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Resting state functional connectivity is defined in terms of temporal
correlations between physiologic signals, most commonly studied
using functional magnetic resonance imaging. Major features of
functional connectivity correspond to structural (axonal) connectiv-
ity. However, this relation is not one-to-one. Interhemispheric
functional connectivity in relation to the corpus callosum presents
a case in point. Specifically, several reports have documented nearly
intact interhemispheric functional connectivity in individuals in
whom the corpus callosum (the major commissure between the
hemispheres) never develops. To investigate this question, we
assessed functional connectivity before and after surgical section
of the corpus callosum in 22 patients with medically refractory
epilepsy. Section of the corpus callosum markedly reduced in-
terhemispheric functional connectivity. This effect was more pro-
found in multimodal associative areas in the frontal and parietal
lobe than primary regions of sensorimotor and visual function.
Moreover, no evidence of recovery was observed in a limited sample
in which multiyear, longitudinal follow-up was obtained. Compar-
ison of partial vs. complete callosotomy revealed several effects
implying the existence of polysynaptic functional connectivity
between remote brain regions. Thus, our results demonstrate that
callosal as well as extracallosal anatomical connections play a role in
the maintenance of interhemispheric functional connectivity.

corpus callosum | resting state | functional connectivity |
structural connectivity | callosotomy

Infra-slow (<0.1 Hz) intrinsic brain activity is temporally cor-
related within functionally related systems currently known as

resting state networks (RSNs) (1, 2). This phenomenon is widely
known as functional connectivity (FC). RSNs are conveniently
studied in humans using resting state functional magnetic reso-
nance imaging (rs-fMRI). Although rs-fMRI is increasingly being
used to map the representation of function in health and disease
(3–6), the physiological principles underlying RSNs remain in-
completely understood (7). In particular, the extent to which ana-
tomical connectivity accounts for FC is unclear. On the one hand,
the broad topographic features of RSNs correspond to major white
matter tracts. For example, the cingulum bundle connects the an-
terior and posterior midline components (nodes) of the default
mode network (DMN) (8). However, FC generally is more exten-
sive than anatomical connectivity. For example, interhemispheric
anatomical connections between the primary visual cortices (V1)
in each hemisphere are sparse; yet, V1 homotopic FC is strong (9).
Thus, the relation between anatomical and FC remains a topic of
active investigation (for a recent review, see ref. 10).
One of the most striking features of resting state FC is sym-

metry about the midline. Thus, resting state correlations tend to
be particularly strong between corresponding loci in each
hemisphere (homotopic FC) (11, 12). The corpus callosum (CC)
is the major commissure connecting the two hemispheres. Ac-
cordingly, it would be logical to suppose that the CC accounts for

the prominent symmetry of FC. However, data pertaining to this
question are mixed and partially contradictory. One set of per-
tinent observations derives from human studies of callosal
agenesis, a condition in which the CC never develops. An early
study reported that homotopic FC is decreased but not absent
(13). More recent papers emphasize that homotopic FC in cal-
losal agenesis may be nearly normal (14–17). Conflicting infer-
ences might be drawn from observations made in patients with
intractable epilepsy who have undergone therapeutic section of
the CC (18–20). Specifically, Johnston et al. studied a 6-y-old boy
before and after a complete callosotomy and reported that FC
was normal before surgery but largely lost afterward (18).
However, Uddin et al. found partially intact interhemispheric FC
four decades after total callosotomy (20). A recent study in
monkeys observed marked loss of homotopic FC following
complete section of the CC, but only in cases in which the an-
terior commissure also was sectioned (21). Division of the an-
terior commissure along with corpus callosotomy varied among
the three reports mentioned above. Specifically, the anterior
commissure was spared in the case reported by Johnston et al.,
sectioned in the case reported by Uddin et al., and sectioned in

Significance

The relation between structural and functional connectivity has
profound implications for our understanding of cerebral physi-
ology and cognitive neuroscience. Yet, this relation remains in-
completely understood. Cases in which the corpus callosum is
sectioned for medical reasons provide a unique opportunity to
study this question. We report functional connectivity assessed
before and after surgical section of the corpus callosum, in-
cluding multiyear follow-up in a limited subsample. Our results
demonstrate a causal role for the corpus callosum in maintaining
functional connectivity between the hemispheres. Additionally,
comparison of results obtained in complete vs. partial callos-
otomy demonstrate that polysynaptic connections also play a
role in maintaining interhemispheric functional connectivity.
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two of the three monkeys studied by O’Reilly (21). Thus, the
available data do not clearly define the role of the CC in the
maintenance of FC.
We acquired rs-fMRI before and after corpus callosotomy in

22 epilepsy patients. The study cohort included partial as well as
complete section of the CC, thereby enabling examination of
graded effects of callosotomy. Importantly, we also studied select
individuals 2–7 y following callosotomy. Our analysis reveals
differential contributions of the CC to FC evaluated in different
regions of the brain. Specifically, interhemispheric FC in primary
sensorimotor and primary visual cortex is less dependent on the
CC than multimodal cortex. Interhemispheric FC is decreased
immediately after callosotomy and does not show signs of re-
covery on multiyear longitudinal follow-up.

Results
Structural Imaging. Atlas transformed anatomic images, averaged
across subjects, precallosotomy and postcallosotomy, are shown
in Fig. 1. White arrows identify normal CC. Black arrows in-
dicate areas where the CC has been sectioned. Spared fibers in
the splenium of the CC are evident in the postpartial callosotomy
group (white arrows). A voxel-based analysis of the CC area
spared by partial callosotomy is shown in Fig. S1.

FC Maps. FC maps obtained with seeds in primary motor and
visual areas, precallosotomy and postcallosotomy, are displayed in
Fig. 2. The seed coordinates in MNI152 space were (−40, −23, 53)
and (41, −22, 48) for left and right motor and (−8, −83, 0) and
(7, −83, 0) for left and right vision, respectively. An exemplar

individual is shown in Fig. 2A. Group-averaged results represent-
ing complete and partial callosotomy are shown in Fig. 2 B and C,
respectively. Precallosotomy FC maps identify the expected sen-
sorimotor (SMN) and visual (VIS) networks. The SMN includes
primary motor cortex in the precentral gyrus, primary sensory
cortex in the postcentral gyrus, and the supplementary motor area
in the posterior aspect of the superior frontal gyrus. VIS areas
include primary visual cortex in the calcarine sulcus and secondary
visual areas in the lateral occipital lobe.
Complete callosotomy, on average (Fig. 2B), resulted in a

marked loss of interhemispheric FC and, possibly, modest en-
hancement of intrahemispheric FC, both for motor and visual
seeds. The effects of partial callosotomy were different in so-
matosensory vs. visual areas. Specifically, interhemispheric FC
was lost in SMN areas, much as in complete callosotomy. In
contrast, interhemispheric FC in VIS areas was largely un-
affected by partial callosotomy (Fig. 2C). The contrast between
partial vs. complete callosotomy most likely reflects sparing
of occipital, but not more anterior, commissural fibers. Thus,

Fig. 1. Anatomic imaging precallosotomy and postcallosotomy. Mean T1-
weighted images before (precallosotomy) and after (postcallosotomy)
complete and partial callosotomy, represented in atlas space (right hemi-
sphere on Left). MNI152 coordinates of axial, sagittal, and coronal planes are
listed. White arrows indicate intact CC, and black arrows indicate areas of
divided CC. Note residual splenium after partial callosotomy.

Fig. 2. FC maps corresponding to seeds in primary motor (first and second
columns) and primary visual (third and fourth columns) areas of the right (first
and third columns) and left (second and fourth columns) hemispheres.
(A) Results obtained in an exemplar individual. Note loss of interhemispheric
FC after complete callosotomy with preserved intrahemispheric FC in both
motor and visual networks. (B) Mean (n = 16) results before and after com-
plete callosotomy. (C) Mean (n = 6) results before and after partial callos-
otomy. Note maintained visual but not motor interhemispheric FC after
partial, but not complete, callosotomy. The FC maps are thresholded at z(r) >
0.80 in the exemplar individual and z(r) > 0.35 in the group results.
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spared splenial connections between posterior occipital areas
continue to mediate interhemispheric FC.

FC Matrices. A previously defined seed set was used for further
analysis (3). Seeds in this set were defined by systematic evalu-
ation of previously published literature to best represent seven
canonical networks commonly used in resting state fMRI studies.
These networks include the dorsal attention network (DAN),
ventral attention network (VAN), SMN, VIS, frontal-parietal
control network (FPC), language network (LAN), and DMN.
Seeds close to the midline (n = 29) were removed from the
original set (n = 169). In Fig. 3C, the remaining seeds (n = 140)
are color coded by RSN.
FC between all seed pairs, sorted by hemisphere and by RSN, is

shown in matrix form in Fig. 3A. This seed ordering arranges left
and right intrahemispheric FC in the top-left and bottom-right
quadrants, respectively. The top-right quadrant shows interhemi-
spheric FC. Percent difference was calculated in each individual as
%Δz = 100 × (z(r)post − z(r)pre)/max(z(r)pre), where z(r) is the
Fisher z-transformed Pearson correlation coefficient. The %Δz
values shown in Fig. 3A are averaged over individuals. A striking
decrease in interhemispheric FC is evident after complete callos-
otomy. Partial callosotomy decreased interhemispheric correla-
tions to a lesser degree. The greatest residual interhemispheric FC
was observed between seeds in the visual network. Of note, partial
and complete callosotomy similarly decreased FC in the sensori-
motor network. We also observed an increase in intrahemispheric
FC after both complete and partial callosotomy, which is evident
in the difference matrices of Fig. 3A. This finding may be related
to similar functional imaging results in stroke studies where

intrahemispheric FC is found to increase within the hemisphere
contralateral to the lesion (22, 23).
To quantify the change in FC after callosotomy, we computed

the similarity (element-wise Pearson correlation) between pre-
and post-FC matrices. This analysis was partitioned by in-
terhemispheric and intrahemispheric FC. The precallosotomy FC
matrices were similar between complete and partial groups with a
correlation of r = 0.79. We expected intrahemispheric FC to be
affected less by callosotomy and, therefore, served as a control for
the changes in interhemispheric FC. Accordingly, the similarity of
intrahemispheric FC matrices was not significantly different be-
tween right and left hemispheres for either complete {t (30) =
0.505, confidence interval (CI) of difference = [−0.081, 0.134], P =
0.618} or partial {t (30) = 0.054, CI = [−0.158, 0.166], P = 0.958}
callosotomy (“Intra” bars in Fig. 3B). In contrast, interhemispheric
FC was markedly reduced following callosotomy after both com-
plete {t (30) = −7.863, CI = [−0.418, −0.246], P < 0.001 for inter-
vs. intraright; and t (30) = −6.797, CI = [−0.397, −0.214],
P = <0.001 for inter- vs. intraleft} and partial {t (10) = −2.427,
CI = [−0.420, −0.018], P = 0.036 for inter- vs. intraright; and
t (10) = −2.267, CI = [−0.426, −0.007], P = 0.047 for inter- vs.
intraleft} callosotomy (“Inter” bars in Fig. 3B).

Voxel Mirrored Homotopic FC. The present data inform the ques-
tion of how much FC is or is not attributable to anatomic con-
nectivity. Thus, if homotopic FC were entirely mediated by
the CC, then this measure should be eliminated by complete
callosotomy. Similarly, partial callosotomy should demonstrate
a topographic distinction between preserved vs. eliminated
homotopic FC in close relation to the extent of callosotomy. As
illustrated in Fig. 4, these predictions are only partially supported

Fig. 3. Contrast between interhemispheric vs. intrahemispheric FC. (A) FC matrices representing seven RSNs are organized according to hemisphere of seed.
Diagonal and off-diagonal blocks represent intrahemispheric and interhemispheric FC, respectively. RSN color codes are defined in C. (B) Bar graphs repre-
senting similarity between precallosotomy and postcallosotomy for intrahemispheric and interhemispheric FC. The error bars represent 95% confidence
intervals. **P < 0.001, *P < 0.05. (C) Seeds plotted on an inflated mean brain surface.
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by the data. Specifically, as predicted, homotopic FC is markedly
reduced in many parts of the brain following complete callos-
otomy. Similarly, homotopic FC is almost intact in visual areas
following partial callosotomy, which spares the splenium, that is,
the interhemispheric connection between the occipital lobes.
However, homotopic FC is partially preserved in primary sen-
sorimotor and visual areas following complete callosotomy.
Similarly, following partial callosotomy, homotopic FC is re-
duced but not eliminated in many parts of the cerebral hemi-
spheres that, theoretically, have been disconnected. Complete
maps for each group before and after are presented in Fig. S3.
To obtain a quantitative view of the contrasting effects of

complete vs. partial callosotomy, the distribution of voxel mir-
rored homotopic FC (VMHC) between all voxels was averaged
across individuals. These results are displayed in histogram for-
mat in Fig. 4B. At baseline (precallosotomy), the distribution of
VMHC is similar between complete and partial groups (Cohen’s
d = 0.23). The postcallosotomy distributions clearly are shifted
toward zero (i.e., no homotopic FC). However, this effect is
much more marked in the complete as opposed to partial cal-
losotomy results (Cohen’s d between precallosotomy and post-
callosotomy is 0.80 for partial and 1.80 for complete). Positive
skew, evident in the postcomplete callosotomy histogram, most
likely reflects focal areas of preserved homotopic FC.
To quantify the regional specificity in CC-mediated FC, we

evaluated the mean VMHC in primary and multimodal regions
before and after callosotomy (Fig. 4C). These regions were de-
fined by Brodmann areas corresponding to primary sensorimotor
cortex, primary visual cortex, and multimodal areas of frontal,
parietal, occipital, and temporal lobes (Fig. S4). The results of this
anatomic region of interest analysis are consistent with a more
significant decrease in all regions after complete compared with
partial callosotomy (SI Results). More specifically, after complete
callosotomy, multimodal areas of the frontal and parietal lobes are
reduced to near zero VMHC, while primary sensorimotor and
vision areas are reduced but not lost. In contrast, after partial
callosotomy, the primary visual cortex remains near precallo-
sotomy levels, likely owing to the spared splenium fibers.

Follow-Up Imaging at Delayed Time Interval. The postcallosotomy
results shown so far demonstrate a marked loss of interhemispheric
FC following callosotomy. However, these data were obtained 1 d
after surgery, whereas previously reported, albeit limited, evidence
raises the possibility that interhemispheric FC may recover after a
prolonged interval following complete callosotomy (20). We were
able to examine this question in three individuals at intervals be-
tween 2 and 7 y after callosotomy (Fig. 5) (SI Results). All show no
evidence of recovered interhemispheric FC.

Discussion
The extent to which interhemispheric FC depends on the CC is
uncertain owing to conflicting evidence. To address this issue,
we report a series of human subjects studied before and after
surgical section of an intact CC. Our data reveal a causal role
of the CC in maintaining interhemispheric FC throughout the
brain. Complete section of the CC dramatically reduced in-
terhemispheric FC assessed in the immediate postoperative pe-
riod, as previously reported in one case study (18). The effects of
partial callosotomy were less dramatic and not entirely consistent
with a simple relation between structural and FC. We also
obtained longitudinal rs-fMRI in a restricted sample of individ-
uals studied between 2 and 7 y following callosotomy. This data
speaks to the question of FC plasticity. In the following discus-
sion, we address the relation between structural and FC. We also
touch on the question of interhemispheric FC recovery following
a prolonged postoperative interval.

Structural Versus FC. Previous studies report a correlation between
cortical areas with strong structural and FC, but this relationship
is incomplete in other areas with strong FC but weak structural
connectivity (8, 24, 25). These findings imply that the relation
between structural and FC is not one-to-one. Nevertheless, the
most salient characteristics of resting state is strong homotopic
FC (11), and the largest white matter structure in the brain is the
CC. It is therefore reasonable to assume that the CC plays a
major role in the maintenance of homotopic FC. Acknowl-
edging expected differences at baseline from typically developing

Fig. 4. Topography of CC-mediated FC and distri-
bution of VMHC. (A) VMHC computed as the Fisher
z-transformed Pearson correlation between voxels
mirrored about the midline. By definition, these
displays are bilaterally symmetric. Spatial blurring
during preprocessing generates artifactually high
homotopic FC along the midline. The underlay is the
T2-weighted atlas representative image. (B) Distri-
butions of mean VMHC across all voxels after vs.
before callosotomy. Note larger shift toward zero
after complete relative to partial callosotomy.
(C) Bar graphs (mean ± 95% confidence interval)
representing homotopic FC organized according to
anatomical region. Note partial preservation of FC in
primary sensorimotor and visual cortices after com-
plete callosotomy but nearly complete loss of VMHC
in multimodal associative areas. Note also more
retained VMHC after partial callosotomy.
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individuals, we focus our study on precallosotomy vs. post-
callosotomy FC differences within subject.
Our results show partially preserved homotopic FC following

complete callosotomy in primary sensorimotor and visual areas
(Fig. 4 A and C). Hence, structures other than the CC must be
contributory. Two observations inform this question. First, in-
vasive tracer studies show relatively sparse axonal connectivity
via the CC in the hand area of primary motor cortex (“callosal
holes”) (26–28). Also, it is known that callosal connections be-
tween primary visual areas are very sparse (29–31). Thus, it may
be inferred that homotopic FC in primary cortical areas is less
dependent on the CC. Second, prior studies have established
that subcortical structures participate in resting-state cortical
RSNs (32, 33). Importantly, the most robust thalamocortical
structural connectivity, as assessed by DTI tractography, is found
in primary sensorimotor and visual cortices, whereas the weakest
connections are found in multimodal areas (34). This anatomy is
consistent with the residual FC evident in Fig. 4A.
Further evidence of polysynaptic FC is apparent after partial

callosotomy (Fig. 4A). Homotopic FC in multimodal areas
of the frontal lobes is reduced less after partial relative to
complete callosotomy, despite callosal fibers connecting these
areas sectioned in both procedures. This is in contrast to re-
sidual interhemispheric FC in posterior parietal and occipital
areas, which is expected from known structural connections in
the splenium (35). This finding suggests that posterior parietal-
occipital areas, the callosal fibers of which are spared by par-
tial callosotomy, are able to support frontal homotopic FC
via intrahemispheric anatomic connections, e.g., via the supe-
rior longitudinal fasciculus. Thus, the posterior areas with
maintained callosal structural connectivity act as hubs be-
tween widely separated regions in posterior and anterior parts
of the brain. These findings help to explain the absence of

disconnection syndrome after partial callosotomy where inter-
hemispheric information transfer remains when the splenium is
spared (36).
Homotopic FC data has been reported in prior studies (11)

and summarized by metaanalysis (37). Homotopy is a consistent
characteristic of resting-state fMRI (12) with electrophysiolog-
ical correlates (38). Notable exceptions are language and
attention functionality, which are asymmetrically represented
in the human brain (39, 40). Stark et al. (11) show greatest
homotopic FC in primary sensorimotor areas, followed by
unimodal and heteromodal association areas. We observe sim-
ilar results of greatest residual interhemispheric FC after cal-
losotomy in the sensorimotor and vision networks, as well as
near zero VMHC after complete callosotomy in frontal and
parietal regions.

Longitudinal Follow-Up. Previously reported postcallosotomy im-
aging has been obtained at intervals ranging from 1 d (18) to
6 mo (21) to 4 decades (20). The strongest evidence of FC re-
covery following a prolonged interval was reported in ref. 20. In
our cohort, only one individual was able to tolerate nonsedated
follow-up imaging. In two other individuals, sedated imaging was
obtained for clinical indications. Our follow-up data reveal no
convincing evidence of recovery of interhemispheric FC several
years after callosotomy. These results tend to validate our
postcallosotomy data obtained at an interval of 1 d.
The observation of relatively intact interhemispheric FC in

callosal agenesis (e.g., ref. 16) raises the question whether
compensation for the absence of a CC is possible very early in
development within a critical period. Indeed, diffusion tensor
MRI results indicate that compensatory tracts in the anterior and
posterior commissures develop in these cases (16). The present
follow-up data suggest that such compensation does not occur
postnatally even in a case as young as 2 y. Thus, if a critical
period does exist, it would seem to be over by age 2 y. Accord-
ingly, it is not surprising that we saw no evidence of recovery in
the other two longitudinally studied individuals. Our data, how-
ever, do not exclude the possibility of recovery decades following
callosotomy (20).

Conclusion
We expand the available data that heretofore has been derived
from a very limited number of case studies of corpus callos-
otomy. In particular, this is the only study to date reporting
longitudinal human FC data acquired at an interval of years. We
find no evidence of interhemispheric FC recovery. We provide
strong evidence supporting a causal role of the CC in main-
taining interhemispheric FC. We also provide evidence that
extracallosal pathways are important, specifically in mediating
residual homotopic FC in primary sensorimotor and visual areas
following complete callosotomy. More generally, our results re-
inforce the principle that polysynaptic pathways account for a
substantial fraction of FC (41, 42).

Methods
Corpus Callosotomy Subjects. Twenty-two individuals with medically re-
fractory epilepsy underwent complete (n = 16) or partial (n = 6) corpus
callosotomy according to standard practice (43). All aspects of the study
were approved by the Human Research and Protection Office Institutional
Review Board (IRB) at Washington University School of Medicine in St. Louis.
All subjects were pediatric patients with cognitive disabilities, therefore in-
formed consent was initially obtained from the parent or legal guardian
with assent from the subject where appropriate. The IRB subsequently ap-
proved waiver of written consent for imaging sequences obtained alongside
clinical studies. The subjects who returned for delayed follow-up imaging
provided an additional informed consent from the parent or legal guardian
with assent when appropriate. Surgical candidacy was determined by clinical
criteria alone. See SI Methods for further details.

Fig. 5. FC matrices obtained in three individuals including longitudinal
imaging at follow-up intervals of 2–7 y. (A) Partial callosotomy at age 2 y;
follow-up (sedated) at age 4 y. (B) Complete callosotomy at age 13 y; follow-
up (nonsedated) at age 20 y. (C) Complete callosotomy at age 15 y; follow-
up (sedated) at age 17 y. The precallosotomy study in this case was excluded
as this patient initially presented with epileptic encephalopathy. Follow-up
imaging 2 y after complete callosotomy was obtained under sedation for
clinical indications. Note no sign of recovery of interhemispheric FC at fol-
low-up in any of these individuals.
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Callosotomy Procedure. Corpus callosotomy was performed following a
standard clinical protocol via open craniotomy and microsurgical technique,
as previously described (43) (SI Methods). Complete callosotomy divides the
entire length of the CC including the splenium. In partial callosotomy, the
posterior third to fourth of the CC (always including the splenium) is spared.
Postoperative imaging is routinely obtained 1 d after surgery to confirm
planned extent of callosotomy and rule out any surgical complications.

Image Acquisition and Preprocessing. All imaging was performed with a 3T
Siemens Trio scanner. Structural imaging included one T1wMP-RAGE [repetition
time (TR) = 2,000 ms, echo time (TE) = 2.5 ms, flip angle = 12°, voxel size 1.0 ×
1.0 × 1.0 mm] and one T2-weighted (T2w) turbo-spin echo sequence [TR =
9,000 ms, TE = 115 ms, flip angle = 120°, voxel size 1.0 × 1.0 × 2.5 mm]. For
clinical reasons, the preoperative (but not postoperative) MP-RAGE was acquired
with i.v. gadolinium contrast (at the end of the session). The remaining se-
quences were identical across sessions. Resting-state fMRI was acquired using an
echo-planar imaging (EPI) sequence sensitive to blood oxygen level-dependent
(BOLD) contrast (TR = 2,070ms, TE = 25ms, flip angle = 90°, voxel size 4.0 × 4.0 ×
4.0 mm). Two runs of 200 frames each (∼14 min total) were acquired in each
subject. Preprocessing followed previously published methods (44) (SI Methods).

FC. FC was computed using seed-based correlation analysis with a previously
defined seed set (3) (Fig. 3). Each 6-mm spherical seed was assigned to one of
seven canonical RSNs. Of the original 169 seeds, 29 near the midline were
excluded to reduce overlap from common source location and spatial blur-
ring. FC, defined as the Pearson correlation coefficient (r), was computed
between the seed and every other voxel in the brain. Pearson r values were
Fisher z-transformed in all subsequent analysis.
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