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Distributed Channel Quantization for Two-User

Interference Networks

Xiaoyi Leo Liu, Erdem Koyuncu, and Hamid Jafarkhani
Center for Pervasive Communications and Computing

University of California, Irvine

Abstract

We introduce conferencing-based distributed channeltipeas for two-user interference networks
where interference signals are treated as noise. Compatiedh& conventional distributed quantizers
where each receiver quantizes its own channel independ#m proposed quantizers allow multiple
rounds of feedback communication in the form of conferegdiatween receivers. We take the network
outage probabilities of sum rate and minimum rate as pedoga measures and consider quantizer
design in the transmission strategies of time sharing atetference transmission. First, we propose
distributed quantizers that achieve the optimal networtage probability of sum rate for both time
sharing and interference transmission strategies withvanage feedback rate of only two bits per

channel state. Then, for the time sharing strategy, we @jgodistributed quantizer that achieves the

arxiv:1403.7846v1 [cs.IT] 31 Mar 2014

optimal network outage probability of minimum rate with faiaverage feedback rate; conventional
quantizers require infinite rate to achieve the same pedoo®m. For the interference transmission
strategy, a distributed quantizer that can approach thienaphetwork outage probability of minimum

rate closely is also proposed. Numerical simulations canflnat our distributed quantizers based on

conferencing outperform the conventional ones.

I. INTRODUCTION

Channel guantization in a network with multiple receivessfundamentally different from

that in a point-to-point system. In a point-to-point systdhe receiver can acquire the entire
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channel state information (CSIl) and send the correspongiiragntized feedback information to
the transmitter[[1][4]. On the other hand, in a network withltiple receivers, each receiver
only has access to its own local CSI due to different geogcaptocations of the different

receivers. Each receiver can thus quantize only a part oétitiee global CSI, which results in

a distributed quantization problem.

In the existing work on distributed quantization for netk®r[1], [5], [6], each receiver
first quantizes its local CSI independently and then sendsite fnumber of bits represent-
ing quantized information through feedback links to othemntinals. After decoding feedback
information from all receivers, each terminal reconstuitte quantized version of the global
CSI. Afterwards, transmission methods such as beamformingower control are adopted by
treating the global quantized CSI as the exact unquantiZeld Bor example, power control
and throughput maximization for interference networkseblasn separate quantized feedback
information from receivers are analyzed I [5]) [6]. [N [Heamformers are designed for the
K-user MIMO interference channels with independent quadtinformation from each receiver.
The performance of these quantizers depend on the numbeeedabéck bits assigned for
guantization to each receiver and always suffer from sors When compared with the optimal

performance.

In this paper, we propose a novel distributed quantizatioatesyy with multiple rounds of
feedback communication in the form of conferencing betwesseivers. Through conferencing
among receivers, partial CSI from other receivers can Hdizedi for a better overall quantizer
performance. To illustrate this, we consider the disteluguantization problem for two-user
interference networks with time sharing and interfereme@gmission strategies. The network
outage probability is the performance metric. We first psgpa@ distributed quantizer that
achieves the optimal network outage probability of sum mateoth time sharing and interference
transmission with only two bits of feedback information. Also propose a distributed quantizer
that attains the optimal network outage probability of miom rate in time sharing with

finite average feedback rate. For the optimal network oufagéability of minimum rate in
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interference transmission, a distributed quantizer tlat approach it closely is also proposed.
By numerical simulations, we show the effectiveness of tteppsed quantizers by comparing
them with the conventional ones.

The rest of this paper is organized as follows: In Sedfibnwl, provide a description of the
system model. In Sections]ill and]lV, we introduce and aralye distributed quantizers for
time sharing and interference transmission strategieperively. Numerical simulations are
provided in Section V.

Notations: Bold-face letters refer to vectors or matricéS.denotes the matrix transpose.
C, R and N represent the sets of complex, real and natural numberngeatgely. The set of
complexn-vectors is denoted bg"*! and the set of complex: x n matrices is denoted by
Cc™*"™. CN(a,b) represents a circulary-symmetric complex Gaussian randammable (r.v.) with
meana and covariancé. fx(-) is the probability density function (PDF) of a rX. |S| is the
cardinality of the sef. For sets4 andB, A—B = {z € A,z ¢ B}. E[| denotes the expectation
and Prol-} denotes the probability. For any € R, |z] is the largest integer that is less than
or equal toz and [z] is the smallest integer that is larger than or equat.td-or any logical
statementST, we let1(ST) = 1 whenST is true, and1(ST) = 0 when ST is false. Finally,
for by,...,bn € {0,1}, N > 1, the real numbej0.b; - - - by ]> is the base representation of the

real numbery"Y_ b,27".

n

[I. PRELIMINARIES
A. System strategy

Consider an interference network where transmitfgr&and S, send independent signals to
receiversD; and D, concurrently. Both transmitters and receivers are equaippih only a
single antenna. The channel gain fr&n to D, is denoted by, for k,1 = 1,2. We assume
thath; 1, hoo >~ CN(0, 1) andh, 2, ho o =~ CN(0, €), Wheree is the covariance of interference links.
Let Hy, = |hk71|2. Then, h;, = [Hl,k,szk]T e ¢?*! denotes the local CSI at receiver and
H = [hy, hy] € ¢**? represents the entire CSI. The additive noises at the rseare distributed

ascN(0, 1).

April 1, 2014 DRAFT



We assume a quasi-static block fading channel in which trenméls vary independently
from one block to another while remain constant within ealdtlh Each receiver can perfectly
estimate its local CSI and provide quantized instantan&@sisto other terminals via error-free

and delay-free feedback links.

B. Transmission strategies

We consider two transmission strategies in the two-userf@rence network, namely time
sharing and interference transmission. Time sharing meéhsr transmitter only occupies a
proportion of the block to transmit while remains silent iretrest, thus no interference exists.
Interference transmission refers to the scenario where toahsmitters send signals within the
entire block, thereby causing interference to each otheraggéume that interference signals are
dealt with as noises. Since we focus on the design of disatbguantizers based on conferencing,
we also assume that only one strategy will be performed iretttiee transmission for simplicity.

In time sharing, let, € [0, 1] be the percentage of time within the entire block in whichyonl
S Is active fork = 1,2 with ¢; + t, = 1. The instantaneous power used $yis P, = p. P,
wherep;, € [0,1] and P is the short-term power constraint. It is optimal for botansmitters to
use full power under the condition of no interference. Tfaes for a givenH, the end-to-end

rate at receivek is
Resso(tr) = tilogy (1 + PHyy) .

In interference transmission, far,l = 1,2 and k # [, the end-to-end rate at receivietis

PH,
Rit,k(plapz) £ ]0g2 (1 + Pk k. k ) .

plPHl,k + 1

C. Network Outage Probability

Our performance measure is the network outage probahihich is the fraction of channel
states at which the rate measure of the network falls beloarget data rate. Such a per-

formance metric is well-suited for applications where aegiwconstant data rate needs to be
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sustained for every channel state. Two kinds of rate meammnts are considered, namely sum
rate and minimum rate. Our goal is to design efficient disteld quantizers that can achieve
the optimal network outage probability of sum rate or minmtate for both time sharing and

interference transmission strategies.

[1I. DISTRIBUTED QUANTIZATION FOR NETWORK OUTAGE PROBABILITY OF SUM RATE

We first design distributed quantizers for interferencagnaission. The sum rate 8 (p1, p2) =

S Rix(p1,p2). We define the network outage probabilitylas
C)U-l-lstr £ Pr{SR;t (pl,pg) < 2p} .

It is proved in [7] that the maximum sum raterisax {SR; (1,0), SR (0,1), SR (1,1)}. There-

fore, the optimal (minimum-achievable) network outagebatuility is
OUTZ, =Pr{max {SR; (1,0), SR (0, 1) , SR (1, 1)} < 2p} .

In the following, we design a distributed quantizer, namel, ;., that can achieve oq:ﬁt
with only 1 feedback bit per receiver. The quantiZe®,, ;. consists of two local encoders and
a unique decoder. Thee-th encoder ENG ;. , is located at receivet and the decoder DEG;
is shared by all terminals, for = 1,2. The components dDQ, ;. operate as follows:

For k = 1,2, ENG, ;s : C**! — {0,1} mapsh; to 0 or 1 according to ENG . ;. (hy) =
1(log, (1 + PHy ) > 2p). Accordingly, receivek will send the feedback bit “1” if ENG ;¢ . (hy) =
1, and “0” otherwise. The decoder DE§ decodes the bits fed back by receivers and recovers
the values of ENG .« (hy) for £ = 1,2. The interference transmission pajr, p») is decided
based on Table 1.

Denote the network outaEe probability achieved}y,, ;. as OUT(DQ,, ;) and let FR(DQ, ;)

be the average feedback rdte.

We choose the sum-rate outage threshold t@/béor a more fair comparison with the rate threshplthat we shall specify
for the minimum-rate outage threshold.

2The average feedback rate in this paper is the sum of thegevenamber of feedback bits fed back by each receiver.
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TABLE |
DECISION RULE OFDQ,.

ENCsr,it,1 (h1) ENCsr,it,z (h2) (p17p2)
1 0 (1,0)
0 1 (0,1)
1 1 (1,0) or (0,1)
0 0 (1,1)

Theorem 1. OUT (DQ,,;,) = OUT®, and FR(DQ,, ;) = 2.

sr,it

Proof: With DQ,, ;;, an outage event occurs only Wh8R. (p:, p2) < 2p for every(py, p2) €
{(1,0),(0,1), (1,1)}, or equivalently when both receivers feeds bagkand the corresponding
power vector(1, 1) from Table I still results in outage. This shows that OLIDer,it) = OUT‘:r’fitt.
Since two bits are fed back in total (one bit for either reegivthe average feedback rate is two
bits per channel state. [ |

The design ofDQ,, ;, utilizes the fact that checking wheth@r,, p,) = (1,0) or (0,1) leads
to an outage event only requires the knowledge of local CSditaer receiver. Thus two bits
of conferencing between receivers provides adequatennaon to each other for choosing the
right pair (p;, p2) to achieve the optimal performance.

We now consider the design of disributed quantizers forithe sharing strategy. In this case,
we can similarly define the network outage probability of sate as OUT, . = Pr{SR (t;,t2) < 2p},
where R (1, 1) = Zizl Rs.x(tk). Under the constraint of, + ¢, = 1, the maximum sum
rate can easily be calculated to bex {SR (1,0), SR (0,1)}. Therefore, the optimal network

outage probability is
OUT = Pr{SR (1,0) < 2p, R (0,1) < 2p}.

Noticing thatSR (1,0) = SR (1,0) and SR (0, 1) = SR;; (0, 1) and using the same ideas as
in the construction oDQ,, ;;, we can design a distributed quantizer for time sharingdbbteves

OUTEEES with only one bit of feedback per receiver (we omit the dejaiOn the other hand,

DRAFT April 1, 2014



the equalitiesSRs(1,0) = SR¢(1,0) and SR(0, 1) = SR(0, 1) also imply OUTF;, < OUT‘S’r’jitt.
Hence, we only need to consider interference transmiss$ionri objective is to minimize the

network outage probability of the sum rate.

IV. DISTRIBUTED QUANTIZATION FOR NETWORK OUTAGE PROBABILITY OF MINIMUM

RATE

We now study the design of distributed quantizers that migenthe outage probability of
minimum rate. First, we determine the optimal network oatpgobability with time sharing or

interference transmission. For time sharing, we define gteark outage probability as
OUTmr,ts é Pr{MRts(tlatZ) < p},

whereMRy(t,t2) = min {R 1 (t1), Rs2(t2)} is the minimum achievable rate of the two trans-

mitters. In interference transmission, the network outageability is
OUT it £ Pr{MR(p1,p2) < p},

whereMR(p1, p2) = min {Ri1(p1, p2), Re2(p1, p2) }- Now, let(#5, t5) = arg max ¢, +,) MRes(t1, t2)
and (p7, p3) = argmax(y, »,) MR(p1, p2) denote the optimal time sharing and power pairs that
achieve OUT,, s and OUT,, ;;, respectively. We have the following two results, whoseofso

can be found in Appendix A.

Proposition 1. We have

* logy(14+PHa22)

tr = logy(1+PH; 1)+logy(1+PHz 2) )
t* — 10g2(1+PH1_’1)
2 10g2(1+PH1,1)+10g2(1+PH2,2)'
s PHy 1 PH> 2
Proposition 2. If Pioatl = Phha. i Ve have
2
- \/4P H1’2H2,11)r{{21721+4PH272H172 411
(p17p2) = 2PHi 2 71 ) (2)
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: ; PH;y PH> o
and otherwise, if z7--5 < 5757, we have
o \/4P2H171H172g22712+4PH1’1H2’1 i1
(p17p2) = 17 2P7H2,1 . (3)

In particular, the optimal network outage probabilities minimum rate for time sharing
and interference transmission are given by QT = Pr{MR(t},#3) < p} and OUTY,, =
Pr{MR.(p7,p5) < p}, respectively.

We now propose two distributed quantizers, nanig@,, ., andDQ,,, .. For the time sharing
strategyDQ,,, s Will attain OUTf;",ftS exactly with a finite average feedback rate. For interfegenc
transmissionPQ,,, ;. will approach OU Pt tightly with a finite average feedback rate.

r,it

A. Time Sharing

For a givenH, the minimum time percentage for receiveto prevent outage is given by

p
10g2 (1 + PHk:,k)7

tk,min -

which can be calculated and known by receikefor & = 1,2. Denote byDQ,,, .. (H) the time
sharing pair(t,,t,) determined byDQ,, .. The first task ofDQ,, ., is to determine whether
or not MRy (1,t5) > p through feedback communication between receivers. Thetéisk is
essentially a distributed decision-making problemMR (7, t5) > p holds, the second task is
to find DQ,, (H) that also enableMR; (DQ,,,+s (H)) > p.

The quantizeDQ,,, s is composed by two local encoders with thth encoder ENG, i x
located at receivek and a unique decoder DECs employed by all terminals. We add the

superscript I” to indicate their operations in theth round of conferencing fot € N. Also,
ub,l

k,min

tub

min’ “k,min

four parametersp for k = 1,2 are stored and updated at all terminals. L&t , ¢

represent the values ¢ . .+ . after round!.

k,min

for k = 1,2. Receiverk will send the feedback bit “1” if ENE; .. , (h;) = 1, and the feedback
bit “0” otherwise. Then, DEE;

Inroundo, ENC),, . ;. : ¢**! — {0,1} mapsh, into 0 or 1 via ENC),, .. ; (hy,) = 1 (g min > 1),

decodes the bits fed back by receivers and recovers thesvalue

r,ts
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of ENC),, .. (i) for & = 1,2, If ENC), .., (hy) = 1 or ENC), ., (h2) = 1, an outage event

mr.,ts,1

is sure to happen. Then we gét5,0.5) as the time sharing pair (in fact, any time sharing pair

can be used as outage is inavoidable) and the conferendingss ends. Otherwise), ., and

tb .. = 1 are updated ag’y, = 0,#j°0, =1 for k = 1,2, thenDQ,,,, continues to the next
round.

In round wherel € N — {0}, ENC,,, ., : ¢*** — {0,1} mapshy, into 0 or 1 according to
1 in i
ENdmr,ts,k (hk) =1 (tk,min 2 %) ’

for k = 1,2. Receiverk will send 1 bit of “1” if ENC! (hy) =1, and “0” otherwise. Then

mr,ts,k

DEC,, .. decodes the bits fed back by receivers and recovers thesvaquN(im,tS,k (hy) for

mr,ts

k=1,2.

1) If ENC}, 4, (hy) = ENC

'mr,ts,2

(hy) = 1, an outage event is inavoidable. We thus set
(0.5,0.5) as the time sharing pair and conferencing ends.

tlb,lfl_,’_tub,lfl tlb,l71+tub,lfl
_ _ _ 1,min 1,min 2, min 2, min
(hl) - ENclmr,ts,2 (hZ) =0, we SeI.D(?mr,ts (H) - P) 5 2

2) IfENC!

mr,ts,1

as the time sharing pair, and conferencing ends.
Ib,i 17 min Lo ub,l
(hy) =1 and ENQMSQ (hy) =0, we lett, , = +==o=== andt, ; =
Ib,l—1 , ub,i—1

(hy) = 0 and ENG,, ., (hs) = 1, we lett,'2 = Pimin Phimin.

3) If ENC!

mr,ts,1
4b,1—1_ jubl—1

2,min+t2,min If ENCl

2 mr.,ts,1

Ib,l—1 | ,ubi—1
bl 3 )min T2 min

andty) . = 5 . In either case, conferencing continues to the next round.

Note that the condition MR (DQ,, . (H)) < p is equivalent tot, i, + t2mn > 1, and
DQ,.s determines whethef i, + t2 min > 1 holds or not. To accomplish this, either receiver
guantizes its own,, in a finer and finer way whehincreases and tells the quantized feedback bits

to others. The parametet§ .  #"° . serve as the lower and upper boundsipp:, updated

k,min

by conferencing between receivers. The decision of whethgf + t2min > 1 holds or not

is made by jointly considering® . andt® . . The inter-receiver conferencing process will

k,min k,min
continue until the exchanged feedback bits are adequatake mprecise decision about whether
1 min + t2.min > 1 holds or not.

Let OUT(DQ,, ) and FR(DQ,,.) denote the network outage probability and average
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feedback rate oDQ,, ., respectively. The following theorem shows that whenekerdptimal
time shairing pair(¢1,¢5) in Proposition 1 can avoid outage, the time sharing pair qucky

DQ,....« Will also avoid outage with probability one, and that therage feedback rate &@Q

mr,ts

is finite. The proof is provided in Appendix B.
Theorem 2. For any P > 0, we have
ouT (Der,ts) = OUT?nprt,ts, (4)

and

FR(DQpps) < 2427 (1 + %) : (5)

where () is a bounded constant that is independent of PH

Theorem 2 shows zero-distortion in network outage prolighalctually can be achieved by
finite average feedback rates, other than infinite numbeeediiack bits in the traditional view.
This surprising result comes from our design for feedbadkmonication between receivers

based on conferencing.

B. Interference Transmission

For k,l = 1,2 and k # [, the maximum allowed power of transmitterthat will not cause

outage to receivel when transmittef uses full power can be calculated to be

Hl,l 1
(20 —1)Hy;, PHy;

Pkmax =

Note thatp; max Can be calculated at receiver
The proposed quantizédQ,,, ;. consists of two local encoders, two local compressors and

a unique decoder. The-th encoder ENG, ;:» and k-th compressor CMR, ;; . are located at

3Since we focus on showing the average feedback rate is fimitarfy P, it is beyond the scope of our paper to derive the
tightest bound, i.e., the smallest value Gs.
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receiverk, while the decoder DE; ;; is used by all terminals. We add the superscripttd
indicate their operations in thieth round of conferencing fot= 0, 1.
For anyM € N—{0}, letCy, = {#* : m =0,..., M }. DenoteDQ,, ;. (H) as the interference

transmission paifp,, p.) determined byDQ,,, ;.. There are at most two rounds of conferencing
in Der,it'
In round0, ENC?

m

rie1 1 €21 — Cy mapsh, into a codeword irC), according to

O, P2, max S 07
ENC?nr,it,l (h1> =
argmax T, Pamax > 0.
:(:ECM@‘Sszax

Then CMP

mr,it,1

: Cyy — B maps the index of ENg; ., (h;) to a binary description irs,
a set of binary representations for codewordsCinWith fixed-length coding,ﬂoi2 IC|]| =
DEC?

mr,it

[log,(M +1)] bits indicating the index of EN{; ;. , (hy) are fed back by receiver

decodes them and recovers the value of ENG (h,), then receiver 2 will send one bit of
0
“17 if log, (1 + ENGm;t’I}fgffDHQ’2) > p, and “0” otherwise. If “1” is fed back by receiver 2,

Der,it (H) = (17 ENCO

m

i1 (1)) is the decided pair and thus, conferencing for the current
channel state finishes. Otherwise, conferencing will cw#ito the next round.

In round1, ENC!

m

cit2 1 €21 — Cy mapshy into a codeword irC,; according to

07 P1,max S 07

1 _
ENCmr,it,Z (h2> -
argmax T, Dimax > 0.
$60N17$§P1,n)ax

Then CMRB, ;.

[log,(M +1)] bits indicating the index of ENE; ;. , (hy) are fed back by receiver 2. DEC,
decodes them and recovers the value of ENG (h), andDQ,,, ;; (H) = (ENC, ;. (h2), 1)

: Cyy — B maps the index of ENE; ., (h,) to a binary description ir5.

is the final interference transmission pair.

The interference transmission pair decided @@, ;; has at least one element equallto

“The performance abQ,, i can be improved by taking variable-length coding into cdesation. We use fixed-length coding
here for convenience.
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i.e., p1 = 1 or p, = 1, which arises from the fact that the performance of any pgaat toes
not satisfy this can be improved by multiplying the pair witscaling factor until at least one
element reache$ [7]. Therefore, the proposed quantizer only needs to workhennon-one
element. To do this, either receiver tries to tell others riximum power it can tolerate for
preventing outage.

Denote the network outage probability and average feedtaelofDQ,,, ;; by OUT (DQ,,, ;)
and FR(DQ,,.;:), respectively. The following theorem provides upper bauad OUT(DQ,,, ;)
and FR(Der’it). The proof of the theorem is provided in Appendix D.

Theorem 3. For any P > 0 and M € N — {0}, we have

OUT (DQ,) < OUTE, + 1. ©
and
FR (Danit) < 2logy(M + 1) + 3, (7

where C'; > 0 is a bounded constant that is independent of P and M.

From Theorem 3, it is seen that the distortion in network getarobability is inversely
proportional toM, while the average feedback rate is bounded by a finite coinghas the term
2logy (M + 1) that scales a® (log(M)). Letting M satisfy 21log,(M + 1) + 3 = R, we can
observe that the loss in outage probability due to quamizatecays at least exponentially with

the total feedback rat® as O (2‘5 )

C. Time Sharing or Interference Transmission?

We recall from Section Il that for the network outage prohligbof sum rate, the interference
transmission is always superior to time sharing. On theroltaad, for the network outage
probability of minimum rate, depending on the power consga’, either one of two transmis-

sion strategies may be optimal. To illustrate this phenanethe network outage probabilities
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107 I I T I I I I
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Fig. 1. OUTY .. and OUT® . versusP.

mr,ts mr,it

OUTs and OUT"". are plotted versus® for variouse in Fig. 1. The target data rate is
p = 0.5. We can observe from Fig. 1 that for any giventhere is a threshold power level
Py (that depends om) such that whenP < Py, OUTY®' . < OUTY',, and whenP > P,

mr,it?
OUTs > OUT"".. In other words, we should use interference transmissioenwh < P,
and otherwise, i’ > Py, we should utilize the time sharing strategy. The decisietvken time
sharing and interference transmission only requires tleavledge of Py, which can be a prior
information known by all terminals. Although it is difficuto derive a closed-form expression
of Py, it can still be estimated through numerical simulationst. Example, according to Fig.

1, we havePy ~ 2,5,12,25 dB whene = 1,0.5,0.1 and0.01, respectively.

V. NUMERICAL SIMULATIONS

In this section, we present simulations to verify the thecat results forDQ,, ., in time
sharing andDQ,,, ;; in interference transmission. For each instancePoaind ¢, a sufficient

number of channel state realizations are generated to\a@bs¢reast 5000 outage events. We

April 1, 2014 DRAFT



14

(b)
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Fig. 2. Simulated network outage probabilities of minimuaterfor DQ,,, .., DQ"}, and the case with no feedback as well
as the average feedback ratel®, versuspP.

mr,ts

have chosen = 0.5.

We will compare the performance of the proposed quantizétis thrat of the conventional

one [5], [6] denoted byDQ°™ in time sharing and interference transmission, respdytiver

mr

readers’ convenience, we provide a brief description ofgiinentizerDQ°" as described ir [5],

mr

[6]. For k = 1,2, receiverk employs% bits to quantizeH, , and H, separately based on a

Btot

1 . All terminals

scalar codebook generated by Lloyd Algoritim [8] with theddaality being2
decode the feedback bits and reconstruct the quanfkess H. In time sharing/ and} are
calculated according to Proposition 1 by treatidgas H, while in interference transmissiop;

andp} are computed by Proposition 2 basedlnThe average feedback rate D™ is By

mr

bits per channel state. We add the subscripttsf 6r “it” to DQS™ to distinguish when it is

mr

applied in time sharing or interference transmission, eegpely.

In Fig. 2 (a), the network outage probabilities of minimunterdor DQ,,,, .., DQY, (with

mr,ts

Bt = 16) and the case with no feedback (where either transmitteswooes half of the entire
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Fig. 3. Distortions of network outage probability for minim rate ofDQ,,, ., DQ;; and the case with no feedback versus
M.

block to transmit, i.e.t; = t, = 0.5) are plotted. It is shown that the network outage probadslit
of the latter two scenarios are worse than thaD@f,, . (the minimum one), which substantiates
that feedback is necessary as well as the proposed quab#iged on conferencing is superior.
Fig. 2 (b) plots the average feedback rateDf,,, .., which is finite and small in the entire
interval of P. Furthermore, whe® — oo or 0, the average feedback rate approaches towards
or 2, respectively. This corresponds to the upper bound in Tred and it can be intuitively
interpreted like this: wherP? — oo, the probability that, i, < % for k = 1,2, is increasing
towards1, then after two rounds(0.5,0.5) will be chosen adQ,, . (H) most likely. On the
other hand, wher® — 0, the probability that; ..., > 1 for £ = 1,2, also goes td, thus after

round0, the quantization process will finish because an outaget év@mevitable almost surely.
In Fig. 3, we show the distortions of network outage probghbibr minimum rate ofDQ,,,, .,
DQivi and the case with no feedback (where both transmitters wél full power, i.e.p, =

po = 1) versusM. For eache, we choose a value oP smaller thanP;, thus interference
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Fig. 4. Distortions of network outage probability for minim rate ofDQ,, ;. and DQ;"; versusP and average feedback
rate.

transmission should be applied. In order to demonstrateDia,, ;. outperformsDQ; ™ even

mr,it
when DQ=°"™ has a higher feedback rate, we choose the number of feedlitackssigned to

mr,it

mr,it

DQ®™ as is By, = 4 {ww Note thatB., = 8 when1 < M < 4 and 12 when

5 < M < 8. The distortions oDQ,, ;; and DQ;"; versus both” and the average feedback

mr,it
rate are also shown in Fig. 4 for different valueseofit can be observed that in interference
transmission, (i) the distortion dDQ,,, ;. decreases almost linearly with increasing in the
log-scale, which corresponds to the upper bound derived infEne@,; (ii) the decreasing speed

of the distortion forDQ,,,, ;. in regard toM or the average feedback rate is much faster than that

mr,i

of DQi: (i) the distortion ofDQ,,, ;; is much smaller than those &XQ;."; and the case with

no feedback, which verifies that feedback is necessary angroposed distributed quantizer

based on conferencing outperforms the conventional diged quantizer.
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VI. CONCLUSIONS ANDFUTURE WORK

We have introduced conferencing-based distributed cHajusmtizers for a two-user interfer-
ence network where interference signals are treated as.nds have shown that the proposed
distributed quantizers can achieve or closely approacloptienal network outage probabilities
of sum rate and minimum rate in time sharing or interferemaasmission with finite average

feedback rates.

So far, we have studied the scenario where only one tranemisgrategy (interference
transmission or time sharing) is used for every channekste note that utilizing different
transmission strategies for different channel statesredllilt in a better performance. The design
and analysis of distributed quantizers for such an adaptisgem is an interesting future research

direction.
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APPENDIX A

PROOFS OFPROPOSITIONS1 AND 2

Proof: The optimal time sharing pair}, t5) that minimizes OUT" also maximize$MRy(t1, t2).
Substitutingt, = 1 — ¢; into MR(¢1, %), the problem that maximizeMIR(t1,t,) becomes
H%)aé}t(glm {tilog, (1 4+ PHy 1), (1 —t1)log, (1 + PHsy)}. The first term is increasing i while
the second term is decreasing inTherefore, the maximum is reached whetvg, (1 + PH, ;) =
(1 —ty)log, (1 4+ PH,»), yielding ¢t} andts given in (1).

The optimal interference transmission péiry, p5) that minimizes OUT" also maximizes

MR (p1, p2). We first showp} = 1 or p5 = 1. Assume by contradiction that< pj, p5 < 1. Let
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g = min{%,%} > 1, then
b1’ P

2

. PBpiHy, ) ( PBpsHa ) }
MR, ", Bp5) = min < lo <1+—’ o Yt g 1
« (Bp?, Bpb) &\ T Py +1) 0\ PR, + 1

=min < log, | 1+ —ijlHl’l T | .logy | 1+ —ijzH2’2 T
Pp2H271 + 3 PleL? -+ 3
. prHl 1 Pp§H2 2
> 1 1+ — 11 1+ —
mm{ 089 ( + Ppiy, + 1) ,log, ( + Pyt +1
= MRit (p){>p§) ) (8)

which contradicts the assumption that, p5) is optimal. Thereforep; = 1 or p5 = 1.

PHy 1 PpaHj 2

Whenp; = 1, the problem that maximizedR; (p1, p») is equivalent tanax min {

0<p2<1

PHy : ; : PpaHo o s ; ; ; PHy _ PpaHs o

wherem is decreasing ip, and 7,1 IS Increasing imp,. Letting Poatha il = PH 211"
\/4P2H1’1H1’2H2’1+4PH1’1H271 +1-1

e . H ~

the positive root ig; = 212;;,21 . Note that0 < p, < 1 holds only when
PH1’1 H2’2 PHl,l H2,2 *x *x __ mi *

Pioadl < P ofi" Thus, whenPHQJJr1 < B DI = 1 andp} = p,. Similarly, whenp; = 1,

\/4P2H1,2H2,1H2,2+4PH2,2H1,2 111
. o ~ H
we derive the positive root oﬁgffl - Pp’f gfj . asp; = S . Note
~ PH,y Hs > PHy Hs o * =
that0 < p; < 1 holds wheng=q > 577 Hence, wheng--q > 572", pi = p1 and
py = 1. |
APPENDIX B

PROOF OFTHEOREM 2

Proof: Let

Hi = {H : t1min + tomin > 1, t1min, Lo,min > 0},
Ho = {H : t1 min + tomin = 1, L1min, Lo,min > 0},

Hs = {H : t1 min + tomin < 1, 1min, to,min > 0} .

DRAFT April 1, 2014

PpaHz 141’ PHy 2+1



19

p P _ P _ p
logy(1+PHi1,1) - logy (1+PHa,2) 10%2(1+PH1,1)10¥;2(1+PH2,2) MRit(tfvtE) )

logs <1+PH1’1>+10g2 (1+PH2’2>

Note thatthin + t2,min -

Then OUT(DQ,, ) and OUT!,, can be rewritten as

ouT (Der,ts) = PrOb{H S Hl? Der,tS <H> < p}

J/

~
=0UT,

+ Prob{H € H,,DQ,, ., (H) < p}

>

=0UT;

+ PrOb{H S H37 Der,ts (H) < p}’

~
=0UT3

OUT:X' . = Prob{H € H;}.

To prove OUT(DQ,, ) = OUT:: ., it is sufficient to prove OUT,, = OUT; and OUT, =
OUT; = 0.

For anyH € H;, timin + tomn > 1 iS equivalent toMR;, (¢1,15) < p, thenl (H € H,) =
1 (H € H1,DQ,,(H) < p). Thus OUT, = E[1 (H € },,DQ,,, . (H) < p)] =E[1(H € H,)] =
OUTY,.

Besides, OUT < Prob{t; min + tamin = 1} = Prob{MRy (¢},%5) = p} = 0, which is from the
fact that the probability of a continuous r.v. assuming ec8evalue is zero. Since OUT> 0,
OUT; = 0.

To prove OUT, = 0, it is sufficient to show for anyl € H3, MR (DQ,,,+ (H)) > p. Let

temin = 00,162 - - - |-

Lemma 1. For any H € H3, ENdmr,ts,k (hk) = ka, tlkb,;;in = [O.bk,lbhg .- 'bk71]2 and tll::l,)r;iin =
thmm 27 When k= 1,2 and [ € N — {0}.

The proof of Lemma 1 is given in Appendix C. Sin€€yin + tomin < 1, there must exist

I € N such thatty i, + tomim < 1 — 277, or equivalently,

0.51715172---b1,[---]2+[0.52,15272---5275---]; 0.11---1| . )

l 2
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All (1 min, t2.min)S Satisfying[(P) can be categorized into the following twpdy:

1) 31 <! < Isuch that(b, y,b,,) = (0,0) and(by;, bay) € {(0,1),(1,0)} fori =1,...,1' —
L
2) (bug,bay) € {(0,1), (1,0)} for any! < i and (blm,bﬂﬂ) — (0,0).

For 1), by Lemma 1, ENE. w1 (hy) = — ENC,

mr,ts,2

(hx) = 0, then the distributed quantization

process will stop at round and

Ibl—l ubl—l Ibl—l ubl—l
) o tl ,min + tl ,min t2 ,min + t2 ,min

2 ’ 2

Der,ts (H

= ([0br1- by 1], (0821 byp41],)
Sincety min < [0.bg1 -+ by 1], MR (DQpy s (H)) > p.

For 2), by Lemma 1, ENEL, | (hy) = ENCL]

mr,ts,2

(hy) = 0, then the distributed quantization

process will stop at round+ 1 and

tl].bnl'lln —"_ tlilbn'fln t|2bri11n _'_ t;bniln
Der ts ( ) = 2 ? 2

= (011 byt o |0baa byl ).

Sincety min < [0.by1 - - -bklflb, MRes (DQpr1s (H)) > p. Therefore, for an € #5, MR (DQ,,,,« (H)) > p
and OUT, = 0. To summarize, OUTDQ,,, ;) = OUT .

Now, let’'s prove the upper bound given [d (5). Let
= {H : the quantization process &Q,, ., will stop after round’} ,

for [ € N. From Lemma 1 and the description B fori > 1,

mr,ts?

Ry = {H: (b1, bsy) = (0,0) 0F (1, 1), (bym bom) € {(0,1),(1,0)},m=1,...,0—1}.
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More specifically,R; = ' {Rl(}q) U Rl(?q)}, where

Ry = {H: % <ty < 2P 1= 252 <ty < 1— 2220 < 1 guin, Fomin < 1

—{H : 1m0 = 2 loin = 1 — 242} (10)
R = {H: 2 <, 22012000 <y 00 <1 — 200 <ty i, o < 1}

- {H Dt min = 2[12—71, Lo min = 1 — Zq;[l

It follows from (1Q) that

2111
Ui?:lRwQ{ (Mool < <L L4 2 <hy, < 1wl

2!
2111 L, u utl 1 _ utl 1
{H 2 _Lgtlmmg2+T7§_—<t2m1n§§_§} .

(11)

Since2(l + 1) bits are fed back in total after rouridthe average feedback rate is given as
R(DQpss) = > 2(1+1)Prob{H € R},
=0

= 2Prob{H € Ry} + 4Prob{H € R} + 2(25 + 2)Prob{H € R;}

=2

=2+ 2Prob{H € R,} +2 I x Prob{H € R}

=2

<2+ 2Prob{H € Ry} +2) Ix Prob{HE Unw}. (12)

1=2 w=l

plog2 1
T plog2

It is trivial to obtain the PDF ot iy @S fi, ... (7) = 8%~ 7 "2 2 >0 for k = 1,2.

SinceR; € {H : 0 < t1,min, tomin < 3 OF 3 < ¢4 min, t2.min < 1}, the upper bound on Prdil € R,}

is derived as
3 3 1 1
ProBH & R} < [ fulon)des [ fuledrat [ i lodos [ f (e
0 0 3 3

1 log2 _ o
S/ ftlymin($1)dxl =e S < Q_Lpg2> (13)
0
where the inequalities arise fro[ff Froo (x2)dzy < 1, [1 fr, (22)day < 1, ande” — 1> x
: L T,
for z > 0.
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When! > 2, from (11), ProdH € | J,,_, R,,} can be bounded by

[oe} ol—1_1 1w l+’u+1
PR 3 ol
PrOb{H E U Rw} S Z ﬁ u+1 ftlvn)in(xl)dxl/; w ft2,n)in(I2)dx2
w=l u=0 27 ol a5t
=1 1 utl 1
[ 379l
+ Z ftl,min(xl)dxl ftQ’min(l'Q)dl’g
iyz 1_ufl
u=0 2750 3ol
1—1_ w1
P s b
:2 Z ftlv"‘in(ajl)dxl ft2,lrlin('r2>d'r2'
1_udd 1,u
u=0 2 2l 2 "ol
p10g271 -
L 1 11 g e T2 plog?
Whenj + 4 < @ < 5+ %50, § < @ < 1 thus fi, , (12) = G5Pe 7 e <

lo,
4plog2 — ef
=== P
P (&

P ¢21052 Then the upper bound on PréH € | J_, R, } is further derived as

°° Splog2 ' [2H Lol e
P 10g 2 2 22 P 2plog 2
PrOb{H e | |Rw} < 2 g /;_u ) ftl’mi“(xl)dxl/bri e P e dz
w=l u=0 27 ol 2750

8plog 2 e 1, a4l

Pog P 2 —plog2 2plog 2

S P Z 1 1 ftl,min (.Il)dﬂjl ) € P e dgj2
2 3

u=0 2 ol +§
_plog2 211 1w
= 8pe?e2og 2 x xlz 22lf (x1)d
pe Og P 2l 1 utl tl,min xl xl
u=0 2 ol
plog2 1 %
o e
= 8pe?82]og 2 x 7 X i Jtr i (21)d2
_plog?2 1
(& P
< 8pe?'e2log 2 x X —. 14
< 8pe 0og 2 5 (14)

Subsituting [(IB),[(14) into{12) and using the fact thaf®, & is finite yield the upper bound
in (8).

APPENDIX C

PROOF OFLEMMA 1

Proof: Based on the procedures BQ,,, ., ti i < tomin < thoga fOr L € N — {0}

It is straightforward to verify Lemma 1 holds whén= 1. By induction, assume Lemma 1
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holds whenl < m wherem > 2. Forl = m + 1H according toDQ,,, s, ENC’n?jjt;k (hy) =
Ib,m ub,m
1 (tk7min 2 tk,min+tk,min), and

2
Ib,m ub,m
W = [0.bgabro - D)y + 27" = [0bg 1l - - D1, -
foym ygubym
If trmin > (0.0 10k - - - by l], = Smsmi it must haveby i = 1 = ENCAL, ().
Thent it = # = [0.br1br2 - brmbrmst]y ANAEIEE = 4120 = g 4 9=m =
tmtl o gmmet,
Ib,m ub,m
I thomin < [0.bpibea - - bpml], = 22 b sinCety iy > ¢ = [0.051k2 D)y, it

must haveb, .1 = 0 = ENC™L, (hy). Then ¢ = 627 = [0.bg1bgs - bpm0], =

mr,ts,k k,min k,min
tlb,m +tub,m

b7 +1 ,min ,min __ . ”37 +1 —m—1
[O-bk,lbkg e bk,mbk,m—i-l]Q and tz,an — k 5 k — [O-bk,lbk,Q e bk,m1]2 — tk,:rﬁn + 2 m .

Therefore, Lemma 1 holds whén=m + 1. In conclusion, Lemma 1 holds for aryc N — {0}.

APPENDIX D

PROOF OFTHEOREM 3

Proof: For a givenM € N — {0}, define a global quantizer which selects the interference

transmission pair that maximiz&8R;. (p;, p2) among the codeboo&,.;; as

Ger,it (H) = arginax MR|t (plap2) )

(p1,p2) €Cuni
whereCynr = {(1,1), (1, 2),(2,1) :m=1,...,M — 1}.
Let OUT (GQ,,.i;) = Prob{MR; (GQ,,.... (H)) < p}. First, let us show that OUTDQ,,,, ;) =
ouT (Ger’it).
According to GQ,,, ;,» an outage event happens if and onlyMR; (p1,p2) < p for any

(p1,p2) € Cunis- In DQ,, i1, @n outage occurs if and only if the following conditions adis-
NCL . ,(ha)PHi 1

‘mr,it,2

fied: (i) receiver 2 sends “0” after roun@ (ii) log, (1 + £ Y wEs} ) < p. () happens

*We assume the quantization procesDiQ,,, ., still continues in roundn + 1. Otherwise, it is not necessary to consider
Lemma 1 when = m + 1.
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ENC), .1 (h1) PHa,2

PHy2+1

becauselog, <1+ ) < p. It means forx € Cy, log, <1+ xlfé?il—i-l) >

and log, (1 + %) > p cannot hold simultaneously, or equivalentMR; (p1, p2)

<
for (1 ) I P rPHy 1 PHs o
,2) € Cunir. Similarly, (i) meanslog, (1 + F7715 ) > p andlog, (1 + 57225 ) >

p
p
p

cannot stand at the same time ferc C,;, which is to sayMR; (p1,p2) < p for (p;,1) €

Cunit- Thus, (i) and (ii) both happen meamdR; (p1,p2) < p for any (p1,p2) € Cunis- i-€.,

1 (MR; (GQpie (H)) < p) = 1 (MR, (DQ,,.; (H)) < p). Hence, we have OUTDQ,, ;) =

OUT (GQ,, ;) since OUT(DQ,, ;) = E[1 (MR, (DQ,, ;. (H)) < p)] and OUT(GQ,,, ;) =
E[1 (MR: (GQu it (H)) < p)].

To prove [®), it is sufficient to show OUGQ,,, ;) < OUT::'. + <L, Define another quantizer

mr, |t

G~er,it that selects the interference transmission pair accorting

~ (ﬁl) 1)7 Hl’l_ 2 2.2 ;
GQuyi (H) = Horts = Mt s (15)

~ Hya Hs 2
1 — < :
( ’p2) ’ H2,1+% H1,2+%’

where

P = max x,Pp= max . (16)
z€Cphr,z<p] z€Cpr,z<p5

The network outage probability of minimum rate achieved @@, is OUT (GQ,,;) =
Prob {Gerlt < p} Slnce Gerlt( ) Z GNer,it (H)’ ouT (Gerit) S ouT (G~er,it)'
Hence, to provel{6), it is sufficient to prove OYEQ,,, ;) — OUTF, < <1,

mr,it

Letp=2"—1, Hyy = anda = .. WhenM = 1, OUT (GQ,,, ;) =

H
Hz ) —
1 1 H 1
’ ’

Prob{MR.(1,1) < p}. Let Cy = Prob{MRat(l, 1) < p}, then OUT(GQm,Jt) < £ WhenM >

H 7

L0<a<i<1 OUTH,

mr,it

and OUT(GQ,,, ;) are rewritten as

OUT . = Prob{H9; > Hyo, p{Hin < p} + Prob{Hs < Hayo, p5Hoo < p},

mr,it

ouT (GNanit) = Prob{Hi2, > Hyi2, p1H121 < p} + Prob{ Hio; < Haia, paHo12 < p},
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then OUT(GQ,,.;;) — OUT,. is derived as

mr,it

ouT (Ger,it) - OUTﬁqprt,it

= Prob{ 21 > Hz2,p{H121 > p,p1H121 < p}
+ Prob{H51 < Ho12,p5H212 > p, PaHo12 < p}
= 2Prob{Hy9; > Haya, piHiz1 > p, P11 < p}

< 2Prob{Hi91 > Haia,piHio1 > p, (p7 — @) Hi1 < p}

p p
= 2Probq His1 > Hoia, --— < pi < + 17
{ 121 = 119212, Hiy = Y4\ Hyy Oé}v (17)

where the first inequality is from; —p1 < o by (@8). LetA = z2- and B = A+ . The PDFs

of Hy, are me(x) = me(x) =e % and wa(x) = fHQ’l(x) = %e_%, x>0, fork,l=1,2.

Then the PDFs off;,; and H,,, are easily obtained afy,,, (2) = fu,,,(z) = P(e;il) - (;jj)z,

4p2 _
Hiol HooHy2+1-1

2PH1 2

x > 0. From [2),p1 is rewritten agp} = . Since0 < py < 1, it follows that

OUT (GQyie) — OUT

mr,it

< 2Pr0b{H121 > H212,A < 1, B > 1,14 < p{} + 2Pr0b{H121 > H212, B < 1,14 < pi( < B}

A HyoHip+1—1
2PH, ,

< 2Probq Hig > Hopo, p < Higg < %714 < \/
—

A HyoHip+1—1

+2Pr0b{H121 > Hyo, Hygy > %714 < \/ < B
—

2PH,

_ 4 by
<2 PrOb{P < Hyg < %,Hm/lel,z + FHIZI < Hyp < HipnHy o + ]1321}

-~

=1

) A B
+2 PrOb{Hml > %, Hip A*H, 5 + FH121 < Hyy < Hy91B*Hy 5 + FHHI} . (18)

7

'

=1y
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The upper bound oii; can be derived as

P p
_ p = e F o+l s,
1> {p_ 121_1—04} /p lezl(‘T) z €ﬁ+1< Ef +1€ )

Sincel —ze v <1—-z+aywhen0<z<1,y>0,ep+1>1, = >1,andl—a >3, L

is further bounded by

ep+1 L +1 e&4+1 Pll-a
cot (1ol ol
ext=+1 ep+1 Pxg
_ 27
<o {pr}agcga, (19)

whereCs; = 2. The last inequality arises froaT*(1+ 2z) < 2¢~2 < 2 for = > 0. Subsequently,
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15 is upper-bounded by

1 [ © g, eB?Hiz+ 5 "
b=t [T dmatn) [T T2y ) ad
0

€ xA2H12+%x
—
\,_/
Hy o IEB2H12+%LE
< - / fro (2 / e e / e 22 dHy ,d Hy oda
IA2H12+%.’E
ZC 6 PZC
= / fH121 ( 2 1 _ZL'B2—|—%> dx
/—g% <pz <1 Sl_%zjg%x
6_ﬁx —Q.CE f A2 a
| oo c (1—e?7) - B2z e P* (1 — ﬁe__w)
=~ le 1(1’) dx + fH1 1( ) dzx
€Jp ’ IA2—|—1 :l?B2—|—1 p ’ ("L'AZ_I_%)("EBZ_‘_%)
€ €
1 [ L(ag) 1 [~ B%x <1—g—§+g—§%x)
< E fH121(x) ‘ ij dr + - ) fH121(x) 1 dzx
P e P (:EA2 + ) <:E32 + —)
€ €
Zv%
2 A? 2 2
1 [ l(gz) 1 [® B:);(l—ﬁ> 1 [ Bx<ﬁ
<z < \PY) gy 4 - de + = (@) —7
> E/; fH121( ) %2 T+ ﬁ fH121( )(.TA2+%) ($BZ+%) 5 sz ( ) Aiw
o 20 1 [ (B% — A?)x
= r)—dx +-— dz 20
5 fH121( ) P ) 5 fH121( )($A2+%) ($B2—|—%) j (20)
~I1, —I2

The upper bound ot ; is derived as

o 2 2 H 2 o *© Hyy H
Iy < / Frt (1) mde = E {i} = —a/ €_Hl’1/ 6_%H71’11dH1,1dH2,1
5 0

P P Hyy + % eP Jo 21T 5
2 [ et 20ee [® e 2log(l+ €P)
€ € O 6
k[T, B [y Al o1
eP 0 H271 + P ’ 1z €

where(C, = 2. The last inequality is from the exponential integﬁf %dy < e Tlog (1 + %)

[9] as well aslog(1 + x) < z for x > 0.
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Substitutingd = 2 B = A + «, and fy,,, (-) into I, yields

I 1/°° e P . €e” P a’x d

= — T

7l [Pt (@] @+ ) @B+ )
=i;i1

xz

+}/°°[ e P N ce” P } 2ap dz
e, LPlex+1)  (ex+1)2] (2A2+ ) (B> +¢)

'

=I222
I, is bounded by

<1

dz + —

2

(22)

——

J _1/00 e~ P o’x 1/°° ce P
W P (e DY (s 1) b G
€

>ex

dx

<1/°°e Pazxd+1/°° € o’x
— x —
ol Pa ), @r R @D

— 2 Ter 2 > 1 T
_a/O de+a/0 (172 ( dx
)|z

1

1 [~ 1 a’log % o o (%)?
<a*+ - dr =2+ —20a® « — a —C
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whereC; = £. The last inequality is because< 3 andlogz < 222 for z > 0.
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The upper bound of,,, is derived as
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3 3
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where Cs = 4. After substituting [(2B) and_(24) intd_(22),» < C;a, whereC; = C; + C.

Combined with[211),[(T9)[120) anE{19), < Csa and OUT(GQ,,, ;) —OUTY . < 2(I,+1,) <

mr,it

Coa when M > 2, whereCg = Cy + C7 andCy = 2 (C5 + Cy). Letting C; = max{Cs, Cy},
OUT (GQpyie) — OUTY:, < €1 for any M € N — {0}.

mr,it
The upper bound on the average feedback ratB@f, ;, is derived as FRDQ,,.;;) < 1+
2 [log, (M +1)] < 2log, (M + 1) + 3, which completes the proof.
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