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The rapid emergence of antibiotic-resistant bacteria results in a global 

health crisis. Among approaches to fighting against antibiotic resistance, this 

study focuses on quorum sensing (QS) quenching. The QS system regulates the 

expression of non-essential functions – virulence factors – by sensing their own 

population density. QS inhibitors interfere with QS communication, thus 

disrupting biofilm formation and inhibiting the expression of virulence factors. 

Different from antibiotics, manipulating QS system may halt the development of 

resistance.  

Another approach to disrupting QS is the use of quorum quenching (QQ) 

enzymes to abolish the biological activity of autoinducers (AIs). The first report of 

degradation AIs was lactonase aiiA isolated from Bacillus sp. 240B. We used aiiA 

for our studies as a positive QQ enzyme control because of its broad-spectrum 
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AHL-degrading ability. For therapeutic purposes, prokaryotic enzymes are very 

likely to generate adverse immune responses. Subsequently, it would be 

desirable to have a therapeutic quality enzyme that is as close as possible to the 

native human protein. Currently, no such enzyme meets all these requirements.  

Human paraoxonases (huPONs) have been discovered to have AHL-

lactonase-like activity, hydrolyzing lactones of various modifications, and carbon 

chain lengths. HuPONs in particular modulates the stress response of endothelial 

cells to oxidized phospholipids as well as a bacterial quorum-sensing molecule. 

However, huPONs are difficult to express in soluble forms, and when 

heterogeneously expressed, the yield is considerably low.  

Thus, we intend to enhance the performance of huPON2 by improving its 

solubility, yield, and activity. By replacing the hydrophobic helices of huPON2 

with degenerate short peptide linkers, we isolated human PON2 variants 

exhibiting high levels of soluble expression. Engineered huPON2s are 

biologically functional in P. aeruginosa swimming, swarming motility and biofilm 

formation tests and have lactone hydrolysis activities toward a spectrum of QS 

molecules. Finally, I introduced random mutations to the soluble expressed 

huPON2s to improve its catalytic activity. This engineered huPON2 as a quorum 

quenching enzyme shed light on a novel selection pressure-free selection 

approach to fight against pathogenic infections.  
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1 Chapter 1 Introduction  

1.1 Threat of Antibiotic Resistance 

Sir Alexander Fleming discovered penicillin in 1928. Since then, antibiotics 

have saved countless lives around the world. Battlefield casualties got the first 

non-experimental doses of penicillin in 1943, quickly saving soldiers who had 

been close to death. Yet two years later, when Fleming accepting the 1945 Nobel 

Prize in Medicine, he mentioned that “It is not difficult to make microbes resistant 

to penicillin in the laboratory by exposing them to concentrations not sufficient to 

kill them…There is the danger that the ignorant man may easily underdose 

himself and by exposing his microbes to non-lethal quantities of the drug make 

them resistant.”  

The consequences of the appearance and spread of antibiotic resistance 

have become a serious worldwide threat to public health and have generated a 

massive economic burden (Figure 1-1). Each year in the United States, over 2 

million people obtain serious bacterial and fungal infections, most of which are 

resistant to one or more than one antibiotic designed to be a treatment. 

According to John H. Stroger Jr. Hospital of Cook County’s 2009 statistical data, 

for the U.S. alone, more than 2,000,000 people acquire serious infections from 

these antibiotic resistant pathogens, and 23,000 people die every year as a direct 

result. The estimated costs have reached as high as $20 billion in excess of 

direct healthcare costs1.  
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Figure 1-1. Timeline of antibiotic resistance. Many antibiotics have been 
developed since 1943. However, antibiotics quickly lose their usefulness. As of 
2013, every year more than 2 million people in the U.S. develop antibiotic-
resistant infections. And at least 23,000 die as a result. 80% of antibiotics sold in 
U.S. each year are used in agriculture1.  
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The crisis is global and the evolutionary pressure for the emergence of 

antibiotic resistance is great. Thus, the study of how bacteria have been evolving 

to resist antibacterial products must become a mandatory requirement in the 

early stages of drug development. The information of bacterial antibiotic 

resistance mechanisms can provide greater understanding, aid in the discovery 

of or neutralize existing resistance mechanisms, and provide new targets for 

discovery.  

 

1.2 Molecular Mechanisms of Antibiotics Resistance 

Antibiotic resistance is an adaptation of bacteria interacting with other 

organisms and/or the environment. Bacteria can be intrinsically resistant to 

certain antibiotics and can also acquire resistance to antibiotics via mutations in 

chromosomal genes and by horizontal gene transfer. The intrinsic resistance of a 

bacterial species to a particular antibiotic is the ability to resist the action of that 

antibiotic as a result of inherent structural or functional characteristics. For 

example, the lipopeptide daptomycin is active against Gram-negative bacteria 

due to an intrinsic difference in the composition of the cytoplasmic membrane; 

Gram-negative bacteria have a lower proportion of anionic phospholipids in the 

cytoplasmic membrane than do Gram-positive bacteria. This difference in 

cytoplasmic membrane composition in turn reduces the efficiency of the Ca2+-

mediated insertion of daptomycin into the cytoplasmic membrane that is required 
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for its antibacterial activity2. Many genes are responsible for intrinsic resistance to 

antibiotics of different classes, including -lactams and aminoglycosides. 

Understanding the genetic basis of intrinsic bacterial resistance, and hence the 

spectrum of activity of an antibiotic, can therefore guide the development of new 

combinations of agents with improved or expanded activity against target species. 

Intrinsic resistance can be mediated by several mechanisms, which fall into three 

main groups: minimization of the intracellular concentrations of antibiotics as a 

result of poor penetration into the bacterium or of antibiotic efflux; genetic 

mutations or post-translational modification of the target; and inactivation of the 

antibiotic by hydrolysis or modification.  

 

1.2.1 Prevention of Access to Target  

Through poor penetration into the bacterium or antibiotic efflux, bacteria 

can minimize the intracellular antibiotic concentrations. Gram-negative bacteria 

intrinsically tend to be more resistant to lipophilic and amphiphilic antibiotics than 

Gram-positive bacteria, due to the presence of their outer membrane 

permeability barrier (Figure 1-2). The narrow porin channels on the outer 

membrane slow down the penetration of small hydrophilic solutes, and the low 

fluidity of the lipopolysaccharide leaflet decreases the rate of transmembrane 

diffusion of lipophilic solutes3-4. Therefore, reducing the permeability of the outer 

membrane and limiting antibiotic entry into the bacterial cell can be achieved by 

the down-regulation of porins or even by the replacement of porins with more 
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selective channels. For instance, when exposed to carbapenems, Enterobacter 

spp., Pseudomonas spp., Acinetobacter spp. and E. coli gain resistance by their 

rapid accumulation of porin mutations5-8.  

 

 
Figure 1-2. Intrinsic mechanisms of resistance. The figure shows an overview of 
intrinsic resistance mechanisms. The example shown is of β-lactam antibiotics 
targeting a penicillin-binding protein (PBP). Antibiotic A can enter the cell via a 
membrane-spanning porin protein, reach its target and inhibit peptidoglycan 
synthesis. Antibiotic B can also enter the cell via a porin, but unlike Antibiotic A, it 
is efficiently removed by efflux. Antibiotic C cannot cross the outer membrane 
and so is unable to access the target PBP9.  
 
 
 
 

Bacteria possess efflux pumps which can actively transport many 

antibiotics out of the cell. Efflux pumps are the major contributors to the intrinsic 

resistance of Gram-negative bacteria. When overexpressed, efflux pumps can 
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confer high levels of resistance. Some efflux pumps have narrow substrate 

specificity, but many can transport a wide range of structurally dissimilar 

substrates and they are known as multidrug resistance (MDR) efflux pumps. 

MDR efflux pumps are present in all bacteria. Although all bacteria carry multiple 

genes that encode MDR efflux pumps on their chromosomes, some have been 

mobilized onto plasmids, that can transfer MDR efflux pumps genes between 

bacteria. This is a worrying development because the resistance of one pathogen 

can then be rapidly disseminated to other pathogens10.   

Bacteria can also overexpress efflux pumps to gain resistance. The 

transcription of genes encoding efflux pumps is controlled by local regulators, 

which are encoded along the efflux pumps genes, and by global regulators, 

which have broader biological functions. The high-level expression of efflux 

genes in multidrug-resistant bacteria is often due to a mutation in the regulatory 

network controlling expression, within a local repressor, a global transcription 

factor, or within their regulators11-13. Increased expression of efflux pumps can 

also occur because of induction in response to environmental signals and in 

conditions in which their function is required. For example, the acrAB genes in E. 

coli and Salmonella spp. are induced by small molecules that would be 

encountered during infection, such as indole and bile14-15; whereas expression of 

MtrCDE in Neisseria gonorrhoeae is responsive to iron limitation16.  

Understanding the molecular basis of induction of efflux could allow for the 

development of chemical modulators to prevent efflux de-repression; these 
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modulators could then be used in conjunction with antibiotics in novel therapeutic 

strategies.  

 

1.2.2 Targets Protection 

Most antibiotics specifically bind to their targets with high affinity, thus 

preventing the normal activity of the target. During the period of infection, there 

are often large and diverse populations of pathogens, and if a single site 

mutation in the gene encoding an antibiotic target can confer resistance to the 

antibiotic, strains with this mutation can then proliferate. Moreover, uptake of 

DNA from the environment contributes to resistance through the formation of 

‘mosaic’ genes. A specific example of this is the penicillin resistance in S. 

pneumoniae. The mosaic penicillin-binding protein (pbp) genes are believed to 

be the result of recombination with homologous pbp genes from the closely 

related species Streptococcus mitis17.  

Protection by modifications of the target structure can be another effective 

method of antibiotic resistance that does not involve mutational changes in the 

target genes. For example, the chloramphenicol-florfenicol resistance (cfr) 

methyltransferase catalyzes mono- or demethylation of a specific adenine 

residue A2058, the key nucleotide for the binding of erythromycin in the 23S 

rRNA. This modification of adenine residue sterically hinders the macrolide, 

lincosamide, and streptogramin B (MLSB) binding to this pocket and disrupts the 

hydrogen bonding between the macrolides and the rRNA18-19.   
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1.2.3 Direct Modification of Antibiotic Molecule  

Apart from preventing antibiotics from entering the cell and altering their 

targets, bacteria can directly modify antibiotics to resist antibiotics (Figure 1-3)20. 

The enzymatic modification of antibiotics has been a major mechanism of 

antibiotic resistance since the first use of the antibiotic penicillin and the 

discovery of penicillinase in 194021. Thousands of enzymes have been identified 

hydrolyzing antibiotics of different classes, including β-lactams, aminoglycosides, 

phenicols, and macrolides. The carriage of diverse extended-spectrum -

lactamases and carbapenemases – including the IMP (imipenemase), VIM 

(Verona integrin encoded metallo -lactamase), KPC (Klebsiella pneumoniae 

carbapenemase), OXA (oxacillinase) and NDM (New Delhi metallo-β-lactamase) 

in Gram-negative bacteria – has strengthened the emergence of isolates 

resistant to all β-lactam antibiotics22-24. The emergence of these resistant isolates 

has serious implications for the treatment of severe infections, particularly in 

hospital patients25-26.  
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Figure 1-3. Modification of antibiotics with chemical groups. (a) susceptible host 
with a target that is efficiently inhibited by an antibiotic. (b) Acquisition and 
production of an enzyme that destroys the antibiotic (for example, β-lactamases) 
prevents binding to the target and confers resistance. (c) Acquisition and 
production of an enzyme that modifies the structure of the antibiotic (for example, 
aminoglycoside-modifying enzymes) can also prevent binding to the target and 
confer resistance20. 
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The addition of chemical groups, including acyl-, phosphate-, nucleotidyl-, 

and ribitoyl groups27, to vulnerable sites on the antibiotic molecules by bacterial 

enzymes can prevent antibiotics from binding to their target protein through steric 

hindrance (Figure 1-3). For example, aminoglycoside antibiotics are particularly 

susceptible to modification due to their large size and many exposed hydroxyl 

and amide groups. Three main classes can modify aminoglycosides: 

acetyltransferases, phosphotransferases and nucleotidyltransferases. These 

chemical groups can bind to aminoglycosides as their active sites mimic the 

target environment of the ribosomal binding cleft28.  

As a result of the widespread use of antibiotics in human medicine, as well 

as in animal treatment, horticulture, beekeeping, anti-fouling paints (used in the 

marine and oil industries) and laboratories carrying out genetic manipulation, the 

evolutionary pressure on pathogens for the emergence of antibiotic resistance is 

considerable20. Increasing understanding of resistance aids in the discovery and 

development of new agents that can circumvent existing resistance mechanisms.  

 

1.3 Development of Novel Antibiotics  

With the widespread emergence of antibiotic-resistant bacteria, it is 

apparent that the success of antibiotics might only have been temporary; we now 

expect a long-term and perhaps never-ending challenge to find new therapies to 

combat antibiotic-resistant bacteria. Many non-conventional approaches are 
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under development. A recent review summarized 19 alternatives to antibiotics29. 

Here, I focused on five of the prospective antibiotic replacements, including 

peptidomimetic antimicrobials, aminoglycosides and its derivatives, nanoparticles, 

probiotics, and quorum sensing quenching.  

 

1.3.1 Peptidomimetic antimicrobials 

Antimicrobial peptides (AMPs) are termed “host defense peptides” and 

serve as the first line of defense by disrupting the bacteria membrane30-33. The 

AMPs are small cationic amphiphilic peptides (Figure 1-4). They can induce 

bacterial membrane modifications ranging from minor lipid bending to complete 

membrane dissolution, depending on the physical structure of the membrane34. 

The structural and sequence diversity of AMPs include amphipathic alpha-helices 

(e.g. cathelicidins), beta-sheets with 2 to 4 disulfide bridges (e.g. beta defensins 

and protegrins), extended conformation (indolicidin), and beta-loop peptides 

(brevinin)34-37. 

 

 

Figure 1-4. Three-dimensional structures of human antimicrobial peptides38.  
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Peptidomimetic antimicrobials are a new class of AMPs that are stable to 

enzymatic degradation. To date, peptidomimetics have been designed through 

the cyclization of linear peptides or the coupling of stable unnatural amino acids. 

AApeptides are one of the newly developed classes. They mimic natural linear 

AMPs, adopting globally amphipathic conformations upon initial contact with 

bacterial membranes (Figure 1-5). Some of them are generally compatible, or 

even superior to the AMP magainin as well as a previous linear -AApeptide 1 

against several bacterial strains39-41, such as -4 containing enhanced 

bactericidal activity against Gram-positive strains40. They are quite toxic to blood 

cells as well as to other mammalian cells. In fact, the antimicrobial activity of -

AApeptides is likely to be enhanced if the overall hydrophobicity increases, which 

at the same time also leads to increased hemolytic activity and cytotoxicity.  

  

 
Figure 1-5. Representative structures of -AA and -AApeptides38. 

 

 
 
 

Peptidomimetics represent an important field in pharmacology as they 

circumvent the limitations of AMPs used in therapy. The pharmaceutical 
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company Lytix Biopharma AS has recently commenced Phase I/IIa clinical trials 

with LytixarTM for nasal decolonization of MRSA. This peptidomimetic, 

containing a modified tryptophan derivate as lipophilic bulk, displayed a 

combination of high antibacterial activity against methicillin-resistant 

Staphylococci and staphylococcal biofilms42.   

 

1.3.2 Aminoglycosides and Derivatives 

Aminoglycosides (AGs) are bactericidal antibiotics, possessing several 

amino and hydroxyl functionalities. Because of their polycationic character, AGs 

show a binding affinity for nucleic acids. Specifically, AGs possess high affinities 

for certain portions of RNA, especially the prokaryotic rRNA43-45. 

Aminoglycosides interact with 16S RNA and cause a conformational change in 

the decoding site A, yielding a site that resembles the closed state induced by 

the interaction between cognate tRNA and mRNA. This change to the decoding 

sites leads to mistranslation in protein synthesis for Gram-negative and some 

Gram-positive bacteria.   

Enzymatic inactivation by acetylation, adenylation, or phosphorylation at 

different locations on the aminoglycoside molecules is employed by bacteria to 

overcome these antibiotics46-47. Thus, the development of new AAC-tolerant 

aminoglycosides, so-called peptidomimetics, is the best way to circumvent this 

emerging problem. For instance, Plazonicin is currently in clinical trials, and has 

been shown to have enhanced activity against multidrug-resistant Gram-
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negatives48. It is not affected by any of the currently-known aminoglycoside-

modifying enzymes except AAC (2’)-Ia, -Ib, and -Ic, which are only found in the 

Providencia species. Human phase I and II studies have shown no nephrotoxicity 

or ototoxicity. Plazomicin has completed phase II clinical trials in complicated 

urinary tract infections49.  

 

1.3.3 Nanoparticles 

Nanoparticles (NPs) have received mounting attention in several fields 

due to their unique physical, chemical, and affective biological properties. 

Examples include the utilization of NPs in antibacterial coatings for implantable 

devices and medicinal materials to prevent infection and promote wound healing, 

in antibiotic delivery systems to treat disease, in bacterial detection systems to 

generate microbial diagnostics and in antibacterial vaccines to control bacterial 

infections. The multiple simultaneous mechanisms of action against NPs would 

require multiple simultaneous gene mutations in the same bacterial cell for 

antibacterial resistance to develop. Hence, it is difficult for bacterial cells to 

become resistant to NPs50.  

NPs need to be in contact with bacterial cells to achieve their antibacterial 

function. The accepted forms of contact include electrostatic attraction, van der 

Waals forces, receptor-ligand interactions, and hydrophobic interactions. NPs 

then cross the bacterial membrane, influencing the shape and function of the cell 

membrane51-54. Thereafter, NPs interact with the bacterial cells’ basic 
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components, such as DNA, lysosomes, ribosomes, and enzymes, leading to 

oxidative stress, heterogeneous alterations, changes in cell membrane 

permeability, electrolyte balance disorders, enzyme inhibition, protein 

deactivation, and changes in gene expression55-57.  

ROS-induced oxidative stress is an important antibacterial mechanism of 

NPs. ROS is a genetic term for molecules and reactive intermediates that have 

strong positive redox potential. Different types of NPs produce different types of 

ROS by reducing oxygen molecules. Under normal circumstances, the 

production and clearance of ROS in bacterial cells are balanced. In contrast, with 

excessive production of ROS, the redox balance of the cell favors oxidation58-59. 

This unbalanced state produces oxidative stress, which damages the individual 

components of bacterial cells. Al2O3 NPs cross the cell membrane, and the 

interaction of Al2O3 NPs with the cell membrane eventually triggers the loss of 

membrane integrity due to oxidative stress60.  

 

1.3.4 Probiotics approaches  

Probiotics were first defined in 1989 as “a live microbial feed supplement 

which beneficially affects the host by improving its microbial balance”61. Four 

mechanisms control the action of probiotics in the host: the modulation of the 

content of gut microbiota; the maintenance of the integrity of the gut barrier; the 

prevention of bacterial translocation; and the modulation of the local immune 

response by the gut-associated immune system. Most probiotic bacteria belong 
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to the genera Lactobacillus and Bifidobacterium. These genera are Gram-

positive, lactic acid-producing bacteria that constitute a major part of the normal 

intestinal microflora in animals and humans. Gut flora resist colonization by 

pathogenic bacteria in a physiologically restrictive environment with respect to pH, 

redox potential, and hydrogen sulphide production62.  

Probiotics can adhere to the epithelial gut mucosa by binding to surface-

layer proteins so they do not allow free space for pathogenic microorganisms to 

adhere. The anti-adhesive properties of the probiotics may result from 

competition for the same receptor, increased production of mucin and 

biosurfactants, or degradation of carbohydrate receptors. When co-cultured with 

Lactobacillus plantarum 299v or Lactobacillus rhamnosus GG with HT20-MTX 

cells, the induction of MUC3 mucin subsequently inhibited the adhesion of 

enteropathogenic E. coli strain E2348/6963.  

Not limited to the prevention of pathogen binding, probiotics consume 

micronutrients that would otherwise be utilized by potentially pathogens, 

consequently inhibiting their growth64. An important example of a limited 

substance in the host is iron. For almost all bacteria, iron is an essential element. 

The exception is lactonacilli, which do not need iron in their natural habitat65. 

Nevertheless Lactobacillus acidophilus and Lactobacillus delbrueckii are able to 

bind ferric hydroxide at their cell surface, rendering it unavailable to pathogenic 

microorganisms66.  
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Certain probiotics in diarrhea are primarily effective due to their ability to 

protect the host against toxins. Shiga toxin expressed in E. coli (STEC) O157:H7 

strains can be inhibited in vitro as well as in mice by the anti-infectious activity of 

probiotic Bifidobacterium breve Yakult and Bifidobacterium pseudocatenulatum 

DSM20439. In one study, all animals treated with B. breve strain Yakult survived, 

whereas 90% of the mice in the control group died after challenge with STEC. In 

vitro studies thus imply a high concentration of acetic acid produced by strain 

Yakult to be responsible for the inhibition of Shiga toxin expression67. 

 

1.4 Quorum Sensing Quenching  

In addition to the four methods mentioned above, quorum sensing 

quenching intrigues researchers due to its regulation of pathogenic virulence 

factors without the effect on cell growth, which can highly reduce the selection 

pressure.  

1.4.1 Quorum Sensing System 

Pathogens are very clever. When invading a host, they delay the 

production of virulence factors until sufficient bacteria have amassed and are 

ready to overwhelm the host immune system. This behavior – when bacteria 

reach a critical concentration and can sense information from other cells in the 

population – is called quorum sensing (QS). Bacteria can produce a basal level 

of small, diffusible signal molecules, which reflect the cell density. These signal 

molecules are called autoinducers (AIs). AIs can be detected by the receptors 
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located on either the cytoplasm or the membrane. The QS system can alter gene 

expressions including bioluminescence signal, antibiotic and toxin production, 

sporulation, biofilm formation, and virulent factors secretion68-69. Moreover, AIs 

can activate their own production by up-regulating synthase transcription70, 

forming a positive feedback loop. 

Quorum Sensing signals 

AIs are structurally diverse. The most common AIs that Gram-negative 

bacteria use are N-acyl-homoserine-lactones (AHLs). AHLs share a core 

homoserine-lactone ring and differ in acyl chains of four to eighteen carbons with 

or without modifications, including carbonyl and hydroxyl moieties at the C3 

position (Figure 1-6a)71-72. Gram-positive bacteria utilize oligopeptide as 

autoinducing peptides (AIPs). AIPs are varied in both sequence and structure 

(Figure 1-6b)73-74. The size of AIPs ranges from 5 to 17 amino acids. They can 

be further post-translationally modified, linearized, or cyclized 75-77.  
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Figure 1-6. Gram-negative and gram-positive bacteria quorum sensing signal 
structures. (a) For Gram-negative bacteria, acyl-homoserine lactones (AHLs) are 
the signal molecules. AHLs share a homoserine lactone (HSL) ring and differ in 
their length of acyl chain as well as the substituents at the 3-position of the acyl 
chain as R group for different species. (b) For Gram-positive bacteria, 
oligopeptide autoinducers (AIPs) serve as their communication signals. AIPs 
typically consist of 5–17 amino acids, sometimes containing unusual side chain 
modifications. The underline below the tryptophan (W) of ComX indicates a 
posttranslational isoprenylation of the peptide. (c) CAI-1 is V. cholera AI. (d) P. 
aeruginosa has a specific AI called PQS78. 
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Many Gram-negative plant-associated bacteria can synthesize unusual 

homoserine lactones (Figure 1-6c, d). The photosynthetic bacterium 

Rhodopseudomonas palustris has a 4-coumaroyl-homoserine lactone synthase 

called RpaI. RpaI can use the host’s metabolite p-coumarate for its AI79. These 

signaling molecules enable R. palustris to associate its quorum sensing response 

with both the bacterial population density and the accessibility of plant 

consumables. Another atypical AI, cis-11-methyl-2-dodecenoic acid, is produced 

by Xanthomonas campestris. The cis-11-methyl-2-dodecenoic acid can modulate 

X. campestris’ transitions between its planktonic and biofilm-associated states80.  

Regulation of QS systems 

A considerable number of bacteria use more than one type of AI. For 

example, P. aeruginosa has a complicated QS system regulating bacteria 

virulence and biofilm formation. Over the past two decades, it has been gradually 

revealed that P. aeruginosa has four QS systems (Figure 1-7), which are all 

highly adaptable and capable of responding to external biostress cues. LasR was 

firstly identified as a key regulator in the expression of lasB, aprA, lasA, and toxA 

genes81-84. It was thought to be a global regulator of the virulence genes. Shortly 

after, a second factor – the rhl system – was found. It can restore the production 

of several exoproducts such as elastase, pyocyanin, hemolysin, and 

rhamnolipids85. As the upstream regulator, the las system can activate the rhl 

system86. Both las and rhl systems can produce AHLs. Yet PQS, the third QS 

signal, which was purified and characterized in 1999, is chemically unique from 
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the AHLs (Figure 1-6d)87. PQS is identified as 2-heptyl-3-hydroxy-4-quinolone. 

The PQS-controlled system, also regulated by lasR, can regulate pyocyanin, 

elastase, rhamnolipid, and PA-IL lectin production. Recently the fourth inter-

cellular communication signal has been found capable of integrating 

environmental stress cues with the QS network88. It was named IQS, and 

structurally established to be 2-(2-hydroxyphenyl)-thiazole-4-carbaldehyde. The 

genes involved in IQS synthesis are a non-ribosomal peptide synthase gene 

cluster ambBCDE. The disruption of IQS synthesis results in a reduction in the 

production of PQS and BHL signals, as well as in the production of virulence 

factors, such as pyocyanin, rhamnolipids, and elastase. Upon the addition of 10 

nmol/L IQS to the mutants, these phenotypes could be fully restored, indicating 

that IQS is a potent inter-cellular communication signal88.  
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Figure 1-7. P. aeruginosa four QS systems: Las, Rhl, PQS, and IQS. The 
produced autoinducers are 3-oxo-C12-homoserine lactone, C4-HSL, 2-heptyl-3-
hydroxy-4-quinolone, and 2-(2-hydroxyphenyl)-thiazole-4-carbaldehyde, 
respectively.  
 
 

 

All these QS circuits in P. aeruginosa are organized in a hierarchical 

manner. At the top of the pathway is the las system. The las system can activate 

the transcription of rhlR, rhl, lasI and other virulence genes that are part of its 

regulon. The RhlR-BHL complex also dimerizes and similarly activates the 

expression of its own regulon and rhlI, forming the second positive feedback loop. 

The las system also positively regulates the PQS transcriptional regulator. In turn, 

PQS was found to be able to enhance the transcription of rhlI. IQS was also 
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found to be tightly controlled by LasRI under rich medium conditions. Disruption 

of either lasR or lasI completely abrogates the expression of ambBCDE and the 

production of IQS.  

As one of the Gram-positive bacterial pathogens, S. aureus utilizes P2 

promoter regulating the expression of RNAII transcript which encodes its four-

component QS system, as described in Figure 1-8. Pro-AIPs are encoded by 

AgrD. Pro-AIPs can be transformed to the final AIP and secreted by the 

transmembrane –transporter protein AgrB89-90. Progressing involves truncating 

the 45 – 47 pro-AIP peptides to a 7 – 9 peptides. This truncating is coupled with 

the cyclization of a five-membered peptide ring through a thiolactone bond 

between the central cysteine residue and the carboxyl terminus. When the AIP 

accumulates, it binds to the membrane-bound histidine kinase AgrC, which 

autophosphorylates at a conserved histidine and transfers the phosphate group 

to a conserved aspartate on the response of the regulator AgrA. Then the 

phosphorylated AgrA binds to the upstream of the P2 promoter sequence, 

activating the agr operon and P3 promoter. The P3 promoter controls the 

expression of RNAIII91. The 5’ region of RNAIII harbors the hld gene, which 

encodes the virulence factor -hemolysin92. 
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Figure 1-8. S. aureus Agr QS circuit. The autoinducing peptide (AIP) is 
synthesized as a precursor from agrD. The AIP transporter AgrB processes the 
precursor to the mature AIP and transports it out of the cell. AIPs are detected by 
a two-component signal transduction pathway. AgrC is the membrane-bound 
histidine kinase and AgrA is the response regulator. Phosphorylated AgrA 
activates the P2 and P3 promoters encoding the agr operon (called RNAII) and 
the RNAIII regulatory RNA, respectively. RNAIII posttranscriptionally activates 
virulence factor production and represses expression of rot, the repressor of 
toxins, leading to further de-repression of virulence factors68. 
 
 
 
 

Signaling molecule diversification also exists within the S. aureus 

community. The S. aureus QS system has cross-competition among AIP 

specificity types. AgrD sequences exhibit great sequence diversity throughout 

their lengths, including the region containing the AIP sequence. For instance, at 

the amino acid level, only 10% of the residues are identical and 26% of the 

sequences are replaced with conservative substitutions. Similarly, the alignment 

of amino acids sequences indicates a wide divergence of agrC sequences, 

particularly within the N-terminal transmembrane region. The C-terminal portion 

of the agrB gene also indicates substantial divergence93. This variability leads to 
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the production of one of four different types of AIPs depending on the strain94. 

Each specific AIP is detected by a corresponding AgrC sensor, and the presence 

of a noncognate AIP inhibits QS, halting cell-cell communication95.  

In addition to intraspecies signaling, diffusible signals have been involved 

in interspecies and interkingdom signaling, modulating the behavior of other 

microorganisms that do not produce the signals. Bacteria talk with their host 

system, regulating the level of RNA transcription through chemical signals. 

Numerous effects of bacterial AHLs on eukaryotic cells have been previously 

described. For example, 3-oxo-C12HSL produced by P. aeruginosa differently 

affects many types of mammalian cells, including macrophages, neutrophils, 

endothelial cells, epithelial cells, breast carcinoma cells, and T cells. These 

effects, which were almost exclusively proposed to be detrimental to host cells, 

include the induction of apoptosis, the stimulation of excessive inflammation, and 

the modulation of innate immunity. Microarray analysis of lung epithelial cells 

exposed to 3-oxo-C12HSL demonstrated that approximately 11% of the 

mammalian transcriptome was significantly altered, which was similar to the 

magnitude of genes controlled by QS in P. aeruginosa itself96.  

 

1.4.2 Quorum Quenching 

Bacterial quorum sensing-mediated signaling can be disrupted by a wide 

variety of phenomena known as quorum quenching (QQ). All processes of the 

QS, including synthesis, diffusion, accumulation, and perception of the QS 



  

 

26 

signals, also the actions and QS targets may be affected. QQ molecules, 

including chemical compounds and enzymes, are diverse in nature. Usually 

chemical compounds (QS inhibitors, QSIs) act like competitive inhibitors, and 

enzymes inactivate QS signals.  

QS Inhibitors 

The molecules responsible for the inhibition of AI-induced QS systems or 

the AI-regulated phenotype are called quorum-sensing inhibitors (QSIs). QSIs 

can be produced by a wide range of organisms, such as bacteria, fungi, plants, 

and animals from terrestrial, marine, or freshwater ecosystems. The biochemical 

nature of QSIs is highly diverse, including structural analogs of signal molecules, 

furanones and their related structural analogs97-99, bismuth porphyrin 

complexes100, glycosylation reagents of glycosylated flavonoids101, 

glycomonoterpenols102, heavy metals103, and nanomaterials104-105. Beside their 

biochemical diversity, there is no direct correlation between the molecular 

structure or chemical functional groups of the QSIs and the targeted actor in the 

QS pathway.  

The first marine QSIs were isolated from Delisea pulchra, which appears 

to have developed natural defense mechanisms to prevent microbial biofouling of 

its surfaces106. Secondary metabolites of the halogenated furanones class, which 

are found at the surface of this alga, exhibit the antifouling activity107. Most 

studies on natural D. pulchra furanones involved the (5Z)-4-bromo-5-

(bromomethylene)-3-butyl-2(5H)-furanone. These molecules strongly inhibit AHL 
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signaling108. The inhibitory effect of furanones is primarily due to their structural 

similarity to AHLs, but some case studies also showed that furanones may 

function through degrading the luxR-type protein109 or decreasing the DNA-

binding activity of the transcriptional regulator protein luxR110. In addition to AHLs, 

furanones also disrupt the AI-2 biosynthetic pathway by covalently modifying and 

inactivating luxS111.  

The main source of natural QSIs remains higher plants from very diverse 

species. These plate species include many medicinal plants, vegetables, and 

edible fruits. QSIs may be extracted from all types of plant tissues: roots and 

rhizomes, flowers, bark, leaves, stems, seeds, and fruits112-115. The majority of 

studies have dealt with plant extracts from which the QSI molecules have rarely 

been isolated. Among identified QSIs, most are cyclic compounds, such as 

phenolic derivatives or nitrogen cyclics.  

QQ enzymes  

In addition to QSIs, enzymatic degradation is an alternative approach to 

inhibiting bacterial signaling. The first reports on enzymatic QQ used enzymes 

from Variovorax and Bacillus 116-117. Since then, numerous enzymes involved in 

AHL degradation or modification have been reported. They represent four 

catalytic classes: lactonases that open the homoserine lactone ring, acylases 

that cleave AHLs at the amide bond and release fatty acid and homoserine 

lactone, reductases that convert 3-oxo-substituted AHL to their cognate 3-

hydroxyl-substituted AHL, and cytochrome oxidases that catalyze oxidation of the 
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acyl chain118-123. These enzymes occur in bacteria, archaea, and eukaryotes 

(Figure 1-9).  

 

 

Figure 1-9. Modes of AHL-degrading enzymes and their catalytic sites. They 
represent four catalytic classes: the lactonases that open the homoserine lactone 
ring, the acylases that cleave AHLs at the amide bond and release fatty acid and 
homoserine lactone, the reductases that convert 3-oxo-substituted AHL to their 
cognate 3-hydroxyl-substituted AHL, and the cytochrome oxidases that catalyze 
oxidation of the acyl chain124-125.  
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Amino acid sequence and architecture of the AHL-degrading enzymes are 

diverse, especially for the lactonases. Four lactonase families are known: the 

metallo--lactamase-like lactonases, the phosphotriesterase-like lactonases, the 

paraoxonases, and the -hydrolase fold lactonases. (1) The first enzyme 

identified as a QQ lactonases, aiiA from Bacillus sp. strain117, belongs to the 

metallo--lactamase superfamily, which has a characteristic Zn2+-binding 

HXHXDH motif. They usually have a broad substrate specificity and can 

hydrolyze AHLs with or without c3-substitution and with a preference for medium- 

to long-chain AHLs126. The expression of these genes can prevent the 

accumulation of AHLs; reduce Pseudomonas swarming, twitching, and biofilm 

formation; and attenuate the virulence factors122, 127-129. (2) Phosphotriesterase-

like lactonases (PLLs) are members of the amidohydrolase superfamily, 

possessing a binuclear metal center within a (/)8-barrel structural scaffold. 

They generally have a broad substrate spectrum with a preference for 

hydrophobic lactones, such as SisLac from Sulfolobus islandicus and SsoPox 

from Sulfolobus solfataricus130-131. (3) The paraoxonases adapt a six-bladed -

propeller, such as PON1. In spite of their different folds, the three families above 

share a similar catalytic mechanism that uses metal ions and key active site 

architectures132. The lactone substrate binds to the metal cation by its carbonyl 

oxygen, making the carbonyl carbon more electrophilic. A water molecule is 

deprotonated by either one active-site metal or by a residue acting as a base. 

The resulting tetrahedral intermediate is subsequently broken to give the 
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hydrolyzed product. (4) The structure of -hydrolase fold lactonase named 

AidH from Ochrobactrum is special. It contains no metal-binding motif HXHXDH.  

 

1.4.3 Human Paraoxonases 

The paraoxonase family contains three members: PON1, PON2, and 

PON3. The name derives from the ability of mammalian PON1 to hydrolyze 

paraoxon, the active metabolite of the organophosphate pesticide parathion. 

PON1 is a calcium-dependent esterase which is mainly synthesized by the liver 

and circulated with high-density lipoprotein (HDL) particles133. It has been 

intensively studied for its capacity to protect low-density lipoproteins (LDL) 

against oxidative stress, reduce macrophage foam cell formation and prevent 

atherosclerosis development134. PON3 is similar to PON1 in terms of expression, 

function, and location. Both PON1 and PON3 show the capacity to delay LDL 

oxidation in vitro, with PON1 being more effective than PON3135. PON2 

associates with plasma membranes instead of with HDL particles. PON2 can be 

expressed in nearly all human tissues, including lungs, liver, heart, kidney, and 

intestine136.  

HuPON2 structural and functional characterization studies were largely 

hindered due to the lack of an ample source of recombinant proteins. A rabbit-

human hybrid recombinant PON1 was expressed in a soluble and active form in 

E. coli. It exhibited enzymatic properties almost identical to PONs purified from 

sera137. A crystal structure of rePON1 G2E6 was solved, providing the first 
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structure of a PON family member138. According to the crystal structure, PON1 

has a six-bladed -propeller fold structure with two Ca2+ ion in its central 

tunnel138(Figure 1-10). One calcium atom lies at the bottom of the active site and 

is postulated to play a role in catalysis, while the inner calcium is largely buried 

and appears to have a structural function. The structure indicated a general-base 

mechanism reminiscent of secreted phospholipase A2: an activation of a water 

molecule by a histidine side chain, followed by a nucleophilic attack at the 

phosphoryl/carbonyl center of the substrates. The negative charge of the 

resulting intermediates is probably stabilized by the catalytic calcium.  

 

Figure 1-10. Rabbit-human HuPON1 structure (PDB:1V04). Three surface 
hydrophobic helices are labeled as H1, H2, and H3. Hydrophobic residues are in 
green139.  
 
 
 
 

H3 
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PONs play an important role in innate immune response. This is especially 

true for PON2. The noteworthy feature of PON2 is its ability to effectively 

degrade various harmful factors, including acyl-homoserine lactones, that allow 

bacteria to communicate and coordinate their infection. As early as 2004, it was 

reported that human airway epithelial cells can inactivate 3-oxo-C12HSL. Later 

studies revealed that human keratinocytes’ PON2 inactivates 3-oxo-C12HSL, and 

the use of PON2-deficient mice highlighted the involvement of this lactonase in P. 

aeruginosa clearance in the liver, lungs, and spleen, as well as the AHL 

degradation capability of macrophages140-141. Recent work further revealed that 

the application of 3-oxo-C12HSL on lung epithelial carcinoma cells (human A549 

cells) downregulates PON2 mRNA levels, protein and hydrolytic activity of 3-oxo-

C12HSL142. In addition, a polymorphism found in the PON2 coding sequence, with 

a substitution of a cysteine for a serine at position 311, alters glycosylation of the 

enzyme and decreases its lactonase activity, which could be of major importance 

for innate immunity in the lungs143.  

 

1.5 Outlines  

Our long-term goal is to develop a therapeutic enzyme that can disrupt the 

pathogenic QS system. This study aims to overcome the aforementioned 

technical hurdles and develop qualified QQ human-based enzymes. This 

dissertation is structured into 3 central chapters as follows: 

1. In the second chapter, degenerate short peptide linkers based on 

structure modeling were applied for the removal of hydrophobic helices of 
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huPON2 without disrupting its folding structure. Modified huPON2s can be 

solubly expressed in high yields while retaining the enzymatic function and 

QQ bioactivities. In addition, modified huPON2s inhibit P. aeruginosa 

swimming and swarming motilities. 

2. In the third chapter, the soluble expressed huPON2s were further modified 

by introducing random mutations to enhance the lactonase activity. Five 

mutants showed strong bioluminescent quenching ability, and two of them, 

D3H7 (from first round mutagenesis) and 1A3 (from the second 

roundmutagenesis), elicited the most enhancement of AHL-hydrolysis 

abilities.  

3. In the fourth chapter, QQ agents, C-30 and NPO (chemical molecules) as 

well as aiiA and huPON2 (QQ enzymes), were applied to both P. 

aeruginosa and chronic wound swabs cultures. C-30, NPO and aiiA 

exhibited a significant reduction of biofilm for P. aeruginosa culture; the 

engineered huPON2 displays a high potency on P. aeruginosa biofilm 

development. While the influence of aiiA on chronic wound swabs biofilm 

formation was significant, the potent of engineered huPON2 to the chronic 

wound swabs biofilm construction needs to be further analyzed.  
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2 Chapter 2 Engineering Soluble Human Paraoxonase 2 for 

Quorum Quenching 

This chapter is based on X. Li, C. Wang, A. Mulchandani, X. Ge, ACS 

Chem Biol 2016, 11 (11), 3122-3131 

2.1 Abstract 

Many pathogenic bacteria utilize the quorum sensing (QS) system to 

regulate the expression of their virulence genes and promote the formation of 

biofilm, which renders pathogens extremely resistant to conventional antibiotic 

treatments. As a novel approach for attenuating antibiotic resistance and in turn 

fighting chronic infections, enzymatic inactivation of QS signaling molecules, 

such as N-acyl homoserine lactones (AHLs), holds great promise. Instead of 

using bacterial lactonases that can evoke the immune response when 

administered, we focus on the human paraoxonase 2 (huPON2). However, 

insolubility when heterologously overexpressed hinders its application as anti-

infection therapeutics. In this study, huPON2 was engineered for soluble 

expression with minimal introduction of foreign sequences. Based on a structure 

model, degenerate linkers were exploited for the removal of hydrophobic helices 

of huPON2 without disrupting its folding structure and thus retaining its enzymatic 

function. High soluble expression levels were achieved with yields of 76 mg of 

fully human PON2 variants per liter culture media. Particularly, two clones D2 

and E3 showed significant quorum quenching (QQ) bioactivities and effectively 
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impeded Pseudomonas aeruginosa swimming and swarming motilities, as signs 

of early stage of biofilm formation. In addition, by correlating QQ with 

luminescence signal readouts, quantitative analysis of QQ towards natural or 

non-natural AHL-regulator combinations was performed. Engineered huPON2 

variants D2 and E3 exhibited strong lactone hydrolysis activities towards five 

AHLs of different side chain lengths and modifications utilized by a variety of 

biomedically important pathogens.   

 

2.2 Introduction 

Besides living as unicellular organisms, bacteria also interact socially by 

utilizing chemical signaling compounds to communicate within and between 

species1-3. Particularly, to survive in a host and to attack the host defense 

mechanisms, many bacterial pathogens have evolved multicellular organization, 

which regulates numerous virulence gene expressions and promotes biofilm 

development4-6. Once biofilm generates, infections such as cystic fibrosis, 

chronic wounds, and diabetic foot ulcers, become resistant to antibiotics and 

other conventional antimicrobial agents5. Bacteria activate these protective traits 

only after attaining a particular population density, so that they are able to launch 

a concerted attack and produce ample virulence factors to overwhelm the host 

defenses7. To sense their population density, bacteria employ quorum sensing 

(QS), a process in which bacteria secrete and recognize small signaling 
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molecules called autoinducers or quorum sensing molecules (QSMs)8. The 

concentration of these QSMs correlates with the abundance of secreting 

microorganisms in the vicinity. Because biofilm development and QS are closely 

connected, QSMs have been recognized as attractive pharmaceutical targets for 

fighting infections. In fact, most high-priority Categories A, B and C pathogenic 

bacteria identified by NIAID involve QS and therefore are potentially targetable 

by quorum quenching (QQ)9.  

One approach to interfere intercellular communication, thus disrupting 

biofilm formation and inhibiting the expression of virulence factors, is through the 

usage of synthetic QSM analogues, e.g. brominated furanone C-30, to act as 

agonists or antagonists10-11. This strategy makes pathogens more sensitive to the 

host immune system and to some antimicrobials12. Its potential for treating 

infections such as Pseudomonas aeruginosa in cystic fibrosis and Enterobacter 

cloacae in chronic wounds has been demonstrated13-14. In general, disturbing QS 

communication does not directly cause cell death, therefore applying less 

selective pressure compared to antibiotics15. However, it has also been found 

that in some cases pathogens tend to evolve resistance such as by increasing 

efflux of QQ agents16. As an alternative approach for disrupting QS, the use of 

enzymes to abolish the biological activity of QSMs can therefore be an 

encouraging method of QQ17. 
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At least three important criteria are required for the development of an 

enzymatic anti-biofilm QQ treatment: high catalytic efficiency, minimal 

immunogenicity, and soluble expression with low production cost. Currently, 

there is no such enzyme meeting all requirements.  Studies of a broad range of 

bacterial lactonases and acylases suggest they are highly active toward QSMs, 

i.e., N-acyl homoserine lactones (AHLs), easy to express, and amenable to 

engineering18-23. However, the prokaryotic origin of these enzymes is very likely 

to evoke adverse immune responses when administrated to human. On the other 

hand, mammalian paraoxonases (PONs), named after their capability to detoxify 

organophosphate compounds, can hydrolyze lactones of various modifications 

and carbon chain lengths24-25. Three members of the human PON family 

(huPON1-3) sharing ~60% sequence homology with highly similar secondary 

structures have been identified26. Among these, huPON2 exhibits the highest 

AHLs hydrolysis activities, which was suggested as the native function of 

huPONs25, 27-28. Mounting evidence suggests that mammalian PONs play an 

important role in quenching of bacterial QS4, 29-30. For example, paraoxonase-1 

transgenic flies were protected from P. aeruginosa lethality31; expression of 

PONs inversely correlated with P. aeruginosa infection in cystic fibrosis32; and 

PON2 deficiency enhanced P. aeruginosa QS in murine tracheal epithelia cells33.   

However, mammalian paraoxonases are cell membrane or high-density 

lipoproteins (HDL) – associated enzymes, and thus are difficult to be expressed 
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in soluble forms34-37. Active huPON1 has been successfully produced by 

fermentation in E. coli with considerable yield38. Aiming to produce a more 

soluble version of PON1, directed evolution was applied to shuffle human, rabbit, 

mouse and rat PON1 genes. Soluble and functional chimeric PON1 

recombinants was generated, and one of them was crystalized for structure 

determination39-40. However, sequences of the resulting PON1 variants were 

more rabbit than human – 91% identity to rabbit PON1 and dozens of amino 

acids different from human PON1. Further, since the locations of these mutations 

are scattered throughout the sequence and mainly on the surface of the enzyme, 

de-immunization of the hybrid PON1 variants, e.g. by B-cell or T-cell epitope 

removal, would be significantly challenging41-42. On the basis of structure analysis, 

huPON1 has been further engineered by substituting the hydrophobic residues of 

the HDL binding site with hydrophilic residues derived from the chimeric PON1s. 

This humanized PON1 variant demonstrated an improved solubility but still 

differed in a significant number of positions from huPON143.  

To avoid immunological complications, it would be desirable to have a 

protein therapeutic that is as close as possible to the human native protein with 

minimum foreign or immuno-stimulating segments. In this study, we replaced the 

extruded hydrophobic helices of huPON2 with degenerate short peptide linkers. 

From the limited-diversity linker library, we isolated fully human PON2 variants 

exhibiting a high level soluble expression. In addition to lactone hydrolysis 
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activities toward a spectrum of QSMs found in clinically important pathogens, 

these engineered huPON2 variants were also biologically functional in P. 

aeruginosa swimming and swarming motility tests.  

 

2.3 Methods 

2.3.1 Design and Construction of the huPON2 Library.  

Wild type human paraoxonases 2 (huPON2) sequence (GenBank 

AAC41995.1) and the crystal structure of a hybrid mammalian PON1 derived 

from directed evolution (PDB 1V04)40 were used for the design of the huPON2 

library of this study. Twenty-five primers (Table 2-1) encoding the huPON2 

library were designed using DNAWorks and chemically synthesized. Three 

segments of huPON2 genes were PCR assembled to construct full-length 

huPON2 by overlapping PCR. The resulting fragment (904 bp) was gel purified 

and cloned between NheI and XhoI sites on pET28b to encode N-terminal His-

tag fused huPON2 variants. The ligated vectors were transformed into E. coli 

Jude-1 (DH10B harboring the “F” factor derived from XL1-blue) cells and the 

quality of the constructed library were verified by DNA sequencing. 
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Table 2-1. Oligonuceotides used in this chapter 
 
Name Sequence 
PON2a11 CGTACGCTAGCGACCTGCCGCACTGCCATCTGATCAAAGGTA 
PON2a21,2 CGTTCGGCAGAATGTCGATGTCTTCAGAACCCGCTTCGATACCTTTGATCAGATGGCAGT 
PON2a31,2 ATCGACATTCTGCCGAACGGTCTGGCGTTCTTCTCTGTTGGTCTGAAATTCCCGGGTCTG 
PON2a41,2 TCATCAGGATACCACCCGGTTTGTCCGGTGCGAAAGAGTGCAGACCCGGGAATTTCAGAC 
PON2a51,2 CCGGGTGGTATCCTGATGATGGACCTGAAGGAAGAAAAACCGCGTGCGCGTGAACTCCGT 
PON2a61,2 ATACCGTGAGGATTGAAAGACGCCAGGTCGAAACCACGAGAGATACGGAGTTCACGCGCA 
PON2a71,2 CGTCTTTCAATCCTCACGGTATCTCCACCTTCATCGATAACGACGACACCGTTTACCTGT 
PON2a81,2 GATTTCAACCGTGTTCTTAAATTCAGGGTGGTTAACAACGAACAGGTAAACGGTGTCGTC 
PON2a91,2 TGAATTTAAGAACACGGTTGAAATCTTCAAATTCGAAGAAGCGGAAAACTCTCTGCTGCA 
PON2a101,2 CGTTAACAGACGGCAGCAGTTCGTGTTTAACGGTTTTCAGGTGCAGCAGAGAGTTTTCCG 
PON2a111,2 TGCTGCCGTCTGTTAACGACATCACCGCAGTTGGTCCGGCGCACTTCTACGCGACCAACG 
PON2a121 GGAGAGTAGTAAACAACGTTCGCGCYCGGGCYGTGGTCGTTGGTCGCGTAGAAGTG 
PON2b11 GCGAACGTTGTTTACTACTCTCCGAACGAAGTTAAAGTTGTAGCGGAAGGTTTCG 
PON2b21,2 TATTTGTCGTCCGGAGAGATGTTGATGCCGTTCGCAGAGTCGAAACCTTCCGCTACAACT 
PON2b31,2 CATCTCTCCGGACGACAAATACATCTACGTTGCGGACATCCTGGCGCACGAAATCCACGT 
PON2b41,2 CACTTTCAGCTGGGTCAGGTTCATGTTGGTGTGTTTTTCCAGAACGTGGATTTCGTGCGC 
PON2b51,2 CCTGACCCAGCTGAAAGTGCTGGAACTGGACACCCTGGTTGACAACCTGTCTATCGACCC 
PON2b61 ACCGTTCGGGTGGCAACCAACCCAGATGTCACCAGAAGACGGGTCGATAGACAGGTTGTC 
PON2c11 CCGTCTTCTGAAGTTCTGCGTATCCAGAACATCCTGTGCGAAAAACCGA 
PON2c21,2 CTGCAGAACAGAACCGTTGTTCGCGTAAACGGTGGTAACGGTCGGTTTTTCGCACAGGAT 
PON2c31,2 ACAACGGTTCTGTTCTGCAGGGTTCTTCTGTTGCGTCTGTTTACGACGGTAAACTGCTGA 
PON2c41,2 CAGTTCGCAGTACAGCGCACGATGGTACAGGGTACCGATCAGCAGTTTACCGTCGTAAA 
PON2bc1 GGTTGCCACCCGAACGGTRRCRRCCCGTCTTCTGAAGTTCTGCG 
PON2c51 GCGCTGTACTGCGAACTGTAACTCGAGCATGC 
PON2c61 GCATGCTCGAGTTACAGTTCGCAGTACAGCGCACG 
xl283 GTACCTCGGGGAAAACCTGTATTTTCAGGGAATGACAGTAAAGAAGCTTTATTTCATCCC 
xl293 GGACTGAATTCTATATATTCCGGGAACACTCTACAACTC 
PON1H12 CTGCCCATGGGTGCGTGGGTTGGTTGTGGCCTGGCTGGTGACCGTGCCGGCTTTTTGGG 
PON1H22 GATTACGAAGGGCGAGGAGACGTTCTCCCAAAAAGCCGGCACGG 
PON1H32 CTCCTCGCCCTTCGTAATCGTCTTAAAGCGAGCCGCG 
PON1H42 GGCAGGTCTACGCTTTCAACTTCGCGGCTCGCTTTAAGAC 
PON1H52 GTTGAAAGCGTAGACCTGCCTCACTGCCACCTGATCAAAGGTAT 
PON2A12RE2 CAGATAGGTACCCAGGTACTTCAGGAACGGATCGCTGAAGTAGTGGTCGTTGGTCGCGTA 
PON2H12 GTACCTGGGTACCTATCTGAACTTACACTGGGCGAACGTT 
PON2H22 CTTCGTTCGGAGAGTAGTAAACAACGTTCGCCCAGTGTAAG 
PON2H32 GTTTACTACTCTCCGAACGAAGTTAAAGTTGTTGCGGAAGGTTT 
PON3H12 GTTGCCACCCGAACGGTCAGAAATTATTTGTCTATGACCCGAATAACCCG 
PON3H22 CGCAGAACTTCAGAAGACGGCGGGTTATTCGGGTCATAG 
PON2CZ2 GCGCTGTACTGCGAACTGTAAGGATCCCTAG 
PON2CZ_NEW2 CTAGGGATCCTTACAGTTCGCAGTACAGCGCACG 
xl394 CAGTCCATGGACCTGCCGCACTGCCATC 
xl404 CTAGGGATCCTTACAGTTCGCAGTACAGCGCAC 
xl655 ACGTCTCGAGGATCCATATGACAGTAAAGAAGCTTTATTTCATCCC 
xl665 GGACTTCTAGATTATATATATTCCGGGAACACTCTACAACTC 
xl506 GGACCCAACGCTGCCCGAAATTCCTGCGTTTCTACAAACTCTTTCGGTCCGTTG 
xl516 GAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAACGGACCGAAAGAGTTTGTAG 
xl526 CTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATA 
xl636 TTCTTCGATTTTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTG 
1 For gene assembly of huPON2 mutants.  
2 For gene assembly of wild type huPON2.  
3 For gene amplification of lactonase aiiA from genomic DNA of Bacillus thuringiensis 4A3.  
4 For gene cloning of D2 and E3 to pMAL-c5x.  
5 For gene cloning of aiiA to pBBR1MCS4. 
6 For gene cloning of D2 and E3 to pBBR1MCS4. 
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2.3.2 Selection of Soluble Expressed huPON2 Variants.  

BL21 (DE3) cells were transformed with huPON2 library plasmids, and 96 

colonies were randomly picked and cultured. A total of 200 μL of Terrific Broth 

supplemented with 50 μg/mL kanamycin was inoculated with 2 μL of overnight 

seed cultures, and protein expression was induced with 0.2 mM IPTG at RT for 

16 h. Cells were harvested by centrifugation at 4000g for 15 min at 4 °C and 

resuspended in 200 μL of PBS. After sonication and centrifugation, 20 μL cell 

lysates of all 96 picked clones were analyzed using 12% SDS- PAGE gels to 

examine soluble huPON2 bands at the expected 34.7 kDa. 

 

2.3.3 Cloning, Expression, and Purification of MBP Fused huPON2 

Variants.  

Assembled genes of wild type huPON2 and selected mutants D2 and E3 

were PCR amplified with primers xl39 and xl40 and cloned between BamHI and 

NcoI sites on pMAL-c5x (NEB). MBP-PON2 fusion proteins were expressed in E. 

coli BL21 (DE3) using LB media supplemented with 1 mM CaCl2. Expression was 

induced with 0.2 mM IPTG at OD600 of 0.5−0.6. After culturing at RT for 16 h, 

cells were harvested by centrifugation, resuspended in column buffer (20 mM 

Tris-HCl at pH 7.4, 100 mM NaCl, 1 mM CaCl2), and lysed by sonication. Cell 

lysates were clarified by centrifugation at 10000g for 30 min. MBP-huPON2 

fusion proteins were captured by an amylose resin column (NEB) and washed 
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with column buffer, and MBP-huPON2 proteins were eluted with column buffer 

supplemented with 10 mM maltose. The eluted fractions containing fusion 

proteins were dialyzed overnight at 4 °C against 20 mM Tris-HCl at pH 7.4, 5 mM 

NaCl, and 1 mM CaCl2. Purified protein samples were aliquoted in 20% glycerol 

and stored at −80 °C. The gene of lactonase aiiA was amplified from genomic 

DNA of B. thuringiensis 4A3 (Bacillus Genetic Stock Center) with primers xl28 

and xl29 and cloned into pMAL-c5x. The MBP-aiiA expression and purification 

procedure was similar to that of MBP-huPON2s, except 0.5 mM CoCl2 was used 

in all buffers instead of 1 mM CaCl2. 

 

2.3.4 Lactonase Activity Assays.  

Hydrolysis of acyl-homoserine lactones was detected using HPLC by 

measuring the amount of substrates consumed. Then, 0.4 μM purified MBP-

huPON2 variants were preinoculated in 5 mM Tris-HCl (pH 7.4) and 1 mM CaCl2 

at 37 °C for 1 min, and reactions were initiated by adding a 1% volume of the 8 

mM 3-oxo-C12HSL solution (in methanol) and incubated at 37 °C for various 

times. Reactions were stopped with an equal volume of acetonitrile, and the 

mixtures were vortex mixed and centrifuged to pellet the precipitated proteins. 

Then, 100 μL supernatants were injected to a HPLC system equipped with a 

ZORBAX Eclipse XDB — C18 column (Agilent Technologies, 150 × 4.6 mm, 5 μm 

particles) and a UV/visible detector set at 205 nm. Samples were eluted 
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isocratically with water/acetonitrile/formic acid (32:68:0.03 [vol/vol/vol]) at 1 

mL/min. The retention time for 3-oxo-C12HSL was around 1.9 min. Assay buffer 

without enzymes and purified bacterial lactonase aiiA MBP fusion protein (MBP-

aiiA) were used as negative and positive controls, respectively, in the enzyme 

assays. A pH-sensitive colorimetric assay was performed using an Epoch 

microplate reader. The reactions (200 μL final volume) contained 1 mM HEPES 

at pH 8.0, 25 mM NaCl, 1 mM CaCl2, 0.002% (w/v) Phenol Red, and 10 μL of 

purified enzymes. Reactions were initiated with 2 μL of substrates stock solution 

in methanol, and absorbance decreases at 558 nm were monitored for 3−10 min. 

Preparation and Characterizations of Tag-Free E3. MBP-E3 was cleaved 

by incubating with Factor Xa (1 mg per 50 mg of fusion protein) at RT for 12 h. 

The cleaved mixture was dialyzed against 20 mM Tris-HCl and 25 mM NaCl at 

pH 7.4, then loaded to amylose resin. The flow through was saved for SDS-

PAGE and following analysis. Size exclusion chromatography experiments were 

performed on an ÄKTAprime plus system using 20 mM Tris-HCl at pH 7.4, 100 

mM NaCl, and 1 mM CaCl2 as the column buffer. Newly digested and purified 

tag-free E3 was load onto a Superdex 75 10/300 GL column (GE Healthcare) for 

gel filtration at a flow rate of 0.5 mL/min. The CD spectra of purified E3 were 

recorded at 25 °C using a Jasco J-815 CD spectrophotometer with a 0.1 mm 

path length cell. The bandwidth was set at 1 nm, and scans were obtained 

between 190 and 260 nm with wavelength increments of 1 nm. A total of 1 mg 
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mL−1 of tag-free E3 in 20 mM Tris-HCl at pH 7.4, 25 mM NaCl, and 1 mM CaCl2 

was measured. Secondary structure content was analyzed with the online 

CAPITO server44. The data used for graphical presentation and analyses were 

an average of eight different scans. 

 

2.3.5 Bioluminescence Quorum Sensing Bioassay.  

The promoter regions on plasmids pMAL-D2/-E3/-aiiA were replaced with 

a weak β- lactamase promoter Pbla by Gibson assembly. The Pbla gene was 

amplified with primer xl50, xl51, xl52, and xl63. Constructed pMAL- bla - huPONs 

plasmids were transformed to an sdiA-deficient E. coli. strain JLD271 carrying 

one of the cognate receptors: rhlR (C4HSL), lasR (3-oxo-C12HSL), or luxR (3-

oxo-C6HSL)45. Single-colony transformants were cultured overnight at 37 °C, in 

LB media supplemented with 100 μg/mL ampicillin and 20 μg/mL tetracycline. 

Inoculations were diluted and plated on LB/Amp/Tet Agar plates with 0.1−10 μM 

C4HSL, C6HSL, 3-oxo-C6HSL, C12HSL, or 3-oxo- C12HSL. After incubation at 

37 °C overnight, bioluminescence signals were detected using a ChemiDoc 

imager (Bio-Rad) with justified exposure times based on signal intensity. 

Luminescence signals of individual colonies were then quantified using Fiji 

software46. More specifically, each colony region was selected as the region of 

interest (ROI), and the integrated density values were measured for at least 10 

colonies per sample, for calculating mean values of luminescence signals. 
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2.3.6 P. aeruginosa PAO1 Swarming and Swimming Motility Tests.  

Genes of huPON2 mutants D2 and E3 and aiiA were subcloned to a 

broad-host vector pBBR1MCS4 at XhoI and XbaI sites47. After confirmation by 

DNA sequencing, P. aeruginosa PAO1 competent cells were transformed with 

the plasmids and cultured at 37 °C overnight in LB media supplemented with 200 

μg/mL carbenicillin48. Swimming motility was tested on 10 g/L tryptone, 5 g/L 

NaCl, and 0.3% (w/v) agar plates with 5 μL inoculation of overnight cultures and 

incubation at 37 °C for 24−48 h. The mean areas of the swimming motility zones 

were measured from three replicates, and the error bars represent the standard 

deviations. In swarming motility tests, 0.5% (w/v) agar plates containing 8 g/L 

nutrient broth (Becton, Dicknson and Company) and 5 g/L D-glucose were dried 

for 1 h and then inoculated with 2.5 μL overnight cultures on the center of the 

agar surface. The areas of the swarming motility zones were measured after 

incubation at 37 °C for 48 h. 

 

2.4 Results and Discussion 

2.4.1 Generation of Soluble Expressed huPON2 Variants. 

Because of the high similarity in secondary structures among mammalian 

PONs, huPON2 was modeled based on the crystal structure of rabbit-human 

hybrid PON1 G2E6 (PDB # 1V04), which has 63.1% amino acid sequence 

identity to wild type huPON226, 49-50. The modeling demonstrated that huPON2 is 
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a six-bladed β-propeller with catalytic Ca2+ ions at the center and three helices 

(H1−H3) on the top of its propeller (Figure 2-1a). These helices are distanced 

from the reaction center and highly enriched with hydrophobic residues (shown 

as sticks in Figure 2-1a). Likely, these hydrophobic residues on protruding 

helices form a putative interface involved with HDL particle and cell membrane 

anchoring34, 36. As a QQ agent to hydrolyze extracellular AHLs, engineered 

huPON2 will be presumably administered as a topical medication (i.e., for chronic 

wounds) or lung inhalant (i.e., for cystic fibrosis). Therefore, it is not necessary to 

localize therapeutic huPON2 on cell membranes or HDLs. Moreover, it is well 

accepted that extended hydrophobic patches on the protein surface promote 

aggregation and result in insolubility of recombinant proteins51. Notably, dozens 

of enzymes with propeller topology have been crystallized, and their structures 

suggest that most of propeller fold proteins do not possess extra helices outside 

of their main architecture52. Also, many of these proteins can be expressed in 

soluble form at high yields, e.g., 200−300 mg/L of squid phosphotriesterases in E. 

coli53. On the basis of these considerations, we hypothesize that H1−H3 of 

huPON2 are not essential for its catalytic activity, and removal of these 

hydrophobic helices can substantially improve its solubility, a well-documented 

protein engineering method for solubility improvement51, 54. 
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Figure 2-1. Engineering human PON2 for soluble expression by removal of 
hydrophobic and protruded helixes. (a) Top and side views of huPON2 structure, 
which is characterized as a six-bladed β propeller fold (blue) with three protruded 
helices (red, hydrophobic residues within the helices were shown as sticks) and 
loop regions (green). The reactive Ca2+ ions (magenta) are in the center of the 
propeller fold. Structure mode was generated by Robetta based on a mammalian 
PON1 (PDB=1V04). (b) Amino acid sequences of wild type huPON2, library 
design with 64 possibilities, and selected variants D2 and E3. Color matches with 
the structure in (a). The hydrophobic residues removed or replaced by linkers are 
underlined.  
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To test this hypothesis, we modified huPON2 by removing its N-terminal 

H1 region (residue 17−37, LGERLLALRNRLKASREVESV), replacing the H2 

region (residue 184−201, YFSDPFLKYLGTYLNLHW) with a degenerate 

tripeptide linker carrying a proline turn flanked by one flexible residue at both 

sides Gly/Ser-Pro-Gly/Ser, and replacing the H3 region (residue 288−298, 

QKLFVYDPNNP) with a flexible and hydrophilic degenerate dipeptide linker 

Asp/Asn/Ser/Gly-Asp/ Asn/Ser/Gly (Figure 2-1b). The proline turn and the 

lengths of linkers replacing H2 and H3 were determined according to huPON2 

structure modeling (Figure 2-1a). The total design diversity of the linker library 

was 64, which was encoded by associated degenerate codons (Table 1).  

The helix-free huPON2 genes with degenerate linkers were constructed 

by DNA assembly, cloned in pET28b vector, and expressed for SDS-PAGE 

analysis (Figure 2-2). Given the small design diversity, 96 clones were randomly 

picked, and their cell lysates (clarified by centrifugation at 10 000g for 30 min) 

were analyzed without purification. Soluble expressed helix-free huPON2 

variants were identified as bands with an expected MW of 34.7 kDa. Results 

indicated that 34 of 96 picked clones carried soluble expressed huPON2 variants 

(Figure 2-3). Particularly, clones D2 and E3 displayed strong bands associated 

with the helix-free huPON2, suggesting a high expression level (Figure 2-4). 

DNA sequencing revealed that the linkers of D2 and E3 were Gly-Pro-Gly and 

Ser-Pro-Gly for their H2 regions and Ser-Ser and Gly-Gly for their H3 regions, 
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respectively. As polyhistidine-tag fusion proteins, D2 and E3 were soluble 

expressed with yields of 6.2 mg and 3.2 mg per liter of culture medium after 

purification. 

  
 

 

Figure 2-2. Identification of soluble expressed helix-free huPON2 variants. 
Whole cell lysates without purification were analyzed by SDS-PAGE to identify 
soluble expressed PON2 variants (arrowed) at the expected MW of 34.7 kD. 
Totally 96 colonies were tested (analysis of other clones are shown in Figure 2-3).  
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Figure 2-3. Identification of soluble huPON2 variants by SDS-PAGE. Totally 34 
out of 96 randomly picked clones carried soluble expressed huPON2 variants.  
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Figure 2-4. Expression and purification of soluble huPON2 variants D2 and E3. 
Samples included whole cell (wc), soluble fraction (sol), insoluble fraction (ins), 
filtrate through His-tag resin columns (fil), and elution fractions from the columns 
(e1-e5).  

 

 

To increase their soluble expression, D2, E3, and wild-type huPON2 were 

subcloned into the C-terminal of maltose binding protein (MBP). SDS-PAGE 

analysis of expression and purification profiles after amylose resin-based 

chromatography indicated that while the majority (90%) of MBP-wtPON2 was 

expressed in its insoluble form, almost all helix-free variants MBP-D2 and MBP-

E3 were present in soluble fractions (Figure 2-5). The typical after purification 

yields for MBP-D2 and MBP-E3 variants were 320 and 200 mg of protein per liter 

of culture medium, respectively. The enzymatic activity of purified MBP- E3 was 

measured using N-3-oxo-dodecanoyl-L-homoserine lactone (3-oxo-C12-HSL) as 

the substrate. The consumption of substrate and the production of 

hydroxycarboxylic acid N-(3-oxodecanoyl)-L-homoserine were monitored using 
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HPLC (Figure 2-6). Results indicated that when 80 μM 3- oxo-C12-HSL was used, 

MBP-E3 exhibited a specific activity of 0.16 μmol/min/mg of protein.  

 

 

Figure 2-5. Production of soluble huPON2 variants D2 and E3. (a) The MBP 
fusion proteins were expressed in E. coli and purified by amylose resin 
chromatography. Samples of whole cell (wc), soluble cell lysate (sol), insoluble 
pellet (insol), and purified proteins (puri) were normalized based on cell density 
and loaded to gels. After purification, 320 mg MBP-D2 and 200 mg MBP-E3 were 
typically yielded from per liter of culture media. (b) Production of tag-free E3. 
Samples of purified MBP-E3 fusion, cleaved by protease Factor Xa, and 
separated MBP-free E3 were analyzed by SDS-PAGE. 76 mg of tag-free E3 was 
produced from per liter of culture media.  
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Figure 2-6. AHL hydrolysis activity of MBP-E3 measured by HPLC. 3-oxo-C12-
HSL was used as the substrate (with a retention time of 1.9 min) and the 
associated hydroxycarboxylic acid N-(3-oxodecanoyl)-L-homoserine (with a 
retention time of 0.9 min) was produced. Background auto- hydrolysis of AHLs 
without presence of enzymes was subtracted for specific activity calculations.  

 
  



  

 

69 

 
We further measured the kinetics of MBP-D2 and MBP-E3 on AHL 

hydrolysis using Phenol Red as the pH indicator. The results showed that MBP- 

D2/E3 hydrolyzed a panel of AHLs having side chains ranging from C4 to C12 in 

length with or without 3-oxo substituents, including C4-, C6-, 3-oxo-C6-, and 3-

oxo-C12-HSLs (Table 2). Among tested AHLs, 3-oxo-C12-HSL was the most 

efficient substrate for both MBP-D2 and MBP-E3 mainly due to its low Km values. 

In addition, turnover rates of MBP-E3 in general were 1 or 2 orders of magnitude 

higher than these of MBP-D2, but considerably lower than G2E628. To attenuate 

chronic bacterial infections, repeated administrations are needed, therefore it is 

expected that a tag-free enzyme without the MBP component would be preferred 

over the fusion protein to avoid an adverse immune response. In order to 

produce MBP-free huPON2, purified MBP-E3 fusion was digested with protease 

Factor Xa, and E3 was separated from MBP by amylose resin chromatography. 

Per liter of culture medium, 76 mg of tag-free E3 was typically obtained (Figure 

2-5). Size exclusion chromatography analysis demonstrated that purified tag-free 

E3 was mainly a soluble monomer with smaller amounts of dimer and trimer 

(Figure 2-7), an observation consistent with the wild type huPONs recombinantly 

produced in mammalian cells55. Furthermore, CD spectra of purified tag-free E3 

showed a broad minimum centered around 210 nm with a crossover point of 205 

nm (Figure 2-8), in a good agreement with known β-fold proteins such as 

diisopropylfluorophosphatase53, 56. And compared with wild type huPON1, E3 has 
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the negative peak shifted from 217 to 210 nm, indicating less composition of α-

helices57. The enzymatic kinetics of tag-free E3 was also measured toward C4-

HSL and C6-HSL. The results (kcat of 1.54 min−1 and 1.94 min−1 and Km of 4.7 

mM and 0.46 mM, respectively) suggested a similar specific activity to that of 

MBP-E3 (Table 2-2).  

 
Table 2-2. Specific Lactonase Activates of MBP-D2 and MBP-E3 

    Substrate Km (mM) kcat (min-1) kcat/Km (mM-1-min-1) 

   MBP-E3 C4HSL 1.28 2.45 1.91 

    C6HSL 0.49 2.24 4.57 

    3-oxo-C6HSL 1.29 1.63 1.26 

    3-oxo-C12HSL 0.15 1.22 8.13 

   MBP-D2 C4HSL 2.53 0.30 0.12 

    C6HSL 2.70 0.22 0.08 

    3-oxo-C6HSL 4.57 0.20 0.04 

    3-oxo-C12HSL 0.12 0.23 1.95 
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Figure 2-7. Size exclusion chromatography of purified tag-free E3 (MW= 34kDa). 
103 μg of E3 in column buffer (20 mM Tris-HCl pH7.4, 200 mM NaCl, 1 mM 
CaCl2) was loaded to Superdex 75 10/300 GL column at a flow rate of 0.5 
mL/min. The retention times at 22.5 min (monomer) and 19.5 min (dimer) 
indicate tag-free E3 is a soluble protein without aggregation. E3 trimmer was also 
observed, consistent with the results of wt huPONs produced by recombinant 
mammalian cells55.  
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Figure 2-8. CD spectra of purified tag-free E3. A broad negative peak at 210 nm 
with a crossover point of 205 nm is in a good agreement with known β-fold 
proteins such as diisopropylfluorophosphatase53, 56.  

 
 

 

 

2.4.2 Quorum Quenching Activity of Helix-free Soluble huPON 2s.  

QQ activities of soluble huPON2 variants D2 and E3 were examined by 

bioluminescence bioassay using reporter strains, which mimic the luxR-luxI type 

QS system of natural Gram-negative bacteria (Figure 2-9). Particularly, the host 

contained two plasmids an enzyme plasmid encoding MBP-huPON2 fusion and 

a reporter plasmid carrying a QS regulator gene LasR/RhlR/LuxR and the 

complete luciferase operon luxCDABE under the control of the associated QS 

promoter PlasI/PrhlI/PluxI
58. When exogenously added, AHLs such as 3-oxo-C12-
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HSL will freely transport into cells and bind with QS regulators and thus induce 

the expression of luxCDABE, which generates bioluminescence signals on agar 

plates. In the presence of active huPON2, AHLs will be hydrolyzed, resulting in 

no or low bioluminescence signals known as QQ.  

As shown in Figure 2-10, helix-free huPON2 mutants D2 and E3 exhibited 

strong lactonase activity toward 3-oxo-C12-HSL in the QQ bioassay. In the 

absence of AHLs, the background luminescence of all the clones was 

undetectable. Increasing the concentration (0.1−10 μM) of 3-oxo-C12HSL 

generated a stronger luminescence signal as a result of the higher expression 

level of the luxCDABE gene cassette. However, when D2 or E3 was expressed 

(either with or without IPTG induction), the luminescence signal intensity was 

quenched to the background level even at 10 μM 3-oxo-C12HSL. QQ activity was 

also confirmed with the positive control aiiA, a bacteria lactonase possessing a 

high activity toward a broad range of AHLs59.  
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Figure 2-9. Characterization of lactone hydrolysis activity of D2 and E3 by 
bioluminescence assays60. Exogenously added AHLs bind to regulator 
LasR/RhlR/LuxR and induce the expression of luxCDABE cassette through and 
promoter PlasI/PrhlI/PluxI, resulting in strong bioluminescence signals on agar 
plates. (Bottom) With expression of active huPON2 variants, hydrolysis of AHLs 
leads to quorum quenching and low bioluminescence signals. Five lactones N-
butyryl-/ N-hexanoyl-/ N-(β-ketocaproyl)-/ N-dodecanoyl- / N-3-oxo-dodecanoyl-L-
homoserine were tested in the assays.  
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Figure 2-10. Quorum quenching activities of D2 and E3. LasR/PlasI receptor 
system and its associated QSM 3-oxo-C12HSL (0 to 10 μM) were used for the 
assays. Without active enzymes, bioluminescence signals were intensified with 
increased concentrations of AHL. With expression of D2 or E3, QS signals were 
completely quenched even at 10 μM of AHL. A highly active bacterial lactonase 
aiiA was included as the positive control. Locations of colonies are shown in the 
left columns. 

 
 
 
2.4.3 Inhibition of P. aeruginosa Swimming and Swarming Motilities.  

At the early stage of biofilm formation, bacteria use their flagella to sense 

the environment and swim as a group61. It is well-known that syntheses of 

flagella, polysaccharides, and rhamnolipids are effected by QS, through both the 

direct regulation by the rhl system and the indirect regulation by the las system62. 

As a model strain for motility study in an aqueous environment, P. aeruginosa is 

commonly used for swimming assays, in which cells migrate away from the point 

of inoculation and form a concentric chemotactic ring. To test the effects of 
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soluble huPON2 on swimming motility of P. aeruginosa, D2, E3, and aiiA genes 

were subcloned to a shuttle plasmid, and transformed into P. aeruginosa PAO1. 

After 24 h of culture at 37 °C, P. aeruginosa carrying the empty vector quickly 

spread out with an area of 14.1 ± 1.8 cm
2 and at 48 h covered the entire plates 

with a spreading zone area of 41.3 ± 3.3 cm
2 (Figure 2-11). However, when 

huPON2 mutants D2 or E3 were expressed, swimming motility was significantly 

attenuated with spreading region areas, respectively, of 11.2 ± 4.4 cm
2 and 11.4 

± 2.0 cm
2 at 24h and 28.7 ± 3.6cm

2 and 30.2 ± 4.1cm
2 at 48 h, which account for 

a ∼30% average decrease. As a positive control, P. aeruginosa expressing aiiA 

was tested in parallel and showed a ∼70% decrease of the spreading zone area, 

suggesting a stronger QQ bioactivity compared with engineered huPON2 

variants. We further tested swimming motilities when 100 nM C4-HSL and/or 3-

oxo-C12-HSL were present in agar to mimic the social behavior of P. aeruginosa 

colonies. Results showed that with exogenous AHLs, P. aeruginosa exhibited 

increased motility as expected. However, transformants with aiiA or E3 genes 

significantly reduced swimming motilities compared to the strain carrying the 

empty vector (Figure 2-12).  
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Figure 2-11. Inhibition effects of D2 and E3 on Pseudonomas aeruginosa PAO1 
swimming motility. (a) Representative agar plates showing PAO1 spreading 
zones after 48 hours of culture. PAO1 cells were transformed with D2, E3, aiiA or 
the vector plasmid (n.c.) (b) Quantitative measurements of spreading zone areas.  
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Figure 2-12. E3 mediated swarming motility reduction in the presence of 
exogenous AHLs. Enzymes were endogenously expressed by transformed P. 
aeruginosa PAO1. Adding 100 nM C4 or/and 100 nM 3-oxo-C12HSL in agar 
plates promoted swimming motilities by 13-20 %. However, transformants with 
aiiA or E3 genes significantly reduced swimming motilities compared to the strain 
carrying the empty vector. Colony spreading areas were measured and values 
were shown for each agar plate.   
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Bacteria exhibiting biofilm formation also display the feature of swarming, 

which is a specialized flagella-driven surface motility that bacteria employ on 

semisolid surface under nitrogen limiting conditions63. Swarming cells express 

two polar flagella, which can facilitate bacteria movement by providing more 

propulsion, and thus gain a competitive advantage in searching for nutrient-rich 

environments64. In addition, production of surfactant rhamnolipid is fundamental 

for the swarming motility to facilitate insoluble hydrocarbon biodegradation and 

reducing surface tension65. Because both flagella and rhamnolipid synthesis are 

regulated by the rhl system, swarming motility is closely related to QS as well66. 

We evaluated the effect of endogenous D2 or E3 expression on P. aeruginosa 

swarming motility. After 48 h of incubation at 37 °C, surface areas covered by 

swarming were measured. Results indicated that cells transformed with empty 

plasmid (as a negative control) freely spread across the media surface exhibiting 

typical dendritic-like patterns (Figure 2-13a).  

In contrast, the swarming motility was inhibited in P. aeruginosa clones 

carrying huPON2 variants, with 76% and 42% reduction of spreading zones for 

D2 and E3, respectively. As expected, P. aeruginosa transformed with aiiA also 

reduced P. aeruginosa swarming motility by 70%, a similar efficacy compared 

with D2. In therapeutic applications, the engineered AHL hydrolyzing enzymes 

will likely be topically administrated. Therefore, it will be more relevant to test 

motilities when D2 or E3 was exogenously added to culture medium rather than 
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endogenously expressed. For this test, a PAO1 strain that pronounces significant 

branch formations was used67. Results demonstrated that when 720 μg of MBP-

D2 or 520 μg of MBP-E3 were applied on agar plates during inoculation, P. 

aeruginosa swarming motilities were significantly obstructed or completely 

abolished (Figure 2-13b).  

 

 

 

Figure 2-13. Reduction of P. aeruginosa PAO1 swarming motility with D2 or E3. 
Enzymes were either endogenously expressed by (a) transformed POA1 or (b) 
exogenously added on agar plates.   
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2.4.4 Promiscuous Hydrolysis Activities of Soluble huPON2.  

Because QS systems play important roles in numerous pathogenic 

bacteria for their survival from host immune responses, many NIAID category A, 

B, and C priority pathogens are associated with QS. As one of the major 

signaling molecules for Gram-negative bacteria, AHLs thus serve as an excellent 

group of targets to attenuate chronic infections. However, a broad range of AHLs 

with different 3′ modifications and side chain lengths are utilized in a variety of 

pathogens. For example, in Yersinia pestis (plague) the predominant AHLs are 3-

oxo-C8-HSL and 3-oxo-C6-HSL synthesized by gene YspI60, and in Burkholderia 

pseudomallei (melioidosis) at least three luxI and five luxR homologues are 

involved in its pathogenicity, and several signaling molecules including C8-/C10-

/OH-C8-/OH-C10-/3-oxo-C14-HSLs are generated68.  

To evaluate the effects of engineered soluble huPON2 variants D2 and E3 

on different AHLs and the associated QS receptors, we tested five AHLs 

including C4-HSL, C6-HSL, 3- oxo-C6-HSL, C12-HSL, and 3-oxo-C12-HSL with a 

combination of three receptors P. aeruginosa rhlR (C4-HSL as its natural QSM), 

P. aeruginosa lasR (3-oxo-C12-HSL as its natural QSM), and Vibrio fischeri 45. E. 

coli JLD271 carrying one of the reporter plasmids was transformed with an 

enzyme plasmid encoding MBP-D2, MBP-E3, or MBP-aiiA (included as the 

positive control). The empty vector encoding the MBP tag alone was also 
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transformed into the QS reporter cells as the negative controls. These double 

transformants were cultured on LB-Amp-Tet plates supplemented with different 

AHLs at variable concentrations. After 16 h of incubation, bioluminescence signal 

images were taken (Figure 2-14a), and 10 colonies from each sample were 

randomly selected for quantitative analysis. As demonstrated in Figure 2-14b, 

high luminescence signals represent strong QS and low luminescence signals 

represent QQ and thus high lactone hydrolysis activities. The collected data for 

all AHL-regulator combinations were then compiled to generate heat maps. 

Initially, when MBP fusion proteins were cloned following a strong promoter Ptac, 

all the QQ effects of D2, E3, and aiiA were significantly strong, and signals were 

indistinguishable from each other even at high concentrations of AHLs, i.e. 10 μM 

of 3-oxo-C12-HSL (Figure 2-15). To better characterize huPON2 mutants by 

increasing the response range, Ptac was replaced by a weak and constitutive β-

lactamase promoter Pbla. SDS-PAGE verified an approximately 20-fold reduced 

expression level for MBP-D2 under Pbla (Figure 2-16) and thus making it more 

suitable to evaluate huPON2 mutants.  
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Figure 2-14. Quorum quenching analysis of D2 and E3 on different AHL-
regulator combinations. Three quorum sensing signal receptors, rhlR, lasR and 
luxR, and five AHLs at various concentrations were utilized for the analysis. D2, 
E3 and aiiA were under the control of a weak β-lactamase promoter to lessen 
their expression levels. (a) Colony bioluminescence images of agar plates for 
rhlR with 10 µM C6-HSL as an example. (b) Bioluminescence signal intensities of 
ten representative colonies for each sample were randomly selected for 
quantitative analysis. (c) Heat maps of quorum quenching analysis on huPON2 
variants with different AHL-regulator combinations.  
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Figure 2-15. Quorum quenching analysis of MBP-huPON2 variants when 
expressed at the downstream of a strong promoter Ptac.  

 
 
 
 

 

Figure 2-16. SDS-PAGE analysis of MBP-D2 expression levels under the control 
of promoters PlacUV5, Ptac or Pbla. PlacUV5 and Pbla resulted in approximately 3- and 
20-folds lower expression than Ptac. 
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The overall results of QQ analysis of D2 and E3 toward different AHL-

regulator combinations are shown as heat maps in Figure 2-14c. Briefly, in the 

absence of lactonase, receptor rhlR strongly responded to its natural QSM C4-

HSL and non-natural QSM C6-HSL at the same level, but C12-HSL and 3-oxo-

C12-HSL were not able to stimulate the rhlR-mediated QS and resulted in low 

luminescence signals. In contrast, lasR and luxR exhibited AHL preferences to 

C12-HSL with moderate response to 3-oxo-C6-HSL and 3-oxo-C12-HSL and low 

response to C4- HSL and C6-HSL. As expected, the higher AHL concentrations 

produced the stronger luminescence signals. In the presence of huPON2 

variants D2 or E3, luminescence signals were potently quenched in general. 

Importantly, D2 and E3 exhibited lactone hydrolysis activities toward all five AHLs 

tested. Their catalytic promiscuity is not surprising given that wild type 

huPON1−3s can hydrolyze a broad range of substrates including lactones, 

organophosphates, aryl esters, etc28. Notably, E3 was more effective than D2 on 

QQ for most AHL-receptor combinations tested. Since D2 was usually expressed 

∼40% more than E3, these results suggested E3 exhibited a higher specific 

activity than D2, consistent with kinetics measurements (Table 2-2). As a positive 

control, expression of bacterial lactonase aiiA gave very low luminescence 

signals and effectively eliminated QS for all five AHLs, in excellent agreement 

with a previous report18. Collectively, the bioluminescence systems demonstrated 
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here can be used for evaluation of lactonases and pave the way for further 

selection of huPON2 variants with high AHL hydrolysis activities targeting QSM-

regulator combinations of biomedical importance.  

 

2.5 Conclusion  

In this study, huPON2 was engineered for soluble expression with minimal 

introduction of foreign sequences. Both a rational approach based on structure 

modeling and a combinatory approach of degenerate linker design are exploited 

for removing the hydrophobic helices without disruption of the folding structure 

and thus retaining the function of huPON2. High soluble expression levels were 

achieved with yields of 76 mg of fully human PON2 variants per liter of culture 

media. Particularly, two clones, D2 and E3 were characterized for their quorum 

quenching bioactivities. Results demonstrated that D2 and E3 effectively 

inhibited P. aeruginosa swimming and swarming motilities. In addition, using the 

reporter strains to correlate QQ with luminescence signal readouts, quantitative 

analysis of QQ toward natural or unnatural AHL-regulator combinations was 

performed, which allowed us to better evaluate huPON2 variants for the desired 

lactonase activities toward pathogens of interest. Compared with bacterial 

lactonase aiiA, the engineered soluble huPON2 mutants D2 and E3 exhibited 

relatively moderate catalytic activities of lactone hydrolysis. For the generation of 

therapeutic QQ human enzymes with required high turnover rates, directed 
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evolution by random and site-directed mutagenesis followed by bioluminescence-

based screening is currently undertaken. Moreover, the technique of engineering 

highly soluble huPON2 described in this paper can be readily applied for 

huPON1, which exhibits organophosphate hydrolysis activities, for use in 

environmental bioremediation of pesticides and detoxication of nerve agents.  
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3 Chapter 3 Engineering Human Paraoxonase 2 for Enhanced 

Quorum-Quenching Activity 

3.1 Abstract  

Human paraoxonase 2 (huPON2) plays an important role in innate 

immunity, atherosclerosis, and other associated diseases due to its ability to 

hydrolyze quorum sensing molecules, such as N-(3-oxododecanoyl)-L-

homoserine lactone (3-oxo-C12HSL). In Chapter 2, huPON2 has been 

engineered for soluble expression while retaining its enzymatic activities. In this 

Chapter, we aim to improve its lactone hydrolysis activities toward biomedical 

important N-acyl homoserine lactones (AHLs). Random mutagenesis was 

introduced by error-prong PCR, and the huPON2 library was screened by 

bioluminescence assays. Five variants with enhanced quorum quenching ability 

were isolated. These isolated variants exhibited strong quenching ability towards 

five AHLs with different carbon chain length and substitution. Among these 

variants, D3H7 from the first round of screening and 1A3 from the second round 

showed the most improvements in in vitro kinetic assays. Whereas, isolated 

huPON2 mutants did not possess enhanced inhibition toward Pseudomonas 

aeruginosa swimming motility.  
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3.2 Introduction  

Human paraoxonases (huPONs) play an important role in innate immunity, 

apoptosis in cancer cells, and other human disorders including atherosclerosis, 

diabetes, cerebrovascular disease, Alzheimer disease, amyotrophic lateral 

sclerosis, organophosphate susceptibility, and Parkinson disease1-5. Particularly, 

huPON2 has been implicated in oxidative stress, inflammation and quorum 

sensing regulation, due to the highest activity among three huPONs against N-

acyl-homoserine lactones (AHLs)6. By hydrolyzing AHLs, which allows Gram 

negative bacteria to communicate and coordinate in their infection7, PON2 

maintains intestinal homeostasis, degrades carious harmful factors, and favors 

solid protection for mucosal barrier integrity8-9. In addition, huPON2 lessen 

quorum sensing of pathogenic P. aeruginosa in cystic fibrosis sufferers10-11. 

These findings collectively suggest that PON2 represents an interesting 

pharmaceutical target for the prevention of epithelial infections.  

HuPON2 structural and functional characterization studies were largely 

hindered due to the lack of an ample source of recombinant proteins. HuPONs 

are rather unstable and tend to aggregate in the absence of detergents12. To 

facilitate their studies and enable their engineering for improving catalytic 

efficiency and specificity, attempts to express PONs in E. coli have been started 

since 2004. Through family shuffling of four PON1 genes, including human, 

rabbit, mouse and rat, the recombinant PON1 G2E6 gave stable and well-



  

 

97 

diffracting crystals. Likewise, the expression of recombinant PON3 was achieved 

by DNA shuffling and random mutagenesis13. Later, N-terminal hydrophobic 

patch removing or polar mutations in the putative HDL binding site, PON1 was 

engineered for improvement of solubility, stability and activities14-16. 

However, most of these engineered PON variants carry non-human 

sequences, e.g. G2E6 has a 91% identity to rabbit PON1 with dozens of amino 

acids different from human PON1. These non-human sequences could generate 

immunogenicity issues when applied as biopharmatheuticals. In Chapter 2, we 

overcome the issue by removing and replacing the protruding hydrophobic 

helices with short peptide linkers17, and achieved high expression level. To 

further improve their catalytic activities, we applied directed evolution in this 

current study. 

 

3.3 Materials and Methods 

3.3.1 Generation of HuPON2 Random Mutagenesis Library  

The plasmids encoding huPON2 clones D2 or E3 were mixed as 

templates for error-prone PCR with primers xl39 (5’-

CAGTCCATGGACCTGCCGCACTGCCATC-3’) and xl40 (5’- 

CTAGGGATCCTTACAGTTCGCAGTACAGCGCAC-3’) and annealing 

temperature at 55 C. 100 L reaction mixture contained 1 L Taq DNA 

polymerase (NEB), 0.25 M xl39, 0.25 M xl40, 20 ng template DNA, 2.4 mM 
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MgCl2, 0.5 mM MnCl2, 0.12 mM dATP, 0.1 mM dCTP, 0.55 mM dGTP, 3.85 mM 

dTTP and 0.5 g BSA. PCR product was cloned between BamHI and NcoI sites 

on pMAL-bla-c5x vector, and ligated DNA was electro-transformed into E. coli 

Jude-1 (DH10B harboring the “F” factor derived from XL1-blue) competent cells.  

 

3.3.2 Bioluminescence Quorum Quenching Screening Assay 

Constructed library plasmids were amplified by miniprep and transformed 

into E. coli strain JLD271 for screening. Cells were cultured overnight at 37 °C in 

LB broth supplemented with 100 μg/mL ampicillin and 20 μg/mL tetracycline, 

then plated on LB/Amp/Tet agar plates containing 0.1 μM 3-oxo-C6HSL. Each 

plate contained 500 - 2000 colonies and 200 plates were screened to cover the 

entire library. After incubation at 37 °C overnight, bioluminescence signals were 

detected by the ChemiDoc imager (Bio-Rad) with justified exposure time based 

on the signal intensity. Low bioluminescence colonies were picked and 

inoculated with 200 μl LB media in 96-deep-well plates for overnight culture at 37 

C. Colonies with consistent quorum quenching behavior were selected for DNA 

sequencing.  

 

3.3.3 Expression and Purification of HuPON2 Variants 

Genes of isolated huPON2 mutants were amplified with xl39 and xl40, and 

then subcloned into pMAL-c5x with Ptac promoter. HuPON2 variants were 
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expressed in E. coli BL21 (DE3) using LB media supplemented with 1 mM CaCl2. 

Expression was induced with 0.2 mM IPTG at OD600 of 0.5−0.6. After culturing at 

room temperature for 16 h, cells were harvested by centrifugation, resuspended 

in column buffer (20 mM Tris-HCl at pH 7.4, 100 mM NaCl, 1 mM CaCl2), and 

lysed by sonication. Cell lysates were clarified by centrifugation at 10,000g for 

30 min. The proteins were captured by amylose resin columns (NEB) and column 

was washed thoroughly with column buffer, and then eluted with elution buffer 

(column buffer supplemented with 10 mM maltose). The eluted fractions 

containing huPON2 mutant proteins were dialyzed overnight at 4 °C against 

storage buffer (20 mM HEPES at pH 7.4, 5 mM NaCl, and 1 mM CaCl2). Purified 

protein samples were aliquoted in 20% glycerol and stored at -80 °C.  

 

3.3.4 SDS-PAGE and Western Blotting 

Purified huPON2 variants were analyzed by SDS-PAGE and transferred 

(1h at 100V) onto PVDF membranes in 0.375 M Tris-glycine buffer (pH8.3). The 

membranes were blocked by incubation with skim milk 5% (w/v) in 1x Tris-

buffered saline (0.2 M Tris pH 7.5, 1.5 M NaCl) containing 0.05% Tween (v/v) 

and incubated for 1 h with an anti-MBP mouse monoclonal antibody (NEB). After 

washing, the membranes were incubated for 1 h with anti-mouse IgG-peroxidase 

conjugate (NEB), and developed with a chemiluminescent substrate.  
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3.3.5 Lactonase Activity Assays 

N-acyl-homoserine lactonase activity of huPON2 variants was measured 

with phenol red as a spectrophotometric pH indicator. pH change was monitored 

in 96-well plates using a microplate reader (Biotek). 200 μL reaction contained 1 

mM HEPES (pH 8.0) at pH 8.0, 5 mM NaCl, 1 mM CaCl2, 0.002% (w/v) phenol 

Red, and 2 μL of substrates stock solution in methanol. The absorbance 

decreases at 558 nm were monitored for 3-10 min. Background substrates 

hydrolysis was subtracted from enzyme kinetic measurements.  

 

3.3.6 Inhibition of Swimming Motility of P. aeruginosa PAO1 by HuPON2 

Variants 

Genes of huPON2 mutants were subcloned to a broad-host vector 

pBBR1MCS4 between XhoI and XbaI sites18. After confirmation by DNA 

sequencing, P. aeruginosa PAO1 competent cells were transformed with the 

plasmids and cultured at 37 °C overnight in LB media supplemented with 200 

μg/mL carbenicillin19. Swimming motility was tested on 10 g/L tryptone, 5 g/L 

NaCl, and 0.3% (w/v) agar plates with 5 μL inoculation of overnight culture and 

incubation at 37 °C for 24h.  
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3.4 Results  

3.4.1 Identification of huPON2 Variants with Increased Quorum Quenching 

Activity.  

In Chapter 2, wild type huPON2 was modified by removing and replacing 

the protruding hydrophobic helices with short peptide linkers17. huPON2 D2 and 

E3, derived from wt huPON2, could be solubly expressed. Meanwhile, D2 and E3 

retained their enzymatic functions toward five different AHLs. Additionally, they 

showed significant quorum quenching bioactivities and effectively impeded P. 

aeruginosa swimming and swarming motilities. Thus, D2 and E3 were used as 

the templates for huPON2 library construction. Gene libraries with 1  106 

variants were prepared by error-prone PCR (Figure 3-1a). From ten randomly 

chosen clones, 7 were in correct reading frame, 2 had advanced stop codons, 

and 1 had reading-frame shift.  

The constructed plasmids carrying library DNA were transformed into an 

sdiA-deficient E. coli strain JLD27120, a reporter strain containing pAL103, which 

has a transcriptional activator luxR (naturally recognizing 3-oxo-C6HSL) and a 

bioluminescence gene cassette luxCDABE (Figure 3-1b). When screening on 

agar plates for enhanced quorum quenching activity, the exogenous AHLs, such 

as 3-oxo-C12HSL, diffuse into cells and drive luxR dimerization and the 

expression of the bioluminescence cassette through promoter PluxI. In contrast, 

active enzymes can hydrolyze AHLs, avoid quorum sensing and quench 
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bioluminescence signals. Therefore, the huPON2 variants exhibiting weak 

bioluminescence signals indicate enhanced quenching ability, and are selected 

for further characterizations (Figure 3-1c).  

 

Figure 3-1. Directed evolution of huPON2 variants with increased quorum 
quenching activity. (a) Random mutagenesis of soluble huPON2 by error-prone 
PCR (b) The screening system composes of bioluminescence reporter and 
huPON2 library plasmids. Exogenous AHLs drive expression of bioluminescence 
gene cassette luxCDABE, while active PON2 mutants hydrolyze AHLs resulting 
in weak bioluminescence signals. (c) Representative images of screening 
showing in bright-field (left) and bioluminescence channel (right). Arrows indicate 
quorum quenching colonies. 
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In the first round, ~2  105 library colonies were screened on agar plates 

supplement with 100 nM 3-oxo-C12HSL, and 550 colonies with quenched 

luminescent signals were identified. These clones were re-screening on agar 

plates with 100 nM or 500 nM 3-oxo-C12HSL, and six clones exhibiting consistent 

QQ activities, i.e. weaker signals than D2 and E3 and similar signal intensities as 

aiiA, were isolated. Images of a representative re-screening are shown in Figure 

3-2. Sequencing results revealed these six clones were unique. Genes of these 

isolated clones were mixed for error-prone PCR to generate the second-round 

library with ~106 variants. 480 clones were selected from 8  105 colonies on 100 

nM 3-oxo-C12HSL plates. Rescreening with 100 nM and 500 nM 3-oxo-C12HSL 

identified one more clone showing improved quenching ability.  

Mutations of isolated clones were summarized in Table 3-1. Sequencing 

results revealed that among the six mutants from the first round, E3E8 and E3A9 

had their origin of E3, and D2H5, D2F9, D2G7 and D3H7 had their origin of D2. 

Clone 1A3 from the second round was derived from D3H7 with six additional 

mutations.  
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Figure 3-2. Results of re-screening with 100 or 500 nM 3-oxo-C12HSL. Library 
mutants with weaker bioluminescent signals than D2 and E3 groups were 
pointed by green arrows. aiiA, D2 and E3 served as controls (red arrows).  
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Table 3-1 Library variants mutations and their locations 

clone mutations mutation locations 

E3E8 L53P, I192T L53P on the -sheet, I192T on the loop 

E3A9 E109K, P137S Both on the loops 

D2H5 G10D, S168P, K197E All on the loops 

D2F9 N202D On the -sheet 

D2G7 D131G, N171S, A272T All in the tunnel 

D3H7 E196G, N262D E196G on the loop, N262G on the -sheet 

1A3 
(E196G, N262D) + (H38Y, Y90N, 
S114T, Y154N, F167Y, L284Q) 

All of them either on the outside of -sheet 
or loops. 

 

 

Figure 3-3 shows the locations of these mutations on huPON2 D2/E3 

structures. Most mutants are located on protein surface either on -sheet or the 

loops linking -sheets. These mutations are away from the catalytic pocket, yet 

could aid protein expression, such as hydrophobic to hydrophilic mutations I192T 

in E3E8, or promote subtle changes on the overall folding. However, all three 

mutations D131G, N171S and A272T on D2G7 are located in the tunnel of the 

propeller folding, which might benefit substrate binding or catalytic reactions. 
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Figure 3-3. Mutation locations of isolated huPON2 mutations. Mutated residues 
are labeled in either purple (the first round) or green (the second round). Most 
mutations are on the protein surface, while for except D2G7 mutations are inside 
the tunnel. 
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3.4.2 Isolated PON2 mutants exhibited activity toward a broad range of 

lactones  

Even library variants were screened with 3-oxo-C12HSL, it is interesting to 

evaluate isolated variants on different AHLs. Five AHLs at two concentrations 

were used in bioluminescence assays on agar plates: 100 nM / 1 M C4HSL, 

C12HSL and 3-oxo-C12HSL, and 10 / 100 nM C6HSL and 3-oxo-C6HSL (natural 

signaling molecule of LuxR, thus lower concentrations to even exposure time). 

As results shown in Figure 3-4, in the presence of 100 nM 3-oxo-C12HSL, five 

mutates D2H5, D3H7, E3E8, E3A9 and 1A3 displayed enhanced quenching 

abilities, while D2F9 and D2G7 exhibited relatively weaker quenching than D2 

and E3. With 1 M 3-oxo-C12HSL, signal intensities with all variants increased 

but following the same pattern as 100 nM 3-oxo-C12HSL. When C12HSL was 

used, aiiA showed increased signal intensity, indicating it had lower catalytic 

activity on C12HSL than 3-oxo-C12HSL. HuPON2 variants exhibited similar 

quenching capacity toward 3-oxo-C12HSL. As the natural substrate for luxR 

receptor, 3-oxo-C6HSL and C6HSL stimulated strong signals. Isolated variants 

also illustrated significant quenching abilities toward 3-oxo-C6HSL and C6HSL. 

Among them, C6HSL was more sensitive for enzymatic hydrolysis by huPON2 

mutants. In the presence of 100 nM and 1m C4HSL, signals of D2H5, D3H7, 

E3E8, E3A9, and 1A3 were completely quenched. Overall, E3E8 and E3A9 
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exhibited the highest quorum quenching abilities compatible to aiiA, against all 

five tested AHLs.   

 
Figure 3-4: Library variants quorum quenching against different AHLs. Negative 
control (n.c.) was empty vector without enzyme gene. aiiA was an efficient 
lactonase having broad and effective lactonase activity. D2 and E3 were the 
soluble huPON2 as the templates for these library variants.  

 

3.4.3 HuPON2 Variants AHLs Hydrolytic Activity 

Due to the strong luminescence quenching abilities, D2H5, E3E8, D3H7, 

and 1A3 were purified, and their kinetic constants toward four AHLs were 

obtained (Table 3-2). Compared to E3, E3E8 exhibited 1.8-, 3.1-, 3.2-fold 

increase of turnover rates (kcat) toward C4HSL, C6HSL, and 3-oxo-C12HSL, and 

the binding affinities remained the same. The kcat/Km values of D3H7 and 1A3 
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toward all tested AHLs had a 19- to 86.5-fold increase compared to D2. The 

turnover rates of D3H7 improved for 11.3-, 12.3-, 11.4-, and 40.8-fold for C4HSL, 

C6HSL, 3-oxo-C6HSL and 3-oxo-C12HSL, also its binding affinities increased 3.6-, 

6.9-, 9.1-fold toward C4HSL, C6HSL, 3-oxo-C6HSL. 1A3 had the most improved 

kcat among all tested AHLs. The kcat of D2H5 also showed about 10-fold turnover rates 

enhancement to all tested AHLs.  

 

Table 3-2 Specific Lactonase Activates of huPON2 Variants 
 

 C4HSL C6HSL 3-oxo-C6HSL 3-oxo-C12HSL 

 Km 
(mM) 

kcat 
(min-1) 

kcat/Km 
(mM-1-min-1) 

Km 
(mM) 

kcat 
(min-1) 

kcat/Km 
(mM-1-min-1) 

Km 
(mM) 

kcat 
(min-1) 

kcat/Km 
(mM-1-min-1) 

Km 
(mM) 

kcat 
(min-1) 

kcat/Km 
(mM-1-min-1) 

E3 1.28 2.45 1.91 0.49 2.24 4.57 1.29 1.63 1.26 0.15 1.22 8.13 

E3E8 1.45 4.43 3.06 0.65 6.86 10.55 1.21 1.6 1.32 0.16 3.9 24.38 

D2 2.53 0.3 0.12 2.7 0.22 0.08 4.57 0.2 0.04 0.12 0.23 1.92 

D3H7 0.7 3.39 4.84 0.39 2.7 6.92 0.5 2.27 4.54 0.24 9.39 39.13 

1A3 1.3 5.63 4.33 1.22 5.11 4.19 6.69 8.18 1.22 0.38 13.93 36.66 

D2H5 2.4 2.67 1.11 1.02 3.51 3.44 2.99 2.24 0.75 0.22 1.2 5.45 

 

 

3.4.4 HuPON2 Variants Expression Levels 

To confirm the enhanced QQ was due to the improvement of enzyme 

catalysis activity but not the enzyme concentrations, we measured the 

expression levels for isolated variants in the reporter strain. Compared to D2 and 

E3, the majority of isolated clones exhibited similar expression level (Figure 3-4), 

while 1A3 had higher and D2G7 had lower expression levels. However, the 

differences were 2-fold or less, thus protein expression did not contribute 

significantly.  
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Figure 3-5. Western blot analysis for library variants expression levels. aiiA 
fusion protein (~73.4 kD) was used as a reference to compare the difference. 
HuPON2 (~78 kD) library variants (red arrow) have similar expression level 
compared to D2.  

 

3.4.4 Inhibition of P. aeruginosa Swimming Motilities. 

The library mutants were subcloned into a shuttle plasmid, and 

transformed into P. aeruginosa PAO1 strain. After 24h culture, the images were 

taken for the P. aeruginosa swimming motility (Figure 3-6). P. aeruginosa 

carrying the empty vector covered large area, 20.4  4.4 cm2 on the plate, while 

P. aeruginosa expressing aiiA as the positive control markedly showed a 83% 

decrease of the spreading area, suggesting a strong QQ bioactivity. D2 and E3 

exhibited 44% and 47% decreases of the motilities. P. aeruginosa expressing 

huPON2 mutants implied similar or increased motilities compared to D2 and E3, 

which was not consistent with the bioluminescence quenching assays or kinetics 

measurements. These data might result from different stabilities and expression 

levels of huPON2s in P. aeruginosa. 
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Figure 3-4. Reduction of P. aeruginosa swimming motility with huPON2 library variants. 
(a) Quantitative measurements of spreading zone areas after 24h culture. (b) 
Representative 0.3% agar plates showing PAO1 spreading zones. P. aeruginosa was 
transformed with vector plasmid (n.c.), aiiA, D2, E3, library variants: D2H5, D3H7, D2F9, 
D2G7, E3E8, E3A9, 1A3.  

 

3.5 Discussion 

HuPON2 hydrolyzes a broad range of Gram negative bacteria quorum 

sensing molecule AHLs, which are necessary for pathogenic biofilm formation, 

pro-inflammatory gene expression, and leukocyte proliferation21-22. After solubility 

improvement in chapter 2, this study aims to engineer huPON2 for enhanced 

activity by random mutations followed by bioluminescence screening. From > 106 

variants, initial screening identified hundreds of clones, but re-screening 

confirmed 7 clones consistently exhibited enhanced QQ activity. The false 

positive circumstance has been reported previously in a similar screening 

system23. One alternative approach is to replace the bioluminescent reporter 

gene cassette with a suicide gene, such as CcdB24. In the absence of hydrolase, 



  

 

112 

AHLs bind to regulator luxR and induce the expression of CcdB, resulting in cell 

death; in the presence of the active huPON2 mutants, hydrolysis of AHLs avoids 

CcdB expression and leads to cell growth. This modification will generate a 

positive selection and likely reduce false positives.    

To illustrate the quorum quenching bioactivity of huPON2 variants, 

huPON2 variants were constantly expressed in P. aeruginosa. Even though the 

variants showed enhanced activity in vitro, they did not improve inhibition toward 

P. aeruginosa swimming motility. The possible reasons for this could be different 

expression levels and stabilities in P. aeruginosa. Further studies, i.e. application 

of purified proteins mixed with P. aeruginosa culture for mobility tests need to be 

performed for fully addressing the question.  

Despite the abundance of membrane-associated enzymes, the 

mechanism on how membrane binding stabilizes these enzymes and stimulates 

their catalysis remains largely unknown. Even the surface hydrophobic patches 

are away from catalytic pocket, removing them could impact on the catalytic 

activity. Recent studies suggested that the stability and enzymatic activity of 

serum PON1 were dramatically stimulated when associated with high-density 

lipoprotein (HDL) particles25. Such interaction with HDL promotes the formation 

of a network of hydrogen bonds, ensuring the precise alignment of Asn168 (a key 

catalytic residue in the catalytic pocket) with the catalytic calcium and the lactone 

substrate. Mutations toward key residues in the long-range interactions reduce 
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stability and activity of PON1 lactonase25. The essentiality of this network needs 

to be further confirmed on PON2. With extended interactions, site-directed 

mutagenesis can be performed to enhance the evolution process.  

 

3.6 Conclusion 

To improve the lactonase activity of huPON2, random mutagenesis 

followed by bioluminescence screening was performed to and several clones 

exhibiting significant quenching ability were isolated. Particularly, the kcat/Km 

values of D3H7 and 1A3 toward tested AHLs were significantly improved 

comparing to D2. However, P. aeruginosa swimming mobility tests did not 

display the expected enhancement. Applications of purified huPON2 variants on 

P. aeruginosa should be further examined. Using CcdB suicide gene can be an 

alternative approach to screen the library clones. Overall, this study, along with 

others, suggests that enhancement of quorum quenching activities can be 

introduced by subtle, remote mutations. Given the relative ease of activity 

improvement, applications of huPONs are promising due to their human origin 

and their hydrolysis activities toward a broad range of QS AHLs.  
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4 Chapter 4 The Effect of Quorum Quenching Molecules on 

Pseudomonas Aeruginosa PAO1 Biofilm Formation 

4.1 Abstract  

Quorum sensing (QS) is a chemical communication process that bacteria 

use to regulate collective behaviors. Disabling quorum sensing circuits with small 

molecules and quorum quenching (QQ) enzymes has been proposed as a 

potential strategy to prevent bacterial pathogenicity. QQ enzymes have been of 

interest as they may act as an effective catalytic process for degrading QS 

signals without the need to enter the cell. This study focused on two QS inhibitors 

- (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone (C-30) and 4-nitropyridine-N-

oxide (NPO), and two QQ enzymes - the lactonase aiiA and engineered human 

paraoxonase 2 (huPON2) E3 - for their ability to degrade the signaling molecule 

acyl-homoserine lactones (AHLs). 0.05 mM of brominated furanone C-30 and 

NPO can sufficiently inhibit P. aeruginosa biofilm formation. Enzymatic QQ of 

AiiA reduced the amount of biofilm for both P. aeruginosa and chronic wound 

swabs. In particular, the potential of human-based PONs on inhibiting biofilm 

formation in the human pathogen Pseudomonas aeruginosa was highlighted. 
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4.2 Introduction 

Pathogenic bacteria minimize host immune responses by delaying the 

production of tissue-damaging virulence factors until sufficient bacteria have 

amassed and are prepared to overwhelm the host immune system and establish 

infection1-2. Pseudomonas aeruginosa is a human pathogen involved in many 

infections, including both community-acquired and hospital-acquired infections, 

such as otitis, keratitis, wound and burn infections, pneumonia, and urinary tract 

infections3-4. P. aeruginosa uses a molecular communication system, referred to 

as quorum sensing (QS), to regulate the expression of up to 10% of its genome. 

Most importantly, the QS system synchronizes the production of virulence factors, 

including pyocyanin and proteases5, antibiotics, motility6 and biofilm formation7.  

Regarding the importance of bacterial communication in the development 

of virulence, strategies for QS disruption, known as quorum quenching (QQ), 

have emerged to disrupt bacteria’s commensal network. QQ chemical molecules 

and QQ enzymes have been particularly considered because unlike traditional 

antibiotics they do not generate a harsh selection pressure, which may stimulate 

resistance 8-11. By structurally mimicking QS molecules, QQ compounds prevent 

bacteria from perceiving endogenous QS molecules as competitive inhibitors 12. 

For instance, halogenated furanones can target the P. aeruginosa las and rhl 

systems, and significantly reduce biofilm reduction5, 13. On the other hand, QQ 

enzymes can directly degrade communication signals14-15. Plants engineered to 
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express AHL-lactonase demonstrated a capability for substantially enhanced 

resistance to E. carotovora infection21. In addition, a recombinant E. coli which 

producing aiiA was encapsulated inside the lumen of a microporous hollow fiber 

membrane and alleviated biofouling on the surface of the filtration membrane22. 

Furthermore, aiiA has a broad-range of specificity for hydrolyzing the lactone 

rings of AHLs16, resulting in inhibition of P. aeruginosa biofilm formation17. In this 

chapter, effectiveness of four QQ agents, furanone C-30, 4-nitropyridine-N-oxide 

(NPO), aiiA, and huPON2 E3 were investigated on P. aeruginosa PAO1 biofilm 

formation, which was regulated AHL-dependent QS (3-oxo-C12HSL and C4HSL). 

 

4.3 Materials and Methods 

4.3.1 Bacterial Strains and Growth Conditions 

P. aeruginosa PAO1 and chronic wound swabs were kindly provided by Dr. 

Colin Manoil of the University of Washington, Seattle, and Dr. Manuela Martins-

Green of the University of California, Riverside, respectively. P. aeruginosa 

PAO1 was inoculated from a single colony and cultivated in LB broth overnight at 

37 C with shaking at 225 rpm. Subsequently, the inoculum was diluted in M9 

minimal media to OD600 = 0.05. 200 L of the dilutions were cultured in 96-

microplate at 37 C without agitation. M9 minimal media was prepared with 2 ml 

1 M MgSO4, 0.1 mL 1 M CaCl2, 20 mL 20% (w/v) glucose and 478 mL M9 salts 

solution (12.8 g Na2HPO4, 3.0 g KH2PO4, 0.5 g NaCl, 1.0 g NH4Cl, 478 mL H2O). 
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All the solutions were sterilized and stored at 4 C prior to mixing. For chronic 

wound swabs, 5 L stock was inoculated to 5 mL LB broth overnight culture at 37 

C with shaking at 225 rpm. The inoculum was then diluted in 200 L LB media 

for a starting OD600 of 0.05, for cultured in 96-microplate at 37 C without 

agitation for 12h. 

 

4.3.2 Expression and Purification of Lactonases  

Enzyme production was performed using E. coli BL21 (DE3) carrying 

plasmid pMAL-tac-c5x-aiiA or pMAL-tac-c5x-E3. In brief, cells were grown in 2.5 

mL LB medium supplemented with 100 g/ml ampicillin and 0.5 mM CoCl2 at 

37 °C overnight. The inoculum was added to 250 mL LB media, cultured for 2 - 

3h until OD600 reached 0.5−0.6 for induction with 0.2 mM IPTG at room 

temperature overnight. Cells were harvested by centrifugation, resuspended in 

column buffer (20 mM Tris-HCl at pH 7.4, 100 mM NaCl, 0.5 mM CoCl2), and 

lysed by sonication. Cell lysates were clarified by centrifugation at 10000g for 

30 min. MBP-aiiA was captured by an amylose resin column (NEB). After wash 

with column buffer, MBP-aiiA or MBP-E3 was eluted with 10 mM maltose in 

column buffer. The eluted fractions containing fusion proteins were dialyzed 

overnight at 4 °C against 20 mM Tris-HCl at pH 7.4, 5 mM NaCl, and 0.5 mM 

CoCl2. Purified protein samples were aliquoted in 20% glycerol and stored at 
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−80°C before use. For E3 purification, the metal ion supplement was 1 mM CaCl2 

instead of 0.5 mM CoCl2 for aiiA.  

 

4.3.3 Quantitative biofilm-disruption assay  

The effects of chemicals and lactonases on the biofilm formation of P. 

aeruginosa PAO1 or chronic wound swabs were measured using microtiter plate 

assay. Various concentrations of chemical inhibitors (Z-)-4-bromo-5-

(bromomethylene)-2(5H)-furanone (C-30) and 4-nitropyridine-N-oxide (NPO), or 

lactonases MBP-aiiA and MBP-E3, were added to fresh P. aeruginosa culture 

and chronic wound swabs culture in 96-well microtiter plates (Costar, USA). After 

incubation for 12h unless specifically mentioned, the medium was discarded, and 

the plates were gently washed three times by submerging in a water reservoir to 

remove the weakly adherent planktonic cells. Plates were gently tapped on paper 

towels and were air-dried prior to staining. The adherent biofilms were stained 

with 225 L 0.1% crystal violet for 10 min, followed by solution discard and 

washing three times with water. The plates were then dried in an oven at 60 C 

for 15 min, and the bacteria-bound crystal violet was dissolved in 250 L 95% 

ethanol. OD590 was measured using a microtiter absorbance reader (BioTek).  
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4.4 Results and Discussion 

4.4.1 Effects of Chemical Molecules on the Inhibition of P. aeruginosa 

PAO1 Biofilm Formation. 

The sensitivities of P. aeruginosa PAO1 towards chemical inhibitors (Z-)-

4-bromo-5-(bromomethylene)-2(5H)-furanone (C-30)5 and 4-nitropyridine-N-oxide 

(NPO)18 were tested by monitoring the biofilm formation every two hours between 

4-12 hours. Contrast to the continual development of biofilm without QS inhibitors, 

when 0.05 mM C-30 was applied to 2.5  107 cfu, biofilm formation was 

dramatically decreased during 4-10 hours, and at 10h only 5% biofilm was 

measured compared to the cell culture without QQ compounds (Figure 4-1). 0.05 

mM NPO reduced the biofilm formation significantly as well, and at 10h, 55% less 

biofilm was formed than control culture without QQ compounds. When the 

concentration of C-30 or NPO was increased to 0.5 mM, P. aeruginosa PAO1 

cell growth was completely impeded, and thus this concentration is not 

appropriate for biofilm assays. And at 0.005 mM, NPO and C-30 reduced the 

amount of P. aeruginosa PAO1 biofilm by 41% and 34% respectively. Therefore, 

0.05 mM C-30 was used as positive control in this study.  
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Figure 4-1. Effects of chemical inhibitors on P aeruginosa PAO1 biofilm 
formation. 0.05 mM C-30 or NPO were used.  

 

4.4.2 Evaluating Effects of QQ Proteins on P. aeruginosa Biofilm 

Formation 

QQ agents and control agent (BSA) were added after either 6h, 8h, or 10h 

culture of 2.5  107 cfu P. aeruginosa. When no QQ agent was added, biofilm 

formation is dominant with a OD590 ranging from 0.89 to 0.97. When 5.4 M BSA 

was applied, P. aeruginosa biofilm formations were increased by 10-35% 

compared to no agent group. 50 µM C-30 adding at 6h decreased the biofilm 

formation by 64%, while adding it at 8h or 10h reduced biofilm by 40% or 22%, 

indicating early treatment is more beneficial. Applying 5.4 M purified aiiA at 6h 

reduced biofilm formation by 56%. And applying aiiA at later stage was less 

effective (8 % and 7% reduction at 8h and 10h respectively), which was as 
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consistent with C-30 results. As expected, a low dosage of aiiA (1.1 M) was less 

effective to impede the development of biofilm.  

  
Figure 4-2. The inhibition effect of aiiA on P. aeruginosa PAO1 biofilm formation. 
BSA, C-30, or aiiA were added at either 6h, 8h, or 10h to the P aeruginosa 
culture. Biofilm formations were examined all together at 12h.  

 

The effect of huPON2 E3 on P aeruginosa biofilm formation was tested 

likewise. 50 M C-30, 5.4 M aiiA, 17 M or 34 M of E3 were added at 6h to the 

P aeruginosa culture and biofilm formations were tested at 12h (Figure 4-3). C-

30 and aiiA inhibited the biofilm formation by 64% and 45%. When 34 M of E3 

was utilized, the biofilm could be reduced by 32%. However, 17 M of E3 did not 

impede the biofilm formation likely due to low dosage. 
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Figure 4-3. The effect of engineered huPON2 E3 on P. aeruginosa biofilm 

formation. 50 M C-30, 5.4 M aiiA, 17 M and 34 M of E3 were added at 6h to 
the P aeruginosa culture and biofilm formations were tested quantitatively at 12h. 

 
 
4.4.3 Evaluating Effects of QQ Enzymes on Chronic Wound Swab Biofilm 

Formation 

Unlike P aeruginosa cultured in M9 minimal media, chronic wound swabs 

were cultured in LB media to maintain the strain diversity. BSA, C-30, aiiA and 

huPON2-E3, were applied at 6h, and the biofilms were quantitatively examined at 

12h. 5.4 M aiiA reduced the biofilm by 33%, however, 50 M C-30 and 5.4 M 

huPON-E3 did not effectively inhibit the development of biofilm, likely due to the 

complexity of the bacterial community present in the wound swabs. As a broad 

spectrum lactonase able to hydrolyze multiple AHLs, aiiA was capable to impede 
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the biofilm formation of wound swabs. This result suggests two factors for a 

successful QQ enzyme therapy: high activity and broad substrate specificity.  

 

 
Figure 4-4. Enzymatic inhibition of biofilm on chronic wound swabs.  

 

This study shed light on the potential of applying heterologous enzymes to 

human infections. From a biocontrol point of view, combining the QQ approach 

with other treatments, such as antibiotics, to obtain a synergistic effect is another 

potential strategy that could possibly increase the susceptibility of bacteria to 

antibiotic treatment. 
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4.5 Conclusion 

In this chapter, the efficacy of QS inhibitors and QQ enzymes on 

pathogens’ biofilm development was tested. 0.05 mM of brominated furanone C-

30 and NPO can sufficiently inhibit P. aeruginosa biofilm formation. Enzymatic 

QQ of AiiA reduced the amount of biofilm for both P. aeruginosa and chronic 

wound swabs. Engineered huPON2 E3 exhibited promising QQ results when 

applied to pure P. aeruginosa culture. Further characterization of QQ enzymes 

on chronic wounds are still needed test their efficacy.  
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5 Chapter 5 Concluding Remarks 

This dissertation adopted both rational design and combinatory approach 

to engineering human paraoxonase 2 for its soluble expression while retaining its 

functions. Two clones, D2 and E3, were characterized for their quorum 

quenching bioactivities by bioluminescent quenching reporter assay, direct 

hydrolysis of Gram-negative bacteria quorum sensing signals, and inhibition of P. 

aeruginosa swimming and swarming motilities.  

D2 and E3 were further engineered for improving their enzymatic activity 

by random mutagenesis and bioluminescence screening. Five clones with 

improved bioluminescent quenching ability were isolated. Particularly mutant 

D3H7 (from the first round) and 1A3 (from the second round) elicited the highest 

lactonase activity toward 3-oxo-C12HSL. Yet compared to D2 and E3, 

endogenously expressed huPON2 variants did not exhibit enhanced activity in P. 

aeruginosa biofilm formation assays.  

Finally, the efficacy of quorum sensing inhibitors C-30 and NPO, quorum 

quenching enzymes including lactonase aiiA and huPON2 E3 was evaluated on 

P. aeruginosa pure culture and chronic wound swabs. Inhibitors and aiiA 

significantly inhibited biofilm formation, and the effect of E3 on chronic wound 

swab biofilm formation still needs to be analyzed. This experiment provided us a 

closer look at how to utilize quorum quenching enzymes in repressing a 

pathogen’s biofilm formation. Combination therapy with both antibiotics and QQ 
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agent could be a promising approach for limiting the proliferation, virulence and 

resistance emergence of pathogens.  
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