j

σxkτ
x
k

)
τ yj σ

z
j

〉
. (2.39)

The order parameter is of the general form discussed previously. It consists of applying one
symmetry over the bulk (here,

∏
i σ

x
i τ

x
i ) and terminating with operators τ zσy or τ yσz which

are even under the symmetry used in the bulk and odd under the remaining symmetries,∏
i σ

x
i ,
∏

i τ
x
i .

From these ingredients, we write a Hamiltonian which realizes this topological phase.
Consider starting at the critical point of a pair of decoupled Ising models,

H0 = −
∑
i

(
σxi + τxi + σzi σ

z
i+1 + τ zi τ

z
i+1

)
, (2.40)

and adding correlations for the Z2 charge and domain wall bound pairs in order to induce
condensation of these composites,

H1 = −
∑
i

(
ρiρi+1 + δiδi+1

)
(2.41)

= −
∑
i

(
σzi σ

z
i+1τ

x
i+1 + τ zi τ

z
i+1σ

x
i

)
. (2.42)

The Hamiltonian H(λ) = H0 + λH1 realizes the nontrivial topological phase for λ > 1
with nonlocal order parameter ρiδi. This is made apparent by making a dual transformation
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Figure 2.7: Single-site resolved imaging of atoms using the quantum gas microscope in a
640-nm-period optical lattice. Reproduced from [44].

on one of the Z2 variables and mapping onto the quantum Ashkin-Teller model [54, 55].
Moreover, H1 itself is exactly solvable and its ground state is a so-called cluster state [56],
which will play a key role in the discussions of Chapter 3. There is a four-fold degeneracy
on a chain with sites 1 to L. On each edge, we can construct a spin-1/2 algebra with local
operators; for instance, σz1τ

x
1 , σx1τ

z
2 , and σy1τ

x
1 τ

z
2 operate on the left edge while σxLτ

z
L, σzL−1τ

x
L,

and σzL−1σ
x
Lτ

y
L operate on the right edge. Since we can map within the ground state manifold

via edge and not bulk operators, the distinction between the degenerate states is one of
symmetry-protected topological order and not spontaneously broken symmetry.

2.5 Measuring Nonlocal Order in Ultracold Atomic

Systems

Ultracold atomic systems are an increasingly attractive platform for simulating and under-
standing condensed matter systems. Single-site-resolved imaging of optical lattices is now
possible with the “quantum gas microscope” [44, 45]. Figure 2.7, for instance, shows simul-
taneous measurement of single site occupations across a many-atom system, a feat currently
impossible in a materials setting. Subsequent experiments [39] established the practicality
of identifying a quantum phase by relying on measurements of string order, with a first
demonstration on the bosonic Mott insulator [40, 41]. The quantum gas microscope would
therefore serve as an especially useful tool for identifying topological phases, which cannot
be identified by local means in their bulk, in cold atom settings. We provide two example
protocols of how nonlocal order could be measured with current experimental tools, which
at present can only make measurements in the occupation number basis.

Example 1: Single Chain Protocol

Although a simple NLOP involving only measurements of fermion parity can be used to
identify a trivial phase, and hence indirectly infer the existence of topological phase in a
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Figure 2.8: Top shows single Majorana chain (sites are circles) and the order parameter
for the trivial phase which can be measured in current cold atom experiments since it only
involves fermion parity (boxed green circles). Bottom shows a potential scheme for measur-
ing order parameters with fermionic terminations such as Eq. 2.43. Fermion parity is still
measured in the bulk (green), but additional measurements for the end sites labeled 1, N
(blue circles) must be made to extract the string order parameter value.

known phase diagram, it is preferable to a get a positive signature for an SPT phase directly.
Therefore, we consider how one might measure NLOPs with complex terminations. For
instance,

Stop =

〈
(−iχ1)

N−1∏
j=2

eiπnjχN

〉
(2.43)

directly detects the topological phase by generically yielding a nonzero value. The difficulty
with measuring NLOPs such as Stop is that they are off-diagonal in the lattice site fermion
basis which is imaged in experiments. We suggest a scheme for measuring a string OP such
as Stop on the interval [1, N ] in the bulk of a long Majorana chain. The idea is that by
evolving the ground state in a controlled manner, such as with a tunneling Hamiltonian, we
may extract the additional information needed to reconstruct the string OP (Figure 2.8).

For instance, let a ground state for the Kitaev model (Eq. 2.19) be

|ψ〉 =
∑
ijk

βijk|nIi 〉|nOj 〉|nk〉. (2.44)

Here, |nIi 〉 is a site fermion configuration indexed by i for the inner region, sites 2 to N − 1;
|nOj 〉 indexes states for the region outside [1, N ]; and |nk〉 is a configuration for the end sites

1 and N of the string, with {|nk〉}4
k=1 = {|0〉, a†1|0〉, a†N |0〉, a†Na†1|0〉}. With this form, the

expectation value is
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Stop = 2
∑
ij

Pi

(
− Re(βij1βij4) + Re(βij2βij3)

)
, (2.45)

where Pi is the parity of configuration i for sites [2, N − 1]. The additional information that
is needed, beyond amplitudes |βijk|, to reconstruct the value are certain relative phases, such
as those in βij1βij4 and βij2βij3.

We consider repeatedly initializing the system in a fixed Kitaev chain ground state |ψ〉.
A tunneling Hamiltonian HT , which for instance couples only sites 1 and N , is turned on
rapidly, preserving the state. We may consider changing the experimental geometry to have
the single chain folded in two in order to couple sites 1 and N . After dynamic evolution with
HT , the site fermion occupations are measured at specified times. This information, along
with accurate knowledge of the Hamiltonian parameters and amplitudes |βijk| determined
from repeated measurements, would enable extraction of the necessary relative phases and
reconstruction of the string OP value.

Nonetheless, a general challenge appears to be the number of measurements needed, as
a ground state for N sites in the deepest regimes of the topological phase consists of an
exponential in N number of states in the lattice site basis, all with equal magnitude weights.
Design of a detailed protocol to enable extraction of the off-diagonal interference terms would
be an interesting development.

Example 2: Two Identical Chains

As an alternative, we show that it is possible to detect a phase with symmetry-protected
topological order by making measurements in the lattice site basis only, making it accessible
for current ultracold atom experiments. Consider two identical chains A and B, each with
parameters (t, |∆|, µ) in the Kitaev model, and further coupled with an interchain hopping
t⊥. This high-symmetry model is the N = 2 case of the systems considered in Section 2.4

As before, the phases of this system can be easily seen by switching to momentum ky =
0, π in the transverse direction. The resulting Hamiltonian consists of two decoupled Kitaev
models for the ky = 0, π variables, {a0(i)}i ∪ {aπ(i)}i, with modified chemical potentials
µ± ≡ µ± 2t⊥,

H = HKit,A +HKit,B − 2t⊥
∑
i

(a†iAaiB + h.c.)

= HKit,0(µ+) +HKit,π(µ−). (2.46)

For |∆| 6= 0, there are phases with two, one, or zero Majorana zero modes per edge
as the interchain coupling t⊥ is increased (the phase boundaries are the same as those in
Figure 2.6). The phase with two Majorana zero modes per edge is protected by translation
symmetry, which here just amounts to exchange. To distinguish the phases, we only need
to independently test whether the ky = 0, π chains are in the topological or trivial phases
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Figure 2.9: Geometry of the nonlocal order parameter Eqs. 2.47, 2.48 for a system of two
identical chains A, B (white circles are fermion sites). Bulk (blue) of the order parameter
measures fermion parity, while specially chosen terminating operators act on sites of the
two chains (orange rectangles) separated by a large distance |i − j|. For instance, these
terminating operators can be taken to be the fermion number difference nA − nB. This
nonlocal order parameter uniquely identifies the nontrivial phase with two Majorana zero
modes per boundary.

using Kitaev model string OPs. In regimes where only one of the ky = 0, π chains is in
the topological phase, we use string termination operators such as χ0/χπ ∼ χA ± χB or
those built out of χ operators. When both ky = 0, π chains are in the topological phase,
the terminating operators are for instance χ0χπ ∼ χAχB. In other words, two copies of
the topological phase OP of the Kitaev model, one for each of the ky = 0, π momentum
chains, detects the weakly coupled regime of this two chain system, in which each end has
two Majorana zero modes. This is equivalent to a product of topological string OPs for each
chain,

〈
χ0(i)χπ(i)

k−1∏
j=i+1

eiπ[n0(j)+nπ(j)]χ0(k)χπ(k)

〉
→

〈
χA(i)χB(i)

k−1∏
j=i+1

eiπ[nA(j)+nB(j)]χA(k)χB(k)

〉
. (2.47)

Taking products of string order parameter works here because of the additional protecting
symmetry.

Can we instead choose an order parameter for the two chain system which involves only
fermion parity – and hence is easily measurable – but which nonetheless detects a phase
with symmetry-protected topological order? In fact, to detect the phase with two Majorana
zero-energy modes per edge, the selection rules of Section 2.4 require that the terminating
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operators of a NLOP be bosonic (even under parity) but odd under exchange symmetry (see
Table 2.2). Therefore,

〈
(nA(i)− nB(i))

k−1∏
j=i+1

eiπ[nA(j)+nB(j)](nA(k)− nB(k))

〉
(2.48)

will detect the phase labeled Class 2 in Table 2.1 (see Figure 2.9 for an illustration). This
NLOP works, for instance, for a model of two identical chains with intrachain pairing and
interchain diagonal hopping. While it vanishes for the special model, Eq. 2.46, because of
the model’s larger symmetry group, for models with no additional symmetries this order
parameter detects a topological phase.

2.6 Conclusion

In this chapter, we discussed how to construct string or brane nonlocal order parameters
for fermionic phases, focusing in particular on interacting topological superconductors of
spinless fermions. These order parameters measure fermion parity in their bulk and are
terminated by fermionic or bosonic operators at their edges. We illustrated how they probe
the different nature of the Majorana pairings in the topological and trivial phases. The
addition of translation to the system as a protecting symmetry (Section 2.4) distinguished
among certain interesting 2D phases in the quasi-1D limit. We elaborated on how two 1D
Z2 invariants are identified by the classification in the case of free fermions. In particular,
this allows us to distinguish the 2D Chern number mod 2, for instance the p + ip strong
topological superconductor and the weak topological superconductor.

We constructed simple general rules (Section 2.4) which the terminating operators of a
nonlocal order parameter should satisfy in order to uniquely distinguish among the fermionic
symmetric phases (four for N even and two for N odd). Attempts at extending string to
brane order for coupled chains have been discussed in other contexts. Crucially, here we
were able to make the extension to multiple chains because of the additional protecting ZN
symmetry, which enabled us to take products of single chain string order parameters.

Our motivations for these simple constructions largely arose from the ability to perform
nonlocal measurements in ultracold atomic systems using the quantum gas microscope (Sec-
tion 2.5). We gave an example of an order parameter for two chains which only involves
fermion parity and hence can be used to detect a topological phase using current experimen-
tal techniques.
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2.7 Appendix A: Applying a Broken Symmetry on a

Domain

Consider a quasi-1D spin system with an infinite dimension indexed by j and which has
a discrete broken symmetry operator u =

∏∞
j=−∞ uj. We argue that any state |ψ0〉 in the

ground state manifold obeys limN→∞〈ψ0|
∏N

j=−N uj|ψ0〉 → 0, with a special ordering of the
limits. It applies even when mapped to fermions because it considers arbitrary ground state
choices.

Let {|ηi〉}Mi=1 be the broken symmetry states which are mapped to each other under u.
We explain that limN→∞〈ηi|

∏N
j=−N uj|ηk〉 → 0 for any i, k. If i = k, u creates a finite-sized

domain which is orthogonal to the original state as the domain size increases N → ∞. For
instance, for the quantum Ising model with a Z2 broken symmetry,

lim
N→∞

〈↑, ↓ |
N∏

j=−N

σxj | ↑, ↓〉 → 0, (2.49)

where | ↑〉, | ↓〉 denote the broken symmetry states in the thermodynamic limit. Off-diagonal
matrix elements i 6= k also vanish due to the order of our limiting procedures; since the
thermodynamic limit precedes N →∞, there is always an infinite region outside the domain
[−N,N ] where the broken symmetry states are orthogonal. Practically, this means that the
system size must be much larger than the domain over which the broken symmetry is applied
in order to yield an asymptotically vanishing value. We expect that our description can be
formalized with matrix product states by considering the eigenvalue problem of the transfer
tensor T governing the behavior of state overlaps.

2.8 Appendix B: Fermionic Classification

We follow the approach developed in [13] for 1D fermionic and bosonic systems. Consider
the system Ω with periodic boundary conditions and a unique gapped ground state, and
partition Ω = ΩS ∪ ΩE into a subsystem ΩS and the environment ΩE. Let an observable
be O. Consider the effective action Ô of this operator in the space spanned by the low
entanglement energy (EE) Schmidt states obtained from the ground state on subsystem
ΩS. [13] observed that the action reduces to that of two operators OL, OR acting locally
near the left and right edges, respectively, of ΩS, i.e. Ô ∼ OLOR. That is, in this subspace
spanned by low EE states, states are distinguished by physics near their edges (as observables
have “fractionalized” into two spatially separated pieces) but behave similarly in their bulk.
Symmetry-protected phases are distinguished by the commutation relations obeyed by the
edge operators.

Our two Z2×ZN commuting symmetry generators are parity and translation P , T . They
fractionalize as P̂ ∼ PLPR and T̂ ∼ TLTR. We fix P̂ 2 = P 2

L = P 2
R = 1 and T̂N = TNL =
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TNR = 1. Define angles µ, µ′ with PLPR = eiµPRPL, TLTR = eiµ
′
TRTL which are 0, π since

fractional pieces can be fermionic or bosonic.
We claim that µ, µ′, along with an additional assumption that P̂ TL = eiµ

′
TLP̂ , are

sufficient to distinguish the quantum phases, since the other commutations follow from these.
The complete operator P determines whether operators such as TL are bosonic or fermionic
(value of µ′) and it is natural to assume that its effective form does also. Parity is in this way
a more fundamental operator for fermionic systems compared to other symmetries. Other
commutation relations follow, such as PLT̂ = T̂PLe

iµ′ .
An equation such as PLT̂ = T̂PLe

iµ′ imposes a constraint since P 2
L = T̂N = 1; namely,

µ′ = π is not allowed if N is odd. Hence, we recover the same symmetric fermionic phases
as we would by mapping the bosonic group cohomology classification to fermions: (Z2)2 for
N even and Z2 for N odd. We additionally have a direct fermionic description of the phases
based on effective forms of symmetry operators. Finally, to establish a correspondence
between the bosonic and fermionic descriptions, we should understand when the Jordan-
Wigner mapped versions of the fermionic symmetry operators are broken or unbroken in the
bosonic variables. This leads us to find that parity is broken when µ = π, while translation
is broken when µ′ = π and µ = π; this is summarized in Table 2.1.

2.9 Appendix C: Fermionic Selection Rules

We sketch a proof that the terminating operators should satisfy certain selection rules in
order for the NLOP to remain nonzero in one symmetric fermionic phase and vanish in the
others; the result is Eq. 2.53. We will evaluate the long-distance limit of the string or brane

OP 〈OL

[∏
j∈ΩS

Σj

]
OR〉 in the ground state, with OL, OR local terminating operators and

Σj an onsite symmetry. The asymptotic form of a nonlocal order parameter in a symmetric
phase is really a two-point function of certain operators because symmetries reduce to acting
on the edges of the domain over which they are applied. We use the effective forms for
fermionic symmetries from the fermionic classification; though they are state dependent, we
only rely on properties of the phases.

We consider as in Section 2.8 a closed system Ω partitioned into a subsystem ΩS over
which the symmetry Σ acts and an environment ΩE, on whose edges OL, OR act. The
ground state has Schmidt decomposition |ψ〉 =

∑
a e
−Ea|φa〉|ηa〉 where φa, ηa are for ΩS,ΩE,

respectively. We specialize to the case of interest where fermion parity PΩS is applied in
the bulk. The idea of [13] is that 〈φa|PΩS |φa′〉 ≈ 〈φa|PΩS ,LPΩS ,R|φa′〉 (with effective forms
PΩS ,L, PΩS ,R on ΩS) for states with low entanglement energy (EE), so that a, a′ < χ with
χ a cutoff. The forms PΩS ,L, PΩS ,R are localized to a distance l near the edges of ΩS which
increases with χ. While the replacement by effective forms is approximate, it is good because
states with high EE contribute less to evaluations of observables. Hence,

〈ψ|OLPΩSOR|ψ〉 ≈
∑
a,a′<χ

e−Ea−Ea′ 〈φa|PΩS ,LPΩS ,R|φa′〉〈ηa|OLOR|ηa′〉
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=
∑
a,a′<χ

e−Ea−Ea′ 〈φa|〈ηa|OLPΩS ,LPΩS ,ROR|φa′〉|ηa′〉

≡ 〈ψ̃|OLPΩS ,LPΩS ,ROR|ψ̃〉, (2.50)

where |ψ̃〉 ≡ ∑a<χ e
−Ea |φa〉|ηa〉 is a good approximation to ground state ψ. We first take

the thermodynamic limit of the closed system and then ΩS so that the evaluations at the
left and right boundaries of ΩS near ΩE decouple. The NLOP reduces to an evaluation of
local operators,

〈ψ|OLPΩSOR|ψ〉 ≈ 〈ψ̃|OLPΩS ,L|ψ̃〉〈ψ̃|PΩS ,ROR|ψ̃〉. (2.51)

We then take the limit χ, l → ∞, so PΩS ,L, PΩS ,R penetrate further into the bulk of the
(infinite) subsystem S, |ψ̃〉 → |ψ〉, and the approximation improves.

Consider the transformation properties of just one edge evaluation, 〈ψ̃|OLPΩS ,L|ψ̃〉, for
instance. PΩS ,L has known transformation rules under the symmetries which are character-
istic of the quantum phase. How must OL transform in order to force the expression to
vanish? |ψ̃〉 is approximately an eigenstate of the effective forms of the total symmetries
PΩ, TΩ, becoming exact in the above limits. Consider introducing translation, for instance,

〈ψ|OLPΩS ,L|ψ〉 = 〈ψ|T †ΩOLPΩS ,LTΩ|ψ〉
T †ΩOLPΩS ,LTΩ = (T †ΩEOLTΩE)(T †ΩSPΩS ,LTΩS) (2.52)

(Note that TΩS , PΩS are bosonic). From Section 2.8, we have T †ΩSPΩS ,LTΩS = eiµ
′
PΩS ,L. In

order to have 〈OLPΩS ,L〉 6= 0, we need T †ΩEOLTΩE = e−iµ
′
OL. Applying the same argument

with parity symmetry and using P †ΩSPΩS ,LPΩS = eiµPΩS ,L implies P †ΩEOLPΩE = e−iµOL

is needed also. When the terminating operator OL satisfies transformation laws different
from the one characterizing the quantum phase (µ, µ′) of the system, the local evaluation
〈ψ|OLPΩS ,L|ψ〉 will vanish asymptotically. In summary, we need,

P †OLP = e−iµOL

T †OLT = e−iµ
′
OL (2.53)

so that the NLOP vanishes in the fermionic symmetric phases characterized by angles differ-
ent from (µ, µ′). These selection rules support the conclusions reached using bosonic selection
rules and local order parameters for bosonic symmetry breaking. For instance, a NLOP for
Class 2 (µ, µ′) = (0, π) should have OL, OR chosen to be even under fermion parity and odd
under translation, as described in the main text.
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Chapter 3

Many-body Localization, Topological
Phases, and Quantum Coherence

Many of the earliest advances in solid-state physics originated from the study of crystalline
systems. The treatment of electronic behavior in a periodic lattice can be simplified math-
ematically because of translation symmetry; for instance, energy eigenstates can be labeled
by their crystal momentum ~k, as expressed by Bloch’s theorem. This laid the foundations
for the many developments in and successes of electronic band theory.

In contrast, it has taken longer to understand the effects of quenched disorder. A seminal
advance was made in 1958 by P.W. Anderson [57] who identified the hallmark phenomenon
known as Anderson localization. Anderson’s work demonstrated that disorder can induce
localization of single-particle wavefunctions. This physics is already evident in a simple
non-interacting model,

H =
∑
i

Wic
†
ici +

∑
i 6=j

tijc
†
icj, (3.1)

where, for instance, Wi can be drawn from a distribution with bandwidth W and tij ≡ t can
be taken to be uniform and finite for nearest neighbors. When the dimensionless ratio W/t
exceeds a critical value, the single-particle wavefunctions are localized: they are concentrated
in real space ψ(~r) ∼ e−|~r−~r0|/ξ with ξ the localization length. This behavior can be understood
qualitatively by thinking of a perturbative expansion in small t/W . Unperturbed single-
particle eigenstates are of the form c†i |0〉 with a broad distribution of energies {Wi} due to
large W . Nonzero hopping causes a weak mixing of these states: when the randomness
is strong, states that are near in real space are generally off-resonant, with a large energy
difference ∆E, while states that are close to resonant have weak overlap. The effect of near
resonances in higher orders of perturbation theory must be treated carefully, but for the
noninteracting problem the localization is stable even for finite t/W .1

1These resonances arise in the interacting version of the same problem and are mathematically nontrivial
to treat.
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A prolific body of theoretical and experimental work on disordered systems followed that
of Anderson. Among these, single-particle localization was established for all energies in
one [58] and two spatial dimensions. In three dimensions, states above a critical energy,
the mobility edge, transition from being localized to extended. These results are encom-
passed within the scaling theory of localization, starting with early work by Thouless and
subsequently in [59].

Transport is, of course, directly affected by localization. Due to the absence of a mobility
edge, in one and two dimensions the conductivity σ(T ) = 0 at all temperatures T in the
absence of inelastic processes. In three dimensions, conductivity follows an Arrhenius law
due to thermal excitations above the mobility edge. Inelastic processes make interesting
modifications to the conductivity. Mott’s theory of variable-range hopping [60], for instance,
established how transport can be restored due to coupling of the electronic system with a
bath of gapless excitations, such as phonons, available in the medium. Electrons are able
to hop between localized single-particle states by exchanging energy with the bath while
remaining below the mobility edge. The predicted temperature dependence for the nonzero
conductivity is

σ(T ) = σ0(T ) exp

[
−
(
T0

T

) 1
d+1
]

(3.2)

in d dimensions. While the form of σ0(T ) depends on the particular bath coupled to, the
presence of the exponential is a rather universal feature.

The possibility of recovering transport by coupling to a bath raises some interesting
physics question. What are the necessary ingredients for such a bath? In particular, for
localized electrons, could electron-electron interactions by themselves play the role of the
reservoir? In the other words, must the properties of single-particle localization necessarily
be washed out in the presence of only weak and short-range electron-electron interactions?

3.1 Introduction to Many-Body Localization

In 2006, Basko, Aleiner, and Altshuler [61] provided a rigorous mathematical treatment
of precisely this question – the effect of electron-electron interactions on a localized and
isolated electronic system – using infinite-order perturbation theory. They established the
possibility of a localized phase that is stable to weak, short-range interactions and whose
DC conductivity σ(T ) vanishes exactly below a critical temperature Tc. Above Tc, a metallic
phase is stable. Such a phenomenon is termed many-body localization (MBL). The vanishing
of the DC conductivity at finite temperatures makes such an insulator quite different from
other insulators.

While the calculations in [61], which rely on the self-consistent Born approximation, are
mathematically involved, we recapitulate some of the physics with the following Hamiltonian,
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H ≡ H0 +H1 =
∑
α

εαc
†
αcα +

∑
〈αβγδ〉

Vαβγδc
†
αc
†
βcγcδ, (3.3)

consisting of a noninteracting problem H0 with localized single-particle eigenstates at all
energies {εα} and weak, short-range interactions Vαβγδ which couple these states. We can
imagine the many-body eigenstates in the Vαβγδ = 0 limit as occupying the corners of a
high-dimensional hypercube, dN corners for a system with N sites and local Hilbert space
of dimension d. Nonzero Vαβδγ 6= 0 creates particle-hole excitations which couple these
unperturbed eigenstates and could in principle lead to delocalization. It is surprising and
nontrivial, then, that [61] found Vαβδγ need not modify the fundamental nature of the un-
perturbed eigenstates, rather creating “dressed” eigenstates that are locally modified, akin
to localization in many-body Fock space.

Connection to Thermalization and Quantum Statistical Mechanics

As alluded to by the earlier analogy of an electronic system serving as its own bath, there
turns out to be an intimate connection between many-body localization and quantum ther-
malization. The results of [61] in essence entail that for a fully isolated system of interacting
electrons which is many-body localized, in any generic partition of the system into a small
subsystem A (whose size remains O(1) in the thermodynamic limit) and its complement Ac,
the complement cannot act as a reservoir, in the thermal sense, for A. The assumption that
a quantum system thermalizes is a key prerequisite in applying statistical mechanics. Hence,
quantum statistical mechanics cannot be applied to MBL.

It is tempting to fundamentally define MBL, and pinpoint the lack of equilibrium, as
originating from the blocked transport of matter quantities. However, MBL can be extended
to systems where there are no conserved quantities. Instead, it is now better understood
and appreciated that the more fundamental attributes behind equilibration, involved in the
exchanges of subsystem and reservoir, appear to be related to entanglement and decoherence.
The reservoir’s role is to provide degrees of freedom with which the subsystem can entangle.

With further study, MBL has come to serve as and increasingly be defined as an antithesis
to thermalization, thereby partitioning systems into two broad classes: (i) many-body local-
izing or (ii) thermalizing. Hence, in order to define the full spectrum of MBL characteristics,
we next turn to defining quantum thermalization more precisely.

Consider a system with density operator ρ under time evolution according to the Hamil-
tonian H. Partition the system S into a subsystem A and remainder Ac and take the
thermodynamic limit by adding degrees of freedom to Ac. A quantum system thermal-
izes if, in the long time and large system limit (taken simultaneously), the reduced density
operator for every generic subsystem A, ρA(t) ≡ trAcρ(t), approaches a Boltzmann-Gibbs
distribution, ρeqA (T ) = trAcZ

−1e−H/kBT .
From our understanding of quantum thermalization thus far, it appears that when a

system does thermalize at a given temperature, it thermalizes for all choices of initial states.
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[62]. If that is the case, the initial state can, in particular, be chosen to be a many-body
eigenstate of H. However, since an energy eigenstate has trivial dynamics, we conclude
that such a state much be thermal to begin with. This is the content of the Eigenstate
Thermalization Hypothesis (ETH), a key feature of statistical mechanics in the quantum
setting [63–66] which we will equate with thermalization.

One consequence of ETH concerns the entanglement entropy. If energy eigenstate |n〉 of
Hamiltonian H is thermal, then since the reduced density matrix for any subsystem A is
equal to a Boltzmann density operator – limt→∞ ρ

n
A(t) = ρeqA (Tn) – the entanglement entropy

S = −kB TrA(ρnA log ρnA) between A and the remainder Ac must be the equilibrium thermal
entropy of the smaller subsystem, A, which is extensive in the size of A. Hence, we find that
entanglement entropy in thermal eigenstates must obey volume-law scaling.

ETH is a hypothesis, rather than a theorem, that has been investigated in numerous
contexts and believed to describe the physics behind quantum thermalization. It is difficult to
test numerically, since exact calculations are often for small systems and require extrapolation
to the thermodynamic limit. The distinction between MBL and ETH will appear in dynamics
– for instance, in retention of some local aspects of initial conditions. Hence the transition
between the two is termed a “dynamical phase transition,” in contrast to an equilibrium one.
We note in passing that integrable systems, which have an infinite set of extensive conserved
quantities, were studied before MBL and do not thermalize to the usual Boltzmann ensemble.
However, MBL is a more general class of nonthermalizing systems; it is, for instance, more
robust to generic perturbations, while integrable systems often require fine tuning.

If energy eigenstates are thermal, but a generic initial state is not, how does thermaliza-
tion come about in the quantum setting? In the basis of energy eigenstates, the diagonal
terms of the density operator ρ(t) are independent of time, while the off-diagonal terms
oscillate at different frequencies, 〈n|ρ(t)|m〉 = ρnm(t) = ρnm(0) exp [i(Em − En)t/~]. The
off-diagonal terms will overall give vanishing contribution to observables due to essentially
random phases, leaving behind a diagonal ensemble.

Quantum thermalization is particularly interesting when viewed from an information
theoretic perspective. Information cannot be erased from a closed system as a whole because
of the unitary dynamics. On the other hand, a thermal system is characterized by only a
few macroscopic properties, such as temperature and chemical potential. The essence of
quantum thermalization is that the initial information contained in the system – in the form
of expectations of local observables – is still present but inaccessible to local probes at long
times. Decoherence crucially scrambles any memory of local initial conditions. In contrast,
in a localized system, the long-time dynamics of subsystems retain some memory of the local
features of the initial state. In our model for a prototypical 1D SPT-MBL, this retention of
local memory will be made apparent. Hence, as hinted at earlier, the essence of quantum
thermalization appears to be more fundamentally tied to the propagation of information, and
the ability of distant degrees of freedom to entangle at long times, rather than originating
from lack of transport.
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Features of Many-Body Localization

The work of Basko and collaborators [61] presented strong evidence for interesting physics in
the MBL regime and spurred numerous further studies. Many of these studies were numerical
in nature – as there are limited tractable analytic approaches for disordered interacting
systems – and used spins model as testbeds for MBL.

Studies by Oganesyan and Huse [67] and Pal and Huse [68] critically examined the many-
body localized and thermal phases and the transition between them. A spin model which
captures both phases is the one-dimensional spin-1/2 random field Heisenberg Hamiltonian,

H =
∑
i

(
hiσ

z
i + J~σi · ~σi+1

)
, (3.4)

with hi drawn from a distribution of bandwidth h. The conservation of total z-spin in this
model is not a necessary feature. With no interactions J = 0, this model is localized in
all energy eigenstates. These features remain for nonzero J and the system is many-body
localized in all eigenstates of the spectrum. A thermal phase exists at large J . Various
diagnostics can be used to distinguish the phases, such as (i) partial memory of an initial
condition, for instance the ability to relax an initially inhomogeneous spin density, and (ii)
comparison of local observables in or subsystem density operators of full density operators
ρn, ρn+1 of adjacent energy eigenstates with energies En, En+1. If they are thermal, adjacent
energy eigenstates must thermalize to temperatures which are exponentially close in system
size, and averages of local observables should become increasingly similar. In contrast,
adjacent localized states have local differences which persist even in the thermodynamic
limit [68].

Another distinction between MBL and thermal phases manifests in the statistics of spec-
tral gaps of adjacent eigenstates of the Hamiltonian. Thermal phases are known to exhibit
spectral statistics given by the Gaussian Orthogonal Ensemble (GOE). A key feature of the
distribution dictated by the GOE is level repulsion, characteristic of avoided level crossings:
the probability density governing the distribution of energy gaps vanishes as the gap itself
vanishes. In contrast, nearby energy states which are localized appear different locally and,
qualitatively speaking, are invisible to each other under perturbations. They display Poisson
level statistics and no level repulsion. Studying the distribution of spectral gaps is therefore
helpful in separating localized and thermal phases [67].

At the time of writing, many-body localization continues to be vigorously studied through
a combination of numerical and analytical approaches as well as experiments. An early
paper by [69] used creative modifications to strong disorder renormalization group [70–72]
– an approach that had been of great use in studying ground state properties of strongly
disordered low-dimensional quantum systems – to obtain the physics of the localized phase
after long time evolution. A Hamiltonian with strong quenched disorder has a hierarchy of
energy scales, and the strong disorder renormalization group tracks the flow of the probability
distribution of Hamiltonian couplings by perturbatively eliminating the largest terms in the
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Thermal Phase Single-particle Localized MBL
ETH holds ETH false ETH false

May have nonzero Zero DC conductivity Zero DC conductivity
DC conductivity

Continuous local spectrum Discrete local spectrum Discrete local spectrum
Volume-law entanglement Area-law entanglement Area-law entanglement

of eigenstates of eigenstates of eigenstates
Power-law spreading No spreading Logarithmic spreading

of entanglement of entanglement of entanglement
Dephasing, dissipation No dephasing or dissipation Dephasing, no dissipation

Table 3.1: Several key differences among thermal, single-particle localized, and MBL phases.
Reproduced from [62].

Hamiltonian first. Likewise, time evolution for a strongly disordered system will contain a
hierarchy of time scales. [69] perturbatively eliminated the fastest time scales in favor of
slower ones and was able to identify a fixed point of the MBL dynamics. Their approach
revealed that, in the localized phase, the long time limit is characterized by an emergent,
infinite set of local integrals of motion which become exact conservation laws at the fixed
point. This finding was an early indicator of the hidden local integrability of fully localized
systems, as we will discuss in Section 3.2.

The setting for observing features of MBL is a fully or nearly isolated interacting system.
Conventional materials have hitherto been a difficult platform because of the multitude of
uncontrolled gapless modes which are present and can serve as a thermalizing reservoir for
the electronic subsystem. Ultracold atomic systems, on the other hand, can be more easily
isolated or controllably connected to a bath, as well as tuned through a variety of phases,
and hence are a natural setting for studying localization. [73] was the earliest conclusive
experimental study for MBL at finite-energy density. They prepared a one-dimensional
system of ultracold fermions in a quasi-random disordered lattice. Relaxation of an initial
charge density distribution indicated the MBL or ETH nature of the phase.

We close with Table 3.1 from [62] which highlights some of the key distinctions between
thermal, single-particle localized, and many-body localized systems. A few remaining prop-
erties will be discussed in the following section.

3.2 Emergent Local Integrability

The dynamical renormalization group implemented by [69] offered early hints that a MBL
system might have emergent integrals of motion. Indeed, for systems with Hamiltonian H
whose entire energy spectrum is many-body localized, it was initially argued [74–77] and later
rigorously proven [78, 79] that they are governed by a complete set of quasi-local integrals of
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motions, that is, a set of local operators (with possibly exponentially decaying tails) which
commute with each other and with H. The understanding of fully many-body localized
systems as ones with emergent integrability, in terms of local operators, provides a deeper
explanation for the key features of the MBL phase highlighted previously.

We describe this most simply for a spin-1/2 system following the example and terminology
in [74]. Consider a random, short-range interacting Hamiltonian H defined in terms of Pauli
operators {~σi} which live on the physical sites. We term these operators “p-bits” for physical
bits; they are the observables accessible experimentally via local probes. If the full spectrum
of H is many-body localized, it will have a complete set of local integrals of motion, {τ zi }.
Each τ zi is one component of a set of Pauli operators ~τi. We will refer to the {~τi} as “`-
bits” for localized bits. Furthermore, the statement of local integrability posits that the
many-body localized Hamiltonian will take the form [74],

H =
∑
i

hiτ
z
i +

∑
ij

Jijτ
z
i τ

z
j +

∞∑
n=1

∑
i,j{k}

J
(n)
i{k}jτ

z
i τ

z
k1
...τ zknτ

z
j , (3.5)

consisting of one-body, two-body, and higher-order interaction terms. The interactions
{Jij, Ji{k}j} decay exponentially with distance between the coupled `-bits. Evidently, the
eigenstates of H are simultaneous eigenstates of all the τ zi operators.

The `-bit operators are to be thought of as dressed versions of the p-bit operators. If the
Hamiltonian H were noninteracting and fermionic, for instance, the τ zi could be taken to
be the occupation numbers of single-particle localized orbitals, and many-body eigenstates
would be constructed accordingly. With weak interactions, the stability of the MBL phase
and the statement of local integrability results in dressed versions of these which continue to
serve as conserved quantities. One avenue towards constructing the `-bit operators is to begin
with the p-bits and perturbatively add correction terms to yield operators which commute
with H and with each other, order by order in the strength of the p-bit interactions in H.
This method is mathematically subtle to implement, giving rise to questions of uniqueness as
well as issues surrounding “resonances” – degeneracies at high order in perturbation theory
due to distant localized degrees of freedom with similar energies. The formal justification for
the statement of hidden integrability lies in a mathematical proof [78, 79], relying on what
appears to be a physically reasonable assumption of “limited level attraction,” and is similar
in spirit to the order-by-order construction described.

A construction of local integrability is not possible in the thermal phase. While every
local Hamiltonian has a complete set of integrals of motion – namely, the set of projection
operators onto each energy eigenspace, which commute with H by construction and with
each other – they are not local operators. They can yield a local operator when they are
combined together in a specific way, for instance to yield H.

The form Eq. 3.5 underlies many of the properties of the MBL phase. The dynamics of
the `-bits is trivial, involving precession at a rate set by the interactions with other `-bits. In
a generic state, the `-bits will entangle, but crucially, Eq. 3.5 contains no spin flips – τxi or τ yi



CHAPTER 3. MANY-BODY LOCALIZATION, TOPOLOGICAL PHASES, AND
QUANTUM COHERENCE 43

terms – which would cause dissipation. In fact, the lack of dissipation suggests a spin echo
procedure which attempts to reverse the effect of dephasing has potential for success [80, 81].
The possibility of using a spin echo measurement in the bulk of a many-body localized system
was explored in [81] and the calculated response was found to distinguish MBL from single-
particle localized and thermal phases. The possibility of spin echo protocols for MBL will be
further discussed in the coming sections which describe one contribution of this dissertation
[80]. Theoretical support for our conclusions relies heavily on the characterization of fully
many-body localized systems in terms of a hidden local integrability.

Entanglement Perspective

The local integrability Eq. 3.5 explains the characteristic growth in entanglement entropy for
initially unentangled states in MBL phases, an early indicator of the unusual physics present
[82]. From numerical calculations on the dynamics of an initial state under a one-dimensional
random-field XXZ Hamiltonian, [82] found a slow, logarithmic growth of entanglement en-
tropy which converged to a final extensive but nonthermal value. This logarithmic growth
distinguishes the MBL phase both from the thermal phase and its noninteracting counter-
part. An intuitive way [74] to see the origin of the growth is to note that, due to the form
of Eq. 3.5, the effective interaction between two `-bits i, j is

Jeffij = Jij +
∞∑
n=1

J
(n)
i{k}jτ

z
k1
...τ zkn (3.6)

and is expected to fall off exponentially with distance, Jeff ∼ J0e
−|i−j|/ξ, for some decay

length ξ. The effective interaction will take effect past a time scale set by Jeff t & 1, at
which points `-bits within a distance L . ξ log(J0t) will be entangled with each other.

Another striking consequence of MBL is the area-law entanglement entropy in localized
eigenstates [83]. In stark contrast, as pointed out earlier, ETH requires that thermalized
many-body energy eigenstates have volume-law entanglement entropy. Beyond its deep
physical implications, the limited entanglement contained in MBL energy eigenstates en-
ables the development of efficient algorithms for numerical simulations, following analogous
methods for area-law ground states of gapped Hamiltonians.

3.3 Order Protected by Localization

Equilibrium statistical mechanics enforces strong constraints on when many-body classical or
quantum systems can exhibit order; MBL systems, however, are free from such constraints.
One of the most exciting consequences of MBL is that it can in fact protect order, giving rise
to it in regimes forbidden in equilibrium systems. A variety of orders can be protected in this
way [84, 80, 85, 86] including certain symmetry-breaking, symmetry-protected topological,
and intrinsic topological orders.



CHAPTER 3. MANY-BODY LOCALIZATION, TOPOLOGICAL PHASES, AND
QUANTUM COHERENCE 44

To illustrate how this comes about [84], we restrict attention to the prototypical one-
dimensional model for phase transitions, the quantum Ising Hamiltonian. Let the full inter-
acting Hamiltonian H consist of H0, the noninteracting piece,

H0 = −
∑
i

Jiσ
z
i σ

z
i+1 +

∑
i

hiσ
x
i , (3.7)

and an additional Hamiltonian H1 consisting of weak interactions. For instance, H1 can be
taken to consist of two-body σx interactions H1 =

∑
i V σ

x
i σ

x
i+1. The {Ji, hi} are random cou-

plings drawn from distributions with means J̄ , h̄. MBL allows for the existence of spin-glass
long range order in all eigenstates throughout the Hamiltonian spectrum when J̄ dominates
the other energy scales.

Consider the noninteracting, zero-field limit V, hi = 0. Energy eigenstates contain domain
wall excitations localized between lattice sites, as in the state | ↑↑ ... ↑↓↓〉 written in a basis
of σz eigenstates. In this one dimensional setting, the domain wall, which lives between
lattice sites, is effectively a point particle. The effect of nonzero hi is to induce motion of the
domain walls – hopping of the defects – from site to site. If the system were not localized,
as would be the case with uniform Ji = J, hi = h, for instance, the addition of even a weak
h 6= 0 would cause the eigenstates within a degenerate multiplet, consisting of all possible
positions of k domain walls against a background of ordered spins, to immediately split and
yield resultant states with delocalized domain walls. In the presence of disordered couplings,
however, the problem is that of single-particle localization – the domain wall defects are
particles which hop due to hi and experience a disordered background potential Ji – and
hence will remain localized. The localization of domain walls is furthermore stable to turning
on weak interactions, such as Vi 6= 0, due to the stability of MBL. Localization of domain
wall defects implies correlation of spins at long distances; the long range spin-glass order will
manifest in lim|i−j|→∞ |〈σzi σzj 〉| approaching a constant value. The many-body eigenstates in
the large J̄ limit will come in pairs corresponding to the breaking of Z2 symmetry. Strikingly,
this will hold in every energy eigenstate in the spectrum of H.

This chain of reasoning is equally valid for fermionic Hamiltonians, such as the Majorana
chain with weak density-density interactions obtainable from the interacting quantum Ising
model above. In this case, the spin-glass order at high energy densities manifests itself as
symmetry-protected topological order.

We now turn to the main contributions of this thesis to the intersection of many-body
localization, symmetry-protected topological order, and quantum coherence. A key result
will be our demonstration that the unique combination of SPT and MBL, which we will
abbreviate as SPT-MBL, enables preservation and manipulation of quantum information in
quantum bits at arbitrarily high energy densities.
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Figure 3.1

3.4 A 1D Model for SPT-MBL

The model we will use to demonstrate the existence of protected edge states and quantum
coherence at high energies is the following one-dimensional spin-1/2 Hamiltonian,

H =
∑
i

(
λiσ

z
i−1σ

x
i σ

z
i+1 + hiσ

x
i + Viσ

x
i σ

x
i+1

)
. (3.8)

The couplings λi, hi and Vi are independent random variables. The Hamiltonian has two Z2

symmetries corresponding to the mapping σz,ya → −σz,ya independently on the even and odd
numbered sites, which, as we will see, are important protecting symmetries for symmetry-
protected topological order. The first two terms of Eq. 3.8 can be mapped to a noninteracting
Majorana fermion model using a Jordan-Wigner transformation [87]. However, probe fields
which couple to the spins may appear in a nonlocal and hence unnatural manner in the
fermionic variables, limiting the usefulness of the mapping; our natural variables will be
the spins. The last term Vi adds interactions in the fermionic language, making the model
generic. We will work in the limit of strong disorder and weak interactions so that the
stability of the MBL phase is guaranteed.

There are two simple limits in which the Hamiltonian Eq. 3.8 is trivially diagonalizable
and which characterize the physics of two distinct dynamical phases. With only local fields
{hi} present, the system is single-particle localized with trivial topological properties. All
eigenstates are unentangled product states of the spins in the σxi basis. In contrast, with only
the three-spin couplings {λi} present, the system exhibits a single-particle localized phase
which is topologically nontrivial at all energy denstities. On a chain with open boundary
conditions, this manifests as edge states in each eigenstate. Each energy eigenspace will also
be four-fold degenerate. Crucially, the distinction between the two phases persists away from
the simple limits described and in the presence of interactions Vi due to the localization. This
is yet another example of the protection of quantum order by MBL described in Section 3.3.

A schematic view of the phase diagram, depicting the transition from the trivial to the
topological eigenstates with decreasing transverse field hi, is shown in Figure 3.1. The verti-
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cal axis is energy density such that the maximum corresponds to infinite temperature in an
equilibrium state. The horizontal axis is a measure of the typical strength of the transverse
field h to the three-spin term λ, with spin-1/2 edge states shown in the caricature for small
h. The lines show the energy levels for a particular realization of the disordered Hamil-
tonian Eq. 3.8 corresponding to zero-mean Gaussian couplings with standard deviations of
(σV , σλ, σh) = (0.1, 1.0, 0.05) on the left, (σV , σλ, σh) = (0.1, 0.1, 1.0) on the right. Degener-
ate multiplets are depicted by the presence of multiple solid dots on a line (displaced from
each other for visibility). The topological phase displays a four-fold degeneracy throughout
the energy spectrum. While the phase transitions are of interest by themselves, in the re-
mainder of the chapter we focus on the properties deep within a phase, which we turn to
next.

Symmetry-Protected Topological Phase

We examine the features of the SPT phase [19, 8] by first considering the integrable limit in
which only the λi are nonzero in Eq. 3.8. In this limit, the Hamiltonian can be written as
the sum of mutually commuting operators Ki = σzi−1σ

x
i σ

z
i+1 called stabilizers, H0 =

∑
i λiKi.

The eigenstates are mutual eigenstates of all the Ki, labeled by the respective eigenvalues ±1.
Such states, termed cluster states in the quantum information literature, can be constructed
by applying projection operators, one choice of P+

i or P−i per Ki, to an initial state, where
P±i = 1

2
(1±Ki).

With open boundary conditions, the cluster states display edge modes that behave as free
spin-1/2 particles. This is easily seen by constructing a spin-1/2 algebra of edge operators,

Σx
L = σx1σ

z
2,Σ

y
L = σy1σ

z
2,Σ

z
L = σz1, (3.9)

on the left edge and similarly on the right edge. We say that these edge degrees of freedom
behave as free spins because H0 commutes with them. The Z2 × Z2 symmetry of odd
and even sites described earlier is a protecting symmetry because it prevents the edge spin
operators, which are not invariant, from appearing in the Hamiltonian. The protection of
the topological phase by the product Z2 × Z2 symmetry [88] is analogous to the protection
of the Haldane phase discussed in Chapter 2.

Note that the free edge spins are not adiabatically connected to the limit of a decou-
pled physical spin, σαi , but are a genuinely nontrivial quantity (as long as the symmetry is
preserved). For example, their components in this limit consist of a product of two spins.
Hence, the physics manifest here is different from that of weakly coupled independent spins.

The topological nature of the cluster states is also encapsulated in a string order param-

eter [1] given by Ost(i, j) = 〈σzi σyi+1

(∏j−2
k=i+2 σ

x
k

)
σyj−1σ

z
j 〉, assuming the symmetry remains

unbroken. In a specific eigenstate and disorder realization, the string order parameter takes
random values Ost(i, j) = ±1. We can disorder average the square of this to get a nonlocal
analogue of the Edwards-Anderson order parameter for spin glasses, Ψsg = 〈Ost〉2, which
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here gains a nonzero expectation value in the topological glass. We emphasize that this
order is found in eigenstates of H0 at all energies.

Another manifestation of symmetry-protected topological order lies in the entanglement
spectrum [7]. To demonstrate this, we pick an eigenstate of the system on a ring and compute
the reduced density matrix ρA for half of the ring, subsystem A, tracing over the degrees of
freedom of its complement, Ac, from the full density matrix, ρA ≡ trAcρ. The eigenspectrum
of ρA yields the entanglement spectrum and will be four-fold degenerate in the SPT phase,
which can be understood as a reflection of a “virtual” spin-1/2 at each end of the cut.

Figure 3.3 contrasts the entanglement spectrum of an excited state in the topological
state and the trivial state. The four-fold degeneracy is evident in the topological phase. The
vertical axis plots the negative logarithm of the eigenvalues of ρA, i.e. the eigenvalues of
the entanglement Hamiltonian HA constructed as ρA = e−HA . The numerical results are for
an eigenstate near the middle of the spectrum on a periodic system of ten sites. Finite-size
effects are also evident and expected for contributions with higher index on the horizontal
axis.

Effect of Interactions

We now consider adding to the Hamiltonian H0 generic perturbations such as hi and Vi in
Eq. 3.8 which destroy its integrability but still preserve the Z2×Z2 symmetry of the problem.
Due to the limit of strong disorder, we are guaranteed that eigenstates at all energies will be
localized. Consequently, in this fully MBL state, one can identify the quasi-local integrals
of motion of Section 3.2. We will rely on this connection heavily to describe the localized
topological phase and interpret numerical results for the dynamics.

The eigenstates of the toy model discussed above were the strictly localized cluster states.
Assuming localization persists on adding the interaction terms, the local stabilizers Ki will
map to a set of commuting integrals of motion K̃i that are still local up to an exponentially
decaying tail. Like the original stabilizers Ki, each K̃i is one projection of a spin-1/2 variable.
Similarly, in a semi-infinite system, the edge operator Σα

L localized on the open edge will
map to a quasi-local left edge operator Σ̃α

L that remains decoupled from the bulk Hilbert
space.
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Experiments can have direct access only to simple, strictly local operators such as the
original edge operators Σα

L and not to the operators that are exactly conserved Σ̃α
L. However,

because the system is in the localized phase, the measurable quantity Σα
L has strong overlap

with the true edge operator. More precisely, we can write the original edge operator as a
sum of a left edge contribution and a bulk contribution,

Σα
L = ZαΣ̃α

L + cαÕ
α
B. (3.10)

If we start the dynamics with Σα
L fully polarized in the α direction, then a polarization

of Zα will remain after arbitrarily long time evolution. However, for a finite size system,
rather than a semi-infinite chain, the nonlocal tails of the new edge operators can lead to
interactions between the two edges and the bulk of the system through terms of the form

Hedge =
∑
α,β,m

Jαβm Σ̃α
LB̃mΣ̃β

R (3.11)

A large number of non-local bulk operators Bm are possible and the respective coefficients
are all exponentially small in the system size. The different terms give rise to oscillations at
a large number of frequencies. This in turn will lead to decay of the edge spin over a time
T0 that scales exponentially in the system size N . For the integrable system with Vi = 0,
only a few interedge coupling terms can occur. This is observed explicitly in the oscillation
of the edge spin at a small number of frequencies, as shown in Figure 3.10.

Results from numerical diagonalization of the model Eq. 3.8 on a chain with up to eleven
spins are shown in Figures 3.4, 3.5, 3.7. In one set of calculations, done in a parameter
regime deep in the topological phase, the system is initialized in a product state with all
spins polarized along σz, so that the bare edge operator Σz

L has a definite value +1. In another
set of calculations, we retain the initial conditions above except polarize the first spin along
polarized along σx so that Σx

L has a definite value. In both cases the spin expectation value
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first drops to a smaller nonvanishing value, which later decays to zero on a much longer time
scale which we label T0 (Figure 3.4).2 A σz measurement in the bulk, in contrast, does not
persist and decays rapidly to zero.

Moreover, Figure 3.6 provides further evidence that the persistence of the edge spin is a
property of the SPT phase only. In the trivial phase of an eight-site chain, the same edge
spin operator Σz

L = σz1 decays rapidly to zero.3

The strong dependence of T0 on the system size is evident in Figure 3.5, and in Figure
3.7 we demonstrate the exponential growth of this time. Hence, the SPT-MBL phase has
free spin-1/2 edge states at all energies in the thermodynamic limit.

2Refer to Section 3.8 for details on how T0 was extracted.
3Note that while 〈σx

i 〉 may persist in the trivial phase both in the bulk and on the edge, other spin
components are not conserved and hence there is no preserved quantum spin.
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3.5 Quantum Dynamics and Spin Echo

Even without thermalizing, it is not a priori obvious that a many-body quantum system
in practice can have retrievable quantum coherence. While the hidden local integrability of
Section 3.2 did argue for dephasing, rather than dissipative, dynamics from the Hamiltonian,
there are further issues to address. The time evolution of an initial state generally involves
unbounded growth of the entanglement entropy in the MBL state [82], which might suggest
some irreversible loss of information: how would one implement a protocol to try to reverse
this in a useful way, and over which degrees of freedom? Furthermore, in practice our
quantum state preparation and measurements are done in a different basis (the basis of
p-bits rather than `-bits, using the language of Section 3.2), which slightly complicates the
analysis.

Dephasing Time in a Symmetry-Breaking Field

First, we discuss the degree to which the edge spin can be manipulated coherently. Consider
coupling the addressable edge spin to a local, albeit symmetry-breaking, field Hext = gΣx

L.
Since we are in the MBL phase, there is still a constant of motion Σ̃x

L directly related to
Σx
L. However, because the field breaks the protecting Z2×Z2 symmetry, it induces coupling

between the edge operator and the bulk,

gΣx
L = gZΣ̃x

L + g
∑
n,α

cnαΣ̃α
LB̃

n
α. (3.12)

While in the idealized cluster model where only λi 6= 0, such a field would have caused
oscillations at a single frequency ω = g, the edge spin now precesses with many frequencies,
leading to decoherence. The decoherence time is independent of system size, set only by
the magnitude of the field g and the intrinsic interactions that determine the coefficients
cnα. By weak analogy with terminology from nuclear magnetic resonance (NMR), we term
this a dephasing time T ∗2 . Figure 3.13 shows that indeed T ∗2 is, to a good approximation,
independent of system size. The dephasing time which we extract from disorder averaging
over independent realizations is shown in Figure 3.9, where it can be compared to several
other times scales.

At a glance, this kind of dephasing with an infinite number of intrinsic modes appears
deadly to the quantum coherence of the edge spin. However, note that all the terms causing
the dephasing of the edge modes are proportional to the external field g, or more generally
to an odd power of it (see Section 3.7). Reversing this field reverses the oscillations terms
and can lead to a spin echo. The overlap between initial and final states is less than unity
but finite and expected to persist to infinite time in the thermodynamic limit. In a finite-size
system, there is an additional imperfection due to the field-independent coupling between
the two edges which is exponentially small in the system size. We now describe the field
reversal protocol more precisely.
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Fidelty of a Spin Echo Protocol

To test the degree of edge coherence, we compute the time evolution of the edge spin in the
model Eq. 3.8 supplemented by a local field gΣx

L applied at one end of a chain. Figure 3.8
shows an example of the dynamics in a specific disorder realization for an eight-site chain,
starting from a definite value of the left edge Σz

L. As expected, oscillations of 〈Σz
L〉 are

visible and decay on the time scale characterized as T ∗2 . At time tR, we reverse the field
g and observe a near perfect retracing of the oscillations. We then compute the overlap
of the final state at 2tR with the initial state. The edge spin echo fidelity degrades slowly
with increasing the reversal time tR, from which we can extract a relaxation time which we
term T2, again by analogy with NMR terminology. It is remarkable that here T2 increases
exponentially with growing system size, as shown in Figure 3.9. This implies that in the
thermodynamic limit, the edge spin can indeed maintain truly perfect coherence in spite of
it being embedded in an interacting many-body system with high energy density.

In spite of the numerous integrals of motion, the bulk of the system reaches, for all
practical purposes, an infinite temperature. This is because the initial product states we
are using do not constrain the value of those integrals of motion. The edge spin on the
other hand remains dynamically decoupled from the bulk. While it is possible to perform
spin echo protocols in the bulk by constraining those integrals of motion, this would only
recover classical information. The presence of the underlying topological phase is crucial for
providing a free quantum bit, on the edge of the system, which can be manipulated.
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Figure 3.9: Scaling of all the time constants with system size. The zero-field decay time
T0 and spin echo decay time T2 are nearly identical and scale exponentially with system
size, whereas the oscillations decay time T ∗2 is size independent. Parameters were zero-mean
Gaussians with standard deviations were (σV , σλ, σh) = (0.1, 1.0, 0.05).

3.6 Conclusion

The combination of SPT-MBL enables quantum edge states which can persist in arbitrarily
high energy eigenstates. Furthermore, a quantum bit at the edge can (i) preserve information
in its state, and (ii) this information can be recovered from interacting dynamics which mix
the edge with bulk degrees of freedom. These phenomena are summarized in Figure 3.9 by
the three characteristic times we have discussed. One of the characteristic times, T ∗2 , reflects
dephasing at a hierarchy of time scales in the presence of an edge field which mixes the
edge and bulk but in a manner that is independent of system size. The remaining two time
constants – T0, characterizing the decay of the spin persistence, and T2, characterizing decay
of the spin echo fidelity – grow exponentially with system size. Hence, edge spin preservation
and spin echo fidelity are effects that will remain, saturating at some diminished but nonzero
value rather than vanishing, in the thermodynamic limit. These effects serve as a smoking
gun signature of the SPT-MBL phase.

These results are more general than the specific model Eq. 3.8 because our numerical
demonstration is supported by theoretical analysis relying only on two powerful concepts,
namely (i) symmetry and (ii) the existence of a complete set of quasi-local integrals of motion
for MBL, which is known to hold in system without a many-body mobility edge. Since MBL
is not fine tuned, there is a finite region of parameter space in which the existence of high-
energy topological edge states and high-energy quantum coherence will be realized.

The theoretical and numerical investigation of dynamics with physically preparable ini-
tial states is one important step in better understanding the consequences of SPT-MBL,
particular for experiments. While [84, 83] outlined how a distinction between phases may
appear in correlations measured in individual eigenstates, there still remained the question
of a physical distinction between them, something that can be probed in an experiment when
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working with a generic initial state. Preparing a many-body system in an energy eigenstate,
while possible in numerics, is experimentally impossible as it would require performing highly
nonlocal operations on the system. Further investigations, such as [89], have extended the
study of the SPT-MBL phase to more practical settings for quantum manipulation, where
for instance there may be a need to transport information in the protected edge qubits by
shifting the SPT boundary.

3.7 Appendix A: Analysis of Spin Echo Protocol

In this section, we work through the effects of the spin echo protocol from Section 3.5 step-
by-step to obtain the dependence of the final spin echo fidelity on various parameters.

Consider the time evolution of the system with Hamiltonian Eq. 3.8 as well as an edge
field acting on the “bare” edge spin, H(g) = H + gΣx

L = H + gσx1σ
z
2. In the initial state,

|ψ0〉 = | ↑↑ . . . ↑〉, (3.13)

the bare edge spin points along Σz
L = σz1. Our protocol is the following: we evolve under

H(g) for a time tR, reverse the field g → −g by evolving under H(−g) for an additional
time tR, and measure the value of the edge spin. The signature of the SPT-MBL phase is a
non-vanishing overlap between the edge spin value at t = 2tR compared to t = 0, even when
tR →∞.

We will track the time evolution in the eigenbasis of the interacting Hamiltonian in weak
edge field. Because of the integrability of the MBL phase, eigenstates can be labeled with
quantum numbers of local operators. We write the zero-field interacting basis as |σ̃, α̃, 0〉,
which denotes a state with edge spin Σ̃x

L equal to σ̃ = ±1 and bulk conserved operators K̃i

equal to {κ̃αi }. For brevity of notation we will sometimes combine the two labels σ̃ and α̃ to
a single label a. Our initial state can be expanded as

|ψ0〉 =
∑
σ̃α̃

ησ̃α̃|σ̃, α̃, 0〉. (3.14)

Crucially, the MBL eigenstates in weak edge field can be labeled with the quantum num-
bers of the zero-field states, e.g. |σ̃, α̃, g〉 denotes the eigenstate at finite g continuously
connected to |σ̃, α̃, 0〉. This tracking is valid for g within the radius of convergence of per-
turbation theory, which is finite because MBL is stable to weak perturbations. In fact, g
can even be of order one; because the perturbation gΣx

L is localized, eigenstates with and
without the field differ only within a distance roughly ξ of the edge and there is strong
overlap between the states,

〈a, g|a′, 0〉 = Ba(g, V, h)δaa′ + gγaa′(g, V, h)(1− δaa′), (3.15)
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where Ba(g, V, h) has the form (1−O(g2))eiψa and ψa starts at order g. Similarly,

〈a,−g|a′, g〉 = Ca(g, V, h)δaa′ + gχaa′(g, V, h)(1− δaa′). (3.16)

In time evolution (Ug(tR) ≡ e−iH(g)tR) below, we keep only the components of the state
which will contribute a coherent response,

|ψ0〉 =
∑
a

ηa|a, 0〉, (3.17)

Ug(tR)|ψ0〉 =
∑
a

ηaBa(g)e−iEa(g)tR |a, g〉, (3.18)

U−g(tR)Ug(tR)|ψ0〉 =
∑
a

ηaBa(g)Ca(g)e−i[Ea(g)+Ea(−g)]tR |a,−g〉

=
∑
a

ηaRa(g)e−i[Ea(g)+Ea(−g)]tR |a, 0〉, (3.19)

where Ra(g) ≡ Ba(g)Ca(g)Ba(−g)∗. In particular, we measure 〈ψ(2tR)|Σz
L|ψ(2tR)〉:

〈Σz
L(2tR)〉 = Z〈Σ̃z

L(2tR)〉+ ...

= Z
∑
σ,α

ησαη
∗
−σαRσα(g)R∗−σα(g)e−i[Eσα(g)+Eσα(−g)]tRe+i[E−σα(g)+E−σα(−g)]tR + ...

(3.20)

The energies for ±g, with power expansion Eσα(g) = E0
α + f1(σ̃, α̃)g + f2(σ̃, α̃)g2 + ...,

can be related. The edge field weakly breaks the symmetry S =
∏

i σ
x
2i which transforms

H(g)→ H(−g). Hence if |ψ〉 is an eigenstate of H(g) with energy E, S|ψ〉 is an eigenstate
of H(−g) with the same energy. If |ψ〉 is labeled |σ, α, g〉, S|ψ〉 has flipped Σ̃x

L spin quantum
number since

S|σ, α, g〉 = eiθa(g)| − σ, α,−g〉. (3.21)

The energies of states with these quantum numbers are therefore degenerate:

Eσα(g) = E−σα(−g). (3.22)

Consequently, the even in g terms in the energy expansion are σ-independent while odd
terms are not:

Eσα(g) = E0
α + f1(α̃)σ̃g + f2(α̃)g2 + ... (3.23)
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As a result, the tR-dependent phases accumulated in time evolution cancel:

〈Σz
L(2tR)〉 = Z〈Σ̃z

L(2tR)〉+ ...

= Z
∑
σ,α

(ησαη
∗
−σα)Rσα(g)R∗−σα(g) + ... (3.24)

Note also that:

R↓α(g) = 〈↓̃, 0|↓̃,−g〉〈↓̃,−g|↓̃, g〉〈↓̃, g|↓̃, 0〉
= 〈↑̃, 0|↑̃, g〉〈↑̃, g|↑̃,−g〉〈↑̃,−g|↑̃, 0〉

=

(
〈↑̃, 0|↑̃,−g〉〈↑̃,−g|↑̃, g〉〈↑̃, g|↑̃, 0〉

)∗
= R∗↑,α(g) ≡ R∗α(g). (3.25)

Consequently, we obtain:

〈Σz
L(2tR)〉 = Z

∑
α

2 Re
[
η↑αη

∗
↓αR

2
α(g)

]
+ ... (3.26)

Compare this to:

1 = 〈Σz
L(0)〉 = Z〈Σ̃z

L(0)〉+ ... = Z
∑
σ,α

ησαη
∗
−σα + ...

= Z
∑
α

2 Re
[
η↑αη

∗
↓α
]

+ ... (3.27)

We drop other terms ... in the series and the remaining is expected to be close to 1 for
small h, V . Eq. 3.26 shows that after the protocol, we have accumulated additional overlap
factors proportional to R2

α(g). Crucially, these are also small, having the form Rα(g) ≈
(1 −O(g)). Consequently, the final value of the edge spin is close to the initial value, with
small corrections,

〈Σz
L(2tR)〉 = Z

∑
σ,α

2 Re
[
η↑αη

∗
↓α
]
−O(g) + ...

= Z〈Σ̃z
L(0)〉 − O(g) + ... (3.28)

One of the key ingredients is that with finite g we work perturbatively close to the
g = 0 interacting problem. In the latter case, we evolve with H(g = 0) which treats ↑, ↓
edge spins on equal footing and results in a large response to the protocol. Turning on



CHAPTER 3. MANY-BODY LOCALIZATION, TOPOLOGICAL PHASES, AND
QUANTUM COHERENCE 56

a localized edge field for a general (thermal) phase would cause nonperturbative changes
throughout the energy spectrum. Due to MBL, however, the changes in the case above
are only perturbative at all energy densities. The response to the protocol is therefore only
weakly modified despite the fact that we are dealing with dynamics and hence a large fraction
of states of the spectrum. We expect a large response to the protocol studied above to be
one probe of the presence of a MBL-SPT phase.

3.8 Appendix B: Additional Figures

This section contains additional figures and context referenced in the main text of this chap-
ter.

Comparing Integrability and Non-Integrability: Figures 3.10 and 3.11 compare the
evolution of the edge spin in the SPT-MBL phase in the noninteracting and fully interacting
Hamiltonian. Numerics are for a single disorder realization on an open eight-site chain,
with parameters set to be zero-mean Gaussians with (σV , σλ, σh) = (0, 1, 0.15), (0.1, 1, 0.05),
respectively. The integrability puts a strong constraint on the finite-size interedge coupling
terms which can appear in Eq. 3.11, so that Figure 3.10 displays oscillations with fewer
frequencies than Figure 3.11. In either case, these terms lead to a dephasing of the edge spin
on a system-size dependent time scale.
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Extraction of T0 time: For the numerics, we used exact diagonalization on the Hamiltonian
Eq. 3.8 for an open chain with between six and eleven sites. Parameters followed a zero-mean
Gaussian distribution with (σV , σλ, σh) = (0.1, 1, 0.05). Disorder realizations were selected
to have characteristics closely matching the mentioned parameters per sample (within 0.01
tolerance). We computed 〈Σz

L(t)〉, averaging over disorder and the two sample edges to get
smooth curves, and found it fit well to a stretched exponential C0 exp(−

√
t/T0) at longer

times (fits shown in Figure 3.12). We used, for N = 6−11, {8000, 2000, 6400, 1900, 235, 290}
disorder realizations, respectively.
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Extraction of T ∗2 time: We considered the Hamiltonian H0 +gΣx
L with g = 0.05 for system

sizes N = 8− 11. We chose the value g = 0.05 because (i) for much smaller fields it is more
difficult to separate the field-dependent time scale T ∗2 from the size dependent T2 for the
system sizes we can access and (ii) much larger fields move the edge inwards and thus reduce
the overlap between the local operators Σα

L and the true edge operators Σ̃α
L.

To obtain the time constant T ∗2 , we first disorder average, 〈Σz
L(t)〉, to obtain a smoothly

oscillating curve. We found that the envelope of its decay fit well to a stretched exponential
exp(−

√
t/T ∗2 ) at early times. We extract from this a T ∗2 decay time which does not scale

exponentially with system size. In Figure 3.13 we plot both the envelope of the averaged
oscillations as well as decay of the edge spin in zero-field (with characteristic time T0) for
comparison. Parameters followed a zero-mean Gaussian distribution with (σV , σλ, σh) =
(0.1, 1, 0.05).
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Extraction of T2 time: We computed the disorder averaged fidelity 〈Σz
L(2 · TR)〉 at the

end of the spin echo protocol. Exact diagonalization on system with N = 7 − 11 was
done with {8000, 5000, 5000, 2000, 3000} samples (for the five system sizes, respectively), for
intermediate values of the echo reversal time. The computations were done with an edge
field value g = 0.05 and initial state polarized along σz. The data fit well to a stretched
exponential of the form 〈Σz

L(2 · TR)〉 ∼ C1 exp(−
√
TR/T2). Figure 3.14 shows an example of

the disordered averaged spin echo fidelity decaying on the time scale T2 for an open chain



CHAPTER 3. MANY-BODY LOCALIZATION, TOPOLOGICAL PHASES, AND
QUANTUM COHERENCE 58

with N = 7 sites. In this case, parameters followed a zero-mean normal distribution with
(σV , σλ, σh) = (0.1, 1, 0.05).
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Chapter 4

Construction of a Stable Non-Fermi
Liquid Phase

Fermi liquids are states with well-defined gapless fermion quasiparticles. The theory of Fermi
liquids has formed the basis of our understanding of interacting quantum metals since its
conception by Landau in the 1950’s [90–92]. However, some interacting gapless systems,
generically termed non-Fermi liquids (NFLs), cannot be described in this framework, and
we do not yet have a cohesive understanding of them. A common route towards realizing
an NFL is by strongly coupling a Fermi surface to gapless bosonic modes. These types of
NFLs may ultimately be unstable at low energies, with a different kind of physics setting in.
Our advance in this chapter is to construct an NFL out of rather ordinary ingredients and
to demonstrate its stability within well-motivated field theoretic calculations. Its simplicity
and stability set it apart as a candidate for experimental realization. Before commencing
discussion of our work [93], we introduce some essential elements of Fermi liquid theory and
give a brief survey of NFLs.

4.1 Fermi Liquids

Despite the existence of potentially strong interactions, many metals exhibit thermodynamic
signatures or physical responses which bear some similarity to that of the free Fermi gas.
This suggests that some concepts from the free theory may carry over to interacting metals.
Indeed, a key part of Landau’s insight in developing Fermi liquid theory was that the labels
for the noninteracting problem [94, 95] could still remain valid with interactions, being robust

as long as no phase transition occurs. Quantities like momentum ~k and spin σ could hence
continue to be used to label states. This one-to-one correspondence between single-particle
states of the Fermi gas and and their continuation to the Fermi liquid, which defines the
quasiparticles, lies at the heart of Fermi liquid theory. In fact, as we will see, it only holds
at sufficiently low energies. The quasiparticles are not the true eigenstates of the problem
and have a finite lifetime τ which increases upon approaching the Fermi surface.
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To motivate the physicality of quasiparticles states, consider a thought experiment, fol-
lowing the discussion given by Anderson [95], in which interactions are turned on slowly over
a time R−1 starting from the Fermi gas. This rate R must be chosen in a manner consis-
tent with some constraints. The time R−1 needs to be long enough to provide resolution
over the excitation energies of interest, set by the temperature T , but short enough so that
the quasiparticles, if they are indeed well-defined, have not decayed. This translates to the
condition

~
kBT

< R−1 < τ. (4.1)

The lifetime τ can be estimated using Fermi’s Golden Rule. Let us look at a scattering
process in which an electron with momentum ~k and excitation energy ε~k above the Fermi

surface transitions to a state with momentum ~k + ~q while scattering another electron from
~k′ to ~k′ − ~q. The lifetime for the state ~k will be proportional to

1

τ
∼
∫
d3~q

∫
d3~k′ |V (~q)|2 δ(ε~k+~q + ε~k′−~q − ε~k′ − ε~k). (4.2)

Crucially, the phase space available for this scattering process is strongly restricted,
requiring one to simultaneously satisfy the Pauli exclusion principle, momentum, and energy
conservation. Each of the two integrals will give a restriction proportional to ε~k so that
the final results scales as τ−1 ∼ V 2ε2~k/E

3
F [95]. The important result is the dependence of

the lifetime on the excitation energy ε~k. Sufficiently close to the Fermi surface there is a
separation of the two scales, since kBT ∼ ε~k � τ−1 ∼ ε2~k, and a rate R can be chosen.
Formally, the quasiparticle inverse lifetime is measured by the imaginary part of its self-
energy, which is affected by various scattering processes with other quasiparticles or gapless
modes. The scaling of this inverse lifetime relative to the energy ε~k is the key indicator of
Fermi or non-Fermi liquid behavior.

While the Fermi gas labeling of states continues to hold in the interacting Fermi liquid,
other features may not translate directly. New features – such as new collective modes – may
arise as well [94]. The total energy of the interacting system, which functionally depends on
the quasiparticle distribution δn~kσ, is given by

E = Eg +
∑
~kσ

δn~kσε~kσ +
1

2

∑
~k~k′σσ′

f~kσ,~k′σ′δn~kσδn~k′σ′ , (4.3)

where for an isotropic system ε~kσ = kF
m∗

(|~k|−kF ). This equation brings forth key parameters
in Fermi liquid theory: m∗ is the quasiparticle mass, possibly different from the bare elec-
tron mass, and the function f~kσ,~k′σ′ parameterizes quasiparticle interactions. A computation
of thermodynamic signatures reveals that many display the same temperature dependence
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as the free Fermi gas (since these originate from sharply defined quasiparticles) but with
modified coefficients [94], such as the specific heat and magnetic susceptibility

cv =
1

3

m∗kF
~3

k2
BT, χ =

m∗kF
π2~

µ2
B

1 + F a
0

, (4.4)

where F a
0 derives from the interaction function f~kσ,~k′σ′ .

How are the Landau quasiparticles related to more physical degrees of freedom we might
have access to? A quasiparticle state with creation operator Q†~kσ will have an expansion in

the bare electron states, with creation operators c†~kσ, as

Q†~kσ|0〉 =
√
Z~k c

†
~kσ
|0〉+

∑
αβγ

Γαβγc
†
αc
†
βcγ|0〉+ ..., (4.5)

where we have dropped higher-order electron-hole terms, and the summation is over all
composite labels of the form α = (~k′, σ′) consistent with momentum and spin conservation

to yield a resultant with momentum ~k and spin σ. Z~k is known as the quasiparticle residue
and measures the overlap between quasiparticle and bare electron. The overlap is manifest,
for instance, in the electron spectral function, which is no longer sharply peaked about a
single momentum and energy as in the free Fermi gas [94]. Eq. 4.5 is very reminiscent of an
expansion for many-body localized systems in Chapter 3, wherein the “p-bits” – the physical
or bare operators – were expanded in terms of the “`-bits” – the localized integrability
operators which diagonalized the Hamiltonian. Although in the setting of this chapter the
operators are not localized, both expansions, whether for Fermi liquid theory or many-body
localization, illustrate and make precise the notion that we can view one set of operators
and states as dressed versions of the other.

Fermi liquid theory can in fact be derived as a fixed point of a renormalization group
(RG) procedure, where the effective mass and f function appear naturally [96–98]. RG for
fermions at finite density differs from the conventional momentum approaches because, in
the latter context, one is typically dealing with a bosonic order parameter and integrating
out momentum shells towards a point or set of points rather than towards an extended
manifold.1 The RG identifies superconductivity (of BCS type) as an instability of the Fermi
surface: a weak but attractive interaction in any angular momentum channel leads to a flow
away from the Fermi liquid fixed point. This is the only relevant weak-coupling instability
in two and three dimensions.

Fermi liquid theory has held up remarkably well against a tremendous body of experi-
mental investigations. It can provide an accurate description even for strongly interacting
metals, such as the heavy fermion UPt3, where tightly bound f electrons can mix with
conduction electrons to form heavy quasiparticles [94]. We turn our attention now to less
understood gapless phases which lie outside this framework.

1This difference between RG for bosons and fermions with a Fermi surface is an important consideration
in devising RG procedures for systems where the two are coupled, as we will see.
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4.2 Non-Fermi Liquids

“Non-Fermi liquids” is a general name given to gapless fermion systems that do not have
well-defined quasiparticles. This terminology is rather all-encompassing, and we will discuss
several examples which illustrate how disparate their origins can be.

Spatial dimensionality can impose phase space constraints which lead to NFL behavior.
Luttinger liquid theory is the correct low-energy description for 1D metals, applicable to
quantum wires and the chiral edge states in the quantum Hall effect, for instance. One
dimension is special in that the Fermi surface consists of only two points. It turns out that
the correct low-energy modes of such a system are bosonic, rather than the usual fermion
quasiparticles, and consist of of charge and spin-density waves.

Other NFLs can be local. A well-known example [99] is the family of generalized Kondo
problems: couple a spin-1/2 magnetic impurity to one or more baths of conduction electrons.
The single-channel Kondo problem – in which there is one conducting bath – is known to be a
Fermi liquid at temperatures far below the Kondo temperature. The impurity is rather inert
after forming the Kondo singlet. In contrast, the two-channel Kondo problem, where the
impurity couples to two independent baths, results in an NFL at low energies. In that case,
theoretical analysis reveals an interesting feature in the impurity spin entropy: it behaves
as if there is a fractional degree of freedom remaining, saturating at ln

√
2 at low energies

rather than vanishing. This constitutes an example of a local NFL since the low-energy bulk
behavior is modified near the site of the impurity and not the bulk. As a whole, the family
of generalized Kondo models provides an interesting source of theoretically well-studied, and
sometimes experimentally realizable, NFLs [94, 99].

A third and quite important class of NFLs originates from coupling a Fermi surface
to gapless bosonic modes. A common source is the amplitude fluctuations of a quantum
critical point. NFLs arising from proximity to a quantum critical point have been studied
in a variety of settings, including in magnetic, nematic, and charge density-wave transitions.
They may also bear important clues as to the nature of high-temperature superconductivity.
Alternatively, coupling to gauge bosons also typically gives rise to an NFL. This bears
relevance for quantum spin liquids where emergent gauge fields can couple to a Fermi surface
of fractional spinon or composite fermion excitations [100–103].

It is noteworthy that the very same bosons that strongly couple to the Fermi surface me-
diate interactions between (incoherent) fermions which could lead to an altogether different
low-energy state. In many of the relevant examples of NFLs obtained from quantum critical-
ity, the system is unstable to some form of boson-mediated ordering. Our proposal [93] for
an NFL does not appear to be plagued by an instability, at least within the applicability of
our calculations. The ultimate fate of the NFL is a difficult question to settle theoretically,
and we will describe some recent novel RG approaches for these strongly coupled systems.

Goldstone modes are another source of gapless bosonic modes. One setting of this kind
that does give rise to an NFL is the Goldstone mode of an electronic nematic, a Fermi
surface with spontaneously broken continuous rotational symmetry [104]. To leading order
in perturbation theory, it was shown [104] that the imaginary part of the electron self-energy
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acquires a correction Im Σ(ω) ∼ |ω| 23 at nearly all points on the Fermi surface apart from
a few special symmetry directions. The usual mechanistic understanding of how this comes
about – Landau damping of the bosonic mode giving rise to corrections in the electron self-
energy – will be discussed in the context of our work [93] in Section 4.4. The perturbative
calculation of [104] accurately signals the breakdown of Fermi liquid theory but cannot
capture the ultimate fate of the system at low energies.

Besides the nematic metal, it remained unclear whether Goldstone modes arising from
other kinds of spontaneous symmetry breaking could also couple strongly to the Fermi sur-
face, resulting in an NFL. [105] was able to provide a general criterion to resolve such cases.
Couplings which lead to an NFL must necessarily be non-derivative couplings, ones that
remain finite even in the limit of zero momentum transfer. This can be translated to a
statement about the broken symmetry: strong coupling results when the broken symmetry
generator, Qa, of the continuous symmetry fails to commute with any of the conserved mo-
menta Pi, [Qa, Pi] 6= 0. The NFL arising in the electronic nematic satisfies this since the
symmetry generators are angular momentum operators, which do not commute with mo-
mentum. The generality of the criterion also enabled [105] to identify a previously unknown
setting, spontaoneous breaking of magnetic translation symmetry, as giving rise to an NFL.
In contrast, phonons – the Goldstone bosons of broken translation symmetry – result in weak
coupling and leave the Fermi liquid intact.

Analytic Techniques for a Strongly Coupled Fermi Surface and
Gapless Bosons

Devising a correct effective field theory is often tractable when degrees of freedom are weakly
coupled. However, describing the low-energy behavior of a system with strongly coupling is
generally quite difficult. Progress on this question on the theoretical front would be important
for capturing the ultimate fate of an NFL originating from a Fermi surface coupled to gapless
bosons.

Hertz theory [106] constitutes one of the earliest treatments of the Fermi surface and
boson system, but its technical correctness is questionable. Hertz argued for deriving an
effective theory for the bosons by integrating out the fermionic modes entirely. The effective
boson action is, in principle, an infinite series of all orders in the boson field, where Landau
damping can be observed explicitly in the quadratic terms. To be amenable for analysis,
however, series truncation is required. This step can typically invalidate Hertz theory though:
integrating out gapless fermions produces singularities which affect the coefficients in the
infinite series, as was demonstrated in [107, 108].

In fact, these issues were analyzed closely by [108], building on earlier work [109–112]
suggesting the problem could simplify under a particular decoupling. [108] confirmed that
the leading singularities plaguing Hertz theory appear only for terms where the momenta
of the bosonic fields are nearly collinear. Effectively, bosons with noncollinear momenta
decouple from one another. Moreover, bosons with collinear momenta couple most strongly
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to regions of the Fermi surface where their momentum is tangent. This suggests that an
effective description of a strongly coupled Fermi surface-boson system at low energies would
involve decoupled patches. In 2D for a single Fermi surface, a good theory might be written
in terms of a collection of pairs of antipodal patches, each pair treated independently and
coupled to bosonic modes with tangent momenta. A pair of patches would constitute a
(2+1)D field theory; while this makes the description redundant, it can be accounted for
when sewing the patches together. Nonetheless, a large N expansion was used in some of
these approaches and subsequent higher loop calculations [112, 108] suggested the use of
large N alone could not provide adequate control over the expansion.

Instead, it was found [113] that a dual expansion in parameters N and ε could be used
to control the series in the limit N → ∞, ε → 0 in a way so as to keep εN finite. N refers
to the number of fermion flavors that may be artificially introduced, and ε is related to the
boson dynamic critical exponent zb as ε = zb − 2. A dynamic exponent in principle can be
renormalized; using it as an expansion parameter is most useful when renormalization is not
expected, for instance when the exponent controls a nonlocal term in the Lagrangian, since
integrating out only high frequency shells will not contribute any of the needed singularities.
[113] also found that many random phase approximation (RPA) results can be used, with
possible deviations appearing at higher order in the expansion, so that the one-loop correc-
tions to the boson propagator and electron self-energy which give the NFL are essentially
correct. The physics in the patch theory appears governed by a scale-invariant fixed point
with scaling transformations

ω′ = ωbzb/2,

k′⊥ = k⊥b,

k′‖ = k‖
√
b,

ψ′(k′, ω′) = b−(zb+5)/4ψ(k, ω),

φ′(k′, ω′) = b−(1+zb)/2φ(k, ω),
(4.6)

for the patch variables: frequency ω, momentum parallel k‖ and perpendicular k⊥ to the
Fermi surface, and fermion and bosons fields, ψ and φ.

These transformations can be used to follow how correlation functions and susceptibilities
in particular channels behave and whether any singularities, which would suggest a propen-
sity towards order, would appear. [113] used these to characterize both (i) the Fermi surface
coupled to a gauge field as well as (ii) quantum critical metals near a nematic transition.
Which susceptibilities are enhanced or suppressed by the presence of the boson depends in
large part on how the boson couples to two antipodal Fermi surface patches in a pair. In the
gauge field case, the coupling mediates an attractive interaction between particle and hole
(thereby enhancing the susceptibility in this channel) and a repulsive interaction between
particles (suppressing the Cooper channel susceptibility). For the nematic problem, the two
cases are reversed, so that there is a stronger response to Cooper pairing. In our treatment
of an NFL [93], we rely heavily on the combined (N, ε) expansion [113] – in particular, the
scaling transformations in Eq. 4.6 above – to calculate susceptibilities.
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Nonetheless, there are settings for which the decoupled patch description is insufficient.
In particular, this is the case for the Fermi surface near a nematic quantum phase transition,
considered in [113]. A single scattering event between two particles in the Cooper pair
channel keeps the pair near the Fermi surface – they are perfectly nested – while this is not
the case for particle-hole scattering. Quantitatively, this translates to the observation that
an RG procedure which integrates out boson momentum and fermion momentum parallel to
the Fermi surface generates relevant inter-patch interactions [114, 115]. This motivated [115]
to lay the foundation for a simultaneous boson and Fermi surface RG procedure, building on
a treatment in [114] used to analyze color superconductivity in non-Abelian gauge theory.
In the multi-patch RG, patches are no longer decoupled. In addition to the parameters
of the decoupled two-patch theory, here one must keep track of inter-patch interactions as
momentum parallel to the Fermi surface is eliminated. [115] found that, within the regime
where the RG calculation is controlled, the NFL obtained at the nematic critical point is
unstable to superconductivity and furthermore, that it sets in at an energy scale higher
than the onset of the NFL. This could mean that the NFL is obscured by subsidiary order
and might be experimentally unobservable. It is therefore important to identify a setting
in which an NFL, obtained in this manner by coupling a Fermi surface to bosons, remains
intact, at the very least within an experimentally accessible window.

4.3 Coupling a Spin-Orbit Fermi Surface to

Fluctuating Magnetization

The remainder of this chapter discusses our contribution [93] to these topics. The setting
is that of itinerant ferromagnets with (i) broken continuous rotation symmetry and (ii)
spin-orbit coupling (SOC). We bring together these ingredients to realize an NFL and then
demonstrate, using presently available state of the art field theoretic methods, the stability
of the NFL to boson-mediated ordering. This represents one of our key findings and is to
be contrasted with instabilities in many other NFLs, in particular the one arising in the
electronic nematic studied by [115].

The origin of NFL behavior is such systems can be understood qualitatively by com-
parison to ordinary ferromagnets (Figure 4.1). In the latter case, ferromagnetic order splits
the initially spin degenerate Fermi surface into two spin-polarized Fermi surfaces with a gap
∆. Fluctuations of the order parameter can create electronic spin-flip excitations only by
supplying either nonzero energy or momentum. Hence, there are no accessible spin-carrying
electron-hole excitations at small energies and wavevectors, and in this region the ferromag-
netic spin-waves effectively decouple from the electronic particle-hole continuum and exist
as sharp, undamped excitations. This dynamical decoupling of low-energy order parameter
fluctuations is typical of most Goldstone modes of a broken continuous symmetry [105]. By
contrast, with SOC the electron spins are tied to momentum and are not fully polarized
by the ferromagnetic order. Spin-flip excitations can be made at arbitrarily low energy
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Figure 4.1: Spin excitations with and without Rashba spin-orbit coupling. (a) The imaginary
part of the transverse spin susceptibility χ′′ of a conventional ferromagnet (dispersion shown
as an inset) has a gap at small frequency, Ω, and wavevector, q, in which a sharp spin-wave
excitation can exist. In contrast, the Rashba spin-orbit coupled ferromagnet (b) has finite
χ′′ for small (Ω, q), leaving only an overdamped spin-wave that is strongly coupled to the
electrons, resulting in NFL behavior.

and momenta over nearly the entire Fermi surface. To propagate, spin-waves must excite
particle-hole pairs but will be overdamped by them, attaining a modified dispersion, Ω ∼ q3,
as we will illustrate diagrammatically. A boson with softer dynamics scatters electronic
quasiparticles more strongly, and the effect will be to destroy the Landau quasiparticles near
the Fermi surface.

We finally provide the specifics of the setting. Our system of spin-orbit coupled electrons
is described by an imaginary time Lagrangian density L = ψ† [∂τ +H]ψ that is invariant
under combined spatial and spin rotations about ẑ. In this paper, we focus on 2D electron
liquids with Rashba SOC,

HR =
k2

2m0

− µ+ αRẑ · (k× σ). (4.7)

We will also present calculations for the closely related topological insulator (TI) surface
state with Hamiltonian

HTI = vDẑ · (~k × ~σ)− µ. (4.8)

Suppose the system has spontaneous magnetization M with an easy-plane (XY ) anisotropy.
The long wavelength dynamics of the magnetization alone is given by the Lagrangian density

L0
M = |∂τM|2 + c2|∇M|2, (4.9)

while the spin-spin coupling of the magnetization to electrons is written as
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He−M = −λ0M · ψ†σψ. (4.10)

The XY magnetization could, for instance, originate from the polarization of local moments,
due to magnetic doping or proximity to a ferromagnetic insulator. Alternatively, it could
originate from the ferromagnetism of the electrons themselves, a leading candidate ground
state at low densities because of the enhanced density of states [116, 117]. Because of this
propensity towards ferromagnetism, we are chiefly interested in this low-density regime of
the Rashba bands, where the nonmagnetic Fermi surface has annular topology. However, we
also present a complete set of calculations for the high-density regime of the Rashba bands,
where there is a simply connected Fermi sea consisting of two concentric sheets.

In a regime well below the magnetic ordering temperature TM , only fluctuations in the di-
rection, not the amplitude, of M are important. These can be parameterized by a Goldstone
(magnon) field φ(r, t) as follows,

M(r, t) = M0 [êM cosφ+ (ẑ × êM ) sinφ] ≈M0 [êM + (ẑ × êM )φ] , (4.11)

where the fluctuations have been linearized about the ordering direction.2 We hereafter
absorb a factor of M0 into the magnon field, redefining M0φ→ φ.

Because of the SOC, the magnons are strongly coupled to low-energy electrons. We will
utilize the decoupled patch theory following [113] and earlier work [108–112]. The electron-
magnon interaction, Eq. 4.10, can be conveniently treated by dividing the Fermi surface into
patches of small but nonzero extent tangent to the Fermi surface. Magnons with wavevector
q couple most strongly to patches of the Fermi surface for which q is tangent. We therefore
decompose the full Hamiltonian into independent sets of collinear patches. For the TI surface,
the Fermi surface decouples into pairs of antipodal patches except precisely at the Dirac
point. For the 2D Rashba liquid, the Fermi surface generically has quartets of collinear
patches as shown in Figure 4.2.

In imaginary time, the uncorrected linearized Lagrangian density decomposed into patches
indexed by j is

Lpatch =
∑
j

ψ†j,ω,k

(
− iω + vjk⊥ +

k2
||

2mj

)
ψj,ω,k . . .

+

(
ω2 + c2k2

)
|φω,k|2 +

∑
j,Ω,q

λ(n̂j)φΩ,qψ
†
j,ω+Ω,k+qψj,ω,k, (4.12)

where n̂j is a unit vector in the direction of patch j and k⊥, k‖ are coordinates perpendicular,
parallel to the Fermi surface and fixed for a set of collinear patches. For the 2D Rashba liquid,

λ(n̂j) = ±λ0(êM · n̂j)Xj

2Quadratic contributions [108, 113] (analogous to diamagnetic terms for the problem of a Fermi surface
coupled to a gauge field) are automatically incorporated by a proper choice of order of integration.
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Figure 4.2: Fermi surfaces with magnetization. (a) Annular Fermi surface, obtained in the
lower doping regime. Clockwise winding arrows denote electron spin orientation, which is
the same on both surfaces. A representative set of collinear patches 1 – 4 is shown at
special angle θ = 0 (θ measured from the x axis), where the coupling to the Goldstone
mode is strongest. The dashed circle is of radius k0, while the annulus half width is kF (θ).
In this case, the Fermi momenta are k>,<F ≡ k0 ± kF (θ). A cross section of the band
dispersions at angle θ = π/2, 3π/2 is shown, with the directions of the electron spin pointing
into (cross) or out (black) of the page. The horizontal line is the Fermi level. (b) Similar
diagram for the concentric Fermi surface regime, obtained at higher doping. Note that inner,
outer Fermi surfaces have opposite windings of the electron spin. The Fermi momenta are
k>,<F ≡ kF (θ)± k0.

Xj ≡
αRkF,j√(

αRkF,j ẑ · (êM × n̂j) + λ0M0

)2

+

(
αRkF,jêM · n̂j

)2
≤ 1 (4.13)

where kF,j is the Fermi momentum of the jth patch, and + (−) is for the lower (upper)
Rashba bands. For the TI, λ(n̂j) = ∓λ0êM · n̂j for the electron (−) or hole (+) doped
Fermi surfaces. When the spin-orbit coupling is strong, λ0M0 � αRkF,j, the Rashba and TI
couplings are approximately the same, but for weak spin-orbit coupling λ0M0 � αRkF,j, the

Rashba coupling is suppressed by a factor of Xj .
αRkF,j
λ0M0

compared to the TI case.
Our calculations rely on the dual (N, ε) expansion proposed in [113]. All calculations are

discussed in the appendices, Sections 4.8 – 4.10, and in the following primary sections we
focus on a description of the results. In Section 4.4, we discuss the mechanics behind the NFL
in SOC itinerant ferromagnets. While the existence of NFL phases in SOC ferromagnets was
pointed out earlier in [118], our work focuses on Rashba systems and, crucially, investigates
the issue of stability to subsidiary order, covered in Section 4.5. We also give an extensive
discussion of experimental phenomenology and candidate materials in Section 4.6.
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Figure 4.3: One-loop diagrams. (a) Boson polarization. (b) Fermion self-energy.

4.4 Landau Damping and the Breakdown of Electron

Quasiparticles

We turn to the effect of the Goldstone modes and the electron quasiparticles on each other.
This is often understood by first computing the one-loop correction to the boson propagator,
which reveals the overdamping of the boson, termed Landau damping, and the resultant soft
dispersion. In turn, this is fed back into a one-loop computation of the electron self-energy;
with a softer boson dispersion, quasiparticles near the Fermi surface are scattered more
strongly. The feedback effect of these fluctuations can essentially be treated in the RPA
because deviations from this appear at higher order in the (N, ε) expansion.3

The calculations layed out in Section 4.8 result in a modified spin-wave propagator with
the characteristic Landau damped form

D(Ω,q) ≈
[
γ(q̂)

|Ω|
|q‖|

+ c2q2

]−1

, (4.14)

which is valid when vF q � Ω. We have dropped the bare Ω2 term, since at energies below
ELD ≈

√
γ(q̂)vF , the Landau damping term dominates the dynamics of the order parameter

fluctuations, leading to overdamped spin-waves with dynamic exponent zb = 3 (Ω ∼ q3).
The damping coefficient γ depends on the coupling of a collinear set of patches at angle θ to
the Goldstone mode as γ ∼ λ(n̂j)

2, which for the case of strong spin-orbit coupling yields

γ(θ) ≈
∑
j

λ2
0 cos2 θ

|mj|
4π|vj|

. (4.15)

Here, θ is the patch angle on the Fermi surface as in Figure 4.2. The Landau damping
parameter γ is nonzero over most of the Fermi surface except for special isolated points
where the local patch spin is parallel to the ordered magnetization and couples only at
quadratic order to the fluctuations. The spin-waves are maximally coupled to patches whose
normals lie parallel or anti-parallel to the magnetic ordering direction (corresponding to
θ = 0).

3Typically, RPA treatments are justified by a large N expansion; however, as discussed in Section 4.2,
the large N expansion is known to break down [112]. The use of RPA is formally justified by the double
expansion [113] and also by uncontrolled higher loop calculations [108] which show that zb = 3 RPA scaling
is valid through three-loop order.
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The overdamped fluctuations scatter electrons at energy ω from the Fermi surface with
rate Γ ≈ |ω|2/3 (Section 4.8) corresponding to a fermion self-energy [109, 110, 119, 120]

Σf,j(ω) ≈ i sgn(ω)E
1/3
NFL,j|ω|2/3. (4.16)

This is the key signature of the breakdown of the Fermi liquid. Sharp, long-lived Landau
quasiparticles require limω→0 Γ(ω)/ω → 0, as described in Section 4.1. In contrast, here the
lifetime of electronic excitations becomes much shorter than their inverse frequency. We find
that the NFL behavior takes over at energies below the characteristic scale

ENFL,j ≈
λ(n̂j)

6

v3
jγ(θ)c4

∼ λ4
0 cos4 θ

k2
0c

4

m0

x(1 + x+ |1− x|) , (4.17)

where x ≡ kF/k0 ≈ √µ. At high dopings, ENFL vanishes as µ−1. In contrast, the Landau

damping scale ELD ∼ λ0

√
m0

x
(x+ 1 + |x− 1|) 1

2 (considering the patches at θ = 0) and hence
approaches a constant at high doping.

The effects of nonzero temperature might be concerning: it is well known that the long-
range magnetic order in two dimensions present at zero temperature washes out and be-
comes quasi-long-range order with algebraically decaying correlations of the order parameter,
〈M(r) ·M(0)〉 = M2

0 r
−T/(2πM2

0 c
2), characterized by exponent ν ≈ T/TM at temperature T .

We see that the correlation length for the order parameter, ξM(T ) ≈ eκM
2
0 c

2/T , diverges ex-
ponentially as T → 0. In contrast, the inelastic mean free path for electrons due to magnon
scattering, `NFL(T ) ≈ T−2/3, diverges only algebraically as T → 0. Hence, for temperatures
well below TM ≈ M2

0 c
2, we have ξM � `NFL, and the NFL physics occurs on much shorter

length scales than the algebraic decay of the order parameter. Our treatment is therefore
largely valid despite the thermal suppression of long-range magnetic order.

The discussion on Landau damping and NFL behavior has thus far has centered on a
Fermi surface with a finite density of carriers. This holds everywhere for the Rashba liquid;
while there is a fine-tuned Dirac point between the annular and concentric Fermi surface
regimes, it is accompanied by a large Fermi surface that leads to Landau damping and zb = 3
scaling. However, tuning to the Dirac point for the TI surface does result in a vanishing
density of carriers. The magnetic fluctuations couple to the Dirac point like a single vector
component of a fluctuating U(1) gauge field, and an emergent Lorentz symmetry dictates
a low energy phase analogous to QED-3. The spin-waves are critically damped by the
Dirac fermions (see [100]) and retain their relativistic dispersion, so that they have dynamic
exponent zb = 1 rather than zb = 3.

4.5 Stability of the Non-Fermi Liquid Phase to Order

The NFL we have constructed from strong coupling between spin-waves and a spin-orbit
coupled Fermi surface bears a number of similarities to the nematic NFL of [104]. The
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subsequent analysis of [115] suggests that such a Fermi surface coupled to gapless nematic
fluctuations is strongly unstable to superconductivity. The ultimate question for our non-
Fermi liquid system is whether it too will be unstable to subsidiary order.

In the nematic metal, superconductivity arose because the overdamped nematic Gold-
stone modes mediate strong attraction between electrons on opposite sides of the Fermi
surface, forming the “glue” for Cooper pairs. For the Rashba liquid, the ferromagnetic Gold-
stone mode mediates attractive (repulsive) interactions for fermions with the same (opposite)
spin. Nonetheless, despite the mediation of attractive interactions, BCS-type superconduc-
tivity does not occur in the SOC ferromagnetic metal discussed here for two reasons: (i)
the interaction between opposite sides of the Fermi surface is repulsive, and (ii) the magnet-
ically ordered phase breaks time-reversal symmetry, energetically penalizing Cooper pairs
with zero center-of-mass momentum. Spin-triplet Cooper pairing with finite center-of-mass
momentum could be favored by the overdamped Goldstone modes. Ordering in a particle-
hole channel, for example spin density wave (SDW) order with wavevector 2k>F or 2k<F due
to boson-mediated repulsive interactions, is also a possibility.

Any such nonzero wavevector ordering, such as spin or pair density wave, would ulti-
mately be fatal to the NFL phase because in the presence of translation symmetry-breaking
order, the rotational Goldstone modes are not independent of translational Goldstone modes.
The latter couple only weakly to the Fermi surface [105], resulting in ordinary Fermi liquid
behavior even if the resulting phonons have soft nonrelativistic dispersions (as is the case for
uniaxial density waves). Hence, whether the overdamped spin-wave interactions necessarily
facilitate instability to translation symmetry-breaking order is a crucial issue for the stability
of the NFL phase.

In this section, we will outline the results of calculations for the susceptibilities to finite
momentum pairing and spin density wave orders. The calculations are in Section 4.9 and
closely follow those of the 2kF susceptibilites in [113]. However, we need to account for the
presence of the multiple Fermi surfaces of the SOC metal.

A crucial issue is to justify the use of the decoupled patch theories in our case. As we
saw, for the nematic metal, superconductivity arises from nested scattering of Cooper pairs
with zero center-of-mass momentum between different patches. Hence, the superconducting
instability is a property of the full Fermi surface and cannot be reliably obtained within a
theory of decoupled patches. It requires the interpatch treatment developed in [115].

In stark contrast, in the ferromagnetic NFL scenario we are considering, the potential
instabilities all have large nonzero wavevectors. The nonzero wavevector orders connect
particle-particle or particle-hole pairs near the Fermi surface only in the vicinity of collinear
patches lying along the ordering wavevector. For example, in the case of Cooper pairing with
center-of-mass momentum Q = k>F + k<F , Cooper pairs with a particle each in patches 1 and
2 (Figure 4.2) have low energy but cannot remain close to the Fermi surface when scattered
to other patches. Hence, the susceptibility to finite momentum order is a property of the
patches connected by Q, not the full Fermi surface, and can be computed directly within
the patch theory. We will see that while the susceptibilities to finite momentum pairing
and SDW orders are enhanced compared to a Fermi liquid, they remain finite. In essence,
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due to the breaking of time-reversal and inversion symmetries, we find that the overdamped
spin-wave fluctuations lead to a mild enhancement of finite momentum susceptibilities but
do not drive an instability towards order. As a corollary of our calculations for the Rashba
liquid, the magnetic NFL phase of a TI surface metal is also stable against ordering, as in
this context the only potential instability is towards SDW order.

Susceptibilities Within a Dual (N, ε) Expansion

We outline the calculations of Section 4.9. In the (N, ε) approach, the problem is generalized
to have N flavors of fermions and modified bosonic kinetic energy |q|1+ε|φω,q|2 (instead of
the physical q2|φω,q|2 of Eq. 4.12). The expansion is justified in the joint limit of large N
and small ε while maintaining the product Nε ∼ O(1). As a cautionary note, obtaining
results for the physically relevant values N, ε = 1 requires extrapolation beyond the safely
controlled regime, as is typical for such asymptotic expansions. However, in lieu of further
theoretical developments, the (N, ε) expansion is essentially the current state of the art.

Another potentially promising alternative is the recently developed codimension expan-
sion [121, 122]. Despite some potential advantages, the codimension expansion clearly over-
estimates the stability of a Fermi surface to superconducting order (for familiar Fermi liquid
interactions, the expansion suppresses the well-known BCS instability towards superconduc-
tivity). For this reason we believe the (N, ε) expansion better suited for our analysis of
stability. Given the complexity of this strongly coupled problem, experiments which can test
the validity of various theoretical approaches are highly desirable.

We evaluate the system’s response to a test field of strength ua that couples to an or-
der parameter Oa(x, τ) in channel a. For instance, for a = 2k>F SDW, a term Sext =∫
d2xdτ

[
u2k>F

ψ†1ψ4(x, τ) + h.c.
]

would be added to the action. We are interested in the scal-

ing form of two-point correlations of these order parameters. This can be deduced from the
scaling dimension of the test field u′a = bφuaua, for which we compute the leading correc-
tion in ε (or equivalently, N−1) in Section 4.9. Defining χa as the Fourier transform of the
two-point correlation of Oa, namely 〈O∗a(x⊥, x||, τ)Oa(0, 0, 0)〉, it obeys the scaling form

χa(k⊥, k‖, ω) = |ω|δaFa
[
|ω|
|k‖|zb

,
k⊥
k2
‖

]
, (4.18)

with zb the boson dynamic critical exponent, the power δa = 1 + (3 − 4φua)/zb, and Fa is
a scaling function. For the limit of physical interest (N, ε = 1) and taking the angle θ = 0
(where the electron-boson coupling is strongest), the power is

δa =
2

3

[
1− g(

√
3Ra/π, zb = 3)

Ra

]
. (4.19)
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Figure 4.4: Susceptibility scaling exponents. Scaling exponents δa for susceptibilities
χa(ω) ∼ |ω|δa of various orders, a, that are enhanced by the interaction between electrons
and overdamped spin-waves. CP/SDW (j, j′) denotes Cooper pairing or spin density wave
between patches j and j′ (see Figure 4.2 for our patch labeling convention). Results are
shown as a function of electron density, parameterized by the ratio kF/k0. (a) Lower doping
of the Rashba liquid (annular Fermi surface), when 0 < kF/k0 < 1. In this case the suscepti-
bilities are mildly enhanced but no instability develops. Curves correspond to Cooper pairing
between either (1, 2) or (3, 4) (solid), SDW order between (1, 4) (dashed), and SDW order
between (2, 3) (dot-dashed). (b) Concentric Fermi surface, given by kF/k0 > 1. Curves cor-
respond to Cooper pairing between either (1, 3) or (2, 4) (solid), SDW order between (1, 4)
(dashed), and SDW order between (2, 3) (dot-dashed). At high densities kF � k0, nest-
ing in the Cooper channel is approximately restored by the strong spin-orbit coupling and
a superconducting instability develops (indicated by δCP < 0), corresponding to diverging
susceptibility.

The functional form of g(x, zb) is given in Section 4.9 and is independent of the susceptibility
channel. Ra is a dimensionless ratio weighing the mass contribution in the Landau damping
γ, which originates from both inner and outer Fermi surfaces, against a channel (a) dependent
“effective” density of states of the two patches under consideration. δa is a monotonically
increasing function of Ra.

Figure 4.4 shows a central result of our work. The value of the power δa for the four
channels of interest is plotted as a function of the more tunable parameter kF/k0 which
increases monotonically with chemical potential, kF/k0 ∼ √µ/(

√
m0αR). Evidently, the

susceptibilities in the particle-hole channel, at all dopings, and Cooper channel, for the
annular FS at low dopings, remain finite. Only in the case of Cooper pairing at higher
dopings, in the concentric Fermi surface regime, is there potential for a singularity in the
susceptibility. This is to be expected. At high dopings when kF � k0, one asymptotically
restores the time-reversal symmetry nested Fermi surfaces which increases the susceptibility
to superconductivity, though this is not the limit of physical interest. In this case, the use
of a full Fermi surface RG scheme would be necessitated as in [115].

Finally, we remark that for sufficiently low densities and strong magnetization M0, the
Fermi surface has only a single “banana” shaped pocket centered at nonzero momentum
perpendicular to the magnetic ordering direction (see for instance [116, 117]). In this regime
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only the Cooper pairing (1, 2)-type channels are available, and our analysis again suggests
that this regime is also a stable NFL.

4.6 Experimental Considerations

Having explained the basic phenomenology of the NFL phase, we now discuss two potential
issues for observing the predicted NFL physics in real materials and indicate some potentially
promising candidate systems.

Crystal Anisotropy

The assumption of continuous rotation symmetry crucial to the presence of Goldstone modes
in this work is clearly broken explicitly in crystalline systems, where only discrete rotational
symmetry remains. Therefore, we expect such NFL physics to be present at energy scales
above that set by the crystal pinning scale, below which the Goldstone mode acquires a
mass.

It is therefore desirable to minimize the effects of crystal anisotropies. To this end,
materials with three- or six-fold rotation symmetries are preferable to those with four-fold
rotation symmetry. For the former, crystal anisotropies enter at order O(k0a)3, where a is
the lattice spacing, whereas the latter permit O(k0a)2 cubic anisotropy terms. Therefore, in
the low-density regime (kFa� 1), three- or six-fold anisotropies permit a larger parametric
separation between the spin-orbit scale O(k0a)2 and the crystal pinning scale O(k0a)3.

Disorder Effects

A second practical consideration is minimizing disorder. The effects of disorder are twofold.
First, at temperatures less than the elastic scattering rate τ−1, elastic scattering of electrons
from impurities dominates the inelastic scattering from spin-waves and the electrons obey
diffusive dynamics.

Secondly, due to the spin-orbit coupling, impurities couple to the ferromagnetic spin
texture as a random field. Familiar Imry-Ma arguments show that this leads to random
pinning of the magnetic order parameter for temperatures below some characteristic energy
scale EIM. Interestingly, if τ−1 � EIM, then there will still be a broad range where the
spin-waves are overdamped by the diffusive fermions with damping rate ∼ q2 (rather than
damping rate ∼ q3 characteristic of Landau damping [101]).

While disorder inevitably spoils NFL physics at asymptotically low temperatures, we
estimate that, for reasonably clean systems, there can be a broad intermediate temperature
range ENFL � T � τ−1, EIM over which the NFL physics described above may be observed.
Analysis of disorder is provided in Section 4.10.
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Candidate Materials

Promising materials with strong Rashba spin-orbit coupling and six-fold rotation symmetry
include surface alloys, such as Bi/Ag(111) [123–126]. A complicating detail is that these
surface alloys contain not only 2D SOC surface states but also 3D bulk metallic states.
However, we do not expect any important modifications from the accompanying bulk states,
as the surface states inhabit regions of the surface Brillouin zone unoccupied by bulk metallic
states. In particular, the bulk states lack strong spatial (as opposed to atomic) spin-orbit
coupling and hence dynamically decouple from the spin-waves as for more conventional
Goldstone mode problems. Moreover, the coupling of surface to bulk states is irrelevant
for the NFL phase since the NFL physics arises from singular small momentum transfer
scattering between electrons and spin-waves, which cannot connect bulk and surface states
which are widely separated in momentum space.

Various semiconductor heterostructures [127, 128] may also be promising due to their
high mobilities. We note in passing that materials with Dresselhaus spin-orbit coupling
HD ∼ αD(σxkx − σyky) and a spin-spin coupling between electrons and an XY magnetic
order parameter M are expected to give rise to similar physics. The Dresselhaus coupling
preserves a continuous rotation-like symmetry of combined in-plane rotations R(θ) on M ,σ
and R(−θ) = RT (θ) on k which is spontaneously broken in the ground state, giving rise to
a rotational Goldstone mode. However, the combination of both Dresselhaus and Rashba
spin-orbit couplings inevitably breaks the continuous rotation symmetry and does not lead
to NFL behavior.

Topological insulator (TI) surface states are also promising candidates. Since the TI sur-
face states lack a natural tendency towards spontaneous ferromagnetism, it may be induced
by proximity in heterostructure devices between TIs and a ferromagnetic insulator [129] (e.g.
EuO or EuS [130]). Ferromagnetism can also be induced in TIs by magnetic dopants. Here,
however, care must be taken to minimize the detrimental effects of disorder which obscure
the NFL phase.

Having identified some promising experimental candidates for observing NFL behavior,
we now describe how the phase may be experimentally detected.

Experimental Phenomenology

Thermodynamic Signatures

In the NFL regime, the specific heat exhibits a distinct power law temperature dependence,
Cv ∼ T 1/zf ∼ T 2/3, which follows directly from the scaling properties of the NFL phase
(see e.g. [103] and references therein). This quantity may be difficult to measure for a non-
layered 2D electron system as the electronic Cv is likely dominated by bulk contributions.
Therefore, in subsequent sections we describe nonthermodynamic probes based on tunneling
spectroscopy and electrical transport that may be more experimentally accessible.
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Spectroscopic Probes

The characteristic NFL scattering rate can be directly detected by measuring the frequency
dependence of linewidths in angle-resolved photoemission spectroscopy. Also, the over-
damped character of the spin-waves may also be observable in inelastic spectroscopy. As
for heat capacity, neutron scattering is not feasible for nonlayered 2D samples, but Raman
spectroscopy could be used.

Additionally, repeated scattering between electrons and spin-waves produces a singular
correction to the tunneling density of states, N(ω) ∼ |ω|ηf/zf , [108, 113] that could be
observed in tunneling experiments or by photoemission. Here, ηf is an anomalous correction
to the electron operator scaling dimension which appears at three and higher loop order in
field theory calculations [108, 113].

Electrical Transport

The NFL phase described above is also expected to exhibit an unusual power in the tem-
perature dependence of the electrical resistivity. Early studies [131, 132, 102, 133] predicted
ρ(T ) ∼ T 4/3 based on the scattering rate of electrons by overdamped bosons. However,
this answer is likely incorrect, as momentum transferred between electrons to spin-waves is
not necessarily dissipated [134]. Rather, in a clean system the momentum transferred to
the spin-waves eventually returns to these electrons due to drag effects leading to vanishing
resitivity. Nonzero resistivity develops only from translation symmetry-breaking due to im-
purities or umklapp scattering (the latter is typically unimportant at low temperatures [134,
135]).

Transport for a related NFL nematic quantum critical point (QCP) in a metal was
recently investigated in [134] using memory matrix techniques. There, it was found that the
dominant source of temperature-dependent resistivity came from indirect momentum loss of
the nematic order parameter to impurities. In particular, it was shown [134] that the results
of the more sophisticated memory matrix computation can be reproduced by computing
a simple low-order process in which electrons scatter from spin-waves, which subsequently
lose momentum to an impurity corresponding to the diagram shown in Figure 4.5. Here we
expect similar physics to hold in the NFL regime. One important difference is that whereas
the nematic order parameter develops a thermal mass at finite temperature, in the present
context, the magnons are Goldstone modes and cannot develop a thermal mass for T < TM .

As described in Section 4.10,

ρNFL(T ) ∼ T 2/3. (4.20)

This contribution to resistivity coexists with a constant contribution and other more conven-
tional temperature-dependent contributions from phonon scattering (∼ T 5) and short-range
electron-electron interactions via screened Coulomb potential (∼ T 2). These contributions
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ω,kF ω+Ω,kF+q

Ω,q Ω,q

ω,kF

Figure 4.5: Disorder diagram for resistivity. Diagrammatic representation of the indirect
disorder scattering process that is expected to set the dominant NFL correction to the
temperature dependence of electrical resistivity. Here straight lines indicate electron propa-
gators, wavy lines are spin-waves and dashed lines terminating at a cross indicate disorder
vertices (the connection between two such lines arises from disorder averaging).

may be distinguished from those due to spin-wave scattering by applying an in-plane mag-
netic field. This pins the ferromagnetic order, gaps the spin-waves, and thereby suppresses
the NFL resistivity contributions. By contrast, the phonon and electron-electron scatter-
ing contributions are expected to have only weak field dependence. Hence, by comparing
resistivity with and without a field one can extract the NFL contribution.

4.7 Conclusion

In this chapter, we described how Fermi liquid theory breaks down in spin-orbit coupled
metallic ferromagnets with broken continuous rotational symmetry and have highlighted
experimentally testable signatures of this non-Fermi liquid phase. Most importantly, we
find that this NFL is stable to subsidiary spontaneous symmetry breaking. Unlike the
related nematic metal problem, the spin-orbit coupled metallic ferromagnets do not suffer
an instability towards superconductivity due to the absence of time-reversal and inversion
symmetries. We also analyzed instabilities in other pairing and spin density wave channels
within a controlled (N, ε) expansion [113]. While certain susceptibilities receive nonanalytic
enhancements from strong spin-wave-mediated interactions, we find that no instabilities
develop over a wide range of carrier densities.

The realization of this NFL phase is likely experimentally feasible. Promising candidate
materials include surface alloys, topological insulator surface states, and semiconductor het-
erostructures. While related NFLs are expected to arise in more exotic contexts like quantum
critical points in metals or gapless spin liquids with emergent gauge fields, spin-orbit coupled
metallic ferromagnets offer an experimentally accessible and comparatively simple platform
for exploring the physics of correlated gapless quantum phases without quasiparticles.
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4.8 Appendix A: Boson Polarization and Electron

Self-Energy

Preliminaries

We first solve for the 2D Rashba band structure in the presence of a uniform magnetization
and introduce notation that we will use throughout the calculations in the appendices. The
Rashba Hamiltonian in the presence of a uniform magnetization M = M0êM is

H0 =
k2

2m0

− µ̃+ αRẑ · (k× σ)− λ0M0êM · σ (4.21)

and acquires a band structure with dispersion

E(k, θ) =
(k − η′k0)2

2m0

− µ− η′λ0M0 sin(θ), (4.22)

where η′ = +1 (−1) denotes the lower (upper) Rashba bands, k0 ≡ m0αR, µ = µ̃+m0α
2
R/2,

and θ is measured from the direction of êM . We further let η = +1 (−1) denote the outer
(inner) Fermi surface. Defining kF (θ) ≡

√
2m0(µ+ η′λ0M0 sin(θ)), the radius of a Fermi

surface is η′(k0 + ηkF ) > 0 assuming there is a Fermi surface at the given angles and doping
and not a Fermi pocket. As discussed previously, the calculations are greatly simplified by
breaking the Fermi surface into patches, a representative set of which was shown in Figure
4.2, labeled by numbers 1 − 4. Low-energy quasiparticles in a patch obey the dispersion

ε = vk⊥ +
k2||
2m

, with k⊥, k|| coordinates that are perpendicular, parallel to the Fermi surface
and are fixed with respect to a set of patches. The proper signs are accounted for with a
signed velocity and effective mass |v| = kF/m0, m = m0(1+η k0

kF
). Finally, we let k>,<F denote

k>,<F the radius of the outer and inner Fermi surfaces.
The full fluctuating magnetization is parameterized asM = M0 [êM cosφ+ (ẑ × êM ) sinφ]

and we expand for small fluctuations φ and replace M0φ → φ. We will denote λ(n̂j) the
coupling to the Goldstone mode, where n̂j is a unit vector in the direction of patch j. The
functional dependence of λ(n̂j) is given in Eq. 4.13.

The Hamiltonian for the TI surface state is

H0 = vDẑ · (k× σ)− λ0M0êM · σ − µ. (4.23)

If we solve H0 exactly, the effect of the magnetization, which couples like a gauge field to
the fermions, is only to shift the center of the Dirac cone. There are in general higher order
in k corrections in the Hamiltonian which will explicitly break the continuous rotational
symmetry of the Fermi surface, but we neglect these. The case of the TI surface state is
accounted for within the treatment of the Rashba spin-orbit coupled system. The patch
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dispersion for the TI is ε = vDk⊥ +
v2Dk

2
||

2µ
, and so the special case of the TI surface state is

accounted for within the treatment of the Rashba liquid if we let the patch velocity v = vD
and mass m = µ/v2

D.

Lagrangian Density within the (N, ε) expansion

The dual (N, ε) expansion of [113] introduces N fermion flavors, which we index by µ, and
a control parameter ε related to the boson dynamic critical exponent zb as ε ≡ zb − 2 > 0.
Our bare Euclidean action for a set of collinear patches, indexed by j ranging from 1 − 4,
within this expansion is

SE ≡ S0 + Sint,

S0 ≡
∫
dωd2k

(2π)3

[
Nczb−1|k|||zb−1|φω,k|2 +

∑
µ,j

ψ†,µj,ω,k(−iω + vjk⊥ +
k2
||

2mj

)ψµj,ω,k

]
,

Sint ≡
∑
µ,j

∫
dωd2kdΩd2q

(2π)6

[
λ(n̂j)φΩ,qψ

†µ
j,ω+Ω,k+qψ

µ
j,ω,k

]
. (4.24)

(The µ flavor index will be omitted when it is unnecessary to track.) We define our initial
free propagators

〈|φω,k|2〉 =
(2π)3

Nczb−1|k|||zb−1
≡ (2π)3D0(ω,k),

〈ψµj,ω,kψ†µj,ω,k〉 =
(2π)3

−iω + εj
≡ (2π)3Gj

0(ω,k),

εj = vjk⊥ +
k2
||

2mj

. (4.25)

The action Eq. 4.24 will generate the one-loop boson polarization and fermion self-energy,
which will give the NFL action around which we will work perturbatively in computing the
susceptibility to order in Section 4.9.

One-Loop Boson Polarization

The boson polarization is defined using Dyson’s equation as D−1 = D−1
0 +Π and its one-loop

correction is

Π(Ω, q) = N
∑
j

λ(n̂j)
2

∫
dωdk||dk⊥

(2π)3
Gj

0(ω,k)Gj
0(ω + Ω,k + q). (4.26)
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The integrals are performed in the order k⊥, ω, k|| resulting in

Π(Ω, q) = N
∑
j

λ(n̂j)
2 |mj|
4π|vj|

|Ω|
|q|||
≡ Nγ

|Ω|
|q|||

, (4.27)

which defines the Landau damping coefficient γ dependent on the patch velocity, mass, and
effective coupling λ to the Goldstone mode.

The boson velocity is expected to be renormalized by the fermions, via e.g. the diagram
in Figure 4.3, and hence acquire a component proportional to vF . Using Ω ∼ vF q, the
energy scale below which damped dynamics dominates is the Landau damping energy scale
ELD ∼ (γvF )

1
2 . Consider the patches at θ = 0 for illustration, where the masses of patches

1 − 4 (Figure 4.2) are |m1| = |m3|, |m2| = |m4| and γ ∼ λ2
0

(|m1|+|m2|)
vF

. Defining x ≡ kF (θ =
0)/k0 ≥ 0, a quantity which increases monotonically with doping, we have

ELD ∼ λ0

√
m0

x
[x+ 1 + |x− 1|] 12 . (4.28)

Varying only the chemical potential while fixing the other parameters, the Fermi momentum
kF ∼ √µ and so the damping energy scale ELD ∼ µ−

1
4 for low doping µ � m0α

2
R while it

approaches a constant at high doping µ� m0α
2
R.

One-Loop Electron Self-Energy

We feed the Landau damped boson propagator back into the electron self-energy, focusing on
a single patch j, and compute the non-Fermi liquid frequency dependence. The self-energy is
defined as (Gj)−1 ≡ (Gj

0)−1−Σj = −iω+εj(k)−Σj(ω) at k = 0. We focus on the frequency
dependence because within the RPA, the momentum dependence is expected to be infrared
nonsingular [113].

Σj(ω, 0) = λ(n̂j)
2

∫
dΩdq||dq⊥

(2π)3
D(Ω, q)Gj

0(ω − Ω,−q)

= i
sgn(ω)

ζN
|ω|2/zb ,

ζ ≡ 4π
|vj|

λ(n̂j)2
γ(zb−2)/zbc

2(1− 1
zb

)
sin(2π/zb) (4.29)

≈
(

2π2c|vj|
λ(n̂j)2

)
ε (for ε� 1). (4.30)

We use the form of the propagator to estimate the scale below which NFL sets in, denoted
ENFL, for the physically relevant case zb = 3, N = 1. This scale is ENFL = ζ−3; setting θ = 0,
where the coupling is maximal, and x ≡ kF/k0,



CHAPTER 4. CONSTRUCTION OF A STABLE NON-FERMI LIQUID PHASE 81
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Figure 4.6: Diagrams for NFL enhancement of susceptibilities. Vertex correction for coupling
to an external field u (dashed) due to the interaction between electrons (solid) and Goldstone
boson (wavy). The two channels are (a) particle-hole and (b) Cooper pair.

ENFL ∼
λ4

0

k2
0c

4

m0

x [1 + x+ |1− x|] . (4.31)

Since kF ∼ √µ, ENFL ∼ 1/
√
µ for µ � m0α

2
R while ENFL ∼ 1/µ for µ � m0α

2
R. As would

be expected, the non-Fermi liquid energy scale vanishes as µ→∞.

4.9 Appendix B: Patch Susceptibilities

We consider the finite momentum particle-hole and Cooper pair susceptibilities for patches
within a collinear set in the Rashba system. We add a term Sext to the action which couples
an external field u to electron patch bilinears and compute the renormalization of the coupling
due to the electron-boson interaction. The modified scaling dimension of the coupling will
yield the scaling form for the susceptibility to ordering in a channel. The leading order in ε
(equivalently, 1/N since εN ∼ O(1)) correction comes from Figure 4.6.

The action consists of S0 + Sint + Sext with Sint from Eq. 4.24 but the noninteracting
boson and fermion actions modified to include Landau damping and the NFL self-energy:

S0 = N

∫
dωd2k

(2π)3

[
czb−1|k|||zb−1 + γ

|ω|
|k|||

]
|φω,k|2 . . .

+
∑
µ,j

∫
dωd2k

(2π)3
ψ†µj

[
−i sgn(ω)

ζN
|ω|2/zb + vjk⊥ +

k2
‖

2mj

]
ψµj . (4.32)

Sext has the general form Sext =
∫
d2xdτ [uaOa(x, τ) + h.c.] and depends on the channel

(a) under consideration. For instance, Oa(x, τ) = ψ†1ψ4(x, τ) for the a = 2k>F SDW channel.
The RG scheme involves integrating out low-energy electron and boson modes simultane-
ously. The RG scaling transformations which keep S0 invariant are given in Eq. 4.6; note
that the ⊥, || directions rescale differently. To carry out the RG, we use

∫
>
dωdk‖dk⊥ which

integrates over all ω, k⊥ ∈ (−∞,∞) but over |k‖| ∈
[
Λ/
√
b,Λ
]
.
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The renormalized scaling dimension of the external field ua can be related to the scaling
form of the correlations. If u′a = bφuaua under renormalization, the order parameter Oa(x, τ)

to which ua couples transforms as O′a(x′, τ ′) = b
(zb+3)

2
−φuaOa(x, τ). We define χa as the

Fourier transform of the two-point correlation 〈O∗a(x, τ)Oa(0, 0)〉 and it obeys the relation

χa(k, ω) = b2φua−
(zb+3)

2 χ′a(k
′, ω′), (4.33)

leading to the scaling form

χa(k⊥, k‖, ω) = |ω|δaFa
[
|ω|
|k‖|zb

,
k⊥
k2
‖

]
, (4.34)

with the power δa = 1 + (3−4φua )
zb

and scaling function Fa.
As the Goldstone mode mediates repulsive interactions in the particle-hole channel and

attractive interactions in the finite momentum Cooper channel, correlations in these channels
are expected to be enhanced compared to the usual Rashba Fermi liquid and hence are of
interest for potential singularities. We turn to these next.

2k<,>F Particle-Hole Susceptibility

We compute the one-loop correction to the coupling Sext =
∫
d2xdτ

[
uaψ

†
jψj′ + h.c.

]
with

a = 2k>F or 2k<F . From this, we obtain the particle-hole susceptibility to SDW order within
patch pairs (j, j′) = (1, 4) and (2, 3) in a collinear set, corresponding to finite momentum 2k>F
and 2k<F , respectively. This channel is relevant for both the annular and concentric Fermi
surface regimes.

Fermions have dispersion εj = vjk⊥ +
k2||

2mj
for patch j at angle θ and couple via λj to

the Goldstone mode with the opposite sign sgn(λj) = −sgn(λj′) between patches in a pair.
Setting external momenta and frequencies to zero, the vertex correction gives

δu = uλjλj′

∫
>

dωdk‖dk⊥
(2π)3

Gj(ω,k)Gj′(ω,k)D(ω,k)

=
iu

N
λjλj′

∫
>

dωdk‖
(2π)2

Θ(ω/vj)−Θ(ω/vj′)[
k2‖
2

(
vj
mj′
− vj′

mj
)− isgn(ω)

N
(
vj
ζ′
− vj′

ζ
)|ω|

2
zb

] [
γ |ω||k‖| + czb−1|k‖|zb−1

] .
(4.35)

For the patches under consideration, the velocities vj, vj′ have opposite sign while mj,mj′

have the same sign. Defining α ≡ |vj |
ζ′

+
|vj′ |
ζ

and β ≡ |vj |
|mj′ |

+
|vj′ |
|mj | , one obtains

d(δu)

dl
=− u λjλj′

π2γN

[ |vj|
|mj′|

+
|vj′ |
|mj|

]−1

· g(x, zb),
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g(x, zb) ≡
∫ ∞

0

dt
xt2/zb

(x2 + t4/zb)(1 + t)
,

x ≡ Nβγ2/zb

2αc2(1−1/zb)
> 0. (4.36)

Both ζ, ζ ′ have a leading linear in ε behavior so x ∼ εN . Note that d(δu)/dl > 0 so
correlations will be enhanced.

The Goldstone mode also mediates repulsive interactions for other patch pair types, e.g.
(1, 3), (2, 4) for the annular Fermi surface or (1, 2), (3, 4) for the concentric Fermi surface. In
principle we would be interested in these on grounds that they might be enhanced. However,
here patch pairs have the same sign velocity, giving rise to k⊥ poles on the same side of the
complex plane when external lines carry no frequency. Finite values in the external lines
would contribute to a renormalization of u(k, ω) with finite arguments, which is less relevant
than u(0, 0).

k>F ± k<F Cooper Channel Susceptibility

Similarly, we compute the vertex correction to the coupling Sext =
∫
d2xdτ

[
uaψ

†
jψ
†
j′ + h.c.

]
with a = k>F ± k<F . This yields the susceptibility scaling form for superconducting order
within patch pairs (j, j′) = (1, 2) and (3, 4) for the annular Fermi surface and (1, 3) or (2, 4)
for the concentric Fermi surface.

The coupling to the Goldstone mode has the same sign sgn(λj) = sgn(λj′) for patches in
a pair. Setting external momenta and frequencies to zero gives

δu = uλjλj′

∫
>

dωdk‖dk⊥
(2π)3

Gj(ω,k)Gj′(−ω,−k)D(ω,k) (4.37)

= +
iu

N
λjλj′

∫
>

dωdk‖
(2π)2

Θ(ω/vj)−Θ(ω/vj′)[
k2‖
2

(
vj
mj′

+
vj′

mj
) + isgn(ω)

N
|ω|

2
zb (

vj
ζ′
− vj′

ζ
)

] [
γ |ω||k‖| + czb−1|k‖|zb−1

] .
(4.38)

For the patches under consideration, the velocities vj, vj′ are opposite in sign while mj,mj′

may have opposite (annular Fermi surface) or the same sign (circular Fermi surface). Define

α ≡ |vj |
ζ′

+
|vj′ |
ζ

and β ≡
∣∣∣ |vj ||mj′ |

± |vj′ ||mj |

∣∣∣, where the ± is for the annular/concentric Fermi surface

cases. The computation is otherwise the same as for the particle-hole channel and yields

d(δu)

dl
= u

λjλj′

π2γN

∣∣∣∣ |vj||mj′|
± |vj′||mj|

∣∣∣∣−1

× g(x, zb), (4.39)

with x, g(x, zb) defined as before. Note again that d(δu)/dl > 0.
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Evaluation

Within this RG scheme, we can take the limit ε → 0, N → ∞ with εN finite. For both
the particle-hole and Cooper channels, we find a modified scaling dimension u′a = bφuaua
(including the bare value φua = 1) to leading order in ε:

φua = 1 + ε
|λjλj′ |
π2γεN

∣∣∣∣ |vj||mj′ |
± |vj′||mj|

∣∣∣∣−1

g(x̄, zb = 2), (4.40)

g(x, zb = 2) =
πx2

2(1 + x2)

[
1− 2

πx
log(x)

]
,

x̄ ≡ lim
N→∞
ε→0

x = (εN)π2γ

[
λ2
j′ |vj|
|vj′ |

+
λ2
j |vj′ |
|vj|

]−1 ∣∣∣∣ |vj||mj′|
± |vj′ ||mj|

∣∣∣∣ . (4.41)

Here the lower sign is for the concentric Fermi surface Cooper channel; the upper sign
applies otherwise. This gives a scaling form χa(k‖, k⊥, ω) = |ω|δaFa(|ω|/|k‖|zb , k⊥/k2

‖) with

exponent4

δa =
1

2
+
ε

4

[
1− 8|λjλj′ |

π2γ

∣∣∣∣ |vj||mj′ |
± |vj′ ||mj|

∣∣∣∣−1
g(x̄, zb = 2)

εN

]
+O(ε2) (4.42)

As an example, we simplify to the most important case θ = 0, |vj| = |vj′| ≡ v, |λj| =
|λj′ | ≡ λ and masses |m1| = |m4|, |m2| = |m3|. These patches couple most strongly to the
Goldstone mode and hence will receive the strongest singular enhancement of susceptibilities.
In this case, γ = λ2(|m1| + |m2|)/(2πv). It is convenient to define a dimensionless ratio Ra

for each channel a,

Ra ≡
π

4

(|m1|+ |m2|) ||mj| ± |mj′||
|mj||mj′ |

, (4.43)

where mj,mj′ are chosen based on the channel of interest (lower sign is for concentric Fermi
surface Cooper channel, upper sign otherwise). Expressions for Ra for the various channels
are given in Table 4.1 as a function of the mass ratio rM = |m2|/|m1| ∈ (0, 1). Physically,
Ra can be interpreted as the ratio of the effective density of states for a given channel
∼ | 1

|mj | ±
1
|mj′ |
|−1 to the total density of states ∼ (|m1| + |m2|) that enters the Landau

damping coefficient. Qualitatively, Figure 4.7 shows that larger Ra values lead to weaker
power law susceptibilities.

4Note that the channel a is dependent on patch pair (j, j′) being considered.
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SDW (1,4) SDW (2,3) CP annular FS CP concentric FS

π
2
(1 + rM) π

2
(1 + 1

rM
) π

4
(1+rM )2

rM

π
4

(1−r2M )

rM

Table 4.1: Value of dimensionless mass ratio Ra as a function of rM = |m2|/|m1| ∈ (0, 1).
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Figure 4.7: Susceptibility exponent function. Plot of
[
1− 4 · g(RaεN,zb=2)

RaεN

]
(with channel

dependence a) as a function of RaεN which leads to a singular susceptibility for sufficiently
negative values. The zero crossing is at RaεN ≈ 4.8 and at large RaεN the asymptote is 1.

For general N and ε, the value of the susceptibility exponent δa is

δa =
1

2
+
ε

4

[
1− 4 · g(RaεN, zb = 2)

RaεN

]
. (4.44)

A plot of the coefficient of ε/4 is shown in Figure 4.7. The physically interesting limit
N, ε = 1 lies beyond the controlled regime explored above; we now extrapolate the above
results to this case. We still consider the most important case θ = 0. With Ra defined as
above, the power law in the scaling form is

δa =
2

3

[
1− g(

√
3Ra/π, zb = 3)

Ra

]
. (4.45)

We plot δa as a function of x ≡ kF/k0 for all four channels in Figure 4.4, where rM =
|x−1|/(x+1). At the angle θ = 0, x =

√
2µ/(
√
m0αR) and therefore increases monotonically

with µ. x = 1 denotes the Dirac point.
Only the susceptibility in the Cooper channel with concentric Fermi surface has a power

law divergence for sufficiently high doping in the Rashba liquid (the zero crossing is at x ≈
4.6). We note the Cooper pairing here is within patch pairs (j, j′) = (1, 3) and (2, 4). While
the difference in the radii of the two concentric Fermi surfaces stays finite as µ increases,
the masses of the two patches approach the same value, mimicking the usual time-reversal
symmetric BCS pairing arising from nested scattering.
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All the curves except for the particle-hole channel (1, 4) peak at x = 1 when m2 = 0.
One can see that for these other channels, Ra depends on 1/rM and Ra → ∞ as |m2| → 0.
This is because the “effective” density of states, which is some reduced combination of the
masses of two patches, is vanishing. For the particle-hole (1, 4) channel, Ra instead takes it
minimal value at x = 1.

Finally, the TI surface can be considered as a special case of the above results, where
only a single spin density wave channel may occur. The TI Landau damping coefficient reads
γ = λ2

0µ/(2πv
3
D) and for ε→ 0, N →∞, εN finite, Eq. 4.44 holds with R2kF = π/2, choosing

the upper sign. For the case N, ε = 1, Eq. 4.45 applies with R2kF = π/2 giving γ ≈ 0.2.
That is, within the (N, ε) approximation the TI surface state is stable against spin density
wave formation.

4.10 Appendix C: Disorder Effects and Calculation of

Resistivity

In this section, we introduce a model for the impurity and spin-wave coupling and include
details of the computation of the temperature dependence of electrical resistivity.

Disorder Model

Symmetry-allowed disorder coupling to the Goldstone mode gives rise to an energy scale EIM

near which the physics discussed in this paper break down. We estimate this energy scale
below in terms of microscopic quantities and show that for material realizations there will
nonetheless be a large energy regime in which NFL physics may still be observed.

A scalar impurity potential Vimp(r) can induce a spin polarization S(r) =
∫
d2r′χS,n(r−

r′)Vimp(r′). χS,n(r) is odd under time-reversal and hence must be proportional to the mag-
netization, approximately λ0M0/εso (where εso = αk0, and we have assumed λ0M0 � εso).
There is also a mirror symmetry x→ −x, where x is the axis of the ordered magnetization,
which dictates χyS,n(r) ∼ x̂ · r̂.

If we consider Coulomb impurities whose atomic-scale internal electric field structures
have very short length scale compared to kF of the electrons (relevant e.g. for semiconduc-
tors), then the induced spin density will exhibit 2kF Friedel oscillations, e.g.

〈Sy(r)〉 ≈ λ0M0

εso

∫
d2r′

k2
F

2π
F (2kF |r − r′|)δρimp(r′) ·

(
M̂ · (r− r′)

|r − r′|

)
, (4.46)

where the last directional factor is required by the mirror symmetry 〈M〉 → −〈M〉, δρimp

is the density of impurities (with the mean subtracted), and F (x) ≡ (x cosx − sinx)/x2

is the oscillatory Friedel screening cloud function. Here, for simplicity we have written
expressions valid in the large density limit and, moreover, ignored the NFL corrections to
the 2kF susceptibility.
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Hence, we can approximately treat the impurities as a random field, coupled to the
Goldstone field φ,

LM-imp = −h(r)φ(r), (4.47)

where h(r) ≈ λ0〈Sy(r)〉.
Therefore, the RMS value of h is

h(r1)h(r2) ≈
(
λ2

0M0

εso

)2

ρimpδ
2(r1 − r2)

≡ h2
0δ(r1 − r2) (4.48)

Here, we have approximated the rapidly oscillatory 2kF functions with different arguments
as zero if |r1− r2|kF & 1, which on length scales much longer than k−1

F can be approximately
replaced by k−2

F δ2(r1 − r2).

Temperature Dependence of Resistivity

For simplicity, we treat the random field h(r) as being normally distributed independently
for each position r,

h(r)h(r′) = h2
0δ

2(r − r′), (4.49)

where (. . .) indicates averaging over disorder configurations. This approximation is reason-
able for weak or dilute impurities and is expected to reproduce universal behavior, such as
the temperature dependence of resistivity, for more generic impurity distributions. We now
estimate the contribution to resistivity from random impurities scattering magnons via the
linear coupling Eq. 4.47.

It was shown in [134], for the closely related problem of a nematic quantum critical point
in a metal, that the dominant temperature dependence of resistivity comes from impurity
scattering of the Landau damped bosons (in our case spin-waves). Moreover, it was shown
that the results of the more sophisticated memory matrix formalism could be reproduced by
perturbatively computing the effective momentum loss rate by the process equivalent to the
imaginary part of the diagram shown in Figure 4.5, in which an incoming electron emits an
overdamped boson which loses momentum to the impurites. In this section, we compute the
analogous diagram for the NFL described in the main text.

Evaluating the diagram shown in Figure 4.5 gives:

Σtr(ω) ≈ h2
0

∫
dΩdq⊥dq||(1− cos θ\q)D(Ω, q)2G(ω + Ω,q)

≈︸︷︷︸∫
dq⊥

h2
0

∫
dΩdq‖

[
q2
‖ × i sgn(ω + Ω)

q2
‖

(|Ω|+ |q‖|3)2

]
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≈ ih2
0 sgn(ω) |ω|2/3. (4.50)

Here, as is typical for the computation of transport scattering rates (see also [134]), we have
included a factor of (1−cos θq) ≈ (q‖/kF )2 to appropriately weigh small angle scattering that
does not substantially change the electron momentum. Analytically continuing to retarded
frequency iω → ω + i0+ and trading the low frequency cutoff ω for temperature T gives the
temperature dependence ρ(T )NFL ∼ T 2/3 quoted in the main text.

Imry-Ma Scale

We next review the Imry-Ma estimate for the disorder energy scale. Consider a region of
linear size L. We estimate the RMS value of the field energy as

δE2
RMS ≈

[∫
d2rh(r)φ(r)

]2

≈ (M0h0)2Ld, (4.51)

setting φ2(r) ≈M2
0 . The spin-gradient energy cost is (M0c)

2Ld−2. The random field energy
dominates at long length scales, while the stiffness cost dominates at short length scales.
Setting them equal gives an estimate for the scale LIM at which the magnetization transitions
from ordered to disordered due to the impurities,

L
2− d

2
IM ∼ M0c

2

h0

, (4.52)

which gives (in d = 2) LIM ∼ (M0c
2)/h0. Substituting for h0, this results in

LIM = (c2εso)/(
√
ρimpλ

2
0). (4.53)

The NFL physics described in the above text occurs in the intermediate temperature
range ELD � T � EIM over which the spin-wave dynamics are dominated by Landau
damping from the electrons, rather than the the disorder pinning, where we define EIM =
c/LIM (which we can view as the mass gap acquired by the Goldstone bosons). In order
to observe this physics over a broad range of energies, we require ELD/EIM � 1. Using
Eq. 4.28, noting M0c ≈ TM (the magnetic transition temperature), and approximating
ρimp = `−2

MF (where `MF is the elastic mean-free path related to the elastic scattering time by
τ = `MF/vF ), we obtain

EIM

ELD

∼
(
λ0M0

εso

)√
EF
TM

(EF τ)−1. (4.54)

These quantities are highly material- and realization-dependent, but as a specific example
we may consider a scenario in which a spin orbit coupled metal, such as the giant Rashba
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state found in Bi/Ag(111) surface alloys [123, 125, 124, 126], is coupled by proximity to a
ferromagnetic insulator (such as EuO [130]). Here, we estimate TM ≈ 100K, εso ≈ EF ≈
1eV, and exchange energy λ0M0 ≈ 0.5eV [136]. In a clean metal EF τ can be as large
as 102 − 103, giving ELD/EIM ≈ 10 − 100, indicating a moderate regime over which NFL
physics may be observed. We expect this regime to be even more accessible for semiconductor
heterostructure based implementations, which can exhibit orders of magnitude longer mean-
free paths.
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Chapter 5

A Mechanical Analogue of Topological
Nodal Semimetals

There has been immense interest in recent years in the properties of electronic systems
protected by topology [137]. Robust zero-energy surface states are one manifestation of this,
which can be understood through the bulk-boundary correspondence. The latter dictates
the appearance of protected gapless excitations at the boundary between two systems with
differing values in a topological invariant computed in the bulk. Within topological band
theory, such invariants are associated with the occupied Bloch bands of electrons.

The underlying mathematical ideas originate in topology and do not necessarily require
a quantum mechanical setting. One may wonder, therefore, whether topologically protected
excitations may arise in other domains. Curiously, certain mechanical systems, consisting of
lattices of masses coupled by central-force springs, were observed to host boundary-localized
zero-energy modes which appeared to be robust [138]. The lattices were isostatic, where the
number of degrees of freedom and constraints are just balanced and the system is on the edge
of mechanical instability. In 2014 [139], Kane and Lubensky discovered that indeed, such
lattices can host vibrational modes whose origin is rooted in topology. Furthermore, they
identified a relationship between topological protection in the mechanical and free fermion
settings. Kane and Lubensky’s work initiated a new direction of inquiry, which we refer to
as topological mechanics, and constitutes the backdrop of this chapter.

Why should a classical problem of springs and masses have any relationship to the topo-
logical band theory of electrons? Mechanical systems are governed by Newton’s laws, and
their dynamics is determined by the spectrum of the dynamical matrix D. As we will see,
this matrix is positive semidefinite, D = RTR, and is effectively the “square” of a matrix R
which arises naturally in the statement of the spring-mass problem. A single-particle Hamil-
tonian for fermions has no such positivity constraints, but the square of its energy spectrum
will be positive semidefinite. It seems plausible, therefore, that one might use R and RT to
construct a free fermion Hamiltonian. This will indeed be the case, and the Hamiltonian
will fall into a class which can exhibit topologically nontrivial properties. We will elaborate
on this further in discussing a subset of Kane and Lubensky’s work [139] in Section 5.1.
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Restricting entirely to the quantum mechanical setting, there is already a sense in which
some problems can be viewed as the “square” of another. For instance, the single-particle
Hamiltonian for bosons is required to be positive semidefinite due to stability. Elements of
this idea have been used before in connecting bosonic and fermionic problems [140, 141].
However, the connection between free fermion Hamiltonians and normal modes of a spring-
mass network is a bit more direct, because the factorization of the matrix D into two pieces,
R and RT , already originates rather naturally in the problem definition.

Kane and Lubensky address the origin of robust mechanical modes in systems with a
gapped spectrum in the bulk.1 The mechanical systems which they treat in one dimension
can be viewed as analogues of topological insulators. The nontrivial topological properties
manifest as zero-frequency modes or states of self-stress (to be defined in Section 5.1) localized
at boundaries [139] or defects [142]. Research in topologically protected electronic systems
has uncovered phases that extend beyond topological insulators. For instance, topological
nodal semimetals (TNS) feature gapless bulk nodes protected by nontrivial band topology
and interesting surface Fermi arcs [143]. Could analogues of these also exist in the classical,
mechanical setting? Identifying mechanical models with topologically protected bulk, rather
than edge, gaplessness is a natural step forward. In this chapter, we discuss our work in
constructing the first mechanical model that is a TNS analogue [144].

Beginning in Section 5.2, we introduce our model consisting of pinned, periodic spring-
mass networks of a particular parametrization.2 The pinning gaps out the acoustic phonon
modes arising from broken translation symmetry. We show that a bulk node with ω(kc) = 0,
with wavevector kc, can in fact appear without fine-tuning. The wavevector kc can be
adjusted in a simple way in the mechanical model. To demonstrate the root of these bulk
nodes in topology, we analyze the corresponding fermionic TNS and the relevant topological
invariants. While previous works have demonstrated the construction of TNS analogues in
bosonic systems, such as photonic crystals [145], acoustic systems [146], and even spring-mass
models [147], we stress that those associated band touchings occur at nonzero frequencies.
This is physically quite different from the protected bulk modes that appear in our model,
which occur at zero energy.

5.1 Introduction to Topological Mechanics

A mechanical system of coupled springs and masses can be described as follows. Extended
springs give rise to a potential energy

U =
1

2
κ

Nb∑
m=1

s2
m, (5.1)

1Gapless acoustic modes can safely be ignored. It is clear that their origin lies in broken translation
symmetry, and they can be gapped out without affecting the topological properties of the model.

2We will interchangeably refer to our construction as a phonon model. While the latter suggests a
more quantum mechanical interpretation, the difference between these will not be relevant to our primary
discussion.
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where sm is the extension of the m-th spring and the sum runs over all Nb bonds in the
lattice. The scalar spring extensions {sm} are functions of the mass displacements {xi},
which for a lattice of N sites in d dimensions runs over dN components. For convenience,
we set all the masses and spring constant κ to unity unless otherwise specified. Within
the harmonic approximation, the extensions can be expanded to linear order in the mass
displacements, S = RX + O(X2), where X and S are dN and Nb dimensional vectors,
respectively, aggregating the displacements and extensions. The potential energy can be
rewritten,

U =
1

2
XTRTRX. (5.2)

An additional useful relationship is the one between forces F on the masses and spring
tensions T , which are related by the transpose of R, F = RTT .

We will primarily be interested in isostatic lattices, as in [139]. These are models where
the number of bonds Nb is equal to the number of degrees of freedom, dN . As an example,
lattices with coordination number z = 2d will be isostatic; this includes the square and
kagome lattices in two dimensions and the cubic and pyrochlore in three dimensions. In the
isostatic case, R will be a square matrix.

An application of Newton’s second law yields Ẍ = −RTRX, identifying D = RTR as
the real-space dynamical matrix. The phonon modes are solutions to the eigenvalue problem
Dξi = RTRξi = ω2

i ξ, where ωi is the eigenfrequency of the ith mode with i = 1, . . . , dN .
Displacements that do not stretch any springs satisfy RX = 0 and hence are parameter-

ized by the kernel of R. Such modes do not cost any energy: they are zero-energy modes.
However, they are not the only interesting mechanical vibrations. A lattice may also give
rise to states of self-stress, configurations in which the springs are stretched or compressed
but there are no net forces on the masses, RTT = 0. The self-stress modes are therefore
described by the kernel of RT .

Bringing these together gives rise to a simple but powerful relation, first studied by
Maxwell [148] and later generalized by Calladine [149]. It amounts to a combined application
of the rank-nullity theorem to the matrices R and RT to yield

ν ≡ N0 −Nss = dN −Nb. (5.3)

N0 and Nss denote the number of zero modes and states of self-stress, respectively. ν
denotes the index of RT , which is defined as ν ≡ dim ker R − dim ker RT , the difference
in the dimensionality of the two kernels. The generalized Maxwell relation Eq. 5.3, valid for
infinitesimal distortations, states that the difference in the count of zero modes and self-stress
states is determined by the balance between the number of sites and bonds.

The generalized Maxwell relation originates from a global count over the entire lattice.
While this can help in identifying the number of zero modes, it does not pinpoint scenarios in
which the vibrational modes are protected by topology. One of the ingenious observations in
Kane and Lubensky’s work [139] is that some properties of the dynamical matrix D = RTR
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can be understood by factoring, or taking the “square root,” of the mechanical problem and
introducing the Hamiltonian

H =

(
0 RT

R 0

)
. (5.4)

The square of H reveals that the spectrum of H is related to that of D. However, the
fermionic zero-energy modes of H will include both the kernel of R and RT , and therefore
both the zero-energy modes and the states of self-stress of the mechanical problem. The
two types are distinguished in the fermionic setting by their eigenvalue under the matrix
τ z = diag(1dN ,−1Nb).

The significance of Eq. 5.4 is thatH can be viewed as a fermionic Hamiltonian and treated
within topological band theory. Since it is a real-valued matrix and satisfies {H, τ z} = 0,
it has time-reversal and particle-hole symmetries and falls into symmetry class BDI in the
Altland-Zirnbauer classification of free fermion Hamiltonians [150, 9]. In one dimension,
such models exhibit an integer topological invariant n ∈ Z. Kane and Lubensky used this
to dissect a local version of the generalized Maxwell relation. They consider the index for
a region S embedded in a larger system, νS = NS

0 − NS
ss, which measures the difference in

the number of zero modes and self-stress states localized in S. It can be separated into two
contributions, νS = νSL + νST . νSL is a local count in S dependent on the numbers of springs
and masses. On the other hand, νST has a topological origin and can be computed from
topological invariants along one-dimensional cuts. As a consequence, the boundary between
models with two different topological invariants will host either topologically protected zero-
energy modes or topologically protected states of self-stress.

5.2 Construction of our Model

We turn to the construction of a mechanical analogue of a TNS. We impose periodic boundary
conditions as we are interested in the bulk modes. To recount, the mechanical problem is
defined by a relationship between spring extensions and mass displacements specified by R.
In mapping to the fermionic problem, we will mainly use Majorana fermion operators χ, χ̄
which satisfy {χl, χm} = {χ̄l, χ̄m} = δlm and all other anticommutators vanish. Under time-
reversal (TR) symmetry, χ (χ̄) is even (odd). Written in a Majorana basis, the fermionic
problem is given by matrix HF and the associated Hamiltonian HF [139–141],

HF =

(
0 −iRT

iR 0

)
, HF =

(
χ̄ χ

)
HF

(
χ̄
χ

)
. (5.5)

Consider the phonon spectrum arising from a spring-mass model defined on the square
lattice (d = 2). For a regular mechanical problem, the form of R is constrained by global
continuous translation invariance and spatial symmetries of the underlying lattice. For the
square lattice, one simply finds ωj(k) ∝ | sin kj|, where j = 1, 2 labels the two orthogonal



CHAPTER 5. A MECHANICAL ANALOGUE OF TOPOLOGICAL NODAL
SEMIMETALS 94

Smooth peg

Spring

Mass point

θ1
φ1

φ2

θ2

xr1

xr2
s1,r

s2,r

Figure 5.1: A possible realization of the phonon problem. The dependence of the spring
extensions on the displacements of the masses can be modified by bending the springs with
fixed, smooth pegs which serve as a pinning potential and gap out the acoustic modes. The
spring extensions are then characterized by Eq. (5.7) to linear order in mass displacements.
The shaded region indicates the unit cell convention adopted.

directions. Although ωj(kj = 0) = 0, these nodal lines are not topologically protected as
they can be gapped out by explicitly breaking continuous translation symmetry. To expose
the potential topological zero modes, will relax these symmetry constraints and assume they
are explicitly broken.

Instead, we propose a class of models depicted in Figure 5.1, parameterized by four
angles: θ1, φ1, θ2, and φ2. The springs have been tweaked with fixed, smooth pegs that serve
as an external pinning potential. The form of R is constrained by the geometrical relations
between the spring extensions and mass displacements. For a spring connecting the masses
at equilibrium positions r = a and b, the spring extension should satisfy |s| ≤ |xa| + |xb|.
In particular, we assume there is a special spatial direction v = cos θaê1 + sin θaê2 such
that the inequality is saturated for xa = |xa|v and xb = 0. Equivalently, this implies
∂xa1s = cos θa and ∂xa2s = sin θa in the original basis. Assuming a similar dependence of s
on xb, characterized by w = cos θbê1 + sin θbê2, one finds s = v · xa +w · xb +O(x2).

For a clean system, all springs that are equivalent under lattice translations are charac-
terized by the same parameters and in momentum space one finds the following matrix,

R(k) =

(
v11 + w11e

−ik1 v12 + w12e
−ik1

v21 + w21e
−ik2 v22 + w22e

−ik2

)
, (5.6)

where k = (k1, k2) lies in the first Brillouin zone (BZ). vlm (wlm) denotes the m-th compo-
nent of the vector vl (wl) relating the spring extension to the displacements xr and xr+êl .



CHAPTER 5. A MECHANICAL ANALOGUE OF TOPOLOGICAL NODAL
SEMIMETALS 95

-
π π

π −π0 0

0

ω (a.u.)

k1 k2
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Figure 5.2: Typical spectrum of a 2D TNS hosting a pair of topological nodes at ω =
0 (only the two bands close to ω = 0 are shown). The spectrum is computed for the
fermionic problem defined in Eq. 5.5 with R defined in Eqs. (5.6) and (5.7). The parameters
(θ1, φ1, θ2, φ2) = (1/4, 0, 1/8,−1/8)π are used. The inset shows the edge spectrum when open
and periodic boundary conditions are enforced for the ê1 and ê2 directions respectively,
featuring a line of zero modes connecting the projections of the bulk topological nodes onto
the surface Brillouin zone.

Enforcing the geometric constraints, the vectors can be parameterized by

v1 =

(
− cos θ1

− sin θ1

)
, v2 =

(
sin θ2

− cos θ2

)
,

w1 =

(
cosφ1

sinφ1

)
, w2 =

(
− sinφ2

cosφ2

)
.

(5.7)

The sign convention of the angles is chosen to match the parameterization in Figure 5.1. An
example of the gapless bulk nodes is illustrated in Figure 5.2.

Let us analyze the problem in the fermionic variables. The Hamiltonian, as defined in
Eq. 5.5 in the Majorana basis, is given by

HF = 2i
∑
r

2∑
l,m=1

(
vlmχ

l
rχ̄

m
r + wlmχ

l
rχ̄

m
r+êl

)
. (5.8)

By construction, the fermionic problem is in the symmetry class BDI [150, 9]. It is topolog-
ically trivial in 2D but nontrivial in 1D. A topologically nontrivial system can be obtained
in 2D by stacking identical 1D chains, as in a weak symmetry-protected topological phase.
To this end, we introduce Fourier-transformed variables,

χlr =
1√
N2

∑
k2

χlx1,k2e
−ik2x2 , χlx1,k2 =

1√
N2

∑
x2

χlre
ik2x2 , (5.9)

where Nj is the number of sites along the êj direction, and χ̄lx1,k2 is similarly defined. Since

(χlx1,k2)
† = χlx1,−k2 is complex, one can define Majorana operators for k2 ∈ (0, π),

λx1,|k2| =
χlx1,k2 + χlx1,−k2

2
, ηx1,|k2| =

χlx1,k2 − χlx1,−k2
2i

, (5.10)
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which are both even under TR. λ̄x1,|k2| and η̄x1,|k2|, similarly defined for χ̄x1,k2 , are odd under
TR. Since Eq. 5.8 only couples χ to χ̄, upon Fourier transform HF (k2) will only couple (λ, η)
to (λ̄, η̄) and each such 1D system is in the BDI class. While the BDI class is classified by
Z in 1D, the indexes of the 1D chains here are always even: the original lattice translation
symmetry along x̂2, reflected as a local O(2) rotation between (λx1,|k2|, ηx1,|k2|), guarantees
that the Majorana zero modes at each edge occur in pairs. This can also be understood from
the doubling of Majorana modes for each k2 ∈ (0, π), as χlx1,k2 and χlx1,−k2 are now Hermitian
conjugates of each other. Such a property of the system is more manifest by relabeling the
operators as

cAl,x,k2 ≡ χlx1,k2 , cBl,x,k2 ≡ χ̄lx1,k2 , k2 ∈ (0, π), (5.11)

so that the cl are complex fermions. Eq. 5.8 is then decoupled into a series of 1D fermionic
Hamiltonians, each labeled by k2 ∈ (0, π),

HF (k2) = 2
∑
x

(
iv11c

A†
1,xc

B
1,x + iv12c

A†
1,xc

B
2,x + iw11c

A†
1,xc

B
1,x+1 + iw12c

A†
1,xc

B
2,x+1

+ i(v21 + w21e
−ik2)cA†2,xc

B
1,x + i(v22 + w22e

−ik2)cA†2,xc
B
2,x + h.c.

)
, (5.12)

where we have suppressed the subscript k2 on the operators. The original symmetry is
manifest in this notation as a sublattice (A-B) symmetry.

To characterize these 1D systems, we further Fourier transform on x, which gives

HF (k2) = 2
∑
k1

(
cA† cB†

)( 0 iRk

−iR†k 0

)(
cA

cB

)
, (5.13)

where the subscript k of the operators is suppressed, cA = (cA1 , c
A
2 )T , and similarly for cB.

The bulk topological invariant of HF (k2) is given by the winding number of det(iRk) as k1

is varied from −π to π [137]. More explicitly, we have

det(iRk) =−
(
[v1 ∧ v2] + [v1 ∧w2]e−ik2

)
−
(
[w1 ∧ v2] + [w1 ∧w2]e−ik2

)
e−ik1

≡r1(k2) + r2(k2)e−ik1 ,

(5.14)

where [v ∧w] denotes the component of the wedge product v ∧w in the ê1 ∧ ê2 direction
and r1(k2), r2(k2) are introduced to simplify the expressions. The winding number Wk2 is
determined by the relative magnitude of |r1(k2)| and |r2(k2)|. The case of particular interest
is when the winding numbers Wk2→0+ 6=Wk2→π− , which implies there must be a topological
phase transition as k2 is changed from 0 to π. Such a phase transition occurs when

|r1(0)r1(π)|+ |r2(0)r2(π)|
|r1(0)r2(π)|+ |r2(0)r1(π)| < 1, (5.15)
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and when this is satisfied the gap at E = 0 must close at some critical quasimomentum kc,
giving rise to a topological node. Such nodes in the fermionic picture are reflected in the
original bosonic problem as a pair of isolated points ±kc at which the phonon frequency
vanishes, corresponding to a bulk zero mode in the linearized spectrum.

For a system parameterized as in Eq. 5.7, we have

|r1(0)r1(π)|+ |r2(0)r2(π)|
|r1(0)r2(π)|+ |r2(0)r1(π)| = max

{
| cos (θ1 − φ1)|, | cos (θ1 + φ1 − θ2 − φ2)|

}
, (5.16)

which implies that, for general parameters, its linearized phonon spectrum always contains a
topologically protected bulk zero mode. Note that if θ1 + φ1− θ2− φ2 is an integer multiple
of π, then ω accidentally vanishes on a pair of arcs in the BZ, rendering HF (|k2|) gapless for
all |k2|. For generic parameters, the critical quasimomentum is

kc = (θ1 − φ1)x̂+ (θ2 − φ2)ŷ, (5.17)

and therefore the quasimomentum associated with the protected bulk zero mode can be
adjusted simply by tuning the angles θj and φj.

5.3 Dispersion and Robustness of Zero Modes

Conical phonon dispersion for the smooth peg model

For a stable system, the phonon frequencies satisfy ω2
±(k) ≥ 0, where the ± sign corresponds

to the two branches arising from diagonalization of the 2× 2 dynamical matrix Dk. As such
ω2
−(k) attains a global minimum at kc and therefore ∇kω−|kc = 0. Expanding ω2

−(k) around
the nodal point kc, we have

ω2
−(kc + δk) ≈ 1

2

∑
ij

∂2(ω2
−)

∂ki∂kj

∣∣∣∣
kc

δkiδkj. (5.18)

The phonon speeds around the conical dispersion are given by

1

2

(
∂2(ω2

−)

∂ki∂kj

)∣∣∣∣
kc

=
κ1κ2

2(κ1S2
1 + κ2S2

2 )

(
S2

2 S1S2Cδ
S1S2Cδ S2

1

)
, (5.19)

where we let Sj = sin kcj with kcj = θj − φj for j = 1, 2, and Sδ = sin δ, Cδ = cos δ with
δ = θ1 + φ1 − θ2 − φ2. The characteristic speeds around the nodal point are therefore given
by

c2
± =

κ1κ2(S2
1 + S2

2 )

4(κ1S2
1 + κ2S2

2 )

1±
√

1−
(

2S1S2Sδ
S2

1 + S2
2

)2
 . (5.20)

It is clear that when δ = 0, we have c− = 0, corresponding to the softening of the phonon
mode due to the line node; when δ = π/2 and S2

1 = S2
2 , we have c+ = c− and this gives an

isotropic conical dispersion (Figure 5.3).
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Figure 5.3: Linearized phonon spectrum for the smooth peg model along different paths in
the 2D BZ. The insets show the dispersion of the two independent phonon modes around
the critical quasimomentum kc. We have set m = κ1 = κ2 = 1. (a) The parameters
(θ1, φ1, θ2, φ2) = (0.1, 0.2, 0.2, 0.1)π are used. As such, θ1 +φ1− θ2−φ2 = 0, which gives rise
to an accidental vanishing of ω along a pair of arcs in BZ. This is seen in the vanishing of ω
at multiple values of k as well as the existence of a quadratic phonon mode around kc. (b)
The parameters (θ1, φ1, θ2, φ2) = (1/4, 0, 1/8,−1/8)π are used (same as Figure 5.2), which
corresponds to the generic case in which the linearized phonon spectrum contains a pair of
isolated bulk nodal points at ±kc with conical dispersion around them.

Robustness

Since the two topological nodes located at ±kc 6= 0 are isolated in momentum space, they
are robust, in the fermionic picture, against small perturbations respecting the symmetry.
This implies the phonon analogue is robust against weak arbitrary perturbations to the
rigidity matrix R, accommodating all the natural perturbations in a spring-mass model.
To test this, we study the effect of disorder. We add small random perturbations to the
parameters at each site and evaluate the disorder-averaged lowest phonon frequency found by
numerically diagonalizing the linearized dynamical matrix. The robustness is demonstrated
in the finite-size scaling of Figure 5.4. The sharp dips at N = 402 and 802 originate from
the commensuration between the finite momentum mesh and kc = ±(1/4, 1/4)π. In the
presence of disorder, the quasimomentum ceases to be a good quantum number, but the
bulk zero mode remains, as demonstrated by the decrease of 〈ω2

min〉 as system size increases.
With disorder, however, one can reasonably question whether the zero mode observed

is really an extended bulk mode or corresponds to local “rattlers.” In Figure 5.5, we plot
the disorder average of the variance of the center-of-mass for the state found. The various
curves with different disorder strengths collapse to the disorder-free one, indicating the mode
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Figure 5.4: Finite-size scaling of the lowest eigenvalue of the disordered dynamical matrix.
The linearized dynamical matrix for systems with size N = N1N2 and site-dependent cou-
plings is numerically diagonalized to find the smallest eigenvalue ω2

min. The clean system
is defined by the same set of parameters used in Figure 5.2. Disorder is incorporated by
adding to each parameter at each site a small, independent deviation drawn from a normal
distribution with standard deviation σ (κ and m are kept nonnegative by taking absolute
values). For each σ, the mean value 〈ω2

min〉 is obtained from 200 disorder realizations. Error
bars represent standard deviation in the disorder averages, and solid lines are guides for the
eye.

remains extended in nature for the disorder strengths considered.
Since the extended soft modes demonstrated here are protected by the topological prop-

erties of the linearized problem, one expects these modes to be only infinitesimal instead of
finite. In addition, when the spring-mass description is only a model for a more general sys-
tem, natural perturbations like the inclusion of small further neighbor couplings correspond
to perturbations to the dynamical matrix instead of the rigidity matrix. Such perturba-
tions can render the problem at hand nonisostatic and completely alter the structure of the
analysis. The topological protection of the modes is generally lost when confronted with
such perturbations. Therefore, it is important to distinguish between the usefulness of this
mapping when the problem is interpreted in a mechanical context, as done here, where local
isostaticity is a binary question, as opposed to a quantum mechanical problem obtained after
quantization, for which local isostaticity may only be an approximation [151].
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Figure 5.5: Disorder average of the spatial profile of the lowest-frequency mode. Error bars
indicate standard deviation from the disorder averaging.

5.4 An Alternative Model

Having analyzed a simple example model in detail, we provide here an alternative model
that is both more realistic and also exhibits a richer phase diagram. Rather than connecting
adjacent mass points by springs sliding over smooth pegs, we connect them via pinned, rigid
rotors similar to those discussed in [139] (Figure 5.6(a)). The term “rotor” refers to a mass
point restricted to rotate on a circle by a rigid rod of negligible mass. Each rotor introduces
one extra degree-of-freedom together with one extra spring. Altogether, the balance between
the number of degrees of freedom and constraints is maintained, and isostaticity is preserved.

Each rotor introduced can be characterized by four parameters: mass m, radius r of the
circle it sweeps out, and the coordinate (a, b) of the pinning point relative to the origin of
the unit cell. While these parameters can be different for the two rotors in the unit cell, for
simplicity we characterize them by the same set of parameter (m, r, a, b) (see Figure 5.6(a)).
In particular, we set the mass m to be the same as that of the mass points, the spring
constants to all be the same value κ, and the lattice constant to 1. As such, there are still
two system parameters: θ0 and φ0, which characterize the tilt of the rotors with respect to
the coordinate axes at equilibrium. The equilibrium lengths of the springs (assuming no
prestress), `lm, can then be written in terms of these parameters:

`11 =
√

(b+ r cos θ0)2 + (a+ r sin θ0)2,

`12 =
√

(b+ r cos θ0)2 + (1− a− r sin θ0)2,
(5.21)

and `21, `22 take the same form as `11, `12 but with θ0 → φ0.
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Figure 5.6: An alternative model in which the smooth pegs are replaced by pinned rotors,
which preserves isostaticity. (a) Schematic of the model indicating the different parameters.
The shaded region indicates the choice of the unit cell, and each spring in the cell is labeled
by a pair of numbers (l,m). (b) Example phase diagram with a = 0.4, b = −0.15, r = 0.1
and θ0, φ0 ∈ [−π/3, π/3]. The colored region corresponds to the TNS phase, with the
color (inset) encoding the value of ±kc. The white regions correspond to a gapped phonon
spectrum, which can still have different topological polarization PT .

The energy of the system is

E =
m

2

∑
r

(
ẋ2
r1 + ẋ2

r2 + r2(θ̇2
r + φ̇2

r)
)

+
κ

2

∑
r

2∑
l,m=1

s2
lm,r, (5.22)

where xlr denotes the displacement in the êl direction for the mass point in the unit cell
labeled by r, and slm,r denotes the spring extension of the (l,m)-th spring in the unit cell,
as indicated in Figure 5.6(a). As in Section 5.1, we linearize slm,r and obtain the rigidity
matrix via S = RX + O(X2), where X is the collective vector for the small fluctuations
{xr1, xr2, rδθr, rδφr} with δθr = θr − θ0 and δφr = φr − θ0. After Fourier transform, one
finds

Rk = `−1

(
cccc−a−r sin θ0 −b−r cos θ0 a cos θ0−b sin θ0 0

(1−a−r sin θ0)e−ik1 −(b+r cos θ0)e−ik1 −(1−a) cos θ0−b sin θ0 0
−b−r cosφ0 −a−r sinφ0 0 a cosφ0−b sinφ0

−(b+r cosφ0)e−ik2 (1−a−r sinφ0)e−ik2 0 −(1−a) cosφ0−b sinφ0

)
, (5.23)

where ` = diag(`11, `12, `21, `22).
The phase of the system is encoded in the winding numbers of the corresponding fermionic

Hamiltonians HF (k2), which we write as

det (iRk) =
(
ṽ1 + ṽ2 e

−ik2
)

+
(
w̃1 + w̃2 e

−ik2
)
e−ik1

≡r̃1(k2) + r̃2(k2) e−ik1 .
(5.24)
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The winding number Wk2 is determined by |r̃1(k2)|/|r̃2(k2)|. After some algebra, one sees
that it is determined by the sign of

f̃(k2) =(ṽ2
1 + ṽ2

2 − w̃2
1 − w̃2

2) + 2(ṽ1ṽ2 − w̃1w̃2) cos(k2)

≡f̃1 + f̃2 cos(k2),
(5.25)

where f̃1 and f̃2 are both real. More concretely, Wk2 = 0 ∀k2 if f̃1 > |f̃2|; Wk2 = −1 ∀k2 if
f̃1 < −|f̃2|; and Wk2→0+ 6= Wk2→π− otherwise, indicating the system is in the TNS phase.
For the first two cases, Wk2 is independent of k2, and it is meaningful to define the integer
n1 = −Wk2 .

The same analysis can be performed with the role of k1 and k2 interchanged, giving the
winding number Wk1 . When the phonon spectrum is gapped, the topological polarization
PT = n1ê1 + n2ê2 is well defined [139, 142]. We plot in Figure 5.6(b) an example phase
diagram of the system, demonstrating that all the described phases with different topological
polarizations can be accessed in this model.

5.5 Conclusion

We have constructed an explicit example of a parameterized family of 2D mechanical models
which host a tunable extended vibrational mode in their linearized bulk phonon spectrum.
The quasimomentum at which the bulk node exists can be chosen by tuning the parameter-
ization angles, shown in Figure 5.1. It is important to note that if a full phonon spectrum
analysis incorporating anharmonicity were to be performed, these gapless modes may be
expected to be gapped: the harmonic approximation is required in making the connection
to topological properties of free fermion Hamiltonians. However, as long as the harmonic
approximation is justified, the real phonon spectrum still contains such bulk soft modes at
finite wavevector.

Topological mechanics is still in the early stages of being studied, but it seems plausible
that mechanical models with topologically protected vibrational modes – be they in the bulk
or the surface – could find a plethora of material and engineering applications. The ability
to tune the topological properties rather easily (for instance, in tuning the parameteriza-
tion angles in our model) is quite advantageous. The topological protection provides fault
tolerance, which is highly desirable for applications in which different mechanical parts are
coupled to perform nontrivial maneuvers. Models with robust extended soft modes could
also be employed as building blocks of more complex structures which need both rigidity
for stability and flexibility for functionality [152, 142]. Our construction can also be applied
to engineer acoustic or mechanical metamaterials with programmable response to external
excitations [153, 154].
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