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Abstract of the Dissertation

Weighted Cross J -Function and Its Application to

African Avian Flu Data

by

Linda Ania Zanontian

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2016

Professor Frederic R. Paik Schoenberg, Chair

It is common to use geostatistical techniques to analyze epidemiological data. However,

we might gain further insight by viewing these types of data as a point pattern due to

the spatial nature of the dataset which would allow us to use the spatial information of

each point and apply point process techniques. Point process techniques are applied to the

avian influenza virus data, and a summary statistic called the weighted cross J -function is

proposed. The ordinary cross J -function is extended to a weighted version by incorporating

weights to account for inhomogeneity because this dataset appears to exhibit non-constant

intensity. Unlike the ordinary cross J -function, the weighted cross J -function takes into

account the varying background rate of the point process by incorporating weights for each

point in the point patterns. The advantage of the weighted cross J -function is that it is used

to measure the interaction between events in two point processes and to detect clustering

or inhibition between them, in order to recognize where spatial interaction appears most

prevalent. We introduce the weighted cross J -function, discuss its properties, demonstrate

it with simulations and show its application to the African Avian Flu dataset.
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CHAPTER 1

Introduction

Infectious diseases, which are caused by pathogenic microorganisms and transferred from

human to human, continue to proliferate and are becoming a serious problem (Jones et al.,

2008). With modern medicine and improved technology the general expectation is that this

would not be an issue, but overuse of antibiotics is creating resistant infectious diseases, or

superbugs, that are projected to be one of the biggest threats to humanity in the coming

decades (Nordmann et al., 2007; Calderone, 2015a). Figure 1.1 illustrates the decrease in

deaths due to infectious diseases since the introduction of antibiotics, such as penicillin, in

the 1940s. Unfortunately, due to overuse, antibiotics which were once able to treat bacterial

infections are now slowly becoming ineffective. According to the Centers for Disease Control

and Prevention (CDC) an estimated 2 million people are annually affected by drug-resistant

bacteria annually, resulting in 23,000 deaths and more than $50 billion in excess health-case

costs and lost productivity (CDC, 2013). The World Health Organization has recognized

that the growth of infection diseases is a serious issue and if we do not respond vigorously as

a global community we risk entering post-antibiotic era which might hinder modern medicine

(Nizet, 2015). Calderone (2015b) describes and illustrates that by the year 2050 officials say

infectious diseases will be the main cause of death, more than cancer, potentially killing 10

million people annually (Figure 1.2).

Understanding and predicting the behavior of infectious diseases is an important first

step to overcome spread of drug-resistant bacteria. Additionally, with the advent of data

accessibility and availability, real-time tracking of infectious diseases is now possible and may

prove to be more efficient and effective in preventatively halting the spread of it (Carneiro

and Mylonakis, 2009). This is especially true for regions where it is not feasible to widely
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Figure 1.1: Crude death rate per 100,000 population annually for infectious diseases in the

United States between 1900 and 1996.

source by: http://www.cdc.gov/mmwr/PDF/wk/mm4829.pdf

vaccinate due to financial or geographical limitations (Oshitani et al., 2008). An intuitive

approach to this problem from a statistical viewpoint is the application of spatial statistical

methods, specifically point process techniques, which can be applied to events that randomly

occur in nature, such as outbreaks of an infectious disease. These techniques allow us to gain

further insight on the characteristics of the event which might be useful for prediction and

forecasting of the event. There has been extensive research done in the application of point

process techniques to wildfires (Xu and Schoenberg, 2011; Nichols et al., 2011; Peng et al.,

2011) and earthquakes (Ogata, 1999, 1988; Gordon et al., 2015; Clements et al., 2012), to

name a few, but more can be achieved in the application to epidemiological data, such as

infectious diseases. Although an intuitive approach, point process techniques have not been

effectively utilized as an approach to stop the spread of infectious diseases, hence we decided

to explore this idea in this dissertation.

For this dissertation, we had the opportunity to work with the highly pathogenic avian

influenza virus (HPAIV), H5N1, which continues to threaten Egypt despite serious efforts

2
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Figure 1.2: Projection of deaths from drug-resistant infections in the year 2050. Infectious

diseases will be the cause of a projected 10 million deaths in humans.

source by: https://www.statista.com/chart/3095/drug-resistant-infections/

3
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of prevention. Egypt has become an epicenter for the virus and it is a country where the

virus is endemic. The avian flu was first reported amongst domestic poultry at commercial

farms and in the backyard flocks in three northern Egyptian governorates in February 2006

(Kandeel et al., 2010). Within one month it was already being detected in twelve other

governorates. Control measures, such as culling, disinfection, vaccination and controlled

poultry movement, have been put into effect however virus outbreaks continues to occur.

Ever since the first avian flu outbreak in Asia in 1996, H5N1 has been a serious health

concern. Even though the avian influenza virus predominantly affects birds, it can also affect

mammals, including humans, and can cause serious illness and mortality. The amount of

human influenza occurrences continues to grow. Between 2003 and 2015, 844 laboratory-

confirmed human cases of infection from 16 countries were reported to the World Health

Organization (WHO) (Njabo et al., 2016). Of those 844 recorded cases, 55% or 449 people

have died. In Egypt, 336 confirmed human influenza cases have been reported and 99 of

human deaths due to the influenza until March 2015 (El Masry et al., 2015; Report, 2015).

As of January 2015, there have been 143 new laboratory-confirmed human cases of H5N1, of

which 42 have died, according to the WHO. Of the 143 cases 136 are from Egypt and only

1 from China, where the avian flu first began. The demographic that is highly affected by

the flu is young people and women (Report, 2015). The ages range from 1 year old to 75

years old with a median of 26 years old. 23% of the affected cases are under the age of 10

(Report, 2015).

Egypt continues to be the most affected country by the avian flu H5N1 outside of Asia.

There are a number of theories that have tried to explain the reason for this. One theory is

it could be that Egypt lies in the middle of major intercontinental avian flyways which link

Africa, Europe and Asia (Tian et al., 2015). Due to its location, Egypt can be viewed as

the hub between these nations and therefore the most likely pathway between the regions.

Additionally, the Nile River can be the reasoning behind the persistence of the avian flu, as

the Nile River Delta is the location where the flu is most concentrated. If we look closer at

the Nile River Detla , three major risk factors that have been identified as the reason for

continued proliferation of the flu according to Abdelwhab and Hafez (2011). One is the high

4



density of domestic waterfowl located at the river delta. The second is high density of rural

human population since it is desirable to be near the water. Lastly, the river delta has an

abundance of water and irrigation networks.

Even though the avian flu mainly affects poultry, humans can get the flu through contact

with infected birds. Since chickens are very much a part of the Egyptian society and agri-

cultural economy, it is understandable how a large number of humans are introduced to the

flu in Egypt. Even though, the infected poultry are mainly believed to be found amongst

backyard flocks, which also are believed to provide the most infection to humans, they can

also be found amongst live bird markets and confined animal feeding operations. These ar-

eas have played a major role in the surge of zoonotic infection, diseases that are transferred

from animals to humans. Egypt produces about 750 million to one billion poultry annually

(El Masry et al., 2015). An estimated 4 to 9.5 million poultry are found in households or

backyards specifically in confined spaces in houses, on rooftops or free range in the backyard

with little or no biosecurity measures (Fasina et al., 2012). According to the World Health

Organization, the avian flu is not highly transferrable from human to human even though a

few cases have been reported (Report, 2015).

The avian flu is a very serious endemic in Egypt and it will most likely require a large,

coordinated effort to eliminate it from a country so densely populated. Therefore it is crucial

for multidisciplinary approaches to study and understand the avian flu and its properties,

where it exists, where it is highly concentrated and how it is transferred. One approach would

be to apply spatial statistical tools, such as point process techniques, to understand the be-

havior of the avian flu. With the collaborative efforts of Egyptian Animal Health Research

Institute/National Laboratory of Quality Control of Poultry Production (AHRI/NLQP) and

the General Organization of Veterinary Services (GOVS), data was collected from four Egyp-

tian governorates: Damietta, El Gharbia, Fayoum and Menofia. Six types of birds, chickens,

ducks, geese, turkeys, pigeons and wild birds, were sampled and tested for avian flu between

the years 2009 and 2012. This dataset is analyzed in Chapter 4 of this dissertation.

Typically epidemiological data is studied by applying geostatistical techniques, as seen

in Nuvolone et al. (2008) and Seng et al. (2005). The data can be organized into counts of

5



observations within predefined gridded cells which would allow the application of standard

grid-based spatial statistical methods. However, we might be able to gain further information

by applying point process techniques as well. The spatial distribution of epidemiological or

disease data can be seen as point processes as it is a random collection of events occurring

in a bounded region of space, where each influenza outbreak is represented by a point on the

surface of Earth. In these types of datasets, spatial and/or temporal information is recorded

of each observation allowing us to use the point process approach.

Point process techniques are applied to the avian influenza virus data, and a summary

statistic called the weighted cross J -function is proposed. The ordinary cross J -function is

extended to a weighted version by incorporating weights to account for inhomogeneity be-

cause this dataset appears to exhibit non-constant intensity. By applying this new summary

statistic to the avian flu dataset we hope to characterize and understand the spatial-temporal

aspect of the events and to pinpoint exact moments of interaction between two groups along

with the type and range of the interaction.

The application of spatial statistics techniques to epidemiological data may help us to

understand the characteristics of the disease which may then allow us to create and imple-

ment a preventive solution. The idea of applying spatial statistics in this particular way

can potentially open new doors of research and help us understand other diseases across the

world in an entirely new way. Currently, the Zika virus has become a very important topic

in current events. The virus has spread quickly since its first large outbreak in humans on

the Pacific island of Yap in 2007 (Kindhauser et al., 2016). It has made its way Africa to

Asia to the Pacific Islands to Central and South Americas. It is now a serious endemic in

Brazil where it has been estimated to have harmed 1.5 million people and has been linked

to pregnancy microcephaly and Guillain-Barrè syndrome. The Zika virus is similar to the

outbreak of the avian flu in Egypt where we can apply point process techniques, specifically

the weighted cross J -function, to understand the nature of the disease, the interactions that

are occurring and in the larger sense suggest some preventive solutions.

The remainder of this dissertation is organized as follows. Chapter 2 provides a survey

of point processes along with the second order properties and nearest neighbor techniques.
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Chapter 3 introduces the aforementioned weighted cross J -function and demonstrates the

performance of the estimation of the weighted cross J -function with simulations. Chapter

4 details the application of the weighted cross J -function to avian influenza virus data, and

then Chapter 5 concludes the dissertation and suggests important topics for future research

in this area.
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CHAPTER 2

Point Processes Properties and Techniques

2.1 Overview of Point Processes and Their Properties

A spatial point process is a random collection of data points or “events” occurring in a region

of two or more dimensional space (Diggle, 2013). For example, if we take an area and mark

all the wildfires that have occurred in that given space for a set interval of time, this map

will consist of a random pattern of points in a two dimensional space, because wildfires are

random occurrences in nature. Hence, there will be a random number of points in the given

area and their locations will be random as well (Baddeley et al., 2007). This example is

illustrated in Figure 2.1. Other examples of spatial data where point process techniques can

be used are trees in forest, earthquakes and lightning strikes.

Mathematically, a point process is defined as a random measure N on a space S ⊆ R×R3

of space-time, taking values in the non-negative integers Z+ or infinity, where Z represents

the observed attribute. The measure N(A) represents the number of points in the subset A

of S. Often the spatial region of interest is rectangular but it can also have an irregular shape

due to geographical constraints, such as city limits, rivers or other geographical features. For

example, if you want to analyze the flu outbreaks in the state of California it might look like

Figure 2.2, where the area of the point process is irregular because it takes the shape of the

state borders.

When using point process techniques, the event’s location and/or time is the variable to be

analyzed (Cressie, 1993). If the point process contains both spatial and temporal information

then it is a spatial-temporal point process. For example, in the case of wildfires, the time

the wildfires occurred can be recorded along with the location of the wildfire occurrences.
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Figure 2.1: An example of a point process in two dimensions, space and time.

Typically the spatial locations are recorded as longitude, latitude and/or depth. When space

and time are both present, we have a point process in a three dimensional space (space x

time). A point process can also have one dimension, where only the time of a sequence of

randomly occurring events is recorded. For example, the random instances of times that

rainfall occurs in the city of Los Angeles in an interval of time can be modeled as a point

process with one dimension (time). The number of times rainfall occurs will be random

along with the times it occurs. Figure 2.3 represents a point process in time such as the

rainfall example.

Most of the time, the observation window W is contained within S but sometimes there

are missing data problems which are referred to as edge effects (Møller and Waagepetersen,

2007). Edge effects occur when an observed point inside the observed window is close to

the border. When a circle of radius r is drawn around each observed point to determine its

nearest neighbors, the circles of the points closest to the boundaries of the window will extend

outside the boundary. The points might have nearest neighbors outside the window which

would not be counted. This problem is illustrated in Figure 2.4. The red point sits near

the boundary of W hence its nearest neighboring points fall outside window W. Therefore,
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Figure 2.2: An example of a point process with an irregular shape.
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Figure 2.3: An example of a point process with one dimension, time.

bias can be introduced due to edge effects. One approach to account for this problem is

the border method where observation points lying within r units from the boundary of W

are not taken into consideration (Baddeley et al., 2006). Additional edge effects correction

methods have been discussed in Baddeley (1999). Edge effects are critical in the analysis of

spatial point processes, especially when using the K -function, further described in Section

2.2.

The intensity, or background rate, can be used to characterize the behavior of the point

process. Lambda (λ), or intensity, is the mean number of events per unit area or the rate

of occurrence of the events. The mean number of points in any set A of N is equal to λ

multiplied by the area of A (Illian et al., 2008).

E (N (A)) = λ · v (A)

where A is any subset of Rd.

The homogeneous Poisson process is the most basic point process because there no in-

teraction exists between the events, meaning the number of points in the space follows a

Poisson distribution and the number of points in each event are independent. The Poisson

distribution is a discrete probability distribution where the probability of a set number of

independent events occurring in a fixed interval of space and/or time with a known average

rate, λ. Homogeneity implies that the intensity, or background rate, is constant. Hence,

this could be used as a baseline to distinguish between events with positive interactions or

events with negative interactions since the Poisson process has complete spatial randomness,

meaning no type of interaction between events (Gelfand et al., 2010). A complete spatial

randomness (CSR) point process refers to a stationary, or spatially homogeneous, Poisson
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Figure 2.4: An example of a point process with the edge effects problem. The red point is

the reference point to find its nearest neighbor points. The open circle with radius r is used

to find the nearest neighbors to the red point.

process. A point process N in Rd is stationary if N and the translated point process Nx have

the same distribution for all points x, meaning

N ≡ Nx

where N = {x1, x2, ...} and Nx = {x1 + x, x2 + x, ...}. (Illian et al., 2008)

The complete spatial randomness (CSR) pattern can be used as a basis to distinguish

between homogeneous patterns with interaction. If the pattern deviates from a CSR pattern

then we conclude that there is an interaction, either attraction or repulsion, between the

events. If there is clustering, the average distance between an event and its nearest neighbor

is smaller than the average distance between an event and its nearest neighbor in a CSR
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pattern. If there is inhibition, the average distance between an event and its nearest neighbor

is larger than the average distance between an event and its nearest neighbor in a CSR pattern

(Schabenberger and Gotway, 2004).

There is also a non-stationary Poisson process, or inhomogeneous point process, where

there is still no interaction between the events but the intensity, or background rate, does

vary and is not constant. For example, in a Poisson cluster process, a set of ‘parent’ events

are generated, then ‘offspring’ events are generated around the parent events, meaning there

is clustering around each ‘parent’ event. This is similar to a Poisson process with a non-

constant intensity hence it would be considered to be an inhomogeneous point process. An

example of a clustered Poisson process is the Neyman-Scott process where the number of

offspring events are independent and identical for each parents. An extension of the Poisson

process for a clustered point pattern, typically used in biological processes such as locations

of bacteria, is the Cox process, also known as the doubly stochastic Poisson process or mixed

Poisson process (Møller and Waagepetersen, 2003b). Here the events are dependent and the

intensity function is a realization of a stochastic process (Schabenberger and Gotway, 2004).

Point processes can have clustering, inhibition (regularity) or independence. Clustering

occurs when there is interaction between the events in the point process and inhibition occurs

when there is repulsion between the events in the point process. It is possible for a point

process to exhibit clustering at some scales and inhibition at others, e.g. Schoenberg and

Bolt (2000). Independence occurs when there is no interaction between the events meaning

that each event occurs in the space with equal probability. In the case of independence, i.e.

where the number of points N(A1) in one area A1 is independent of the number of points

N(A2) in any other area A2, for any two disjoint areas, the process is called a Poisson process.

Therefore N(A) is a Poisson random variable for any measurable region A and the mean is

simply lambda times the area of A. For independent point processes, λ remains constant

meaning the intensity does not vary. For non-stationary point processes the intensity or the

background rate of events varies.

A point process can be unmarked or marked. A marked point process is a random

collection of data points with additional information, or marks, besides location and/or
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time. For example, along with the location of the trees in the forest, information is collected

about the type of trees. Marks can be continuous or discrete (Schabenberger and Gotway,

2004). For example, the height of trees in a forest is continuous whereas the types of trees

in a forest is discrete. A mark can also be binary, meaning there are only two choices in the

category. For example, if the trees in the forest are categorized as either oak or spruce then

these marks would be binary. An unmarked point process contains no additional information

besides location and time.

A multivariate point process is referred to a point process consisting of events of different

types. This can also be referred to as a multitype point pattern (Møller and Waagepetersen,

2003a). The types of trees in a forest is an example of a multivariate or multitype point

process. Hence, the terms multivariate and marked patterns can be used interchangeably

depending on how the pattern is defined. We can look at the types of trees as different

events, for example, if there are two types, oak and spruce, then we have a bivariate point

process. But we can also combine all the trees into one event with two different marks which

indicate the pattern type (Schabenberger and Gotway, 2004).

2.2 Second Order Properties

Second order properties are significant in the analysis of spatial point processes. Much

previous study has focused on methods to summarize and estimate second order properties.

2.2.1 K -Function

The K -function, K (r), is the second order reduced moment function (“Ripley’s K Function”)

(Dixon, 2002). The K -function is used to analyze a single point process with the assumption

of homogeneity and to detect clustering or inhibition. The K -function is the observed count

of all pairs of points (N), within distance r, in the point process.

K (r) =
1

λ
E (N)
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If the K -function from the data is different than the K -function for CSR then there is some

sort of interaction, either clustering or inhibition. If the observed is less than the theoretical

it implies inhibition and if the observed is greater than theoretical it implies clustering.

The K -function is not unique to a point process; two point processes can have the same

K -function (Dixon, 2002).

The K -function takes into account edge effects. When the observed region of study, A, is

part of a larger area of region we typically have edge effects because some of the events might

be close to the border of region A. Since the nearest neighbor is the closest neighboring event

and the nearest neighbors of these near border events might be outside the region of study,

the distance between the pair of events will be unknown. Therefore there might be some

bias when using nearest neighbor techniques. There are three common methods to correct

for edge effects: using barrier areas inside the border of A, regarding a rectangular observed

region A as a torus or sphere where there are no edges, and making adjustments to regard

for the unobserved events by making a guard area outside of the bounded region (Cressie,

1993; Diggle, 2013).

2.2.2 Weighted K -Function

The weighted K -function, or inhomogeneous K -function, is a modified K -function to al-

low for non-constant intensity or background rate to account for inhomogeneity (Baddeley

et al., 2000b). The weighted K -function uses weights to balance the inhomogeneity of the

point process. For example, Veen and Schoenberg (2006) apply the weighted K -function to

Southern California earthquakes.

As defined in Veen and Schoenberg (2006), to assess the model λ0 (x, y), the weighted

K -function can be defined as

Kw (h) =
1

λ∗2A

∑
r

wr
∑
s 6=r

ws1 (|pr − ps| 6 h)

where λ∗ := inf {λ0 (x, y) ; (x, y) ∈ A} is the infimum of the conditional intensity over the

observed region, wr = λ∗/λ0 (pr) where λ0 (pr) is the modeled conditional intensity at point

(pr) and h is the distance. Methods for edge effects correction can also be applied to the
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inhomogeneous K -function (Baddeley et al., 2000b).

2.2.3 Cross K -Function

The K -function takes into account location but no other information about the events, such

as heights or types of trees, which are called marks. However further insight can be gleaned

by marks hence multivariate or marked point processes can account for this extra information

(Schabenberger and Gotway, 2004). For example, knowing the type of trees along with the

recording of the locations might provide insight of whether certain types of trees have a

positive or negative interaction, or they simply co-exist with no interaction.

The cross K -function, Kij(r), involves two or more point processes within the same space.

It is used to analyze how the two events relate to each other, whether there is clustering,

inhibition or independence. A bivariate spatial point process, where there are two events, is

an example of when the cross K -function is utilized.

Kij (r) = λ−1E [Nij]

where Nij is number of type j events with distance r of a randomly chosen type i event.

2.2.4 L-Function

The L-function stabilizes the variance of the K -function. Generally, it is easier to use the

L-function in practice because the variance is approximately constant under CSR, meaning

L (r) = r. Similar to the K -function, if the observed is less than the theoretical it implies

inhibition and if the observed is greater than theoretical it implies clustering.

L (r) =
√
K (r) /π

where K (r) is the K -function and r is the radius of distance. When plotting L̂ (r)−r against

r, the horizontal line at 0 represents complete spatial randomness. Clustering is indicated

by L̂ (r)− r > 0 whereas repulsion or inhibition is indicated by L̂ (r)− r < 0.
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2.3 Nearest Neighbor Techniques

Summary statistics, such as nearest neighbor techniques, have been developed for point pro-

cesses. The underlying idea of nearest neighbor techniques is to look at the distance between

a point and its nearest neighboring point to gather information regarding interactions in the

point process.

2.3.1 F -Function

The F -function, F (r), is the empty space function, is the cumulative distribution function

of the distance from a fixed point to the nearest point of point process X less than or equal

to r. Let X be a stationary point process on Rd where the intensity is λ.

Fj (r) = P
(
X
⋂

B (0, r) 6= ∅
)

where B (0, r) is the closed ball of radius r ≥ 0 centered at the origin 0 (Baddeley et al.,

2000b).

2.3.2 G-Function

The G-function, G (r), is the nearest neighbor distance distribution function, is the cumu-

lative distribution function of the distance from a point in point process X to the nearest

other point of point process X less than or equal to r.

G (r) = P0!
(
X
⋂

B (0, r) 6= ∅
)

where B (0, r) is the closed ball of radius r ≥ 0 and P0! denotes the reduced Palm distribution

at the origin (Baddeley et al., 2000b). If we have a stationary Poisson process with intensity

λ then the reduced Palm distribution P0! is the same as P which means G ≡ F (Van Lieshout

and Baddeley, 1996).
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2.3.3 J -Function

The J -function, J (r), is the relationship between G-function and F -function for all r ≥ 0

such that F (r) < 1. (Van Lieshout and Baddeley, 1996).

J (r) =
1−G (r)

1− F (r)

It is used to measure the interaction between events in a point process and to detect clustering

or inhibition. If J (r) is less than 1 it implies clustering and if it is greater than 1 it implies

inhibition. J (r) will equal exactly 1 for a Poisson process because F (r) ≡ G (r) which

implies complete spatial randomness. For distances, r, greater than the range of spatial

interaction J (r) will be constant. Therefore the J -function can be used to not only quantify

spatial interaction but also the range of the spatial interaction, which will help to provide

better insight for the point process. For example, if we have the locations of random trees

in a forest, by using the J -function we can determine if a positive or negative interaction

exists within the trees and at which radius it occurs. The J -function has been extended to

inhomogeneous point processes (Van Lieshout, 2010), inhomogeneous spatio-temporal point

processes (Cronie and Van Lieshout, 2015) and marked point patterns (Van Lieshout, 2006).

2.3.4 Inhomogeneous J -Function

The inhomogeneous J -Function, or weighted J -Function, is the J -Function for inhomoge-

neous point processes where the background rate or λ is non-constant. The inhomogeneous

J -Function is the relationship between the inhomogeneous, or weighted, G-Function and the

inhomogeneous F -Function.

Jinhom (r) =
1−Ginhom(r)

1− Jinhom(r)

where Ginhom(r) is the inhomogeneous G-function, Finhom(r) is the inhomogeneous F -function

and r ≥ 0. (Van Lieshout, 2010)
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2.3.5 J -function for marked point processes

Similar to the K -function, the J -function takes into account only the location and/or time

of the point process. However, some point patterns contain additional information, called

marks, which are attached to each point (Stoyan and Stoyan, 1994). For example, the number

of leaves on each tree in a forest is a discrete mark whereas the width of the trunk of the

trees in the forest is a continuous mark. If there are two distinct types of discrete marks, say

blue and red or yes and no, then we can consider this a point process with binomial marks.

Methods used for these types of point processes with discrete marks will be discussed in the

next section. A method has been introduced for point processes with continuous marks in

Van Lieshout (2006).

2.3.6 Cross J -Function

The cross J -function is the J -function for bivariate point patterns (Van Lieshout and Bad-

deley, 1999). A multivariate point pattern is a spatial point pattern where the points belong

to one of two or more specific “types” such as type i or type j. The most common use of

multivariate point patterns is the bivariate point pattern or two-type pattern where there

are two distinct types of points, i and j. The cross J -function can also be used to gather

insight on point processes with discrete binomial marks.

Jij (r) =
1−Gij (r)

1− Fj (r)

for all r ≥ 0 and Fj (r) < 1. Fj (r) is the empty space function for the process Xj of points

of type j within a distance, r.

Fj (r) = P
(
Xj

⋂
B (0, r) 6= ∅

)
where B (0, r) is the closed ball of radius r ≥ 0 centered at the origin 0. Gij (r) is the

cumulative distribution function of the distance from a point of type i, Xi, to a point of type

j, Xj within a distance, r.

Gij (r) = P!(0,i)
(
Xj

⋂
B (0, r) 6= ∅

)
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where B (0, r) is the closed ball of radius r ≥ 0 and P!(0,i) denotes the reduced Palm distri-

bution at the origin.

Therefore, Jij (r) is the probability that there is no Xj within a distance, r, of Xi divided

by the probability that there is no Xj within a distance, r, of a fixed point. If Xi and Xj are

independent, then Fj (r) ≡ Gij (r) and Jij (r) ≡ 1 (Gelfand et al., 2010). When Jij (r) > 1,

Fj (r) < Gij (r), hence there is inhibition between Xi and Xj meaning the presence of a

point of Xi decreases the probability of having point of Xj nearby. When Jij (r) < 1,

Fj (r) > Gij (r), hence there is clustering between Xi and Xj meaning the presence of a

point of Xi decreases the probability of having point of Xj nearby.

The cross J -function does not account for the inhomogeneous point processes, which are

point processes with a non-constant or varying background rate. Therefore, further insight

might be gained by taking inhomogeneity into consideration.
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CHAPTER 3

Weighted Cross J-Function

3.1 Motivation and Definition

The weighted cross J -function, which is an extension of the cross J -function (Van Lieshout

and Baddeley, 1999) to the inhomogeneous case, which can be used to describe the degree

of interaction between two different types of birds whose occurrence rates are not constant,

as it appears to be the case in the data analyzed in this dissertation. The ordinary cross J -

function is the quotient of one minus the nearest neighbor distance distribution function (G-

function), and one minus the empty space function (F -function), and is useful for examining

clustering or inhibition, relative to the overall rates, of two point patterns Ni and Nj and

assumes that the point patterns are spatially homogeneous. To account for inhomogeneity,

we incorporated weights for each point in the point patterns, with each weight corresponding

to the inverse of the estimated intensity at its location. For each bird, the intensity estimates

were obtained by kernel smoothing the occurrences of detected infections within the species,

with a Gaussian kernel and default plug-in bandwidth, using R.

To provide a meaningful measure of clustering between point processes Ni and Nj, we

propose the following formula for the weighted cross J -function:

J̃ij (r) = 1− Gij (r)

Fj (r)

where Gij is the cross G-function, Fj is the F -function, and thus J̃ij is estimated using the

estimated weighted cross G-function and the estimated weighted F -function for all r ≥ 0.

The weighted cross J -function is used to measure the interaction between events in two

point processes and to detect clustering or inhibition between them, in order to recognize
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where spatial interaction appears most prevalent. If J̃ij < 0 then there is clustering between

points of type i and type j within distance r. J̃ij > 0 implies that there is inhibition between

points of type i and type j within distance r. J̃ij will equal 0 when there is independence

between both point processes.

Since we are incorporating weights to account for the inhomogeneity of the data, we

are now taking the sum of all the weights of the points within a distance, r, of a chosen

point instead of taking the proportion of points with a distance, r, of the chosen point, as

with the ordinary cross J -function. This means that F can equal 1 whereas in the ordinary

cross J -function F was defined to be less than 1, hence it is beneficial to change the formula

to not have a problem of division by zero. We demonstrated by simulations that the new

formula does in fact account for this problem and also provides more accurate results for the

moment of interaction between two events. To demonstrate a clustered simulation, process

Ni is simulated from an inhomogeneous Poisson process with a triangular intensity on the

square [0, 1] x [0, 1]. Nj is simulated such that for each point tau of Ni, 5 points were

simulated independently with a uniform spatial distribution on a circle centered at tau with

radius 0.05. We demonstrated the original formula, the ratio of one minus weighted cross

G-function and one minus weighted cross F -function, in Figure 3.1 and the updated formula,

one minus the ratio of weighted cross G-function and one minus weighted cross F -function,

in Figure 3.2. It can be seen that the estimate of the updated formula in Figure 3.2 performs

better and detects the clustering within radius 0.05.
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Figure 3.1: Estimates of the weighted cross J -function, J̃ij, between simulated Ni and sim-

ulated Nj, as a function of distance, r, for various choices of pairs of point patterns Ni and

Nj using the original formula.
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Figure 3.2: Estimates of the weighted cross J -function, J̃ij, between simulated Ni and sim-

ulated Nj, as a function of distance, r, for various choices of pairs of point patterns Ni and

Nj using the updated formula.
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3.2 Estimation

Van Lieshout (2010) uses generating functionals to prove that the inhomogeneous J -function

for temporal point processes is unbiased. Let W ⊂ Rd be a compact set with non-empty

interior and assume point process X is observed in window W. Also assume the intensity, λ,

is known. The generating function for the inhomogeneous F -function is as follows,

Finhom (t) = 1−G
(
1− u0

t

)
for all for all t ≥ 0. Suppose L ⊆ W is a finite point grid. The following shows the estimation

of the inhomogeneous F -function,

1− ̂Finhom (t) =

∑
lk∈L

⋂
WΘt

∏
x∈X

⋂
B(lk,t)

[
1− λ

λ(x)

]
#L

⋂
WΘt

where WΘt is the eroded set {x ∈ W : B (x, t) ⊆ W} and λ = infx∈Wλ (t) > 0. Van Lieshout

(2010) continues to prove that this is unbiased.

Similarly, the generating function for the inhomogeneous G-function is as follows,

Ginhom (t) = 1−G!a (1− uat )

for all for all t ≥ 0. The following shows the estimation of the inhomogeneous G-function,

1− ̂Ginhom (t) =

∑
xk∈X

⋂
WΘt

∏
x∈X\{xk}

⋂
B(xk,t)

[
1− λ

λ(x)

]
#X

⋂
WΘt

where WΘt is the eroded set {x ∈ W : B (x, t) ⊆ W} and λ = infx∈Wλ (t) > 0. Van Lieshout

(2010) continues to prove that this is ratio-unbiased. This implies that Jinhom (r) is ratio-

unbiased as well. Typically in spatial statistics, it is difficult to obtain unbiasedness for

many estimators, which are ratio estimators, so often these estimators are proven to be

ratio-unbiased by showing the numerator and denominator are both unbiased. For example,

the following would be considered to be ratio-unbiased, θ̂ = Y/Z where θ = EY/EZ (Møller

and Waagepetersen, 2003b).

Cronie and Van Lieshout (2015) have shown for the inhomogeneous J -function for spatial-

temporal point processes, where they choose to define Jinhom (r, t) as the quotient of one
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minus Ginhom (r, t) and one minus Finhom (r, t) is ratio-unbiased. In Cronie and Van Lieshout

(2014), a new summary statistic, J ijinhom (r), for marked point processes is proposed, where

it is defined as the ratio of 1 − Dij
inhom, the nearest neighbor function, and 1 − F j

inhom,

the empty space function. Cronie and Van Lieshout (2014) prove that J ijinhom (r) is ratio-

unbiased. Unlike Cronie and Van Lieshout (2014), we have chosen to update our weighted

cross J -function formula for bivariate point process, which could behave similar to marked

point processes with discrete marks, to achieve more meaningful results when accounting for

inhomogeneity. A similar approach can be taken to prove that the weighted cross J -function

for spatial point processes is also ratio-unbiased. The mean and variance of J̃ij (r) will be

addressed in future work. We would like to note that much of the work here was performed

independently of (Cronie and Van Lieshout, 2014) and (Cronie and Van Lieshout, 2015).

3.3 Simulations

We used simulations to demonstrate the successful estimation of the weighted cross J -

function. To demonstrate a clustered simulation, process Ni is simulated from an inho-

mogeneous Poisson process with a triangular intensity on the square [0, 1] x [0, 1]. Nj is

simulated such that for each point tau of Ni, 10 points were simulated independently with

a uniform spatial distribution on a circle centered at tau with radius 0.05. As expected the

estimate of weighted cross J -function is less than 0 and shows that most of the clustering

occurs within radius of 0.05, as shown in Figure 3.3. However, in comparison, the estimate

of the unweighted cross J -function detects clustering as well but does not clearly indicate

that the clustering is within radius of 0.05 (Figure 3.4). Please note that the formula for

the unweighted cross J -function was adjusted for ease of comparison with the weighted cross

J -function, so Jij < 0 represents clustering.

For the simulation demonstrating inhibition between events, process Ni is simulated from

an inhomogeneous Poisson process with a triangular intensity on the square [0, 1] x [0, 1].

Ni and Nj are simulated by first generating independent Poisson processes with triangular

intensity, and then deleting each point ofNj independently with probability 80% if it is within
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Figure 3.3: Estimates of the weighted cross J -function, J̃ij, between simulated Ni and sim-

ulated Nj, as a function of radius r, for various choices of pairs of point patterns Ni and Nj.

Clustering between simulated Ni and simulated Nj.

a radius of 0.05 of any point of Ni. The estimate of the weighted cross J -function produces

positive results which confirms inhibition within radius of 0.05 (Figure 3.5). However, the

results of the estimate of the unweighted cross J -function does not clearly exhibit inhibition,

as shown in Figure 3.6.
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Figure 3.4: Estimates of the unweighted cross J -function, Jij, between simulated Ni and

simulated Nj, as a function of radius r, for various choices of pairs of point patterns Ni and

Nj. Clustering between simulated Ni and simulated Nj.
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Figure 3.5: Estimates of the weighted cross J -function, J̃ij, between simulated Ni and sim-

ulated Nj, as a function of radius r, for various choices of pairs of point patterns Ni and Nj.

Inhibition between simulated Ni and simulated Nj.
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Figure 3.6: Estimates of the unweighted cross J -function, Jij, between simulated Ni and

simulated Nj, as a function of radius r, for various choices of pairs of point patterns Ni and

Nj. Inhibition between simulated Ni and simulated Nj.
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For the simulation demonstrating independence between events, process Ni and Nj are

each simulated from an inhomogeneous Poisson process with a triangular intensity on the

square [0, 1] x [0, 1]. Hence the plots should show independence. We expect J̃ij (r) to equal 0.

The plots for unweighted cross J -function shown in Figure 3.7 and weighted cross J -function

shown in Figure 3.8 should look the same because there is no interaction between the two

groups. Therefore the weights should not matter. The plots show J̃ij (r) to approximately

equal 0, the discrepancies can be due to noise or edge effects.

Figure 3.7: Estimates of the unweighted cross J -function, Jij, between simulated Ni and

simulated Nj, as a function of radius r, for various choices of pairs of point patterns Ni and

Nj. Independence between simulated Ni and simulated Nj.
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Figure 3.8: Estimates of the weighted cross J -function, J̃ij, between simulated Ni and sim-

ulated Nj, as a function of radius r, for various choices of pairs of point patterns Ni and Nj.

Independence between simulated Ni and simulated Nj.
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Additionally, we have provided simulations of different scales and sizes to demonstrate

the successful estimation of the weighted cross J -function, as seen in Figures 3.9 through

3.12. In Figure 3.9, process Ni contains 1000 points for all the plots whereas process Nj

varies between 2000 points, which means 2 points of process Nj are placed near each point

of process Ni within radius r, and 10000 points, which means 10 points of process Nj are

placed near each point of process Ni within radius r, where the radius varies between 0.03

and 0.10. In Figure 3.10, process Ni consists of 2000 points for all the plots whereas process

Nj varies between 2000 points, which means 2 points of process Nj are placed near each

point of process Ni within radius r, and 5000 points, which means 5 points of process Nj are

placed near each point of process Ni within radius r, where the radius varies between 0.05

and 0.10. Figure 3.11 shows the estimate of the weighted cross J -function where process Ni

contains 3000 points and process Nj contains either 2000 points, which means 2 points of

process Nj are placed near each point of process Ni within radius 0.08, or 3000 points, which

means 3 points of process Nj are placed near each point of process Ni within radius 0.08.

Figure 3.12 shows the estimate of the weighted cross J -function where process Ni contains

5000 points and 5 points of process Nj are placed near each point of process Ni within radius

0.05.

These simulations demonstrate how the estimate of the weighted cross J -function behaves

under different scenarios. The sharpness of the dip of the estimate of the weighted cross J -

function seems to be connected with the level of clustering, i.e. the number of points of

process Nj around each point of process Ni. When there is more intense clustering, meaning

the number of points of process Nj increases around each point of process Ni, the dip is

generally sharper as seen in the following plots (1) Ni = 1000, Nj = 5000 and r = 0.03,

(2) Ni = 2000, Nj = 5000 and r = 0.05, (3) Ni = 3000, Nj = 3000 and r = 0.08, and (4)

Ni = 5000, Nj = 25000 and r = 0.05. Similarly, as the radius of interaction decreases, the

dip of the estimate becomes sharper, as seen in Figure 3.9 for Nj = 2000 and Nj = 5000

at r = 0.03. When the clustering is less intense, e.g. only 2 points of process Nj around

each point of process Ni, then the dip is much less pronounced and sometimes not even

noticeable. However, estimating the exact number of Nj per Ni from the weighted cross
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J -function seems difficult because of the signal to noise ratio.

Figure 3.9: Estimates of the weighted cross J -function, Jij, between simulated Ni and sim-

ulated Nj, as a function of radius r, for various choices of pairs of point patterns Ni and Nj.

Clustering between simulated Ni and simulated Nj with 1000 points of Ni and n points of

Nj placed near each Ni within radius r.
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Figure 3.10: Estimates of the weighted cross J -function, Jij, between simulated Ni and

simulated Nj, as a function of radius r, for various choices of pairs of point patterns Ni and

Nj. Clustering between simulated Ni and simulated Nj with 2000 points of Ni and n points

of Nj placed near each Ni within radius r.
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Figure 3.11: Estimates of the weighted cross J -function, Jij, between simulated Ni and

simulated Nj, as a function of radius r, for various choices of pairs of point patterns Ni and

Nj. Clustering between simulated Ni and simulated Nj with 3000 points of Ni and n points

of Nj placed near each Ni within radius 0.08.
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Figure 3.12: Estimates of the weighted cross J -function, Jij, between simulated Ni and

simulated Nj, as a function of radius r, for various choices of pairs of point patterns Ni and

Nj. Clustering between simulated Ni and simulated Nj with 5000 points of Ni and 5 points

of Nj placed near each Ni within radius 0.05.
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CHAPTER 4

Application of Weighted Cross J-Function

4.1 Introduction

The main focus of this dissertation was inspired from a collaboration with Dr. Kevin Njabo,

UCLA Institute of the Environment and Sustainability Center for Tropical Research Africa

Director and Assistant Adjunct Professor, to address why the Avian Flu disease is still

present in Egypt, by statistically analyzing and modeling how it is spreading, which might

suggest a preventive solution to it spreading further. We use spatial statistics techniques to

analyze a dataset collected by Dr. Njabo which contains information regarding infected and

not infected animals in Egypt villages. Often these types of data are analyzed using gridded,

geostatistical techniques but perhaps additional information can be gleaned from a point

process approach which does not require the analyst to count totals over grids but instead

use detailed spatial information on each observation. We are able to view this dataset as

a point process since it contains both location and time of events in a space. Hence we

can apply techniques, such as nearest neighbor methods which show interactions between

infected and non-infected animals, and spatial time plots to show how the events change over

time. Through applying point process techniques we developed a new method, weighted cross

J -function, which applies weights to the cross J -function to help us pinpoint exact moments

of interaction between two groups besides the type and range of interaction.

The application of spatial statistics techniques to these types of data may help us to

understand the characteristics of the disease which may then allow us to come up with a

preventive solution. The idea of applying spatial statistics in this particular way to epi-

demiological data can potentially open new doors of research and help us understand other
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diseases across the world in a new way.

4.2 African Avian Flu Data

With the collaborative efforts of Egyptian Animal Health Research Institute/National Lab-

oratory of Quality Control of Poultry Production (AHRI/NLQP) and the General Organi-

zation of Veterinary Services (GOVS), the data were collected from four Egyptian gover-

norates: Damietta, El Gharbia, Fayoum and Menofia. Six types of birds, chickens, ducks,

geese, turkeys, pigeons and wild birds, were sampled and tested for the highly pathogenic

avian influenza virus (HPAIV), H5N1, between the years 2009 and 2012. The observation

window of the data is between longitudes 30.4333 and 31.8739 and latitudes 28.3333 and

31.5250. Figure 4.1 shows the map of Egypt with points representing the villages which were

tested for the avian flu. In the dataset, if a bird was tested and found to be non-infected

with the disease a 0 was recorded. If a bird is found to be infected, a 1 was recorded. If

multiple birds in the same village were found to be infected then a number pertaining to the

amount of infected birds was recorded. For example, if 3 infected birds were found then a 3

was recorded. Table 4.1 shows the counts of each infected and non-infected bird type. The

highest counts of infection were found in chickens and ducks. Out of all the pigeons and wild

birds that were tested, only 1 pigeon was tested with infection and no wild birds were found

with infection. The villages that were studied were not chosen at random, but were chosen

based on the researchers’ path of travel. Nearby villages might share the same coordinates

in the data. The coordinates of the tested birds were recorded based on which village they

were tested in.

Chickens Ducks Geese Turkeys Pigeons Wild Birds

Infected 365 317 48 21 1 0

Non-infected 194 238 511 538 558 559

Table 4.1: The counts of infected and non-infected of each of the six bird types in the dataset.

Table 4.2 displays the counts of the infected birds by year. It appears that the highest
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numbers of infected chickens were found in 2010 and 2011, 140 recordings and 162 recordings

respectively, whereas the number drops to less than half in 2012. As for infected ducks, the

lowest recorded amount was 17 recordings in 2009 and the count grew very quickly to 110

recordings in 2010 and it continued at 95 recordings for 2011 and 2012. The counts of

infected geese tend to be low, 5 recordings in 2009 with an increase to 21 recordings 2010,

then 13 recordings in 2011 and 9 recordings in 2012. The counts of infected turkeys stay

stable at 49 recordings from 2009 and 2011 and then drops drastically to 3 recordings. There

was only 1 recording of an infected pigeon during the entire research period, in year 2010,

and no infected wild birds were recorded.

Chickens Ducks Geese Turkeys Pigeon Wild Birds

2009 14 17 5 49 0 0

2010 140 110 21 49 1 0

2011 162 95 13 49 0 0

2012 49 95 9 3 0 0

Table 4.2: The counts of infected birds by year.

Tables 4.3 and 4.4 show the counts of each infected and non-infected bird type subsetted

by each of the four governorates in Egypt. Overall, the largest amount of birds were sampled

is in the governorate of Menofia, which is in the center of the tested governorates near El

Gharbia, whereas the least amount were sampled in the governorate of Damietta, which is

the northern most tested governorate. In general, the most infection was found in Menofia

and the least in Damietta. Specifically, most of the chickens were tested in Menofia where

154 were recorded to be infected. There were 86 and 81 recordings of infected chickens in El

Gharbia and Fayoum, respectively and the lowest recording of 44 infected chickens was in

Damietta. Similarly, most of the ducks were tested in Menofia where 169 infected ducks were

recorded. Approximately 55 infected ducks were recorded in El Gharbia and Fayoum and 38

infected ducks were recorded in Damietta. The most recorded infected geese were found in

Fayoum and Menofia whereas less than 5 geese were recorded with infection in Damietta and

El Gharbia. Interestingly, the most infection amongst turkeys was recorded in Damietta,
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where 10 infected turkeys were tested. There were less than 5 infected turkeys found in each

of the other three governorates that were tested.

Chickens Ducks Geese

Governorate Infected Non-Infected Infected Non-Infected Infected Non-Infected

Damietta 44 14 38 17 3 55

El Gharbia 86 24 54 56 4 106

Fayoum 81 15 56 40 20 76

Menofia 154 141 169 125 21 274

Table 4.3: The counts of infected and non-infected of chickens, ducks and geese by gover-

norate.

Turkeys Pigeons Wild Birds

Governorate Infected Non-Infected Infected Non-Infected Infected Non-Infected

Damietta 10 48 0 58 0 58

El Gharbia 2 108 0 110 0 110

Fayoum 4 92 1 95 0 96

Menofia 5 290 0 295 0 295

Table 4.4: The counts of infected and non-infected of turkeys, pigeons and wild birds by

governorate.

Figure 4.1 shows the map of Egypt with the capital, Cairo, and the Nile River. The

green villages represent all the villages that were tested for birds infected with the avian flu.

The four governorates have also been marked on the map to highlight the regions where the

data were collected.
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Figure 4.1: Map of Egypt. The green points represent the villages that were tested for Highly

Pathogenic Avian Influenza Virus (HPAIV), H5N1, during the years 2009-2012. Also, the 4

governorates, Damietta, El Gharbia, Fayoum and Menofia, are labeled.
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Infected and non-infected birds were plotted within the observed area across four years

(2009-2012) to visualize the infection, as shown in Figures 4.2 and 4.3. Based on our results,

most of the infection was found in chickens and the least amount of infection was found in

wild birds. Within the infected birds, multiple cases of infection were found in chickens and

ducks in the southern villages, which might suggest the disease was more dominant in those

areas.
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Figure 4.2: Maps of infected and non-infected animals (chickens, ducks, geese) years

2009-2012. The green points represent the locations where infected birds were found. The

red points represent the locations where more than one infected bird was found, and the

blue points represent the locations where no infected birds were found.
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Figure 4.3: Maps of infected and non-infected animals (turkeys, pigeons, wild birds) years

2009-2012. The green points represent the locations where infected birds were found. The

red points represent the locations where more than one infected bird was found, and the

blue points represent the locations where no infected birds were found.
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We can see the amount of infection amongst each group of birds in Figures 4.4 and 4.5

which only show where the infection amongst the birds is present. Each map represents one

bird type. Again, it can be seen that multiple cases of infection amongst birds, specifically

chickens and ducks, are present in the southern villages on the map. Very little infection

was recorded in pigeons and wild birds.
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Figure 4.4: Maps of only infected animals (chickens, ducks, geese) years 2009-2012. The green

points represent the locations where infected birds were found. The red points represent the

locations where multiple infected birds were found.
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Figure 4.5: Maps of only infected animals (turkey, pigeon, wild birds) years 2009-2012.

The green points represent the locations where infected birds were found. The red points

represent the locations where multiple infected birds were found.
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To view the change in disease over time, we plotted all the infected birds by year, as

shown in Figures 4.6 and 4.7. Each map represents one type of bird. Our results show

that the disease was more present in the years 2010 and 2011. Also, the disease was more

apparent in the southern villages in 2009 and slowly migrates to the northern villages over

the following years. These maps help us to understand how the disease spread to different

regions over time.
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Figure 4.6: Maps of infected birds over time. Avian flu (H5N1) was more present in the

years 2010 and 2011, and was more apparent in the southern villages in 2009 and appears

to migrate to the northern villages in 2010 and 2011.
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Figure 4.7: Maps of infected birds over time. Avian flu (H5N1) was more present in the

years 2010 and 2011, and was more apparent in the southern villages in 2009 and appears

to migrate to the northern villages in 2010 and 2011.
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4.3 Application to African Avian Flu Data

As described earlier, a new summary statistic, the weighted cross J -function, was proposed

while analyzing this dataset because the point patterns appeared to exhibit non-constant

intensity rates. We extended the cross J -function to point patterns where the intensity is

not constant, by incorporating weights for each point in the point pattern, with each weight

corresponding to the inverse of the estimated intensity at its location, which resulted in

more sensible and interpretable results in the case of inhomogeneous point processes. The

weighted cross J -function was applied to each pair of birds in the dataset to inspect for

spatial interactions.

Figures 4.8 through 4.13 display the weighted cross J-function estimates of each pair of

birds, shown by the solid line, along with the upper and lower 95% bounds, shown by the

dotted lines, of 100 simulations of the same intensity and observed in the same window as

the data. As the radius, r, increases, the bounds seem to become narrower. When the radius,

r, is small there is more interaction and when radius, r, increases less interaction occurs as

expected.

Our results detected clustering, that is, a positive interaction between infected chickens,

365 recorded, and infected ducks, 317 recorded, within radius of 10.5 km, after inhomo-

geneity in both the chickens and ducks has been accounted for; there is a lack of apparent

interaction at larger distances as seen in Figure 4.8. The results also suggest clustering

present between all the other infected pairs of birds. There seems to be the most positive

interactions between the following pairs, infected chickens, 365 recorded, and infected geese,

48 recorded, (Figure 4.9), infected ducks, 317 recorded, and infected turkeys, 21 recorded,

(Figure 4.12), happening within radius of 21 km, especially around radius of 10.5 km, and it

levels off after 42 km. When comparing infected chickens, 365 recorded, to infected turkeys,

21 recorded, in Figure 4.11, we see the most positive interaction occurring within radius of

31.5 km, especially up to radius of 21 km, and levels off after 42 km, whereas with infected

geese, 48 recorded, and infected turkeys, 21 recorded (Figure 4.13) the most positive inter-

action also occurs within radius of 31.5 km, especially around 10.5 km to 21 km, but levels
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off at a longer distance of 50 km. Similar to infected chickens and infected geese, infected

ducks, 317 recorded, and infected geese, 48 recorded, (Figure 4.10) have the most interaction

within radius of 21 km, with most of the interaction occurring at 10.5 km and it levels off

after 31.5 km. The clustering seems to be mostly due to the inhomogeneity, so although the

locations are correlated, the weighted cross J -function is not statistically significant.
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Figure 4.8: Estimates of the weighted cross J -function, J̃ij (r), between Ni, infected chickens,

and Nj, infected ducks, as a function of radius r, shown by solid line. Upper and lower 95%

bounds of 100 simulations with the same intensity are shown by dotted lines.
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Figure 4.9: Estimates of the weighted cross J -function, J̃ij (r), between Ni, infected chickens,

and Nj, infected geese, as a function of radius r, shown by solid line. Upper and lower 95%

bounds of 100 simulations with the same intensity are shown by dotted lines.

51



-1
20

-1
00

-8
0

-6
0

-4
0

-2
0

0

Ducks vs. Geese

r (km)

J~ I
J(
r)

0 10.5 21 31.5 42 52.5

Figure 4.10: Estimates of the weighted cross J -function, J̃ij (r), between Ni, infected ducks,

and Nj, infected geese, as a function of radius r, shown by solid line. Upper and lower 95%

bounds of 100 simulations with the same intensity are shown by dotted lines.
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Figure 4.11: Estimates of the weighted cross J -function, J̃ij (r), between Ni, infected chick-

ens, and Nj, infected turkeys, as a function of radius r, shown by solid line. Upper and lower

95% bounds of 100 simulations with the same intensity are shown by dotted lines.
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Figure 4.12: Estimates of the weighted cross J -function, J̃ij (r)), between Ni, infected ducks,

and Nj, infected turkeys, as a function of radius r, shown by solid line. Upper and lower

95% bounds of 100 simulations with the same intensity are shown by dotted lines.
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Figure 4.13: Estimates of the weighted cross J -function, J̃ij (r), between Ni, infected geese,

and Nj, infected turkeys, as a function of radius r, shown by solid line. Upper and lower

95% bounds of 100 simulations with the same intensity are shown by dotted lines.
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We wanted to explore the weighted cross J -function a bit further so we decided to look

at the specific regions, or governorates, in the dataset. Since the governorate of Menofia had

the most amount of data points collected we decided to start there. Figures 4.14 through

4.17 present the estimates of the weighted cross J -function for each set of birds, shown by

the solid line, along with the upper and lower 95% bounds, shown by the dotted line, for

100 simulations of the same intensity and observed in the same window as the data. There

were 154 recorded infected chickens and 169 infected ducks in Menofia. When looking at the

interaction of infected chickens and infected ducks, (Figure 4.14), we saw that the estimate

of the weighted cross J -function was similar to that of infected chickens and infected ducks of

the whole recorded area in the dataset, where little positive interaction was occurring within

radius 10.5 km. However the bounds tend to be much wider. Similar to the infected chickens

and infected ducks, the infected ducks, 169 recorded, and infected geese, 21 recorded, had an

estimate of the weighted cross J -function that was similar to that of the whole area, where

most of the positive interaction or clustering occurred within radius of 21 km and leveled

off afterwards (Figure 4.16). However the bounds tend to be much wider than that of the

whole area. The estimate of the weighted cross J -function was slightly different for the

infected chickens, 154 recorded, and infected geese, 21 recorded, of Menofia (Figure 4.15).

Here we see clustering or positive interaction between infected chickens and infected geese

within radius of 63 km, mainly before radius of 42km, whereas for the whole area we saw

most of the activity within radius 21 km. As for the infected geese, 21 recorded, and infected

turkeys, 5 recorded, of Menofia (Figure 4.17), we see clustering or positive interaction within

radius of approximately 55 km similar to that of the whole area.
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Figure 4.14: Estimates of the weighted cross J -function, J̃ij (r), between Ni, infected chick-

ens, and Nj, infected ducks, as a function of radius r, in the governorate of Menofia shown

by solid line. Upper and lower 95% bounds of 100 simulations with the same intensity are

shown by dotted lines.
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Figure 4.15: Estimates of the weighted cross J -function, J̃ij (r), between Ni, infected chick-

ens, and Nj, infected geese, as a function of radius r, in the governorate of Menofia shown

by solid line. Upper and lower 95% bounds of 100 simulations with the same intensity are

shown by dotted lines.
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Figure 4.16: Estimates of the weighted cross J -function, J̃ij (r), between Ni, infected ducks,

and Nj, infected geese, as a function of radius r, in the governorate of Menofia shown by solid

line. Upper and lower 95% bounds of 100 simulations with the same intensity are shown by

dotted lines.
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Figure 4.17: Estimates of the weighted cross J -function, J̃ij (r), between Ni, infected geese,

and Nj, infected turkeys, as a function of radius r, in the governorate of Menofia shown

by solid line. Upper and lower 95% bounds of 100 simulations with the same intensity are

shown by dotted lines.
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Also, we explored the weighted cross J -function for the governorate, El Gharbia. Figures

4.18 through 4.20 present the estimates of the weighted cross J -function for each set of birds,

shown by the solid line, along with the upper and lower 95% bounds, shown by the dotted

line, for 100 simulations of the same intensity and observed in the same window as the data.

Here we have interesting results, there seems to be inhibition amongst all three pairs of birds.

This could be due to small amount of data points, the inhomogeneity of the data, or some

bias due to edge effects. The estimates of the weighted cross J -function show inhibition or

negative interaction between infected chickens, 86 recorded, and infected ducks, 54 recorded,

with the most interaction occurring at small radii (Figure 4.18). Similarly, the interaction

between infected chickens, 86 recorded, and infected geese, only 4 recorded, is also a negative

interaction which the most inhibition occurring at small radii (Figure 4.19). Again, this could

be due to the small amount of recordings. As for infected ducks, 54 recorded, and infected

geese, 4 recorded, in the governorate of El Gharbia, there is inhibition amongst the pair of

birds especially within radius of 10.5 km (Figure 4.20). Inferences made on presence only

data like this really have to be taken very cautiously because of missing data. With a more

complete dataset, the weighted cross J-function can successfully detect the type, range and

moment of interactions between two point processes.
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Figure 4.18: Estimates of the weighted cross J -function, J̃ij (r), between Ni, infected chick-

ens, and Nj, infected ducks, as a function of radius r, in the governorate of El Gharbia shown

by solid line. Upper and lower 95% bounds of 100 simulations with the same intensity are

shown by dotted lines.
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Figure 4.19: Estimates of the weighted cross J -function, J̃ij (r), between Ni, infected chick-

ens, and Nj, infected geese, as a function of radius r, in the governorate of El Gharbia shown

by solid line. Upper and lower 95% bounds of 100 simulations with the same intensity are

shown by dotted lines.
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Figure 4.20: Estimates of the weighted cross J -function, J̃ij (r), between Ni, infected ducks,

and Nj, infected geese, as a function of radius r, in the governorate of El Gharbia shown

by solid line. Upper and lower 95% bounds of 100 simulations with the same intensity are

shown by dotted lines.
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CHAPTER 5

Discussion

Point process techniques can play an important role in understanding the spread of infectious

diseases, such as the highly pathogenic avian influenza virus. By analyzing the information

stored in each individual data point, we can gain further information on the characteristics of

the disease outbreaks allowing us to come one step closer to finding ways to halt the spread

of the disease.

In this dissertation, point process techniques are applied to the avian influenza virus data,

and a summary statistic called the weighted cross J -function is proposed, which is used to

indicate the type and range of interaction between two point processes and additionally to

indicate the moment of interaction between two events. The advantage of the weighted cross

J -function is that it accounts for inhomogeneity in point processes. To adjust for the varying

intensity or non-constant background rate we incorporated weights and we demonstrated the

effectiveness of the weighted cross J -function with simulations.

In the application of the weighted cross J -function, after accounting for the inhomogene-

ity in the data, we found that clustering, or positive interaction, amongst all pairs of birds.

However, the clustering seems to be mostly due to the inhomogeneity, so although the loca-

tions are correlated, the weighted cross J-function is not statistically significant. Inferences

made on presence only data like this really have to be taken very cautiously because of

missing data. With a more complete dataset, the weighted cross J-function can successfully

detect the type, range and moment of interactions between two point processes.

An important direction for future work is the investigation of the statistical properties,

such as variance, of the weighted cross J -function. Veen and Schoenberg (2006) investigated

the statistical properties of the weighted J -function, noting that the estimator essentially
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counts pairs of events and thus can be well approximated by a binomial distribution, and it

seems that a similar approximation can be made for the weighted cross J-function. Standard

errors can be computed for the estimate. Additionally, the weighted cross J -function could

be extended spatial-temporal point process, containing both space and time information.

Also, the summary statistic proposed in this dissertation can extend to other datasets to

detect interactions between two events such as oil spills and beached whales, the stock market

and current events, or disease outbreaks and hospital malpractices or accidents.

The weighted cross J-function can be used to understand the behaviors and characteristics

of an infectious disease, such as the highly infectious Zika virus, which will allow us to

explore preventive solutions for halting the spread of the disease. In general, this research

is a beneficial contribution to epidemiological research and opens new doors for research of

infectious diseases.
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