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ABSTRACT OF THE DISSERTATION

Machine Learning Estimation of Nonparametric Econometric Models and Marginal
Effects

by

Justin Dang

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2022

Dr. Aman Ullah, Chairperson

Nowadays, with advanced technology, it is easier to obtain data like never be-

fore. With more available data, comes new information that economists can extract to

uncover relationships between economic variables. By using new state of the art machine

learning algorithms and techniques that can handle data efficiently and can identify trends

and patterns easily, we can help solve economic problems, theoretically and empirically.

The primary goal of this dissertation is to help bridge the gap between machine learning

and econometrics. With powerful machine learning models that exhibit great predictive

ability, it would be useful to further explore machine learning methods and add them to

our econometrics toolbox. In addition, we wish to extend these models to incorporate

problems often faced in econometric models, including partial effects estimation using first

derivatives, evaluating concavity of various economic functions using second derivatives,

and allowing for heteroskedastic and autocorrelated errors in an econometric model. These

issues are clearly often faced in economics, but not so much in machine learning. To incor-

porate machine learning techniques, machine learning estimation of nonparametric models
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and marginal effects are established throughout the dissertation. A derivative estimation

procedure of smoothing weighted difference quotients based on random forest is proposed.

The procedure of smoothing weighted difference quotients based on random forest is then

used to estimate second derivatives. Lastly, a generalized framework for Kernel Regularized

Least Squares that incorporates information in the error covariance when estimating the

regression function is proposed.
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Chapter 1

Introduction

Many machine learning models can approximate any function we wish to estimate.

We focus on machine learning regression techniques that are nonparametric in the sense that

they provide data based specification of unknown nonparametric functions. These nonpara-

metric methods can estimate functions based on what the data says and they do not rely on

a pre-specified functional form of the data. Throughout the chapters, we focus on two main

nonparametric regression methods in the machine learning literature: Kernel Regularized

Least Squares (KRLS) and Local Random Forest (LRF). However, the literature on these

models are mainly focused on the regression (conditional mean) functions, but lack results

on partial derivatives, including marginal effects and concavity of functions, and on issues

related to dependent or heteroskedastic observations, which are of some primary interests

to economists. Estimating the partial marginal effects involves estimating derivatives of

the estimated regression function, which allows economists to better interpret models to

see how a change in a variable will affect the outcome. Allowing for non independent and
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identically distributed observations allow for a more flexible setting often seen in economic

data.

Nowadays, with advanced technology, it is easier to obtain data like never before.

With more available data, comes new information that economists can extract to uncover

relationships between economic variables. By using new state of the art machine learning

algorithms and techniques that can handle data efficiently and can identify trends and pat-

terns easily, we can help solve economic problems, theoretically and empirically. Some of

the techniques used in machine learning are similar to those of econometric ones especially

those that focus on regression analysis where input data is mapped to some outcome vari-

able. With the help of technology, new and more data can be easily stored. With machine

learning methods that can handle data efficiently and can identify trends and patterns eas-

ily, economists can uncover relationships between variables. Since machine learning is a

subfield of computer science, machine learning methods deal with different data and solve

different problems. For example, machine learning data often solve prediction tasks such

as face detection: if we were given data on certain images, can we determine if the image

contains an image of a face? Other examples include predicting what shows Netflix thinks

we like based on what shows we previously watched and predicting products bought on

Amazon based on our search history and similar products we purchased.

On the other hand, although economists also deal with prediction tasks, we are

also interested in ”how“ or ”why“ a variable is important in an economic relationship. As

an example, most people go to school to get a higher education to be able to get a higher

wage. The economic question is how much more will a person make by going to school for
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one more year of schooling? This alludes to the importance of the partial marginal effect

of an independent variable on the dependent variable. In other words, economists care

about derivatives. Derivative estimation in machine learning is very limited and one goal

of this dissertation aims to further expand on estimating derivatives in a machine learning

framework. Various machine learning models are considered “black boxes” and with the

help of derivatives, we can gain a better understanding of the relationships between variables

defined in a model.

Clearly, derivative estimation plays a major role in economics. Derivatives help

provide interpretability of the relationships between an independent variable and a depen-

dent variable. In the classical case of estimating a linear parametric model, to find the

partial effect of a given variable, the derivative of the estimated regression equation is usu-

ally taken. For example, to estimate the marginal propensity to consume (MPC), which is

the proportion of extra income that is spent on consumption, we would estimate a function

of income, savings, and other determinants and the derivative of the estimated consumption

function with respect to income is taken.

However, for certain data based nonparametric or machine learning models, there

may not be an analytical form of the estimated regression equation or the derivative and as a

result, the partial effect may not be estimated. As an example, the random forest estimator,

or any tree based estimator, of the regression function does not have an explicit analytical

form of the derivative nor it is smooth. The random forest estimator produces step-wise

regression functions that are not analytically differentiable, which is a huge hindrance in

determining the partial marginal effect. Chapter 2 proposes a derivative estimator that
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is completely data driven to estimate the first derivative. The estimator uses difference

quotients, based on a variant of random forests, that are smoothed. Incorporating random

forests in estimating derivatives help add more interpretability of forest-based models to

explain the relationships between variables via marginal effects. Asymptotic properties of

the estimator are established, and the performance of the estimator is addressed in both

simulation and in an empirical application of evaluating the partial effects of education and

age on income.

In addition to the first derivative, economists also care about the second derivative,

which help determine the curvature of the estimated function and how the first derivative

changes due to a change in the independent variable. One example of the use of second

derivatives include estimating the concavity of a the earnings function. It is often the case

that earnings increases slower in later years that in earlier years. In this case, the earnings

function would be concave and the first derivative would be positive, while the second

derivative is negative. Other examples include determining if a production function exhibits

diminishing marginal returns and profit maximization, where if the second derivative is

negative, then maximum profit is obtained. Therefore, second derivatives play a major role

in many economic settings. Chapter 3 extends on the methods of Chapter 2 by proposing a

nonparametric second derivative estimator based on random forest and difference quotients.

By estimating derivatives in a random forest framework, more interpretability is added to

forest-based models where concavity of estimated random forest-based regression functions

can be determined via second derivative estimation. Asymptotic properties are discussed in

detail. The second derivative estimator is shown to outperform other methods in simulation
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and an empirical exercise is done by evaluating the concavity of a power plant production

function.

In other times, various machine learning models make assumptions about the er-

ror term, and that they are independent and identically distributed. In various economic

data, including time series, the errors are autocorrelated, clearly breaking this assumption.

The questions we try to answer in Chapter 4 are can we allow for the errors to be auto-

correlated or heteroskedastic? If we allow for errors in this fashion, can we somehow use

the information in the error covariance to enhance the regression estimates. Chapter 4

proposes a two-step estimator of a nonparametric regression function via KRLS with para-

metric error covariance. The naive KRLS, not considering any information in the error

covariance, is improved by incorporating a parametric error covariance, allowing for both

heteroskedasticity and autocorrelation, in estimating the regression function. A two step

procedure is used, where in the first step, the parametric error covariance is estimated from

the residuals obtained by a naive regression and in the second step, a KRLS model based on

transformed variables from the error covariance is estimated. Theoretical results including

bias, variance, and asymptotics are derived. Simulation results show that the proposed

estimator outperforms the naive KRLS in both heteroskedastic errors and autocorrelated

errors cases. Two empirical examples are illustrated with estimating an airline cost function

with heteroskedastic errors and with estimating a money demand equation with autocorre-

lated errors. The derivatives are evaluated, and the average partial effects of the inputs are

determined in these applications.
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The primary goal of this disseratation is to help bridge the gap between machine

learning and econometrics. With powerful machine learning models that exhibit great pre-

dictive ability, it would be useful to further explore machine learning methods and add them

to our econometrics toolbox. In addition, we wish to extend these models to incorporate

problems often faced in econometric models. In Chapter 2, we propose a derivative estima-

tion procedure of smoothing weighted difference quotients based on random forest. Chap-

ter 3 extends the procedure of smoothing weighted difference quotients based on random

forest to estimate second derivatives. Lastly, Chapter 4 provides a generalized framework

for KRLS that incorporates information in the error covariance when estimating the re-

gression function. Chapter 5 concludes the dissertation with possible extensions for future

research.
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Chapter 2

Smoothed Nonparametric

Derivative Estimation using

Random Forest Based Weighted

Difference Quotients

2.1 Introduction

Derivative estimation plays a major role in economics. Derivatives help provide

interpretability of the relationships between an independent variable and a dependent vari-

able, for example, changing X by one unit, how much will be the change on Y , holding

all else fixed? This is known as the partial marginal effect (first derivative) of X on Y .

An economic example of the need of derivatives include estimating the marginal propensity
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to consume (MPC), the proportion of extra income that is spent on consumption. In this

case, consumption, as a function of income, savings, and other determinants, is estimated.

To determine the MPC, the partial derivative of this estimated equation is taken. Another

economic example is estimating the effect of schooling or experience on earnings. In labor

economics, the relationship between education, experience, and earnings is widely studied.

It is often the case that people with more education and experience have higher earnings

than those with less education and experience. To quantify how much more a person would

earn with more education or experience, the derivative of an earnings regression is estimated

to determine the returns to schooling or experience. Clearly, estimating derivatives is vital

in understanding and solving economic problems.

After estimating a linear parametric model, to find the partial effect of a given

variable, the derivative of the estimated regression equation is usually taken.1 However,

for certain data based nonparametric or machine learning models, there may not be an

analytical form of the estimated regression equation and as a result, the partial effect may

not be estimated. As an example, the derivative of the machine learning based random

forest estimator of the regression function does not have an explicit analytical form nor it is

smooth. Forest based regression models produce step-wise regression functions that are not

analytically differentiable, which is a huge hindrance in determining the partial marginal

effect. Machine learning models are very flexible and can estimate any function well; how-

ever, some of these models are considered to be “black boxes.” To alleviate this issue, we

1In the classical case of Ordinary Least Squares, the derivative of the estimated linear regression function
is a constant. However, a constant marginal effect may be too restrictive and the derivative may vary across
the space of X. To deal with this, instead of specifying a parametric form of the regression function, resulting
in a parametric form of the derivative, both the regression function and the derivative are estimated in a
data driven way using nonparametric methods in this chapter.
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estimate derivatives of a foreset based model, which allows for a better understanding of

the underlying relationship between the data and can be more interpretable in terms of how

a change in a variable will change the outcome variable.

In econometrics, the partial marginal effect can be estimated by taking the deriva-

tive of the estimated regression function. However, such a marginal effect estimation ob-

tained from the linear or non-linear parametric regression model is well known to be biased

and inconsistent unless it is from a correctly specified model, which is rare. When the model

is from a data based nonparametric kernel regression, the estimates of derivatives are ob-

tained by the local polynomial regression method in [15], which may not be very smooth.

Also, see the estimation of derivatives from spline regression from [32] and [47] . Recently,

in the data based machine learning regression area, some interest in estimating derivatives

has emerged. For example, [17] estimates derivatives by introducing a machine learning

model using logistic function, called boosted smooth transition regression trees (BooST).

However, if a logistic specification is not correct then the proposed estimator of derivatives

may become statistically inconsistent.

Some other methods have also developed, in which data based difference quotients

(DQ) have been utilized to estimate derivatives, where the derivative is determined by

taking the ratio of differences between two data points. For example, [43] uses symmetric

DQ to run a locally weighted linear regression where the estimate of the derivative is just

the intercept term under an equispaced design, where data points are equally spaced along

the support of the independent variable. Also, see [4] and [28] papers for the estimation

of derivatives using DQ method under the equispaced design. [30] and [31] then apply this

9



DQ method under the random design, where the regressor X is no longer restricted to be

equally spaced apart. Such a procedure is denoted as DQSmooth. The results based on

DQSmooth produce noisy estimates of the derivative, and local polynomial regression is then

used to smooth the derivatives in attempt to reduce the variance. However, the derivative

estimation procedure proposed by [30] has some shortcomings. First, their estimator uses

observed data on the dependent variable Y, whereas we propose to consider estimated values

of Y, in order to further reduce the variance of the derivative estimator, based on a variant of

the machine learning estimator, like random forest. Second, their method only considers the

scalar X variable whereas we extend the estimator and its derivatives to include multivariate

X, which is commonly used in econometrics.

Random forests procedure [5] is a popular method for estimating nonparametric

regression estimation for predictions. However, a drawback of random forests is that they

are unable to capture any smoothness in the estimated regression surface. This is most

likely why derivative estimation based on random forests is limited, which is due to the

nonsmooth-like nature of the estimator. In an effort to address the issue of the inability to

fit smooth signals, [18] uses random forests as an adaptive kernel method, where random

forests are incorporated in a local polynomial regression framework with a ridge penalty,

denoted as Local Linear Forests. Since [18] considers a local linear regression, the derivative

can be estimated by the coefficient of the first order derivative of the local linear regression.

However, [18] does not focus on estimating the derivative in their paper and instead only

estimates the regression function. Instead of using local linear regression, any degree poly-

nomial may be desired, especially if higher order derivatives need to be estimated. This

10



procedure will be denoted as Local Random Forests (LRF).2 However, we show in simu-

lation that the derivative obtained by LRF are not only very noisy but they also tend to

zero, and thus, LRF is a poor estimator of the derivative.

Under above scenarios, in this chapter, we propose to estimate derivatives using a

procedure, denoted as DQSmoothLRF, where difference quotients are first obtained using

predictions from LRF. Then, they are smoothed through a local polynomial kernel regres-

sion. The proposed derivative estimator contributes to both the nonparametric derivative

estimation literature and random forest literature by providing more interpretability of

forest based models to explain the relationships between variables via marginal effects esti-

mation. It is shown that the proposed derivative estimator improves substantially relative

to LRF considered by [18].

The rest of the chapter is as follows: Section 2.2 goes through the procedure for

estimating the first derivative and its properties, Section 2.3 extends the estimator to the

multivariate case, Section 2.4 briefly discusses the LRF estimator, Section 2.5 displays the

simulation results in comparison to the benchmark estimators, Section 2.6 walks through

an emprical example of evaluating the partial effects of education and age on income, and

Section 2.7 concludes the chapter.

2.2 First Order Derivative Estimation

Consider the bivariate data (X1, Y1), . . . , (Xn, Yn), which are independently and

identically distributed sampled from a population (X,Y ), where X ∈ R and Y ∈ R. Under

2Local Random Forest is simply an extension to Local Linear Forests [18], where instead of local linear
regression, local polynomial regression of any degree can be used.
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the random design, X is a random variable generated from some unkown density f and

distribution F . Consider the model

Yi = m(Xi) + ei, i = 1, . . . , n, (2.1)

where m(X) = E[Y |X = x] is the conditional mean function. Assume that E[e|X =

x] = 0 and Var[e|X = x] = σ2
e < ∞. Now, consider a special case of X where X is

standard uniformly distributed. That is, let X = U ∼ U(0, 1), where U(0, 1) is the uniform

distribution between 0 and 1. Now, let U ∼ U(0, 1) and consider the same model but in the

special case where X ∼ U(0, 1)

Yi = r(Ui) + ei, i = 1, . . . , n, (2.2)

where r(u) = E[Y |U = u], E[e|U = u] = 0, and Var(e|U = u) = σ2
e <∞. Assume that the

bivariate data (U, Y ) is ordered with respect to U .

2.2.1 Weighted Difference Quotients

Using the weighted combination of symmetric difference quotients around the ith

point from [28], the noisy derivative estimator proposed by [30] under a random design is

Ŷ
(1)
i =

k∑
j=1

ωi,j

(
Yi+j − Yi−j
Ui+j − Ui−j

)
, (2.3)

for k+1 ≤ i ≤ n−k and hence k ≤ (n−1)/2, where ωi,j sum to one for j = 1, . . . , k and Ŷ
(1)
i

is an estimator of the first derivative. The term noisy is used to differentiate this derivative

estimator and the smoothed derivative estimator later in this section. By minimizing the

variance of Eq. (2.3), [30] shows that the optimal weights are

ωi,j =
(Ui+j − Ui−j)2∑k
l=1(Ui+l − Ui−l)2

, j = 1, . . . , k, (2.4)
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where the weights sum to one across j = 1, . . . , k. This estimator is only for the interior

points, so Eq. (2.3) as well as the weights need to be modified for the boundaries, with

observation 1 < i < k + 1 being in the left boundary and n− k < i < n being in the right

boundary. Note that this estimator will not produce estimates for i = 1, n, and these two

observations can be ignored.

For this chapter, instead of using observed values of Y for Yi+j and Yi−j , we propose

using estimated values from a Local Random Forest (LRF) model, a machine learning (ML)

model. First, we estimate Eq. (2.2) by LRF, and produce its fitted values as

Ŷi,LRF = r̂(Ui), i = 1, . . . , n. (2.5)

In the papers previously mentioned about derivative estimation, all estimate the derivative

via the difference quotient using observed values of Y . By estimating the relationship

between U and Y first, this allows us to try to pick up the signal from the data before

taking the derivative, extend the procedure to the multivariate case, and provide more

interpretability of forest based models. Therefore, the proposed noisy derivative estimator

is

Ŷ
(1)
i,LRF =

k∑
j=1

wi,j
r̂(Ui+j)− r̂(Ui−j)
Ui+j − Ui−j

, (2.6)

where Ŷ
(1)
i,LRF denotes the derivative estimator based on LRF predictions, r̂(·). By min-

imizing the variance of Eq. (2.6), the optimal weights are obtained in Prop. 2.1. Let

U = (Ui−j , . . . , Ui+j) for i > j, i+ j ≤ n, and j = 1, . . . , k.

Proposition 2.1 Under the model in Eq. (2.2) and for interior data points, k + 1 ≤ i ≤

n − k, minimizing the variance of Eq. (2.6) subject to
∑k

j=1wi,j = 1 gives the optimal

13



weights (minimum conditional variance) as

wi,j =
(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)∑k

j=1(Ui+j − Ui−j)2/(σ2
r̂,i+j + σ2

r̂,i−j)
, j = 1, . . . , k, (2.7)

where σ2
r̂,i±j ≡ Var[r̂(Ui±j)|U], the variance of LRF estimator, r̂(Ui±j), for observation i±j.

Proof: see Appendix A.1.

We can see that the optimal weights in Eq. (2.7) are similar to that of Eq. (2.4),

however these weights depend on the variance of the LRF estimator, σ2
r̂,i±j . If we make

the assumption that the variance of the estimator is the same for i > j, i + j ≤ n, and

j = 1, . . . , k, then the optimal weights are the same as Eq. (2.4) in [30].

2.2.2 Asymptotic Properties of the Noisy Derivative Estimator

First, notice that the difference Ui − Uj is simply the difference of uniform order

statistics, where

Ui − Uj ∼ Beta(i− j, n− i+ j + 1) for i > j (2.8)

by [10].

Lemma 2.1 Define U
iid∼ U(0, 1) and sort the random variables in order of magnitude such

that U1 < · · · < Un. Then,

Ui+j − Ui−j =
2j

n+ 1
+Op

(√
j

n2

)

Ui+j − Ui =
j

n+ 1
+Op

(√
j

n2

)

Ui − Ui−j =
j

n+ 1
+Op

(√
j

n2

)
.

Proof: see [30].
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This result, combined with Prop. 2.1 leads to the bias and variance of the first order deriva-

tive estimator.

Theorem 2.1 Under the model in Eq. (2.2) and assume r(·) is twice continuously differ-

entiable on [0, 1], k →∞ as n→∞, and under the assumptions of Theorem 1 in [18], with

ω ≤ 0.2 and subsamples of size s with s = nβ, for

βmin := 1−
(

1 +
d

1.56π

log(ω−1)

log((1− ω)−1)

)
< β < 1,

Var[r̂(·)] = O(n−(1−β)), where ω is the minimum fraction of parent observations into each

child node, π is the minimum probability that a variable is split, and d is the number of

regressors. Then, from the optimal weights obtained in Prop. 2.1, under the uniform random

design on the interval [0, 1], the conditional absolute bias and conditional variance of the

proposed derivative estimator in Eq. (2.6) for the interior data points k+ 1 ≤ i ≤ n− k are

∣∣∣∣ bias[Ŷ
(1)
i,LRF |U]

∣∣∣∣ ≤ sup
u∈[0,1]

∣∣∣r(2)(u)
∣∣∣ 3k(k + 1)

4(n+ 1)(2k + 1)
+ op

(
n−1k

)
(2.9)

Var[Ŷ
(1)
i,LRF |U] ≤ 3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)
+ op(n

(1+β)k−3). (2.10)

Proof: see Appendix A.2.

From Theorem 2.1, the pointwise consistency of the derivative estimator can be obtained.

Corollary 2.1 Under the assumptions of Theorem 2.1, k → ∞ as n → ∞ such that

n(1+β)k−3 → 0 and n−1k → 0. Then, using the weights in Prop. 2.1, for any ε > 0 and for

k + 1 ≤ i ≤ n− k,

P

(∣∣Ŷ (1)
i,LRF − r

(1)(Ui)
∣∣ ≥ ε)→ 0 (2.11)

Proof: see Appendix A.3.
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The parameter k, the number of symmetric differences around the ith data point, depicts

the bias-variance tradeoff; larger k increases bias but decreases variance. Therefore, k

is chosen by minimizing the asymptotic upper bound of the coniditonal mean integrated

squared error (MISE).

Corollary 2.2 Under the assumptions of Theorem 2.1, the optimal k that is chosen by

minimizing the asymptotic upper bound of the conditional MISE is

kopt = arg min
k∈N+\{0}

{(
B 3k(k + 1)

4(n+ 1)(2k + 1)

)2

+
3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)

}
, (2.12)

where B ≡ supu∈[0,1]

∣∣r(2)(u)
∣∣.

Proof: See Appendix A.4.

To find the optimal number of symmetric difference quotients, B needs to be

estimated, which can be done by a local cubic polynomial regression. A grid search for k

or any optimization solver can then be used to find the optimal value of k.

Remark 2.1 Taking the first order condition of Eq. (2.12), we will not get an analytical

solution for kopt. However, if we retain the higher order terms, we can get an approximation

for kopt

k̂opt = b24/5B̂−2/5n(3+β)/5c (2.13)

given an estimate for B.

2.2.3 Boundary Correction

So far, we have only discussed points in the interior. In order to reduce the

variance, slight modifications to the estimator is needed at the boundaries. Similar to the
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boundary corrections made in [4], [8],and [30], the observations lying at the left boundary

with index 1 < i < k + 1, the modified weighted difference estimator is

Ŷ
(1)
i,LRF =

k(i)∑
j=1

wi,j

(
r̂(Ui+j)− r̂(Ui−j)
Ui+j − Ui−j

)
+

k∑
j=k(i)+1

wi,j

(
r̂(Ui+j)− r̂(Ui)
Ui+j − Ui

)
(2.14)

with weights

wi,j =


(Ui+j−Ui−j)2/(σ2

r̂,i+j+σ
2
r̂,i−j)∑k(i)

l=1 (Ui+l−Ui−l)2/(σ2
r̂,i+l

+σ2
r̂,i−l)+

∑k
l=k(i)+1(Ui+l−Ui)2/(σ2

r̂,i+l
+σ2

r̂,i
)
, 1 ≤ j ≤ k(i)

(Ui+j−Ui)2/(σ2
r̂,i+j+σ

2
r̂,i)∑k(i)

l=1 (Ui+l−Ui−l)2/(σ2
r̂,i+l

+σ2
r̂,i−l)+

∑k
l=k(i)+1(Ui+l−Ui)2/(σ2

r̂,i+l
+σ2

r̂,i
)
, k(i) < j ≤ k

(2.15)

for k(i) = i− 1. Here, the weights are similar to those from the interior in that the weights

are standardized by the inverse variances of the LRF estimator. The observations at the

right boundary can be estimated in a similar fashion for k(i) = n− i.

2.2.4 Smoothing Weighted Difference Quotients

The first order derivative estimators Eq. (2.6) and Eq. (2.14) depend on the vari-

ance of the LRF estimator; forest based estimators are very noisy and therefore may affect

the variance of the derivative estimator. Another issue of the weighted difference quotient

estimator is that it cannot be evaluated at any arbitrary test point, and can only be eval-

uated for points in the training sample. Therefore, [30] and [31] propose smoothing the

estimator via local polynomial regression.

First, observe that the first order derivative estimator in Eq. (2.6), along with

their modified boundary correction estimators, will create a new variable for observations

i = 2, . . . , n− 1. Then, consider the new model,

Ŷ
(1)
LRF = r(1)(U) + ẽ, (2.16)
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where the first derivative estimator, Ŷ
(1)
LRF , is some unknown first derivative function, r(1)(·),

of U , with error, ẽ. By construction of the first derivative estimator, the errors will be

correlated and assume that E[ẽ|U ] = 0, Cov[ẽi, ẽj |Ui, Uj ] = σ2
ẽρn(Ui − Uj) for i 6= j, and

σ2
ẽ <∞. The correlation function, ρn(·) goes to zero as n→∞ and must satisfy ρn(0) = 1,

ρn(u) = ρn(−u), and −1 ≤ ρn(u) ≤ 1, assumed in [3] and [30]. The goal is then to

enhance the noisy derivative estimator Ŷ
(1)
LRF by nonparametric smoothing. However, the

correlation in the errors will affect the bandwidth selection for any nonparametric smoothing

and to counteract these effects, [3] proposes using a bimodal kernel K such that K(0) = 0

and showed that under mild assumptions, using such a kernel will remove any effects of

the correlation on the bandwidth selection without the need to estimate the correlation

structure. We will denote the bimodal kernel as K̄:

K̄(u) = (2/
√
π)u2 exp(−u2). (2.17)

Next, we fit a local polynomial regression of Ŷ
(1)
LRF on U . The local polynomial

regression estimator of degree p for a given test observation u0 is provided by minimizing

min
βL∈R

n∑
i=1

{
Ŷ

(1)
i,LRF −

p∑
L=0

βL (Ui − u0)L
}2

K

(
Ui − u0

h

)
(2.18)

where βL are the solutions to the weighted least squares problem and K(·) is a kernel

function. The (L + 1)th order derivative r(L+1)(u0) for L = 0, 1, . . . , p is estimated by

r̂(L+1)(u0) = L!β̂L. In matrix notation, the solution is

β̂ = (U>WU)−1U>Wŷ(1), (2.19)

where β̂ = (β̂0, . . . , β̂p)
> is the (p+ 1)× 1 vector of solutions to the minimization problem,

W = diag(K((Ui − u0)/h)) is the (n− 2)× (n− 2) diagonal matrix of weights based on a
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specified kernel function, ŷ(1) = (Ŷ
(1)

2,LRF , . . . , Ŷ
(1)
n−1,LRF ) is the (n− 2)× 1 vector of the first

derivative estimators, and

U =


1 (U2 − u0) · · · (U2 − u0)p

...
...

...

1 (Un−1 − u0) · · · (Un−1 − u0)p

 ,

the (n−2)×(p+1) centered regression matrix. Therefore, the smoothed first order derivative

estimator is

r̂(1)(u0) = ε>1 β̂ = ε>1 (U>WU)−1U>Wŷ(1) (2.20)

where εi is a column vector that picks out the ith element.

2.2.5 Asymptotic Properties of the Smoothed Derivative Estimator

Next, we discuss some asymptotic results of the final smoothed derivative estimator

in Eq. (2.20). The following theorem states the upper bound of the conditional bias and

variance of r̂(1)(·).

Theorem 2.2 Under the assumptions in Theorem 2 of [30] and in Theorem 2.1, k →∞ as

n→∞, and the weights given in Prop. 2.1, the conditional bias and variance of Eq. (2.20)

for p odd is

Bias[r̂(1)(u0)|Ũ] ≤ ε>1 S−1

[
cp

(p+ 1)!
r(p+2)(u0)hp+1 + B 3k(k + 1)

4(n+ 1)(2k + 1)
c̃p

]
{1 + op(1)}

=

[(∫
tp+1K∗0 (t)dt

)
1

(p+ 1)!
rp+2(u0)hp+1

+ B 3k(k + 1)

4(n+ 1)(2k + 1)

(∫
K∗0 (t)dt

)]
{1 + op(1)}
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and

Var[r̂1(u0)|Ũ] ≤ 3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)

1 + ρc
h(n− 2k)

ε>1 S−1S∗S−1ε1{1 + op(1)},

=

∫
K∗20 (t)dt

3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)

1 + ρc
h(n− 2k)

{1 + op(1)}

where B = supu∈[0,1] |r(2)(u)|, S = (µi+j)0≤i,j≤p with µj =
∫
ujK(u)du, S∗ = (νi+j)0≤i,j≤p

with νj =
∫
ujK2(u)du, cp = (µp+1, . . . , µ2p+1)>, c̃p = (µ0, µ1, . . . , µp)

>, ε1 = (1, 0, . . . , 0)>,

and the equivalent kernel K∗0 (t) = ε>1 S−1(1, t, . . . , tp)>K(t).

Proof: see Appendix A.5.

With smoothing using local polynomial regression, the bandwidth h needs to be

estimated. Following [30], we find k and h as follows: k is found by optimizing AMISE in

Cor. 2.2 and the bandwidth h is then estimated by using the bimodal kernel K̄ in Eq. (2.17),

denoted as ĥb by cross validation. Then, ĥb can be used as a pilot bandwidth which can be

related to the bandwidth, ĥ, of the usual unimodal kernel, such as the gaussian kernel,

K(u) = 1/
√

2π exp(−u2/2). (2.21)

[4] shows the relationship between the bimodal and unimodal bandwidth,

ĥ = 1.01431ĥb, (2.22)

for local cubic regression using a gaussian kernel.3 Therefore, after fitting a local cubic

regression of Ŷ
(1)
LRF on U with bimodal kernel, K̄(·), and bandwidth, ĥb, we refit a local

cubic regression with unimodal kernel, K(·) and bandwidth, ĥ, defined in Eq. (2.22).

3For pth degree local regression and for different kernel functions, please see [3].
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From Theorem 2.2, for p odd, the pointwise consistency follows.

Corollary 2.3 Under the assumptions of Theorem 2.1 and Theorem 2.2, h→ 0 and nh→

∞ as n → ∞, k → ∞ as n → ∞ such that n−1k → 0 and nβk−3h−1 → 0. Then, for the

weights given in Prop. 2.1, for any ε > 0,

P (|r̂(1)(u0)− r(1)(u0)| ≥ ε)→ 0. (2.23)

Proof: See Appendix A.6.

2.2.6 Generalizing to Arbitrary Distributions

In general, X may not follow a standard uniform distribution. To generalize X

with unknown distribution F , [30] suggests using probability integral transform (PIT)

F (X) ∼ U(0, 1). (2.24)

By using the PIT, we know that the transformed data is (F (X1), Y1), . . . , (F (Xn), Yn) which

has the same distribution as (U1, Y1), . . . , (Un, Yn). Then, the same procedure can be used

under the transformed data set. Notice, however, that the derivatives, r̂(1)(Ui) are in the

transformed space. Now, to get the derivative in the original space, the chain rule is used

dm(X)

dX
=
dr(U)

dU

dU

dX
= f(X)

dr(U)

dU
(2.25)

where m(X) = r(F (X)). Since the distribution and density, F and f , are unknown, kernel

estimators can be used to estimate the distribution and density, with plug-in bandwidths.

As a result, the full smoothed first order derivative estimator in the original space is

m̂(1)(X) = f̂(X)r̂(1)(U). (2.26)
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To obtain the estimate of the derivative in the original space, simply multiply the smoothed

derivative in the uniform space by the estimate of the density. To summarize, the full

algorithm is described in Algorithm 2.1.

Note that this procedure gives the pointwise derivatives of Y with respect to X,

which may vary across the space of X. To summarize the overall derivative, we can take

the sample average of the derivative estimates to estimate the average derivative, that is

m̂(1)
avg =

1

n′

n′∑
i=1

m̂(1)(Xi) (2.27)

This result may be useful in estimating the global partial effect of a variable or even in

comparison to the partial effect given by an OLS coefficient.
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Algorithm 2.1 Smoothed Nonparametric Derivative Estimation using Weighted Difference
Quotients based on LRF

procedure DQSmoothLRF(training independent variable X, training dependent variable

Y , number of symmetric difference quotients k, degree of local polynomial p = 3, grid of

bandwidths to be considered hgrid, tunable hyperparameters of LRF model θ)

1: U ← F̂ (X)

. kernel cumulative distribution function estimation

2: r̂(U)← regress Y on U by a LRF model with tunable hyperparameters θ

3: Ŷ
(1)
LRF ← difference quotient in Eq. (2.6)

4: ĥb ← bandwidth selection from local polynomial regression of Ŷ
(1)
LRF on U

. with degree p, kernel K̄ in Eq. (2.17), and searched over bandwidths hgrid

5: ĥ← 1.01431ĥb (for local cubic regression)

. bandwidth relationship between bimodal and unimodal gaussian kernels

6: r̂(1)(U)← local polynomial regression

. with degree p, unimodal gaussian kernel K, and bandwidth ĥ

7: m̂(1)(X)← f̂(X)r̂(1)(U)

. back transform into original space as in Eq. (2.26) after kernel density estima-

tion of X
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2.3 Extension to the Multivariate Case

It is very rare to have models with univariate X in economics. In this section we

try to extend the procedure to the multivariate case. Suppose we have the model

Yi = m(Xi,1, . . . , Xi,d) + ei, i = 1, . . . , n, (2.28)

where d is the number of independent variables. For now, suppose all of the regressors are

standard uniformly distributed. Then, consider the regression of the form

Yi = r(Ui,1, . . . , Ui,d) + ei. (2.29)

Then, we follow the same steps as before. First, we estimate r(·) by LRF. Now, the first

partial derivative with respect to the sth variable is given by the weighted difference quotient

Ŷ
(1)
i,s,LRF =

ks∑
j=1

wi,j
r̂(Ui+j,s, Ū)− r̂(Ui−j,s, Ū)

Ui+j,s − Ui−j,s
, (2.30)

where Ū contains the other d− 1 variables evaluated at their medians. Note that we order

the data with respect to the sth variable and that variables can have different number of

symmetric difference quotients denoted by ks. We can then use this estimate of the first

partial derivative as the dependent variable in a local polynomial regression on U1, . . . , Ud,

Ŷ
(1)
s,LRF = r(1)

s (U1, . . . , Ud) + ẽ, (2.31)

where the subscript s denotes the derivative with respect to the sth variable. Since the

errors are correlated, we use the multivariate bimodal kernel,

K̄(u) = (2d/π
d
2 )||u||2 exp(−||u||2). (2.32)
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Then, we can correct the bandwidth using the relationship between bimodal and unimodal

kernel functions as in [4] for each bandwidth to get an estimate of the partial derivative,

r̂
(1)
s (Us, Ū).

Now, suppose that Xm for m = 1 . . . , d are not all standard uniformly dis-

tributed. First, we can estimate the joint CDF function of all independent variables,

FX1,...,Xd(x1, . . . , xd). To obtain the marginal CDFs of a specified variable, we take the limits

in the arguments of the joint CDF of the other variables, FXs(xs) = FX1,...,Xd(+∞, . . . , xs,

. . . ,+∞). Then, we have for each regressor,

FXm(Xm) ∼ U(0, 1), m = 1, . . . , d. (2.33)

Therefore, the new data (FX1(X1,1), . . . , FXd(X1,d), Y1), . . . , (FX1(Xn,1), . . . , FXd(Xn,d), Yn),

has the same distribution as (U1,1, . . . , U1,d, Y1), . . . , (Un,1, . . . , Un,d, Yn).

Yi = r(FX1(Xi,1), . . . , FXd(Xi,d)) + ei

= r(Ui,1, . . . , Ui,d) + ei,

(2.34)

which is the case where we have all standard uniform variables as regressors. To get deriva-

tives in the original space,

∂m(Xs, X̄)

∂Xs
=
∂r(Us, Ū)

∂Us

∂Us
∂Xs

= fXs(Xs)
∂r(Us, Ū)

∂Xs
(2.35)

Using a multivariate kernel density estimator for fX1,...,Xd , and marginalizing for the sth

variable, the final smooth partial derivative with respect to the sth variable is

m̂(1)
s (Xs, X̄) = f̂Xs(Xs)r̂

(1)
s (Us, Ū), (2.36)

where f̂Xs(Xs) =
∑

x1
· · ·
∑

xs−1
,
∑

xs+1
· · ·
∑

xd
f̂X1,...,Xd(x1, . . . , xs, . . . , xd). Note that X̄

and Ū mean we are holding the other variables fixed (at their medians or some other fixed
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constant). So, we evaluate the derivatives holding the other variables fixed at their medians

in the X space and transform these fixed values in the U space when fitting a regression

function and smoothing the derivatives.

2.4 Local Random Forest

This section briefly discusses the Local (Linear) Random Forest (LRF) estimator.

In what follows, assume the i.i.d data (xi, yi), for i = 1, . . . , n, where xi ∈ Rd and assume

the model in Eq. (2.1), either for the univariate case (d = 1) or the multivariate case (d > 1).

LRF uses a local polynomial regression with p = 1 (local linear) with forest based weights

instead of kernel based weights [18]. The objective function includes a weighted quadratic

loss with L2 regularization,

arg min
δq

n∑
i=1

yi − p∑
q=0

δTq (xi − x0)q

2

ai(xi,x0) + λ||δ1||2 (2.37)

where λ is the regularization strength parameter and ai(·) = 1
B

∑B
b=1

1{xi∈Lb(x0)}
|Lb(x0)| is the

weight function. Here, B is the number of bootstrap replications, 1{·} is the indicator func-

tion, and Lb(x0) denotes the the leaf of the b-th bootstrapped tree that contains the testing

point x0. δq, for q = 0, 1 denotes the conditional mean function and its derivative evaluated

at x0. The minimization problem is the same as in Eq. (2.18), except for the weight function

and the regularization term. Using similar notation as before, the minimization problem

can be expressed in matrix form as

arg min
δ

(y −Xδ)>W(y −Xδ) + λδ>Jδ, (2.38)
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where J is the identity matrix with the first diagonal element as zero, X is the centered

regression matrix with the first column being ones, W is the diagonal matrix of weights

a(·), y is the vector of the dependent variable, and δ is the gradient vector with the first

element being the estimate for the mean regression function. Then, the solution is

δ̂ = (X>WX + λJ)−1X>Wy (2.39)

and the resulting prediction function evaluated at a test point x0 is

m̂(x0) = ε>1 δ̂. (2.40)

To find λ, a random forest model is trained first and the weights ai(·) are obtained from

the forest. Then, the regularization parameter λ can be found by cross validation. LRF

can then be used in step 3 of Algorithm 2.1, with transformed regressor, U .

As a reference, the first derivative can be obtained from LRF.

m̂(1)(x0) = ε>2 δ̂ (2.41)

However, as stated in Section 2.1, the derivative based on LRF will be noisy and tend to

zero due to the ridge penalty. Even when there is no ridge penaly, λ = 0, the derivative will

still have high variance. This is due to the nature of the high variance in random forests.

In the following section, we will show that there is a huge improvement when the derivative

based on LRF is compared to the proposed estimator, DQSmoothLRF.

2.5 Simulations

This section shows derivative estimation based on the proposed estimator, DQS-

moothLRF as well as other estimators. To compare results, we consider the following data
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generating process (DGP), which is from [31] with sample size n = 700 and e ∼ N(0, 0.22).

Since we know the true function, the analytical expression of the derivative is also known.

m(X) = cos(2πX)2 for X ∼ beta(2, 2) (2.42)

m(1)(X) = −4π cos(2πX) sin(2πX). (2.43)

For all simulations, we estimate the density f and distribution F by the R package ks [14].

The parameter k, the number of symmetric difference quotients, is estimated by Cor. 2.2.

For the weights wi,j based on the variances of the LRF estimator in Eq. (2.7), we assume

that the variances are constant for the k points round i, so that the weights collapse to

Eq. (2.4). Therefore, plots and results show the derivative estimators based on the weights

obtained in Eq. (2.4). We do this so that results under the proposed model can be easily

compared to the benchmark model, the model proposed by [30], and since the simulated

errors are homoskedastic, this assumption may be reasonable.

We show estimates of the first derivative considering four different models, (1)

DQSmooth, the benchmark model of the derivative based on difference quotients proposed

by [30], (2) DQSmoothLRF, the proposed estimator based on LRF estimates of Y , (3)

LocCubic, a local cubic regression, a common regression technique to estimate derivatives

in the nonparametric literature, and (4), LRF, the model proposed by [18], a benchmark

model of the derivative based on random forests. For the last estimator, LRF, the original

paper by [18] focuses on estimating the conditional mean function, not its derivatives. The

paper also considers only a local linear approach. For these simulations, we consider a local

cubic with λ = 0 for the LRF estimator. The reason for zero ridge penalty, is that since

the ridge parameter, λ, penalizes the curvature of the function, it will force the derivative
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estimates toward zero, although the conditional mean function may not be flat. All local

polynomial regressions are estimated using locpol package [6]. When estimating LRF

based models, we use the grf package [42]. To assess the models, we use mean squared

error (MSE) and mean absolute error (MAE), defined as

MSE =
1

m

m∑
j=1

(
m̂(1)(Xj)−m(1)(Xj)

)2

(2.44)

MAE =
1

m

m∑
j=1

∣∣∣∣m̂(1)(Xj)−m(1)(Xj)

∣∣∣∣. (2.45)

We evaluate all models at 500 evenly spaced points from 0.05 to 0.95, where m = 500..

Results for the first derivative are plotted in Figure 2.1. The grey curves depict one

estimated first derivative function for a simulation run, where all simulations are plotted.

The solid colored curves represent the average of all simulations at each of the 500 evenly

spaced points of X from 0.05 to 0.95 and the black curve represents the true derivative we

wish to estimate. As seen from the figure, all models on average seem to estimate the true

first derivative accurately. However, the difference is notable due to the variance of the

models, which is depicted by how far away on average the grey curves are from their solid

curves. By first glance, both DQsmooth and DQSmoothLRF seem to have lower variance

and are more accurate in the sense of lower variability. In addition, DQSmoothLRF also

appears to have slightly smaller variability in estimating the first derivative compared to

DQSmooth. This is a direct result of using estimated values of Y by a LRF, where the

signal is picked up from the noise, instead of using raw values of Y , which is the case

for DQSmooth. The LocCubic and LRF models seem to have larger variability than the

DQSmooth models. Notice the extremely large variability in the LRF estimator for the first
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Figure 2.1: Each plot shows the estimates for the first derivative for DQSmooth [30],
DQSmoothLRF (the proposed estimator), LocCubic, and LRF estimators. Note that the
first derivative estimator based on LRF is for λ = 0. The grey curves in each plot depict
estimates of the first derivative for one simulation, where 100 simulations are plotted. The
solid colored curves represent the mean predicted values across all simulations. The solid
black curve represents the true first derivative. All estimators are evaluated at 500 evenly
spaced points from 0.05 to 0.95.

derivative; this justifies the need to enhance derivative estimates based on LRF.

Results for the simulations are shown in Table 2.1, where the bias, variance, MSE,

and MAE are reported for the first derivative across the four models under consideration.

First, the mean bias from DQSmooth and DQSmoothLRF estimators are roughly the same

indicating that the bias of derivative estimates for DQSmoothLRF is similar to that of the

bias for DQSmooth. However, improvement on DQSmooth is shown through the variance of
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the DQSmoothLRF estimator, with a 20% reduction in the variance relative to the variance

of DQSmooth. Although the LocCubic model has lower absolute mean bias compared to all

models, the variance is over double of those of the DQSmooth models. The LRF estimator

performs the worst and we can see a significant improvement in estimates for the first

derivative estimator when using DQSmoothLRF. Lastly, DQSmoothLRF performs the best

in terms of both MSE and MAE compared to all models for the first derivative estimation.

Overall, in these simulations, we have shown that DQSmoothLRF outperforms all other

estimators in terms of variance, MSE, and MAE.

Model Assessment

First Derivative Bias Variance MSE MAE

DQSmooth 0.0168 0.2618 0.3194 0.4221

DQSmoothLRF 0.0121 0.2085 0.2943 0.4180

LocCubic -0.0045 0.4437 0.4789 0.4565

LRF -0.0209 12.9508 13.1182 2.7767

Table 2.1: The top and bottom panel show the bias, variance, MSE, and MAE for the
first derivative, comparing the four models, DQSmooth [30], DQSmoothLRF (the proposed
estimator), LocCubic, and LRF. All estimates are averaged across all simulations. Note
that the results based on LRF is for λ = 0. All models are evaluated at 500 evenly spaced
points from 0.05 to 0.95.
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2.6 Empirical Application: Partial Effects of Education and

Age on Income

In this section, we apply the DQSmoothLRF procedure to a labor economic exam-

ple, where the relationshiop between earnings, education, age, and sex is analyzed. Since

the DQSmoothLRF procedure can estimate partial derivatives for continuous variables only,

we will evaluate the partial effects of education and age on income, holding other variables

fixed. That is, suppose the relationship between the variables come from the following

model.

income = m(educ, age) + e, (2.46)

where income is income, educ is education level in years, and age is the age of the individual.

On average, higher levels of income tend to be associated with higher levels of education.

As a result, the partial effect of education on income is expected to be positive, on average.

Another common finding is that income tends to increase slower in age, implying that

the partial effect changes over the course of an individual’s earning years. Lastly, sex is

a common determinant of one’s income, in which females on average tend to have lower

income than males. In this exercise, to account for sex, we will examine the partial effects

of age and education on an individual’s income separately for females and males. That

is, we will estimate two models and estimate the partial effects: one for females and one

for males. In this example, we will determine if the partial effects are consistent with the

literature and in addition if the partial effects differ for males and females.
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As the benchmark model of income, let m(·) have the following linear specificaiton,

m(educ, age) = β1 + β2age+ β3age
2 + β4educ+ β5age× educ, (2.47)

which will be estimated by Ordinary Least Squares (OLS). From this specification, income

is quadratic in age, and educ is interacted with age, which allows for heterogeneous partial

effects of education for different ages. The interaction term between age and educ also

allows for heterogeneous partial effects of age for different levels of education. The linear

regression function, specified by Eq. (2.47) gives the following partial effects with respect

to education and age, holding all other factors fixed.

m
(1)
educ(educ, age) = β4 + β5age (2.48)

m(1)
age(educ, age) = β2 + 2β3age+ β5educ, (2.49)

where other variables are held fixed at their medians, or some constant. For this specifica-

tion, the partial effect of education is constant, holding age fixed. On the other hand, the

partial effect of age is not constant across the support of age, holding education fixed.

The data analyzed in this example come from an unbalanced panel of 7,293 house-

holds from the German Socioeconomic Panel data set.4 In the data set, the variables

include income, age, gender, education, and other sociodemographic variables. In this data

set, female = 1 for females and 0 for males, age is age in years, educ denotes years of

schooling, and income represents the household nominal monthly net income in German

marks/1,000,000. For this empirical exercise, we will use 500 random observations from

a cross section of 4,481 observations for the year 1988. From the 500 randomly chosen

4The data used are obtained from [38] and can be obtained from http://qed.econ.queensu.ca/jae/

2003-v18.4/riphahn-wambach-million/.
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observations, 250 are males and 250 are females. We will estimate the regression function

specified in Eq. (2.47) and the nonparametric form and its derivatives in Eq. (2.46) using

the DQSmoothLRF procedure for each subsample.

Figure 2.2 shows the pointwise marginal effects of education (Figure 2.2a) and age

(Figure 2.2b) on income, holding other factors fixed. In each plot, the marginal effects are

plotted for males and females in red and blue lines, respectively. Each partial derivative

is evaluated for 200 evenly spaced points across the support of the variable of interest.

In Figure 2.2a, the variable age is set to be constant at the median, age = 45, and in

Figure 2.2b, the variable educ is set to be constat at the median, educ = 10.5.5 The partial

effect of education on income is positive throughout most of the entire support of education,

and the largest effect occurs when an individual has around 11 years of education. At around

this level of education, individuals would soon complete their high school degree and the

effect of increasing education by one more year, or finishing their high school education, is

the largest effect compared to any other level of education. The partial effect of education

for females (blue curve) is greater than that for males (red curve) in the earlier levels of

education. This would indicate that there is some interaction effect between education and

sex of the individual, and that the partial effect of education on income depends on sex.

The partial effect of age is positive in the beginning of the early years of an

individual and negative in the later years. Since the partial derivative crosses the zero

line at around age 45 to 49, this implies that income increases slower in age and income is

parabolic in age. For males, the partial derivative crosses the zero line at 49, suggesting that

5The medians are calculated from the sample of 500 chosen observations.
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Figure 2.2: The figures report the pointwise marginal effects of education (Figure 2.2a)
and age (Figure 2.2a) on income, holding all else fixed. The red and blue curves are the
partial effects for males and females, respectively. For the continuous variables, age and
educ, they are set at their medians.

males make the most income at 49, holding all other factors fixed. For females, the partial

derivative crosses the zero line a little earlier at age 45, implying that females make the

most income at 45, holding all other factors fixed. Furthermore, the partial effect is larger

for males compared to females in their earlier years and less negative for males compared

to females in their later years. Since the partial effect of age on income is clearly different

for females and males, the partial effect of age depends on sex.

The average partial effects of age and education on earnings for DQSmoothLRF

and OLS are reported in Table 2.2. For fixed variables, the variable age and educ are

fixed at their respective medians. These estimates are simply the averages of the pointwise

derivatives displayed in Figure 2.2. Looking at the partial derivatives, holding all else

fixed at their medians, the partial effect of education is 0.0091 for males and 0.0085 for

females, estimated by DQSmoothLRF compared to 0.0126 for males and 0.0149 for females,

35



Average Partial Effects of Education and Age on Income

Education Age

DQSmoothLRF OLS DQSmoothLRF OLS

Male 0.0091 0.0126 0.0018 0.0013

Female 0.0085 0.0149 -0.0012 -0.0026

Table 2.2: The table reports the average partial effect of age and education on earnings,
holding all other factors fixed at their medians, for DQSmoothLRF and for the derivatives
estimated by OLS in Eq. (2.48) and Eq. (2.49). The average is taken across 200 evenly
spaced points of the support of each independent variable.

estimated by OLS. To get a better understanding of the partial effects, we can look at how

large the partial effect is in comparison to the median of income in the sample, which is

0.33. Therefore, since the median income in the data is 0.33, the partial effects suggest that

an additional year of eduation is associated witht a change in predicted income of about

2.76% (i.e. 0.0091/0.33) for for males and 2.56%, estimated by DQSmoothLRF and 3.82%

for females and 4.52% for females estimated by OLS. In this case, OLS estimates report

a higher average partial effect whereas DQSmoothLRF estimates say the opposite. Some

studies including [13] find that returns to schooling (i.e. the partial effect of education)

is higher for women than for men. A possible explanation is that education has a double

effect on females’ earnings, where education increases females’ skills and productivity and

reduces the gap in male and female earnings attributable to factors such as discrimination.

Although the the average partial effect of education for males is larger than females, when

estimated by DQSmoothLRF, the pointwise partial derivative plot with respect to education
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in Figure 2.2a shows that the partial effect is larger for females than males, but only in earlier

levels of education.

The average partial effect of age on income is positive for males when estimated by

DQSmoothLRF and OLS, holding everything else fixed at their medians, although DQS-

moothLRF estimates a larger positive average partial effect for males. However, the average

partial effect of age is negative for females, with DQSmoothLRF reporting a less severe aver-

age effect. Recall that the pointwise partial effects of age on income displayed in Figure 2.2b

are positive in earlier years and negative in later years for both males and females. When

taking the average, the overall average partial effect of age is positive for males. However,

for females, the average partial effect is negative. This would imply that the partial effect is

much larger for males in earlier years and smaller in later years relative to females. Similar

to the pointwise partial effects analysis, the average partial effects are clearly different for

females and males.

Overall, in this empirical application, we estimate the partial effects of education

and age on income. We find that the partial effect of education is positive and that the

effect is larger for females than males, but only in lower levels of education. Moreover, the

partial effect of age is positive in the earlier years of life and negative in the later years and

that the effect is larger in the earlier years and less severe in later years for males relative

to females. In addition to the pointwise partial derivatives, the average partial derivatives

also show that the partial effects of education and age depend on sex.
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2.7 Conclusion

Overall, derivatives can help economists find the partial marginal effect of a vari-

able. In this chapter, we propose a method, DQSmoothLRF, that smooths random forest

based difference quotients to estimate first derivatives. We improve on the original method

in [30] by using estimated values of the dependent variable from LRF in forming difference

quotients, instead of using the dependent variable itself, in hopes of reducing variance and

by including multiple variables in the model, instead of the simple univariate case. Improve-

ment is also made in comparision to derivatives estimated by LRF in [18], where derivatives

of the regression equation were not even focused on and in providing better interpretation

for forest based models by evaluating derivatives derived from random forests. We have

shown in simulation that the proposed estimator outperforms the benchmark ones as well

as a popular method of estimating derivatives in economics, local polynomial regression; a

reduction in variance, MSE, and MAE are all evident when using the proposed estimator.

Lastly, we provide an empirical example using household income data to evaluate the partial

effects of education and age and find that these partial effects differ for males and females.
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Chapter 3

Smoothed Nonparametric Second

Derivative Estimation using

Random Forest Based Weighted

Difference Quotients

3.1 Introduction

At times, economists are interested in the second derivative, which help depict the

curvature of a function and how the slope changes due to a change in the independent vari-

able. For example, with second derivatives, we can determine whether the earnings function

is concave or convex or see if a production function exhibits diminishing marginal returns.

In another economic instance where second derivatives are needed, in profit maximization,
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if the second derivative is negative, then maximum profit is obtained. Clearly, second order

derivatives are vital in various economic applications.

In econometrics, second derivatives can be estimated by taking the second deriva-

tive of the estimated regression function. However, such estimation obtained from the linear

or non-linear parametric regression model is well known to be biased and inconsistent un-

less it is from a correctly specified model, which is rare. When the model is from a data

based nonparametric kernel regression, the estimates of derivatives are obtained by the local

polynomial regression method in [15], which may not be very smooth.

Recently, in the data based machine learning regression area, some interest in

estimating derivatives has emerged. For example, data based difference quotients (DQ)

have been utilized to estimate derivatives, where the derivative is determined by taking the

ratio of differences between two data points. See Section 2.1 for more information about

DQ method. To estimate the second derivative by DQ, the difference of the first order

DQ is taken, i.e. second order difference quotients. To further enhance DQ, [30] applies

local polynomial regression to smooth the second derivatives estimated by DQ in attempt

to reduce the variance. However, the derivative estimation procedure proposed by [30] has

some shortcomings. First, their estimator uses observed data on the dependent variable

Y, whereas we propose to consider estimated values of Y, in order to further reduce the

variance of the derivative estimator, based on a variant of the machine learning estimator,

like random forest. Second, their method only considers the scalar X variable whereas we

extend the estimator and its second derivatives to include multivariate X. This chapter

essentiallly extends Chapter 2 to second derivatives.

40



Random forests procedure [5] is a popular method for estimating nonparametric

regression estimation for predictions. However, a drawback of random forests is that they

are unable to capture any smoothness in the estimated regression surface. This is most likely

why second derivative estimation based on random forests is limited, which is due to the

nonsmooth-like nature of the estimator. In an effort to address the issue of the inability to fit

smooth signals, [18] uses random forests as an adaptive kernel method, where random forests

are incorporated in a local polynomial regression framework with a ridge penalty, denoted

as Local Linear Forests, although derivatives are not thoroughly explored. Instead of using

local linear regression, any degree polynomial may be desired, especially if higher order

derivatives need to be estimated, such as in this case where we study the second derivative.

The second derivative can be estimated by the coefficient of the second order derivative of

the local polynomial regression.This procedure will be denoted as Local Random Forests

(LRF).1 However, we show in simulation that the second derivative obtained by LRF are

very noisy, and thus, LRF is a poor estimator of the second derivative.

Under above scenarios, in this chapter, we propose to estimate second derivatives

using a procedure, denoted as DQ2SmoothLRF, where second order difference quotients

are first obtained using predictions from LRF. Then, they are smoothed through a local

polynomial kernel regression. The proposed second derivative estimator contributes to

both the nonparametric derivative estimation literature and random forest literature by

providing more interpretability of forest based models to explain the relationships between

variables via second order derivative estimation. It is shown that the proposed second

1Local Random Forest is simply an extension to Local Linear Forests [18], where instead of local linear
regression, local polynomial regression of any degree can be used.
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derivative estimator improves substantially relative to LRF considered by [18] and to the

second derivative procedure proposed by [30].

The rest of the paper is as follows: Section 3.2 discusses second derivative es-

timation and its properties, Section 3.3 briefly discusses the LRF estimator, Section 3.4

displays the simulation results in comparison to the benchmark estimators, Section 3.5

walks through an emprical example of evaluating the concavity of a Chilean power plant

production function, and Section 3.6 concludes the paper.

3.2 Second Order Derivative Estimation

Consider the bivariate data (X1, Y1), . . . , (Xn, Yn), which are independently and

identically distributed sampled from a population (X,Y ), where X ∈ R and Y ∈ R. Under

the random design, X is a random variable generated from some unkown density f and dis-

tribution F . Consider the model in Eq. (2.1), where m(X) = E[Y |X = x] is the conditional

mean function. Assume that E[e|X = x] = 0 and Var[e|X = x] = σ2
e < ∞. Similar to

the first derivative, consider a special case of X where X is standard uniformly distributed.

That is, let X = U ∼ U(0, 1), where U(0, 1) is the uniform distribution between 0 and 1.

Assume that the bivariate data (U, Y ) is ordered with respect to U .

The second order weighted difference quotient proposed by [30] is

Ŷ
(2)
i = 2

k2∑
j=1

wi,j,2

(
Yi+j+k1−Yi+j
Ui+j+k1−Ui+j

− Yi−j−k1−Yi−j
Ui−j−k1−Ui−j

)
Ui+j+k1 − Ui+j − Ui−j−k1 − Ui−j

, (3.1)

with weights

wi,j,2 =
(2j + k1)2∑k2
j=1(2j + k1)2

, (3.2)
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where k1 and k2 are positive integers that represent the number of first and second order dif-

ference quotients about observation i such that the weights wi,j,2 sum to one across j. Note

that the estimator is for observations in the interior for k1+k2+1 ≤ i ≤ n−k1−k2. Also note

that [30] chooses the second order derivative weights to be proportional to the inverse of the

conditional variance of each quotient. Similar to the first order derivative, we replace Y with

estimates of Y using the LRF estimator, denoted by r̂. Define +Ŷ
(1)
i+j,LRF =

r̂(Ui+j+k1 )−r̂(Ui+j)
Ui+j+k1−Ui+j

and −Ŷ
(1)
i−j,LRF =

r̂(Ui−j−k1 )−r̂(Ui−j)
Ui−j−k1−Ui−j

. This leads to the following proposition.

Proposition 3.1 Under the assumptions of Theorem 2.1 and r(·) is three times differ-

entiable, the estimator for the second derivative based on symmetric difference quotients

is

Ŷ
(2)
i,LRF =

k2∑
j=1

wi,j,2

+Ŷ
(1)
i+j,LRF −− Ŷ

(1)
i−j,LRF

Ci,j,k1
, (3.3)

where Ci,j,k1 = (Ui+j+k1 − Ui+j − Ui−j−k1 − Ui−j)/2 is chosen such that each individ-

ual quotient
+Ŷ

(1)
i+j,ML−

−Ŷ
(1)
i−j,ML

Ci,j,k1
is an asymptotically unbiased estimator of the second order

derivative r(2)(·) for j = 1, . . . , k2 and where each weight is selected to be proportional to

the inverse of the conditional variance of each quotient:

wi,j =

(Ui+j+k1+Ui+j−Ui−j−k1−Ui−j)
2

+Vi+j+−Vi−j∑k2
j=1

(Ui+j+k1+Ui+j−Ui−j−k1−Ui−j)
2

+Vi+j+−Vi−j

, (3.4)

with +Vi+j ≡
σ2
r̂,i+j+k1

+σ2
r̂,i+j

(Ui+j+k1−Ui+j)
2 and −Vi−j ≡

σ2
r̂,i−j−k1

+σ2
r̂,i−j

(Ui−j−k1−Ui−j)
2 .

Proof: See Appendix B.1.

Applying Lemma 2.1, and using the leading order of the weight, the weight can

be approximated by

wi,j,2 =
(2j + k1)2/(σ2

r̂,i+j+k1
+ σ2

r̂,i+j + σ2
r̂,i−j−k1 + σ2

r̂,i−j)∑k2
j=1(2j + k1)2/(σ2

r̂,i+j+k1
+ σ2

r̂,i+j + σ2
r̂,i−j−k1 + σ2

r̂,i−j)
. (3.5)
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Notice that if the variances are approximately the same for the 2 · (k1 + k2) observations

around i, the the proposed weights will be equal to that of [30] in Eq. (3.2).

Theorem 3.1 Assume the model in Eq. (2.2), r is three times continuously differentiable

on [0, 1], k1 →∞ and k2 →∞ as n→∞, and the assumptions of Theorem 1 in [18], with

Var[r̂(·)] = O(n−(1−β)). Then, from the optimal weights obtained in Eq. (3.5), under the

uniform random design on the interval [0, 1], the conditional absolute bias and conditional

variance of the proposed second derivative estimator in Eq. (3.3) for the interior data points

k1 + k2 + 1 ≤ i ≤ n− k1 − k2 are∣∣∣∣Bias[Ŷ
(2)
i,LRF |Ũ]

∣∣∣∣ ≤ supu∈[0,1] |r(3)(u)|
n+ 1

×
2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j
{1 + op(1)}

(3.6)

Var[Ŷ
(2)
i,LRF |U] ≤ 4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}. (3.7)

Proof: see Appendix B.2.

From Theorem 3.1, the pointwise consistency of Ŷ
(2)
i,LRF can be obtained.

Corollary 3.1 Under the assumptions of Theorem 3.1, k1 → ∞ and k2 → ∞ as n → ∞

such that n−1k1 → 0, n−1k2 → 0, n3+βk−2
1 k−3

2 → 0, and n3+βk−4
1 k−1

2 → 0. Then, using the

weights in Eq. (3.5), for any ε > 0 and for k1 + k2 + 1 ≤ i ≤ n− k1 − k2,

P

(∣∣Ŷ (2)
i,LRF − r

(2)(Ui)
∣∣ ≥ ε)→ 0 (3.8)

Proof: see Appendix B.3.
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From Theorem 3.1, the number of difference quotients k1 and k2 play a role in the

bias variance tradeoff. Similar to the symmetric difference quotients for the first derivative,

the higher k1 and k2 are, the higher the bias but the lower the variance and vice versa. The

following corollary chooses the numbers of symmetric difference quotients for the second

derivative considering the bias variance tradeoff.

Corollary 3.2 Under the assumptions of Theorem 3.1, the optimal k1 and k2 that is chosen

by minimizing the asymptotic upper bound of the conditional MISE is

(k1, k2)opt = arg min
k∈N+\{0}


(
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j

)2

+
4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

} (3.9)

where B2 ≡ supu∈[0,1]

∣∣r(3)(u)
∣∣.

Proof: See Appendix B.4.

The quantity B2 can be estimated by a local polynomial regression of order p = 4 to obtain

an estimate of the third derivative of r. The optimal value pair (k1, k2)opt can be obtained

using a grid search or any optimization method. Points on the left boundary, i < k1 +k2 +1,

and points on the right boundary, i > n− k1 − k2, need to be adjusted and can be done in

a similar analysis for the noisy first derivative estimator in Section 2.2.3.

3.2.1 Smoothing Second Order Weighted Difference Quotients

The second order derivative estimator Eq. (3.3) depends on the variance of the

LRF estimator; forest based estimators are very noisy and therefore may affect the variance

of the derivative estimator. Another issue of the weighted difference quotient estimator is
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that it cannot be evaluated at any arbitrary test point, and can only be evaluated for points

in the training sample. In order to smooth the second order weighted difference quotients,

a local polynomial regression of the second order derivative estimates on U . First, rewriting

Eq. (3.1) as

Ŷ
(2)
i = 2

k2∑
j=1

wi,j,2

(
r(Ui+j+k1 )−r(Ui+j)
Ui+j+k1−Ui+j

− r(Ui−j−k1 )−r(Ui−j)
Ui−j−k1−Ui−j

)
Ui+j+k1 − Ui+j − Ui−j−k1 − Ui−j

+ 2

k2∑
j=1

wi,j,2

(
ei+j+k1−ei+j
Ui+j+k1−Ui+j

− ei−j−k1−ei−j
Ui−j−k1−Ui−j

)
Ui+j+k1 − Ui+j − Ui−j−k1 − Ui−j

,

(3.10)

where the first term is denoted as the true second derivative, r(2)(U) and the last term is

the new error term, é,

Ŷ
(2)
i = r(2)(U) + é. (3.11)

As in the case for the first derivative, a bimodal kernel, K such that K(0) = 0, is used

to counteract the effect of the correlated errors on bandwidth selection. Instead of using

the second order weighted difference quotient in Eq. (3.1), we propose using Eq. (3.3) with

weights Eq. (3.5) for the estimate of the second derivative,

Ŷ
(2)
i,LRF = r(2)(U) + é. (3.12)

Now, a local polynomial regression is estimated for the model Eq. (3.12), where Ŷ
(1)
i,LRF is re-

placed by Ŷ
(2)
i,LRF in Eq. (2.18) is minimized. However, by construction of the second deriva-

tive estimator, the errors will be correlated and assume that E[ẽ|U ] = 0, Cov[ẽi, ẽj |Ui, Uj ] =

σ2
ẽρn(Ui−Uj) for i 6= j, and σ2

ẽ <∞. The correlation function, ρn(·) goes to zero as n→∞

and must satisfy ρn(0) = 1, ρn(u) = ρn(−u), and −1 ≤ ρn(u) ≤ 1, assumed in [3] and

[30]. The goal is then to enhance the noisy derivative estimator Ŷ
(2)
LRF by nonparametric

smoothing. However, the correlation in the errors will affect the bandwidth selection for any
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nonparametric smoothing and to counteract these effects, we will use the bimodal kernel in

Eq. (2.17) to remove any effects of the correlation on the bandwidth selection without the

need to estimate the correlation structure. To start, we fit a local polynomial regression of

Ŷ
(2)
LRF on U . That is, the local polynomial regression estimator for the second derivative of

degree p for a given test observation u0 is provided by minimizing

min
βL∈R

n∑
i=1

{
Ŷ

(2)
i,LRF −

p∑
L=0

βL (Ui − u0)L
}2

K

(
Ui − u0

h

)
(3.13)

where βL are the solutions to the weighted least squares problem and K(·) is a kernel

function. The (L + 2)th order derivative r(L+2)(u0) for L = 0, 1, . . . , p is estimated by

r̂(L+2)(u0) = L!β̂L. Following [30], the error term é satisfies E[é|U ] = 0 and Cov[éi, éj |Ui, Uj ] =

σ2
éρ
′
n(Ui − Uj). Then, the solution is

β̂ = (U>WU)−1U>Wŷ(2), (3.14)

where U is the centered regression matrix with the first column being ones, W is the

diagonal matrix of kernel weights, and ŷ(2) is the vector of second order weighted difference

quotients in Eq. (3.3). Therefore, the smoothed second order derivative estimator is given

by

r̂(2)(u0) = ε>1 β̂ = ε>1 (U>WU)−1U>Wŷ(2) (3.15)

With smoothing by local polynomial regression, the bandwidth h needs to be

estimated. Following Chapter 2, we find k = (k1, k2) and h as follows: k is found by

optimizing AMISE in Eq. (3.9) and the bandwidth h is then estimated by using the bimodal

kernel K̄ in Eq. (2.17), denoted as ĥb by cross validation. Then, ĥb can be used as a

pilot bandwidth which can be related to the bandwidth, ĥ, of the usual unimodal kernel in
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Eq. (2.21). Therefore, after fitting a local cubic regression of Ŷ
(2)
LRF on U with bimodal kernel,

K̄(·), and bandwidth, ĥb, we refit a local cubic regression of Ŷ
(2)
LRF on U with unimodal

kernel, K(·) and bandwidth, ĥ, defined in Eq. (2.22).

3.2.2 Generalizing to Arbitrary Distributions

Similar to the first derivative, to generalize to any unknown distribution for X,

we again use PIT to transform the variables X to U . Since, m(X) = r(F (X)), the second

derivative of m with respect to X is

d2m(X)

dX2
=

d

dX

(
dr(U)

dU

dU

dX

)
=

d

dX

(
f(X)r(1)(U)

)
= f (1)(X)r(1)(U) + f(X)r(2)(U),

(3.16)

where f(X) is the density of X, f (1)(X) is the first derivative of the density of X, r(1)(X) is

the first derivative of r(·) with respect to X and r2(X) is the second derivative of r(·) with

respect to X. f(X) and f (1)(X) can be estimated by kernel density and kernel derivative

density estimators with plug in bandwidths and r(1)(·) can be estimated by Eq. (2.20) and

r(2)(·) can be estimated by Eq. (3.15). To summarize, the full algorithm is described in

Algorithm 3.1.

Note that this procedure gives the pointwise second derivatives of Y with respect

to X, which may vary across the space of X. To summarize the overall derivative, we can

take the sample average of the second derivative estimates to estimate the average second

derivative, that is

m̂(2)
avg =

1

n′

n′∑
i=1

m̂(2)(Xi). (3.17)
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Algorithm 3.1 Smoothed Nonparametric Second Derivative Estimation using Weighted
Difference Quotients based on LRF

procedure DQ2SmoothLRF(training independent variable X, training dependent vari-

able Y , number of symmetric difference quotients k = (k1, k2), degree of local polynomial

p = 3, grid of bandwidths to be considered hgrid, tunable hyperparameters of LRF model

θ)

1: U ← F̂ (X)

. kernel cumulative distribution function estimation

2: r̂(U)← regress Y on U by a LRF model with tunable hyperparameters θ

3: Ŷ
(2)
LRF ← difference quotient in Eq. (3.3) with k1 and k2

4: ĥb ← bandwidth selection from local polynomial regression of Ŷ
(2)
LRF on U

. with degree p, kernel K̄ in Eq. (2.17), and searched over bandwidths hgrid

5: ĥ← 1.01431ĥb (for local cubic regression)

. bandwidth relationship between bimodal and unimodal gaussian kernels

6: r̂(2)(U)← local polynomial regression

. with degree p, unimodal gaussian kernel K, and bandwidth ĥ

7: r̂(1)(U)← Algorithm 2.1 with k1

8: m̂(2)(X)← f̂ (1)(X)r̂(1)(U) + f̂(X)r̂(2)(U)

. back transform into original space as in Eq. (3.16) after kernel density and

derivative estimation of X
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3.2.3 Extension to the Multivariate Case

In this section we try to extend the procedure to the multivariate case. Suppose

we have the model

Yi = m(Xi,1, . . . , Xi,d) + ei, i = 1, . . . , n, (3.18)

where d is the number of independent variables. For now, suppose all of the regressors are

standard uniformly distributed. Then, consider the regression of the form

Yi = r(Ui,1, . . . , Ui,d) + ei. (3.19)

Then, we follow the same steps as before. First, we estimate r(·) by LRF. Now, the second

partial derivative with respect to the sth variable is given by the second order weighted

difference quotient

Ŷ
(2)
i,s,LRF =

k2,s∑
j=1

wi,j,2

+Ŷ
(1)
i+j,s,LRF −− Ŷ

(1)
i−j,s,LRF

Ci,j,k1
, (3.20)

where Ci,j,k1,s = (Ui+j+k1,s,s−Ui+j,s−Ui−j−k1,s,s−Ui−j,s)/2, +Ŷ
(1)
i+j,s,LRF =

r̂(Ui+j+k1,s,s,Ū)−r̂(Ui+j,s,Ū)

Ui+j+k1,s,s−Ui+j,s
,

and −Ŷ
(1)
i−j,s,LRF =

r̂(Ui−j−k1,s,s,Ū)−r̂(Ui−j,s,Ū)

Ui−j−k1,s,s−Ui−j,s
where Ū contains the other d−1 variables eval-

uated at their medians. Note that we order the data with respect to the sth variable and

that variables can have different number of symmetric difference quotients denoted by k2,s.

We can then use this estimate of the second partial derivative as the dependent variable in

a local polynomial regression on U1, . . . , Ud,

Ŷ
(2)
s,LRF = r(2)

s (U1, . . . , Ud) + ẽ, (3.21)

where the subscript s denotes the derivative with respect to the sth variable. Since the errors

are correlated, we use the multivariate bimodal kernel in Eq. (2.32). Then, we can correct
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the bandwidth using the relationship between bimodal and unimodal kernel functions as in

[4] for each bandwidth to get an estimate of the second partial derivative, r̂
(2)
s (Us, Ū).

Now, suppose that Xm for m = 1 . . . , d are not all standard uniformly dis-

tributed. First, we can estimate the joint CDF function of all independent variables,

FX1,...,Xd(x1, . . . , xd). To obtain the marginal CDFs of a specified variable, we take the limits

in the arguments of the joint CDF of the other variables, FXs(xs) = FX1,...,Xd(+∞, . . . , xs,

. . . ,+∞). Then, we have for each regressor,

FXm(Xm) ∼ U(0, 1), m = 1, . . . , d. (3.22)

Therefore, the new data (FX1(X1,1), . . . , FXd(X1,d), Y1), . . . , (FX1(Xn,1), . . . , FXd(Xn,d), Yn),

has the same distribution as (U1,1, . . . , U1,d, Y1), . . . , (Un,1, . . . , Un,d, Yn).

Yi = r(FX1(Xi,1), . . . , FXd(Xi,d)) + ei

= r(Ui,1, . . . , Ui,d) + ei,

(3.23)

which is the case where we have all standard uniform variables as regressors. To get second

derivatives in the original space, we can estimate the following

m(2)
s (Xs, X̄) = f

(1)
Xs

(Xs)r
(1)(Us, Ū) + fXs(Xs)r

(2)(Us, Ū). (3.24)

3.3 Local Random Forest

This section briefly discusses the Local (Linear) Random Forest (LRF) estimator.

In what follows, assume the i.i.d data (xi, yi), for i = 1, . . . , n, where xi ∈ Rd and assume

the model in Eq. (2.1), either for the univariate case (d = 1) or the multivariate case (d > 1).

LRF uses a local polynomial regression with p = 1 (local linear) with forest based weights
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instead of kernel based weights [18]. The objective function includes a weighted quadratic

loss with L2 regularization, specified in Eq. (2.37). Note that δq, for q = 0, 1, 2 denotes the

conditional mean function, its derivative evaluated at x0, and its second derivative evaluated

at x0. Recall that the solution vector is δ̂ = (X>WX + λJ)−1X>Wy and the resulting

prediction function evaluated at a test point x0 is m̂(x0) = ε>1 δ̂. And the second derivative

can be obtained from LRF by

m̂(2)(x0) = ε>3 δ̂. (3.25)

However, as stated in Section 3.1, the second derivative based on LRF will be noisy due

to the nature of the nonsmooth estimated regression function, ultimately resulting in the

second derivative having high variance. In the following section, we will show that there is

a huge improvement when the second derivative based on LRF is compared to the proposed

estimator, DQ2SmoothLRF.

To find hyperparameter, λ, a random forest model is trained first and the weights

ai(·) are obtained from the forest. Then, the regularization parameter λ can be found

by cross validation. LRF can then be used in step 3 of Algorithm 3.1, with transformed

regressor, U .

3.4 Simulations

This section shows derivative estimation based on the proposed estimator as well

as other estimators. To compare results, we consider the following data generating process

(DGP) from Section 2.5. Given the true function for m, the second derivative is

m(2)(X) = 8π2(sin(2πX)2 − cos(2πX)2). (3.26)
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Then, we follow the procedure outlined in Algorithm 3.1, where the numbers of

symmetric difference quotients for the first and second derivative, k1 and k2, are estimated

by Cor. 3.2. Similar to the first derivative, for the weights wi,j,2 in Eq. (3.5), we assume

that the variances are constant for the k1 and k2 points round i, so that the weights do not

depend on the variances of the LRF estimator.

For all simulations, we estimate the density f and distribution F by the R package

ks [14]. The parameters k1 and k2, the numbers of symmetric difference quotients, is

estimated by Cor. 3.2. For the weights wi,j based on the variances of the LRF estimator in

Eq. (3.5), we assume that the variances are constant for the points round i. We do this so

that results under the proposed model can be easily compared to the benchmark model, the

model proposed by [30], and since the simulated errors are homoskedastic, this assumption

may be reasonable.

We show estimates of the second derivatives considering four different models, (1)

DQ2Smooth, the benchmark model of the second derivative based on difference quotients

proposed by [30], (2) DQ2SmoothLRF, the proposed estimator based on LRF estimates

of Y , (3) LocCubic, a local cubic regression, a common regression technique to estimate

derivatives in the nonparametric literature, and (4), LRF, the model proposed by [18], a

benchmark model of the second derivative based on random forests. For the last estimator,

LRF, the original paper by [18] focuses on estimating the conditional mean function, not its

derivatives. The paper also considers only a local linear approach. For these simulations,

we consider a local cubic with λ = 0 for the LRF estimator. The reason for zero ridge

penalty, is that since the ridge parameter, λ, penalizes the curvature of the function, it will
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force the derivative estimates toward zero, although the conditional mean function may not

be flat. All local polynomial regressions are estimated using locpol package [6]. When

estimating LRF based models, we use the grf package [42]. To assess the models, we use

mean squared error (MSE) and mean absolute error (MAE), defined in Eq. (2.44) and . We

evaluate all models at 500 evenly spaced points from 0.05 to 0.95, where m = 500.
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Figure 3.1: Each plot shows the estimates for the second derivative for DQ2Smooth [30],
DQ2SmoothLRF (the proposed estimator), LocCubic, and LRF estimators. Note that the
second derivative estimator based on LRF is for λ = 0. The grey curves in each plot depict
estimates of the second derivative for one simulation, where 100 simulations are plotted.
The solid colored curves represent the mean predicted values across all simulations. The
solid black curve represents the true second derivative. All estimators are evaluated at 500
evenly spaced points from 0.05 to 0.95.
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Results for the second derivative are plotted in Figure 3.1. The colored curves

are analagous to those from the first derivative plot in Figure 2.1. Here, it appears that

that most estimators roughly get the overall shape of the second derivative. Similar to the

first derivative, the first noticeable difference is the variance of each estimator, where both

DQ2Smooth and DQ2SmoothLRF estimators have the smallest variance. Although Loc-

Cubic seems to have smaller bias, the variance is significantly larger than the DQ2Smooth

procedures. In the last case, LRF has extremely large variance, and there is much improve-

ment on estimating the second derivative based on DQ2SmoothLRF compared to LRF

alone.

Results for the simulations are shown in Table 3.1, where the bias, variance, MSE,

and MAE are reported for both the first and second derivative across the four models under

consideration. First, the mean bias from DQ2Smooth and DQ2SmoothLRF estimators are

roughly the same indicating that the bias of second derivative estimates for DQ2SmoothLRF

is similar to that of the bias for DQ2Smooth. However, improvement on DQ2Smooth is

shown through the variance of the DQ2SmoothLRF estimator, with a 32% reduction in

the variance relative to the variance of DQ2Smooth. Although the LocCubic model has

lower absolute mean bias compared to all models, the variance is over double of those of the

DQ2Smooth models. The LRF estimator performs the worst and we can see a significant

improvement in estimates for the second derivative estimator when using DQ2SmoothLRF.

Lastly, DQ2SmoothLRF performs the best in terms of both MSE and MAE compared

to all models for both the first derivative and second derivative estimations. Overall, in

these simulations, we have shown that DQ2SmoothLRF has the smallest variance, MSE,
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and MAE, implying that the proposed procedure is the preferred method of estimating the

second derivative compared to others.

Model Assessment for Second Derivative

Bias Variance MSE MAE

DQ2Smooth 5.7984 86.0250 259.8858 12.6552

DQ2SmoothLRF 5.4323 58.7255 231.5355 12.1516

LocCubic -1.9564 631.8972 747.2560 15.8320

LRF -4.1653 18, 042.3700 18, 892.7700 96.5819

Table 3.1: The top and bottom panel show the bias, variance, MSE, and MAE for the sec-
ond derivative respectively, comparing the four models, DQ2Smooth [30], DQ2SmoothLRF
(the proposed estimator), LocCubic, and LRF. All estimates are averaged across all simu-
lations. Note that the results based on LRF is for λ = 0. All models are evaluated at 500
evenly spaced points from 0.05 to 0.95.

3.5 Empirical Application: Convex Technology

A conventional assumption of a production possibility set or technology is convex-

ity [29]. One way to check the convexity assumption is to evaluate the curvature of the

production function, known as the criterion of quasi-concavity. [39] shows that the the law

of diminishing marginal productivity in at least one input and quasi-concavity are violated,

indicating nonconvexities in agricultural technology. [29] tests the convexity assumption

and show that cost functions determined by convex technology are heavily downward bi-
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ased compared to those determined by nonconvex technology. In this paper, we will check

the curvature and quasi-concavity criterion of the production function by estimating its

second derivative by the proposed method.

We will use Chilean hydro-electric power generation plants [1]. To avoid any

technical change over time, we single out the year 1997 for 16 power plants with monthly

data, providing 188 observations.2 The data contain one output, electricity generated (q),

prices, and quantities of three inputs: capital (k), water (w), and labor (l).3

First, the production function can be modeled as an unknown function of the three

inputs.

q = m(k,w, l) + e. (3.27)

We wish to evaluate the curvature of the production function to test quasi-concavity by

estimating its second derivative in each of the three arguments. First, we transform the

inputs as in Section 2.3 and Section 3.2.3 to rewrite the model as

q = r(Uk, Uw, Ul) + ei, (3.28)

where Uk, Uw, and Ul are the uniformly transformed variables of capital, water, and labor,

respectively. Figure 3.2 depicts the first (left three plots) and second (right three plots)

derivatives of the production function in Eq. (3.27). The first derivatives with respect to

capital m̂(1)(k, w̄, l̄), water m̂(1)(k̄, w, l̄), and labor m̂(1)(k̄, w̄, l) are evaluated at 200 evenly

spaced points across the sample space of each input while holding the other inputs fixed at

their medians. The second derivatives are evaluated analogously.

2The data can be found from the Journal of Applied Econometrics Data Archive. Note that there are
four missing observations for the 16 power plants during the year 1997.

3Further details about the data can be found in [1].
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First and Second Derivatives of Chilean Power Plant Production

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

0
.0

0
0
0

0
.0

0
1
0

0
.0

0
2
0

0
.0

0
3
0

k

m
’(

k
, 
w

, 
l)

0 200 400 600 800 1000 1200

0
1

2
3

4
5

6

w

m
’(

k
, 
w

, 
l)

0 10 20 30 40 50 60 70

−
4
0

−
2
0

0
2
0

4
0

6
0

l

m
’(

k
, 
w

, 
l)

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

0
2

4
6

8

k

m
’’
(k

, 
w

, 
l)

0 200 400 600 800 1000 1200

−
4
0
0

−
3
0
0

−
2
0
0

−
1
0
0

0

w

m
’’
(k

, 
w

, 
l)

0 10 20 30 40 50 60

0
1
0
0
0

3
0
0
0

5
0
0
0

l

m
’’
(k

, 
w

, 
l)

Figure 3.2: The three figures on the left and right are the first and second derivatives,
respectively, estimated by DQSmoothLRF and DQ2SmoothLRF. All estimates are evaluated
across 200 evenly spaced points for each of the three inputs, while holding the other two
inputs fixed at their medians.

From Figure 3.2, for capital, the first derivative is positive when capital is small,

indicating that electricity output is increasing in capital. The second derivative is positive

58



around this support, indicating that the slope of the production function with respect to

capital is increasing, which implies that this part of the production function is convex. As

a result the level set will be nonconvex, violating the quasi-concavity criterion and convex

technology assumption. The bottom plots of Figure 3.2, referring to the input labor, seem

to also violate these assumptions, where the production function is convex in parts of the

support for labor. The middle plots show that production is increasing in the input for

water and the second derivative is negative in the start of the support for water. Therefore,

production appears to be quasi-concave in water. Overall, electricity production is convex

in at least two of its inputs and does not produce convex technology, which would further

confirm the nonconvex results obtained in [29].

Average Derivatives of Chilean Power Plant Production

First Derivative Second Derivative

OLS DQSmoothLRF OLS DQ2SmoothLRF

Capital 0.00001 0.0002 0 0.3264

Water 0.2176 0.5296 0 -30.0765

Labor 0.2815 4.5731 0 64.1013

Table 3.2: Average partial first and second derivatives with respect to each of the inputs,
capital, water, and labor, are reported. The partial derivatives are evaluated at 200 evenly
spaced points across the support of each regressor, where each derivative is held constant for
other factors. The reported results are the average of the evaluated 200 derivative points.
The median is reported as the estimate for the second derivative for DQ2SmoothLRF due
to some outliers in the tail of the second derivative.
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Table 3.2 shows the estimated average first and second derivatives of the pro-

duction function with respect to the input variables, capital, water, and labor. Average

derivatives for OLS are also reported as reference, where a naive linear regression function

is estimated. The first derivatives, partial marginal effects, will be constant, and as a re-

sult, the second derivative will be zero. All inputs have a positive average partial effect and

the production function is increasing in the three inputs. However, when evaluating the

first derivative, the average partial effect is underestimated compared to the average effect

estimated by DQ2SmoothLRF for all of the inputs. The second derivative with respect to

water is negative on average, implying that the estimated production function is concave in

the input water. However, the other two inputs have a positive average second derivative,

implying that the estimated production function is convex in the inputs capital and labor.

Furthermore, the results from Table 3.2 regarding the positive second derivatives with re-

spect to capital and labor further justify that the electricity production function breaks the

convex technology assumption.

3.6 Conclusion

Overall, second derivatives help economists to check convexity assumptions by

evaluating the curvature of a production function (second derivative). In this paper, we

propose a method, DQ2SmoothLRF, that smooths random forest based difference quotients

to estimate first and second derivatives. We improve on the original method in [30] by

using estimated values of the dependent variable from LRF in forming difference quotients,

instead of using the dependent variable itself, in hopes of reducing variance and by including
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multiple variables in the model, instead of the simple univariate case. Improvement is also

made in comparision to second derivatives estimated by LRF in [18], where derivatives of

the regression equation were not even focused on and in providing better interpretation for

forest based models by evaluating second derivatives derived from random forests. We have

shown in simulation that the proposed estimator outperforms the benchmark ones as well

as a popular method of estimating derivatives in economics, local polynomial regression; a

reduction in variance, MSE, and MAE are all evident when using the proposed estimator.

Lastly, we provide an empirical example using Chilean hydro-electric power generation

plants data to assess the curvature of the production function in order to check the convex

technology assumption assumed in the literature, in which we found that this assumption

is broken for this dataset.
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Chapter 4

Generalized Kernel Regularized

Least Squares Estimator with

Parametric Error Covariance

4.1 Introduction

Nonparametric regression function estimators are useful econometric tools. Com-

mon methods to estimate a regression function are kernel based methods, such as Kernel

Regularized Least Squares (KRLS), Support Vector Machines (SVM), Local Polynomial

Regression, etc. However, in order to avoid overfitting the data, some type of regulariza-

tion, lasso or ridge, is generally used. In this chapter, we will focus on KRLS; this method

is also known as Kernel Ridge Regression (KRR) and is the kernelized version of the simple

ridge regression to allow for nonlinearities in the model.
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In this chapter, we establish fitting a nonparametric regression function via KRLS

under a general parametric error covariance. Some theoretical results, including pointwise

marginal effects, unbiasedness, consistency and asymptotic normality, on KRLS are found

in [20]. However, [20] only considers errors to be homoskedastic and that the estimator

is ubiased for estimating the postpenalization function, not for the true underlying func-

tion. Confidence interval estimates for Least Squares Support Vector Machine (LSSVM)

are discussed in [12], allowing for heteroskedastic errors. Although not directly stated, the

LSSVM model in [12] is equivalent to KRR/KRLS when an intercept term is included in

the model. Following [20], we will use KRLS without an intercept. Although [12] allows

for heteroskedastic errors, none of the papers mentioned thus far discuss incorporating the

error covariance in estimating the regression function itself, making these type of models

inefficient. In this chapter, we focus on making KRLS more efficient by incorporating a

parametric error covariance, allowing for both heteroskedasticity and autocorrelation, in

estimating the regression function. We use a two step procedure where in the first step, we

estimate the parametric error covariance from the residuals obtained by naive KRLS and

in the second step, we estimate a KRLS model based on transformed variables based on

the error covariance. The proposed method is similar to that of [41], but instead of KRLS,

local linear regression is used. We also provide estimating derivatives based on the two step

procedure, allowing us to determine the partial effects of the regressors on the dependent

variable.

The structure of this chapter is as follows: Section 4.2 discusses the model frame-

work and the GKRLS estimator, Section 4.3, Section 4.4, and Section 4.5 show the fi-
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nite sample properties, asymptotic properties, and partial effects and derivatives of the

GKRLS estimator, respectively, Section 4.6 runs through a simulation example, Section 4.7

illustrates two empirical examples with heteroskedastic and autocorrelated errors, and Sec-

tion 4.8 concludes the chapter.

4.2 Generalized KRLS Estimator

Consider the nonparametric regression model:

Yi = m(Xi) + Ui, i = 1, . . . , n, (4.1)

where Xi is a q × 1 vector of exogenous regressors, and Ui is the error term such that

E[Ui] = 0 and

E[UiUj ] = ωij(θ0) for some θ0 ∈ Rp, i, j = 1, . . . , n. (4.2)

In this framework, we allow the error covariance to be parametric, where the errors can be

autocorrelated or non-identically distributed across observations.

4.2.1 Naive KRLS Estimator

For KRLS, the function m(·) can be approximated by some function in the space

of functions constituted by

m(x0) =
n∑
i=1

ciKσ(xi,x0), (4.3)

for some test observation x0 and where ci, i = 1, . . . , n are the parameters of interest, which

can be thought of as the weights of the kernel functions Kσ(·). The subscript of the kernel

function, Kσ(·), indicates that the kernel depends on the bandwidth parameter, σ.
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We will use the Radial Basis Function (RBF) kernel,

Kσ(xi,x0) = e−
1
σ2
||xi−x0||2 . (4.4)

Notice that the RBF kernel is very similar to the Gaussian kernel, in that it does not have

the normalizing term out in front and that σ is proportional to the bandwidth h in the

Gaussian kernel often used in nonparametric local polynomial regression. This functional

form is justified by a regularized least squares problem with a feature mapping function

that maps x into a higher dimension [20], where this derivation of KRLS is also known

as Kernel Ridge Regression (KRR). Overall, KRLS uses a quadratic loss with a weighted

L2-regularization. Then, in matrix notation, the minimization problem is

arg min
c

(y −Kσc)>(y −Kσc) + λc>Kσc, (4.5)

where y is the vector of training data corresponding to the dependent variable and Kσ is the

kernel matrix, with Kσ,i,j = Kσ(xi,xj) for i, j = 1, . . . , n and c is the vector of coefficients

that is optimized over. The solution to this minimization problem is

ĉ1 = (Kσ1 + λ1I)−1y. (4.6)

The kernel function and its parameters are user specified but can be found via cross vali-

dation along with the regularization parameter λ. The subscript of one denotes the naive

KRLS estimator, or the first stage estimation. Finally, predictions for KRLS can be made

by

m̂1(x0) =
n∑
i=1

ĉ1,iKσ1(xi,x0), (4.7)
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4.2.2 An Efficient KRLS Estimator

The naive KRLS estimator, m̂1(·) does not take into consideration any information

in the error covariance structure and therefore is inefficient. As a result, consider the n× n

error covariance matrix, Ω(θ), where ωij(θ) denotes the (i, j)th element. Assume that

Ω(θ) = P (θ)P (θ)′ for some square matrix P (θ) and let pij(θ) and vij(θ) denote the (i, j)th

element of P (θ) and P (θ)−1. Let m ≡ (m(X1), . . . ,m(Xn))′ and U ≡ (U1, . . . , Un)′. Now,

premultiply the model in Eq. (4.1) by P−1, where P−1 = P−1(θ) and we condense the

notation and the dependence on θ is implied.

P−1y = P−1m + P−1U. (4.8)

The transformed error term, P−1U has mean 0 and covariance matrix as the identity matrix.

Therefore, we consider a regression of P−1y on P−1m. This simply re-scales the variables

by the inverse of their square root of their variances. Since m = Kσc, the quadratic loss

function with L2 regularization under the transformed variables is

arg min
c

(y −Kσc)>Ω−1(y −Kσc) + λc>Kσc. (4.9)

The solution for vector is

ĉ2 = (Ω−1Kσ2 + λ2I)−1Ω−1y (4.10)

Note that the solution obtained depends on the bandwidth parameter σ2 and ridge parame-

ter λ2, which can be different than the hyperparameters used in the Naive KRLS estimator.

In practice, cross validation can be used for obtaining estimates for both hyperparametrs.

Here, it is assumed that Ω is known if θ is known. However, if θ is unknown, it can be

estimated consistently and Ω can be replaced by Ω = Ω(θ̂).
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Furthermore, predictions for the generalized KRLS estimator can be made by

m̂2(x0) =
n∑
i=1

ĉ2,iKσ2(xi,x0) (4.11)

The two step procedure is outlined below

1. Estimate Eq. (4.1) by Naive KRLS from Eq. (4.7) with bandwidth parameter, σ1 and

ridge parameter, λ1. Obtain the residuals which can then be used to get a consistent

estimate for Ω.

2. Estimate Eq. (4.8) by KRLS under the transformed variables as in Eq. (4.9) and

Eq. (4.11). Denote these estimates as GKRLS.

4.3 Finite Sample Properties

In this section, finite sample properties of both KRLS and GKRLS estimators,

including the estimation procedures of bias and variance, are discussed in detail.

4.3.1 Estimation of Bias and Variance

In this subsection, we estimate the bias and variance of the two step estimator.

Following, [12], notice that the GKRLS estimator is a linear smoother.

Defintion 4.1 An estimator m̂ of m is a linear smoother if, for each x0 ∈ Rq, there exists

a vector L(x0) = (l1(x0), . . . , ln(x0))> ∈ Rn such that

m̂(x0) =

n∑
i=1

li(x0)Yi, (4.12)

where m̂(·) : Rq → R.
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For in sample data, Eq. (4.12) can be written in matrix form as m̂ = Ly, where m̂ =

(m̂(X1), . . . , m̂(Xn))> ∈ Rn and L = (l(X1)>, . . . , l(Xn)>)> ∈ Rn×n, where Lij = lj(Xi).

The ith row of L show the weights given to each Yi in estimating m̂(Xi). For the rest of the

chapter, we will denote m̂2(·) as the prediction made by GKRLS for a single observation

and m̂2 as the n× 1 vector of predictions made for the training data.

To obtain the bias and variance of the GKRLS estimator, we assume the following:

Assumption 4.1 The regression function m(·) to be estimated falls in the space of func-

tions represented by m(x0) =
∑n

i=1 ciKσ(xi,x0) and assume the model in Eq. (4.1).

Assumption 4.2 E[Ui] = 0 and E[UiUj ] = ωij(θ) for some θ ∈ Rp, i, j = 1, . . . , n

Using Definition 4.1, Assumption 4.1, and Assumption 4.2, the conditional mean and vari-

ance can be obtained by the following theorem.

Theorem 4.1 The GKRLS estimator in Eq. (4.11) is

m̂2(x0) =
n∑
i=1

li(x0)Yi

= L(x0)>y,

(4.13)

and L(x0) = (l1(x0), . . . , ln(x0))> is the smoother vector,

L(x0) =
[
K∗>σ2,x0

(Ω−1Kσ2 + λ2I)−1Ω−1
]>
, (4.14)

with K∗σ2,x0
= (Kσ2(x1,x0), . . . ,Kσ2(xn,x0))> the kernel vector evaluated at point x0.

Then, the estimator, under model Eq. (4.1), has conditional mean

E[m̂2(x0)|X = x0] = L(x0)>m (4.15)

68



and conditional variance

Var[m̂2(x0)|X = x0] = L(x0)>ΩL(x0). (4.16)

Proof: see Appendix C.1.

From Theorem 4.1, the conditional bias can be written as

Bias[m̂2(x0)|X = x0] = E[m̂2(x0)|X = x]−m(x0)

= L(x0)>m−m(x0)

(4.17)

Following [12], we will estimate the conditional bias and variance by the following:

Theorem 4.2 Let L(x0) be the smoother vector evaluated at x0 and let m̂2 = (m̂2(x1),

. . . , m̂2(xn))> be the in sample GKRLS predictions. For a consistent estimator of the co-

variance matrix such that Ω̂→ Ω, the estimated conditional bias and variance for GKRLS

are obtained by

B̂ias[m̂2(x2)|X = x0] = L(x0)>m̂2 − m̂2(x0) (4.18)

and

V̂ar[m̂2(x0)|X = x0] = L(x0)>Ω̂L(x0). (4.19)

Proof: See Appendix C.2.

4.3.2 Bias and Variance of KRLS

First, note that the KRLS estimator is also a linear smoother, so the bias and the

variance take the same form as in Eq. (4.18) and Eq. (4.19), except that the linear smoother
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vector L(x0) will be different. Let

L1(x0) =
[
K∗>σ1,x0

(Kσ1 + λ1I)−1
]>

(4.20)

be the smoother vector for KRLS. Then, Eq. (4.7) can be rewritten as

m̂1(x0) = L1(x0)>y. (4.21)

Using Theorem 4.1 and Theorem 4.2 and applying them to the KRLS estimator, the con-

ditional bias and variance of KRLS are

B̂ias[m̂1(x0)|X = x0] = L1(x0)>m̂1 − m̂1(x0) (4.22)

V̂ar[m̂1(x0)|X = x0] = L1(x0)>Ω̂L1(x0), (4.23)

where m̂1 is the n × 1 vector of fitted values for KRLS. Note that the estimate of the

covariance matrix, Ω, will be the same for both KRLS and GKRLS.

4.4 Asymptotic Properties

The asymptotic properties of GKRLS, including consistency, asymptotic normal-

ity, and bias corrected confidence intervals are covered in this section. To obtain consistency

of the GKRLS estimator, we also assume:

Assumption 4.3 Let λ1, λ2, σ1, σ2 > 0 and as n→∞, for singular values of LP given by

di,
∑n

i=1 d
2
i grows slower than n once n > M for some M <∞.

Theorem 4.3 Under Assumptions 1-3, and let the bias corrected fitted values be denoted

by

m̂2,c = m̂2 − Bias[m̂2|X], (4.24)
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then

lim
n→∞

Var[m̂2,c|X] = 0 (4.25)

and the bias corrected GKRLS estimator is consistent with plim
n→∞

m̂c,n(xi) = m(xi) for all i.

Proof: See Appendix C.3.

The estimated conditional bias from Eq. (4.18) and conditional variance from

Eq. (4.19) can be used to construce pointwise confidence intervals. Asymptotic normality

of the proposed estimator is given via the central limit theorem.

Theorem 4.4 Under Assumptions Assumptions 4.1 to 4.3, m̂2 is asymptotically normal

by the central limit theorem:

m̂2 − Bias[m̂2|X]−m
d→ N(0,Var[m̂2|X]). (4.26)

Proof: See Appendix C.4.

Since GKRLS is a biased estimator for m, we need to adjust the pointwise confidence

intervals to allow for bias. Since the exact conditional bias and variance are unknown, we

can use Eqs. (4.18) and (4.19) as estimates and can conduct approximate bias corrected

100(1− α)% pointwise confidence intervals from Theorem 4.4 as

m̂2(xi)− B̂ias[m̂2(xi)|X = xi]± z1−α/2

√
V̂ar[m̂2(xi)|X = xi] (4.27)

for all i. To test the significance of the estimated regression function at an observation

point, we can use the bias corrected confidence interval to see if 0 is in the interval.
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4.5 Partial Effects and Derivatives

We also derive an estimator for pointwise partial derivatives with respect to a

certain variable x(r). The partial derivative of the GKRLS estimator, m̂2(x0) with respect

to the rth variable is

m̂
(1)
2,r(x0) =

n∑
i=1

∂Kσ2(xi,x0)

∂x
(r)
0

ĉ2,i

=
2

σ2
2

n∑
i=1

e
− 1

σ22
||xi−x0||2

(x
(r)
i − x

(r)
0 )ĉ2,i,

(4.28)

using the RBF kernel in Eq. (4.4) and where m̂
(1)
2,r(x0) ≡ ∂m̂2(x0)

∂x(r) . To find the conditional

bias and variance of the derivative estimator, we use the following:

Theorem 4.5 The GKRLS derivative estimator in Eq. (4.28) with the RBF kernel in

Eq. (4.4) can be rewritten as

m̂
(1)
2,r(x0) = Sr(x0)>y, (4.29)

where ∆r ≡ 2
σ2
2

diag(x
(r)
1 − x

(r)
0 , . . . ,x

(r)
n − x

(r)
0 ) is a n× n diagonal matrix, and

Sr(x0) =
[
K∗>σ2,x0

∆r(Ω
−1Kσ2 + λ2I)−1Ω−1

]>
(4.30)

is the smoother vector for the first partial derivative with respect to the rth variable.

E[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)>m (4.31)

and conditional variance

Var[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)>ΩSr(x0). (4.32)

Proof: see Appendix C.5.
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Using Theorem 4.5, the conditional bias and variance can be estimated as follows

Theorem 4.6 Let Sr(x0) be the smoother vector for the partial derivative evaluated at x0

and let m̂2 = (m̂2(x1), . . . , m̂2(xn))> be the in sample GKRLS predictions. For a consistent

estimator of the covariance matrix such that Ω̂ → Ω, the estimated conditional bias and

variance for GKRLS derivative estimator in Eq. (4.28) are obtained by

B̂ias[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)>m̂− m̂(1)

2,r(x0) (4.33)

and

V̂ar[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)>Ω̂Sr(x0). (4.34)

Proof: See Appendix C.6.

The average partial derivative with respect to the rth variable is

m̂(1)
avg,r =

1

n′

n′∑
j=1

m̂
(1)
2,r(x0,j) (4.35)

The bias and variance of the average partial derivative estimator is given by

Bias[m̂(1)
avg,r|X] =

1

n′
ι>n′S0,rm−

1

n′
ι>n′m

(1)
0,r (4.36)

and

Var[m̂(1)
avg,r|X] =

1

n′2
ι>n′S0,rΩS>0,rιn′ , (4.37)

where n′ is the number of observations in the testing set, ιn′ is a n′ × 1 vector of ones, S0,r

is the n′ × n smoother matrix with the jth row as Sr(x0,j), j = 1, . . . , n′, and m
(1)
0,r is the

n′ × 1 vector of derivatives evaluated at each x0,j , j = 1, . . . , n′.
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4.6 Simulations

We conduct simulations that show the performance with respect to gaining effi-

ciency of the proposed generalized KRLS estimator. Consider the data generating process

from Eq. (4.1):

Yi = m(Xi) + Ui, i = 1, . . . , n. (1)

We consider the sample size of n = 200 and univariate X that is generated from Unif [−5, 5].

The specification for m is:

m(X) = sin(X) (4.38)

and the derivative is given by

m(1)(X) = cos(X) (4.39)

For the error terms, we consider two cases. Following [41], Ui is generated by an AR(2)

process, where Ui = 0.5Ui−1 − 0.4Ui−2 + εi and εi are iid N(0, 1). Also, following [33] and

[41], in the case of the AR(2) errors, the first two diagonal elements in the square root

matrix (P ) of the covariance matrix (Ω) of U are unique from the others. In the second

case, Ui are heteroskedastic but independent of each other, where Ui =
√

0.05X2
i + 0.01εi

with εi ∼ N(0, 1), i = 1, . . . , n.

In addition to the proposed estimator, we compare two other models: the naive

KRLS estimator (KRLS) and the LSSVM proposed by [12]. The naive estimator is used

as a comparison to show the magnitude of the efficiency loss from ignoring the information

in the error covariance matrix. [12] only considers heteroskedasticity in the LSSVM model,

not allowing for autocorrelation in the errors. In addition, LSSVM does not utilize the
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covariance matrix in estimating the regression function. For all models, we implement leave

one out cross validation to select the hyperparameters. The variance function under the

heteroskedastic case is estimated by nonlinear least squares by obtaining the estimated

coefficients (a, b, c) in a + log(bX2 + c). Taking the exponential would give the predicted

variance estimates. Under the case of AR(2) errors, the covariance function is estimated

from an AR(2) model. We run 200 simulations for each of the two cases and results are

reported below in Figure 4.1, Figure 4.2, and in Table 4.1.1 To evaluate the models, mean

squared error is used as the main criterion, where we also investigate the bias and variance

of the estimators. To compare results, all models are evaluated from 500 evenly spaced

points from -5 to 5.

Figure 4.1 shows simulation results under Eq. (4.38). All simulation estimates for

KRLS and GKRLS are plotted in grey and the averages across all simulations are plotted

as green curves. For both heteroskedastic and AR(2) errors, the variability, depicted as

how far or spread out the grey curves are from their average in green, is reduced as we

move from the top two plots, where KRLS regressions are estimated, to the middle two

plots, where GKRLS regressions are estimated. However, under the case of heteroskedastic

errors, the GKRLS estimates appear to be slightly more biased relative to the KRLS model.

This may be a result of the bias and variance tradeoff where an addition of small bias for

a larger reduction in the variance can lead to an overall better fit and estimator, in terms

of mean squared error. On the other hand, under the case of AR(2) errors, estimates based

on GKRLS seem to exhibit the same finite sample bias as KRLS, and there is an obvious

1The following R packages were used for conducting simulations: [2], [27], and [34].
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Figure 4.1: The left (right) plots show the estimated predictions under heteroskedastic
errors (AR(2) errors). The top, middle, and bottom plots refer to the KRLS, GKRLS,
and LSSVM estimators. The grey curves show the predicted values from all simulations
evaluated at the 500 evaluation data points spanning from -5 to 5. The green curves denote
the average predictions at each evaluation point across all simulations, and the black curve
represents the true regression function in Eq. (4.38).

reduction in the variability of the proposed estimator relative to KRLS. LSSVM estimates

are also plotted as a comparison and they show similar results to KRLS.
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Figure 4.2: The left (right) plots show the estimated derivatives under heteroskedastic
errors (AR(2) errors). The top, middle, and bottom plots refer to the KRLS, GKRLS,
and LSSVM estimators. The grey curves show the predicted values from all simulations
evaluated at the 500 evaluation data points spanning from -5 to 5. The green curves denote
the average predicted derivative estimates at each evaluation point across all simulations,
and the black curve represents the true derivative of the regression function in Eq. (4.39).

Figure 4.2 shows simulation results for the derivative given in Eq. (4.39). Similar

to the regression estimates, for both heteroskedastic and AR(2) errors, the variability from

77



estimating the derivative is reduced from GKRLS estimation, as seen as the two middle

plots, relative to KRLS estimation, as seen as the top two plots. In addition, the efficiency

gain in estimating both the regression and the derivative seems to be more evident in the

AR(2) case comared to the heteroskedastic case. A possible explanation for this is that

the covariance matrix contains more information in the off-diagonal elements compared to

the diagonal covariance matrix in the heteroskedastic case. Overall, when estimating the

regression function and its derivative for this simulation example, the reduction in variance

is clearly evident in Figure 4.1 and Figure 4.2.

Table 4.1 displays the evaluations, including bias, variance, and MSE of the esti-

mators for both error cases and for both the regression function and the derivative. Note

that all estimates in Table 4.1 are averaged across all simulations. For both error covariance

structures, GKRLS estimates of the regression function have the smallest average bias in

absolute terms. Furthermore, GKRLS has the lowest variance, and therefore lowest MSE,

making GKRLS the preferred method. Note that GKRLS estimation provides a 21.9% and

26.3% decrease in the variance for estimating the regression function for the heteroskedas-

tic errors and autocorrelated errors, relative to KRLS. When estimating the derivative, the

reduction in variance is substantial. GKRLS estimation of the derivative provides a 66.4%

and 96.2% decrease in the variance for heteroskedastic and autocorrelated errors, relative to

KRLS. Note that LSSVM provide similar estimates to KRLS. Moreover, for both regression

and derivative function estimations, GKRLS is the preferred method and variance reduction

is significant.
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Model Simulation Evaluation

Bias Variance MSE

m(·) Heteroskedastic Errors KRLS -0.0019 0.0210 0.0213

GKRLS -0.0017 0.0164 0.0188

LSSVM -0.0019 0.0308 0.0308

Autocorrelated Errors KRLS -0.0033 0.0730 0.0769

GKRLS -0.0030 0.0538 0.0548

LSSVM -0.0030 0.0828 0.0835

m(1)(·) Heteroskedastic Errors KRLS -0.0017 0.0860 0.0881

GKRLS 0.0064 0.0289 0.0328

LSSVM -0.0145 0.3120 0.3150

Autocorrelated Errors KRLS -0.0112 5.4506 5.4848

GKRLS -0.0150 0.2082 0.2111

LSSVM -0.0136 5.8460 5.8783

Table 4.1: The table reports the bias, variance, and MSE for KRLS, GKRLS, and LSSVM
estimators under Eq. (4.38), Eq. (4.39), and the cases of heteroskedastic and AR(2) errors.
All reported estimates are averaged across all simulations.

Table 4.2 shows the simulation results for the consistency of GKRLS. The bias,

variance, and MSE are reported for sample sizes of n = 100, 200, 400. In this example, in

order to see the effect of increasing the sample size, all hyperparameters are fixed and set to
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Simulation Results for Consistency of GKRLS

Heteroskedastic Errors Autocorrelated Errors

Bias Variance MSE Bias Variance MSE

m(·) n = 100 0.0005 0.0725 0.0730 0.0010 0.1675 0.1685

n = 200 0.0002 0.0369 0.0371 0.0005 0.0867 0.0872

n = 400 0.0001 0.0194 0.0194 0.0002 0.0456 0.0458

m(1)(·) n = 100 0.0060 0.5135 0.5195 0.0082 0.7626 0.7708

n = 200 0.0022 0.3264 0.3286 0.0053 0.4712 0.4766

n = 400 0.0017 0.2082 0.2099 0.0023 0.2815 0.2838

Table 4.2: The table reports the bias, variance, and MSE for GKRLS estimator under
Eq. (4.38), Eq. (4.39), and the cases of heteroskedastic and AR(2) errors for different sample
sizes, n = 100, 200, 400. All reported estimates are averaged across all simulations. All
hyperparameters are fixed and set to 1.

1. For the regression function and the derivative and for both error covariance structures,

the bias, variance, and MSE all decrease as the sample size increases, which implies that

the GKRLS estimator is consistent in this simulation exercise.

4.7 Applications

We implement two empirical applications: U.S. airline industry with heteroskedas-

tic errors and money demand equation with correlated errors.2 For both data sets we set

2The data for both applications are from [19] and can be downloaded at
https://pages.stern.nyu.edu/ wgreene/Text/Edition7/tablelist8new.htm
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aside a portion of the data for training and the other for testing. We estimate four models,

GKRLS, KRLS, LSSVM, and OLS, and compare their results in terms of mean squared

error (MSE). To evaluate the out of sample performance of each model, the predicted out

of sample MSEs are computed as follows

MSE =
1

n′

n′∑
j=1

(m̂(x0,j)− yj)2, (4.40)

where n′ is the number of observations in the testing data set and j = 1, . . . , n′. The in

sample MSEs are also reported for the training data. To assess the estimated derivatives,

we use the bootstrap to calculate the out of sample MSEs. We report the bootstrapped

MSEs for the regression function and its derivative by the following.3

MSEboot =
1

B

1

n′

B∑
b=1

n′∑
j=1

(m̂b(x0,j)− yj)2 (4.41)

MSEboot,deriv =
1

B

1

n′

B∑
b=1

n′∑
j=1

(m̂
(1)
b (x0,j)− m̂(1)

avg(x0,j))
2, (4.42)

where B is the number of bootstraps with b = 1, . . . , B, m̂b(·) and m̂
(1)
b (·) are the bth

bootstrapped estimated regression function and its first derivative respectively, and m̂(1)(·)

is the simple average of f = 1, . . . , 4 models (KRLS, GKRLS, LSSVM, and OLS):

m̂(1)
avg(x0,j) =

1

4

4∑
f=1

m̂
(1)
f (x0,j). (4.43)

3The R package by [11] was used to obtain the bootstrap samples.
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4.7.1 U.S. Airline Industry

We obtain the data on the efficiency in production of airline services from [19]. To

model heteroskedasticity we estimate GKRLS for the following:

logCit = m(logQit, logPit) + Uit, (4.44)

ωit = exp(γ1 + γ2Loadfactorit), (4.45)

where Cit is the total cost, Qit is output, and Pit is the price of fuel, and Loadfactor, the

average capacity utilization of the fleet. The data contain 90 observations of 6 firms for 15

years, from 1970-1984. For simplicity, we pool all of the data for estimation and assume

that Loadfactor appears in the variance of the error term. We randomly split the data into

two parts, where 70 observations are used as training data and 20 observations are set as

testing data to evaluate out of sample performance. For the GKRLS, KRLS, and LSSVM

models, all hyperparameters are chosen via cross validation.

We plot the results for the estimated regression function and its derivative for

GKRLS and KRLS models in Figure 4.3. For visual purposes, we train the data on the

70 observations in the training data set and evaluate both models with 200 evenly spaced

points across the support of each regressor while holding the other variables fixed at their

medians. The solid (dashed) curves in red and grey depict the bias corrected point estimates

(pointwise 95% confidence interval) for GKRLS and KRLS respectively. Both models seem

to display a positive relationship between cost and each of the regressors, output and price,

with their partial derivatives being positive almost everywhere. Accounting for the het-

eroskedasticity in the estimation of the regression function, GKRLS is somewhat smoother
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Figure 4.3: The left (right) plots show the estimated bias corrected predictions of the
regression function (derivative) for 200 evenly spaced points across the support for each
independent variable. The predictions are plotted for logQ and logP , holding all else fixed
at their medians. The red (grey) curves correspond to the predictions made by GKRLS
(KRLS). The dashed lines are the pointwise confidence intervals.

for both the estimation of the regression function and its partial derivatives. In addition,

the confidence intervals are slightly smaller that that of KRLS, implying that there is an

efficiency gain in the GKRLS estimates. The red (grey) tick marks indicate the significance

of the estimated regression function and its derivative evaluated at each testing observation

for GKRLS (KRLS), where we check to see if zero lies within the interval. Both models are

significant almost everywhere in the support for the regression functions and derivatives.
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Average Partial Derivative Estimates
for Airline Data

logQ logP

GKRLS 0.8495 0.4756

(0.011) (0.013)

KRLS 0.9786 0.5129

(0.0244) (0.0248)

LSSVM 0.8614 0.6503

(0.0165) (0.0106)

OLS 0.9347 0.4167

(0.0522) (0.0195)

Table 4.3: Average partial derivatives and their standard errors in paranetheses are re-
ported for GKRLS, KRLS, LSSVM, and OLS models. The columns represent the estimates
of the partial derivative with respect to each regressor. The White standard errors are re-
ported for the OLS model.

The average partial derivatives and corresponding standard errors are reported in

Table 4.3. These averages are calculated by training each model on the 70 observations in

the training data set and evaluating all model derivatives with 200 evenly spaced points

across the support of each regressor while holding the other variables fixed at their medians.

The estimates are bias corrected and the results from Section 4.5 are used in our calcula-

tions. The reported estimates for GKRLS and KRLS correspond to the derivative plots in
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Figure 4.3. The White heteroskedastic standard errors are reported for the OLS model.4

Comparing GKRLS and KRLS, the estimates of the partial derivative are similar but the

standard errors are significantly reduced for GKRLS, where we see a gain in efficiency, as

we have confirmed from Figure 4.3. The partial derivative estimates for LSSVM are similar

to those for KRLS but is more efficient. Assuming that GKRLS is the correct model, KRLS

and LSSVM would underestimate the elasticity with respect to output and overestimate

the elasticity with respect to price. For OLS, we estimate the following

logCit = β0 + β1 logQit + β2 log2Qit + β3 logPit + ε.

Then the partial derivatives are

logQ : β1 + 2β2 logQit

logP : β3

Table 4.3 shows that the OLS model overestimates the elasticity with respect to output and

underestimates the elasticty with respect to price compared to those of GKRLS.

To assess the models in terms of out of sample performance, we calculate the

MSEs using the 20 observations in the testing data set. Table 4.4 reports MSEs for the

four considered models. The first and second rows report the out of sample MSEs using

the 20 observations and the bootstrap respectively. The last row reports the in sample

MSEs. Considering the nonparametric models, GKLRS, KRLS, and LSSVM, the GKRLS

estimator outperforms the others in terms of MSE. The bootstrapped MSEs for the partial

derivatives are reported in Table 4.5. For the partial derivative with respect to output,

4The R package by [45] was used to obtain the White heteroskedastic standard erorrs.
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MSEs for Ailrine Data

GKRLS KRLS LSSVM OLS

Out of Sample 0.0064 0.0145 0.0129 0.0193

Boot Out of Sample 0.0150 0.0565 0.0268 0.0203

In Sample 0.0016 0.0027 0.0032 0.0175

Table 4.4: The MSEs are reported for GKRLS, KRLS, LSSVM, and OLS models. The
first and second rows are the out of sample MSE and the bootstrapped MSE for the 20
observations in the testing set. The third row is the in sample MSE for the observations in
the training set.

GKRLS produces the lowest MSE, outperforming the other models. Considering only the

nonparametric models, the smallest MSE is the one obtained by GKRLS for the derivative

with respect to price. However, OLS has the lowest overall MSE for the derivative with

respect to price. Looking at the plots with respect to price in Figure 4.3, the GKRLS

estimator (red curve) appears to produce a somewhat linear function in price, holding

output fixed. We conducted a test for correct specification [26] of a linear model of the cost

function in terms of price and failed to reject the null at the 5% level, indicating that cost

may be linear in price for this particular data set. This reason is one justification as to why

OLS performs the best in terms of the lowest bootstrapped MSE for the derivative with

respect to price, since the cost function may be in fact linear with respect to price but not

output.
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Bootstrapped Partial Derivative MSEs
for Airline Data

logQ logP

GKRLS 0.1057 0.0488

KRLS 0.4199 0.3130

LSSVM 0.3745 0.2561

OLS 0.1195 0.0259

Table 4.5: The bootstrapped MSEs for the GKRLS, KRLS, LSSVM, and OLS partial
derivatives are reported. The rows represent the MSEs estimates of the partial derivative
with respect to each regressor.

4.7.2 Money Demand Equation

The data for the money demand equation is obtained from [19] and we consider

the following model:

log(M1/CPI)t = m(logGDPt, log TBILLt) + ut (4.46)

where M1 is nominal money stock, CPI is consumer price index, and TBILL is the quaterly

average of month end 90 day treasury bill rate. The errors are assumed to be correlated and

an ARMA(1,2) is used to model the residuals. The data contain quarterly data from 1950

to 2000, with 204 total observations. The first 188 observations are used as training data

and the last 16 observations are used as testing data to evaluate out of sample performance.

For all machine learning models, all hyperparameters are chosen via cross validation.
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Figure 4.4: The left (right) plots show the estimated bias corrected predictions of the
regression function (derivative) for 200 evenly spaced points across the support for each
independent variable. The predictions are plotted for logGDP , and log TBILL, holding all
else fixed at their medians. The red (grey) curves correspond to the predictions made by
GKRLS (KRLS). The dashed lines are the pointwise confidence intervals.

Similar to the empirical example using the airline data, we plot the results for

the estimated regression function and its derivatives for GKRLS and KRLS models in

Figure 4.4. In this example, we train the data on the 188 observations in the training

data set and evaluate both models with 200 evenly spaced points across the support of

each regressor while holding the other variables fixed at their medians. The solid (dashed)

curves in red and grey depict the bias corrected point estimates (pointwise 95% confidence
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Average Partial Derivative Estimates
for Money Demand Data

logGDP logTBILL

GKRLS 0.2850 -0.0439

(0.0188) (0.0082)

KRLS 0.3426 -0.0618

(0.0221) (0.0106)

LSSVM 0.2327 -0.0451

(0.0076) (0.0041)

OLS 0.3996 -0.1477

(0.0957) (0.0627)

Table 4.6: Average partial derivatives and their standard errors in paranetheses are re-
ported for GKRLS, KRLS, LSSVM, and OLS models. The columns represent the estimates
of the partial derivative with respect to each regressor. The Newey-West standard errors are
reported for the OLS model.

interval) for GKRLS and KRLS respectively. Looking at plots (a) and (b) of Figure 4.4,

there seems to be a positive relationship between GDP and money demand. We can see

that GKRLS estimates are also smoother compared to KRLS. GKRLS estimates of the

regression function appears to be linear and hence the derivative to be constant so GDP

may have a linear relationship with money demand in logarithms. The partial derivative

with respect to GDP for GKRLS is constant, positive, and significant for the entire support

of logGDP . For treasury bill rate (plots (c) and (d) of Figure 4.4), GKRLS appears to
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show a negative relationship between treasury bill rate and money demand. However, KRLS

appears to have a positive relationship in the beginning of the support of log TBILL and

negative towards the end of the support, holding all else fixed. Looking at the derivative

with respect to log TBILL, the derivative calculated by GKRLS is negative and significant

for almost the entire support. However, the derivative calculated by KRLS is positive and

significant for most of the first half of the support and negative and significant at the end of

the support. Basic economic theory tells us that higher treasury bill rates should correspond

to lower demand for money. As a result, the GKRLS model would be a more reasonable

model to accept. The difference in the two models could be the case that KRLS does not

consider the correlation in the errors when estimating the regression function and therefore

its derivatives. After taking the information from the residuals in the first step, GKRLS can

adjust for the correlation in the estimated function and its derivative to get more sensible

results.

MSEs for Money Demand Data

GKRLS KRLS LSSVM OLS

Out of Sample 0.0012 0.0095 0.0221 0.0137

Boot Out of Sample 0.0052 0.0086 0.0154 0.0128

In Sample 0.0045 0.0022 0.0012 0.0033

Table 4.7: The MSEs are reported for GKRLS, KRLS, LSSVM, and OLS models. The
first and second rows are the out of sample MSE and the bootstrapped MSE for the 16
observations in the testing set. The third row is the in sample MSE for the observations in
the training set.
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Table 4.6 shows the average partial derivatives and standard errors with respect

to each regressor for the four models evaluated at 200 evenly spaced points.5 The estimates

reported for GKRLS and KRLS correspond to the derivative plots in Figure 4.4. We can

see that the estimates for KRLS and GKRLS differ significantly, where KRLS derivative

estimates show larger elasticities with respect to GDP and treasury bill rate, implying that

KRLS may overestimate the elasticities. Although GKRLS partial derivative estimates are

slightly smaller relative to KRLS, GKRLS standard errors are smaller, making GKRLS

more efficient. LSSVM partial derivative estimates are very similar to those of GKRLS.

Note that although the average partial derivative estimates of GKRLS and LSSVM may be

very similar, the pointwise derivatives are not similar.

To assess the models in terms of out of sample performance, we calculate the MSEs

using the last 16 observations in the testing data set. Table 4.7 reports MSEs for the four

considered models. The first and second rows report the out of sample MSEs using the 16

observations and the bootstrap respectively. The last row reports the in sample MSEs. In

terms of out of sample performance, GKRLS achieves the lowest MSE and outperforms the

other considered models. The bootstrapped MSEs for the partial derivatives are reported

in Table 4.8. For both regressors, the MSEs are the lowest for GKRLS, with GKRLS

outperforming the other models.

5The R package by [45] was used to obtain the Newey-West standard erorrs.
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Bootstrapped Partial Derivative MSEs
for Money Demand Data

logGDP log TBILL

GKRLS 0.0104 0.0021

KRLS 0.0279 0.0049

LSSVM 0.0154 0.0238

OLS 0.0168 0.0040

Table 4.8: The bootstrapped MSEs for the GKRLS, KRLS, LSSVM, and OLS partial
derivatives are reported. The rows represent the estimates of the partial derivative with
respect to each regressor.

4.8 Conclusion

Overall, this chapter proposes a nonparametric regression function estimator via

KRLS under a general parametric error covariance. The two step procedure allows for het-

eroskedastic and serially correlated errors, where in the first step, KRLS is used to estimate

the regression function and the parametric error covariance, and in the second step, KRLS

is used to estimate the regression function using the information in the error covariance.

The method improves efficiency in the regression estimates as well as the partial effects esti-

mates compared to standard KRLS. The conditional bias and variance, pointwise marginal

effects, consistency, and asymptotic normality of GKRLS are provided. Simulations show

that there are improvements in variance and MSE reduction when considering GKRLS

relative to KRLS. Two empirical examples are illustrated with estimating an airline cost
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function with heteroskedastic errors and with estimating a money demand equation with

autocorrelated errors. The derivatives are evaluated, and the average partial effects of the

inputs are determined in these applications. In both empirical exercises, GKRLS shows

different regression function and derivative function estimates and is more efficient than

KRLS.
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Chapter 5

Conclusions

We have made three main contributions in bridging the gap between machine learn-

ing and econometrics. First, we provide an alternative way of estimating first derivatives

of models using weighted difference quotients based on machine learning regression models,

allowing economists to analyze the partial marginal effect of a variable and therefore inter-

pret the underlying mechanisms of the model. The procedure is most impactful for models

that produce noisy regression functions such as LRF, where direct derivative estimates are

not smooth and are not analytically available. Second, we extend the derivative procedure

based on smoothing random forest based difference quotients to second derivatives. Second

derivatives are often useful in economics to determine the concavity of various functions,

e.g.’s production function and earnings function. Lastly, information held in the error co-

variance is used in estimating a nonparametric regression function via KRLS is used. It is

shown that ignoring the information in the error structure can lead to misleading results

and incorrect interpretations of the regression function. Therefore, incorporting the error

94



structure in estimating regressions allow for more efficient and robust results for both the

regression function and its derivatives.

In terms of future work, any machine learning estimator can be used in the esti-

mation of derivatives, established in Chapters 2 and 3. However, one estimator that comes

in mind is the k-Nearest Neighbor (kNN) estimator. Just like forest-based models, kNN is a

powerful nonparametric estimator that produces non-smooth regression functions. There-

fore, obtaining marginal effects is non-trivial; however, under the frameworks in Chapters 2

and 3, kNN based derivatives can be estimated. Another possible route is to incorporate

endogeneity in estimating the derivatives. In both derivative chapters, the regressors are

assumed to be exogenous. It is often the case that many economic variables are considered

endogenous and therefore will cause partial effects to be biased. In the derivative chapters,

the assumption of exogeneity may be relaxed and more robust derivatives can be estimated.

Another possible area of research is to further expand on the generalized machine

learning techniques. A parametric error covariance is used in Chapter 4; however, to make

the procedure fully nonparametric, KRLS can be used to estimate the error covariance.

Not only can this method generalize to KRLS, but it can also generalize to other machine

learning methods such as random forest, support vector machine, kNN, neural networks,

etc. In all of these machine learning methods, none of the information in the error structure

is used. If there is information that is not exploited, then our estimates may not be as

efficient. Therefore, it may be beneficial to incorporate the error structure in estimating

the regression function to better enhance our predictions.
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In [9], a new combined semiparametric estimator of the conditional variance that

takes the product of a parametric estimator and a nonparametric estimator based on KRLS

is proposed. In this paper, KRLS is used to estimate the nonparametric component. The

paper discusses how to estimate the semiparametric estimator using real data and how to

use the estimator to make forecasts for the conditional variance. Simulations are conducted

to show the dominance of the proposed estimator in terms of mean squared error. An empir-

ical application using S&P 500 daily returns is analyzed, and the semiparametric estimator

effectively forecasts future volatility. The paper can be extended to include theoretical

properties of the semiparametric estimator. In addition, extensions to the multivariate

conditional variance and covariance can also be estimated, which are studied in the para-

metrics econometrics through multivariate ARCH and GARCH models. Lastly, instead of

KRLS, any other machine learning technique may be used in estimating the nonparametric

component.

Overall, it is an exciting time with the advancement of technology and the amount

of economic data we have easily accessible. With the help of machine learning, a lot of data

based and nonparametric approaches can be used to help solve economic problems. I hope

to further continue this area of research.
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Appendix A

Chapter 2 Appendix

A.1 Proof of Prop. 2.1

The conditioal variance of Eq. (2.6) is

Var[Ŷ
(1)
i,ML|U] = Var

 k∑
j=1

wi,j
r̂(Ui+j)− r̂(Ui−j)
Ui+j − Ui−j

∣∣∣∣U


=

1−
k∑
j=2

wi,j

2

Var[r̂(Ui+1)|U] + Var[r̂(Ui−1)|U]

(Ui+1 − Ui−1)2

+
k∑
j=2

w2
i,j

Var[r̂(Ui+j)|U] + Var[r̂(Ui−j)|U]

(Ui+j − Ui−j)2

=

1−
k∑
j=2

wi,j

2
σ2
r̂,i+1 + σ2

r̂,i−1

(Ui+1 − Ui−1)2
+

k∑
j=2

w2
i,j

σ2
r̂,i+j + σ2

r̂,i−j
(Ui+j − Ui−j)2

.

For all j = 1, . . . , k, take the partial derivative with respect to wi,j and set it to zero results

in

wi,j = wi,1
(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)

(Ui+1 − Ui−1)2/(σ2
r̂,i+1 + σ2

r̂,i−1)
,
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which shows the relationship between wi,1 and wi,j . Since
∑k

j=1wi,j = 1,

k∑
j=1

wi,j =
wi,1

(Ui+1 − Ui−1)2/(σ2
r̂,i+1 + σ2

r̂,i−1)

k∑
j=1

(Ui+j − Ui−j)2/(σ2
r̂,i+j + σ2

r̂,i−j) = 1

Substituting for wi,1 gives

wi,j
(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)

k∑
j=1

(Ui+j − Ui−j)2/(σ2
r̂,i+j + σ2

r̂,i−j) = 1,

proving the proposition.

A.2 Proof of Theorem 2.1

Consider the taylor expansions for r̂(Ui+j) and r̂(Ui−j) in the neighborhood of Ui

r̂(Ui+j) = r̂(Ui) + (Ui+j − Ui)r̂(1)(Ui) +
(Ui+j − Ui)2

2
r̂(2)(ζi,i+j)

r̂(Ui−j) = r̂(Ui) + (Ui−j − Ui)r̂(1)(Ui) +
(Ui−j − Ui)2

2
r̂(2)(ζi−j,i),

where ζi,i+j ∈]Ui, Ui+j [ and ζi−j,i ∈]Ui−j , Ui[. Then, using Lemma 2.1 and Prop. 2.1, the

absolute conditional bias is∣∣∣∣Bias[Ŷ
(1)
i,LRF |U]

∣∣∣∣ =

∣∣∣∣∣∣E
 k∑
j=1

wi,j
r̂(Ui+j)− r̂(Ui−j)
Ui+j − Ui−j

∣∣∣∣U
− r(1)(Ui)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∑
j=1

wi,j
r(Ui+j) + Bias[r̂(Ui+j)|U]− r(Ui−j)− Bias[r̂(Ui−j)|U]

Ui+j − Ui−j

−r(1)(Ui)
∣∣∣

=

∣∣∣∣∣∣
k∑
j=1

wi,j

[
r(Ui+j)− r(Ui−j)
Ui+j − Ui−j

+
Bias[r̂(Ui+j)|U]− Bias[r̂(Ui−j)|U]

Ui+j − Ui−j

]

−r(1)(Ui)
∣∣∣

=

∣∣∣∣∣∣
k∑
j=1

wi,j

[
r(Ui) + r(1)(Ui)(Ui+j − Ui) + 1

2r
(2)(ζi,i+j)(Ui+j − Ui)2

Ui+j − Ui−j

102



−
r(Ui) + r(1)(Ui)(Ui−j − Ui) + 1

2r
(2)(ζi−j,i)(Ui−j − Ui)2

Ui+j − Ui−j

+
Bias[r̂(Ui+j)|U]− Bias[r̂(Ui−j)|U]

Ui+j − Ui−j

]
− r(1)(Ui)

∣∣∣∣
=

∣∣∣∣∣∣12
k∑
j=1

wi,j

[
r(2)(ζi,i+j)(Ui+j − Ui)2 − r(2)(ζi−j,i)(Ui−j − Ui)2

Ui+j − Ui−j

]

+

k∑
j=1

wi,j

[
Bias[r̂(Ui+j)|U]− Bias[r̂(Ui−j)|U]

Ui+j − Ui−j

]∣∣∣∣∣∣ ,
where ζi,i+j ∈]Ui, Ui+j [ and ζi−j,i ∈]Ui−j , Ui[. Now, substitute the ith weight and use

σ2
r̂,i = O(n−(1−β)) for all i.

wi,j =
(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)∑k

j=1(Ui+j − Ui−j)2/(σ2
r̂,i+j + σ2

r̂,i−j)

=
(Ui+j − Ui−j)2∑k
j=1(Ui+j − Ui−j)2

∣∣∣∣Bias[Ŷ
(1)
i,LRF |U]

∣∣∣∣ =

∣∣∣∣∣
1
2

∑k
j=1(Ui+j − Ui−j)(r(2)(ζi,i+j)(Ui+j − Ui)2 − r(2)(ζi−j,i)(Ui−j − Ui)2)∑k

j=1(Ui+j − Ui−j)2

+

∑k
j=1(Ui+j − Ui−j)(Bias[r̂(Ui+j)|U]− Bias[r̂(Ui−j)|U])∑k

j=1(Ui+j − Ui−j)2

∣∣∣∣∣
=

1

2

∣∣∣∣∣
∑k

j=1(Ui+j − Ui−j)(r(2)(ζi,i+j)(Ui+j − Ui)2 − r(2)(ζi−j,i)(Ui−j − Ui)2)∑k
j=1(Ui+j − Ui−j)2

∣∣∣∣∣
The last equality holds since we have subsamples of size s with s = nβ, which allows

the errors of the forests to be variance-dominated. Then, the absolute conditional bias is

bounded by the same bound provided by [30] for k →∞ as n→∞.
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From Prop. 2.1, the conditional variance is

Var[Ŷ
(1)
i,LRF |U] = Var

 k∑
j=1

wi,j
r̂(Ui+j)− r̂(Ui−j)
Ui+j − Ui−j

∣∣∣∣U


= Var

 k∑
j=1

{
(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)∑k

l=1(Ui+l − Ui−l)2/(σ2
r̂,i+l + σ2

r̂,i−l)

r̂(Ui+j)− r̂(Ui−j)
Ui+j − Ui−j

}∣∣∣∣U


= Var

[∑k
j=1[(Ui+j − Ui−j)/(σ2

r̂,i+j + σ2
r̂,i−j)][r̂(Ui+j)− r̂(Ui−j)]∑k

l=1(Ui+l − Ui−l)2/(σ2
r̂,i+l + σ2

r̂,i−l)

∣∣∣∣U
]

=

∑k
j=1[(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)

2] Var[r̂(Ui+j)− r̂(Ui−j)|U](∑k
l=1(Ui+l − Ui−l)2/(σ2

r̂,i+l + σ2
r̂,i−l)

)2

=

∑k
j=1[(Ui+j − Ui−j)2/(σ2

r̂,i+j + σ2
r̂,i−j)

2][(σ2
r̂,i+j + σ2

r̂,i−j)](∑k
l=1(Ui+l − Ui−l)2/(σ2

r̂,i+l + σ2
r̂,i−l)

)2

=
k∑
l=1

σ2
r̂,i+l + σ2

r̂,i−l
(Ui+l − Ui−l)2

.

Then, using Lemma 2.1 and σ2
r̂,i = O(n−(1−β)) for all i, the conditional variance is bounded

above by

Var[Ŷ
(1)
i,LRF |U] =

k∑
l=1

σ2
r̂,i+l + σ2

r̂,i−l
(Ui+l − Ui−l)2

≤ 2n−(1−β)
∑
l=1

1

(Ui+l − Ui−l)2

= 2n−(1−β) 1
2k(k+1)(2k+1)

3(n+1)2
{1 + op(1)}

=
3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)
{1 + op(1)}

for k →∞ as n→∞.
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A.3 Proof of Cor. 2.1

As k → ∞ as n → ∞ such that n−1k → 0 and n(1+β)k−3 from Theorem 2.1, the

upperbound of the conditional bias and conditional variance tend to zero. Therefore,

lim
n→∞

MSE[Ŷ
(1)
i,LRF |U] = 0.

Use Chebyshev’s inequality to complete the proof.

A.4 Proof of Cor. 2.2

Using the bias-variance decomposition of means squared error (MSE), the MSE is

bounded above by

MSE[Ŷ
(1)
i,LRF |U] ≤

(
B 3k(k + 1)

4(n+ 1)(2k + 1)

)2

+
3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)
.

Then, the conditional mean integrated squared error (MISE), is

MISE[Ŷ
(1)
ML|U] = E

∫ 1

0

(
Ŷ

(1)
LRF (U)− r(1)(U)|U

)2

dU

=

∫ 1

0
E
(
Ŷ

(1)
LRF (U)− r(1)(U)|U

)2

dU

≤
(
B 3k(k + 1)

4(n+ 1)(2k + 1)

)2

+
3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)
+ op(n

−2k2 + n(1+β)k−3)

Therefore, the asymptotic conditional MISE (AMISE) is

AMISE[Ŷ
(1)
LRF |U] ≤

(
B 3k(k + 1)

4(n+ 1)(2k + 1)

)2

+
3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)
.
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A.5 Proof of Theorem 2.2

Conditional bias:

Bias[r̂(1)(u0)|Ũ] = E[r̂(1)(u0)]− r(1)(u0)

= ε>1 S−1
n−2kU

>WE[ŷ(1)|Ũ]− r(1)(u0)

= ε>1 S−1
n−2kU

>W




r(1)(Uk+1)

...

r(1)(Un−k)

+


Bias[Ŷ

(1)
k+1,LRF |U]

...

Bias[Ŷ
(1)
n−k,LRF |U]



− r
(1)(u0)

=


ε>1 S−1

n−2kU
>W


r(1)(Uk+1)

...

r(1)(Un−k)

− r
(1)(u0)



+ ε>1 S−1
n−2kU

>W


Bias[Ŷ

(1)
k+1,LRF |U]

...

Bias[Ŷ
(1)
n−k,LRF |U]


For p odd, from Theorem 3.1 in [15], the first term is

ε>1 S−1
n−2kU

>W


r(1)(Uk+1)

...

r(1)(Un−k)

− r
(1)(u0) = ε>1 S−1 cp

(p+ 1)!
r(p+2)(u0)hp+1 + op(h

p+1),
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where cp = (µp+1, . . . , µp+1)>, µj =
∫
ujK(u)du, and S = (µi+j)0≤i,j≤p. From Theorem 2.1,

for k →∞ as n→∞, the second term is

ε>1 S−1
n−2kU

>W


Bias[Ŷ

(1)
k+1,LRF |U]

...

Bias[Ŷ
(1)
n−k,LRF |U]

 ≤ ε
>
1 S−1

n−2kU
>W


1

...

1


× sup
u∈[0,1]

|r(2)(u)| 3k(k + 1)

4(n+ 1)(2k + 1)
{1 + op(1)}

≤ sup
u∈[0,1]

|r(2)(u)| 3k(k + 1)

4(n+ 1)(2k + 1)
ε>1 S−1c̃p{1 + op(1)},

and since from [30], it is shown that

Sn−2k = U>WU

= (n− 2k)f(u0)HSH{1 + op(1)},

where H = diag{1, h, . . . , hp}, and

U>W


1

...

1

 = (n− 2k)f(u0)Hc̃p{1 + op(1)}1,

where c̃p = (µ0, µ1, . . . , µp)
>. Finally, the conditional bias of the smoothed derivative

estimator is bounded by

Bias[r̂(1)(u0)|Ũ] ≤ ε>1 S−1

[
cp

(p+ 1)!
r(p+2)(u0)hp+1

+ sup
u∈[0,1]

|r(2)(u)| 3k(k + 1)

4(n+ 1)(2k + 1)

]
{1 + op(1)}
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Conditional Variance:

When k →∞ as n→∞, the conditional variance from Theorem 2.1 is

Var[r̂(1)(u0)|Ũ] =
3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)
{1 + op(1)}

and from Theorem 1 of [3],

Var[r̂(1)(u0)|Ũ] = ε>1 S−1
n−2k(U

>W Var[Ŷ(1)|Ũ]WU)S−1
n−2kε1

≤ 3n−(1−β)(n+ 1)2

k(k + 1)(2k + 1)

1 + f(u0)ρc
h(n− 2k)f(u0)

ε>1 S−1S∗S−1ε1{1 + op(1)},

where limn→∞ n
∫
ρn(x)dx = ρc and S∗ = (νi+j)0≤i,j≤p with νj =

∫
ujK2(u)du. For p odd,

from Theorem 3.1 of [15],

∫
K∗0 (t)dt = ε>1 S−1

(∫
K(t)dt,

∫
tK(t)dt . . . ,

∫
tpK(t)dt

)>
= ε>1 S−1c̃p.

Similarly,

∫
tp+1K∗0 (t)dt = ε1S

−1cp,

∫
K∗20 (t)dt = ε>1 S−1S∗S−1ε1.

A.6 Proof of Cor. 2.3

For h→ 0, nh→∞ and k →∞ as n→∞ such that n−1k → 0 and nβk−3h−1 →

0, then from Theorem 2.2, the upperbound of the conditional bias and conditional variance

go to zero. Then,

lim
n→∞

MSE[r̂(1)(u0)|Ũ] = 0

and use Chebyshev’s inequality to complete the proof.
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A.7 More Simulation Studies

The table below shows simulations, under the same DGP in Section 2.5, for two

other candidate estimators that are not discussed in the paper. The first is SmoothLRF,

where the a LRF is trained on the data, and the fitted values are obtained, ŷLRF . Then a

local polynomial regression is used on the new dataset (x, ŷLRF ) and the first derivative can

be obtained from the second element of the gradient vector. The second is DoubleLocCubic

where a local cubic regression is trained on the data and the first derivative is obtained,

denoted by ŷ
(1)
LocCubic. Then another local cubic regression is used on the new dataset,

(x, ŷ
(1)
LocCubic) and the first derivative can be otbained from the first element of the gradient

vector.

For the proposed estimator, DQSmoothLRF, and local cubic regression, LocCub,

the results are the same as those in Section 2.5 and are here for comparison. Overall,

DQSmoothLRF still outperforms the other estimators, where SmoothLRF does worse in

reducing variance, MSE, and MAE. However, the derivative estimated by SmoothLRF does

significantly better than the derivative estimated by LRF. DoubleLocCubic does improve

upon LocCub, showing a reduction in variance, MSE, and MAE. Overall, DQSmoothLRF

seems to be robust in estimating the first derivative, even to other candidate estimators.
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Simulations of Other Candidate Estimators

Bias Variance MSE MAE

DQSmoothLRF 0.0121 0.2085 0.2943 0.4180

SmoothLRF 0.0011 0.3457 0.3699 0.4395

LocCubic -0.0045 0.4437 0.4789 0.4565

DoubleLocCubic -0.0046 0.4312 0.4667 0.4503

Table A.1: The table shows bias, variance, MSE, and MAE for the first derivative, compar-
ing four models, DQSmoothLRF (the proposed estimator), LocCubic, and DoubleLocCubic.
All estimates are averaged across all simulations. All models are evaluated at 500 evenly
spaced points from 0.05 to 0.95.
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Appendix B

Chapter 3 Appendix

B.1 Proof of Prop. 3.1

Under the assumptions of Prop. 3.1 and using Lemma 2.1,

E[+Ŷ
(1)
i+j,LRF −

− Ŷ
(1)
i−j,LRF |U] =

r(Ui+j+k1) + Bias[r̂(Ui+j+k1)|U]− r(Ui+j)− Bias[r̂(Ui+j)|U]

Ui+j+k1 − Ui+j

−
r(Ui−j−k1) + Bias[r̂(Ui−j−k1)|U]− r(Ui−j)− Bias[r̂(Ui−j)|U]

Ui−j−k1 − Ui−j

= r(1)(Ui+j) +
1

2
r(2)(Ui+j)(Ui+j+k1 − Ui+j)(1 + op(1))

− r(1)(Ui−j) +
1

2
r(2)(Ui−j)(Ui−j−k1 − Ui−j)(1 + op(1))

+
Bias[r̂(Ui+j+k1)|U]− Bias[r̂(Ui+j)|U]

Ui+j+k1 − Ui+j

−
Bias[r̂(Ui−j−k1)|U]− Bias[r̂(Ui−j)|U]

Ui−j−k1 − Ui−j

=
1

2
r(2)(Ui)(Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j)(1 + op(1))

+
Bias[r̂(Ui+j+k1)|U]− Bias[r̂(Ui+j)|U]

Ui+j+k1 − Ui+j
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−
Bias[r̂(Ui−j−k1)|U]− Bias[r̂(Ui−j)|U]

Ui−j−k1 − Ui−j

=
1

2
r(2)(Ui)(Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j)(1 + op(1)),

where the subsample rate β is chosen such that βmin < β < 1, the LRF estimator is

asymptotically unbiased. The weight for observation i is selected to be proportional to the

inverse of the conditional variance of each quotient,

wi,j,2 =

1/Var

[
+Ŷ

(1)
i+j,LRF−

−Ŷ
(1)
i−j,LRF

(Ui+j+k1+Ui+j−Ui−j−k1−Ui−j)

∣∣∣U]
∑k2

j=1 1/Var

[
+Ŷ

(1)
i+j,LRF−−Ŷ

(1)
i−j,LRF

(Ui+j+k1+Ui+j−Ui−j−k1−Ui−j)

∣∣∣U]

=

1/

 σ2r̂,i+j+k1
+σ2r̂,i+j

(Ui+j+k1
+Ui+j)

2 +
σ2r̂,i−j−k1

+σ2r̂,i−j
(Ui−j−k1+Ui−j)2

(Ui+j+k1+Ui+j−Ui−j−k1−Ui−j)
2


∑k2

j=1 1/

 σ2
r̂,i+j+k1

+σ2
r̂,i+j

(Ui+j+k1
+Ui+j)

2 +
σ2
r̂,i−j−k1

+σ2
r̂,i−j

(Ui−j−k1+Ui−j)2

(Ui+j+k1+Ui+j−Ui−j−k1−Ui−j)
2


,

where σ2
r̂ is the variance of the LRF estimator.

B.2 Proof of Theorem 3.1

Since r is three times continuously differentiable on the interval [0, 1], consider the

Taylor expansions for r(Ui+j+k1) and r(Ui−j−k1) in the neighborhood of Ui+j and Ui−j ,

r(Ui+j+k1) = r(Ui+j) +
2∑
q=1

1

q!
(Ui+j+k1 − Ui+j)qr(q)(Ui+j)

+
(Ui+j+k1 − Ui+j)3

6
r(3)(ζi+j,i+j+k1)

r(Ui−j−k1) = r(Ui−j) +
2∑
q=1

1

q!
(Ui−j−k1 − Ui−j)qr(q)(Ui−j)

+
(Ui−j−k1 − Ui−j)3

6
r(3)(ζi−j−k1,i−j),
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where ζi+j,i+j+k1 ∈]Ui+j , Ui+j+k1 [ and ζi−j−k1,i−j ∈]Ui−j−k1 , Ui−j [. Also, consider the Tay-

lor expansions for r(1)(Ui+j), r
(1)(Ui−j), r

(2)(Ui+j), and r(2)(Ui−j) in the neighborhood of

Ui

r(1)(Ui+j) = r(1)(Ui) + (Ui+j − Ui)r(2)(Ui) +
(Ui+j − Ui)2

2
r(3)(ζi,i+j)

r(1)(Ui−j) = r(1)(Ui) + (Ui−j − Ui)r(2)(Ui) +
(Ui−j − Ui)2

2
r(3)(ζi−j,i)

r(2)(Ui+j) = r(2)(Ui) + (Ui+j − Ui)r(3)(ζ ′i,i+j)

r(2)(Ui−j) = r(2)(Ui) + (Ui−j − Ui)r(3)(ζ ′i−j,i)

where ζi,i+j ∈]Ui, Ui+j [, ζi−j,i ∈]Ui−j , Ui[, ζ
′
i,i+j ∈]Ui, Ui+j [, and ζ ′i−j,i ∈]Ui−j , Ui[. The

absolute conditional bias of Ŷ
(2)
i,LRF is

∣∣∣∣Bias[Ŷ
(2)
i,LRF |Ũ]

∣∣∣∣ =
∣∣∣E[Ŷ

(2)
i,LRF ]− r(2)(Ui)

∣∣∣
=

∣∣∣∣∣∣E
2

k2∑
j=1

wi,j,2

(
r̂(Ui+j+k1 )−r̂(Ui+j)
Ui+j+k1−Ui+j

− r̂(Ui−j−k1 )−r̂(Ui−j)
Ui−j−k1−Ui−j

)
Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

− r(2)(Ui)

∣∣∣∣∣∣
=

∣∣∣∣∣∣2
k2∑
j=1

wi,j,2
(
r(Ui+j+k1 )−r(Ui+j)
Ui+j+k1−Ui+j

− r(Ui−j−k1 )−r(Ui−j)
Ui−j−k1−Ui−j

)
Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

+

(
Bias[r̂(Ui+j+k1 )]−Bias[r̂(Ui+j)]

Ui+j+k1−Ui+j
− Bias[r̂(Ui−j−k1 )]−Bias[r̂(Ui−j)]

Ui−j−k1−Ui−j

)
Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

− r(2)(Ui)

∣∣∣∣∣∣
=

∣∣∣∣∣∣2
k2∑
j=1

wi,j,2

(
r(Ui+j+k1 )−r(Ui+j)
Ui+j+k1−Ui+j

− r(Ui−j−k1 )−r(Ui−j)
Ui−j−k1−Ui−j

)
Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

− r(2)(Ui)

∣∣∣∣∣∣
≤ sup

u∈[0,1]
|r(3)(u)|

 k2∑
j=1

wi,j,2
(Ui+j − Ui)2 + (Ui−j − Ui)2

Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

+

k2∑
j=1

wi,j,2
(Ui+j − Ui)(Ui+j+k1 − Ui+j) + (Ui−j − Ui)(Ui−j−k1 − Ui−j)

Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

+

k2∑
j=1

wi,j,2

1
3(Ui+j+k1 − Ui+j)2 + 1

3(Ui−j−k1 − Ui−j)2

Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j


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where the last equality holds for the subsample rate β such that βmin < β < 1. Then, using

the weights in Eq. (3.5), Lemma 2.1, and σr̂ = O(n−(1−β)), where k1 →∞ and k2 →∞ as

n→∞ gives

∣∣∣∣Bias[Ŷ
(2)
i,LRF |Ũ]

∣∣∣∣ ≤ supu∈[0,1] |r(3)(u)|
n+ 1

×
2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j
{1 + op(1)}

The variance of the second derivative estimator, Ŷ
(2)
i,LRF , is

Var[Ŷ
(2)
i,LRF |Ũ] = Cov

2

k2∑
j=1

wi,j,2

(
r̂(Ui+j+k1 )−r̂(Ui+j)
Ui+j+k1−Ui+j

− r̂(Ui−j−k1 )−r̂(Ui−j)
Ui−j−k1−Ui−j

)
Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

,

2

k2∑
l=1

wi,l,2

(
r̂(Ui+l+k1 )−r̂(Ui+l)
Ui+l+k1−Ui+l

− r̂(Ui−l−k1 )−r̂(Ui−l)
Ui−l−k1−Ui−l

)
Ui+l+k1 + Ui+l − Ui−l−k1 − Ui−l


= 4

k2∑
j=1

k2∑
l=1

{
wi,j,2wi,l,2

(
1

(Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

)

×
(

1

Ui+l+k1 + Ui+l − Ui−l−k1 − Ui−l

)
×
(

Cov[r̂(Ui+j+k1)− r̂(Ui+j), r̂(Ui+l+k1)− r̂(Ui+l)]
(Ui+j+k1)− Ui+j)((Ui+l+k1)− Ui+l)

−
Cov[r̂(Ui+j+k1)− r̂(Ui+j), r̂(Ui−l−k1)− r̂(Ui−l)]

(Ui+j+k1)− Ui+j)((Ui−l−k1)− Ui−l)

−
Cov[r̂(Ui−j−k1)− r̂(Ui−j), r̂(Ui+l+k1)− r̂(Ui+l)]

(Ui−j−k1)− Ui−j)((Ui+l+k1)− Ui+l)

+
Cov[r̂(Ui−j−k1)− r̂(Ui−j), r̂(Ui−l−k1)− r̂(Ui−l)]

(Ui−j−k1)− Ui−j)((Ui−l−k1)− Ui−l)

)}
,
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where the first covariance is

Cov[r̂(Ui+j+k1)− r̂(Ui+j), r̂(Ui+l+k1)− r̂(Ui+l)] = Cov[r̂(Ui+j+k1), r̂(Ui+l+k1)]

− Cov[r̂(Ui+j), r̂(Ui+l+k1)]

− Cov[r̂(Ui+j+k1), r̂(Ui+l)]

+ Cov[r̂(Ui+j), r̂(Ui+l)]

The first and fourth covariances are σ2
r̂,i+j+k1

and σ2
r̂,i+j respectively when j = l, the second

covariance is σ2
r̂,i+l+k1

when j = l + k1, and the third covariance is σ2
r̂,i+l when j + k1 = l.

The other covariances can be obtained in a similar fashion. Now, using the weights in

Eq. (3.5), σ2
r̂ = O(n−(1−β)), and Lemma 2.1, where k1 →∞ and k2 →∞ as n→∞,

Var[Ŷ
(2)
i,LRF |Ũ] =

4

n1−β

k2∑
j=1

{
wi,j,2

(Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j)2

×
(

2

(Ui+j+k1 − Ui+j)2
+

2

(Ui−j−k1 − Ui−j)2

)}
− 4

n1−β

k2−k1∑
j=1

{
wi,j,2wi,j+k1,2

(
1

Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

)

×
(

1

Ui+j+2k1 + Ui+j+k1 − Ui−j−2k1 − Ui−j−k1

)
×
(

1

(Ui+j+k1 − Ui+j)(Ui+j+2k1 − Ui+j+k1)

+
1

(Ui−j−k1 − Ui−j)(Ui−j−2k1 − Ui−j−k1)

)}
− 4

n1−β

k2∑
j=1+k1

{
wi,j,2wi,j−k1,2

(
1

Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j

)

×
(

1

Ui+j + Ui+j−k1 − Ui−j − Ui−j+k1

)
×
(

1

(Ui+j+k1 − Ui+j)(Ui+j − Ui+j−k1)
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+
1

(Ui−j−k1 − Ui−j)(Ui−j − Ui−j+k1)

)}
≤ 4

n1−β

k2∑
j=1

wi,j,2
(Ui+j+k1 + Ui+j − Ui−j−k1 − Ui−j)2

×
(

2

(Ui+j+k1 − Ui+j)2
+

2

(Ui−j−k1 − Ui−j)2

)
=

4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}.

B.3 Proof of Cor. 3.1

For k1 →∞ and k2 →∞ as n→∞ and from Theorem 3.1,

∣∣∣∣Bias[Ŷ
(2)
i,LRF |Ũ]

∣∣∣∣ ≤ supu∈[0,1] |r(3)(u)|
n+ 1

×
2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j
{1 + op(1)}

= Op

(
max

{
k1

n
,
k2

n

})

and

Var[Ŷ
(2)
i,LRF |U] ≤ 4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}

= Op

(
max

{
n3+β

k2
1k

3
2

,
n3+β

k4
1k2

})

Then, for k1 →∞ and k2 →∞ as n→∞ such that n−1k1 → 0, n−1k2 → 0, n3+βk−2
1 k−3

2 →

0, and n3+βk−4
1 k−1

2 → 0, the conditional bias and conditional variance tend to zero. There-

fore,

lim
n→∞

MSE[Ŷ
(2)
i |Ũ] = 0.

Use Chebyshev’s inequality to complete the proof.
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B.4 Proof of Cor. 3.2

Using the bias-variance decomposition of means squared error (MSE), the MSE is

bounded above by

MSE[Ŷ
(1)
i,LRF |Ũ] ≤

(
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j

)2

{1 + op(1)}

+
4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}

Then, the conditional mean integrated squared error (MISE), is

MISE[Ŷ
(2)
ML|Ũ] = E

∫ 1

0

(
Ŷ

(2)
LRF (U)− r(2)(U)|U

)2

dU

=

∫ 1

0
E
(
Ŷ

(2)
LRF (U)− r(2)(U)|U

)2

dU

≤

(
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j

)2

{1 + op(1)}

+
4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

{1 + op(1)}

Therefore, the asymptotic conditional MISE (AMISE) is

AMISE[Ŷ
(2)
LRF |Ũ] ≤

(
B2

n+ 1

2
∑k2

j=1 j
3 + 3k1

∑k2
j=1 j

2 + 5
3k

2
1

∑k2
j=1 j + 1

3k
3
1k2

4
∑k2

j=1 j
2 + k2

1k2 + 4k1
∑k2

j=1 j

)2

+
4n−(1−β)(n+ 1)4

k2
1

∑k2
j=1(2j + k1)2

.
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Appendix C

Chapter 4 Appendix

C.1 Proof of Theorem 4.1

First, we note that the GKRLS estimator is a linear smoother by substituting

Eq. (4.10) into Eq. (4.11)

m̂2(x0) =
n∑
i=1

ĉ2,iKσ2(xi,x0)

= K∗>σ2,x0
ĉ2

= K∗>σ2,x0
(Ω−1Kσ2 + λ2I)−1Ω−1y

= L(x0)>y,

where L(x0) =
[
K∗>σ2,x0

(Ω−1Kσ2 + λ2I)−1Ω−1
]>

andK∗σ2,x0
= (Kσ2(x1,x0), . . . ,Kσ2(xn,x0))>

the kernel vector evaluated at point x0.
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Then, the conditional mean and variance of GKRLS can be derived as follows

E[m̂2|X = x0] = L(x0)>E[y|X]

= L(x0)>m

and

Var[m̂2(x0)|X = x0] = L(x0)>Var[y|X]L(x0)

= L(x0)>ΩL(x0).

C.2 Proof of Theorem 4.2

The exact bias for GKRLS for the training data is given by

E[m̂2|X = x]−m = (L− I)m,

and observe that the residuals are obtained by

û2 = y − m̂2

= y − Ly

= (I− L)y.

And the expectation of the residuals is given by

E[û2|X = x] = m− Lm

= −Bias[m̂2|X].
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[12] suggests estimating the conditional bias by smoothing the negative residuals

B̂ias[m̂2|X] = −Lû2

= −L(I− L)y

= (L− I)m̂2.

Therefore, the conditional bias can be estimated at any point x0 by

B̂ias[m̂2(x0)|X = x0] = L(x0)>m̂− m̂2(x0)

For the conditional variance, we assume that the error covariance matrix Ω = Ω(θ)

can be consistently estimated by Ω̂ = Ω̂(θ̂). Then, using a consistent estimator of the error

covariance matrix, the conditional variance of GKLRS can be estimated by

V̂ar[m̂2(x0)|X = x0] = L(x0)>Ω̂L(x0).

C.3 Proof of Theorem 4.3

Since the bias corrected fitted values, m̂c, have zero conditional bias, we can focus

on the conditional variance. From Theorem 4.1, the conditional variance of the GKRLS

estimator is

Var[m̂2|X] = LΩL>

= LPP>L>

= LP (LP )>

= AA>,
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where A ≡ LP . Consider the singular value decomposition of A, where D, U, V are the

singular values, left singular vectors, and right singular vectors respectively.

Var[m̂2|X] = AA>

= UDV(UDV)>

= UD2U>

= U


d2

1 . . . 0

...
. . .

...

0 . . . d2
n

U>,

where di, i = 1, . . . , n denotes the ith diagonal element of D, i.e. the ith singular value

of LP . To examine the sum of the variances of m̂2, the trace of the variance matrix is

evaluated.

tr(Var[m̂2|X]) = tr(UD2U>)

= tr(D2U>U)

= tr(D2)

=
n∑
i

d2
i .

For large enough n, tr(D2) slows in growth and converges to some constant, M , and the

average variance of m̂(xi) is 1
n

∑n
i=1 d

2
i . Recall that d2

i denotes the ith squared singular value

of LP and is proportional to the variance explained by a given singular vector of LP . Given

the construction of LP , the columns of this product matrix can be thought of as weights

of the data, scaled by the standard deviation of the error term. Therefore, the number of

large singular values will grow initially with n but the number of important dimensions or
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singular values will start to grow slowly with n. As a result, the average variance of m̂(xi),

which is 1
n

∑n
i=1 d

2
i , shrinks to zero as n → ∞. Since the average variance shrinks to zero,

then each individual variance must approach zero as n becomes large.

C.4 Proof of Theorem 4.4

Consider the difference between the bias corrected fitted values and the true values,

m̂2 − Bias[m̂2|X]−m, where Bias[m̂2|X] = Lm−m,

m̂2 − Bias[m̂2|X]−m = Lu

Note that E[Lu|X] = 0 and Var[Lu|X] = LΩL>. The following results will be for the

case of heteroskedastic errors, where observations are independent and heterogenesously

distributed. Consider the individual variances for each observation,

Var[L(xi)ui|X] = L(xi)
>ΩL(xi)

and let s2
n be the sum of the variances,

s2
n =

n∑
i=1

L(xi)
>ΩL(xi).

As long as the sum is not dominated by any particular term and if L(xi)ui are independent

vectors distributed with mean 0 and variance L(xi)
>ΩL(xi) <∞ and s2

n →∞ as n→∞,

then

Lu
d→ N(0,LΩL>),

by Lindeberg-Feller central limit theorem. It then follows that

m̂2 − Bias[m̂2|X]−m
d→ N(0,LΩL>).
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The following results will be for the case of autocorrelated errors, where observa-

tions are dependent and identically distributed.1 Given (i) Yt = m(Xt)+ut, t = 1, 2, . . .; (ii)

{(Xt, ut)} is a stationary ergodic sequence; (iii) (a) {L(Xthi)uth,Ft} is an adapted mixin-

gale of size -1, h = 1, . . . , p, i = 1, . . . , n; (b) E|L(Xthi)uth|2 <∞, h = 1, . . . , p, i = 1, . . . , n;

(c) Vn ≡ Var(
∑n

t=1 L(Xt)ut) is uniformly positive definite; (iv) E|L(Xthi)|2 < ∞, h =

1, . . . , p, i = 1, . . . , n.

Consider
∑n

t=1 λ
>V−1/2L(Xt)ut, where V is any finite positive definite matrix.

By Theorem 3.35 of [44], {Zt,Ft} is an adapted stochastic sequence because Zt is measurable

with respect to Ft. To see that E(Z2
t ) <∞, note that we can write

Zt = λ>V−1/2L(Xt)ut

=

p∑
h=1

λ>V−1/2L(Xth)uth

=

p∑
h=1

n∑
i=1

λ̃iL(Xthi)uth,

where λ̃i is the ith element of the n × 1 vector λ̃ ≡ V−1/2λ. By definition of λ and V,

there exists ∆ <∞ such that |λ̃i| < ∆ for all i. It follows from Minkowski’s inequality that

E(Z2
t ) ≤

[
p∑

h=1

n∑
i=1

(
E|λ̃iL(Xthi)uth|2

)1/2
]2

≤

[
∆

p∑
h=1

n∑
i=1

(
E|L(Xthi)uth|2

)1/2]2

≤ [∆pn∆1/2]2 ≤ ∞,

since for ∆ sufficiently large, E|L(Xthi)uth|2 < ∆ < ∞ given (iii.b) and the stationarity

assumption. Next, we show {Zt,Ft} is a mixingale of size -1. Using the expression for Zt

1We follow the proof similar to the case of dependent identially distributed observations provided by [44].
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just given, we can write

E([E(Z0|F−m)]2) = E

[E( p∑
h=1

n∑
i=1

λ̃iL(X0hi)u0h|F−m)

)]2


= E

[ p∑
h=1

n∑
i=1

E
(
λ̃iL(X0hi)u0h|F−m

)]2
 .

Applying Minkowski’s inequality, it follows that

E([E(Z0|F−m)]2) ≤

[
p∑

h=1

n∑
i=1

(
E
[
E
(
λ̃iL(X0hi)u0h|F−m

)2
])1/2

]2

≤

[
∆

p∑
h=1

n∑
i=1

(
E
[
E(L(X0hi)u0h|F−m)2

])1/2]2

≤

[
∆

p∑
h=1

n∑
i=1

c0hiγmhi

]2

≤ [∆pnc̄0γ̄m]2,

where c̄0 = maxh,i c0hi <∞ and γ̄m = maxh,i γmhi is of size -1. Thus, {Zt,Ft} is a mixingale

of size -1. Note that

Var(nZ̄n) = Var

(
n∑
t=1

λ>V −1/2L(Xt)ut

)

= λ>V−1/2VnV
−1/2λ→ σ̄2 <∞.

Hence Vn converges to a finite matrix. Set V = limn→∞Vn = LΩL> which is positive

definitie given (iii.c). Then, σ̄2 = λ>V−1/2VV−1/2λ = 1. Then by the martingale central

limit theorem,
∑n

t=1 λ
>V−1/2L(Xt)ut

d→ N(0, 1). Since this holds for every λ such that

λ>λ = 1, it follows from Cramér-Wold Theorem, that V−1/2
∑n

t=1 L(Xt)ut
d→ N(0, I).

Hence, Lu
d→ N(0,LΩL>) and it then follows that

m̂2 − Bias[m̂2|X]−m
d→ N(0,LΩL>).
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C.5 Proof of Theorem 4.5

First, we note that the GKRLS derivative estimator is a linear smoother by sub-

stituting Eq. (4.7) and Eq. (4.10) into Eq. (4.28),

m̂
(1)
2,r(x0) =

2

σ2
2

n∑
i=1

e
− 1

σ22
||xi−x0||2

(x
(r)
i − x

(r)
0 )ĉ2,i

= K∗>σ2,x0
∆rĉ2

= K∗>σ2,x0
∆r(Ω

−1Kσ2 + λ2I)−1Ω−1y

= Sr(x0)>y,

where ∆r ≡ 2
σ2
2

diag(x
(r)
1 − x

(r)
0 , . . . ,x

(r)
n − x

(r)
0 ) is a n× n diagonal matrix and

Sr(x0) =
[
K∗>σ2,x0

∆r(Ω
−1Kσ2 + λ2I)−1Ω−1

]>
(C.1)

is the smoother vector for the first partial derivative with respect to the rth variable. Then,

the conditional mean and variance of the GKRLS can be derived as follows

E[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)>E[y|X]

= Sr(x0)>m

and

Var[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)>Var[y|X]Sr(x0)

= Sr(x0)>ΩSr(x0).
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C.6 Proof of Theorem 4.6

The bias of the GKRLS derivative estimator in Eq. (4.28)

Bias[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)>E[y|X]−m(1)

r (x0)

= Sr(x0)>m−m(1)
r (x0),

where m
(1)
r (x0) is the true first partial derivative of m with respect to the rth variable.

Since this quantity as well as m is unknown, we estimate both to calculate the conditional

bias.

B̂ias[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)>m̂2 − m̂(1)

2,r(x0),

where m̂2 is the n × 1 vector of in sample GKRLS predictions of m and m̂
(1)
2,r(x0) is the

estimated GKRLS derivative prediction evaluated at point x0.

For the conditional variance, we assume that the error covariance matrix Ω = Ω(θ)

can be consistently estimated by Ω̂ = Ω̂(θ̂). Then, using a consistent estimator of the error

covariance matrix, the conditional variance of GKLRS can be estimated by

V̂ar[m̂
(1)
2,r(x0)|X = x0] = Sr(x0)>Ω̂Sr(x0) (C.2)
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