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Abstract

This introductory editorial paper provides a review and prospective 
outlook of the achievements and challenges in karst research under a 
changing environment. A brief discussion of the past and future karst 
research has been focused on: (1) data and new technologies; (2) 
modeling of karst flow and reactive transport; (3) responses of karst 
hydrosystems to climate variability and changes across scales.
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Introduction

Karst is a term used to describe a special landscape con- taining caves 
and extensive underground water systems that is developed by 
dissolution in the carbonate rocks such as limestone and gypsum (Ford 
and Williams 2007). Karst terrains undergo considerable dissolution to 
create and enlarge joints, fractures, bedding planes, and other open- ings
in which groundwater flows. These terrains show dis- tinctive surface and 
subsurface features associated with sinkholes, springs, caves, and 
sinking, losing, and gaining streams, which are characterized by well-
developed conduit networks having high connectivity (e.g., Xu et al. 
2015a, b) and/or highly transmissive zones (e.g., Kuniansky 2016). These 
characteristics make some karst groundwater sys- tems highly productive
and become important freshwater resources for human consumption and 
ecological integrity of streams, wetlands, and coastal zones (Padilla and 
Vesper 2018; White 2018). Karst regions underlie approximately 10% of 



the ice-free continental area, and karst aquifers par- tially supply drinking 
water resources to almost a quarter of the world’s population (Ford and 
Williams 2007). Stress on water resources in karst aquifers has increased 
significantly in recent decades, associated with the limited quantity of 
water supply and deterioration of water quality (Hartmann et al. 2014). 
Available water resources have become the major constraint for many 
karst regions, for example, in Southwest China (Lu 2007), where 
management of land, people and water resources is a critical 
environmental chal- lenge in rocky desertification areas (Jiang et al. 
2014). In addition, many geohazards in karst areas, for instance, sink- 
hole collapse and land subsidence, are strongly related to over-utilization 
of groundwater, inappropriate limestone mining, and other human factors
(Kuniansky et al. 2016).

The characteristics of large connectivity and void spaces, which make 
karst aquifer systems highly productive, also make them highly 
vulnerable to contamination (Göppert and Goldscheider 2008). Surface 
karst features and large per- meability in the subsurface enhance the 
ability to transport contaminants over long distances, particularly through
well- developed conduit networks. The porous matrix of the karst rocks 
and the significant amount of sediments trapped in karst formations 
provide high storage capacity for contami- nants that can be slowly 
released for long periods of time. As a result, karst systems can serve as 
an important route for contaminant exposure to humans and ecosystems 
(Padilla et al. 2011). Groundwater quality impacted from point and non-
point sources of contamination have been widely stud- ied in karst areas 
(e.g., Padilla and Vesper 2018; Xu et al. 2015b; Yu et al. 2015).

Karst systems are highly dynamic and heterogeneous, with complex 
hydrological, geochemical, and biological processes that affect the 
transport of water, solutes, and non- aqueous entities over a wide range 
of spatial and temporal scales. Fundamental knowledge exists on many of
these pro- cesses and several predictive and characterization models 
have been developed and applied to karst systems. Tremen- dous 
challenges and uncertainties are faced when trying to characterize, 
predict exposure, implement remedial actions, and manage contaminated
systems, particularly in a chang- ing environment, including climate 
change, human impacts, etc. A need exists to advance knowledge and 
technology for understanding the hydrological response of karst systems 
to those changes, and to develop appropriate management and 
remediation approaches.

Interdisciplinary studies, including collaborations and expertise from a full
range of scientific and engineering disciplines, are in high demand for 
assessment of water resources availability, chemical dynamics, and 
potential con- taminant exposure in a karst aquifer. For example, 
advanced monitoring sensors and instruments for physical and chemi- cal 



hydrology can enhance data availability in field geol- ogy, particularly in 
deep subsurface karst conduit networks. Interactions between bio-
geosciences, atmospheric sciences, and marine and oceanographic 
sciences help fully address earth system processes in karst studies. 
Statistical, math- ematical, scientific computing, and data sciences 
knowledge contributes to build the state-of-the-art physical-based and/ or 
data-driven modeling approaches to the study of karst hydrogeology. 
Collaborative works between engineers, hydro-scientists, and public 
health experts are mapping the way to assess direct links between 
contamination in karst regions and adverse health outcomes (Cordero et 
al. 2018).

Major achievements and challenges in karst research

Papers in this thematic issue help to summarize the knowl- edge learned 
in the past, to review the progress of ongoing research, and to predict 
major challenges in the future. This section is organized into three 
perspectives: (1) data and new technologies; (2) modeling of karst flow 
and reactive transport; (3) responses of karst hydrosystems to climate 
variability and changes across scales.

Data and new technologies

Limited laboratory and field observational data have been a major 
constraint in karst research. Laboratory experiments have been 
extensively developed to study the groundwater and solute transport 
(e.g., Faulkner et al. 2009; Anaya et al. 2014), and reactive transport 
(e.g., Geyer et al. 2007), in the interaction among karst conduits, 
fractures, and porous medium. Unlike the alluvial sandstone aquifers, 
karst fea- tures, including sinkholes, karst windows and conduit net- 
works, are difficult to be successfully explored by traditional 
hydrogeological field methods. For example, the subsurface karst conduit
networks are found at nearly 100 m below land surface in the Woodville 
Karst Plain, North Florida (Werner 1998), which led to difficulties in field 
investigation. Tracer tests have been widely applied in the studies of 
karst aquifers to resolve the active and often inaccessible part of cave 
and conduit networks, and to evaluate the hydraulic connectivity in karst 
aquifers (Goldscheider et al. 2008; Werner 1998). Geochemistry data 
were widely collected to study the global carbon cycle, including carbon 
flux data for biogeochemical cycle (Gill and Finzi 2016), aquatic 
carbonate concentration for the contribution of carbonate weathering to 
atmospheric CO2 (Huang et al. 2015), and karst-related carbon sink 
(Zeng et al. 2016), from watershed to global scales.

Utilization of  advanced instruments  and  technologies is critical to 
provide more data and detailed descriptions  to gain insights into karst 
research, particularly in the deep subsurface conduit networks considering
the difficulties and complexities of karst exploration. Xu et al. (2016) 
reported a flow speed, flow direction, and electrical conductivity moni- 



toring work over a long-term period, with the help of cave divers at the 
100-m deep conduit in the Woodville Karst Plain, Florida. This study 
discovered potential seawater intrusion through subsurface conduit 
networks in the coastal karst aquifer, which indicated a trend of rising sea 
levels, and analyzed its impacts on groundwater contamination. It is also 
crucial to capitalize on long-term data, where available, and accordingly to
develop and maintain long-term observa- tories of karst hydrosystems. On
the other hand, investiga- tion of conduit network geospatial distribution 
and physical geometry is in high demand in karst research by deploy- ing 
advanced and new monitoring techniques. In recent years, Kenney et al. 
(2012) developed a neutrally buoyant sensor method for mapping a water
pathway in the direc- tion of subsurface conduit flow.  In Weidner et al. 
(2017),  a systematic approach for the 3-D mapping of underwater caves 
utilized the intersection of video light with the cave boundaries to describe
the outline of the cave. Further works are required to apply these newly 
developed techniques in field application, improve the data resolution and
quality, and transform measurements to actionable information.

Modeling of karst flow and reactive transport

Modeling karst groundwater flow and contaminant trans- port in karst 
systems pose particular challenges because of their highly heterogeneous
nature, wide spectrum of flow regimes (ranging from laminar to turbulent 
flow), lack of proper data for accurate characterization, and limited appli- 
cable models with full physical processes, among others. Numerical 
models are often used to describe flow and trans- port trends, as long as 
they are applied within the limits of their realm. Several modeling 
approaches exist for simu- lating groundwater flow and contaminant 
transport in karst aquifers, for example, the lumped and distributed 
models of varying complexities (Ghasemizadeh et al. 2012; Hart- mann et
al. 2014; Scanlon et al. 2003). Dual-permeability hydrogeological system 
is one of the major challenges in simulating groundwater flow in a karst 
aquifer, which con- sists of both high-permeability conduits and fractures, 
and low-permeability surrounding porous media. Different from the 
porous media in the alluvial aquifer, groundwater flow within the high-
permeability conduits and fractures can eas- ily become non-Darcian and 
even beyond the upper criti- cal Reynolds numbers. The non-Darcian 
conduit flow and Darcian porous medium flow are computed and coupled 
in the discrete-continuum hybrid models (Liedl et al. 2003; Shoemaker et 
al. 2008), which have been widely used to simulate variable-saturation 
flow conditions (Reimann et al. 2011) and groundwater contamination 
transport issues (Xu et al. 2015a) in karst aquifers. The recharge reservoir
model is developed and coupled with discrete-continuum models to 
simulate surface and subsurface flow in karst systems under various 
rainfall conditions (Chang et al. 2015; Chen et al. 2017). A density-
dependent discrete-continuum model has been developed in Xu and Hu 
(2017) as a new mod- eling method to study seawater intrusion through 



conduit networks in a karst aquifer, providing a way to simulate the 
impacts of sea level rise under changing climate. Future work of more 
accurate parameterizations is highly desired and deterministic in karst 
modeling applications, particularly the exchange flux between conduit 
and porous medium, the dispersion coefficient, and friction factor within 
the con- duit. In addition, high-performance computing and advanced 
numerical methods are desired to solve the karst hydrology models more 
efficiently and accurately, with fully coupled physical-based processes in a
finer resolution.

At regions with limited data availability, simplified karst

modeling approaches are applied that represent the domi- nant dual 
permeability processes of karst systems by varying combination of 
buckets that represent the important stor- ages of the karst system: the 
soil, epikarst, karst matrix, and conduits (Hartmann et al. 2014). In recent
years, research focused on quantifying the uncertainty that results from 
those simplified karst modeling approaches (Chen et al. 2017; 
Adinehvand et al. 2017; Xu et al. 2018) and quantify- ing the information 
content of auxiliary data as hydrochemi- cal information (Hartmann et al. 
2017a, b) or geophysical measurements (Mazzilli et al. 2013). Future 
research is nec- essary to further explore the value of auxiliary data and 
to link the advantages of these simplified modeling approaches and the 
above-mentioned physically based approaches.

The subsurface conduit network is formed by a positive feedback 
mechanism between dissolution by water under- saturated with respect 
to calcite and the amount of water percolating through a carbonate rock 
(Worthington and Ford 2009). Physical-based reactive transport modeling
(RTM) in hydrology is important to investigate the evolution of frac- tures 
and conduits, and to compute carbon mass balance in multiple temporal 
and global spatial scales. For example, Rehrl et al. (2008) developed a 
discrete-continuum RTM  to couple aquatic chemical reaction processes 
with ground- water flow and transport models to examine the interrela- 
tion between the hydrogeological environment and conduit development 
in a deep-seated setting. In a  recent study, de Rooij and Graham (2017) 
presented a hydrochemical model that can be used to generate plausible
karstic conduit networks that honor what is known about geology, hydrol-
ogy, and topography of a karst system. Conduit evolution modeling, 
however, is still an oversimplification of reactive transport processes that 
requires further investigations in the limited number of chemistry 
processes, coarse spatial resolution, and lack of validation. On the other 
hand, sto- chastic and statistical modeling in karst conduit evolutions 
have been widely applied to help build the conduit networks in hydrologic
numerical modeling (Jaquet et al. 2004; Pardo- lguzquiza et al. 2012). 
Prior information, sampling methods, computational cost, and lack of real
conduit network valida- tion data are still unresolved issues and open 



questions for stochastic simulations of karst networks.

Response of karst hydrosystems to climate variability and change 
across scales

To understand the impacts of global climate change on water resources 
in karst aquifers, the scalability of hydro- logic models becomes critical, 
from pore scale to regional scale. Owing to the very heterogeneous 
nature of the karst, such hydrosystems may display particular 
hydrological behaviors that need to be thoroughly analyzed and mod- 
eled. The interaction between watershed-scale hydrologic models and 
regional, even global-scale climate models has been investigated in a 
number of studies, such as the US National Water Model (currently under 
development, http:// water.noaa.gov/about/nwm) and European Flood 
Awareness System (Kauffeldt et al. 2015). None of the above, how- ever, 
address the complexity of karst aquifers, or have been applied in either 
karst watersheds or on a large regional scale of karst land mass. Some 
recent work showed that the reli- ability of presently applied large-scale 
simulation tools is strongly limited (Hartmann et al. 2015, 2017). In 
addition, global-scale biogeochemical simulations are essential to 
evaluate the roles of karst regions in global carbon cycles, particular 
carbon sink effects in carbonate rock dissolution and weathering. The 
upscaling of current hydrology models in karst aquifers from the dual-
permeability watershed scale to global scale becomes important to 
carbon budget estima- tion. The hydrologic and aquatic geochemistry 
processes in a karst aquifer, including interaction of non-linear and linear 
flow, and reactive transport in carbonate rock dissolution and 
precipitation processes, have potential impacts on global carbon cycle 
and should be included in future earth system modeling studies.

On the other hand, most karst distributed models are still developed 
based on some traditional hydrology models that only solve the Darcy 
equation in the aquifer, for example, MODFLOW-CFP (Shoemaker et al. 
2008), with very sim- plified land surface processes. The hydrological 
interactions between atmosphere and land have been addressed in 
several integrated hydrology models, including PF.WRF (Maxwell et al. 
2011) and WRF-Hydro (Gochis et al. 2013); however, they have rarely 
been integrated with dual-permeability hydrology models and applied in 
karst regions. These inte- grated hydrology models are advanced with 
physical-based land surface models to study the responses of increasing 
temperature, dynamic vegetation, precipitation variability, and human 
factors. For example, early snowmelt processes under changing climate 
control groundwater table fluctua- tion and then affect carbonate 
dissolution and water chemis- try (Winnick et al. 2017). Integration of land
surface models and dual-permeability hydrology models becomes the key
for a successful simulation of hydrological and biogeochem- ical 
responses in karst aquifers under climate change.



Preview of the papers expected to be accepted

The scientific community of earth science has become even more aware 
of the significant and grand challenges fac- ing water resources and 
ecosystems in karst aquifers. An increasing number of karst-related 
research studies have been initiated and developed worldwide in recent 
years. For example, the number of abstracts submitted to the karst ses- 
sion in AGU has increased in the past 3 years (22 in 2015, 28 in 2016 and 
37 in 2017). Among these, a significant number of studies have been 
cross-listed with biogeoscience, global environmental change, 
atmospheric, and oceanography.

In response to the increasing amount of karst research, this thematic 
issue on “Characterization, Modeling, and Remediation of Karst in a 
Changing Environment (AGU)” with Environmental Earth Sciences (EES) 
will be composed of papers on research related to the characterization, 
moni- toring, and modeling of hydrogeology, morphology, biogeo- 
chemistry, geohazards, and remediation of carbonate and karst water 
systems at multiple temporal and spatial scales.
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