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Abstract

Zylberberg et al. (2012) found that confidence decisions, but not perceptual decisions, are 

insensitive to evidence against a selected perceptual choice. We present a signal detection 

theoretic model to formalize this insight, which gave rise to a counter-intuitive empirical 

prediction: that depending on the observer's perceptual choice, increasing task performance can be 

associated with decreasing metacognitive sensitivity (i.e., the trial-by-trial correspondence 

between confidence and accuracy). The model also provides an explanation as to why 

metacognitive sensitivity tends to be less than optimal in actual subjects. These predictions were 

robustly confirmed in a psychophysics experiment. In a second experiment we found that in at 

least some subjects, the effects were replicated even under performance feedback designed to 

encourage optimal behavior. However, some subjects did show improvement under feedback, 

suggesting the tendency to ignore evidence against a selected perceptual choice may be a heuristic 

adopted by the perceptual decision-making system, rather than reflecting inherent biological 

limitations. We present a Bayesian modeling framework which explains why this heuristic 

strategy may be advantageous in real-world contexts.

Introduction

Human subjects are capable of conscious introspection upon their own perceptual processes, 

an ability sometimes referred to as metacognition (Charles, Van Opstal, Marti, & Dehaene, 

2013; Fleming, Dolan, & Frith, 2012; Goldberg, Harel, & Malach, 2006). In sensory 

psychophysics experiments, this ability is reflected in the fact that subjects’ confidence 

ratings correlate meaningfully with the likelihood of accurate decisions (Fleming, Huijgen, 

& Dolan, 2012; Fleming, Weil, Nagy, Dolan, & Rees, 2010). In traditional psychophysics 
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models (Green & Swets, 1966; King & Dehaene, 2014; Macmillan & Creelman, 2004), 

subjects are assumed to rate their confidence based on the same internal sensory evidence 

underlying perceptual decisions; this theoretical view is adopted in recent animal studies 

(Kepecs, Uchida, Zariwala, & Mainen, 2008), and supported by the finding that there are 

single neurons whose firing rate reflects both confidence and perceptual decision (Kiani & 

Shadlen, 2009).

Thus, an optimal strategy for both making a perceptual decision and rating confidence in 

that decision ought to weigh evidence in favor of the chosen alternative (“response-

congruent” evidence) and evidence against the chosen alternative (i.e., in favor of the 

unchosen alternative; “response-incongruent” evidence) equally. However, at least one 

recent behavioral study (Zylberberg, Barttfeld, & Sigman, 2012) suggests a different view, 

whereby the level of confidence is driven mainly by the response-congruent evidence and is 

largely insensitive to the level of response-incongruent evidence. The perceptual decision 

itself, however, is driven equally by response-congruent and response-incongruent evidence. 

For instance, consider a “left or right” discrimination task, in which the observer is asked to 

decide whether a target is presented in the left or right location (e.g., Figure 1). According to 

this strategy, when subjects decide the target was presented on the left (for example), they 

make the decision based on how much perceptual evidence there is for the target having 

been presented on the left, relative to how much perceptual evidence there is for the target 

having been presented on the right. Their confidence, on the other hand, is mainly driven by 

the strength of evidence in favor of the side they chose (e.g. evidence that the target was on 

the left), but is relatively insensitive to however much evidence exists for the other location 

(e.g. evidence that the target was on the right).

If proven true, this dissociation between evidence used for perceptual decision versus 

confidence judgments may have considerable impact on our understanding of neural coding 

of probabilistic information -- especially because such a strategy may seem suboptimal from 

a Bayesian standpoint, given that the response-incongruent evidence is just as relevant to the 

perceptual decision (Beck et al., 2008; Kepecs & Mainen, 2012; Kepecs et al., 2008; Ma, 

Beck, Latham, & Pouget, 2006; Vickers, 1979). In this paper, we set out to test a simple 

signal detection theoretic (SDT) model of confidence implementing this strategy of relying 

only on response-congruent evidence to rate confidence. We validated the model with one 

psychophysics study, and used a second study to demonstrate that in at least some subjects, 

such apparent suboptimalities are resistant to correction through feedback and instructions. 

We discuss why an observer in the real world might rely on such an apparently suboptimal 

strategy to rate confidence, and provide a Bayesian framework to formalize this intuition.

Methods

Detection Theoretic Model in 2-Dimensional Representation Space

Signal detection theory (SDT) provides a simple model for perceptual decisions in the 

context of ambiguous evidence. In the simplest case, the observer must decide whether a 

viewed stimulus belongs to one of two stimulus classes, S1 or S2. Typical SDT models 

suppose that repeated presentations of S1 and S2 are associated with Gaussian distributions 

of perceptual evidence e along a single internal response dimension that codes the degree of 
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evidence in favor of an “S1” or “S2” response. SDT assumes that the observer sets a 

decision criterion, such that all evidence values above the criterion elicit an “S2” response 

while those below it elicit an “S1” response.

However, to independently manipulate the amount of response-congruent versus response-

incongruent evidence and thereby observe how these quantities contribute to both perceptual 

decisions and confidence judgments, a two-dimensional SDT model is required. This two-

dimensional model is a straightforward generalization of the one-dimensional case (Figure 

2A): two internal response dimensions independently code the magnitude of evidence 

favoring an “S1” response and an “S2” response, respectively. On each trial, therefore, the 

observer sees not one evidence value representing the overall balance of S1 versus S2 

evidence, but a pair of evidence values, which we will call e = (eS1, eS2). As in the one-

dimensional case, we assume repeated presentations to be associated with Gaussian 

distributions, but this time as bivariate distributions of (eS1, eS2) pairs. These distributions 

are depicted as concentric circles in Figure 2A. The optimal strategy is to respond “S1” 

whenever eS1 > eS2, which corresponds to setting a decision criterion in evidence space 

along the line eS1 – eS2 = 0. This strategy is optimal for the stimulus identification task in 

the sense that it maximizes the proportion of the observer's responses that are correct. This 

optimal strategy is consistent with Zylberberg et al.'s (2012) finding that response-congruent 

and response-incongruent evidence contribute equally to perceptual decisions. We will call 

this the “Balance of Evidence” decision rule.

Confidence Judgments

In order to rate confidence (e.g., “high” or “low”), the observer must rely on additional 

criteria or decision rules. The optimal way to rate confidence is to use the same Balance of 

Evidence rule used in the perceptual decision, i.e. the difference in magnitude between eS1 

and eS2. For example, if an observer has chosen “S1” she could use a rule for confidence 

rating such as “Reply high confidence if eS1 – eS2 > 1, otherwise reply low confidence.” 

This strategy corresponds to evaluating confidence along the S1 – S2 axis, parallel to the 

decision criterion (Figure 2B).

The Balance of Evidence strategy is optimal for confidence rating in the sense that it 

maximizes the proportion of high confidence responses for correct trials (i.e. type 2 hit rate) 

for a given proportion of high confidence responses for incorrect trials (i.e. type 2 false 

alarm rate). The tradeoff in the proportion of high confidence responses for correct and 

incorrect responses can be represented with a type 2 ROC curve, which plots type 2 hit rate 

against type 2 false alarm rate. The area under the type 2 ROC curve (AUC) is an index of 

type 2 sensitivity, i.e. the efficacy with which confidence ratings distinguish correct from 

incorrect responses. According to SDT, an observer's performance on the primary task 

places an upper bound on type 2 AUC (Galvin, Podd, Drga, & Whitmore, 2003; Maniscalco 

& Lau, 2012). The SDT measure of type 2 sensitivity, meta-d’, is defined such that if an 

observer's type 2 ROC curve matches the theoretical type 2 ROC curve posited by SDT, 

then meta-d’ = d’ (Maniscalco & Lau, 2012, 2014). Thus, another way of framing the 

optimality of the Balance of Evidence rule for confidence rating is that, if an observer uses 

the Balance of Evidence rule to rate confidence, then meta-d’ = d’ (Figure 4A). (It is worth 
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noting that although SDT thus provides a framework for quantifying the optimality of 

confidence ratings, it may not be immediately transparent to human subjects in a 

pyschophysics task that they should actively attempt to optimize the correspondence 

between confidence ratings and accuracy on individual trials in this way, even though 

subjects generally exhibit metacognitive performance that is well above chance and 

reasonably close to the SDT-optimal level (e.g. Maniscalco & Lau, 2012, 2015). Thus, our 

notion of optimality for confidence ratings is intended to provide an account of the limits of 

metacognitive performance, not necessarily to provide an account of how subjects approach 

the confidence rating task. Even if a subject does not place confidence ratings with the 

explicit intention of achieving optimality in this way, her SDT-optimal level of 

metacognitive performance can still be calculated given her performance on the task, and 

her actual metacognitive performance can still be compared against the SDT-optimal value.)

In contrast, if confidence ratings depend only on response-congruent evidence, then only the 

axis of the chosen distribution matters. That is, if the observer has chosen “S1” then she will 

rate confidence only according to the magnitude of eS1, and ignore the magnitude of eS2. 

She might respond “high confidence” if eS1 > 1, for example. Thus, in SDT terms, the 

confidence criteria are placed perpendicular to the S1 and S2 axes, respectively (Figure 2C). 

We will call this the “Response-Congruent Evidence” decision rule.

To quantitatively assess predictions for the Balance of Evidence and Response-Congruent 

Evidence decision rules, we ran simulations based on this SDT model. We held the mean of 

the S1 distribution constant while varying the mean eS2 value of the S2 distribution, and 

assessed the predicted task performance and metacognitive sensitivity separately for both 

rules. See Supplemental Material for details of model simulation.

Behavioral Experiments

In order to empirically verify the patterns predicted by our model simulations, we conducted 

two behavioral experiments of a spatial two-alternative forced-choice (2AFC) visual 

discrimination task. Participants viewed two stimuli presented on either side of a fixation 

cross, judged which of the stimuli contained a Gabor patch (sinusoidal grating) target, and 

rated their confidence in their decisions on a scale of 1-4 (Figure 1). To match our 

simulations, stimulus strength in one spatial location was held constant (S1 stimulus) while 

stimulus strength in the other spatial location was varied across five possible values (S2 

stimulus). In Experiment 1, we evaluated whether the Balance of Evidence or Response-

Congruent Evidence rules better fit human behavioral response patterns. In Experiment 2, 

we examined whether the pattern of responses can be altered through performance feedback 

and task strategy manipulations (post-decisional wagering rather than confidence 

judgments).

Experiment 1

Participants

Three Columbia University students and two high school students participated in four 

experimental sessions each over four separate days. All participants gave informed consent 

and were paid $10 for approximately one hour of participation per session, and a $5 bonus 
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for completing all four experimental sessions. Procedures for both experiments were 

approved by the Columbia University's Committee for the Protection of Human Subjects.

Data from one Columbia University participant was omitted from data analysis in 

Experiment 1. For this participant, d’ across the five levels of S2 stimulus strength ranged 

between approximately 0.2 and 0.6 in sessions 1 - 3 (near chance), and ranged between 3.4 

and 3.8 in session 4 (near ceiling). Results of the analysis do not substantively change if data 

from the omitted participant is included.

Stimuli and Procedures

Participants were seated in a dimmed room 60 cm away from a computer monitor. Stimuli 

were generated using Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) in MATLAB 

(MathWorks, Natick, MA) and were shown on an iMac monitor (LCD, 24 inches monitor 

size, 1920x 1200 pixel resolution, 60 Hz refresh rate).

Each stimulus was a circle (3° diameter) consisting of randomly generated visual noise. The 

target stimulus contained a randomly oriented sinusoidal grating (2 cycles per degree) 

embedded in the visual noise, while the non-target contained noise only. On every trial, two 

stimuli – a target and a non-target – were presented simultaneously at ±4° to the left and 

right of fixation (Figure 1) for 33 ms on a gray background. After stimulus presentation, 

participants provided a two-alternative forced-choice (2AFC) judgment of whether the left 

or the right stimulus contained a grating. Following stimulus classification, participants rated 

their confidence in the accuracy of their response on a scale of 1 through 4. Participants 

were encouraged to use the entire confidence scale. If the confidence rating was not 

registered within 5 seconds of stimulus offset, the next trial commenced automatically. 

(Such trials were omitted from all analyses.) There was a 1 s interval between the entry of 

confidence rating and the presentation of the next stimulus. Participants were instructed to 

maintain fixation on a small crosshair (.35° wide) displayed in the center of the screen for 

the duration of each trial.

At the start of each experimental session, participants completed 2 practice blocks (28 trials 

each) and 1 calibration block (120 trials). In the calibration block, the detectability of the 

grating in noise was adjusted continuously between trials using the QUEST threshold 

estimation procedure (Watson & Pelli, 1983). Target stimuli were defined as the sum of a 

grating with Michelson contrast Cgrating and a patch of visual noise with Michelson contrast 

Cnoise. The total contrast of the target stimulus, Ctarget = Cgrating + Cnoise, was set to 0.9. The 

non-target stimulus containing only noise was also set to a Michelson contrast of 0.9. The 

QUEST procedure was used to estimate the ratio of the grating contrast to the noise contrast, 

Rgrating = Cgrating / Cnoise, which yielded 70% correct performance in the 2AFC task. Three 

independent threshold estimates of Rgrating were acquired, with 40 randomly ordered trials 

contributing to each, and the median estimate of these, R*grating, was used to create stimuli 

for the main experiment.

Crucially, in the main experiment, the contrast of the grating presented on one side of the 

screen was constant, whereas the contrast of the grating presented on the other side could 

take on one of five possible values. We shall refer to the stimulus sequence containing the 

Maniscalco et al. Page 5

Atten Percept Psychophys. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



constant grating contrast “S1” and the stimulus sequence containing the variable grating 

contrast “S2”. The value of Rgrating for S1 was set to R*grating. The possible values of 

Rgrating for S2 were acquired by multiplying the value of R*grating by weights of 0.5, 0.75, 1, 

1.25, and 1.5.

The main experiment in each experimental session (1000 trials) consisted of 10 blocks of 

100 trials each, with a self-terminated rest period of up to a minute between blocks. S1 and 

S2 stimuli were equally likely and distributed randomly across trials. For S2 stimuli, each of 

the five possible values of Rgrating were equally likely and were distributed randomly across 

S2 presentations. Thus, each participant's data included 2000 S1 trials and 400 S2 trials for 

each of the 5 levels of S2 stimulus strength.

For each participant, the mapping of the constant-contrast S1 stimulus class to the 

configuration (target left, non-target right) or (non-target left, target right) was 

counterbalanced across participants. This mapping was consistent across experimental 

sessions for each participant.

Experiment 2

Participants

Four Columbia University students participated in four experimental sessions each. All 

participants gave informed consent and were paid $10 for approximately one hour of 

participation per session, and a $5 bonus for completing all four experimental sessions. 

Procedures for both experiments were approved by the Columbia University's Committee 

for the Protection of Human Subjects.

Stimuli and Procedures

Experimental design was identical to Experiment 1, with the exceptions noted below. 

Additionally, participant 3 completed 5 experimental sessions rather than the 4 sessions 

completed by other participants.

In order to give metacognitive evaluations of stimulus classifications an objective goal and 

an incentive for accuracy, the confidence rating system of Experiment 1 was replaced by a 

wagering system in Experiment 2. Participants were informed that, after making the 

stimulus classification response, they could wager between 1 and 4 points on the accuracy of 

their response. If the response was correct, then they would win the amount of points they 

wagered, but if the response was incorrect, then they would lose the amount of points they 

wagered. For trials where the stimulus classification and wager were not entered within 5 s 

of stimulus offset, 10 points were lost. Points were added to a running tally. Participants 

were given the goal of maximizing the total number of points won in each experimental 

session. They were instructed that the optimal strategy for maximizing points would involve 

(1) maximizing the number of correct responses, (2) wagering points according to the 

estimated likelihood of the stimulus classification response being correct, and (3) 

appropriately using the entire wagering scale.
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Note that these instructions were technically incorrect, since under the point system used 

here, the optimal strategy for maximizing points would be to place the highest possible 

wager whenever the estimated probability of being correct exceeds chance. Nonetheless, 

participants used all levels of the wagering scale rather than only placing the highest 

possible wagers, suggesting that they did not compute and employ the optimal point 

wagering strategy. Furthermore, participants’ metacognitive performance was improved 

overall relative to Experiment 1 (compare Fig. 4B and Fig. 7), suggesting that participants 

did not ignore the point wagering system and performance feedback, but rather that these 

changes indeed assisted them in elevating their metacognitive performance. Thus, despite 

the technical flaws in implementation, the point wagering and feedback system used here 

seemed to have the intended effect of informing and motivating participants with regards to 

their metacognitive performance.

Participants were provided with performance feedback after every trial and after every 

block. For correct trials, immediately after the entry of the wager, a green “+X” was 

presented at fixation for 1 s, where X was the number of points wagered on that trial. 

Additionally, at the onset of the visual feedback, a high-pitched tone was played for 122 ms. 

For incorrect trials, a red “−X” was presented instead, and the tone was low-pitched. For 

trials in which the participant did not enter the wager within 5 s of stimulus offset, the text 

“TOO SLOW” was presented in red font at fixation for 2 s, and a “−10” was displayed 

underneath to indicate that the participant had lost 10 points due to not entering both 

responses within the time limit.

During the break period occurring after every block of 100 trials, participants saw a 

summary of their wagering performance, including the number of points earned in the 

previous block and the maximum number of points possible with an “optimal” (albeit 

unrealistic) wagering strategy (wagering 4 points for correct choices and 1 point for 

incorrect choices). Observers also saw a measure of wagering efficiency: points earned 

divided by maximum possible points. These metrics were also provided summarizing 

performance in the experiment so far.

Since we expected performance feedback after every trial to affect task performance, we 

also slightly changed the stimulus parameters. In the QUEST thresholding procedure, we set 

the target level of performance to 65% correct, expecting that performance in the main 

experiment would improve due to perceptual learning facilitated by trial feedback. We also 

set the weights used to obtain Rgrating values for the S2 stimulus to values of .7, .85, 1, 1.15, 

and 1.3 rather than the values of .5, .75, 1, 1.25, and 1.5 used in Experiment 1 in order to 

reduce the likelihood of some experimental conditions yielding task performance near 

chance or ceiling.

Estimation of response-conditional meta-d’

For all trials where a subject responds “S1,” we may calculate type 2 false alarm rate 

(proportion of errors endorsed with high confidence) and type 2 hit rate (proportion of 

correct responses endorsed with high confidence) as follows:
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where h is the cutoff value for what levels of confidence rating is considered high 

confidence. Here subjects could indicate four levels of confidence on each trial, so setting h 

= 2, 3, and 4 provides all possible ways of collapsing the 4-point confidence rating scale into 

a binary scale of low and high confidence. Each level of h creates a unique (type 2 FAR, 

type 2 HR) pair, and all three such pairs can be used to estimate a type 2 ROC curve (see 

e.g. Fig. S2).

In the classical SDT model of perceptual task performance, the parameter d’ reflects 

perceptual sensitivity and the parameter c reflects response bias (Macmillan & Creelman, 

2004). Previous work has demonstrated that specification of d’ and c is already sufficient to 

determine the type 2 ROC curves (Galvin et al., 2003; Maniscalco & Lau, 2012). Thus, one 

way of characterizing a subject's empirical type 2 (metacognitive) performance is to 

calculate what value of d’, in conjunction with the subject's empirically observed response 

bias, would have given rise to that subject's empirical type 2 ROC curve according to SDT. 

This value is called meta-d’. We estimated meta-d’ for “S1” responses by using a maximum 

likelihood estimation procedure to find the value of d’, in conjunction with the subject's 

empirical response bias, that would give rise to a theoretically derived type 2 ROC curve for 

“S1” responses most closely resembling the corresponding empirical type 2 ROC curve. 

Meta-d’ for “S2” responses was estimated similarly. Please see Maniscalco & Lau (2014) 

for more in-depth discussion of the estimation procedure for response-conditional meta-d’.

Results

Model Predictions

The Response-Congruent Evidence decision rule can lead to a strong dissociation between 

stimulus discrimination performance and metacognitive performance. Figure 3 depicts the 

graphical intuition for how this might occur. Figure 3A shows a situation in which stimulus 

S2 is relatively weak (i.e., the mean value of eS2 is relatively low), and Figure 3B shows a 

relatively strong S2 stimulus (the mean value of eS2 is relatively high). As the mean value 

for eS2 increases, the value of eS1 needed to incorrectly categorize the stimulus as S1 (i.e., 

to yield eS1 – eS2 > 0) will also increase, meaning that incorrect “S1” responses are 

associated with increasingly higher eS1 values. If the observer judges confidence according 

to the Response-Congruent Evidence rule, these increasingly higher eS1 values for incorrect 

“S1” responses will be associated with increasingly higher confidence. Because the 

distribution of confidence ratings for correct “S1” responses will not change (as the S1 

distribution remains stationary), this means that a rating of “high confidence” in an “S1” 

response will become less diagnostic of whether that response is correct or not. Critically, as 

this metacognitive sensitivity decreases with increasing eS2 mean, task performance 

(measured by the SDT measure d’) actually increases, since d’ is proportional to the 

distance between the S1 and S2 distributions. This dissociation is a surprising and 

counterintuitive prediction, since a positive correlation between task performance and 
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metacognitive sensitivity is a very robust empirical phenomenon and is a direct theoretical 

consequence of SDT (Galvin et al., 2003; Maniscalco & Lau, 2012). Note that the same 

dissociation is not predicted if confidence is judged according to the Balance of Evidence 

rule.

We simulated stimulus discrimination responses and confidence ratings for the Balance of 

Evidence and Response-Congruent Evidence decision rules (see Supplemental Material). 

We used these simulated behavioral responses to estimate SDT measures of perceptual and 

metacognitive performance (d’ and meta-d’; Figure 4A; Maniscalco & Lau, 2012, 2014). 

This analysis showed evidence for a selective decline in metacognitive performance for 

“S1” responses as S2 stimulus strength increased under the Response-Congruent Evidence 

decision rule (Figure 4A). (See Supplemental Material and Figures S1 & S2 for additional 

visualizations of model simulations; all analyses and model variants predicted similar 

trends.) The Balance of Evidence rule did not predict this dissociation.

Behavioral Results

For each participant, trials from each level of S2 stimulus strength were combined across the 

multiple experimental sessions (see Methods) before performing SDT analysis. SDT 

analysis involved calculating 2AFC performance via the SDT measure d’, and evaluating 

metacognitive sensitivity through the measure meta-d’ (Maniscalco & Lau, 2012). Meta-d’ 

measures metacognitive sensitivity such that, if confidence ratings follow their expected 

patterns under SDT, meta-d’ = d’. SDT analysis was conducted separately for each level of 

S2 stimulus strength, yielding 5 values for d’ and meta-d’. For each level of S2 stimulus 

strength we also calculated response-specific meta-d’ separately for trials on which the 

participant responded “S1” or “S2” (Maniscalco & Lau, 2014). See Methods and 

Maniscalco & Lau (2014) for more details on estimation of response-specific meta-d’.

Experiment 1

Figure 4B shows a plot of the average across-subject values of overall and response-specific 

meta-d’ as a function of d’. As predicted by the Response-Congruent Evidence but not the 

Balance of Evidence decision rule, meta-d’ for “S2” responses increased with increasing d’, 

whereas meta-d’ for “S1” responses decreased.

We statistically analyzed this effect with a 5 (S2 stimulus strength) × 2 (response type: “S1” 

or “S2”) repeated measures ANOVA on meta-d’. Since there were an insufficient number of 

degrees of freedom to perform Mauchly's Test of Sphericity, the Greenhouse-Geisser 

correction was used for all statistical tests (Girden, 1992). The ANOVA revealed a 

significant interaction between S2 stimulus strength and response type (Greenhouse-Geisser 

corrected F(2.287, 6.861) = 25.50, p = .001), verifying that the relationship between meta-d’ 

and S2 stimulus strength depends on response type.

We also performed across-session analyses of the individual participant data by computing 

d’ and meta-d’ values for every level of S2 stimulus strength within every experimental 

session. Each participant had 4 experimental sessions, each with 500 S1 trials and 100 S2 

trials for each of the 5 levels of S2 stimulus strength. For participant 4, data from one 
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session were omitted due to abnormally high meta-d’ values (> 5) in two data cells, likely an 

artifact due to low trial counts. We treated data from each experimental session as an 

independent set of observations and performed a 5 (S2 stimulus strength) × 2 (response type: 

“S1” or “S2”) repeated measures ANOVA on meta-d’ separately for each participant.

Qualitatively, all four individual participants exhibited the dissociation whereby meta-d’ for 

“S1” responses decreased even as meta-d’ for “S2” responses increased (Figure 5), 

demonstrating reliance on the Response-Congruent Evidence rule. The Greenhouse-Geisser 

corrected ANOVA analysis of the S2 stimulus strength × response type interaction for 

individual participants yielded results of F(1.417, 4.250) = 10.92, p = .024 for participant 1; 

F(1.751, 5.252) = 14.01, p = .009 for participant 2; F(1.495, 4.486) = 4.25, p = .096 for 

participant 3; and F(1.670, 3.340) = 7.846, p = .056 for participant 4.

Experiment 2

Experiment 1 indicated that participants use the Response-Congruent Evidence rule for 

rating confidence. With Experiment 2, we wanted to encourage participants to use both 

response-congruent and response-incongruent evidence in their confidence judgments. We 

replaced the confidence-rating task with a post-decisional wagering task, and provided 

performance feedback on both the 2AFC and Type 2 choices.

Analysis procedures for Experiment 2 were identical to those used for individual 

participants in Experiment 1. As with Experiment 1, since there were an insufficient number 

of degrees of freedom to perform Mauchly's Test of Sphericity in all ANOVAs performed, 

the Greenhouse-Geisser correction was used for all statistical tests (Girden, 1992).

With the introduction of the wagering system and copious performance feedback, two 

participants were able to update their strategies to reflect using both response-congruent and 

response-incongruent information. Qualitatively, Participants 1 and 4 showed no evidence of 

cross-over effect for the response- conditional meta-d’ curves, whereas Participants 2 and 3 

did seem to exhibit this pattern, although the effect is visually less clear for Participant 3 

(Figure 6). So as before, we performed across-session analyses on the data of individual 

participants. For Participant 4, data from two sessions were omitted due to abnormally high 

meta-d’ values (> 6) in three data cells, likely an artifact due to low trial counts. We treated 

data from each experimental session as an independent set of observations and performed a 

5 (S2 stimulus strength) × 2 (response type: “S1” or “S2”) repeated measures ANOVA on 

meta-d’ separately for each participant. For Participants 1 and 4, the S2 stimulus strength × 

response type interaction was not significant (Greenhouse-Geisser corrected F(1.861, 5.583) 

= 0.969, p = 0.4 for participant 1; F(1, 1) = 0.68, p = 0.6 for participant 4), consistent with 

the interpretation that these two participants had updated their response strategies to rely 

more on a Balance of Evidence kind of rule (Figure 6). (For participant 4, the interaction 

was still not significant when all 4 sessions were included in the analysis; F(1.317, 3.95) = 

0.174, p = 0.8.) However, for Participants 2 and 3, the interaction was still significant 

(Greenhouse-Geisser corrected F(1.425, 4.275) = 15.72, p = .012 for participant 2; F(2.533, 

10.132) = 10.44, p = .002 for participant 3) (Figure 6), suggesting that not all observers are 
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able to update their metacognitive strategies with the provision of performance feedback and 

a more incentivized and “objective” system for evaluating task performance.

Statistical Comparison of Experiments 1 and 2

To facilitate comparison to Experiment 1, we also assessed whether the average relationship 

across all participants in Experiment 2 between d’ and response-specific meta-d’ resembled 

the pattern predicted by the Balance of Evidence decision rule, rather than that predicted by 

the Response-Congruent Evidence decision rule. Averaged across participants, meta-d’ for 

“S1” responses now increased, rather than decreased, with increases in S2 stimulus strength. 

A 5 (S2 stimulus strength) × 2 (response type: “S1” or “S2”) repeated measures ANOVA on 

meta-d’ revealed that the S2 stimulus strength × response type interaction was no longer 

significant at the group level (Greenhouse-Geisser corrected F(1.3, 3.901) = 3.70, p = .13) 

(Figure 7).

Qualitatively, the plots in Figure 4B and Figure 5 suggest that Experiment 1 yielded a cross-

over of the response-specific meta-d’ curves, whereas Figure 6 suggests that task 

manipulations in Experiment 2 partially remediated this effect for some participants but not 

others. Separate statistical analysis of the two experiments is consistent with this 

interpretation: overall, there was a significant S2 stimulus strength × response type 

interaction in Experiment 1 (p = .001) but not in Experiment 2 (p = .13).

In order to directly assess whether these across-experiment differences were themselves 

statistically significant, we used all participants from Experiment 2 and performed a 5 (S2 

stimulus strength) × 2 (response type: “S1” or “S2”) × 2 (experiment) repeated measures 

ANOVA, with experiment as a between-subject factor. Mauchly's Test of Sphericity was not 

significant for S2 stimulus strength or the S2 stimulus strength × response type interaction 

(ps > .6), and so all subsequent tests assume sphericity.

The three-way interaction between S2 stimulus strength, response type, and experiment was 

significant (F(4, 24) = 4.75, p = .006), verifying that the experimental manipulations in 

Experiment 2 had a statistically significant effect upon the cross-over effect for the 

response-specific meta-d’ curves.

We also observed a marginal main effect of experiment on meta-d’ (F(1, 6) = 4.05, p = .09). 

This effect can be observed by noting that in Figures 4B and Figure 7, although a similar 

range of d’ values is covered, meta-d’ is higher (closer to the dashed line indicating meta-d’ 

= d’) for Experiment 2. In fact, whereas meta-d’ is suboptimal with respect to SDT and 

Bayesian expectations in Experiment 1 (i.e. both meta-d’ curves fall below the dashed line), 

averaged meta-d’ achieves SDT expectation in Experiment 2 (i.e. both meta-d’ curves 

overlap the dashed line). Thus, the manipulations of Experiment 2 also had the effect of 

increasing overall metacognitive sensitivity to the level of optimality posited by SDT (meta-

d’ = d’).

Dynamics of the change in decision rule in Experiment 2

One final question concerns how the decision rule used for point wagering in Experiment 2 

evolved over time. If participants gradually learned to update their decision rule over time as 
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a function of performance feedback, then we might expect to see that the S2 stimulus 

strength × response type interaction changes as a function of time. To test this possibility, 

we conducted a 5 (S2 stimulus strength) × 2 (response type: “S1” or “S2”) × 4 (session 

number) repeated measures ANOVA across the 4 participants. If decision rule evolved 

gradually over experimental sessions, then we would expect to see that the S2 stimulus 

strength × response type interaction is significantly modulated by session number. However, 

the Greenhouse-Geisser corrected analysis of the three-way interaction of S2 stimulus 

strength × response type × session number was not significant (F(1.533, 4.598) = 1.21, p = 

0.4). In order to conduct this analysis, we included all 4 sessions from participant 4, even 

though 2 of these sessions had been omitted from prior analyses; the three-way interaction 

was still not significant when omitting participant 4 from the analysis entirely (F(1.696, 

3.392) = 0.81, p = 0.5). Thus, we did not find evidence that the decision rule used for point 

wagering evolved gradually over sessions. However, the low temporal resolution afforded 

by this analysis due to the large number of trials required to estimate meta-d’ for each 

response type at each level of S2 stimulus strength, as well as the low number of participants 

entered into the analysis, limit the interpretability of this null finding.

Participants in Experiment 2 also exhibited superior overall levels of metacognitive 

performance than those in Experiment 1, so the dynamics of overall metacognitive 

performance in Experiment 2 may also be of interest. Thus, we investigated how meta-d’ / 

d’ changed over time. It is necessary to estimate meta-d’ / d’ separately for each level of S2 

stimulus strength, since collapsing across S2 stimulus strength levels would lead a strong 

violation of the assumption of equality of variances in the S1 and S2 stimulus distributions 

(Maniscalco & Lau, 2014). Thus we computed the following analysis separately for each 

level of S2 stimulus strength.

We divided each experimental session into 4 quarters. For the first quarter, we extracted the 

first 125 (out of 500 total) trials where an S1 stimulus was presented, as well as the first 25 

(out of 100 total) trials where an S2 stimulus of a particular stimulus strength was presented, 

and used these to compute meta-d’ / d’. We repeated this procedure for the remaining 3 

quarters of the session. Computed across all 4 sessions, this yielded 16 time-ordered values 

for meta-d’ / d’ for each subject at each level of S2 stimulus strength. To increase robustness 

due to relatively low trial counts for S2 stimuli, we averaged meta-d’ / d’ across levels of S2 

stimulus strength. We then submitted these data to a repeated measures ANOVA to assess 

the effect of time on meta-d’ / d’. However, the Greenhouse-Geisser corrected analysis did 

not reveal a significant effect of time (F(1.530, 4.589) = 1.49, p = 0.3)), and was also not 

significant when restricted to only the 4 quarters occurring within the first experimental 

session (F(1.164, 3.492) = 0.284, p = 0.7). This is because the meta-d’ / d’ ratio was already 

around the SDT-optimal value of 1 in the earliest parts of the first experimental session; 

average meta-d’ / d’ for the 4 quarters of the first session were 1.07, 1.12, 1.06, and 0.92. 

Similar results were observed when omitting participant 4. Thus, we did not find evidence 

that overall metacognitive performance gradually improved over time, even within the first 

experimental session. However, similar caveats about the relatively low temporal resolution 

of this analysis, relatively low trial counts for each meta-d’ / d’ estimate, and low number of 

subjects entered into the ANOVA, limit the interpretability of this null finding.
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Finally, we also investigated how overall meta-d’ / d’ changed across the 4 experimental 

sessions, using a similar methodology as described above. This analysis yielded a similar 

null finding (average meta-d’ / d’ = 0.97, 1.04, 1.16, 0.88; F(1.520, 4.561) = 3.06, p = 0.15).

Bayesian Heuristic Framework

Given the above results, it is natural to ask why a system might rely on such an apparently 

suboptimal strategy as the Response-Congruent Evidence decision rule. But this reliance on 

such a simple heuristic makes sense when we consider that an observer generally must 

engage in perceptual decision-making in a more natural environment -- one in which the 

number of stimulus alternatives may not be apparent and the observer may not even be sure 

there is a stimulus present at all.

It is relatively straightforward to extend the simple two-dimensional SDT model described 

above to a Bayesian decision theoretic formulation (see e.g., King & Dehaene, 2014). 

Notably, with the most basic assumptions (described below), Bayesian and SDT 

formulations produce identical predictions. However, the Bayesian framework allows for 

potential extension beyond the simple simulation and experiments performed here, and so 

we provide a general treatment.

To make the decision about whether a given pair of evidence values e = (eS1, eS2) ought to 

be categorized as “S1” or “S2”, rather than compare the values of eS1 and eS2 directly, the 

Bayesian observer evaluates the posterior probability of each distribution given the 

evidence, i.e.

where Si ~ N(μi, Σ), with μi defined as the evidence value associated with a prototypical 

example of each Si (i.e., the mean value for eSi) along the ith dimension and 0 otherwise. In 

the simple, two-stimulus case used in the current studies, we can define Σ as the 2 × 2 

identity matrix, and p(S1) = p(S2) = 0.5. To extend this to the case of many stimulus 

alternatives, we can assume each stimulus alternative Si may accumulate evidence along n 

orthogonal dimensions, such that e = (eS1, eS2, ..., eSn). Systematic correlations among 

evidence samples in favor of more than one stimulus choice could be accomplished through 

assigning non-zero values to covariances among the stimulus distributions assumed to be 

correlated, and a priori probabilities of the distributions could also be assigned as unequal 

when appropriate. Thus, the perceptual choice is accomplished via determining for each 

stimulus possibility

Unbiased observers will make their choice and respond “Sc” according to
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As discussed above, if observers are optimal they should also rate their confidence 

(p(correct)) according to the same metric used in the perceptual choice, i.e., the probability 

of the chosen source Sc given the data available, i.e.

And, as above, the observer can decide whether p(correct) indicates high or low confidence 

(or on any confidence scale) by using rules such as, “If p(correct) > 0.75, report high 

confidence.” Such a strategy would correspond to the Balance of Evidence decision rule.

However, in a situation in which the observer is deciding among many alternatives, the 

evidence in favor of the unchosen stimuli may be not only weak, but also extremely 

heterogeneous. Under such conditions it may not be reasonable to expect the observer to 

maintain representations of all the unchosen alternatives once a choice has been made. 

Additionally, in the real world the observer must also take into account the possibility that 

there is no stimulus present at all. Therefore, in evaluating confidence in a perceptual 

decision, a reasonable and efficient strategy may be to care only about the evidence in favor 

of the chosen stimulus, and to ignore any evidence in favor of the unchosen alternatives. 

That is, the observer will not evaluate the probability of being correct as the posterior 

probability of the chosen distribution as compared to the unchosen distribution(s), but 

instead as the posterior probability of the chosen distribution with respect to the possibility 

of no stimulus at all.

So we introduce another distribution about which the observer possesses some knowledge: 

the “nothing” or “pure noise” distribution N, such that N ~ N([0,0], Σ) and Σ is the 2 × 2 

identitity matrix as above (although these choices for mean and variance/covariance can of 

course be relaxed at a later time). Since the observer only cares about evidence in favor of 

the chosen distribution, it discards any evidence in favor of unchosen distributions to form a 

new estimate of the evidence, ê, where ê takes the value eSc in the cth dimension (the 

chosen stimulus) and is 0 elsewhere. For example, in the two-alternative case, if the observer 

chooses S1 then ê = (eS1, 0). The observer can now determine confidence by calculating a 

new posterior probability,

This confidence level can then be evaluated according to a similar rule as above, e.g. “If 

p(correct) > 0.75, report high confidence.” This strategy corresponds to the Response-

Congruent Evidence rule. In essence, the observer is evaluating the probability that the 

evidence it sees in favor of its choice actually came from the category it chose, relative to 

there being nothing present at all. In the real world, this strategy makes sense: things that are 

quite detectable are generally also quite discriminable, so the more evidence you have for 
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the stimulus you chose relative to nothing at all, the more confident you ought to be in your 

decision about what it is.

We relied on the SDT framework described in the Methods section for our simulations to 

avoid complicated assumptions about elements in the Bayesian formulation, such as the 

exact form or location of the “nothing at all” distribution N, the a priori probability that the 

stimulus is present or not p(N), and the presence or a priori probability of more than two 

stimulus alternatives Si, etc. Note that by assuming the distributions S1, S2, and N are 

isometric bivariate Gaussian distributions with Σ = the 2 × 2 identity matrix and a flat prior 

across both stimulus distributions, this Bayesian formulation reduces to the simple SDT 

version used for the simulations. However, in providing this framework we demonstrate the 

extensibility of this line of thinking to situations beyond the popular “two equally probable, 

uncorrelated alternatives” paradigm employed in many psychophysics experiments.

Discussion

Here we provide evidence supporting the view that humans’ confidence ratings depend 

almost entirely on response-congruent evidence in favor of the selected choice, despite 

stimulus judgements depending on a balance of evidence both in favor of and against the 

chosen stimulus category (Zylberberg et al., 2012). We formulated and tested a simple SDT 

model, coupled with a Bayesian framework capable of extension to more realistic situations, 

to show that this strategy may be a useful heuristic that is computationally convenient. Our 

model also generated a novel and counterintuitive behavioral prediction -- that we can 

increase the physical strength of a stimulus and yet impair the subject's metacognition 

(Figure 4A) -- which we tested and confirmed in Experiment 1 (Figure 4B).

This result not only replicates previous psychophysical results (Zylberberg et al., 2012), but 

is also compatible with the observation in other studies that confidence and accuracy can be 

dissociated under different experimental conditions (Lau & Passingham, 2006; Rahnev et 

al., 2011; Rahnev, Maniscalco, Luber, Lau, & Lisanby, 2012; Rounis, Maniscalco, 

Rothwell, Passingham, & Lau, 2010; Zylberberg, Roelfsema, & Sigman, 2014), e.g. under 

different levels of noise (Fetsch, Kiani, Newsome, & Shadlen, 2014; Rahnev et al., 2012; 

Zylberberg et al., 2014) or attentional conditions (Rahnev et al., 2011). This work is also 

congruent with previous observations that a change in confidence is often accompanied by a 

change in detection bias (Rahnev et al., 2011); the two are intimately linked (Ko & Lau, 

2012). Thus, if subjects evaluate their confidence in perceptual decisions along the “wrong” 

dimension (of response-congruent evidence -- or “detection” of the chosen stimulus -- even 

when the task is explicitly discrimination), this could also explain why human metacognitive 

performance tends to be worse than ideal (Maniscalco & Lau, 2012, 2015; McCurdy et al., 

2013). Compare with Fig. 4B, in which subjects’ overall meta-d’ significantly 

underperforms the SDT-optimal level of meta-d’ at all levels of task performance, as would 

be expected if subjects obey the Response-Congruent Evidence decision rule (cf Fig. 4A).

To our knowledge, this is the first study to demonstrate an empirical dissociation between 

task performance and metacognitive sensitivity of the form represented in Figure 4B. 

However, it should be noted that this dissociation depends on the unique experimental 
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design used here, in which we parametrically alter the stimulus strength of S2 stimuli across 

trials while always using the same stimulus strength for S1 stimuli in a 2AFC design. We 

chose this unusual experimental design precisely because it provides a powerful way for 

discriminating between the Balance of Evidence and Response-Congruent Evidence 

decision rules. In most typical experiments investigating perceptual metacognition, the S1 

and S2 stimulus in a 2AFC design would always be set to equivalent levels of stimulus 

strength, and such a design would not yield the dissociation discussed here. Thus, the 

dissociation is better thought of as a consequence of the Response-Congruent Evidence rule 

that can be observed in properly contrived experimental scenarios, rather than as a 

phenomenon that can be readily observed across many kinds of experimental designs. What 

may be a commonly occurring phenomenon is not the dissociation as such, but rather the 

Response-Congruent Evidence decision rule for confidence rating that generates it.

A more common signature of the Response-Congruent Evidence decision rule than the 

response-dependent dissociation demonstrated here may be an overall suboptimality in 

metacognitive performance. For instance, the third data point of the overall meta-d’ curve in 

Figure 4B is a case where the S1 and S2 stimuli in the 2AFC task have equal stimulus 

strength (corresponding to a typical psychophysics experimental design) and meta-d’ < d’, 

consistent with previous empirical demonstrations that meta-d’ < d’ in similar 2AFC tasks 

(Maniscalco & Lau, 2012, 2015; McCurdy et al., 2013). However, in general, the finding 

that meta-d’ < d’ in and of itself is not sufficient grounds to infer that participants use the 

Response-Congruent Evidence rule for confidence rating, as other possible mechanisms may 

also explain such a finding. Thus, while usage of the Response-Congruent Evidence rule is a 

candidate explanation for findings that meta-d’ < d’, careful experimental design and 

analysis techniques are generally required to make specific inferences about the mechanisms 

underlying suboptimal metacognition in a given data set.

Previous electrophysiological studies in primates have suggested that the same neurons may 

code for evidence accumulation in a perceptual decision making task and confidence in the 

perceptual decision (Kiani & Shadlen, 2009). Such findings are not necessarily inconsistent 

with the possibility that perceptual decisions are based on a Balance of Evidence rule, 

whereas confidence judgments are based on a Response-Congruent Evidence rule. This is 

because Balance of Evidence and Response-Congruent Evidence quantities, while distinct, 

are correlated. For instance, consider low and high confidence “S2” responses for a subject 

who uses the Balance of Evidence rule for the perceptual task and the Response-Congruent 

Evidence rule for the confidence rating task. By definition, low and high confidence “S2” 

responses will be associated with low and high values of evidence in favor of responding 

“S2,” i.e. the quantity we have termed eS2 in the discussion of our SDT model above. 

Similarly, by definition, eS2 – eS1 > 0 for trials where the subject responded “S2.” If eS2 

and eS1 are uncorrelated, then high confidence “S2” trials will tend to be associated not only 

with higher values of the response-congruent evidence eS2, but also with higher levels of the 

balance of evidence, eS2 – eS1. Similar considerations hold for “S1” responses. Thus, in this 

scenario, a researcher might discover that the balance of evidence eS2 – eS1 differs as a 

function of confidence and conclude that the balance of evidence is used to determine both 

perceptual response and confidence, even though confidence in this example is in fact 

determined by the correlated but distinct quantity of response-congruent evidence, eS2.
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In Experiment 2 we attempted to remedy the demonstrated dissociation between 

performance and metacognitive sensitivity by providing feedback on task and metacognitive 

performance and using a wagering system in lieu of confidence ratings. As a result, two of 

our four observers demonstrated behavior suggesting they were using both response-

congruent and response-incongruent evidence in their confidence ratings, but the other two 

failed to do so (Figure 6). This suggests that the Response-Congruent Evidence decision rule 

may not be compulsory, but rather may be at least partially susceptible to intervention.

It is important to recognize that in this study, the demonstration of a metacognitive 

dissociation and suboptimality in Experiment 1, and the partial remediation of these in 

Experiment 2, are concerned with metacognitive sensitivity rather than metacognitive 

response bias. Metacognitive sensitivity concerns how well confidence ratings discriminate 

between correct and incorrect responses, e.g. as operationalized by area under the type 2 

ROC curve (see Methods and Fig. S2). Metacognitive response bias (including 

“miscalibration” and “overconfidence; Brenner, Koehler, Liberman, & Tversky, 1996; 

Fellner & Krügel, 2012), in contrast, concerns the criteria used for labeling a given level of 

certainty “low” or “high” confidence. Changes in confidence criteria change the location of 

an observer's type 2 false alarm rate and type 2 hit rate on the type 2 ROC curve without 

changing area under the type 2 ROC curve (and thus, without changing meta-d’). Because 

the effects discussed in the present studies concern meta-d’, a measure of metacognitive 

sensitivity, they cannot be explained by recourse to decision criteria for confidence rating, 

but rather pertain to the quality and type of information used to rate confidence. For similar 

reasons, the remediation of suboptimal metacognitive sensitivity suggested in Experiment 2 

is not readily comparable with previous empirical investigations of the effects of feedback 

on remediation of biases in decision making tasks (e.g., Morewedge et al., 2015), which are 

better characterized as pertaining to metacognitive response bias rather than metacognitive 

sensitivity.

Here we demonstrate that a point wagering system with performance feedback can assist 

some subjects in using the optimal Balance of Evidence rule rather than the suboptimal 

Response-Congruent Evidence rule for metacognitive evaluation of task performance. In 

principle, usage of the optimal decision rule for metacognitive judgments should generalize 

to any task requiring a similar binary classification of stimuli, although in practice it remains 

to be seen if learning to use the Balance of Evidence rule in one task would generalize to 

other tasks involving different task demands or sensory modalities. Additionally, the design 

of the present study does not allow us to infer the relative importance of the point wagering 

system and the provision of feedback for remediation of metacognitive performance, 

although it was also not the intention of the present study to tease these factors apart. Future 

studies focusing on ways to improve metacognitive performance should systematically 

investigate the relative importance of performance feedback, point wagering systems with 

various payoff matrices, and other similar factors for improving metacognition.

These results raise the question of why an ideal observer may use such apparently 

suboptimal strategies to generate decision confidence. To address this question, Zylberberg 

and colleagues (2012) fit their data to various models of dynamic perceptual decision-

making which suppose noisy evidence is accumulated over time to a decision threshold. 
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They found that the best-fitting model was a cross between a race model (Gold & Shadlen, 

2007; Vickers, 1970) and a random walk model (Ratcliff & McKoon, 2008), such that 

sensory evidence for each response alternative is continuously accumulated in separate 

accumulators, with some “cross-talk” among them. They surmised that such partial “cross-

talk” might be neurally implemented by slow lateral connections in attractor networks. 

However, if one were to view such low-level mechanisms as even partially “hard-wired” -- 

and therefore unlikely to be susceptible to rapid top-down effects -- it would be difficult to 

explain the results of our Experiment 2. Zylberberg et al. (2012) also speculated that higher-

level metacognitive mechanisms may not have access to sensory-level evidence not related 

to the perceptual choice (i.e., negative evidence). This explanation also seems unlikely, since 

such processing capacity limits would likely be fixed properties of the cognitive system and 

not susceptible to the manipulations we implemented in Experiment 2.

Might a drift diffusion model provide an alternative account of our findings that task 

performance and metacognitive sensitivity can dissociate? The dissociation between d’ and 

meta-d’ for “S1” responses occurs because, as S2 stimulus strength increases, average 

confidence for correct “S1” responses remains constant and yet average confidence for 

incorrect “S1” responses increases (Figs. 3, S1). Intuitively, as S2 stimulus strength 

increases, discrimination of the S2 stimulus becomes easier, and accordingly reaction time 

should decrease. If confidence and reaction time are inversely related, as postulated by the 

accumulator models of Zylberberg et al (2012), then the drift diffusion model might also 

predict that confidence for incorrect “S1” responses increases with S2 stimulus strength, and 

thus account for the dissociation found in the present studies. (See Supplemental Material 

for an expanded discussion and description of diffusion model simulation and results.)

We conducted a drift diffusion model simulation and verified that this model yields 

decreasing reaction time for incorrect “S1” responses with increasing S2 stimulus strength 

(Fig. S4A). However, the empirical data do not support the crucial inverse relationship 

between confidence and reaction time that is required for the diffusion model to account for 

the dissociation. In particular, although average confidence for incorrect “S1” responses 

increased at the two highest levels of S2 stimulus strength in Experiment 1 (Fig. S3A), 

reaction time under these same conditions did not decrease but rather was constant (Fig. 

S4B). The inverse relationship between confidence and reaction time has also been 

questioned in other studies (Pleskac & Busemeyer, 2010; Koizumi, Maniscalco, & Lau, 

2015). Thus, our SDT-based account has the advantage of being able to account for the 

dissociation between task performance and metacognitive sensitivity without having to 

assume an inverse relationship between confidence and reaction time, which appears to be 

an untenable assumption for this data set.

Importantly, a mechanistic model such as that offered by Zylberberg and colleagues (2012) 

does not address the question of why the brain may be wired to adopt such an apparently 

suboptimal way to generate confidence. On the other hand, although our proposed Bayesian 

heuristic framework is simple and not yet implementable with biologically realistic details, it 

provides justification for why such an apparently suboptimal heuristic strategy of confidence 

generation may be beneficial. Simply put, the strategy of rating confidence according only to 

response-congruent evidence makes sense in the broader context of perceptual decision-
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making in the real world, in which we must make decisions between not two but among 

many alternatives: once you decide that a visual stimulus is a cat (and not a dog, or rabbit, or 

monkey, or car, or table, etc.), you may not care how dog-like or table-like it is (or is not), 

but only how much evidence you have in favor of it being a cat. Indeed, in many cases you 

likely have very little information about what the stimulus is not, and it would be resource-

intensive to attempt to maintain estimates of the quality of evidence in favor of all the 

possible unchosen alternatives. In this broader view, basing judgments of certainty in a 

perceptual decision on the strength of evidence in favor of the chosen stimulus category is 

both parsimonious and efficient: the more evidence you have in favor of the choice you 

made over there being nothing present at all, the more likely you are to be correct.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental design for Experiments 1 and 2. Participants performed a simple spatial two-

alternative forced choice (2AFC) task. Two circular patches of visual noise were presented 

to the left and right of fixation. One of the patches contained an embedded sinusoidal 

grating. After stimulus presentation, participants provided a stimulus judgment (which side 

contained the grating?) and a confidence judgment (how confident are you that your 

response was correct?). When the grating was presented on one side of the screen, its 

contrast was constant throughout the experiment (S1 stimulus). When it was presented on 

the other side, it could take on one of five possible contrasts (S2 stimulus). Thus, the design 

manipulated S2 stimulus strength in the same way depicted in Figure 3. Mapping of S1 and 

S2 stimuli to left and right sides of the screen was counterbalanced across participants. In 

Experiment 2, the confidence judgment was replaced by a point-wagering system in which 

participants won or lost the number of wagered points depending on task accuracy. In 

Experiment 2, participants also received performance feedback after every trial and after 

every block.
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Figure 2. 
(A) The two-dimensional signal detection theory model of discrimination tasks. The 

observer decides whether evidence presented on a given trial belonged to some arbitrary 

stimulus class, S1 or S2. The observer's perception can be summarized by a pair of numbers 

(eS1, eS2), representing the evidence in favor of each stimulus category, respectively. These 

pairs of numbers (eS1, eS2) are assumed to follow bivariate Gaussian distributions, depicted 

by concentric circles. The optimal response strategy is to respond “S1” if eS1 – eS2 > 0, and 

“S2” otherwise. The dotted line represents this criterion; the gray shaded region denotes 

regions in which the pair (eS1, eS2) will elicit an “S1” response. (B) Balance of Evidence 

rule for confidence rating. The optimal strategy is to rely on the same quantity used to make 

the decision, i.e. eS1 – eS2, which means confidence criteria will be placed along the S1 – 

S2 axis. Light-, medium-, and dark-shaded regions denote low, medium, and high 

confidence, respectively. (C) Response-Congruent Evidence rule for confidence rating. 

Confidence is rated only along the axis of the chosen response category, such that 

confidence in an “S1” response will be determined solely by the value of eS1 and will 

ignore the value of eS2. As before, light-, medium-, and dark-shaded regions denote low, 

medium, and high confidence, respectively.
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Figure 3. 
Decreasing metacognitive sensitivity with increasing task performance according to the 

Response-Congruent Evidence rule. The strength of the S2 stimulus varies, while the 

strength of the S1 stimulus is held constant. For clarity, we show only one confidence 

criterion, dividing the “S1” response region into “high” (dark gray) and “low” (light gray) 

confidence responses. We also depict more contour lines here than in Figure 2 for the sake 

of illustration. (A) Shows a situation in which the magnitude of the S2 stimulus is relatively 

weak (reflected by the small mean value for eS2 in the S2 distribution relative to the mean 

value for eS1 in the S1 distribution), while (B) shows a relatively strong S2 stimulus. 

Discrimination task performance (indexed here as the Euclidean distance between the means 

of the evidence distributions for S1 and S2, relative to their common standard deviation) is 

higher in panel B than in A. However, metacognitive sensitivity for “S1” responses is 

superior in panel A. To see why, note that the fraction of correct “S1” responses endorsed 

with high confidence (proportion of the S1 distribution above the diagonal colored in dark 

gray) is the same in A and B, but the fraction of incorrect “S1” responses endorsed with 

high confidence (proportion of the S2 distribution above the diagonal colored in dark gray) 

is higher in B than in A. This means that in panel B, confidence rating for “S1” responses is 

less diagnostic of accuracy. Thus, the Response-Congruent Evidence rule predicts a 

dissociation between task performance and metacognitive sensitivity under these conditions.
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Figure 4. 
Model predictions and results of Experiment 1. (A) Our SDT simulation (see Methods and 

Supplemental Material) shows that the Response-Congruent Evidence rule (RCE) predicts a 

dissociation between task performance (d’) and metacognitive efficiency (meta-d’), due to 

metacognitive assessments of confidence for “S1” responses (red) becoming less diagnostic 

of task performance as task performance increases. In contrast, the Balance of Evidence rule 

(BE) predicts that metacognitive sensitivity ought to only increase with increasing task 

performance. (B) Experiment 1 results demonstrate good qualitative match to the simulated 

predictions of the Response-Congruent Evidence rule but not the Balance of Evidence rule. 

Error bars represent within-subject standard errors (Morey, 2008).
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Figure 5. 
Data for individual participants in Experiment 1. By treating individual experimental 

sessions as independent observations, meta-d’ curves were analyzed for each individual 

participant. One experimental session from Participant 4 was omitted due to noisy data. All 

participants displayed patterns consistent with the predictions of the Response-Congruent 

decision rule. Error bars represent within-subject standard errors (Morey, 2008).
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Figure 6. 
Data for individual participants for Experiment 2. Although Participants 1 and 4 updated 

their response strategies to display patterns more similar to those predicted by the Balance of 

Evidence rule, Participants 2 and 3 displayed patterns qualitatively similar to the predictions 

of the Response-Congruent Evidence decision rule. Error bars represent within-subject 

standard errors (Morey, 2008).
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Figure 7. 
Results of Experiment 2 pooled across all participants, regardless of decision strategy. In 

contrast to the results of Experiment 1, the response-conditional meta-d’ curves in the 

Experiment 2 averaged data more closely followed the predicted patterns of the Balance of 

Evidence decision rule, rather than the Response-Congruent Evidence rule. Meta-d’ 

increased for both “S1” and “S2” responses as d’ increased, and both meta-d’ curves closely 

tracked SDT expectation. Error bars represent within-subject standard errors (Morey, 2008).
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