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Abstract
Occupant  behavior  simulation  frameworks  can  employ  synthetic  populations  to  characterize
occupancy and behavioral  patterns  in  buildings  based on real  demographic  data  at  a  certain
geographical location. Multiple methods are available to generate a synthetic population, with
pros-  and  cons-  for  different  applications  and  contexts.  For  buildings,  very  few  synthetic
occupant populations have been generated. This paper uses a Bayesian Networks (BN) structural
learning  approach  to  synthesize  populations  of  occupants  in  a  multi-family  housing.  Two
additional cases of office occupants and senior housing residents are considered as a cross-case
comparison. We draw upon the extended version of Drivers-Needs-Actions-Systems (DNAS)
framework  to  guide  the  selection  of  variables  and  data  imputation.  The  resulting  synthetic
occupant data is evaluated by comparing the joint distributions between the actual and synthetic
data sets, % difference, and Standardized-Root-Mean-Squared-Error (SRMSE). Our results show
that the BN approach is powerful in learning the structure of data sets. The synthetic data sets
successfully match the joint distributions of the underlying combined data sets. Experiments on
the multi-family housing particularly show the best performance compared to the cases of office
and senior housing. Future work includes testing and demonstration of how the synthetic data
sets  feed  to  occupant  behavior  module  through  co-simulation  with  building  performance
simulation tools, such as EnergyPlus.

Keywords: synthetic occupants, occupant behavior, building performance simulation, occupant
behavior model, data model

1. Introduction
Research in building and occupant interactions is now using data-driven modeling approaches to
represent  more  realistic  occupancy  and  behaviors  in  buildings  (Berger  &  Mahdavi,  2021).
Whereas conventional models tend to use standard occupancy schedules or simple rule-based
behavioral models, the trend is developing towards richer data processing. In connection with the
rapid development of machine learning (ML) and agent-based modeling (ABM) that fall under
the  data-driven  modeling  category,  researchers  face  the  daunting  task  of  collecting  and
processing a large amount of data. The high cost, the issues of availability and user privacy have
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hindered  the  research  progress.  One resort  to  solve  this  problem is  by  generating  synthetic
population based on existing data.

Synthetic  occupant  population  has  an  advantage  because  it  can  directly  feed  to  ABM  for
modeling  and  simulation  of  occupant  behavior  and  their  impacts  on  building  performance.
Modelers can explore the subset of occupant behavior topics that are most relevant to building
performance simulation. For example, modeling occupant behaviors for warmer climates may be
different from those for colder climates, for which the synthetic data sets can be drawn from the
socio-demographic  data  sets  from  U.S.  Census  (2015)  that  are  useful  in  addition  to  the
previously collected comfort data sets (Licina et al., 2018). Another advantage is that synthetic
occupant  population enables the modeling of under-represented occupant  population,  such as
children and seniors. Residential building, school, and senior housing are building types with
diverse age, gender, and other socio-demographic characteristics attributed to the occupants. This
paper  introduces  the  population  synthesis  and  applications  in  the  OB modeling  research.  A
Bayesian  Network  (BN)  model  is  proposed  to  generate  the  synthetic  building  occupant
population. As an illustration, we consider three case studies of a multi-family housing residents,
office occupants, and senior housing residents. 

The paper is structured as follows: In Section 2, we describe how population synthesis can close
some of the gaps in OB modeling research. Section 3 reviews previous research on population
synthesis methodologies. In section 4, we describe the proposed synthetic population generation
process. We also describe the Bayesian Network (BN) structure learning as our choice to guide
the  population  synthesis.  We  use  the  resulting  structures  to  represent  the  underlying  joint
distribution for generating synthetic data across the selected cases of buildings that leads to the
next  section.  Section  5  discusses  the  applications  of  synthetic  population  to   three  case
experiments.  In Section 6,  we further discuss the results,  limitations  of the approach and its
potential  improvements.  The  paper  ends  with  take  away  points  relevant  to  the  population
synthesis and future research in Section 7.

2. Research gaps
This  section  identifies  three  major  gaps  in  OB  modeling  research  that  synthetic  occupant
populations  can  help  to  close.  The  first  is  from  the  modeling  standpoint,  that  ABM-based
modeling emerges to open new research opportunities in exploring patterns of occupancy and
behaviors at a time-step level during simulation (Berger & Mahdavi, 2021). Like many other OB
models,  ABM-based  OB models  are  principally  used  as  predictive  tools  in  which  occupant
patterns  of  presence  and  behavior  interact  with  building  systems  in  using  energy  or  other
resources (Gaetani et al., 2016). ABM simulates each agent’s behavior and activity patterns over
time. Essentially, ABM models require OB data to characterize the initial sets of agents and a
group of agents in the model. Population synthesis enable the generation of occupant-agents with
characteristics necessary for the modeling purposes. Henceforth, the characteristics of each agent
emulate realistic patterns of building occupant composition.



The  problem  in  modeling  occupant-agents  leads  to  the  second  gap,  which  is  the  various
explanations of building-occupant interaction. Theories behind the the occupant behaviors imply
the building as a complex social system within which occupants interact with one another and
with multiple building systems (Heydarian et al., 2020). The comfort preferences may be one
factor  determining  the  occupant  behavior  and  interaction  in  buildings,  socioeconomic  and
demographic  factors  are  two  other  important  factors  that  pertain  to  specific  geographical
locations (Heydarian et al., 2020). For example, office occupants in the U.S. may have different
behaviors from those in Singapore. Households in multi-family housing in Buffalo, NY, may
have different operational patterns from residents in Texas. A simplified representation of an
entire population of the specific geographical area of interest helps to explain its complexity. A
synthetic  occupant  population  represents  real  building  occupants  using  a  limited  set  of
characteristics  selected  on the  basis  of  context  and interests.  One important  note is  that  the
synthetic occupants should have a matching statistical measures of the actual population rather
than trying to replicate each individual in the actual population.

Finally,  methods  for  generating  synthetic  populations  based  on  empirical  data  at  certain
geographical  locations  have  been  developed  in  fields  of  demography,  urban  planning  and
transportation. Despite various applications, there are, however, no found studies or applications
of synthetic occupant population applied to building peeerformance simulation as suggested in
(Andrews  et  al.,  2016).  There  are  several  comprehensive  reviews  on  various  methods  for
population  modeling  for  applications  in  other  fields  (Barthelemy & Toint,  2013;  Chapuis  &
Taillandier, 2019; E. Ramadan & P. Sisiopiku, 2020). Rather than attempting to reinvent these
efforts, this paper focuses specifically on the application of one of the known methods to OB
modeling  research using the established Bayesian  Network structure learning.  Therefore,  the
purpose of this study is to introduce a framework that generates synthetic data sets that can feed
to occupant behavior models and coupled with building performance simulation tools. 

3. Literature review
We have identified three gaps related to the building OB modeling research. While this paper
sees the gaps as not mutually exclusive, there have been a number of previous studies that have
addressed specific gaps.  Previous  efforts  have done extensive studies  on the first  two topics
related to the advancement of data-driven models requiring amounts of data and the development
of occupant data ontology. The third gap on the application of population synthesis in the OB
modeling research has not been addressed.  

3.1. Data-driven models
Within the context of emerging data-driven models in OB modeling research, the need for more
elaborate data has been given particular attention. The ABM approach, for example, is known to
require much data on individual agents to characterize the initial number of occupant-agents in
the simulation. The agents are expected to evolve throughout the simulation process, showing the
behavioral and interaction patterns between the individual occupant-agents, within agent-groups,
and with the building systems. Paired with other modeling tools, such as EnergyPlus, ABM is a



powerful  tool  that  is  useful  to  produce  stochastic  OB models  with  behavioral  patterns  and
interactions that are close to real building occupants (Chapman et al.,  2018). The explorative
nature of ABM has distinguished the modeling approach among the existing OB models (Berger,
2020; Bonabeau, 2002; Chandra-Putra et al., 2017). 

ML based OB models also fall under the data-driven model category. The models have shown
promising results according to (Markovic et al., 2017). ML-based models have recently been
employed in experiments on various occupant behaviors that are relevant to building operations,
including lighting operation (Nagy et al., 2016), thermostat adjustment (Peng et al., 2019), and
appliance use (Ueda et al., 2015; Wang & Ding, 2015). It is expected that there will be more
applications  of  ML-based  models  to  the  OB modeling  research,  which  will  also  be  put  in
comparison  with  other  more  traditional  models,  such  as  rule-based  and  stochastic  models
(Carlucci et al., 2020).

The traditional ML-based OB models require substantial amounts of data that split into training
and evaluation data sets. Markovic (2018) points out that data imbalance affects the prediction
accuracy and training complexity of using the approach. A more obvious limitation of data-
driven models, as discussed in (Berger & Mahdavi, 2021), is the lack of data, which disables
higher-resolution models, hence yielding inaccurate depictions of occupant behavioral patterns.
One solution to address the data issue is by investing in the data collection process. The rise of
Internet-of-Things (IOT) through sensors and installation produces a more granular and high-
quality wealth of data (Carlucci et al., 2020).

3.2. Occupant data ontology
The development  of an occupant  data framework grows in parallel  to  the inceasing need to
collect more occupant data. Researchers develop ontologies to guide their data collection and
assembly process. A data ontology is useful in defining the specific applications and use cases
within occupant behavior research (Salimi & Hammad, 2019). The development of an occupant
data ontology to date seek to  incorporate the diversity in traits and attributes of real building
occupants (O’Brien et al., 2016). Some of the common features found in previously developed
ontologies  are  those  related  to  occupant  comfort  with  regards  to  behavioral  comfort-driven
responses  of  occupant  within  the  built  environment.  The  Drivers-Needs-Actions-Systems
(DNAS)  framework  environment  (Hong,  D’Oca,  Taylor-Lange,  et  al.,  2015;  Hong,  D’Oca,
Turner, et al., 2015) includes actions such as thermostat adjustment, lighting adjustment, fans
and portable heater operation, and moving between spaces. Other frameworks include detailed
characteristics of occupants such as socio-conomic (Andrews, 2017; Kontokosta & Jain, 2015;
Tsoulou  et  al.,  2020),  subjective  values  (Hong  et  al.,  2020;  Ortiz  &  Bluyssen,  2018),  and
activities  (Hewitt  et  al.,  2016;  Malik  &  Bardhan,  2020).  The  recent  update  on  the  DNAS
framework adds more components relevant to static attributes of building occupants (Chandra-
Putra et  al.,  2021).  Attributes,  such as geographical  location,  socio-economic,  and subjective
values are considered as traits that are unique to occupants and determine their perceptions and
adaptive behaviors in the built environment.



3.3. Population synthesis methodology
Finally, this sub-section discusses the largest portion in the literature review section. The role of
population synthesis in OB modeling research is to provide a simplified representation of real
occupants at a certain geographical location. Sun & Erath (2015) describe three challenges in
generating  such  geographical-based  populations.  The  first  challenge  is  in  preserving  the
dependency structure  and matching  the aggregate  data  and avoiding potential  biases.  At the
individual  level  of  occupants,  correlations  may  be  stronger  between  age  and  income  than
between age and sex, for example. At the group level, tenant units, for example, are associated
with the number of occupants. The second challenge is in associating group-level attributes with
individual-level attributes in a unified manner. For example, shared thermostat adjustment (as a
group attribute) is strongly related to whether any of the individual occupants have access to a
thermostat.  The  third  and  final  challenge  is  in  reproducing  the  interdependencies  among
occupant-agents in the same group. Using the thermostat example, where two individual tenants
share the same thermostat interface, such type of structural relationship may not be reported in
the occupant survey data.

In general, synthesizing a population involves two steps – fitting and generation (Kirill Müller &
Axhausen,  2010).  “Fitting”  usually  refers  to  estimating  the  joint  distribution  of  all  included
attributes  from  the  disaggregated  data  and  marginal  distributions  of  a  target  dataset.  The
“Generation” step is to create a new set of data by drawing from the fitted distribution of the
earlier step. Being the more important step, fitting techniques continually advance to produce
distributions that are ever more realistic and representative of the actual population distribution.
The literature has recorded these developments,  which can be categorized into three different
approaches (Chapuis & Taillandier, 2019; Sun & Erath, 2015). Synthetic Reconstruction (SR)
creates  a  vector  of  characteristics  of  an  agent  in  the  agent  simulation;  Combinatorial
Optimization (CO) duplicates known individual attributes of real observations; and Statistical
Learning (SL) considers complex interactions and synthesizes multivariate real data.

The first two approaches to the fitting problem, SR and CO, are popular in public health to study
the health behaviors and spread of virulent outbreaks (Cooley et al., 2008; Smith et al., 2011;
Tomintz et al., 2008). Cooley et al. (2008) generates a synthetic population and feeds it into an
agent-based model (ABM) to project the spread of influenza in North Carolina. The methods are
also  popular  in  transportation  (Beckman  et  al.,  1996;  E.  Ramadan  &  P.  Sisiopiku,  2020;
McFadden et al.,  1977; Xie & Waller, 2010) , urban water management (Williamson, 2012),
disaster  evacuation  (Jumadi  et  al.,  2018),  crime  (Malleson  et  al.,  2010)  and  urban  social
dynamics (Malleson & Birkin,  2013). To date,  there is relatively less application in building
simulation  research,  particularly  in  the  sub-discipline  of  occupant  presence  and  behaviors
(Andrews et al., 2016; Chen et al., 2021).

In the SR domain, Iterative Proportional Fitting (IPF) is one of the most widely-used distribution
estimation  algorithms that  fits  individual  cells  within  the  distribution  using  known marginal
controls from the sample. It, however, cannot deal with multi-level populations, i.e., households
and  individuals.  Improved  versions  are  called  Hierarchical  IPF  and  Iterative  Proportional



Updating  (IPU)   (K  (K  Müller,  2017;  Sun  et  al.,  2018).  In  contrast,  CO-based  population
synthesis  relies  on  the  drawing  of  individuals  from  a  sample  to  assess  a  fitness  criterion.
Simulated  Annealing,  Hill  Climbing,  Genetic  Algorithms,  and Greedy Heuristics  are  known
optimization algorithms used in population synthesis (Harland et al., 2012). One major issue is
that CO relies on replicating individuals  in the population rather than random sampling as a
requirement for true synthesis (Farooq et al., 2013). Another issue is that they do not consider
multi-level attributes, e.g., households and individuals. Modeling the multi-level associations is
usually done by first sampling a group-level and then gathering individuals to fill the group-level
(Barthelemy & Toint, 2013; Pritchard & Miller, 2012).

Statistical Learning (SL) offers more flexibility in terms of data requirements since it focuses on
the joint distribution instead of the samples’ replication. The developments can be traced back to
(Reiter, 2005), whose work introduces an imputation method using classification and regression
tree,  CART. Other methods are random forest (RF) (Caiola & Reiter,  2010),  Markov Chain
Monte Carlo (MCMC) (Farooq et al., 2013), and Hidden Markov model (HMM) (Saadi et al.,
2016). These models also do not consider multi-level population synthesis. Sun & Erath (2015)
solves this problem by using a Bayesian Networks (BN) method that is also used in this study, by
modeling the interdependencies among household and individual attributes  (Koller & Friedman,
2013).  

Sun & Erath (2015) suggests that their BN model translates complex relationships within the
network structure into a simple graphical model that is called Directed Acylic Graph (DAG).
Some common BN structure learning algoritms can be grouped into three categories, which are
constraint-based,  score-based,  and  hybrid  as  described  in  Table  1.  While  constraint-based
algorithms ensure that conditional independence constraints are met using statistical tests, score-
based algorithms rely on optimization techniques in which each candidate DAG is assigned a
score as the objective function. Hybrid algorithms integrate the two methods by reducing the
space of candidate DAGs using a constraint-based strategy and implement a score-based strategy
to  find  the  optimal  DAG  in  the  constrained  space.  Constraint-based  algorithms  seem
considerably more accurate than score-based algorithms for small sample sizes and they both are
as accurate as hybrid ones.

Table 1: Types of Bayesian Networks (BN) Structural Learning Algorithms.

Categories Algorithms Description Literature
Constraint-
based

Prototypical 
Constraint (PC)

An applicaton of an Inductive Causation (IC) 
algorithm and independent test for network 
structure learning. 

(Spirtes et al., 
2012)

Hiton-PC A variant of PC algorithm that removes false-
positives in the post-processing.

(Aliferis et al., 
2010)

Grow-Shrink (GS) A forward selection using Markov blanket 
detection approach.

(Margaritis, 2003)

Incremental 
Association 
(IAMB)

A two-phase selection scheme using Markov 
blanket approach.

(Tsamardinos et al.,
2003)



Fast IAMB A variant of IAMB which uses speculative 
stepwise forward selection to reduce the number
of conditional independence tests

(Yaramakala & 
Margaritis, 2005)

Interleaved IAMB A variant of IAMB which uses forward stepwise
selection to avoid false positives in the Markov 
blanket detection phase

(Tsamardinos et al.,
2003)

Score-
based

Greedy search 
algorithms (e.g. 
Hill-Climbing 
(HC) and Tabu 
Search)

A greedy search in the network structure using 
scores. Tabu Search is an iterative greedy search
that uses a memory structure Tabu list to escape 
local optima. 

(Bouckaert, 1995)

Genetic 
Algorithms

An iterative selection approach to look for the 
fittest model.

(Larrañaga et al., 
1997)

Simulated 
Annealing

A stochastic search approach to find globally-
minimum-cost solution iteratively.

(Bouckaert, 1995)

Hybrid

Sparse Candidate 
(SC)

An algorithm that restricts and maximizes the 
network structure iteratively until it reaches a 
stable network score.

(Friedman & 
Koller, 2003) 

Max-Min Hill 
Climing (MMHC)

An algorithm to perform restrict and maximise 
only once. 

(Tsamardinos et al.,
2006)

Max-Min Parents 
and Children 
(MMPC)

A heuristic application of restrict and maximize 
algorithms.

(Tsamardinos et al.,
2006)

Aracne and Chow-
Liu

Algorithms learn graph structures using pairwise
mutual information coefficients.

(Chow & Liu, 
1968; Margolin et 
al., 2006)

Success stories of modeling applications in transportation research have inspired us to use BN
models in building occupant population synthesis (Castillo et al., 2008; Zhang & Taylor, 2006).
Some of the applications that inspire this study include modal choice behavior using household
travel surveys (Xie & Waller, 2010) and agent-based activity simulation and prediction (Janssens
et al., 2006). The application of BN in the population synthesis for building occupant behaviors
utilizes its ability to learn the structure of the occupant data, particularly when the number of
attributes of interest is  large using socio-economic and demographic microdata and behavior
data. Moreover, the BN approach infers the multivariate probability distribution of both data at
the household and individual-level attributes. Similar to the Markov process-based approach, the
BN approach requires neither marginals as input not any conditionals to inform the structural
learning. The learning model integrates the parameter estimation. Sun & Erath 2015 demonstrate
a good performing BN approach in synthesizing the 2010 household interview travel survey of
Singapore with low SRMSE values and good heterogeneity.



4. Modeling framework
The  modeling  framework  for  the  synthetic  occupant  population  generation  is  quite
straightforward. This section discusses each framework component starting from combining the
original  data  sets,  followed by variables  selection  using  an  existing  data  ontology  and data
imputation procedure.  The generation of the synthetic  version of the data sets uses Bayesian
Network  (BN)  structure  learning.  Then,  the  synthetic  model  is  calibrated  by  generating
additional  synthetic  occupants  for  two  confirmatory  cases  (e.g.,  office  occupants  and  senior
housing  occupants).  Finally,  the  model  is  validated  by  looking  at  the  %  difference,  joint
distribution,  and  Standardized-Root-Mean-Square-Error  (SRMSE).  Figure  1  illustrates  the
overall population synthesis workflow used in the study.

Figure 1: The population synthesis workflow.

4.1. Dataset overview
We consider  two categories  of  data sets  to  inform the  generation  of  our  synthetic  occupant
population. The socio-demographic data is cross-sectional and attributed to the individual and
group populations at a particular geographical location. The data set draws from two sources,
including the National Household Travel Survey (NHTS) (Administration, 2017) and Public Use
Microdata Survey (PUMS) (U.S. Census,  2015).  The occupant behavior data set draws on a
dataset on occupant behavior that was part of the deliverables of an international project, Annex
66. Annex 66 was established under the International Energy Agency’s Energy in Buildings and



Communities Program (short name: IEA Annex 66) with aims to provide resources for occupant
behavior  research  (International  Energy  Agency,  2017).  The  dataset  includes  of  4,324
observations.  The larger and more recent ASHRAE Global Thermal Comfort Database II data
set has been introduced in (Licina et al., 2018) and it includes approximately 81,846 occupant-
specific data points spread across 160 buildings worldwide between 1995 and 2016. Similar to
the  socio-demographic  data set,  the two occupant  behavior  data  sets  are cross-sectional  and
collected with a sole purpose to support the building occupant behavior research. This study is
interested in subsets of the dataset associated with specific building types.

These datasets are stored separately and need to be merged, fitted, and imputed as necessary. 
While this study considers data fusion using a simple left-join of 1-3 common variables, data 
imputation is implemented using Predictive Mean Matching (PMM) (Little & Rubin, 2002) 
PMM has been around for a long time, but only recently has it been widely used in population 
synthesis. It was originally used to impute missing data of a single variable, in which the missing
data is more monotonic. Compared with standard methods based on linear regression and the 
normal distribution, PMM calculates the imputed values based on a set of values from the 
observed dataset, so they are often more realistic. Therefore, it allows one to impute discrete 
values, which is useful for the survey datasets used in the study.

4.2. Data ontology
We use an ontological approach in selecting the datasets in order to maintain a well-received
building occupant data structure. Without the guiding data structure, population synthesis can
require large amounts of computing power and result in a synthetic population not matched with
the  actual  population.  This  study follows the existing  Drivers,  Needs,  Actions,  and Systems
(DNAS) framework to provide a better representation of building occupants (see Figure 2). The
framework has been recently updated with a more elaborate occupant characteristics that was
drawn from previous multiple papers (Andrews, 2017; Chandra-Putra et al., 2021; Hewitt et al.,
2016;  Hong  et  al.,  2020;  Senick,  2015).  As  described  in  (Chandra-Putra  et  al.,  2021),  the
extended DNAS framework categorizes the occupant characteristics into four groups, including
socio-demographic,  location,  subjective  values,  and  activities.  The  framework  also  develops
further the comfort adaptive action components by dividing them into two sub-categories based
on  individual  control  or  collective  decisions.  The  socio-demographic  component  includes
census-related information, such as “Age”, “Sex”, “Education”, “Income”, “Employment”, and
“Marital  Status”. Behavior-related data also includes attributes of subjective values that drive
one  to  perform certain  building  energy-related  actions.  These  are  “Past  Experience”,  “Cost
Conscious”, “Environment Awareness”, “Technology Oriented”, and “Social Influence”.  With
the  many  behavioral  data  sets  available  for  population  synthesis,  a  geographical  location
identifier  is  also important,  which  includes  information  such as  “Country”,  “Climate  Zone”,
“Policy”, and “Utility Cost”.

The extended DNAS framework is useful to inform the data structures of both metadata and
dataset  collection  procedures.  The  researcher  writes  the  metadata  in  either  XML  or  JSON
formats and the datasets in CSV, DAT, or other formats, depending on the data manipulation



methods.  The  ease  of  closely  following  the  data  structure  depends  on  data  availability  and
interoperability between datasets, and it is very common for population synthesis to also perform
data imputation.

Figure 2: Occupant attributes, DNAS framework (Chandra-Putra et al., 2021).

4.3. Bayesian Networks
The Bayesian network (BN) offers a graphical representation of probability distributions for a set
of variables of interest X={X 1 , …, X n} (Heckerman et al., 1995; Koller & Friedman, 2013). In
principle, a BN structure consists of two parts: 1) a network structure G in the form of a directed
acyclic  graph  (DAG)  (see  Figure  2),  in  which  vertices  are  random variables  X  and  edges
characterize  the  one-to-one  mapping  between  the  vertices,  and  2)  a  set  of  local  probability
distributions Θ={P ( X 1|Π 1 ) ,…, P ( X n|Π n ) } for each vertex X i, conditional on its parents Π i. In a
BN, the DAG topology asserts only the conditional dependence of children given parents:

 P ( X )=∏
i=1

n

P ( X i|Π i ) (1)

Figure 3 shows three variables including age, thermal perception, and income as the vertices and
the directed edges linking vertex  Age to vertex  ThermalPerception  and vertex  Age to vertex
Income.  Therefore,  the  conditional  probability  distributions  of  this  condition  are
P(ThermalPerception|Age) and P(Income|Age).



Figure 3: Example of a Directed Acyclic Graph (DAG)

The challenging part in BN is to determine the network structure. A researcher often defines the
structure based on his or her domain-expert knowledge. This study has a particular interest to
build the network structure directly from data, which is also called structural learning. Structure
learning is a flexible feature of the package that identifies the relations and hierarchies of the
variables.  The R package,  bnlearn,  offers several  algorithms to perform structure learning,
including Tabu Search and Hill  Climbing,  which are described in  Section 3.  Prior  to fusing
multiple data sets, applying these algorithms results in a more robust estimated model structure. 

Tabu Search is one of the widely used score-based algorithms that utilizes an iterative searching
procedure  to  obtain  a  best  solution  from complex  correlation  patterns  (Glover  et  al.,  1993;
Scutari, 2010). Tabu Search also selects a close solution to optimality in order to minimize the
score.  Bnlearn  is  also  able  to  restrict  the  variables’  dependencies  by  using  its  features  of
“whitelist” or “blacklist”. 

BN scores the candidate of the graphical structure that fits to the targeted data and is useful to
produce synthetic population by using several methods, such as maximum likelihood:

l (G h
|D )=max

G
¿
Θ l (G ,Θ|D )=

max
G

l(G ,Θ̂∨D) (2)

Where  l ( G ,Θ|D )=logP (D∨G , Θ) is  the  log-likelihood  of  a  provided  pair  (G ,Θ) given
observation D. (Sun & Erath, 2015) describe that the log-likelihood is not representative due to
overfitting, hence, it always builds a fully connected DAG. Bayesian Information Criterion (BIC)
(Rissanen,  1978;  Schwarz,  1978)  and  Akaike  Information  Criterion  (AIC)  (Akaike,  1974;
Rissanen, 1978) are the two most-popular score functions that solve this issue of overfitting:

BIC ( Gh
|D )=logP (D|G h , Θ̂ )−

d
2 log m (3)

AIC (G h
|D )= logP (D|Gh , Θ̂ )−d (4)

where Θ̂  refers to the maximum likelihood estimates of parameter given hypothetical structure
G h,  d is  the  number  of  free  parameters  (degrees  of  freedom)  in  Θ ,  and  m  is  the  size  of
observation D. Both BIC and AIC contain two parts, the optimal likelihood and penalty that

balances model fit and model complexity. While BIC has a penalty term of  d
2 log m and AIC

only has d, the structure of BIC is more preferable for a large sample size.



To  validate  the  resulting  synthetic  population  generated  by  using  BN,  we  adopt  a  metric
measuring goodness-of-fit, which is the standardized root mean square errors (SRMSE) (Müller,
2017):

SRMSE=
√

i
I ∑i

(¿ N̂ i−N i)
2

1
I ∑i

N i

¿ (5)

where, I is the number of categories of all attributes, and N̂ i and N i are totals of the population
synthesized and actual population, respectively, for category  i ∈ {1 , … , k }. The metric captures
the relative frequency of each category of all attributes. A perfect fit between actual and synthetic
population is indicated by a SRMSE value of zero, while a high value represents a bad fit. 

5. Applications
This  section  demonstrates  the  performance  of  the  proposed  BN  approach  by  conducting
experiments  on  synthetic  occupant  population.  Model  inference  and  synthetic  population
generation are implemented in R. 

5.1. Socio-demographic and behavior data
We select a multi-family housing as a case study. As described in section 4.1, this study draws
on multiple data sources on population characteristics that are based on building type, location of
the building, and socio-demographic as well as comfort behaviors of typical occupants. The case
study attempts to demonstrate how geographically-specific data sets can be used and show how a
population make-up of a certain location is different from a population of another area and that
determines  the way the building occupants  behave differently in  a built  environment.  Multi-
family housing residents vary in age and activities. A typical household consists of adults and
children. Occupants’ adaptive actions towards their changing environments also vary by building
type.  Like  in  most  multi-tenanted  buildings,  residents  of  the  multi-family  housing  have
hierarchical  decisions  in  adjusting  their  environmental  conditions  based  on  the  household
composition. The case study considers 75 households in a multi-family housing with a varied
number of members of each household with a total of 300 individual residents by synthesizing
2.8% of a total of 10,764 joint observations.

In addition to generating a synthetic occupant population for multi-family housing residents, we
conduct additional experiments as confirmatory cases on occupants in an office building and a
senior housing building. Similarly,  we select the case of office buildings to show the diverse
comfort-related  behaviors  since  the  topic  has  been  extensively  studied  within  the  occupant
behavior  research.  The final case of senior housing residents  covers  understudied population
including seniors and children.  We synthesize 27% of a total  1,858 joint observations (=500
occupants) for the case of office occupants and  15.48% of a total 646 joint observations (=100
occupants) for senior housing occupants (see Table 2).



The combined data sets consider all the variables from the original data sets and some of them
may turn out unnecessary. We filter these variables with a guidance data ontology as described in
Section 4.2. The resulting data sets only include 23 variables that are relevant for the population
synthesis.  Table  3  describes  the  variables  in  all  three  case studies  with  the  variable  names,
definition, description of values for each ordinal variable, and data sources. 

Table 2. Size of data sets for the population synthesis.

Building type Synthetic Observed Data sources
Multi-family housing 300 (= 2.8%) 10,764 NHTS, ASHRAE, Annex66
Office building 500 (= 27%) 1,858 NHTS, ASHRAE, Annex66
Senior housing 100 (=15.48%) 646 PUMS, ASHRAE, Annex66

Table 3. Variable names and descriptions

Variable Definition Values Data sources

sex Gender of an occupant

Male; Female NHTS, PUMS, 
ASHRAE, 
Annex66

age Age of an occupant

multifamily housing <18,18-29,30-
44,45-59,60-69,>70
office <29,29-39,40-50,51-61,>62
senior housing <65,65-74,75-85,>8

NHTS, PUMS, 
ASHRAE, 
Annex66

pmv
Predicted Mean Vote 
(PMV)

-3,-2,-1,0,1,2,3 ASHRAE, 
Annex66

marital_status Marital status

1 = married, 2 = widowed, 3 = 
divorced, 4 = separated, 5 = never 
married or under 15 years old NHTS

race Ethnicity

1 = White, 2 = Black or African 
American, 3 = Asian, 4 = American 
Indian or Alaska Native, 5 = Native 
Hawaiian or other Pacific Islander NHTS

relate Relationship

1 = self, 2 = spouse/unmarried 
partner, 3 = child, 4 = parent, 5 = 
brother/sister, 6 = other relative, 7 = 
non-relative NHTS

wkfpt
Work full time or part 
time

1 = full time, 2 = part time
NHTS

wrk_home Working from home 1 = yes, 2 = no NHTS

activity Indoor activity

1 = working, 2 = temporarily absent 
from a job, 3 = unemployed, 4 = a 
homemaker, 5 = going to school, 6 = 
retired, 7 =  other NHTS



income Household income

-7 = not answer/don't know, 1 = 
<$10,000, 2 = $10,000-$24,999, 3 = 
$25,000-$49,999, 4 = $50,000-
$74,999, 5 = $75,000-$99,999, 6 = 
$100,000 - $124,999, 7 = > $125,000 NHTS, PUMS

hhsize Household Size. 
1 = 1, 2 = 2, 3 = 3, 4 = 4, 5 = 5, 6 = 6,
7 = 7, 8 = >8 NHTS

met
Metabolic activity 
(MET)

0.6-1,1-1.4,1.4-1.8,1.8-2.1
ASHRAE

clo CLO 0.2-0.9,0.9-1.5,1.5-2.2,2.2-2.8 ASHRAE
airtemp Air temperature in °C 16-21,21-25,25-30,30-34 ASHRAE

relhum
Relative humidity in 
%

25-36,36-47,47-58,58-69
ASHRAE

tpref Preferred temperature cooler, no change, warmer ASHRAE
fan Fan use yes, no, don’t have ASHRAE
window Window operation yes, no, don’t have ASHRAE
heater Heater use yes, no, don’t have ASHRAE

educ
Educational 
attainment

highschool, assoc. degree, university 
graduate Annex66

workspace Workspace enclosed space, open space, cubicle Annex66
wrk_hrs Working hours in hours Annex66

satisf_temp satisf_iaq 
satisf_light satisf_daylt 
satisf_artlt 
satisfy_sound

Satisfaction over 
indoor environmental 
quality (e.g. 
temperature, IAQ, 
natural lighting, 
daylighting, artificial 
lighting, acoustics)

unsatisfied, neutral, satisfied

Annex66
control_light 
control_windows 
control_blinds 
control_thermostat 

Have control on 
fixture (e.g. lighting, 
windows, blinds, 
thermostat)

yes, no, I don't know

Annex66
group_light 
group_windows 
group_blinds 
group_thermostat 

Group control on 
fixture (windows, 
blinds, lighting, 
thermostat)

only me, no control, with others

Annex66

5.2. Model selection
The R package,  bnlearn has a feature to score BN models using a repeated two-fold cross-
validation. In this study, we select 11 algorithms to help identify the structure, each of which is
described in section 3.3. The scoring method repeats  the two-fold cross-validation across 11
selected models.As a result of this approach, Tabu Search and Hill Climbing have the lowest
mean of the average loss compared to the rest of the models, indicating the two would construct
the most-representative BN structure (see Table 4). We use Tabu Search to run 10 iterations
using a Tabu list  to avoid focusing on a local  optima,  which is  an improvement   that  Hill-
Climbing does not have. In order to keep the network structure as simple as possible, we choose
BIC as  the  score  function  in  searching  the  best  structure  (see  Equation  4).  The  third  most



important procedure is the data imputation. In the experiment, we impute multivariate datasets
before and after the estimation procedure using the PMM approach as described in 4.1. 

The resulting BN models show strong dependencies among variables for each dataset. As an
illustration, here we only discuss the model for the case of multi-family housing residents. Figure
4 shows a model  graph,  G,  structures  from the datasets  that  are adjusted via truncation  and
imputation.  The  nodes  represent  the  variables  in  the  model  and  the  arrows  represent  the
dependency between two or more variables. We also show the conditional probability table of
selected variables that depend on each other. For example, “Education” and “Household Income”
have a positive relationship  where,  households with higher  income are able to  afford higher
education. In “PMV” given “Age”, older people tend to feel either too cold of too warm in the
room.

Table 4. Bayesian network models by the choice of score function.

algorithm mean of the average loss
PC -608338.6
GS -618044.6
IAMB -615815.9
Fast.IAMB -606254.0
Interleaved IAMB -615815.9
MMPC -611819.7
Hiton-PC -607416.1
Hill Climbing -598921.4
Tabu Search -598921.4
MMHC -602897.1
Aracne -609735.9
Chow-Liu -610179.6



  

educ
Not
answer <$10K

$10K-
$25K

$25K-
$50K

$50K-
$75K

$75K-
$100K

$100K-
$125K >$125K

High school 0.383 0.400 0.418 0.428 0.354 0.272 0.221 0.183
Assoc. degree 0.344 0.392 0.404 0.355 0.385 0.418 0.400 0.365
Bachelor's 0.176 0.147 0.126 0.153 0.167 0.202 0.255 0.276
Graduate degree 0.097 0.060 0.051 0.064 0.095 0.108 0.125 0.176

pmv <18 18-29 30-44 45-59 60-69 >70
-3 0.396 0.000 0.000 1.000 0.479 0.000
-2 0.000 0.479 0.000 0.000 0.521 0.000
-1 0.000 0.521 0.000 0.000 0.000 0.000
0 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.604 0.000 1.000 0.000 0.000 0.564
3 0.000 0.000 0.000 0.000 0.000 0.436

income

age

 

Figure 4: Model structures G for each dataset used in the case of multi-family housing residents.
See Table 2 for a detailed description of the variables.

5.3. Synthetic population generation
After learning the model structure, G, population synthesis generates synthetic values of X from
P(X), a factorized joint probability distribution defined by the BN. The values are independent
and its  probabilities  can  be  computed  using  Equation  1.  By synthesizing  from the  obtained
network structure, we generate a large list of individuals, as introduced in Section 5.1, to form
the population pool.

In the experiment, the estimation using Tabu Search runs successfully without errors on any of
the variables. We fuse the two datasets (i.e. the comfort database and NHTS dataset) by two
common variables of “Age” and “Sex”. The fusion proceeds using Left-Join and with a condition
of the two variables to meet. We find that the more variables to include, the stricter the join
process is, and the more representative the joint data is. It requires a larger dataset, a joint dataset
with NaN / NA columns would result, otherwise. Next, we run the estimation procedure, which
preserves a set of relationships between the two datasets (i.e., the comfort database, and NHTS
dataset),  such as  the relationship/age  dependency,  which means the arrow “Relationship"  
“Age” is “whitelist”-ed. The dependency structure for occupants in the multi-family housing has
its own complexity at the point of assigning the individual dataset with the household dataset. 

5.4. Results
We  first  compare  the  percentage  difference  in  the  distributions  between  the  observed  and
synthetic populations by variables to quantify the accuracy/fitness of the population synthesis as
described in Figures 5-7. For illustrations, we select several variables for each case: 15 variables
for  multi-family  housing  residents,  16  variables  for  office  occupants,  and  seven  for  senior



housing occupants. Figure 5 shows the relatively small difference in percentages, which range
between -1% and 1% for the case of multi-family housing. Office occupants have a larger range
between  -5%  and  5%,  as  described  in  Figure  6.  A  larger  number  of  samples  for  smaller
populations may contribute to a less accurate synthetic version for the office occupants. Another
possible explanation is  that the office case considers more variables  than those in the multi-
family housing case. A slightly better result is shown for the case of senior housing residents, for
which it has percent difference ranges between -2% and 2% across all seven variables.

To  further  test  the  goodness  of  fit,  we  next  map  the  synthesis  results  as  two-dimensional
distributions. As an illustration, here, we only show two sets of joint distributions for each case.
The results come from one randomly selected case from the ten total runs for each case. Figures
8-10 show the joint distributions of the observed and synthetic data on the most left and middle
panels. The most-right panel of the same figure shows the probability-probability-plot (pp-plot of
the joint cumulative distribution function (CDF) of the selected variables. Figure 8 shows the
joint distribution of Household Income and Education in the BN for the case of multi-family
housing occupants. As can be seen, BN satisfies the joint distribution between the two variables.
The network structure shown in Figure 4 confirms that the pairs are approximately dependent on
each other, and the dependency structures between the variables are preserved. In the case of
office occupants,  the resulting joint  distribution  of the synthetic  dataset  for  the two selected
variables Age and Met, also matches with the joint distribution of the same-set of variables from
the observed data set as described in Figure 9. Being the least representative case in the field,
senior housing occupants carry unique characteristics, such as homogeneity in terms of age and
more  sensitive  perceptions  of  environmental  conditions.  Figure  10  shows  that  the  joint
distribution of Age and Met shows less variance yet matches the observed data set. The pp-plot
for office and senior housing cases (Figure 9-10) shows fewer data points than for the multi-
family housing case (Figure 8) for the selected variables. Therefore, a slight deviation from the
Y=X line can be observed in the pp-plot,  yet the joint CDF is  close to 1.   It  is  then fair  to
conclude that despite variance from sampling, BN results satisfy the goodness of fit, even though
only 2.8% (multi-family housing), 27% (office), 15.48% (senior housing) of samples are used in
the learning process.

Finally,  the  SRMSE values  are 0.485,  1.108,  and 1.03 for  multi-family  housing,  office,  and
senior  housing,  respectively.  The  lowest  SRMSE  value  for  the  multi-family  housing  case
demonstrates the best performance of the BN approach in generating a synthetic version of the
observed data. Note that multi-family housing has a significantly large number of populations
(10,764) to be sampled from. Although the population for the senior housing case (646) is three
times smaller  than the senior  housing has (1858),  it  exhibits  slightly better  SRMSE. This is
mainly because the senior housing case has a slightly smaller sampling, 15.48% (100), than the
office case, 27% (500).



Figure 5. Comparison of observed and synthetic occupants in a multi-family housing case. 
(Observed – Synthetic)/Observed in Percent. See Table 2 for a detailed description of the 
variables.



Figure 6. Comparison of observed and synthetic occupants in an office building. (Observed –
Synthetic)/Observed in Percent. See Table 2 for a detailed description of the variables. 



Figure 7. Comparison of observed and synthetic  occupants in a senior housing. (Observed –
Synthetic)/Observed in Percent. See Table 2 for a detailed description of the variables.

Figure 8. Joint distribution of the household income and education for multi-family housing.



Figure 9. Joint distributions of Age and Met for office occupants

Figure 10. Joint distributions of Age and Met for occupants in a senior housing.

6. Discussion
The previous section demonstrates the process of combining several data sets, selecting relevant
variables informed by the established data ontology, and generating synthetic occupant data sets.
We  combine  socio-demographic  datasets  and  behavior  datasets  to  characterize  the  target
population  in  the  population  synthesis.   Three  separate  population  synthesis  procedures  are
determined for case studies on a multi-family housing, an office building, and a senior housing.
In this setting, Bayesian Network structure learning is useful to capture the joint distribution of
variables that are defined by the data ontology, DNAS framework.

A lesson learned from the applications on three building-type cases pertains to the quality of
synthetic populations. The size of the target populations is one factor that determines the quality
of the synthetic version. For example, if the target population is relatively small, the network
structure may result in interdependencies among the nodes. Therefore, unmatched distributions
between the synthetic and target populations result. We handle this issue by reducing the number
of  variables  for  senior  housing  residents  with  a  relatively  smaller  number  of  observations



compared to those in the other two cases. Another important factor is the choice of the estimation
algorithm. We score twelve algorithms,  select  Tabu Search,  and run it  with ten iterations  to
achieve  optimal  network structures.  We also  ensure the interoperability  of  these  datasets  by
preserving the distributions and performing Predictive Mean Matching (PMM) for multivariate
imputation. The experiments result in a good fit for all three cases, comparing the percentage
difference in the distribution between observed and synthetic populations.

There are several limitations of the current implementation of the synthetic occupant population
generation  for  occupant  behavior  modeling  and  building  performance  simulation.  First,  it
considers only cross-sectional data sets to characterize the occupants and their behaviors, while
longitudinal data sets (e.g. Time Use Survey data set and meter data) are important and widely
used among building modelers. Future versions of the model can consider these longitudinal data
sets. Another limitation is the simplistic approach to fuse several data sets together using only the
intersecting  variables  (e.g.  Age  and  Sex).  Exploring  other  data  fusion  approaches  becomes
necessary as more data sets come into consideration.

Another area to improve is the grouping of individual occupants, which is commonly found in
any  built  environment.  Individual  occupants  may  be  grouped  into  a  group-unit  such  as  a
household in a multi-family housing and a tenant-group in a multi-tenant office building. The
current  implementation  illustrates  a  simplistic  grouping  mechanism  by  restricting  a  group
variable in the learning routine and comparing the resulting distributions of individual occupants
but occupant-groups. This becomes important when discussing the occupants’ locus-of-control.
For example, individual tenant-occupants may have to contact their tenant-representative when it
comes to dimming the overhead light for their floor. Other field of studies have explored this
individual  and  group  to  generate  a  more  representative  synthetic  population  of  certain
geographical areas.

7. Conclusions and future research
This paper focuses on the population synthesis using BN approach in building occupant behavior
research,  particularly  for  generating  synthetic  occupants  that  are  more  representative  by
attributing socio-demographic characteristics. Our approach, however, applies BN only once to
find the best network structure for  the variables.  Needed are integrated  population  synthesis
methods,  i.e.,  Iterative  Proportional  Updating  (IPU);  utilize  powerful  machine  learning
algorithms,  i.e.,  Generative Adversarial  Networks (GANs), and a synthetic population with a
greater mix of data types. Transportation research has advanced these methods up to developing
a dynamic synthetic population. A dynamic synthetic population discussed in (Namazi-Rad et
al., 2014) involves the age-ing of individuals in the population that is drawn upon age-dependent
life-event probabilities (e.g., birth, death, marriage, and divorce). Similarly, future research on
population  synthesis  of  building  occupants  can  include  updates  on  the  occupants’  comfort
preferences  and  choice  of  adaptive  actions  to  ensure  the  evolution  of  their  behaviors  and
determining characteristics.



Population  synthesis  generates  a  representative  occupant  behavior  data  set  replacing  the
simplified and static schedules for building performance simulation. The resulting synthetic data
sets can be useful in the cosimulation procedure linking occupant behavior and building energy
models. Today’s cosimulation procedures are getting more robust with fast data communication
between  building  performance  simulation  tools  (e.g.  EnergyPlus  and  Modelica)  and  other
models.  Occupant  behavior  modules,  on  the  other  hand,  are  getting  more  complex  in
representing real occupants. Highly complex models may appear as an expense, particularly in
the simulation time, rather than a quality improvement to the building performance simulation
tools.  Synthetic  occupant  generation  comes  to  solve  this  dilemma  that  building  occupnat
modelers  are  facing.  For  example,  synthetic  occupant  data  sets  could  serve  as  an  input  to
occupant behavior co-simulation module, such as an ABM-based OB model. Each occupant-
agent  in the model will  be attributed by the information from the data set initially,  then the
attributes  of  preferences  and actions  evolve  and are  updated  over  simulation  time based on
actions taken at the previous time steps. Therefore, future implementation will include testing
and demonstrating the synthetic occupant data sets within a cosimulation framework.

Finally, synthetic populations of building occupants are a useful tool to accommodate activities
across the building lifecycle at various degrees. For example, consideration of HVAC system
and  thermal  zoning  as  part  of  the  building  design  phase  would  benefit  from some relevant
occupant behavior factors, including gender, age, geographical location, and thermal preferences.
Other  factors  like  income  and  environmental  attitudes  may  be  helpful  to  inform  building
operational retrofit activity, such as installing occupancy sensors to improve energy efficiency.
Therefore,   the  application  of  population  synthesis  for  a  sensible  practice  of  fit-for-purpose
modeling is worth exploring given relevant occupant data specification. 
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