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Robert C. Feenstra
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Mingzhi Xu
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Alexis Antoniades
Georgetown University
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Abstract

We examine the price and variety of products at the barcode level in cities within
China and the United States. In both countries, there is a greater variety of products in
larger cities. But in China, unlike the United States, the prices of products tend to be
lower in larger cities. We attribute the lower prices to a pro-competitive effect, whereby
larger cities attract more brands and retailers which leads to lower markups and prices.
Combining the effect of greater variety and lower prices, it follows that the cost-of-living
for grocery-store products in China is lower in larger cities. We further compare the cost-
of-living indexes for particular product categories between China and the United States.
In product categories with a significant presence of U.S. brands in the Chinese market,
the availability of additional Chinese brands leads to greater variety than in the United
States, and therefore lower Chinese price indexes for that reason. In product categories
with much less presence of U.S. brands in the Chinese market, however, the observed
prices differences between the countries (usually lower prices in China) are partially or
fully offset by the variety differences (less variety in China), so that the cost of living in
China is not as low as the price differences suggest, especially in smaller cities.

∗We thank John Romalis and NBER conference participants for their helpful comments and Qi Liu for research assis-
tance. Financial support from the National Science Foundation and the China Scholarship Council is gratefully acknowl-
edged, as are the elasticities of substitution provided by Hottman, Redding, and Weinstein (2016). Calculations are based
on data from the Nielsen Company (US), LLC and marketing databases provided by the Kilts Center for Marketing Data
Center at the University of Chicago Booth School of Business, and from the Nielsen Company (China). c©The Nielsen
Company. Please direct correspondence to: Robert Feenstra, University of California, Davis, rcfeenstra@ucdavis.edu.
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1 Introduction

In 2005, real GDP for the Chinese economy fell by 40%. Not in reality, of course, but in the estimates

reported by the World Bank. As explained by Deaton and Heston (2010), the revised 2005 estimates

made use of new price data collected for China under the International Comparisons Program (ICP):

. . . the 2007 version of the World Development Indicators (WDI), World Bank (2007), lists

2005 per capita GDP for China as $6,757 . . . in current international dollars. The 2008

version, World Bank (2008), which includes the new [2005] ICP data, gives, for the same

year, and the same concept $4,088 for China ...1

The cause of this fall in estimated real GDP for China is that the prices collected for China were

higher than expected. In fact, prices had never been collected for China before the 2005 round of

the ICP, so prior estimates of real GDP used imputed prices. Because the actual Chinese prices were

higher than imputed, then the quantity of goods consumed by the representative Chinese individual

were lower. It follows that real GDP was also lower – 40% lower for China!

Two explanations have been provided for the unexpectedly high prices collected for China by

the ICP 2005. The first explanation is that urban regions were over-sampled in China and that rural

prices would be lower. That claim is evaluated by Feenstra, Ma, Neary, and Prasada Rao (2013),

who find that Chinese prices from the 2005 ICP round were indeed somewhat higher than for other

developing countries at similar levels of GDP per capita. Besides the possible urban bias, another

explanation has to do with a special feature of the 2005 ICP, whereby prices were collected in each

region of the world and then “linked” to other regions using a different price survey conducted

only in certain cities. Deaton and Aten (2017) and Inklaar and Rao (2017) argue that this “linking”

procedure led to a systematic upward bias in the prices for Asia relative to the United States. That

linking procedure was not followed in the 2011 round of the ICP, and as a result, relative prices in

Asia and in other developing countries were lower than in 2005.

These facts, combined with anecdotal evidence of high prices in China,2 are enough to convince

us that a source of price information for China independent of the ICP is very important; crucial,

in fact, to obtain reliable estimates of its real GDP. The goal of this paper is to compare the cost

of living for cities in China and in the United States using two sources of barcode data: scanner

data from grocery stores; and prices for grocery-store products scraped from a phone application.

In scraping prices from a phone app we are following the lead of Cavallo and Rigobon (2016) who

collect prices from internet sources to make time-series and cross-country comparisons. Such scraped

data alone is not well-suited to compute cost-of-living indexes, however, because there is no quantity

or expenditure data available with the scraped prices. While expenditure data is available from

scanner data, it is prohibitively expensive to obtain for China in more than a handful of products.

1Deaton and Heston (2010), p. 3. The World Bank references in this quote are to the World Development Indicators.
2Anecdotal evidence that prices in China are high comes from Chinese students in the United States who return home

and find a local price for an item that is higher than the U.S. price at the official exchange rate. They will photograph that
item and post it on their Facebook page!
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Accordingly, in this paper we rely on Chinese scanner data for four product categories in 22 cities,

purchased from Nielsen (China), and have supplemented these data with scraped prices for these

same four products and a further 15 product categories over 60 cities, obtained from a mobile phone

application that allows consumers to check for the various prices at supermarkets in each city. These

Chinese price data are complemented by Nielsen (U.S.) barcode data at the city level. All data are for

2011 or more recent years.

In our results, we find that in both countries there is a greater variety of products in larger cities.

That result has already been found by Handbury and Weinstein (2015) for the United States, and this

paper is the first confirmation of the same result for China. For the U.S., the greater variety in larger

cities offsets the higher prices found there, so that Handbury and Weinstein (2015) argue that the

cost of living – incorporating both price and variety – is lower in larger cities. But in China, unlike

the United States, we find that the prices of products themselves tend to be lower in larger cities. We

attribute those lower prices to a pro-competitive effect, whereby larger cities attract more brands and

retailers which leads to lower markups and prices. Combining the effect of greater variety and lower

prices, it follows that the cost of living for grocery-store products in China is also lower in larger

cities.

We further compare the cost-of-living indexes for particular products between China and the

United States. In the four product categories for which we purchased Nielsen (China) scanner data,

i.e., Toothpaste, Laundry Detergent, Personal Wash items and Shampoo, we expected a significant

presence of U.S. brands in the Chinese market and that turned out to be the case. Then the avail-

ability of additional Chinese brands leads to greater variety than in the United States, and therefore

lower Chinese price indexes for that reason. In the other 15 product categories for which we only

have scraped data, however, there is much less presence of U.S. brands in the Chinese market. In

these cases, the observed prices differences between the countries (usually lower prices in China)

are partially or fully offset by the variety differences (less variety in China), so that the cost of living

in China is not as low as the price differences suggest. This latter case applies to Tea, for example,

because our data do not include the many Chinese varieties of tea that are not sold in supermarkets.

In section 2 we describe the nested CES framework that we shall use to measure the consumer

gains from variety. Preliminary evidence from the four product categories with both Nielsen (China)

barcode data and scanned prices is presented in section 3. A model of multi-product firms is de-

scribed in section 4, from which we derive the solutions for firm pricing and product scope. These

equations are estimated as regressions described in section 5. We extend our analysis to incorporate

competition between retailers in section 6. Our empirical results on the prices of 15 other product

categories is presented in section 7, and section 8 concludes.
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2 Consumer Utility and Variety

We study an economy consisting of c = 1, ..., D cities or destinations, which differ in population Lc

and labor income wc. Labor is the only factor of production and it is not mobile across cities. A

fraction ρ of total labor income is spent on the differentiated goods, and we denote that spending by

Yc = ρwcLc.

The preferences of the representative consumer in each city are nested CES. Denoting the set of

product varieties sold by firm f in city c by i ∈ I f c, the sub-utility from the products of firm f are

given by

X f c =

(
∑

i∈I f c

(bi f cxi f c)
(σ−1)/σ

)σ/(σ−1)

, σ > 1, (1)

where σ is the elasticity of substitution across products sold by a firm, and bi f c are the taste param-

eters for each variety, which we will allow to differ across firms, products and to a certain extent

across cities as explained below. Each firm is a manufacturing firm and not a retailer.3 Aggregating

across firms f ∈ Fc that sell in city c, utility of the representative consumer is,

Uc =

(
∑
f∈Fc

X(η−1)/η
f c

)η/(η−1)

, η > 1. (2)

As in Hottman, Redding, and Weinstein (2016), we expect that the elasticity of substitution σ across

products within a firm is larger than the elasticity η across firms, so we assume that σ ≥ η > 1.

When the two elasticities are equal, then the nested CES system will collapse to a standard CES

utility function as used in Feenstra (1994).

Let p f c denote the vector of prices pi f c for firm f across all product varieties i, with the vector of

taste parameters b f c, and let Pf c = e(p f c, b f c, I f c) denote the minimum expenditure needed to obtain

one unit of sub-utility, X f c = 1. Then e(p f c, b f c, I f c) takes on the CES form,

Pf c = e(p f c, b f c, I f c) =

(
∑

i∈I f c

(pi f c/bi f c)
1−σ

)1/(1−σ)

. (3)

Feenstra (1994) shows how to measure the effect of new varieties on the exact price index. Specif-

ically, consider firm f selling to destinations c and d. Suppose that there is a non-empty subset of

“common” products I f ⊆ I f c ∩ I f d sold by firm f in these two cities for which the taste parameters

are equal, bi f c = bi f d, i ∈ I. Then the exact price index between the two cities can be expressed as

e(p f c, b f c, I f c)

e(p f d, b f d, I f d)
=

∏
i∈I f

(
pi f c

pi f d

)wi f (I f )
(λ f c

λ f d

) 1
σ−1

. (4)

The first term in brackets on the right of (4) is the Sato (1976)-Vartia (1976) price index, where

wi f (I f ) is the weight defined by:

3We examined the modeling of a retail sector as another nest in the utility function in section 6 below.
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wi f (I f ) ≡
si f c(I f )−si f d(I f )

ln si f c(I f )−ln si f d(I f )

∑
j∈I f

(
sj f c(I f )−sj f d(I f )

ln sj f c(I f )−ln sj f d(I f )

) , si f c(I f ) ≡
pi f cxi f c

∑
j∈I f

pj f cxj f c
, (5)

and likewise for the shares si f d(I f ) in city d, also defined over the common set of products. The

second term on the right of (4) is the adjustment needed to take into account differing sets of goods

available in the two cities, and is defined by:

λ f c ≡
∑i∈I f

pi f cxi f c

∑i∈I f c
pi f cxi f c

= 1−
∑i∈I f c\I f

pi f cxi f c

∑i∈I f c
pi f cxi f c

, (6)

To interpret these formulas, λ f c in (6) denotes the spending in city c on the common products

of firm f, sold in both cities, relative to total spending in city c on firm f’s products. Equivalently,

it equals one minus the share of expenditure on the unique products sold by firm f only in city c.

Having access to more unique varieties in city c implies a smaller expenditure share on common

products, λ f c, and a lower cost-of-living index in (4).

To extend the exact price index to the nested CES case, let Pc denote the vector of CES price

indexes Pf c shown in (3) for all firms f ∈ Fc in city c, and let Pc = E(Pc, Fc) =

(
∑ f∈Fc

P(η−1)
f c

)1/(1−η)

denote the expenditure needed to obtain utility of one in city . Let F ≡ Fc ∩ Fd denote the non-empty

set of “common” firms selling to both cities c and d. Then again from Feenstra (1994), the cost of

living between the two cities can be written as,

E(Pc, Fc)

E(Pd, Fd)
=

[
∏
f∈F

(
Pf c

Pf d

)W f (F)
](

λc

λd

) 1
η−1

=

∏
f∈F

∏
i∈I f

(
pi f c

pi f d

)W f (F)wi(I f )
 [∏

f∈F

(
λ f c

λ f d

)W f (F)] 1
σ−1
(

λc

λd

) 1
η−1

(7)

where the Sato-Vartia weights across firms are,

W f (F) ≡
S f c(F)−S f d(F)

ln S f c(F)−ln S f d(F)

∑
g∈F

(
Sgc(F)−Sgd(F)

ln Sgc(F)−ln Sgd(F)

) , S f c(F) ≡
∑

i∈I f c

pi f cxi f c

∑
g∈F

∑
i∈Igc

pigcxigc
, (8)

and likewise for the shares S f d(F) for city d, also defined over the common set of firms. The final

term on the right of (7) is defined by:

λc ≡
∑
g∈F

∑
i∈Igc

pigcxigc

∑
g∈Fc

∑
i∈Igc

pigcxigc
= 1−

∑
g∈Fc\F

∑
i∈Igc

pigcxigc

∑
g∈Fc

∑
i∈Igc

pigcxigc
, (9)

That is, λc denotes the spending on the common set of firms F relative to total spending in city c, or

one minus the share of spending on firms selling only in city c. The greater the share of spending on

unique firms selling only in that city, the lower is the exact price index in (7).
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3 Evidence on Prices in Four Product Categories

3.1 Data

Our calculation of the cost of living relies on the data extracted from three sources. The first source

is the Nielsen (China) Sales database which enables us to observe the annual sales and average price

information of each product with a barcode.4 We purchased Nielsen (China) scanner data for four

product categories, namely, Toothpaste, Laundry Detergent, Personal Wash items, and Shampoo,

covering 22 cities in China, as shown in the red colored regions of Figure 1.5 Besides the sales infor-

mation for each product, we also observe manufacturer information such as brand and sub-brand of

each product. In our theory and empirical analysis, we refer to the brand as the firm (e.g. Crest or

Colgate for toothpaste).

The regions covered by Nielsen (China) database are only large cities (most of them are capi-

tal cities). To address this limitation, our analysis also relies on our second data source, which are

scraped prices collected in 2015 from a mobile phone application that allows consumers to check for

the various prices at supermarkets in each city. Details on this second source of data are provided

in Appendix, and it allows us also to include smaller cities in our sample (as shown in Figure 12 of

Appendix A3). We end up expanding our sample to 60 cities, including the 22 cities provided by

Nielsen (China) database, as shown in the yellow colored regions of Figure 1. Based on the first two

data sources, we implement the formulas described above to calculate the cost of living in China

for each of the four product categories. Our third source of data is the Nielsen Retailing Sales (U.S.)

database, used to calculate the cost of living for 377 MSAs of the United States in 2013, for each of

the four product categories.

We have prices for individual barcode products in four categories for 60 cities in China, but we

have expenditure on these barcode products for only 22 cities in the Nielsen (China) database. We

have implemented a Heckman procedure to estimate barcode-level expenditure in the remaining 38

cities, using a reduced-form equation for the barcode expenditure shares in the 22 cities for which we

have those data. This Heckman procedure is described in Appendix B. The estimated expenditure

shares are used to measure the terms λ f c and λ f appearing in the cost-of-living index (7).

Data are also needed on the elasticities σ between products within a firm, and η between firms.

These elasticities of substitution differ across the four product categories. We rely on the estimates of

these elasticities from Hottman, Redding, and Weinstein (2016), as shown in Appendix B. These au-

thors estimate the elasticities from the Nielsen Retailing Sales (U.S.) database, which is the same data

that we use for the United States. Our assumption is that, for each product category, the elasticities

are the same in the United States and in China.

4We convert RMB data to U.S. dollars using the annual average exchange rate.
5We use 2011 and 2012 sales information for toothpaste, and 2014 for the other three product categories.
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Figure 1: Regions included in Nielsen Sales Data and Scraped Price Data

Significantly, the barcode systems used in China is the European Article Number (EAN-13),

whereas that used in the United States in the Universal Product Code (UPC). While it is not difficult

to identify similar product categories, it is impossible to exactly match the items across countries by

their barcodes since the barcode systems differ and product descriptions themselves do not match6.

That difference in the barcode systems means that the consumer theory outlined above due to Feen-

stra (1994) cannot be applied between countries, since it assumed that there is a non-empty subset of

“common” products I f ⊆ I f c ∩ I f d sold by firm f in two cities c and d for which the taste parameters

are equal, bi f c = bi f d, i ∈ I. We certainly cannot assume that the tastes for products are the same

when we cannot even match products across barcode systems. Accordingly, for the next several sec-

tions we focus on comparisons of price across cities within China and the U.S. It will not be until

section 7 that we attempt to compare across countries, using an alternative formulation of exact price

indexes for a nested CES utility function due to Redding and Weinstein (2016).

3.2 Prices Across Chinese and U.S. Cities

Panel (a) of Figures 2 to 5 exhibits how the average price of the common products vary with respect

to the city population for Toothpaste, Laundry Detergent, Personal Wash Items and Shampoo. We

measure the prices in terms of dollars per ounce and calculate the average price using the Sato-Vartia

6As the UPC numbers in the U.S. Nielsen database are also based on the EAN convention (with the 13th digit dropped),
there is a possibility to correctly link the Chinese and US products. However, in our four main products, the total number
of exactly matched products are 3 for Toothpaste (0.65% of the total global products), 0 for Shampoo and Personal Wash
Items, and 2 for Laundry Detergent (0.45% of the total global products). The Low match rate is mainly attributed to the
fact that the global products sold in China is produced by the multinational firms and adopts a different EAN numbers
rather than the one used in the United States. In the appendix, we provide the examples that are similar in China and the
U.S. but have different EAN numbers.
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weights, which is the numerator of the Sato-Vartia index in (7), while also calculating the numerator

of the variety adjustment in (7):

PSV
c ≡ ∏

f∈F
∏
i∈I f

(pi f c)
W f (F)wi(I f ), ΛSV

c ≡
[

∏
f∈F

λ
W f (F)
f c

] 1
σ−1
(

λc

) 1
η−1

. (10)

The terms PSV
c and ΛSV

c are shown in panels (a) and (b) of Figure 2 for Toothpaste, Figure 3 for Laun-

dry Detergent, Figure 4 for Personal Wash items, and Figure 5 for Shampoo. In each panel and each

Figure, we plot the variables for the United States (in blue dots) and China (in red x) against the log

population of each city.

From panel (a), we observe that average prices PSV
c of common products within the United States

do not vary significantly between cities, whereas the average prices in China have a clear negative

relationship with city size. We explore that finding more in the next section, where we argue that a

pro-competitive effect in larger cities in China can account for that result. In panel (b) we see that

the term ΛSV
c , which measures the inverse of variety, falls slightly with city size in the United States

(though this is barely visible), but falls very notably with city size in China.

Multiplying the terms PSV
c ×ΛSV

c , and choosing the normalization PSV
NYΛSV

NY = 1 for New York,

we obtain the exact price index for the United States shown in panel (c) of each Figure. These exact

price indexes are slightly declining in city size for Toothpaste, Laundry Detergent, and Personal

Wash items, but not for Shampoo. In the first three products, we therefore confirm the finding by

Handbury and Weinstein (2015) for the United States that the greater variety in larger cities offsets the

higher prices found there. But in China, unlike the United States, the prices of products themselves

tend to be lower in larger cities, and that is reinforced by a much greater increase in variety in larger

cities, too. For both reasons, the cost-of-living indexes PSV
c ΛSV

c for China decline much more rapidly

with population than in the United States.

Because the terms in (10) use the common products within each country, these variables are only

meaningful when comparing prices and variety for each country. In section 7 we develop a method

for comparing these indexes between countries, drawing on Redding and Weinstein (2016). Contin-

uing to normalize PSV
NYΛSV

NY = 1 for New York, we apply this between-country method to obtain the

exact prices index for Shanghai, abbreviated as the point SH in panel (c). Then the indexes PSV
c ΛSV

c

for all other Chinese cities are measured relative to Shanghai and, by of the virtue of Redding and

Weinstein (2016) method described in section 7, these can also be compared to those in the U.S. We

see that the cost of living for each product in panel (c) is pulled down in China as compared to the

Sato-Vartia geometric means in panel (a), especially in the larger Chinese cities. In other words, for

all four product categories, the additional product variety (as shown in panel b) due to both U.S. and

local brands in the larger cities in China lowers the relative cost of living for consumers there.
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We further illustrate the cost of living in each Chinese city relative to the average level of cost

of living in the United States,7 by plotting these in maps shown in Figures 6 to 9. We use the cold

color (blue) to indicate a Chinese price level lower than that of the U.S. average, and the hot color

(red) to represent a higher Chinese price level. We see from Figure 6 to 9 that the exact price index

is lower in China than the U.S. in all four product categories (the relative price varies from 0.24 to

0.71, with the U.S. average as unity). This occurs despite the fact that the Sato-Vartia average price

for Shampoo is higher in China than in the United States.8 In addition, the exact price indexes are

higher in inland cities than in the eastern coast cities that are usually of larger size. For example,

the most expensive cities for Toothpaste, Laundry Detergent, Personal Wash items, and Shampoo

are Baotou (1.00), Lanzhou (0.29), Baotou (0.44), and Hohhot (0.83) respectively. So the benefits of

greater variety in China applies only to the larger cities, often found on the eastern coast and in

certain inland locations such as Chongqing, which is highlighted in the maps near the center of

China and has relatively low exact price indexes.

4 Firm Pricing and Choice of Variety

4.1 Nested CES Demand

To obtain the demand for each differentiated good consumed in country c, let us start at the firm

level. Demand for the aggregate of firm f products is X f c = (Yc/Pc)(Pf c/Pc)−η , where Yc denotes to-

tal expenditure, Pc is the overall CES price index, and Pf c is the CES price index (or unit-expenditure

function) shown in (3). Then demand for each variety equals bi f cxi f c = [(pi f c/bi f c)/Pf c]
−σX f c. Mul-

tiplying by (pi f c/bi f c) and using the equation for X f c, we find that spending on each variety is,

pi f cxi f c = Pf cX f c

(
pi f c/bi f c

Pf c

)1−σ

= Yc

(
pi f c/bi f c

Pf c

)1−σ (Pf c

Pc

)1−η

. (11)

We are now in a position to compute the elasticity of demand for an individual variety. We use

the log of spending and differentiate to obtain:

ε i f c = −
d ln xi f c

d ln pi f c
= 1−

d ln(pi f cxi f c)

d ln pi f c

= 1− (1− σ)−
[
(σ− η) + (η − 1)

d ln Pc

d ln Pf c

]
d ln Pf c

d ln p f ic
(12)

= σ− [(σ− η) + (η − 1)S f c]si f c,

7The U.S. average cost of living is calculated as the geometric mean of all MSAs.
8We suspect that shampoo products in China are more likely to include additives that raise their prices.
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Figure 6: Relative Cost-of-living in China: Toothpaste

Figure 7: Relative Cost-of-living in China: Laundry Detergent
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Figure 8: Relative Cost-of-living in China: Personal Wash Items

Figure 9: Relative Cost-of-living in China: Shampoo
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where si f c = d ln Pf c/d ln pi f c is the share of expenditure on product i within the sales of firm f , and

S f c = d ln Pc/d ln Pf c is the total share of sales of firm f in city c. 9

Our assumption that σ ≥ η implies that as the variety share si f c rises then the elasticity of de-

mand will fall; likewise, as the firm share S f c rises the elasticity also falls. If the firm ignored the

cannibalization effect of each variety on other sales then it would charge a higher price whenever si f c

or S f c rises. But we now show that when the firm jointly profit-maximizes over all goods, taking into

account cannibalization effects, then the price charged for each good will depend only the firm share

S f c and not on the within-firm variety share si f c.

4.2 Optimal Prices for the Multiproduct Firm

Consider a firm producing variety i in city c and delivering it to destination d. The firm chooses the

range of products to sell in multiple destinations d = 1, ...D. The profit-maximization problem for

this firm is

max
pi f d, i∈I f d

D

∑
d=1


 ∑

i∈I f d

(pi f d − gi f (wc)− Tcd)xi f d − ki f d

− K f d

 1(I f d 6= ∅), (13)

where K f d denotes the fixed costs to enter a city and 1(I f d 6= ∅) is an indicator variable that takes

value of unity if I f d 6= ∅ and zero otherwise. That is, the firm chooses whether to enter into each city

d, and pays the fixed cost of K f d only if it does, along with the fixed costs of ki f d to sell each variety

i in city d. We let gi f (wc) denote the (constant) marginal costs of producing good i in city c, with

factor prices wc, and selling it in city d with transport costs of Tcd. We assume that firms treat the

prices of other firms as given under Bertrand competition, and that demand in the various cities is

independent.

Focus initially on the choice of optimal prices. If the firm sold only a single product i in desti-

nation d, so that si f d = 1, then the elasticity of demand from (12) is εi f d = η − (η − 1)S f d so that

εi f d − 1 = (η − 1)(1− S f d). It follows from the usual markup formula that the optimal price is,

pi f d =

[
1 +

1
(η − 1)(1− S f d)

]
[gi f (wc) + Tcd]. (14)

When the firm sells multiple products, however, then it must take into account how a reduction

in the price of one will decrease demand for its other products: this is the cannibalization effect.

Nevertheless, we show in Appendix C that the same pricing formula as in (14) is obtained.10 In other

words, when the firm jointly maximizes over all its prices, the markup obtained is “as if” it was

using the elasticity of demand in (12) but with si f d = 1, so that the markup depends only on the total

market share S f d of the firm in that city.

9Using our notation of section 2, the within-firm share of expenditure is si f c = si f c(I f c), and the firm total share of
expenditure is S f c = S f c(Fc).

10This result is also shown by Feenstra (2016), chapter 9, and Hottman, Redding, and Weinstein (2016).
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4.3 Optimal Variety for the Multiproduct Firm

For simplicity, suppose that in each city there is symmetric demand and marginal cost for the prod-

ucts of each firm,11 and that the firm sells N f d of these varieties in city d. We allow marginal and

fixed costs to differ across firms. Then the profit maximization problem (13) is simplified as:

max
pi f d,N f d≥0

D

∑
d=1

{
N f d

[
(pi f d − g f − Tcd)xi f d − k f d

]
− K f d

}
1(N f d > 0). (15)

where xi f d = xj f dwhen pi f d = pj f d. The optimal price is still given by (14), though now with sym-

metric this price is the same across varieties i for each firm in city d. As the firm expands the number

of varieties sold, it draws demand away from existing varieties. Taking this cannibalization effect

into account, it is shown in Appendix C.2 that the optimal variety is determined by,

N f d =
η − 1
σ− 1

[
S f d(1− S f d)

η − (η − 1)S f d

]
Yd

k f d
, (16)

where Yd = ρwdLd is the total expenditure in destination d. Substituting this equation into (15) and

also using the optimal price from (14), it can be shown that the profits from entering a city, before

deducting the fixed costs K f d, are:12

π f d =
(σ− η) + (η − 1)S f d

σ− 1

[
S f d

η − (η − 1)S f d

]
Yd. (17)

4.4 Firm Entry

In order for the firm to serve city d, we must have π f d ≥ K f d. To see how city size affects the

entry of firms into cities, consider comparing a large city c with a smaller city d, with Yd < Yc. An

equilibrium consists of a set of firms Fc and Fd selling in each city such that prices for each firm are

given by (14), revenue per product is given by (11), and the number of products is as in (16), so that

S f c = N f c pi f cxi f c/Yc with π f c ≥ K f c and ∑ f∈Fc
S f c = 1, and likewise in city d. There is ambiguity

in the equilibrium set of firms that enter each city, because once a firm enters then demand for other

firms is reduced. But regardless of this ambiguity, we assert that if Yd < Yc then there exists a weakly

smaller set of entrants Fd ⊆ Fc in city d satisfying the equilibrium conditions, and that the entrants

are definitely reduced if city d is small enough.

To establish this claim, start with the equilibrium conditions for city c and then reduce expendi-

ture Yc. From (16) we see that N f c falls in direct proportion to Yc provided that S f c = N f c pi f cxi f c/Yc

is not affected. In fact, that is the equilibrium result because it can be confirmed from (11) that with

all firms selling fewer products in direct proportion to the fall in expenditure Yc, then the change in

11In other words, we are assuming that bi f d = bj f d and that gi f (wc) does not depend on i. In Appendix C3, we generalize
the analysis to allow the rising marginal cost of products that are farther from the core-competency of the firm. If we restrict
the analysis to iceberg rather than specific trade costs, then we find that the equilibrium condition for the scope of a firm
is essentially the same as that shown by (16), but with an extra constant term.

12To derive (17) we use that fact that the revenue earned per product by firm f is S f dYd/N f d.
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the CES price indexes Pf c and Pc ensure that revenue per product is not affected. Profits in (17) will

fall in direct proportion to the fall in Yc, however. It follows that for a sufficiently large reduction in

expenditure, the firm with the smallest initial ratio π f c/K f c ≥ 1 will be the first to have π f c/K f c < 1,

and will therefore exit the market. It follows that Fd ⊂ Fc, as we asserted.

Denoting the firm that exits by g, the equilibrium condition ∑ f∈Fc
S f c = 1 will become ∑ f∈Fc\g S f c =

1, so the market shares of all remaining firms will rise as that firm drops out (because expenditure

pi f cxi f c on all remaining products increases as the price index Pc rises in (11)). By this argument, we

see that smaller cities will have fewer firms in our model, with higher market shares. That will lead

to higher prices in (14), since we have assumed that marginal costs for each firm are the same across

cities. In other words, there is an anti-competitive effect in smaller cities, or a pro-competitive effect

in larger cities. We now turn to the empirical analysis to find whether this prediction is borne out in

the data for Chinese and U.S. cities.

5 Estimating the Firm Model

We will estimate (14) by moving the markup term to the left, so that the remaining marginal costs

plus transport costs on the right will be estimated:

pi f d

[
1 +

1
(η − 1)(1− S f d)

]−1

= gi f (wc) + Tcd

= αi + αp + αcap + βDistcd + εi f d. (18)

The first term on the right is an indicator variable for variety i, which together with the error term

ε f id reflects the marginal cost of production. We include an indicator variable αcap for the capital

city of each province in China, and the distance Distcd between the production in city c and the

destination city d. 13 αp denotes the destination province fixed effects that controls for the additional

cost incurred that are unexplained by the transportation cost (e.g. it could incur higher operation

cost due to the higher rents when a firms sells in the bigger city.).

Let N f ,min = minc{N f c} denote the “common” varieties sold by firm f in all cities within each

country. Then the common-goods share of firm f in destination d is:

λ f d =
N f ,min p f dx f d

N f d p f dx f d
=

N f ,min

N f d
= N f ,min

(
σ− 1
η − 1

) [
η − (η − 1)S f d

S f d(1− S f d)

]
k f d

Yd
, (19)

using (16). The second regression equation comes from substituting Yd = ρwdLd and taking logs,

ln λ f d = γ f ,prov + δ1 ln
[

η − (η − 1)S f d

S f d(1− S f d)

]
+ δ2 ln wd + δ3 ln Ld + ε f d. (20)

The first term γ f ,prov on the right is an indicator variable for the firm-province, which together with

the error term ε f d reflects variation in N f ,min and in the fixed costs k f d of providing each product in

13We have checked via internet sources that the firms in our sample have only one manufacturing location for Tooth-
paste, Laundry Detergent, Personal Wash items and Shampoo.
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city d. The second term reflects an inverted-U-shaped relationship between the product scope of a

firm and its market share S f d, as shown by (16). Small firms have low shares and low scope, but

large firms with high shares will hold back on product scope to avoid cannibalizing their own sales;

product scope is maximized for an intermediate value of the firm share.14 The common-goods share

of firms in each city, λ f d, is inversely related to their product scope, so the second term on the right

of (20) is a U-shaped function of the firm’s market share, and should have a coefficient of δ1 = 1 in

theory.

Notice that the presence of wd and Ld in (20) reflects the fact that higher expenditure in larger

cities reduces the common-goods share of firms in that city, λ f d, thereby increasing product variety

from each firm. In theory, the coefficients of these variables are both δ2 = δ3 = −1. A negative

sign on these estimated coefficients will show how larger cities (measured by population or average

income) have a lower common-goods share for firms, and therefore more product variety. We will

likewise want to evaluate how prices charged by firms differ across cities of different sizes, and for

this purpose we include the variables wd and Ld in (18), so that we actually estimate,

pi f d

[
1 +

1
(η − 1)(1− S f d)

]−1

= αi + αp + αcap + β1Distcd + β2 ln wd + β3 ln Ld + εi f d. (21)

5.1 Estimating the Pro-Competitive Effect

Our first testable hypothesis is the existence of the pro-competitive effect, which is evaluated with

the price equation as shown in (21). For each of the four products, we use both the price (p) and the

price divided by the markup (p/markup) as the dependent variables. We use the scraped prices at the

barcode level and rely on Nielsen (China) data to calculate firm-destination shares and the markups.

Information on city populations and average incomes, used to measure Yc = ρwcLc, are obtained for

China and for MSAs in the United States, from standard sources. Finally, we used company reports

to identify the factory locations in China, and therefore compute the distance between the factory

and destination markets.

Table 1 shows the result for toothpaste. We use price-per-item (U.S. cents/item) as the dependent

variable for specification (1) and (2), and unit-price (U.S. cents/oz) for specification (3) and (4). The

coefficients of ln Population and ln Average Income are all significantly negative, which implies larger

and richer cities will benefit from lower prices for a given product at the barcode level. Notice that

in specification (1), the coefficient on ln Population falls by about one-third, from -4.19 to -2.72, when

we switch from using the price as the dependent variable to using the price divided by markup. This

finding implies a higher markup in smaller cities, as the markup-adjusted price (price divided by

markup) rises less in smaller cities than the per-item price. We repeat the regressions but controlling

14In fact, product scope N f d in (16) is maximized for S f d =
√

η/(1 +
√

η).
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Table 1: Price Regressions for Toothpaste

(1) (2) (3)
Dep Var. Price P/mkup Price P/mkup Unit-P UP/mkup

ln Population -4.189*** -2.716*** -2.934*** -1.453*** -0.698*** -0.359***
(0.240) (0.153) (0.497) (0.321) (0.128) (0.083)

ln Average Income -6.078*** -4.627*** -5.416*** -4.389*** -1.295*** -0.973***
(0.308) (0.203) (0.391) (0.258) (0.110) (0.073)

Capital City 1.166*** 0.662*** 0.036 0.024 0.027 0.025
(0.220) (0.135) (0.272) (0.169) (0.069) (0.043)

Distance (1000km) 1.430*** 0.877*** 0.569* 0.520*** 0.207*** 0.169***
(0.236) (0.147) (0.300) (0.182) (0.079) (0.048)

Province FE NO NO YES YES YES YES
UPC− Retailer FE YES YES YES YES YES YES
Observations 89,399 89,399 89,399 89,399 89,399 89,399
R-squared 0.015 0.019 0.026 0.030 0.019 0.021

Notes: Average Income is measured as GDP per capita in each city of the given Population. Prices (Price and P/mkup)
are in units of U.S. cents and unit-prices (Unit-P and UP/mkup) are measured in U.S. cents per ounce. Capital City is
dummy variable. Robust standard errors are clustered at the group level and reported in parentheses; *** p<0.01, **
p<0.05, * p<0.1.

for destination province fixed effects in specification (2) to control for the additional cost incurred

that are unexplained by the transportation cost, such as rents. The finding of higher markup in

smaller and poorer cities remains robust.

Specification (3) uses the unit-price (U.S. cents/oz) as the dependent variable15. We observe similar

results as in specifications (1) and (2), and the pro-competitive effect remains significant: the

coefficients of ln Population and ln Average Income are uniformly negative, and the coefficients are

reduced when using unit-price/markup as a dependent variable rather than just unit-price.

In Table 2, we explore the pro-competitive effect for the other product categories (Laundry Deter-

gent, Personal Wash items and Shampoo). We focus on the price regressions with per-item price and

price/markup as the dependent variables, but the results using unit-price are similar. From these

tables, we still observe that in richer and bigger cities prices are lower and that firms charge a lower

markup, as shown by the smaller coefficients on the ln Population and ln Average Income when using

the using the price divided by markup as the dependent variable. For all four products, therefore,

we confirm a pro-competitive effect.16

15Specification (3) includes the province fixed effects. The estimated coefficients are somewhat larger when these fixed
effects are excluded, but show a similar drop from replacing unit-price with unit-price/markup.

16Campbell and Hopenhayn (2005) also find this result for thirteen retail trade industries across 225 U.S. cities.
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Table 2: Price Regressions for the Other Product Categories

(1) Laundry Detergent (2) Personal Wash (3) Shampoo
Dep Var. Price P/mkup Price P/mkup Price P/mkup

ln Population -5.598*** -4.372*** -2.093** -1.651** -9.603*** -7.813***
(0.972) (0.707) (0.978) (0.681) (1.150) (0.884)

ln Average Income -2.128*** -1.643*** -4.606*** -3.330*** -4.019*** -3.362***
(0.583) (0.429) (0.687) (0.477) (0.780) (0.599)

Capital City -0.488 -0.650* -1.077* -0.740* -1.519** -1.649***
(0.505) (0.363) (0.572) (0.399) (0.671) (0.514)

Distance (1000km) 1.050 0.883 -0.493 -0.255 0.753 0.685
(0.856) (0.619) (0.715) (0.500) (0.887) (0.678)

Observations 102,747 102,747 143,593 143,593 142,627 142,627
Number of group 26,396 26,396 32,782 32,782 32,600 32,600
R-squared 0.010 0.012 0.010 0.010 0.013 0.015

Notes: All regressions include Barcode and Retailer fixed effects. Average Income is measured as GDP per capita in
each city of the given Population. Prices (Price and P/mkup) are in units of U.S. cents. Capital City is dummy variable.
Robust standard errors are clustered at the group level and reported in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

5.2 Estimating the Variety Effect

Table 3 exhibits the result of our second structural equation as shown in (20). Motivated by the

model, we add brand-province fixed effects to control for the fixed costs needed to sell each variety

in each city, k f d. The dependent variable is ln λ f c, which denotes the expenditure in city c on the

common products of firm f relative to firm f ’s total sales in that city. Columns (1) to (4) report

results for Toothpaste, Laundry Detergent, Personal Wash items, and Shampoo respectively. The

regressions results show that larger and richer cities are likely to have smaller expenditure shares

on common products for a given firm. This result implies that larger and richer cities get access to

more varieties than smaller cities. Consistent with model, the variable ln η−(η−1)S f d
S f d(1−S f d)

contributes to the

common product share positively, but with a coefficient less than its theoretical value of unity.

These empirical results support the inverted U-shaped relation between product scope and mar-

ket share in (16), from which the regression specification (20) is obtained. Feenstra and Ma (2009)

showed that in a model with heterogeneous, multiproduct firms, an inverted U-shaped relation

would hold between the productivity of the firm and its product scope: more productive firms ini-

tially add more products, but then reduce product scope as cannibalization becomes more important.

Raff and Wagner (2013) have shown that such an inverted U-shaped relation holds empirically in a

sample of German firms, and Macedoni (2017) obtains this relation in more general theoretical and

empirical settings. Our results here are therefore consistent with these authors.
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Table 3: Firm Share Regression

(1) (2) (3) (4)
Dep Var: ln λ f d Toothpaste Laundry Detergent Personal Wash Shampoo

ln Population -0.209*** -0.236*** -0.295*** -0.156***
(0.037) (0.030) (0.034) (0.021)

ln Average Income -0.059** -0.244*** -0.159*** -0.083***
(0.029) (0.030) (0.030) (0.012)

Capital City -0.125*** -0.179*** -0.136*** -0.069***
(0.023) (0.029) (0.028) (0.015)

ln η−(η−1)S f d
S f d(1−S f d)

0.147*** 0.609*** 0.396*** 0.002

(0.033) (0.070) (0.061) (0.006)

Observations 660 420 600 840
Number of group 308 196 280 392
R-squared 0.376 0.662 0.586 0.348

Notes: All regressions include firm-province fixed effects. Average Income is measured as GDP per capita in each city
of the given Population. Capital City is dummy variable. Robust standard errors are clustered at group level and
reported in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

6 Extension of the Model to Include Retailers

In the previous analysis, we have shown that bigger and richer cities are likely to have lower markups,

which we refer as the pro-competitive effect. On the one hand, the pro-competitive effect could be

due to more entry of manufacturing firms in bigger cities. On the other hand, it could also be at-

tributed to the competition within retailing sector, since bigger and richer cities have greater number

of supermarket chains. In this section, we study the sources of the pro-competitive effect by extend-

ing the model to include retailers.

6.1 Optimal Prices for Retailers and Manufacturers

We extend our model by introducing retailers to the economy, so that we are able to take care of

the pro-competitive effect in the retailing sector . The preferences of the representative consumer

in each city are a three-level nested CES. Denoting the set of product varieties sold by retailer (or

supermarket) r, produced by firm f in city c by i ∈ I f rc, the sub-utility from purchasing the products

of firm f in retailer r are given by

X f rc =

(
∑

i∈I f sc

(bi f rcxi f rc)
(σ−1)/σ

)σ/(σ−1)

, σ > 1, (22)
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where σ is the elasticity of substitution across products sold by a firm, and bi f rc are the taste parame-

ters for each variety. Aggregating across firms f ∈ Frc that sell in retailer r and city c, the sub-utility

of the representative consumer purchasing in retailer r is ,

X rc =

(
∑

f∈Frc

X(η−1)/η
f rc

)η/(η−1)

, η > 1. (23)

where η is the elasticity of substitution across firms within retailers. Finally, aggregating across re-

tailers r ∈ Rc that sell in city c,the utility function can be written as

Uc =

(
∑

r∈Rc

X (θ−1)/θ
rc

)θ/(θ−1)

, θ > 1. (24)

where θ is the elasticity of substitution across retailers. We assume the following order conditions for

the elasticities, σ > η > θ.

There are two kinds of firms: manufacturers and retailers. Each manufacturer produces multiple

products and sells to all the retailers in each city. Both retailers and manufacturers are assumed

to play their optimal strategies simultaneously in the subsequent analysis. Manufacturers are not

able to sell their products directly to the consumers, and they must contract with and sell via the

local retailers. We assume that the local retailers are homogeneous and maximize their profit by

choosing the retailing prices, taking the city demand and wholesale prices qi f rd (the price charged by

the manufacturers) as given. Consider a retailer r selling product i (produced by firm f ) in city c, for

price pi f rc. The retailer chooses the prices for all the products provided by each manufacturer, and

whether or not to enter each city, with the profit-maximization problem:

max
pi f rc, ∀i∈I f rc f∈Frc

 ∑
i∈I f rc f∈Frc

(pi f rc − qi f rc)xi f rc − KR
c

 1(r ∈ Rc) (25)

where KR
c denotes the retailing fixed cost to enter in city c and 1(r ∈ Rc) is an indicator variable that

takes value of unity if retailer r decides to pay the fixed cost and enter city c, and zero otherwise.

Solving the above problem gives the optimal markup of the retailers, which is treated as fixed by

the manufacturing firms. Consider a manufacturing firm producing variety i in city c, and delivering

and selling it to all the retailers r in destinations destinations d = 1, ...D.17. The firm chooses the range

of products to sell to all the retailers in each city where it enters, as well as the wholesale prices qi f rd,

with the profit-maximization problem:

max
qi f rd, i∈I f rd

D

∑
d=1

 Sd

∑
r=1

∑
i∈I f rd

[
(qi f rd − gi f (wc)− Tcd)xi f rd − kM

i f d

]
− KM

f d

 1(I f d 6= ∅), (26)

17Since the retailers of the same region are homogeneous, the manufacturers are indifferent in choosing among the
retailers to accommodate their products.
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where Sd stands for the number of retailers in city d, KM
f d denotes the fixed cost to enter a city, and

kM
i f d is the fixed cost to sell a variety.

The final price paid by consumers is a natural extension of that shown in (14), and is given by,18

pi f rd =

[
1 +

1
(θ − 1)(1− hrd)

]
︸ ︷︷ ︸

Retailer Markup

[
1 +

1
(η − 1)(1− h f d)

]
︸ ︷︷ ︸

Manufacturer Markup

[gi f (wc) + Tcd]︸ ︷︷ ︸
Marginal Cost

. (27)

The first term in (27) denotes the retailer markup, and the second is the manufacturer markup. Larger

and richer cities could have both greater number of retailers (lower retailer markups) and more entry

of producers (lower manufacturer markups), which will decrease the product price in either way.

6.2 Pro-Competitive Effect Redux

We re-estimate the pro-competitive effect following the method discussed in Section 5. Table 4 shows

the result for the four main products. We use price-per-item (U.S. cents/item) as the dependent

variable for all product categories. The coefficients of ln Population and ln Average Income are all

significantly negative, which implies larger and richer cities will benefit from lower prices for a given

product at the barcode level. Comparing the first two columns for Toothpaste, the coefficient on

ln Population falls by about 40%, from -2.93 to -1.65, when we switch from using the price as the

dependent variable to using the price divided by retailer markup. This finding implies a higher

retailing markup in smaller cities, as the markup-adjusted price (price divided by retailer markup)

rises less in smaller cities than the per-item price. Comparing the second and third columns, the

coefficient on ln Population further drops by about another 50%, from -1.65 to -0.83. The coefficients

changes imply that the pro-competitive effect for Toothpaste is explained by both the entry of retailers

and the entry of manufacturers. For Personal Wash Items and Shampoo, the pro-competitive effect

from the retailing sector itself contribute more to the low prices in larger cities.

7 Extension to other Products

7.1 Measuring Product Variety

We now turn to the additional products for which we collected scraped data on their retail prices

in 60 cities, but for which we do not have any scanner data purchased from Nielsen (China). This

means that we do not have any information on their market shares, beyond knowing how many

supermarkets in each city sell each product (as is evident from the scraped data). In addition, as

noted earlier, the possibility of correctly linking the Chinese and US products is extremely low. For

that reason, it is desirable to develop formula for the exact price indexes that do not rely on having

18The solution to the model is provided in Appendix D. To make the analysis tractable, we assume the full pass-through
of the prices charged by manufacturers to the consumers, i.e., manufacturers are only able to affect the market price linearly
following pi f rd = µrdqi f rd, without affecting the retailer’s markup µrd.
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identical taste parameters b f ic for common goods that are available in every city and country.

We now show how the CES index derived by Redding and Weinstein (2016) allows for a much

weaker assumption on taste parameters that allows the cost of living to be compared between coun-

tries. To briefly review the results of Redding and Weinstein (2016), we start with the demand for

each product variety, which equals bi f cxi f c = [(pi f c/bi f c)/Pf c]
−σX f c. Multiplying by (pi f c/bi f c) and

dividing by Pf cX f c, we obtain an equation for the share of each variety within the total sales of firm f,

which depends on the CES price index Pf c. Inverting that equation to solve for Pf c, we readily obtain:

Pf c = e(p f c, b f c, I f c) = s1/(σ−1)
i f c

(
pi f c

bi f c

)
. (28)

The term λ f c defined in (6) equals si f c/si f c(I f ), so we can replace the share si f c by si f c = si f c(I f )λ f c

in the above equation. Then because (28) holds for every product i, we take the unweighted geometric

mean across all products to obtain the formula in Redding and Weinstein (2016):

Pf c =

∏
i∈I f

si f c(I f )
1

Nf (σ−1)

∏
i∈I f

(
pi f c

bi f c

) 1
Nf

 λ
1/(σ−1)
f c . (29)

Notice that this formula gives us the level of the CES price index Pf c, and not just its ratio as shown

in section 2 by equation (7).

We can aggregate over firms in a city using a similar approach. The aggregate demand for each

firm’s products are X f c = (Pf c/Pc)−η(Yc/Pc). Multiplying by Pf c and dividing by Yc, we obtain the

share of each firm in city c, which depends on the CES price index Pc. Inverting that equation to solve

for Pc, we readily obtain:

Pc = E(Pc, Fc) = S1/(η−1)
f c Pf c.

We again replace the share S f c by S f c = S f c(F)λc, and take the unweighted geometric mean over

the number of common firms M selling to all cities in each country. Then using that geometric mean

along with (29), we obtain:

Pc = E(Pc, Fc) =

∏
f∈F

∏
i∈I f

(
pi f c

bi f c

) 1
MNf

 Sc(F)Λc(F), (30)

where,

Sc(F) ≡

∏
f∈F

S f c(F)
1

M(η−1) ∏
i∈I f

si f c(I f )
1

MNf (σ−1)

 , Λc(F) ≡
[
∏
f∈F

λ
1/M(σ−1)
f c

]
λ

1/(η−1)
c . (31)

The first expression on the right of (30) is a simple geometric mean of the prices of common

products, but these prices are adjusted for the taste parameters bi f c. We have earlier assumed in our

discussion of (7) that the taste parameters b f ic are identical for common goods that are available in

every city within each country. We can now follow the assumption that Redding and Weinstein
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(2016) make in a time-series context, and use the weaker assumption that the geometric mean of taste

parameters are equal in every city within each country:

∏
f∈F

∏
i∈I f

(
bi f c
) 1

MNf = 1, ∀c ∈= 1, ..., D. (32)

With this assumption, the first term on the right of (30) is easily measured as the geometric mean of

prices. The second term Sc(F) is a geometric mean of the common firms and and common product

shares, as shown in (31). We interpret that term as adjusting for differences in tastes for specific

products within the common set, but subject to the maintained assumption that average tastes are

the same as in (32). The third term Λc(F) is the correction for variety outside the common set as in

Feenstra (1994).

We see that (30) and (31) can be readily used to measure the CES price index Pc across all cities

within each country. But what about when we compare China and the United States? In that case,

we need some analogue to the assumption in (32) that we are willing to apply across countries. To

develop this idea, let us denote the global brands by the name of the common firms that sell in both

countries by the set G ≡ FUS ∩ FChina,which we assume is not empty.19 We then pick the two large

and comparable cities in each country, New York (NY) and Shanghai (SH). Our assumption is that

there has been enough “convergence” of tastes and availability of global brands across these two

cities so that the average taste parameters are the same,

∏
g∈G

∏
i∈Ig

(
big,NY

) 1
MNg = ∏

g∈G
∏
i∈Ig

(
big,SH

) 1
MNg . (33)

With this assumption, we can compare the CES price indexes Pc between countries, as follows.

We first use (30) to measure the CES price index Pc for New York in U.S. and Shanghai in China,

with the common international firms G, which are denoted as E(PNY, G) and E(PSH, G). Next, we

apply the same calculations to the cost-of-living measures across all cities in China, with the common

firms FChina, and all cities in the United States, with the common firms FUS. We then renormalize the

Chinese and U.S. price indexes so that the cost-of-living indexes are the same for Shanghai and New

York when using the common set as the global brands (G) and national brands (FChina and FUS).

This is achieved by computing the terms in (30) for the global brands G only in New York and in

Shanghai, and then renormalizing the same terms for the Chinese and U.S. sets of common product

FChina and FUS as:
19The global brands by product categories are listed in Table 10 in Appendix A4. In practice, G is empty for Chips and

we alternatively define G ≡ [FUS ∩ (∪FChina
c )] ∪ [FChina ∩ (∪FUS

c )], the global firms that are either sell national common
products in China or in the U.S., and mark it with asterisk.
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Ẽ(Pc, FChina
c ) ≡ E(Pc, FChina

c )× E(PSH, G)

E(PSH, FChina
SH )

Ẽ(Pc, FUS
c ) ≡ E(Pc, FUS)× E(PNY, G)

E(PNY, FUS
NY)

(34)

Since this renormalization is done for all cities in both countries, we obtain cost-of-living indexes that

are fully comparable between cities and countries.

7.2 Cost-of-Living Indexes for the Four Main Products

We calculate the cost-of-living indexes in New York and Shanghai, making use of assumption (33) so

that these indexes are comparable between countries. The renormalization in (34) has already been

applied to the indexes in panel (c) of Figure 2 to 5, which are otherwise constructed according to the

method of Feenstra (1994). For comparison, we also calculate the indexes for these four products

according to the method of Redding and Weinstein (2016), which uses the unweighted geometric

mean of prices in (30), denoted by PG
c , together with the multiplied terms Sc(F)Λc(F). Those indexes

are illustrated in panel (d) of Figures 2 to 5, which are also renormalized according to (34).

A glance at those earlier Figures shows that the negative relationship between the exact price in-

dex and city size is noticeably weaker, especially for Toothpaste, when using the Redding-Weinstein

(RW) index than when using the Feenstra index. To formalize that difference, in Tables 5 and 6 we

report the coefficients of regressions of the exact price indexes and its components on the log of city

size (measured now with city GDP). Specifically, we run the regressions:

ln Zc = µ1 + µcap + µ2 ln Yc + εd, (35)

where Zc denotes either of the two terms in (10) or any of the three terms on the right of (30). Table

5 uses the Feenstra exact index in (10) and its components, while Table 6 uses the RW index in (30)

and its components.

For Toothpaste, we see that the coefficients of the Feenstra exact index, and its components using

Sato-Vartia weights, are more than twice as sensitive to city size than the RW exact index, and its

geometric price and variety components. The percentage contribution of these regression coefficients

shows that the negative relationship between the exact price index and city size is caused roughly

equally by the negative relationship between price and variety with city size. For example, out of the

regression coefficient of the price index on ln Yc of -0.122 in the first column of Table 5, around -0.055

(or 45.1%) is explained by the regression of the Sato-Vartia index ln PSV
c on ln Yc, while about -0.067

(or 51.9%) is explained by the regression of ln ΛSV
c on ln YSV

c .
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Table 5: Decomposition of Cost of living with City Size (Feenstra Method)

Toothpaste Laundry Detergent Personal Wash Shampoo
Dep.↓\Indep.→ ln Yc R2 ln Yc R2 ln Yc R2 ln Yc R2

ln E(Pf c, Fc) -0.122*** 0.424 -0.044*** 0.419 -0.081*** 0.320 -0.029*** 0.233
(0.022) (0.007) (0.018) (0.007)

ln PSV
c -0.055*** 0.363 -0.003 0.051 -0.021** 0.122 -0.015* 0.095

(0.010) (0.006) (0.008) (0.007)
45.1% 6.8% 25.6% 51.7%

ln ΛSV
c -0.067** 0.361 -0.041*** 0.524 -0.061*** 0.395 -0.014 0.079

(0.015) (0.006) (0.013) (0.009)
51.9% 93.2% 74.4% 48.3%

Notes: All regressions also include Capital dummy variable and constant, which are omitted in the table. PSV
c denotes

the Sato-Vartia weighted mean of unit prices, ΛSV
c is the variety term in (10), and Yc is city GDP. Standard errors are

reported in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Similar calculations are done in the other columns in Table 5, and in Table 6 which now also

includes the term ln Sc(F). That final variable appearing in Table 6 is is either insignificantly related

to city size or has a very small coefficient. Thus, it is not the presence of that share variable in the RW

Table 6: Decomposition of Cost of living with City Size (Redding-Weinstein Method)

Toothpaste Laundry Detergent Personal Wash Shampoo
Dep.↓\Indep.→ ln Yc R2 ln Yc R2 ln Yc R2 ln Yc R2

ln E(Pf c, Fc) -0.045*** 0.166 -0.051*** 0.453 -0.042*** 0.357 -0.014 0.069
(0.016) (0.008) (0.008) (0.007)

ln PG
c -0.025*** 0.185 -0.006 0.056 -0.004 0.058 -0.006 0.149

(0.009) (0.006) (0.005) (0.005)
55.6% 11.8% 9.5% 42.9%

ln Λc(F) -0.027** 0.261 -0.037*** 0.478 -0.059*** 0.363 -0.010 0.054
(0.009) (0.006) (0.014) (0.009)
60.0% 72.5% 140.5% 71.4%

ln Sc(F) 0.007 0.090 -0.008* 0.094 0.021 0.121 0.002 0.027
(0.017) (0.003) (0.013) (0.003)
-15.6% 15.7% -50% -14.3%

Notes: All regressions also include Capital dummy variable and constant, which are omitted in the table. PG
c denotes

the geometric mean of unit prices, Λc(F) is the variety term, Sc(F) is the share term in (25), and Yc is city’GDP. Standard
errors are reported in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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index that accounts for its reduced sensitivity to city size. But this variable will have a very important

impact on the average level of the exact price index in China as compared to the U.S., especially as we

turn to the other 15 products that we consider next.

7.3 Cost-of-Living Indexes for 15 Other Product Categories

When we have only scraped price data and not the Nielsen (China) barcode expenditures, it is chal-

lenging to the construct the share term Sc(F) and also the variety term Λc(F) that appears in in (30).

We create a proxy for the expenditure on each barcode product by simply counting the number of

retail stores that sell each barcode in a city (and dividing by the total number of retailers). That is,

the sales share of each product is approximated by:

̂ln Shareic ∝
∑r∈Rc

1(i is observed in retailer r)
Nretailers

c
, (36)

where 1(i is observed in retailer r) equals unity if we observe price quotes of barcode product i in

retailer r and zero otherwise; Rc denote the collection of retailers in city c; and Nretailers
c is the total

number of retailer stores in city c.20

In Table 7, we apply the RW index from (30) and (34) to our four main products and to the

other 15 product categories. We summarize each component of the Chinese cost of living relative to

the average value of its counterpart of the U.S. A value greater than one implies the corresponding

variable is larger in China than in the United States. Beginning with the geometric mean of prices,

as shown in the first column, these are lower in China for all products except for Shampoo, Baby

Formula, Cereals and Milk Powder.

In the second column we show the ratio of the terms [SSH(G)ΛSH(G)/SNY(G)ΛNY(G)] for Shang-

hai relative to New York. This is the key ratio that adjusts the relative geometric mean of prices to

obtain the relative cost of living in these two cities. This ratio is less than unity for our four main

products, indicating that there is greater product variety in China than in the United States. We in-

terpret that result as saying that the global brands G are sufficiently common in China for these four

products that the presence of additional local brands in China gives it greater product variety.

For the 15 other product categories, however, this ratio is greater than unity for all products

except for three: Coffee, Gum and Milk Powder. Coffee and Gum are similar to our four main

products, where there are (inexpensive) local brands in China that are sufficient popular to result in

greater product variety there. Along with Soft Drinks, which also has local brands in China, these

three products in addition to the four main products have cost-of-living indexes in China relative to

the U.S. that are lower than the relative geometric mean of prices shown in the first column.

20See Appendix B3 and Antoniades (2017), where it is shown that the average market share is exponentially related to
the proportion of available retailers carrying the barcode item. It follows that the log of the share is linearly related to this
proportion.
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Table 7: Summary of Cost of Living by Product Categories (relative to the U.S.)

Product Category\Variable PG
c

SSH(G)ΛSH(G)
SNY(G)ΛNY(G)

Other Terms Ẽ(Pf c, Fc)

Four Main Products
Toothpaste 0.81 0.64 1.13 0.58
Laundry Detergent 0.59 0.52 0.76 0.23
Personal Wash Item 0.80 0.62 0.55 0.25
Shampoo 1.59 0.66 0.61 0.65

Other Products
Baby Formula 1.30 1.12 1.02 1.48
Batteries 0.24 1.01 1.27 0.31
Biscuits 0.64 2.18 3.05 4.23
Cereal 1.29 1.95 0.70 1.76
Chips 0.31 1.76 1.16 0.64
Chocolate 0.74 1.74 1.37 1.77
Coffee 0.70 0.97 1.00 0.68
Diapers 0.74 1.12 1.04 0.86
Dog Food 0.23 1.46 1.06 0.35
Gum 0.93 0.88 0.82 0.67
Milk Powder 5.29 0.74 1.60 6.20
Soap 0.37 4.28 0.89 1.43
Soft Drinks 0.41 1.19 0.67 0.33
Tea 0.81 2.13 1.12 1.93
Toothbrushes 0.53 1.57 1.13 0.93

Notes: The table summarizes population weighted average of each varaible in relative terms (greater than unity im-
plies the corresponding variable is larger in China.). PG

c is in unit of cents per ounce for the four main products and
dollars per item for other products; SSH(G)ΛSH(G)

SNY(G)ΛNY(G)
denotes the composite share of varieties in Shanghai relative to New

York; and Other Terms is the further adjustment needed to obtain Ẽ(Pf c, Fc), which is the cost-of-living index in China
relative to the U.S.
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Milk Powder is a unique case because there was a consumer scare about this product due to the

Chinese milk scandal in 2008 and now the prices are higher than in the United States, as shown in

the first column. Those high prices are slightly offset by a value of [SSH(G)ΛSH(G)/SNY(G)ΛNY(G)]

that is less than unity, but the exact price index shown in the final column is still much higher in

China. That feature is shared by all the remaining ten products: the cost of living in China relative

to the U.S., as shown in the final column, is higher than the relative geometric mean of prices. That

higher cost of living in China for the remaining products is in most cases due to lower variety in

China.21 In some products (Biscuits, Chocolate, Soap, and Tea), that lower variety is strong enough

that it reverses the lower relative price in China, as shown by the geometric mean of prices, to become

a higher exact price index in China.

It is surprisingly that there is lower relative variety in China to a product like Tea, since China

has specialized in the product from ancient times. What seems to explain the lower relative variety

in our data is that the many loose varieties of Chinese tea are barely sold in supermarkets, which is

where we obtain our scraped data. So we miss entirely the local varieties of Chinese tea and end up

with only Western-style teas, with Lipton as the unique global brand that is sold in all cities in both

countries. The finding of a higher relative price of tea in China illustrates a deficiency of our data, or

more precisely, of the attempt to correct the prices of barcode products for variety. It remains to be

seen whether other methods of obtaining prices and expenditure data across countries can overcome

this limitation.

For each of the 15 product categories, we also explore to what extent the three components (de-

noted by PG
c , Sc(G) and Λc(G)) contribute to the overall cost of living. Table 8 presents the regression

results of the three components on city size (i.e. city GDP).22 . The first column is the elasticity of

the cost-of-living index with respect to the city size. As expected, larger cities generally benefit from

having a lower cost-of-living index. Cities with twice the market size have lower indexes with the

declines ranging from 1% (Chocolate) to 10.4% (Cereal). Pro-competitive effects are operative in most

cases, as shown by the negative coefficients in the second column, with the exception of Batteries,

Biscuits, Chocolate, Milk Powder, Soap and Toothbrushes. The final two columns show the relative

importance of the share term Sc(G) and the variety term Λc(G) in explaining the lower cost of living

in larger cities in China. In most cases, it is the variety term that is the most important explanation

for the lower exact price index and therefore the gains from living in larger cities.

8 Conclusions

Anecdotal evidence and price data collected by the World Bank in 2005 under the International Com-

parison Program (ICP) suggest that prices in China may be higher than expected. While part of the
21We further decompose [SSH(G)ΛSH(G)/SNY(G)ΛNY(G)] into three margins as shown in the Appendix E, Table 14.
22In each regression, we also include a dummy variable for the capital city which is not reported in the Table.
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Table 8: Decomposition of Cost of living with City Size (Other Product Categories)

Product lnẼ(Pf c, Fc) ln PG
c ln Sc(G) ln Λc(G)

Baby Formula -0.014 -0.008 -0.003 -0.003
59% 20% 21%

Batteries -0.017 0.005 -0.013 -0.009
-27% 76% 51%

Biscuits -0.028 0.001 0.002 -0.030
-2% -7% 109%

Cereal -0.104 -0.020 -0.013 -0.071
19% 13% 68%

Chips -0.019 -0.011 0.008 -0.016
57% -44% 87%

Chocolate -0.010 0.003 0.005 -0.019
-33% -51% 184%

Coffee -0.054 -0.012 0.003 -0.045
23% -6% 83%

Diapers -0.020 -0.015 0.001 -0.006
76% -5% 29%

Dog Food -0.069 -0.014 -0.020 -0.035
20% 29% 51%

Gum -0.029 -0.012 -0.008 -0.010
41% 26% 33%

Milk Powder -0.049 0.007 0.012 -0.068
-14% -24% 138%

Soap -0.033 0.008 -0.015 -0.026
-23% 45% 78%

Soft Drinks -0.072 -0.022 0.003 -0.053
31% -4% 73%

Tea -0.057 -0.006 -0.013 -0.038
10% 23% 67%

Toothbrushes -0.080 0.005 -0.026 -0.059
-6% 32% 74%

Notes: The reported coefficients denote the elasticity with respect to the total market size. All regressions also include
Capital dummy variable and constant, which are omitted in the table. Percentages describe the contribution of each
margin to the overall cost-of-living elasticity. PG

c denotes the geometric mean of unit prices, Λc(G) is the variety term
and Sc(G) is the share term in (25), for the global brands G.
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issue is related to sampling (Feenstra, Ma, Neary, and Prasada Rao (2013)) and procedural decisions

made by the World Bank in linking regions with each other (Deaton and Aten (2017), Inklaar and

Rao (2017)), there is still an open question as to what prices in China really are.

To address this question, and to overcome limitations in the ICP data, we have used barcode data

on selected consumer goods to compare the cost of living in cities across and between China and

the U.S. Specifically, we have obtained from Nielsen price and quantity information on Toothpaste,

Laundry Detergent, Personal wash items and Shampoo sold in 22 cities across China, and combined

those with additional price data on grocery-store products sold in sixty cities that we scraped from a

phone application to compute cost-of-living indexes. We also used the Nielsen Retailing Sales (U.S.)

database to calculate the cost of living in the U.S.

Our main finding is that the cost-of-living for grocery-store products in China is lower in larger

cities. This is driven by two sources: more product variety in large cities and lower prices. The

finding that product prices in large Chinese cities are lower contrasts with evidence from the U.S.

that show the opposite relation (Handbury and Weinstein (2015)). We attribute lower prices to a

pro-competitive effect, whereby larger cities attract more brands and retailers which leads to lower

markups and prices. Greater variety in larger cities applies to the U.S., too, but it is more pronounced

in China.

We further compare the cost-of-living indexes for particular product groups between China and

the United States, which is the goal of the ICP. Other cross-country work by Cavallo and Rigobon

(2016) uses a simple geometric mean of barcode level prices to compare price levels. It is noteworthy

that the recent theory by Redding and Weinstein (2016), described in section 7, also uses a simple

geometric mean of prices. In order to obtain an exact price index, that geometric mean is adjusted

by two other terms: a term reflecting the firm shares of products within the geometric mean; and a

term reflecting the expenditures shares on unique products in each city, that are not included in the

geometric means and which indicate product variety as in Feenstra (1994).

The simple geometric mean of prices is lower in China than in the United States for most product

categories: exceptions include Shampoo, Baby Formula, Cereal and Powdered Milk. By focusing on

“global brands” to construct these geometric means, we can plausibly meet the theoretical restriction

in Redding and Weinstein (2016) that the average tastes across barcode items in these global brands

are the same in the two countries. It turns out that focusing on the global brands also reduces the

differences in the firm shares, one of the terms adjusting the simple geometric means.23

The main difference between the geometric mean and the exact price index, therefore, comes

from the product variety term. The magnitude of these product variety terms in China relative to

the U.S. differs across the products in our sample. In the four product categories for which we

purchased Nielsen (China) scanner data, i.e., Toothpaste, Laundry Detergent, Personal Wash items

23The term Sc(F) shown in (31) is a geometric mean of the common firm shares S f c(F) and and common product shares
s f ic(I f ). If there is only one global firm, for example, then Sgc(G)=1 so it does not vary across cities or countries. Appendix
E shows the variation in Sc(G) and Λc(G) for Shanghai and New York across product categories, as an indication of where
the variation in the exact price indexes between these two cities arises from.
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and Shampoo, the availability of additional Chinese brands leads to greater variety than in the United

States, and therefore lower Chinese price indexes for that reason. In the other 15 products for which

we only have scraped data, however, there is much less presence of U.S. brands in the Chinese

market. In these cases, the observed prices differences between the countries (usually lower prices

in China) are partially or fully offset by the variety differences (less variety in China), so that the

cost of living in China is not as low as the price differences suggest. This latter case applies to Tea,

for example, because our data do not include the many Chinese varieties of tea that are not sold in

supermarkets. So we miss entirely the local varieties of Chinese tea and end up with only Western-

style teas, with Lipton as the unique global brand of tea that is sold in all cities in both countries. This

finding of a (supposed) higher exact price index for tea in China illustrates a limitation of our attempt

to correct the prices of barcode products for variety, particularly when we only have supermarket

information. It remains to be seen whether other methods of obtaining price and expenditure data

across countries, while correcting for variety, can overcome this limitation.
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Online Appendix – Not for Publication

A. Collection Method for Retail Price Data of China

Chinese retail price data are collected by scraping data from a mobile phone application. The mobile

phone app that we rely on is Wochacha (the English meaning is “I search”), a leading consumer-

product information platform in China.

A1. Introduction to Wochacha

The mobile phone application Wochacha was developed by Wochacha Info Tech Co. Ltd in January

2010. Detailed information regarding Wochacha can be obtained from its web-page.24 It is a widely

used price comparison app, using a QR code scanner so that people can see where a particular prod-

uct can be bought at the lowest price. Consumers can also search for price quotes based on the

barcode of the product. By February 2014, the number of users had exceeded 210 million and are

distributed across all the provinces in China.

According to its Public Service Rules, Wochacha uses two methods to collect the retail price data.

First, the firm hires and trains data collectors who visit supermarkets to collect prices. The second

source of retail price data relies on partnerships with supermarkets, from which Wochacha directly

obtains the scanner data. In either method, the collected prices are not published until Wochacha data

auditors have examined them.

A2. Data Collection Example

Figure 10 exhibits the results when one search for prices quotes of Pampers25 in Shanghai. Based

on the results, there are eight retail price quotes varying from 112RMB in Walmart to 165RMB in

Lotus. Besides the price-by-supermarket information, we also observe the producer name, country

of origin, as well as the unit count and producer ID. We developed software to mimic the mobile

phone app on the computer to automatically download price data for the given set of EAN codes

in the selected city. Then we repeated this process across 60 sampled cities to construct our retailing

price database. The collection took place from October to December in 2015

24See http://www.wochacha.com/about/index.
25The EAN-13 is 6903148040737.
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Figure 10: Interface of Wochacha Application

.

A3. Example of Mismatch between U.S. and China Products

Figure 11 exhibits the example of the seemingly identical products in the United States and China

but with the different EAN numbers. The item is “Sensodyne Maximum Strength Toothpaste with

Fluoride Fresh Mint”, and the left and right figures show the toothpaste in the U.S. and China, re-

spectively. The partial EAN of the toothpaste in the U.S. is “31015808189” while the EAN in China

is “6913991300483”. Such examples are ubiquitous in other product categories and, therefore, it is

impossible to exactly match the two products that are seemingly identical via the EAN system.

Figure 11: Sensodyne Maximum Strength Toothpaste with Fluoride Fresh Mint
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A4. Cities for Analysis

Cities for which we scraped price data are listed in Table 9. We include 60 cities from 28 provinces,

which are widely spread across China. As shown in Figure 12, many small cities are included in our

analysis.

Figure 12: City Size Distribution of the Sampled Cities
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A5. Global Brands

The global brands for each product are listed in Table 10. For all products except Chips, the global

brands are computed as the intersection of the common brands in the U.S. and in China, G ≡ FUS ∩
FChina. For Chips this set is empty, so we adopt the broader definition of global brands as G ≡
[FUS ∩ (∪FChina

c )] ∪ [FChina ∩ (∪FUS
c )].

Table 10: List of Global Brands by Product

Product Category Global Brands Product Category Global Brands
Toothpaste Colgate Chocolate M&M

Crest Coffee Maxwell
Sensodyne Diapers Huggies

Shampoo Dove Pampers
L’Oreal Dog Food Pedigree
Pantene Gum Wrigley

Personal Wash Items Olay Milk Powder Nestle
Laundry Detergent Tide Soap Johnson
Baby Formula Enfamil Olay

Nestle Safeguard
Similac Soft Drinks Minute Maid

Batteries Duracell Red Bull
GP Tea Lipton

Biscuits Meiji Toothbrushes Colgate
Cereal Quaker Crest
Chips Doritos

Kellogg
Lay’S
Oishi

B. Other Data

B1. Elasticities of Substitution

We use the elasticities of substitution for our four main products (Toothpaste, Laundry Detergent,

Personal Wash items and Shampoo) as well as for other product categories from Hottman, Redding,

and Weinstein (2016), which are listed in Table 11.
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Table 11: Elasticity of Substitution

Product Category Firm Elasticity (η) Product Elasticity (σ)
Toothpaste 2.75 5.23
Laundry Detergent 3.85 6.60
Personal Wash 3.42 5.11
Shampoo 4.43 6.54
Baby Formula 7.47 14.62
Batteries 8.72 15.10
Biscuits 5.51 7.31
Cereal 2.25 4.66
Chips 4.37 7.32
Chocolate 5.13 7.44
Coffee 3.89 7.31
Diapers 7.44 24.30
Dog Food 5.51 8.15
Gum 3.14 4.86
Milk Powder 2.41 5.05
Soap 3.42 5.11
Soft Drinks 5.18 7.82
Tea 4.46 6.12
Toothbrushes 2.75 5.23

B2. Prediction Method in Four Main Product Categories

The cost of living calculation requires firm sales information, whereas the Nielsen (China) sales

database only provide us with this information for only 22 large cities. To allow our analysis to also

cover smaller cities, we estimate the market share by using the product, retailer and city information

for the four main products, as discussed in this part.

For the four main products, we have the detailed EAN-level market sales in 22 cities, in addition

to the price quotes collected by scraping the mobile phone application. We implement a Heckman

two-step approach to estimate the product share within the 22 cities using the Nielsen (China) sales

database, as shown below:

Prob(Shareic > 0) = α0 + α1 ln Yc + α2 ln Lc + α3 ln Nc + α4Capitalc (37)

+ δiVarietyi + γ1rRegionr + εic,

E(ln Shareic|Shareic > 0) = β0 + β1Capitalc + φicBrandi × ln Yc

+ µicBrandi × ln Lc + ψicBrandi × ln Nc + γ2rRegionr, (38)

where (37) is the selection equation and (38) is the observation equation. Yc denotes city c’s GDP;

Lc is city population; Nc denotes the total number of differentiated products (at EAN level) in city c;

Capitalc is a dummy variable which equals unity if city c is a capital city; Regionr is a set of region
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dummies (East, Middle and West China). Finally, for each product i at EAN-13 level, Brandi denotes

a collection of Brand dummies, e.g., Crest, Colgate etc. for Toothpaste.; Varietyi is a collection of

variety categories which is constructed by jointly combining several product characteristics26; Shareic

is calculated as product i’s sales share in city c. The two-step Heckman approach is motivated by the

fact that we only observe price quotes in the mobile phone application conditional on that product is

sold in a particular city. To reduce the endogeneity issues in price regression, we do not include the

product price on the right of the share specification (38).

After obtaining the coefficients (α̂, β̂, γ̂, δ̂, φ̂, µ̂, ψ̂), we predict the market share in the cities that do

not have sales information, and we further re-scale them so that the sum of all product shares equals

unity within each city. For consistency , we use the predicted shares to calculate the cost-of-living

index for all cities, including the 22 for which we have the expenditure data from Nielsen (China).

Though this prediction method works well in most cities, it results in extreme predictions in some

cities, particularly when some product accounts for 80% or more of the total market. To avoid this

situation, we exclude cities that have the extremely low city’s average firm sales share of common

products ∏ f∈F(λ f c)
W f (F) from our analysis. Specifically, we firstly regress city’s average firm sales

share of common products, λF
c ≡ ∏ f∈F(λ f c)

W f (F), on city’s population (ln Lc), and derived the pre-

diction error ûc = λF
c − λ̂F

c . Then we drop the cities from our sample if its prediction error is twice

larger than the standard deviation of the prediction errors, i.e., we exclude city c if |ûc| > 2× std(û)27.

After implementing the criteria, we finally have (out of 60 cities) 58 cities for Toothpaste, Laundry

Detergent and Personal Wash Items, and 57 cities for Shampoo. Table 12 reports the performance of

using Heckman two-step method in predicting the market shares. The inverse mills ratios are sig-

nificant in the majorities of the categories, which implies that it is necessary to include the selection

equation.

B3. Prediction Method for Other Products

Consider a world where there are N distinct barcode products and M number of homogeneous retail-

ers. For demonstration purpose, we assume the products can be classified into two broad categories.

high and low, that differ in availability (this assumption is for simplicity, while in reality it could be

many). Specifically, the probability of observing the appearance of any H-type and L-type products

in any retailer are aH and aL respectively. Denote the share of H-type and L-type products are sH

and sL = 1 − sH. As all the {aH, aL, sH, sL} are unobservable in data, we use expected share of a

given product to approximate the real market share for both products. The expected market share of

products that are observed in k outlet is Sharek that is given as:

26For example, for Toothpaste, we define a variety by brand, sub-brand, special function, flavors, and form. Variety
Crest-Complete Plus-Deep Clean-Mint-Paste is different from Crest-Complete Plus-Mouth Wash-Mint-Paste

27We also tried with one and three standard deviations, and the main results barely changed.
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Table 12: Model Fit of Two Stage Heckman

Dep Var. (1) (1) (1) (1)
ln Shareic Toothpaste Laundry Detergent Personal Wash Items Shampoo

ˆln Shareic 0.671*** 0.783*** 0.681*** 0.465***
(0.00867) (0.0120) (0.00840) (0.00548)

Constant -1.920*** -1.329*** -2.217*** -3.853***
(0.0838) (0.113) (0.0856) (0.0564)

Inverse Mills Ratio 2.230*** 1.059*** 1.764*** 3.089
(0.377) (1.032) (0.418) (0.412)

Observations 15,817 21,322 33,870 26,175
R-squared 0.275 0.166 0.162 0.216

Notes: The table summarizes the model fit of using Heckman two-step method to predict market shares. Standard
errors are reported in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Sharek = sH

(
M
k

)
ak

H (1− aH)
M−k + sL

(
M
k

)
ak

L (1− aL)
M−k (39)

where (M
k ) denotes the number of combinations of M choose k. It is immediate that the average

market share is in exponential relationship with the proportion of the outlets selling that product

(especially there are many types of products). To demonstrate this, we propose a numerical example

where we set aH = 0.95, aL = 0.8, sH = 0.6, sL = 0.4 and M = 10, and plot the relationship between

Sharek and k/M as shown below:

Figure 13: The Expected Market Share of Products Available in k Retail Outlets
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Because of the exponential relationship between Sharek and k/M, we take the natural log to obtain

equation (36) in the main text.28

B4. Prediction Method in Four Main Product by Retailers

In our extended model (with retailers), we need the retailer sales share in each city. To begin with,

we apply a fixed effect regression on the four main products as shown below:

ln Shareic = ηi + ∑
r∈S

κr Iir

where ηi denotes the product category fixed effects (Toothpaste, Laundry Detergent, Personal Wash

Items and Shampoo). S is the complete collection of retailers observed in our sample of China. Iir

is an indicator variable which equals one if product i (at barcode level) is observed in retailer r. We

use the logarithmic share of product i by cities as the dependent variable. The estimation results are

reported in Figure 14.

Figure 14: The Estimated Retailer Fixed Effects (Top 80)

After obtaining retailer fixed effects κ̂r, we decompose the product share by retailers in each city.

Denote the share of product i sold by retailer r in city c as Shareirc, which is derived as:

Shareirc = Shareic ×
exp(κr)× 1(if i is observed in retailer r in city c)

∑s∈Sc
exp(κs)× 1(if i is observed in retailer s in city c)

28The exponential relationship between the average market share and the proportion of the available retailers is empiri-
cally found in Antoniades (2017).
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where Sc is the set of retailers in city c. Finally, we calculate the expenditure share of retailer r in city

c as:

Sharerc = ∑
i

Shareirc

C. Solution to the Firm’s Problem

C1. Choice of price by the firm

The solution to the problem (13) w.r.t. the price pi f d is

xi f d + ∑
j∈I f d

[pj f d − gj f (wc)− Tcd]
dxj f d

dpi f d
= 0, ∀i ∈ I f d. (40)

This expression is more complicated than for a single-product firm because the firm is selling all the

products i ∈ I f d, and therefore must take into account the effect of a change in each price pi f c on all

these products. To simplify this expression, it can be confirmed that the CES demand derivatives are

symmetric, dxj f d/dpi f d = dxi f d/dpj f d. Using (40) and dividing by demand xi f d, we can re-express

the condition as

1 + ∑
j∈I f d

[
1−

gj f (wc) + Tcd

pj f d

]
d ln xi f d

d ln pj f d
= 0, ∀i ∈ I f d (41)

Let us denote the ratio of price to marginal cost, inclusive of transport costs, by µj f d = pj f d/(gj f +

Tcd) ≥ 1. We can see that the expression in brackets in (41) equals (µj f d − 1)/µj f d ≥ 0, which is the

difference between price and marginal cost measured relative to price. This is the ‘Lerner index’ of

monopoly power for a single-product firm, and with price chosen optimally will equal the inverse of

its elasticity of demand. To see how this Lerner pricing rule is modified with multiproduct firms, let

us conjecture a solution where the price-cost ratios are constant across all products sold by the firm

in question, µj f d = µ f d. Then it is immediately clear that the solution to (41) is

(
µ f d − 1

µ f d

)
= −

 ∑
j∈I f d

d ln xi f d

d ln pj f d

−1

. (42)

Expression (42) says that the Lerner index for the firm equals the inverse of the sum of demand

elasticities (rather than just the inverse of the own demand elasticity, as occurs for a single-product

firm). In order for this solution to be valid, however, we need to have that the sum of elasticities on

the right of (42) be independent of good i, because we have assumed that the markup is common

across goods. This independence holds if an equi-proportional increase in all prices charged by a

firm needs to lead to the same percentage drop in demand for any product sold by that firm. It turns

out that this condition is satisfied for CES demands, in which case the sum of elasticities is29

29The cross-elasticity is d ln xi f d/d ln pj f d = −[(σ − η) + (η − 1)S f c]sj f c, for i 6= j and along with (12) then (43) is
obtained.
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− ∑
j∈I f d

d ln xi f d

d ln pj f d
= η − (η − 1)S f d > 1. (43)

Notice that the expression on the right-hand side of (43) is precisely what we get from (12) if we

replace the share si f d within the firm by unity, since the firm sells all of its own products. Then the

pricing formula is obtained as (14).

C2. Choice of variety by the firm

The first-order condition of (15) with respect to N f d yields30

[p f d − g f (wc)− Tcd]x f d + N f d[p f d − gi f (wc)− Tcd]
dx f d

dN f d
= k f d. (44)

Using the demand function, the elasticity of demand w.r.t. product scope N f d is given by:

d ln x f d

d ln N f d
= (σ− η)

d ln Pf d

d ln N f d
+ (η − 1)

d ln Pd

d ln Pf d

d ln Pf d

d ln N f d

=
σ− η + (η − 1)S f d

1− σ
.

The second inequality comes from d ln Pf d
d ln N f d

= 1
1−σ when marginal costs are the same. Condition (44)

can then be rewritten as (16),

N f d =
η − 1
σ− 1

[
S f d(1− S f d)

η − (η − 1)S f d

]
Yd

k f d
.

C3. Model of core-competency and iceberg trade cost detailed

In this section, we solve the firm’s problem with heterogeneous product marginal cost and iceberg

trade cost. The production technology of the firm is characterized by a core competence for product

ω = 0, and firms are able to adjust the number of varieties with an adaption cost in marginal cost.

Specifically, the marginal cost of producing variety ω is assumed to be monotonically increasing in

ω. There is also a bilateral iceberg transportation cost τcd when firm sells to other cities. With these

assumptions, the profit maximization of firm f in city c is expressed as,

max
N f d, {p f d(ω)|ω∈[0,N f d]}

D

∑
d=1

{∫ N f d

0
[p f d(ω)− τcdg f (ω)]x f d(ω)dω− k f dN f d − K f d

}
1(N f d > 0). (45)

Following the steps shown in Appendix C.1, the optimal price is:

p f d(ω) =

[
1 +

1
(η − 1)(1− S f d)

]
τcdg f (ω), ∀ω ∈ [0, N f d]. (46)

The first order condition with respect to N f d yields,

30As products have the same marginal cost, it is convenient to omit subscript i in the analysis.
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[p f d(N f d)− τcdg f (N f d)]x f d(N f d) +
∫ N f d

0
[p f d(ω)− τcdg f (ω)]

d ln x f d(ω)

dN f d
dω = k f d. (47)

Using the demand function, the elasticity of demand with respect to product scope is given by:

d ln x f d

d ln N f d
= (σ− η)

d ln Pf d

d ln N f d
+ (η − 1)

d ln Pd

d ln Pf d

d ln Pf d

d ln N f d

=
σ− η + (η − 1)S f d

1− σ
s f d(N f d)N f d. (48)

In this expression, s f d(N f d) denotes the within firm share of the very last product, indexed by ω =

N f d, which is defined as,

s f d(N f d) =
p f d(N f d)x f d(N f d)∫ N f d

0 p f d(ω)x f d(ω)dω
=

g f (N f d)
1−σ∫ N f d

0 g f (ω)1−σdω
≡ H(N f d),

where H(.) increases with its argument given g′f > 0. Jointly using (47) and (48), the optimal scope

is derived as,

H(N f d) =
η − 1
σ− 1

[
S f d(1− S f d)

η − (η − 1)S f d

]
Yd

k f d
. (49)

If we further assume g f (ω) = wcωθ , with θ ≥ 0 and σ < 1 + 1/θ, then H(N f d) = (1 + θ − σθ)/N f d.

Then the equation for λ f d is derived as,

λ f d =
N(σ−1)θ

f d N1+θ−θσ
min

1 + θ − θσ

(
σ− 1
η − 1

) [
η − (η − 1)S f d

S f d(1− S f d)

]
k f d

Yd
.

D. Extension of the Model to Include Retailers

D1. Solution to the Model with Retailers

To begin with, we derive the elasticity of demand for a given product i (sold by firm f in retailer r of

city c):

ε i f rc = −
d ln xi f rc

d ln pi f rc
= 1−

d ln(pi f rcxi f rc)

d ln pi f sc

= 1− (1− σ)−
[
(σ− η) + (η − θ)

d ln Prc

d ln Pf rc
+ (θ − 1)

d ln Pc

d ln Prc
× d ln Prc

d ln Pf rc

]
d ln Pf rc

d ln pi f rc

= σ− [(σ− η) + (η − θ)h f |rc + (θ − 1)hrch f |rc]hi| f rc, (50)

where hx|y denotes the conditional shares of x given y.31 The cross elasticity with respect to the

products of the same firm f is−[(σ− η)+ (η− θ)h f |rc +(θ− 1)hrch f |rc]hj| f rc. The cross elasticity with

31For example, hi| f rc = d ln Pf rc/d ln pi f rc is the share of expenditure on product i within the sales of firm f in retailer r,
while hrc = hr|c = d ln Pc/d ln Prc is the purchase share of retailer r in city c.
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respect to the goods of another firm g is −[(η − θ)hg|rc + (θ − 1)hrchg|rc]hj|grc, and the cross elasticity

with respect to the price of products of the same firm sold in another retailer s is−(θ− 1)hsch f |schj| f sc.

We first solve the optimal pricing rule for retailers. The first-order condition of (26) with respect

to pi f rc is

xi f rc + ∑
j∈I f rc g∈Frc

(pjgrc − qjgrc)
dxjgrc

dpi f rc
= 0, ∀i ∈ I f rc f ∈ Frc

.As we assume products are homogeneous everywhere (symmetry assumption), we can confirm that

dxjgrc/dpi f rc = dxi f rc/dpjgrc, ∀i, j, g, and f . We rewrite the above the equation as:

1 + ∑
j∈I f rc g∈Frc

[
1−

qjgrc

pjgrc

]
d ln xi f rc

d ln pjgrc
= 0, ∀i ∈ I f d

.We conjecture that the markup of retailer r are the same across all the products sold in region c, and

denote it as µrc = pjgrc/qj f rc ≥ 1. Then it is immediate that:

(
µrc − 1

µrc

)
= −

 ∑
j∈I f rc g∈Frc

d ln xi f rc

d ln pjgrc

−1

Applying the cross-elasticity, we can derive that:

− ∑
j∈I f rc g∈Frc

d ln xi f rc

d ln pjgrc
= θ − (θ − 1)hrc > 1

which is consistent with what we conjecture. Therefore, the pricing rule is

pi f rc =

[
1 +

1
(θ − 1)(1− hrc)

]
qi f rc, ∀i ∈ I f rc f ∈ Frc

Next, we solve for manufacturer’s problem.32 The first-order condition of (26) with respect to

price qi f rd is:

xi f rd +
Sd

∑
s=1

∑
j∈I f sd

[qj f sd − gj f (wc)− Tcd]
dxj f sd

dqi f rd
= 0, ∀i ∈ Ii f rd

By symmetry, dxj f rd/dqi f sd = dxi f sd/dqj f rd and we rewrite above equation as:

1 +
Sd

∑
s=1

∑
j∈I f sd

[
1−

gj f (wc)− Tcd

qj f sd

]
d ln xi f rd

d ln qj f sd
= 0, ∀i ∈ I f rd

We conjecture that the markup of f are the same across all the products sold in region d, and denote

it as ν f d = qj f rd/[gj f (wc) + Td] ≥ 1. Then it is immediate that:

32We assume full pass-through of the prices charged by manufacturers to the consumers, i.e., manufacturers are only
able to affect the market price linearly following pi f rd = µrdqi f rd, without affecting the retailer’s markup µrd.
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(
ν f d − 1

ν f d

)
= −

 Sd

∑
s=1

∑
j∈I f sd

d ln xi f rd

d ln qj f sd

−1

Given the elasticities and the pricing rule of retailers, i.e., pi f rd = µrdqi f rd, we are able to calculate

the above expression as (ν f d − 1)/ν f d =
[
η − (η − θ)h f |rd − (θ − 1)∑s h f |sdhsd

]−1
. Due to symmetry,

h f |sd = h f sd/hsd = (h f d/Sd)/(1/Sd) = h f d (recall that Sd is the number of retailers in city d), which

helps to simplify (ν f d − 1)/ν f d as,

(
ν f d − 1

ν f d

)
=
[
η − (η − 1)h f d

]−1

Therefore, the optimal prices charged by manufacture f to retailers r are:

qi f rd =

{
1 +

1
(η − 1)(1− h f d)

}
[g f i(wc) + Tcd], ∀i ∈ I f rd f ∈ Frd

D2. Calibrating the Expenditure Share on Supermarket Chains

If consumption of city d is made partly from the supermarket chains (we allow for the existence

of local convenient stores), the expenditure share of supermarket chains will be γd ∈ (0, 1). We

parameterize γd as

γd =
Nd

Nmax
γmax

where Nd denotes the number of supermarkets in city d, Nmax ≡ maxc{Nc} is the number of super-

markets in the city which has the most supermarket chains. Both Nd and Nmax are observables in the

data. γmax is the parameter to be calibrated, which denotes the expenditure share on the supermarket

stores in the city which has the most supermarket chains. Given the GDP of each city, we calculate

the overall expenditure share on supermarkets stores as:

γ̄ = ∑
d

Yd

∑c Yc
× γd

We calibrate γmax such that the overall average expenditure share on the supermarket chains (γ̄)

equals the market share of physical store in the total retail of social consumer goods, which is 11% in

2010 according to the report by China Chain Store & Franchise Association (CCSFA).33 The estimated

value of γmax is 18.31%, with which we recover the γd for all cities.

D3. Estimating Elasticity of Substitution θ

Our elasticities of firms (η) and varieties (σ) sources from Hottman, Redding, and Weinstein (2016)

and we explain how we estimate the elasticity of supermarkets (θ) from our structure equations. We

reform the price equation as:
33The detailed information refer to Deloitte (2015).
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pi f rd/
[

1 +
1

(η − 1)(1− h f d)

]
=

[
1 +

1
(θ − 1)(1− γdhrd)

]
× [g f i(wc) + Tcd] (51)

we further parameterize [g f i(wc) + Tcd] as

[g f i(wc) + Tcd] = αi + αp + β1Capitald + β2Distcd (52)

where αidenotes the product fixed effect (we use both UPC and UPC-Retailer specific fixed effects

in practice and results barely change) to control the product marginal cost. ln Distcd controls for the

trade cost from c to d, and αp denotes the destination province fixed effects.

Iterative Algorithm

Let Aicd represent equation (52) as a whole and we rewrite (51) as

pi f rd/
[

1 +
1

(η − 1)(1− h f d)

]
= αi + αp + β1Capitald + β2Distcd︸ ︷︷ ︸

Aicd

+θ̃
Aicd

(1− γdhrd)
(53)

where θ̃ ≡ 1/(θ − 1) to be estimated. To do so, we adopt an iterative algorithm as explained below.

To begin with, we set the initial value of A(0)
icd as zero and estimate {α, β} from the linear regression

of (53):

pi f rd/
[

1 +
1

(η − 1)(1− h f d)

]
= αi + αp + β1Capitald + β2Distcd

Given the estimated parameter {α(0), β(0)}, we predict

A(1)
icd ≡ α

(0)
i + α

(0)
p + β

(0)
1 Capitald + β

(0)
2 Distcd (54)

Next, we use the updated value of A(1)
icd in (53), and repeat the linear regression:

pi f rd/
[

1 +
1

(η − 1)(1− h f d)

]
= αi + αp + β1Capitald + β2Distcd + θ̃

A(1)
icd

(1− γdhrd)
(55)

The linear regression of (55) yields {α(1), β(1)} as well as θ̃(1). We update Aicd in the same way as

(54) and repeat the procedure. Specifically, after the nth regression, we update A(n)
icd which is used to

estimate the (n + 1)th regression:

A(n)
icd ≡ α

(n−1)
i + α

(n−1)
p + β

(n−1)
1 Capitald + β

(n−1)
2 Distcd

pi f rd/
[

1 +
1

(η − 1)(1− h f d)

]
= αi + αp + β1Capitald + β2Distcd + θ̃

A(n)
icd

(1− γdhrd)

The iterative procedure yields a collection {θ̂(1), θ̂(2), ..., θ̂(n)}, which stops when there is little changes

between θ̂(N−1) and θ̂(N). Figure 15 shows the numerical convergence of θ̂ for the four main products.

The point estimates are remarkably consistent with each other.
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Figure 15: Numerical Estimation of θ̂

For robustness, we try with different values for the expenditure share on supermarket chains γd.

Table 13 reports the results when we use large value of γd = 50%, and the finding of higher retailer

and manufacturer markup in smaller and poorer cities remains robust.

E. Summary of Decomposition of S(G)Λ(G) for New York and Shanghai

Table 14 summarizes the population weighted average of the share term Sc(G) and the variety term

Λc(G), which are components of the exact price index shown in (25), for Shanghai relative to New

York (greater than unity implies the corresponding variable is larger in Shanghai).
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Table 14: Summary of Decomposition of S(G)Λ(G) for New York and Shanghai

Product Category\Variable ∏ f∈G S f ,SH(G)

∏ f∈G S f ,NY(G)

∏ f∈G ∏i∈I f
s f i,SH(I f )

∏ f∈G ∏i∈I f
s f i,NY(I f )

SSH(G)
SNY(G)

ΛSH(G)
ΛNY(G)

SSH(G)ΛSH(G)
SNY(G)ΛNY(G)

Four Main Products
Toothpaste 1.01 1.53 1.55 0.41 0.64
Laundry Detergent 1.00 1.13 1.13 0.46 0.52
Personal Wash Item 1.00 0.60 0.60 1.03 0.62
Shampoo 1.06 1.05 1.11 0.60 0.66

Other Products
Baby Formula 1.25 1.01 1.27 0.88 1.12
Batteries 1.00 1.35 1.35 0.75 1.01
Biscuits 1.00 0.98 0.98 2.23 2.18
Cereal 1.00 2.15 2.15 0.91 1.95
Chips 1.75 0.85 1.49 1.18 1.76
Chocolate 1.00 1.62 1.62 1.07 1.74
Coffee 1.00 1.20 1.20 0.80 0.97
Diapers 1.01 1.12 1.13 0.99 1.12
Dog Food 1.00 1.03 1.03 1.42 1.46
Gum 1.00 1.26 1.26 0.70 0.88
Milk Powder 1.00 0.60 0.60 1.24 0.74
Soap 1.46 1.18 1.72 2.49 4.28
Soft Drinks 1.05 1.56 1.63 0.73 1.19
Tea 1.00 1.52 1.52 1.41 2.13
Toothbrushes 1.99 1.33 2.65 0.60 1.57
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