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Abstract 

Predicting semantic similarity judgments is often modeled as 
a three-step process: collecting feature ratings along multiple 
dimensions (e.g., size, shape, color), computing similarities 
along each dimension, and combining the latter into an 
aggregate measure (Nosofsky, 1985). However, such models 
fail to account for over half of the variance in similarity 
judgments pertaining to complex, real-world objects (e.g., 
elephant and bear), even when taking into account their 
description along dozens of dimensions. To help explain this 
prediction gap, we propose a two-fold approach. First, we 
provide the first empirical evidence of a mismatch between 
similarity predicted by feature ratings and that reported by 
participants directly along individual dimensions. Second, we 
show that, surprisingly, separate sub-domains within directly 
reported dimension-specific similarities carry different 
amounts of information for predicting object-level similarity 
judgments. Accordingly, we show that differentially 
weighting directly reported dimension-specific similarity sub-
domains significantly improves prediction of free (i.e., 
unconstrained) semantic similarity judgments. 

Keywords: similarity judgments; semantics; representation; 
feature; dimension; object; category. 

Introduction 
Similarity judgments play a fundamental role in perception 
and reasoning, helping us to learn how new stimuli relate to 
previously learned categories, and to generalize this learning 
to novel situations. More specifically, similarity provides a 
metric for cognitive processes such as categorization, 
identification, and prediction (Ashby & Lee, 1991; Lambon 
Ralph, Jefferies, Paterson, & Rogers, 2017; Nosofsky, 1991; 
Rogers & McClelland, 2004; Tversky, 1977). 

Similarity judgment has often been described as a 
mathematical function operating on descriptions of 
individual concepts along various dimensions; that is, in 
terms of their features, parts, and/or functions (Biederman, 
1987; Greene, Baldassano, Esteva, Beck, & Fei-Fei, 2016; 
Osherson, Stern, Wilkie, Stob, & Smith, 1991; Rogers & 
McClelland, 2004; Tversky & Hemenway, 1984). However, 
a consensus on the details of this function has remained 
elusive. More importantly, a major shortcoming of current 
theories of similarity is their inability to accurately predict 
the degree to which two complex real-world objects (e.g., 
two animals) are judged to be similar. For example, even if 
features along numerous dimensions (e.g., size, shape, 
color) are used to describe a collection of objects and 
compute the similarities among them, current models fail to 
capture more than half of the variance in directly reported 
similarity judgments (e.g., Osherson et al., 1991). 

To address this problem, we focus on the role that 
dimension-specific similarity may play in contributing to 
similarity judgments regarding whole objects. We start with 
the observation that most existing models used to predict 
similarity judgments between objects (‘How similar are 
these two objects?’ e.g., Ashby & Lee, 1991; Osherson et 
al., 1991) from feature ratings of individual objects (e.g., 
‘How small/large is this object?’) have used what appears to 
be a two-step procedure: a) collect empirical feature ratings 
for each object; b) represent each object as a vector of those 
feature ratings and use an element-wise operation to 
compute the distance between them as a prediction of their 
similarity. Whereas some models have differentially 
weighted separate dimensions when computing distance, in 
all cases the similarity of two objects within a given 
dimension has been assumed to be directly proportional to 
the overall distance between the two objects along that 
dimension.  To the best of our knowledge, the validity of 
this assumption has not been empirically tested.  That is, the 
similarity of complex real-world objects along a given 
dimension predicted by feature ratings has never been 
compared with direct (empirical) similarity judgments along 
that dimension (e.g., ‘How similar are these two objects in 
terms of their size?’). We sought to address this gap by 
comparing estimates of dimension-specific similarities 
generated from feature ratings with empirically acquired 
dimension-specific similarity ratings.  To the extent that 
these differed, we predicted that using the latter would 
improve prediction of object-level similarity ratings. 

Most previous models have treated all distances within a 
dimension equivalently (e.g., two small objects are just as 
similar to each other as two big objects). However, the 
theory of structural alignment of cognitive representations 
(Gentner & Markman, 1994) provides evidence that this 
may not be the case. This is also suggested by work across 
multiple domains showing that psychological quantities 
often thought to be continuous or uniform are, in fact, better 
described by non-homogeneous, and even discrete scales 
(e.g., latent cause inference, Gershman & Niv, 2010; topic 
models, Blei, 2012; anchoring effects, Tversky & 
Kahneman, 1974; discrete representation of space in 
hippocampal place cell maps, Epstein, Patai, Julian, & 
Spiers, 2017). We explored whether this phenomenon may 
extend to the domain of feature representation and/or 
similarity judgment. One specific way in which behaviorally 
reported similarity along a particular dimension could differ 
from its computation based on feature ratings is the 
(potentially differential and/or non-monotonic) weight 
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placed on specific values along that dimension. Specifically, 
we tested the hypothesis that similarities along individual 
dimensions may be best characterized by non-
homogeneously weighted quanta, and that incorporating this 
insight into aggregate measures of similarity will improve 
predictions of object-level similarity judgements. 

Materials and Methods 
To test our hypotheses, we selected ten basic-level animals 
(Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976) and 
twelve feature dimensions and collected feature ratings for 
each animal on each dimension (Experiment 1), as well as 
unconstrained object-level similarity judgments 
(Experiment 2) and dimension-specific similarity judgments 
(Experiment 3) for each pair of animals. 

Stimulus Set 
We constructed a stimulus set comprising ten basic-level 
animals (bear, cat, deer, duck, parrot, seal, snake, tiger, 
turtle, whale) and twelve explanatory features (six objective 
features: size, domesticity, predacity, speed, furriness, 
aquatic-ness; six subjective features: dangerousness, 
edibility, intelligence, humanness, cuteness, interesting-
ness). The objective features comprised a reasonable subset 
of features used throughout prior work on explaining 
similarity judgments (e.g., Osherson et al., 1991). However, 
little data has been collected how well subjective (and 
potentially more abstract or relational; Gentner, 1988; 
Medin, Goldstone, & Gentner, 1993) features can predict 
similarity judgments between pairs of real-world objects. 
Given that prior work has struggled to identify a subset of 
objective (and potentially more concrete) features that fully 
explain reported similarity judgments, we hypothesized that 
such subjective features may hold some of the missing 
variance and thus also help narrow the prediction gap 
illustrated in prior work. 

For each of our ten animal categories, we selected nine 3-
second videos showcasing the animal in its natural habitat. 
All videos were in color, contained the target animal as the 
largest and most prominent object in the scene, and were 
cropped to a size of 400x400 pixels from documentaries 
freely available online of minimum 720p quality (Fig. 1). 

 

 
Figure 1. Examples of animal videos from the stimulus set. 

Experiment 1: Feature Ratings 
275 participants were recruited through Amazon 
Mechanical Turk in return for $0.50 payment. Participants 
were asked to rate each animal category (ten trials total, one 
animal shown per trial) on a randomly chosen dimension 
(e.g., ‘How small/large is this animal?’) on a discrete scale 

of 1 to 5 (1 = low feature value, e.g. ‘small’; 5 = high 
feature value, e.g. ‘large’). In each trial, they were shown 
three randomly selected videos from that category side by 
side and were given unlimited time to report a rating. Each 
participant saw each video at most once and the order of 
videos and categories was randomized across participants. 
Nineteen participants were excluded from the final analysis 
due to non-compliance with the instructions (e.g., RT below 
200 ms for each trial, equal responses for all categories). We 
obtained average feature ratings for each animal by 
aggregating the ratings of the remaining participants (256: 
19-26 per dimension). 

Experiment 2: Object-Level Similarity 
50 participants were recruited through Amazon Mechanical 
Turk in return for $2.00 payment. Participants were asked to 
report the similarity of each pair of animals (‘How similar 
are these two animals?’; forty-five trials total) on a discrete 
scale of 1 to 5 (1 = not similar; 5 = very similar). In each 
trial, they were shown two randomly selected videos from 
different categories side by side and were given unlimited 
time to report a rating. Each participant saw each video at 
most once and the order of videos and categories was 
randomized across participants. Eight participants were 
excluded from the final analysis due to non-compliance with 
the instructions. We obtained an average object-level 
similarity for all animal pairs by aggregating the ratings of 
the remaining participants (42). 

Experiment 3: Dimension-Specific Similarity 
500 participants were recruited through Amazon 
Mechanical Turk in return for $2.00 payment. Participants 
were asked to report the similarity of each pair of animals 
(e.g., ‘How similar are these two animals in terms of their 
size?’) on a randomly chosen dimension (forty-five trials 
total) on a scale of 1 to 5 (1 = not similar; 5 = very similar). 
In each trial, they were shown two randomly selected videos 
from different categories side by side and were given 
unlimited time to report a rating. Each participant saw each 
video at most once and the order of videos and categories 
was randomized across participants. Thirty-three 
participants were excluded from the final analysis due to 
non-compliance with the instructions. We obtained average 
dimension-cued similarity measures for our animal pairs by 
aggregating the ratings of the remaining participants (467: 
30-43 per dimension). 

Results 
From Feature Ratings to Object-Level Similarity 
In Experiment 1, we collected a twelve-feature description 
for each animal in our stimulus set and we generated twelve 
rating-based dimension-specific similarity measures by 
computing the Euclidean distance between the ratings of 
each pair of animals on each dimension. Subsequently, we 
used a standard linear  regression  model  where  similarities 
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Figure 2. Experimental design and main variance explained results. 

 
computed from feature ratings along each dimension were 
treated as separate predictors to test how well feature ratings 
were able to collectively explain object-level similarity 
ratings recorded in Experiment 2. 

Consistent with prior work (Osherson et al., 1991), we 
found that by generating distances between animals from 
the feature ratings collected in Experiment 1 and 
subsequently optimally combining them into an aggregate 
measure (by weighting each dimension separately), we 
could predict object-level similarity collected in Experiment 
2 reasonably well (r2=0.42, p<0.01). By contrast, a similar 
procedure that combined each dimension equally had lower 
predictive power for object-level similarity (r2=0.12, 
p<0.05) and each dimension individually did not usually 
predict object-level similarity above chance (Fig. 2, top; 
size: r2=0.03, p=0.30; domesticity r2<0.01, p=0.98; 
predacity: r2<0.01, p=0.80; speed r2=0.07, p=0.08; furriness: 
r2=0.19, p<0.01; aquatic-ness r2=0.09, p=0.04; 
dangerousness: r2<0.01, p=0.77; edibility r2<0.01, p=0.92; 
intelligence: r2=0.04, p=0.20; humanness r2<0.01, p=0.53; 
cuteness: r2<0.01, p=0.61; interesting-ness r2=0.04, p=0.19). 
Given the diversity of features tested, this suggests that 
similarity computed from feature ratings along individual 
dimensions cannot directly explain reported object-level 
similarity, unless combined into an aggregate measure. Even 
then, despite an over-representation of dimensions 
compared to objects being compared (twelve dimensions 
and ten animals), more than half of the variance in object-
level similarity remains unexplained. 

Empirical Dimension-Specific Similarity 
To address this prediction gap, we hypothesized that a 
mismatch may exist between the similarity computed from 
feature ratings along various dimensions (e.g., using 
Euclidean distance) and the empirical dimension-specific 
similarity that participants would report if asked directly. To 
test this, in Experiment 3, we collected empirical 
dimension-specific similarity judgments for all pairs of 
animals (i.e., ‘How similar are these two animals in terms of 
their size?’) and used these judgments (instead of building a 
dimension-specific similarity measure from feature ratings 
along those dimensions) to predict object-level similarity. 

We found that reported dimension-specific similarity was 
highly predictive of object-level similarity, not only at the 
aggregate level (r2=0.94, p<0.01), but also significantly for 
most individual dimensions (Fig. 2, bottom right; size: 
r2=0.30, p<0.01; domesticity r2=0.32, p<0.01; predacity: 
r2=0.28, p<0.01; speed r2=0.61, p<0.01; furriness: r2=0.76, 
p<0.01; aquatic-ness r2=0.35, p<0.01; dangerousness: 
r2=0.10, p=0.04; edibility r2=0.60, p<0.01; intelligence: 
r2=0.85, p<0.01; humanness r2=0.86, p<0.01; cuteness: 
r2=0.67, p<0.01; interesting-ness r2=0.91, p<0.01). 
Furthermore, we observed a dichotomy between objective 
and subjective dimensions: the former contained less 
overlapping information about object-level similarity 
compared to the latter and, simultaneously, subjective 
dimensions were much more predictive of object-level 
similarity compared to objective dimensions (Fig. 2, bottom 
right; Fig. 3; ANOVA main effect of subjectivity, p<0.01). 
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Figure 3. Variance explained by empirical dimension-specific similarity. 

 
This suggests that the potential disconnect between 

similarity given by feature ratings along individual 
dimensions and reported object-level similarity may be due 
to limitations in building an accurate dimension-specific 
similarity measure from the feature ratings themselves. To 
test this possibility further, we measured how well empirical 
dimension-specific similarity could be predicted from the 
similarity generated from feature ratings along that 
dimension. There was high agreement between the two 
similarity measures (computed and empirical) for most 
dimensions considered in our experiments (Fig. 2, bottom 
left; size: r2=0.62, p<0.01; domesticity r2=0.51, p<0.01; 
predacity: r2=0.38, p<0.01; speed r2=0.40, p<0.01; furriness: 
r2=0.40, p<0.01; aquatic-ness r2=0.82, p<0.01; 
dangerousness: r2=0.85, p<0.01; edibility r2=0.18, p<0.01; 
intelligence: r2=0.12, p=0.02; humanness r2=0.01, p=0.49; 
cuteness: r2=0.26, p<0.01; interesting-ness r2=0.06, p=0.11). 
Furthermore, we found that feature ratings for objective 
dimensions were much more predictive of empirical 
dimension-specific similarity compared to subjective ones 
(ANOVA main effect of subjectivity, p<0.01), an effect 
directly opposite to the one between empirical dimension-
specific similarity and object-level similarity (ANOVA 
interaction effect objective/subjective dimension x 
computed/empirical dimension-specific similarity, p<0.01). 

Taken together, our results suggest that a significant 
portion of the missing explanatory power between similarity 
given by feature ratings and empirical object-level similarity 
judgments may lie in the intermediate step of constructing 
dimension-specific similarity. Moreover, this suggests the 
possibility that not all features are created equal in terms of 
how they relate both to the dimension-specific similarity 
they induce, and to how those intermediate dimension-
specific similarity measures are subsequently combined to 
generate object-level similarity (as evidenced by the 
interaction effect we observed). 

Non-Homogenous Within-Dimension Information 
An alternative (or potentially complementary) explanation 
for the mismatch we observed between similarity derived 

from feature ratings and explicit similarity judgments 
between pairs of objects may arise from challenging the 
long held assumption that similarity information is 
uniformly distributed within each dimension. More 
specifically, consistent with the predictions of structural 
alignment theory (Gentner & Markman, 1994), it is possible 
that less similar (or conversely, highly similar) pairs of 
objects within a dimension may hold disproportionally more 
relevant information for computing overall similarity 
between those objects (for example, the fact that a mouse 
and a gerbil are almost identical in size may be much more 
informative for how similar they are judged, than the fact 
that a mouse and a rabbit have different sizes). 

To test this hypothesis, we partitioned the similarity 
computed for each dimension based on feature ratings 
(Experiment 1) into a ‘low similarity’ half and ‘high 
similarity’ half and used each of these halves separately to 
predict empirical dimension-specific similarity judgments 
(Experiment 3). Across dimensions, we found that the two 
similarity halves behaved in an unsurprising manner: both 
low and high similarity were useful for predicting empirical 
dimension-specific similarity (Fig. 4, left; dimensions with 
significant prediction, Wilcoxon sign-rank test: predict 
empirical dimension-specific similarity, high vs. low, 
p=0.76).  

We applied an analogous split-half analysis to the 
empirical dimension-specific similarity judgments 
(Experiment 3) to predict reported object-level similarity 
(Experiment 2). Here, we found strong evidence of within-
dimension non-homogeneity: when predicting object-level 
similarity, the high similarity half of empirical dimension-
specific similarity contained much more useful information 
than the lower similarity half (Fig. 4, right; dimensions with   
significant prediction Wilcoxon sign-rank test: predict all 
object-level similarity, high>low, p<0.01). 

The observation that high and low empirical dimension-
specific similarity contained differing amounts of 
information relevant to predicting object-level similarity 
suggests that it may be possible to improve the prediction of 
object-level similarity if the sub-domains of each dimension 

533



 

 

 
Figure 4. Non-homogenous information distribution within empirically reported dimension-specific similarity.

are weighted differently. Indeed, we found that using 
independent weights for each half of the empirical 
dimension-specific similarity explained more variance in 
object-level similarity (full < half dimensions, p=0.007; 
adjusted for the number of predictors). However, the same 
was not true for similarity computed from feature ratings 
along each dimension (full < half dimensions, p=0.250; 
adjusted for the number of predictors). 

Taken together, these results suggest that separate sub-
domains within each feature similarity continuum may 
contribute differently to how that particular feature explains 
similarity between the objects it describes. Furthermore, this 
provides further evidence for an important dichotomy 
between the two steps of the process of first building 
dimension-level similarity from feature ratings and 
subsequently combining this intermediate measure into a 
unified similarity judgment. 

Discussion 
The findings we report provide evidence that some of the 
missing explanatory power between feature ratings of 
individual objects and reported similarity between pairs of 
objects rests within the intermediate step of constructing an 
accurate dimension-specific similarity. Our design was the 
first, to our knowledge, to empirically measure the 
intermediate step of dimension-specific similarity for the 
purpose of quantifying its explanatory power for object-
level semantic similarity judgments, compared to building 
models directly relating feature ratings to object-level 
similarity. 

Furthermore, we showed that fine-grained distinctions 
between types of features (objective vs. subjective) interact 
across this intermediate computational step to diminish a 
direct predictive path from feature ratings to reported 
similarity. From prior observations (e.g., Gentner, 1988; 
Medin et al., 1993), we expect subjective, or potentially 
more relational features (e.g., humanness), to be more 

correlated with object-level similarity than objective, 
potentially more primitive features (e.g., size). In our work, 
however, we found that this relationship held only when 
using empirical dimension-specific similarity to predict 
object-level similarity, whereas the opposite was true when 
using similarity computed from feature ratings to predict its 
empirically observed counterpart. This dichotomy invites 
future work that investigates how similarity judgments 
differ across feature taxonomies in the context of empirical 
vs. computed dimension-specific similarities. 

In most previous similarity models, usually a single 
weight was learned or posited for each object feature or 
dimension (e.g., Nosofsky, 1991; Osherson et al., 1991; 
Rogers & McClelland, 2004). However, we found that 
information within most features we examined was 
asymmetrically contained in distinct points along a putative 
continuum of representations (Fig. 4, right: high empirical 
dimension-specific similarity was an overwhelmingly better 
predictor of object-level similarity across a majority of 
dimensions, compared to low empirical dimension-specific 
similarity). This finding is consistent with the predictions of 
structural alignment theory applied to similarity between 
object pairs (Gentner & Markman, 1994) and, interestingly, 
this effect manifested most strongly when combining 
empirical dimension-specific similarities into an aggregate 
measure of object-level similarity, but less so when 
similarity was computed from feature ratings along those 
same dimensions. This suggests that participants may 
perform a systematic discounting of low similarity only 
after it has been already identified as such at the dimension 
level, and furthermore, that classical measures of 
dimension-specific similarity fail to take into account this 
effect. Alternatively, participants may be subject to an 
anchoring effect (Tversky & Kahneman, 1974) due to our 
experimental question emphasizing similarity over 
dissimilarity (‘How similar are these two animals?’). While 
this account would still not fully explain the asymmetry of 

Low and High Rating-Based Dimension-Specific Similarity Are 
Both Informative for Empirical Dimension-Specific Similarity

Empirical Dimension-Specific Similarity

Low Values High ValuesShared Low/High ValuesVariance Explained By Rating-Based 
Dimension-Specific Similarity:

0.210.360.07

SIZE DOMESTICITY PREDACITY SPEED FURRINESS DANGEROUSNESS

AQUATICNESS EDIBILITY INTELLIGENCE

0.02 0.06

HUMANNESS

0.010.100.15

CUTENESS INTEREST

0.030.01 0.03

0.210.360.07

***

***
Significance
of Full Model

0.040.280.07

***

***
**
*
‡

p < 0.001

p < 0.01

p < 0.05

p < 0.10

not significantn.s

0.140.210.06 0.190.210.03

0.010.060.05

‡ n.s.

0.270.15

***

0.09 0.13 0.140.59

0.520.17 0.13 0.050.03 0.11

*** *** ***

*** * ** n.s.

High Empirical Dimension-Specific Similarity Is 
More Informative for Predicting Object-Level Similarity

Object-Level Similarity

Low Similarity High SimilarityShared Low/High SimilarityVariance Explained By Empirical
Dimension-Specific Similarity:

0.360.560.03

SIZE DOMESTICITY PREDACITY SPEED FURRINESS DANGEROUSNESS

AQUATICNESS EDIBILITY INTELLIGENCE

0.33 0.52

HUMANNESS

0.540.230.01

CUTENESS INTEREST
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***

***
Significance
of Full Model
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***
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‡

p < 0.001
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0.410.210.03 0.510.300.01
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‡

0.08

***

0.34 0.090.04

0.16 0.28 0.570.15

*** ***

****** *** *** ******

0.04
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the effect across computed vs. empirical dimension-specific 
similarities, it may nevertheless be tested in future work by 
re-running the current experiments with the opposite prompt 
(‘How different are these two animals?’). In any event, our 
findings suggest that – whether induced by local attentional 
effects, such as anchoring, or more stable representational 
factors – inhomogeneity in the influence of different points 
along a putatively continuous dimension may be an 
important factor in predicting object-level similarity. 

Our results were derived under the assumption that 
Euclidean distance represents a reasonable measure for 
computing a dimension-specific similarity function from 
feature ratings. In a pilot version of our experiment, we 
additionally tested an exponential decay distance function 
(Shepard, 1988), a Gaussian similarity function (Nosofsky, 
1985), and a city-block distance measure (Attneave, 1950; 
Garner, 1974). We chose Euclidean distance for our main 
experiment since all measures evinced qualitatively similar 
results, but Euclidean distance provided the highest average 
predictive power of all metrics we tested. Additionally, we 
did not observe any asymmetric similarity or comparison 
order effects (Medin et al., 1993; Nosofsky, 1991) 
pertaining to the sequential presentation of our stimuli 
during Experiments 2 and 3. A separate pilot experiment 
confirmed that the order of presentation for each animal 
within each trial/pair did not have any significant effect on 
the similarity ratings reported for that trial/pair). 

One potential limitation of our study is the possibility that 
overall object-level similarity may exert a covert influence 
on dimension-specific similarity judgments collected in 
Experiment 3. Depending on the difficulty and unusualness 
of performing some dimension-level tasks (e.g., asking 
participants to actively consider ‘humanness’ of animals), 
participants may default to using object-level similarity as a 
prior and/or reporting a mixture of object-level and 
dimension-specific similarity as their overall judgment. 
Another potential limitation is a disparity between the 
Experiment 1 task (judgments involving single animals) and 
those of Experiments 2 and 3 (comparisons between two 
animals), which may affect the ability of similarity derived 
from the former to explain empirical similarity reported in 
the latter. We employed a design geared towards 
minimizing such effects (e.g., animals were presented 
sequentially in Experiments 2 and 3). However, the 
possibility remains that contextual effects and/or a meta-
effect of actively performing a comparison versus a 
individual ratings may artificially increase the agreement 
between patterns of judgments in Experiments 2 and 3, 
compared to Experiment 1. Such complex effects should be 
further assessed in future experiments. 

Given recent neuroimaging work suggesting an 
interaction between cognitive control (anterior cingulate 
cortex, ACC) and infero-temporal cortical regions in 
computing similarity judgments (Keung, Cohen, & 
Osherson, 2016; Lambon Ralph et al., 2017), our results 
provide an interesting hypothesis for elucidating the neural 
underpinnings of similarity judgments and their 

susceptibility to attention and other sources of bias. More 
specifically, the computations of dimension-specific 
similarities may be a precursor for computing object-level 
similarity, and thus the successful decomposition of the 
latter into a collection of the former may be measurable at 
the neural level as attention-induced perturbations in the 
representations of objects or semantic concepts (Çukur, 
Nishimoto, Huth, & Gallant, 2013). Furthermore, by 
showing evidence for discretization of information across 
multiple dimensions of similarity judgment, our work opens 
the possibility that semantic space may be internally 
represented as a cognitive map akin to ones theorized and 
investigated for spatial navigation in the hippocampus 
(Epstein et al., 2017). An interesting avenue for future work 
would be to test such a cognitive map model for computing 
similarity, potentially based on a semantic place cell 
analogy, where similarity judgments would operate as 
(potentially non-linear) transformations on distances 
between discrete points in dimension-specific feature maps. 
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