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Efficient strategies for leave-one-out cross
validation for genomic best linear unbiased
prediction
Hao Cheng1,2, Dorian J. Garrick1,3 and Rohan L. Fernando1*

Abstract

Background: A randommultiple-regression model that simultaneously fit all allele substitution effects for additive
markers or haplotypes as uncorrelated random effects was proposed for Best Linear Unbiased Prediction, using
whole-genome data. Leave-one-out cross validation can be used to quantify the predictive ability of a statistical model.

Methods: Naive application of Leave-one-out cross validation is computationally intensive because the training and
validation analyses need to be repeated n times, once for each observation. Efficient Leave-one-out cross validation
strategies are presented here, requiring little more effort than a single analysis.

Results: Efficient Leave-one-out cross validation strategies is 786 times faster than the naive application for a
simulated dataset with 1,000 observations and 10,000 markers and 99 times faster with 1,000 observations and 100
markers. These efficiencies relative to the naive approach using the same model will increase with increases in the
number of observations.

Conclusions: Efficient Leave-one-out cross validation strategies are presented here, requiring little more effort than a
single analysis.

Keywords: Leave-one-out cross validation, GBLUP

Background
A random multiple-regression model that simultaneously
fit all allele substitution effects for additive markers or
haplotypes as uncorrelated random effects was proposed
for Best Linear Unbiased Prediction (BLUP) [1], using
whole-genome data. Breeding values are defined as the
sum of the effects of all the markers or haplotypes, and
their estimates are widely used for prediction of the merit
of selection candidates. Estimates of marker or haplotype
effects are used to predict breeding values of individuals
that were not present in a previous analysis commonly
referred to as training. An alternative earlier published
approach to use marker or haplotype information fits
breeding values as random effects based on covariances
defined by a “genomic relationship matrix” computed
from genotypes [2]. These twomodels have been shown to
be equivalent in terms of predicting breeding values [3, 4]
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and we refer to them here as marker effect models (MEM)
or breeding value models (BVM), the latter often known
as Genomic Best Linear Unbiased Prediction (GBLUP).
Cross validation is often used to quantify the predic-

tive ability of a statistical model. In k-fold cross validation,
the whole dataset is partitioned into k parts with k anal-
yses, where one part is omitted for training with valida-
tion on the omitted part. Leave-one-out cross validation
(LOOCV) is a special case of k-fold cross validation with
k = n, the number of observations. When the dataset is
small, leave-one-out cross validation is appealing as the
size of the training set is maximized. However, naive appli-
cation of LOOCV is computationally intensive, requiring
n analyses.
We show below how LOOCV can be performed using

either the MEM or BVM with little more effort than is
required for a single analysis with n observations.

Methods
Use of the MEM is more efficient when the number n
of individuals is larger than the number p of markers,
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because for this model the mixed model equations are of
order p plus the number of other effects. When n < p,
estimated breeding values can be obtained more effi-
ciently by solving the mixed model equations for the BVM
of order n plus the number of other effects. We deal with
the special case where the only other effect is a general
mean and phenotypes have been pre-corrected for other
nuisance variables. Efficient strategies for LOOCV using
this special case for MEM when n ≥ p and BVM when
p ≥ n are shown below.

Marker effect models
The MEM for GBLUP can be written as

y = 1μ + Xβ + e, (1)

where y, a n × 1 vector for phenotypes, has been pre-
corrected for all fixed effects other than μ, the overall
mean, X is the n × p matrix of marker covariates, β is
a p × 1 random vector of the allele substitution effects
and e is a n × 1 random vector of residuals. Often it
is assumed that marker effects are identically and inde-
pendently distributed (iid) random variables with null
means and variances σ 2

β . Thus, under the usual assump-
tion that the residuals are iid with null means and vari-
ances σ 2

e , E (y) = 1μ. When MEM is used, LOOCV
can be performed by using a well-known strategy used in
least-squares regression to compute the predicted residual
sum of square (PRESS) [5] statistic.

LOOCV strategy for MEM

BLUP of β∗ =
[

μ

β

]
can be obtained by solving the mixed

model equations

(
X∗′X∗ + Dλ

)
β̂∗ = X∗′y, (2)

where X∗ = [1 X], β̂∗ =
[

μ̂

β̂

]
, D is a diagonal matrix

whose elements are 0 followed by a p vector of 1s and
λ = σ 2

e
σ 2

β

.

Now, BLUP for β∗−j, where observation j is left out, can
be obtained as

β̂
∗
−j =

(
X∗′−jX

∗−j + Dλ
)−1

X∗′−jy−j, (3)

whereX∗−j isX∗ with the jth row removed and y−j is ywith
the jth element removed.
Suppose x∗′

j is the jth row of X∗, then from the matrix
inverse lemma [4],

(
X∗′−jX

∗−j + Dλ
)−1 =

(
X∗′X∗ + Dλ − x∗

j x
∗′
j

)−1

= (
X∗′X∗ + Dλ

)−1

−
(
X∗′X∗ + Dλ

)−1x∗
j x∗′

j
(
X∗′X∗+Dλ

)−1

1 − Hjj
,

(4)

where the quadraticHjj = x∗
j′
(
X∗′X∗ + Dλ

)−1 x∗
j is the jth

diagonal element of H = X∗ (
X∗′X∗ + Dλ

)−1 X∗′.
Using (3) in (4), the prediction residual for the jth

observation can be written as

êj = yj − x∗′
j β̂∗−j

= yj − x∗′
j

[ (
X∗′X∗ + Dλ

)−1

−
(
X∗′X∗+Dλ

)−1x∗
j x∗′

j
(
X∗′X∗+Dλ

)−1

1 − Hjj

⎤
⎦X∗′−jy−j

=
(
1 − H jj

)
yj − x∗′

j
(
X∗′X∗ + Dλ

)−1 X∗
−j′y−j

1 − H jj
(5)

= yj − x∗′
j β̂∗

1 − H jj
. (6)

These prediction errors can be squared and accumu-
lated over n realizations to compute PRESS defined as∑n

j=1 êj
2. The accuracy of genomic prediction is often

quantified as the correlation between the predicted and
observed values of yj, and that correlation can be esti-
mated from the values of ŷj, which can be computed
efficiently as ŷj = yj − êj, using the observed values of yj.
When a specific group of individuals is of interest, predic-
tion accuracies and PRESS can also be calculate using êj
for individuals in that group.

Breeding value models
When n < p, the genomic prediction of the breeding value
x′
jβ̂ can be obtained more efficiently by solving the mixed

model equations for the BVM:

y = 1μ + Zu + e, (7)

where u = Xβ , var (u) = XX′σ 2
β , Z is the identity matrix

of order n and other variables are as in the MEM. Further,
in both models E(y) = 1μ, and var(y) = XX′σ 2

β + Iσ 2
e .

These two models are said to be equivalent [6], and linear
functions predicted from onemodel are identical to corre-
sponding predictions from the other model. Two efficient
strategies for LOOCV using the BVM are shown below.
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LOOCV strategy I for BVM
The mixed model equations for this model are:

(
Z∗′Z∗ + Gλ

)
û∗ = Z∗′y, (8)

where Z∗ =[1 Z] , û∗ =
[

μ̂

û

]
,G =

[
0 0′

0
(
XX′)−1

]
.

Due to the relative order of the coefficient matrices
for the MEM and the BVM, when n < p, x∗′

j β̂∗ is
more efficiently obtained as û∗j. Similarly, var(x∗′

j β∗ −
x∗′
j β̂∗) = x∗′j

(
X∗′X∗ + Dλ

)−1 x∗
j σ

2
e can be obtained more

efficiently as var(u∗
j − û∗j) = z∗

j′
(
Z∗′Z∗ + Gλ

)−1 z∗jσ 2
e .

Using these two equalities, the formula for êj becomes:

êj = yj − x∗′
j β̂∗−j

= yj − x∗′
j β̂∗

1 − Hjj

= yj − x∗′
j β̂∗

1 − x∗′
j (X∗′X∗ + Dλ)−1 x∗

j

= yj − z∗′
j û∗

1 − z∗′
j (Z∗′Z∗ + Gλ)−1 z∗

j

= yj − z∗′
j û∗

1 − Cjj
, (9)

where the quadratic z∗′
j

(
Z∗′Z∗ + Gλ

)−1 z∗
j is the jth diag-

onal element of C = Z∗ (
Z∗′Z∗ + Gλ

)−1 Z∗′.

LOOCV strategy II for BVM
Another efficient strategy for BVM is shown here. First
we consider the situation where y has been pre-corrected
for μ in addition to nuisance effects so that E(y) = 0 and
we define var

(
y
) = XX′σ 2

β + Iσ 2
e = V . Now matrix Q

is constructed by augmenting the covariance matrix of y
with one leading row and column as

Q =
[
y′y y′
y V

]
.

To obtain the prediction error for observation j, the sec-
ond row and column of Q are permuted with row and
column j + 1. In this manner Q has its rows and columns
symmetrically permuted as P′

jQPj = W , where the per-
mutation matrix Pj is obtained by permuting the second
row of the n order identity matrix with row j + 1. So the
permuted matrix is:

W =
⎡
⎣ y′y yj y′−j

yj Vjj Vj,−j
y−j V−j,j V−j,−j

⎤
⎦ =

[
A B
B′ C

]

where we will define the leading 2 × 2 matrix as A =[
y′y yj
yj Vjj

]
, and the other partitions as B =

[
y′−j
Vj,−j

]
, and

C = V−j,−j, where −j denotes that the jth element, row or
column has been removed. Defining W11 as the top left
or leading 2 × 2 sub-matrix inW−1 corresponding to the
position of A in W, and using partitioned inverse-matrix
identities [7], the inverse ofW11 can be written as,

(
W11)−1 = A − BC−1B′

=
[
y′y yj
yj Vjj

]
−

[
y′−j
Vj,−j

]
V−1

−j,−j
[
y−j V−j,j

]

=
[
y′y − y′−jV

−1
−j,−jy−j yj − y′−jV

−1
−j,−jV−j,j

yj − Vj,−jV−1
−j,−jy−j Vjj−Vj,−jV−1

−j,−jV−j,j

]
.

(10)

Now Vj,−j in element (2, 1) of the above inverse matrix
is the vector of covariances between yj and y−j and V−1

−j,−j
is the inverse of the covariance matrix of y−j. Thus, ŷj =
V j,−jV−1

−j,−jy−j is the Best Linear Predictor (BLP) of yj
given y−j, and element (2,1) of (10) is the prediction error
of yj. The element (2, 2) in (10) is the prediction error
variance (PEV) for yj, where PEV = var(yj − ŷj). PEV
can also be used to calculate theoretical reliability for
individual i as 1 − PEVi

Vjj
, and characterizing the distribu-

tions of reliability for all the individuals in a dataset has
a number of practical applications. Note this allows us to
obtain the PEV of every individual and the distribution
of these values provide information as to the robustness
of genomic predictions across the population of individ-
uals represented in the dataset. This PEV is determined
by the genomic variance-covariance matrix and does not
depend on y. Two different datasets could generate the
same PRESS statistic but with different distributions of
PEV.
Now, because the permutation matrix Pj is orthogonal,

W−1 = (P′
jQPj)−1 = P′

jQ−1Pj, and the elements of W11

that are of interest in terms of predicting individual j can
be obtained directly fromQ−1 as

W11 =
[

q1,1 q1,(1+j)

q(1+j),1 q(1+j),(1+j)

]
. (11)

It follows that êj, which is the off-diagonal element of the
inverse of the 2×2 matrixW11, can be written in terms of
Q−1 as

êj = −q(1+j),1

q1,1q(1+j),(1+j) − q1,(1+j)q(1+j),1 , (12)

where qi,j is the element from row i and column j of Q−1.
Thus, once Q−1 is computed, êj for all j can be com-
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Table 1 Phenotypes and genotypes at 5 markers for 3
individuals used in the numerical example

M1 M2 M3 M4 M5 Phenotypes

1 1 2 1 2 2 1.97

2 2 1 0 1 1 2.12

3 0 0 2 1 2 –0.62

puted using (12), and these values can be used to compute
PRESS as

∑n
j=1 êj

2. To estimate the correlation between
the predicted and observed values of yj, the value of ŷj is
efficiently obtained as the difference ŷj = yj − êj.
Now we consider the situation without pre-correcting y

for μ, where E(y) = 1μ. Now the mixed model (7) con-
tains both fixed and random effects. Note that the mixed
model equations that correspond to this mixed effects
model can be derived by treating μ as “random” with null
mean and large variance. So, let

var
(
β∗) =

[
σ 2
L 0′
0 Iσ 2

β

]
= �,

for sufficiently large value of σ 2
L . Then under this assump-

tion, E(y) = 0 and var
(
y
) = X∗�X∗′ + Iσ 2

e = V ∗,
and thus ŷj = V ∗

j,−jV
∗−1
−j,−jy−j is the BLP from the ran-

dom effects rather than mixed effects model of yj given
y−j. This BLP obtained from the model with random μ

will be numerically very close to the BLUP obtained from
the mixed model with fixed μ. The Qmatrix correspond-

ing to the BLP with random μ is constructed as
[
y′y y′
y V∗

]

and prediction residuals are obtained as (12).

Numerical example
Phenotypes y and genotypesX at 5markers for 3 individu-
als are in Table 1. Assume σ 2

β = σ 2
e
10 and the overall meanμ

is the only fixed effect. In LOOCV strategy for MEM and
strategy I for BVM, the diagonal elements of H for MEM
and C for BVM, which are in the denominators of (6)
and (9), are in Table 2. The numerators of (6) and (9) are
obtained by solving the MME (2) and (8). Then prediction
errors are calculated as in (6) and (9) and shown in Table 4.
In LOOCV strategy II for BVM, the Q matrix (Table 3) is
constructed using σ 2

L = 1000, which is sufficiently large

Table 2 Diagonal elements ofH in LOOCV strategy for MEM and
C for BVM

j = 1 j = 2 j = 3

Hjj 0.46 0.51 0.55

Cjj 0.46 0.51 0.55

Table 3 Qmatrix in strategy II for BVM

1 2 3 4

1 8.75 1.97 2.12 –0.62

2 1.97 1,002.40 1,000.80 1,000.80

3 2.12 1,000.80 1,001.70 1,000.30

4 –0.62 1,000.80 1,000.30 1,001.90

relative to σ 2
e for μ to be indistinguishable from a fixed

effect with a flat prior. The prediction errors are calcu-
lated as (12) and shown in Table 4. TheMEM strategy and
BVM strategy I gave identical prediction errors and iden-
tical PRESS for this numerical example were numerically
very close to those from the BVM strategy II.

Simulation to compare efficiency
Two datasets were simulated using XSim [8], where 1,000
offspring were sampled from random mating of 100 par-
ents for 10 non-overlapping generations, to compare the
computational efficiencies for naive and efficient strate-
gies using BVM or MEM for LOOCV in GBLUP. Dataset
I was simulated with 1,000 observations and 10,000 SNP
markers for a p � n scenario. Dataset II was simulated
with 1,000 observations and 100 markers for a n � p sce-
nario. The processor used in the analyses was a 1.4 GHz
Intel Core i5 with 4 GB of memory.
For dataset II, efficient MEM is 99 times faster than

the naive application (2.979 s versus 0.030 s) (Table 5).
All strategies implemented in Julia, a scientific program-
ming language, gave virtually identical prediction accu-
racies defined as the correlation between y and ŷ for
each dataset. For dataset I, efficient BVM is 786 times
faster than the naive application (3.107 s versus 2,442.59 s)
(Table 5).

Discussion
In genomic prediction, the candidates to be predicted are
often offspring that are genotyped but not yet pheno-
typed. In this situation, LOOCV using all individuals in
the training dataset will provide an upper bound for the
accuracy of prediction, because ancestors in the train-
ing dataset with large numbers of descendants have more
accurate predictions than descendants. A better estimate
of the accuracy of prediction can be obtained by apply-
ing LOOCV to only terminal offspring in the training
dataset.

Table 4 Prediction errors from different LOOCV strategies
(different strategies gave identical prediction errors)

j = 1 j = 2 j = 3

êj 1.13 1.21 –2.66
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Table 5 Efficiency of alternative LOOCV strategies for GBLUP

Alternative LOOCV strategies

Naive MEM Naive BVM Efficient MEM Efficient BVM I Efficient BVM II

n = 1, 000; p = 10, 000 9,490.608 2,442.590 105.141 3.107 5.945

n = 1, 000; p = 100 2.979 169.928 0.030 2.725 0.217

Results are given for the computing time in seconds using naive MEM, naive BVM, efficient MEM, efficient BVM I and efficient BVM II

Conclusions
Efficient strategies for LOOCV in GBLUP are presented
in this paper. LOOCV strategy I and II for BVM are more
efficient when p � n. LOOCV strategy for MEM is
more efficient when n � p. The accuracy of genomic
prediction is often quantified as the correlation between
the predicted and observed values of yj, and this corre-
lation can be estimated efficiently using LOOCV strate-
gies. Compared to naive application of LOOCV, which is
computationally intensive, LOOCV can be implemented
efficiently.
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