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Endometrial cancer (EC) is the most common 
gynecologic malignancy in the USA, with an 
estimated 46,470 cases diagnosed in 2011 [1]. 
It is a heterogeneous disease that can be largely 
classified into two major types: type I ECs, the 
most common type, which are usually of endo-
metrioid histology, and are often associated with 
obesity; versus type II ECs, which are of non-
endometrioid histology (e.g., papillary serous 
or clear cell), are not a result of unopposed 
estrogen, and usually carry a worse prognosis 
[2]. Despite a good survival rate for early-stage 
and Type I ECs, the prognosis for advanced-
stage EC has been poor, with survival rates of 
just 12 months for patients with metastatic EC 
enrolled in chemotherapy trials [3]. Few effec-
tive treatment options are currently available for 
advanced stage EC, with a limited number of 
novel biologics showing promise, such as mTOR 
inhibitors and bevacizumab, both with approxi-
mately 14% clinical response rates in Phase II 
trials [4–6]. There is thus a dire need for a search 
for further treatment options in advanced EC. 
Importantly, the molecular pathogenesis of EC 
is understudied, and research in this field has 
lagged far behind breast, ovarian, and cervical 
cancer in terms of grant money allocation and 
progress. Despite a clinicopathologic model to 

predict prognosis based on a surgical pathology 
study carried out by the Gynecologic Oncology 
Group (GOG) in the 1970s (GOG 33) [7], little 
is known of the molecular characteristics to pre-
dict who will recur, and who should receive what 
type of treatment (e.g., adjuvant radiation and 
chemotherapy). Moreover, the response to radia-
tion, cytotoxic or hormonal therapy is difficult to 
predict. Therefore, identifying novel molecular 
biomarkers and therapeutic targets is imperative.

The Wingless-type (Wnt) signaling pathways 
play key roles in embryonic development and 
maintenance of tissue homeostasis, but addition-
ally regulates diverse developmental processes, 
such as proliferation, differentiation, motility, 
and survival and/or apoptosis. Dysregulation 
of the Wnt pathway has been implicated in a 
variety of human malignancies, most notably 
in colorectal cancer (CRC). Greater than 90% 
of all CRCs carry an activating mutation of the 
canonical Wnt signaling pathway, most fre-
quently in the form of a mutational inactiva-
tion of adenomatous polyposis coli (APC) [8]. 
This ultimately leads to the stabilization of the 
cytoplasmic pool of b-catenin, resulting in its 
accumulation and translocation to the nucleus, 
where b-catenin associates with T-cell factor 
(TCF)/lymphoid enhancer factor-1 (LEF1) and 
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While the role of Wnt signaling is well established in colorectal carcinogenesis, its function in 
gynecologic cancers has not been elucidated. Here, we describe the current state of knowledge 
of canonical Wnt signaling in endometrial cancer (EC), and its implications for future therapeutic 
targets. Deregulation of the Wnt/b-catenin signaling pathway in EC occurs by inactivating 
b-catenin mutations in approximately 10–45% of ECs, and via downregulation of Wnt antagonists
by epigenetic silencing. The Wnt pathway is intimately involved with estrogen and progesterone,
and emerging data implicate it in other important signaling pathways, such as mTOR and
Hedgehog. While no therapeutic agents targeting the Wnt signaling pathway are currently in
clinical trials, the preclinical data presented suggest a role for Wnt signaling in uterine
carcinogenesis, with further research warranted to elucidate the mechanism of action and to
proceed towards targeted cancer drug development.
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promotes transcription of target genes. Some CRCs exhibit con-
stitutive b-catenin/TCF transcriptional activity despite the lack 
of an inactivating APC mutation. This has been shown to result 
from activating b-catenin gene mutations [9]. Thus, an inactivat-
ing APC gene mutation approximates an activating b-catenin gene 
mutation: both lesions finally lead to the initiation of constitutive 
b-catenin/TCF-mediated transcription and CRC progression.

Since these key findings in CRC, the role of Wnt signaling in
carcinogenesis in many other solid tumors has been explored, 
including melanoma, osteosarcoma, other gastrointestinal can-
cers, prostrate, breast, liver, lung and ovarian cancer [10]. In the 
late 1990s, investigations into the role of Wnt signaling in uterine 
cancers have primarily focused on findings of b-catenin gene 
mutations. While activating b-catenin mutations are detected 
in 50% of CRCs that contain wild-type APC [9], b-catenin 
gene mutations in EC are less common. Early studies report a 
b-catenin mutation frequency of 10–45% in ECs [11–21], with
frequent associated b-catenin nuclear accumulations in tumors 
with gene mutations. These findings were more common in endo-
metrioid (type I) ECs than in nonendometrioid ECs. By contrast, 
APC mutations are less common, with a mutation frequency of 
10% or less [22]. More recently, there has been increasing evidence 
to suggest that altered expression of Wnt antagonists, including 
members of both the SFRP family [23–27] and Dickkopf family 
[27–37], may be associated with human cancer development and 
progression. The Dickkopf proteins are secreted Wnt inhibitors 
which induce removal of the Wnt coreceptor low-density lipo-
protein receptor-related protein (LRP), and thus prevent Wnt 
signaling. Dkk3 is a member of the Dickkopf family, and has 
been suggested as a tumor suppressor [31]. Its overexpression 
suppresses tumor growth in vitro in osteosarcoma [27], although 
Dkk-3 knock-out mice have shown no enhanced tumor forma-
tion [29]. The SFRP family members are putative extracellular 
modulators of the Wnt pathway, which can directly bind Wnt 
ligands and inhibit Wnt signaling. Several reports have surfaced 
regarding the downregulation or inactivation of SFRPs in human 
cancers, suggesting a role for SFRPs as tumor suppressors [26,38]. 
In prostate cancer, SFRP3 suppresses tumor growth and invasion 
in prostate cancer cells in vitro [26], while in hepatocellular carci-
noma (HCC), SFRP1 is significantly downregulated in human 
HCC specimens, as compared with their adjacent noncancerous 
tissues; additionally overexpression of SFRP1 in vitro significantly 
inhibits cell growth and colony formation in HCC cells [38]. SFRP 
expression has been associated not only with carcinogenesis in a 
number of solid cancers, but also with prognosis and survival; this 
has been reported in breast cancer, where aberrant methylation of 
the SFRP1 promoter is associated with a poor overall survival [39]. 
Furthermore, knockdown of SFRP1 in non-malignant mammary 
cells showed increased cellular proliferation, increased migration, 
invasion, and resistance to anoikis (cell death induced by insuf-
ficient anchorage to the extracellular matrix) [40]. Inactivation 
of the SFRP genes appears to occur via epigenetic silencing or 
promoter hypermethylation in numerous solid tumors, including 
cervical and ovarian cancers [23,24,41–44]. SFRP4 was reported to 
be downregulated in uterine sarcomas, with stable overexpression 

of this gene inhibiting tumor proliferation in vitro [25,45]. The 
expression pattern of SFRPs in nonsarcomatous uterine cancers 
has only been explored in the setting of microsatellite instability, 
where SFRP1 expression was compared between non-matched 
normal endometrial tissues and microsatellite unstable (MSI) and 
microsatellite stable (MSS) EC tissues [46]. 

Unlike in colon cancer, the mechanism of Wnt pathway involve-
ment in EC has not been well elucidated, and does not appear 
to be as simple as that involving APC and b-catenin mutations. 
Instead, the evidence suggests that Wnt signaling is probably 
involved via multiple, diverse mechanisms. In this review, we 
present a brief overview of the Wnt signaling pathway, the current 
literature implicating the Wnt/b-catenin pathway in uterine can-
cer development and progression, and its potential as a prognostic 
marker and therapeutic target in EC.

The canonical Wnt signaling pathway
Brief overview 
Nuclear b-catenin is the hallmark of an active canonical Wnt 
pathway. In the absence of Wnt signal, unstimulated cells regulate 
b-catenin levels through its phosphorylation by a multiprotein
complex consisting of APC, axin, and GSK-3b, thus marking it
for subsequent ubiquitination and degradation [47]. Upon bind-
ing of the Wnt ligand to its frizzled receptor (FZD), a signaling
cascade ensues to destabilize this degradation complex, and allows
unphosphorylated b-catenin to accumulate and translocate to the
nucleus, where it functions as a cofactor for transcription factors
of the TCF/LEF family (Figure 1). The result of this process is the
transcription of specific genes designed to determine cell fate and
regulate proliferation.

Extracellular & cell membrane components
The term ‘Wnt’ (pronounced ‘wint’) was introduced in 1982 
by Harold and Varmus Roeland Nusse, and fused the names 
of two orthologous genes: wingless (Wg), a Drosophila segment 
polarity gene, and Int-1, a mouse proto-oncogene [48,49]. Wnts are 
secreted glycoprotein-signaling molecules which act as ligands for 
a transmembrane receptor complex, the FZD, forming a trimeric 
complex with an additional single-pass transmembrane protein, 
the LRP. A total of 19 Wnt ligands and ten FZD receptors have 
been identified in the human genome [201]. Wnts exert their effect 
either via the ‘canonical’ Wnt/b-catenin signaling, or the less 
well-known noncanonical pathways, of which the two best stud-
ied are the Wnt/calcium and the Wnt/ras homolog gene family, 
member A/c-Jun NH

2
-terminal kinase pathways, of which the 

latter primarily affects actin cytoskeleton and planar polarity of 
cells [50–52]. Activation of each signaling pathway depends on the 
type of ligands and receptors involved, as Wnt ligands exhibit 
preferential binding to specific receptors [53]. In addition, distinct 
FZDs appear to exhibit differential activation to the different sig-
naling pathways [54–56]. Wnt ligands which activate the canonical 
pathway include the proto-oncogenic Wnt1, Wnt3a, Wnt8 and 
Wnt8a. Wnt ligands that activate the noncanonical pathways 
and antagonize the proto-oncogenic Wnts are Wnt4, Wnt5a and 
Wnt11. Wnt5a also has the ability to signal via the canonical 

Dellinger, Planutis, Tewari & Holcombe



www.expert-reviews.com 53

Review

pathway, dependent on cellular context [57]. The key effector in 
canonical Wnt signaling is b-catenin, a multifunctional protein 
that also mediates cell–cell adhesion with E-cadherin. 

In its natural state, the canonical Wnt signaling pathway is 
inhibited by several Wnt antagonists, which can be subdivided 
into those directly binding to Wnt molecules, which include Wnt 
inhibitory factor-1, and SFRPs, versus those which indirectly 
inhibit Wnt ligands by binding to the LRP5 or 6 components of 
the receptor complex, which include Dickkopfs (Dkks). 

Cytoplasmic components
In the absence of the Wnt signal, the tumor suppressors axin and 
APC form a structural scaffold that interacts with b-catenin and 
presents it to GSK-3b for phosphorylation. APC is mutated in 
85% of familial and sporadic CRCs [58], while truncating Axin1 
mutations are found in hepatocellular carcinomas, thus reveal-
ing its relevance to b-catenin regulation in cancer [59]. GSK-3b, 

a normally active kinase in unstimulated resting cells, is a par-
ticipant of the Wnt pathway and many other cellular signaling 
pathways [60]. Activation of dishevelled, an intracytoplasmic pro-
tein that interacts with both canonical and noncanonical Wnt 
pathways, is necessary for Wnt signal transduction from the cell 
surface, and occurs via phosphorylation by casein kinase-1 [10].

Nuclear components
The TCF/LEF family of transcription factors includes LEF1, 
TCF1, TCF3 and TCF4. b-catenin is a cofactor for the 
TCF/LEF1 family but does not bind DNA directly; it displaces 
other proteins, such as Groucho and C-terminal-binding pro-
tein, which in turn repress TCF/LEF gene expression in the rest-
ing state. Two other important nuclear components are legless 
and its binding partner pygopus (PYGO) [61]. Legless recruits 
PYGO to b-catenin and, along with PYGO, is involved in the 
nuclear translocation of b-catenin [62,63]. These proteins may 
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Figure 1. The canonical Wnt signaling pathway.
APC: Antigen-presenting cell; CBP: CREB-binding protein; CK1a: Casein kinase a; ctBP: C-terminal binding protein; DVL: Dishevelled; 
FZD: Frizzled receptor; LRP: Low-density lipoprotein receptor-related protein; PYGO/LGS: Pygopus/legless; TCF/LEF: T-cell factor/
lymphoid enhancer factor-1; WIF-1: Wnt inhibitory factor 1.

Wnt signaling in uterine cancer
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act as nuclear ‘escorts’ or as recruiters of the basal transcription 
machinery [64,65]. 

Alterations of the Wnt pathway in EC
b-catenin: gene mutations, nuclear localization
& interaction with E-cadherin
The human CTNNB1 gene encodes b-catenin and maps to
chromosome 3p21. b-catenin mutations at its GSK-3b binding
consensus site within exon 3 have been demonstrated in EC in a
number of studies [11,12–21]. These mutations are frequently mis-
sense mutations affecting the NH

2
-terminal regulatory domain

of b-catenin (codons 32–45), which overlaps with the consensus
sites for GSK-3b phosphorylation and ubiquitin–proteosome
degradation. The mutations presumably render the mutant pro-
teins resistant to degradation and occur almost exclusively in
the endometrioid subtype. Mutations in the exon 3 domain of
CTNNB1 have been the most commonly reported alteration
in the Wnt pathway in EC [11–21]. The mutation frequency
of CTNNB1 in EC has been reported to be between 10 and
45% (Table 1). Fukuchi et al. first reported a single-base mis-
sense (serine/threonine) mutation in exon 3 of CTNNB1, in
ten out of 76 EC tumors (13% mutation frequency), with 90%
of mutated specimens showing evidence of nuclear b-catenin
accumulation by immunohistochemistry (IHC), in contrast to
30% of nonmutated specimens [11]. Other studies have shown
lower mutation frequencies, with Nei et al. reporting a 10%
mutation frequency for CTNNB1 in EC (2/20 tumors), with
30% EC specimens showing nuclear b-catenin accumulation
[13]. Ikeda et al. reported a 11% mutation frequency, with all
tumors with mutations showing b-catenin accumulation in the
cytoplasm and nucleus [15]. By contrast, Mirabelli-Primdahl et al.
showed a 45% mutation frequency in 29 EC tumors with or
without microsatellite instability, with no IHC staining stud-
ies for b-catenin [14]. Several reports have suggested a slightly
higher CTNNB1 mutation frequency in endometrioid ECs;
Schlosshauer et al. and Saegusa each reported a 18 and 23% fre-
quency in endometrioid ECs, respectively [16,17]. Moreno-Bueno
reported an 11% mutation frequency in endometrioid ECs, with
no CTNNB1 mutations detected in nonendometroid ECs [19].

Similarly, Machin et al. reported a 20% CTNNB1 mutation 
frequency in 59 endometrioid ECs, with no mutations detected 
in 14 nonendometrioid ECs [12]. 

It appears that b-catenin mutations are common in EC, and 
more frequent in type I (endometrioid) ECs. In contrast to CRC, 
where over 90% of tumors carry either APC or b-catenin muta-
tions, ECs do not usually harbor APC mutations, a finding that 
is mirrored in other non-CRCs [66,67]. An APC mutation ana
lysis in EC revealed only a 10% mutation frequency in all ECs 
[22], although that number is increased to 24% in EC tumors 
with nuclear b-catenin staining [19]. While APC mutations are 
an infrequent finding in EC, APC gene promoter methylation 
has been reported to occur in up to 20–45% of ECs, and with 
higher frequency in MSI tumors [68]. 

A significant fraction of EC tumors (11–38%) show apparent 
cytoplasmic or nuclear accumulation of b-catenin protein (Table 2), 
as analyzed by IHC. While most tumors which carry b-catenin 
mutations exhibit nuclear b-catenin accumulation by IHC, some 
tumors do so without any evidence of CTNNB1 mutations. In 
Fukuchi’s study, nine of the ten EC tumors with CTNNB1 muta-
tions showed nuclear or cytoplasmic b-catenin accumulation [11], 
while Nei’s study reported a 30% nuclear b-catenin accumulation 
rate which was not associated with b-catenin mutation status. 
Membranous b-catenin immunoreactivity appears to decrease 
in a stepwise fashion from normal endometrium through atypi-
cal endometrial hyperplasia, to EC, as shown by Saegusa et al. 
[17], suggesting a role for Wnt signaling in the carcinogenesis of 
type I ECs. 
b-catenin is a multifunctional protein that exerts two important

functions in epithelial cells. Besides its role as a transcriptional 
coactivator in the canonical Wnt pathway, it acts as an adhesion 
molecule, associated with the protein E-cadherin at the cell–cell 
junction, and thus connecting it to the actin cytoskeleton [69]. 
E-cadherin has been shown to have a potential role as a prog-
nostic marker. In a study of 28 patients with stage I EC, absent
E-cadherin expression on IHC was predictive of distant metas-
tasis, but not of local recurrence [22]. Recently, a GOG study
evaluating stage IV and recurrent ECs treated with tamoxifen
and progesterone (GOG 119), confirmed E-cadherin as a prog-
nostic marker, with high E-cadherin expression by IHC result-
ing in better survival than low expression (adjusted HR: 0.18;
95% CI: 0.05–0.59) [70]. These reports reflect findings in other
solid tumors [71], and establish E-cadherin as a potentially clini-
cally relevant tumor biomarker with prognostic value in advanced
and recurrent EC.

Wnt inhibitors 
There have been few reports on the role of Wnt inhibitors in 
gynecologic cancers (Table 3). Yi et al. documented that Dkk1, a 
member of the Dickkopf family, is expressed at reduced levels in 
ECs compared with benign endometrium [36]. Their study com-
pared Dkk1 expression by IHC in 34 benign endometrial samples 
versus 30 EC samples. Similarly, in cervical cancers, Dkk3 was 
found to be frequently downregulated by microarray and real-
time PCR, when compared with normal cervical tissue [32]. We 

Table 1. b-catenin mutations in endometrial cancer.

Study (year) Mutation frequency in 
endometrial cancer (%)

Ref.

Fukuchi et al. (1998) 13 (10/76) [11]

Nei et al. (1999) 10 (2/20) [13]

Mirabelli-Primdahl et al. (1999) 45 (13/29) [14]

Ikeda et al. (2000) 11 (5/44) [15]

Moreno-Bueno et al. (2002) 11 (14/128) [19]

Machin et al. (2002) 21 (15/73) [12]

Ashihara et al. (2002) 10 (2/20) [20]

Schlosshauer et al. (2000) 19 (6/32) [16]

Saegusa et al. (2001) 23 (16/70) [18]
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have shown decreased Dkk3 expression in 
EC compared with normal endometrium 
[72], which reflects the generally confirmed 
trend of downregulated Wnt inhibitors in 
both gynecologic and other malignancies, 
as evidenced by similar reports in gastroin-
testinal [73], breast [34], prostate [74] and renal 
carcinomas [75,76]. By contrast, Jiang et al. 
reported on serum Dkk3 in gynecologic 
cancers, which revealed higher serum Dkk3 
levels in endometrial and cervical cancer 
patients compared with healthy subjects, 
with a stage-dependent pattern; however 
ovarian cancer patients exhibited reduced 
serum Dkk3 levels compared with their 
healthy counterparts [77]. Similarly, these 
authors reported higher Dkk1 serum levels 
in cervical cancer and EC patients, again in 
a stage-dependent manner [78]. Why serum 
Dkk1 and Dkk3 protein levels would be upregulated, in contrast 
to other reports revealing downregulation of the tissue Dkk genes, 
is unknown, and requires further study. The mechanism of down-
regulation of Dkks in EC has not been elucidated, although judg-
ing from evidence from the colorectal literature, there is probably 
a role for epigenetic silencing [28].

Only few have reported on the role of SFRPs in ECs. Abu-Jawdeh 
first reported on the upregulation of SFRP4 (frpHE) mRNA in 
the stroma of endometrial stroma [79]. By contrast, Carmon et al. 
reported that stable SFRP4 overexpression in Ishikawa EC cells and 
treatment with recombinant SFRP4 protein inhibits EC growth 
in vitro [25]. In another study, Risinger et al. showed that SFRP1 
and SFRP4 are more downregulated in microsatellite unstable 
than in microsatellite stable ECs, as identified by microarray in 
24 human ECs [46]. Real-time PCR confirmed downregulation 
of SFRP4 in MSI-high EC tissues as compared with (unmatched) 
normal endometrial tissues, with no reduction in MSS ECs. 
Furthermore, downregulation was accompanied by an increase 
of nuclear b-catenin and promoter hypermethylation for SFRP1 
in eight out of 12 MSI ECs, compared with only three out of 16 
MSS ECs; interestingly the Wnt target FGF 18 was upregulated in 
MSI cancers, all suggesting an association between MSI and Wnt 
signaling. Further evidence of SFRP gene hypermethylation in ECs 
was recently reported, with SFRP1, SFRP2 and SFRP5 revealing 
promoter methylation status in endometrioid ECs, while SFRP4 
showed demethylation [80]. These results reflect similar findings 
in other solid tumors, which report downregulation of SFRPs via 
epigenetic silencing [38,81], and correlate these with clinical outcome 
[24,39,82]. Further research studying the prognostic relevance of these 
downregulated genes is required. 

Target genes & gene expression analysis
A large number of genes relevant for tumor formation and pro-
gression have been identified to be transcriptionally activated 
by the b-catenin/Tcf complex. Some of these are implicated in 
growth control and cell cycling (c-Myc, c-Jun, cyclin D1 and 

gastrin), while others are relevant for cell survival (inhibitor of 
DNA binding-2 and MDR1), or are implicated in tumor invasion 
and metastasis (matrilysin and VEGF) [83–89]. The best known 
target gene is axin, which negatively regulates the canonical Wnt 
pathway; it is the most universally expressed Wnt/b-catenin tar-
get gene, making it one of the most essential components of the 
pathway. Other important target genes related to carcinogenesis 
are the oncogene myc and the growth-promoting gene cyclin D. 

Sex hormones 
Type I ECs are associated with various states of unopposed estro-
gen, such as obesity, polycystic ovary syndrome and tamoxifen 
use [90,91]. Given the propensity of b-catenin mutations in type I 
ECs, an association between the sex hormones, progesterone and 
estrogen, and the Wnt signaling pathway appears likely. A number 
of published reports have indicated that estrogen can induce the 
canonical Wnt pathway [92–95]. Estrogens appear to specifically 
influence the expression level of Wnt ligands; estrogen treatment 
in a non-malignant mouse uterus was shown to upregulate Wnt4a, 
Wnt5a and Frizzled-2, thus prompting nuclear b-catenin local-
ization; moreover, estrogen-induced endometrial proliferation was 
inhibited by the Wnt inhibitor SFRP2 [95]. Another report showed 
that estrogen treatment in immature female rats resulted in the 
downregulation of Wnt7a, and upregulation of Wnt4 in the uterus 
[96]. The Wnt signaling target IGF-I receptor, an important EGF, 
was strongly upregulated by estrogen in another study, and inhibited 
after the addition of progesterone [97]. Interestingly, another in vitro 
study showed that estrogens appear to activate the Wnt/b-catenin 
pathway, but only after initiation by progestogens [98]. 

Progesterone is a well-known treatment option for recurrent and 
persistent EC, with a response rate of 15–25% based on a GOG 
study [99]. It is also an effective fertility-sparing treatment option 
for women with complex atypical hyperplasia of the endome-
trium, a preinvasive condition which carries a risk of up to 42% 
of occult EC [100]. In selected cases, it has been used for early-
stage EC in young women who wish to preserve fertility [101,102]. 

Table 2. Nuclear b-catenin expression in endometrial cancer.†

Study (year) All ECs (%) Endometrioid ECs 
(%)

Nonendometrioid 
ECs (%)

Ref.

Fukuchi et al. (1998) 38 (29/76) [11]

Nei et al. (1999) 30 (9/30) [13]

Ikeda et al. (2000) 11 (5/44) [15]

Moreno-Bueno et al. 
(2002)

23 (30/128) 31 (29/93) 3 (1/33) [19]

Schlosshauer et al. 
(2002) 

47 (8/17) 0 (0/17) [16]

Ashihara et al. (2002) 60 (12/20) 55 (11/20) [20]

Machin et al. (2002) 73 (11/15) [12]

Scholten et al. (2003) 16 (39/233) [21]

Saegusa et al. (2001) 28 (55/199) [17]

†Percentage of endometrial cancer samples with b-catenin nuclear expression.
EC: Endometrial cancer.
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As progesterone counteracts the proliferative effects of estrogen 
in the menstrual cycle, its mechanism of action may be via the 
Wnt/b-catenin signaling pathway. Various reports have impli-
cated progesterone in the Wnt pathway, including its regulation 
of b-catenin expression in endometrial tumors [103]. In non-malig-
nant endometrial cells, a knockdown of the progesterone receptor 
resulted in Wnt activity in human endometrial cells in vitro [104], 
and in pregnant sheep, progesterone induced a transient decline in 
Wnt signaling [105]. Similarly, in healthy female volunteers, treat-
ment with mifepristone, an antiprogesterone agent, resulted in the 
upregulation of Wnt5a in the endometrium [106]. Finally, in Wnt-
activated Ishikawa cells, progesterone was shown to induce Dkk1 
and FOXO1, and to inhibit Wnt signaling; conversely, a knock-
out of both Dkk1 and FOXO1 circumvented the progesterone 
inhibition of Wnt activity [107].

Taken together, these findings indicate that estrogen and pro-
gesterone play important roles in regulating the canonical Wnt 
pathway, and that modulation of the Wnt pathway downstream 
of the estrogen and progesterone regulation, may prove to be a 
potential target for novel therapeutic agents in EC. 

Crosstalk with Hedgehog & mTOR pathways 
Both Hedgehog and mTOR pathways are currently being inves-
tigated as novel therapeutic targets in gynecologic cancers. 
Recently, the mTOR inhibitor temsirolimus was shown to have 
a 14% response rate in persistent and recurrent EC [5], and a 
Hedghog pathway inhibitor, GDC-0449, has been in clinical 
trial in recurrent ovarian cancer, with outcome analyses pend-
ing. The mTOR pathway regulates cell growth and prolifera-
tion in response to multiple upstream factors, including IGFs 
(e.g., IGF-I and IGF-II), and mitogens, as well as Wnt ligands 
[108,109]. Not surprisingly, deregulation of mTOR signaling is 
frequently associated with tumor initiation, growth, invasion, and 

metastasis [110,111]. As a central regulator of 
growth, the mTOR pathway interacts with 
multiple signaling pathways, of which one 
is the canonical Wnt pathway, which aug-
ments mTOR activity [112,113]. Similarly, 
the Hedgehog family of morphogens are 
regulators of cell proliferation, differentia-
tion and cell–cell communication, which 
have important roles in organogenesis, 
stem cell maintenance and carcinogenesis 
[114–120]. In mammals, three Hedgehog 
ligands including Sonic Hedgehog, Indian 
Hedgehog and Desert Hedgehog have been 
identified. Through binding of any one of 
the three ligands to Patched, a transmem-
brane receptor, the pathway is activated 
by alleviating Patched-mediated suppres-
sion of Smoothened (Smo), thus activat-
ing downstream signaling molecules and 
subsequent Gli-mediated gene transcrip-
tion [121]. A link between Hedgehog and 
canonical Wnt signaling has been sug-

gested by the finding of concomitant Gli1 overexpression and 
nuclear b-catenin immunoreactivity in EC and endometrial 
atypical hyperplasia [122]. Given the above findings, there prob-
ably is crosstalk between these signaling pathways, and the poten-
tial for targeting multiple pathways to achieve synergistic drug 
combinations appears to be an attractive goal in the treatment 
of EC. 

Potential therapeutic targets of the Wnt pathway in EC
Few effective treatment options are available for women with 
advanced EC who have failed traditional cytotoxic chemother-
apy. Recent Phase II clinical trials have shown promise for novel 
biologics targeting VEGF and mTOR pathways [5,6]. Given the 
fact that multiple mutations (CTNNB1 mutations and epigen-
etic silencing of Wnt antagonists) can lead to the nuclear trans-
location of b-catenin, and that these can be targeted at different 
cellular levels, there is a clear need for drugs which attenuate 
the transcriptional functions of b-catenin [123,124]. A number 
of existing drugs and natural compounds already inhibit or 
modulate the Wnt/b-catenin pathway [125]. Among these are 
NSAIDs, vitamins and polyphenols. NSAIDs, such as aspirin 
and sulindac, inhibit cyclooxygenase (COX) activity, and the 
Wnt signaling pathway is thought to be one of the potential 
mechanisms of action for their effectiveness in colon cancer, 
due to evidence that increased COX generated prostaglandin 
E2 suppresses b-catenin, and thus results in Wnt pathway 
activation [126,127]. Notably, the COX-2 inhibitor, celecoxib, is 
approved by the US FDA for the prevention of CRC in patients 
with familial adenomatous polyposis, after a number of experi-
mental and epidemiological studies suggested that NSAIDs 
showed chemopreventive effects against colon cancer [128–133]. 
However, in contrast to CRCs, a significant chemopreventive 
association between NSAIDs and EC has not been established. 

Table 3. Studies of Wnt inhibitors in endometrial cancer.

Wnt 
inhibitor

Study (year) Significance Ref.

SFRPs Abu-Jawdeh 
et al. (1999)

Upregulation of SFRP4 mRNA in EC [79]

Risinger et al. 
(2005)

SFRP1 and SFRP4 are more frequently 
downregulated in MSI than in MSS ECs (microarray 
of 24 human ECs)

[46]

Carmon et al. 
(2008)

SFRP4 overexpression inhibits EC cell growth in vitro [25]

Di Domenico 
et al. (2011)

SFRP1 downregulation via promoter methylation in 
13 EC tissues; SFRP4 upregulation via demethylation

[80]

Dkk1 Yi et al. (2009) Decreased Dkk1 expression in EC tissues compared 
to benign endometrium, by IHC

[36]

Jiang et al. 
(2010)

Increased serum Dkk1 protein levels in patients with 
EC compared to healthy women

[78]

Dkk3 Jiang et al. 
(2009)

Increased serum Dkk3 protein levels in patients with 
EC (n = 28) compared to healthy women

[77]

EC: Endometrial cancer; IHC: Immunohistochemistry; MSI: Microsatellite unstable; MSS: Microsatellite 
stable; SFRP: Secreted frizzled-related protein.
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While some studies support a risk reduction in EC with current 
aspirin or NSAID use [134,135], others have shown no such associ-
ation [136–138]. In vitro, aspirin and NSAIDs have been reported 
to inhibit proliferation in EC cells [139–144]. Given the critical 
role of Wnt signaling in the regulation of cell proliferation, an 
association between the inhibition of endometrial proliferation 
by NSAIDs and Wnt signaling could be hypothesized, although 
such association has not been elucidated yet. 

Vitamins (retinoids) have been used as cancer therapy in some 
cancers (such as acute promyelocytic leukemia), but the mecha-
nism of action linking it to the canonical Wnt pathway is not fully 
understood, and it is suggested that activated nuclear receptors for 
vitamins interact with b-catenin and compete with TCF [145,146]. 
Polyphenols are chemicals extracted from plants, characterized 
by the presence of phenol units; examples include reseveratrol, 
quercetin, epigallocatechin-3-gallate, and cucumin, which have 
been implicated in Wnt signaling, although the exact mechanism 
of action is unknown due to the lack of specificity and effects on 
multiple pathways [147–151].

Currently, a number of molecular targeted drugs are in pre-
clinical development. Most promising among these are small 
molecule antagonists, such as PKF115-584, which displayed 
reproducible and dose-dependent inhibition of b-catenin and 
TCF binding in an immunoenzymatic assay [152], and XAV939, 
which targets tankyrase, thus stabilizing axin and antagonizing 
the Wnt pathway [153]. Various other molecularly targeted agents 
have been identified via high-throughput screening, including 
those targeting the b-catenin/TCF interaction [154,155], which 
have not reached beyond the discovery and preclinical stages, 
as well as transcriptional coactivator antagonists, of which the 
b-catenin antagonist ICG-001, was scheduled to enter clinical
trials [156]. Among biologics, monoclonal antibodies against Wnt-1
and Wnt-2 have been shown to suppress tumor growth in vivo
[157–160], and small interfering RNA against Wnt1 and Wnt2, as
well as recombinant proteins incorporating SFRP [161] also showed
potential therapeutic utility.

Conclusion
To date, numerous studies have suggested a role for Wnt signaling 
in endometrial carcinogenesis. Our current understanding is that 
both b-catenin mutations and Wnt-inhibitor regulation impact 
EC development, but detailed knowledge of these mechanisms 
does not exist. Despite the limited literature associating Wnt sig-
naling with endometrial carcinogenesis, this field deserves further 

study, especially in light of the inadequate treatment options 
which currently exist for women with advanced and recurrent 
EC. Further investigation is necessary to elucidate the role of this 
pathway in EC, and to explore potential applications in targeted 
novel therapies. 

Expert commentary
The canonical Wnt signaling pathway represents an attractive ther-
apeutic target given its tight regulatory steps at multiple cellular 
levels, which offer ample targeting points. Its role in the carcino
genesis of gynecologic cancers is rapidly expanding. While still 
understudied in EC, preclinical data offer convincing evidence for 
the importance of this pathway in the uterine carcinogenesis. The 
potential for both biomarker use and cancer drug development is 
likely to expand with further research. Given the limited treatment 
options in advanced and recurrent EC, exploring the Wnt signaling 
pathway for potential therapeutic targeting is imperative. 

Five-year view
Data from other solid tumors, such as breast cancer and prostate 
cancer, have reported Wnt inhibitors as prognostic markers and 
tumor suppressors, and novel agents targeting the Wnt signaling 
pathway have been shown to possess significant anti-tumor activ-
ity in mouse models. These studies need to be confirmed in EC 
in order to establish Wnt pathway components as prognostic and 
predictive biomarkers, along with the demonstration of preclinical 
data showing promise for biologic agents targeting this pathway. 
The study of stem cells in EC would be of particular interest in 
the near future, given the importance of Wnt signaling in stem 
cell biology. Crosstalk with other important signaling pathways 
involved in cellular regulation, such as mTOR, Hedgehog and 
Notch pathways, may be attractive targets for synergistic drug 
combinations. Taken together, these milestones would make way 
for clinical studies leading to personalized molecular therapy for 
women with advanced and recurrent EC. 
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Key issues

• Advanced and persistent endometrial cancer carries a poor prognosis, and limited treatment options exist.

• The Wnt/b-catenin signaling is a highly conserved signaling pathway, which is regulated at multiple cellular levels, and thus provides an
attractive pathway for novel targeted therapeutics in uterine cancer.

• Aberrations in the Wnt pathway which have been linked to endometrial cancer, include a 10–45% mutation frequency of b-catenin, as
well as a loss of Wnt antagonists via epigenetic silencing.

• Progesterone and estrogen regulate the Wnt signaling pathway, and modulation of the pathway downstream of this hormonal
influence may prove to be a potential therapeutic target.

• Further research is required to expand the current knowledge and move towards clinical trials.

Wnt signaling in uterine cancer
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