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EPIGRAPH

The heavenly breeze comes to this estate,

I sit with the wine and a lovely mate.

Why can’t the beggar play the king’s role?

The sky is the dome, the earth is my state.

The green grass feels like Paradise;

Why would I trade this for the garden gate?

With bricks of wine build towers of love,

Being bricks of clay is our final fate.

Seek no kindness of those full of hate,

People of the mosque with the church debate.

Don’t badmouth me, don’t blacken my name;

Only God can, my story narrate.

Neither Hafiz’s corpse, nor his life negate,

With all his misdeeds, heavens for him wait.

Khwaja Shams-ud-Din Muhammad Hafez-e Shirazi, Ghazal 79

Translated to English by Shahriar Shahriari
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ABSTRACT OF THE DISSERTATION

New Frontiers in Polar Coding:
Large Kernels, Convolutional Decoding, and Deletion Channels

by

Arman Fazeli Chaghooshi

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California, San Diego, 2018

Professor Alexander Vardy, Chair

The discovery of channel polarization and polar codes is universally recognized as an

historic breakthrough in coding theory. Polar codes provably achieve the capacity of any mem-

oryless symmetric channel, with low encoding and decoding complexity. Moreover, for short

block lengths, polar codes under specific decoding algorithms are currently the best known

coding scheme for binary-input Gaussian channels [9]. Due to this and other considerations,

3GPP has recently decided to incorporate polar codes in the 5G wireless communications stan-

dard. Soon enough, a remarkably short time after their invention, we will be all using polar

codes whenever we make a phone call or access the Internet on a mobile device.

xiv



Our goal in this dissertation is to explore new frontiers in polar coding, thereby funda-

mentally advancing the current state-of-the-art in the field. Parts of the results are immediately

relevant for successful deployment of polar codes in wireless systems, whereas other parts will

focus on key theoretical problems in polar coding that have a longer time-horizon.

We begin by studying the effect of the polarization kernels in the asymptotic behavior

of polar codes. We show that replacing the conventional 2 × 2 kernel in the construction of

polar codes with that of a larger size can reduce the gap to the capacity if the larger kernel is

carefully selected. A heuristic algorithm is proposed that helps to find such kernels. Further-

more, we prove that a near-optimal scaling behavior is achievable if one is allowed to increase

the kernel size as needed. We also study the computational complexity of decoding algorithms

for polar codes with large kernels, which are viewed as their main implementation obstacle.

Moving on to the decoding algorithms, we carefully analyze the performance of the

successive cancellation decoder with access to the abstract concept of Arıkan’s genie. The

CRC-aided successive-cancellation list decoding, the primary decoding method of polar codes,

is commonly viewed as an implementation of the Arıkan’s genie. However, it comes short at

completely simulating the genie since the auxiliary information (CRC) comes to the help only

at the end of the decoding process. We overcome this problem by introducing the convolu-

tional decoding algorithm of polar codes that is based on a high-rate convolutional pre-coder

and utilizes Viterbi Algorithm to mimic the genie all the way through the SC decoding process.

Lastly, we look into channels with deletions. A key assumption in the traditional

polar coding is to transmit coded symbols over independent instances of the communication

channel. Channels with memory and in particular, deletion channels, do not follow this rule.

We introduce a modified polar coding scheme for these channels that depend on much less

computational power for decoding than the existing solutions. We also extend the polarization

theorems to provide theoretical guarantee and to prove the correctness of our algorithms.

xv



Chapter 1

Introduction
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1.1 Background on Error-Correcting Codes

C. Shannon [1] defined the fundamental problem of communication as that of pro-

ducing at one point either exactly or approximately a message selected at another point. As

depicted in Figure 1.1, the mathematical model of a communication generally consists of:

1. An information source, Alice, that produces a finite or infinite sequence of messages to

be communicated to the receiving party.

2. A transmitter, which performs encoding on the message to produce a suitable (resistance

to noise) signal for transmission over the underlying communication channel.

3. A channel, that is the medium used to transmit signal from transmitter to receiver and

usually suffers from one or multiple sources of distortion (noise).

4. A receiver, that is designed to invert the action of the encoder and hence reconstruct the

original message.

5. A destination, Bob, which is the party for whom the message was intended.

An encoding module in a coding scheme generates symbols x1, x2, · · · to be transmit-

ted over the channel. Upon passing the channel distortion, a possibly different set of symbols

Figure 1.1: Schematic diagram of a general communication system [1].
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y1, y2, · · · are received at the receiver, which are then fed to the decoding module. The decod-

ing module is responsible for estimating the original sequence with least amount of mistakes.

Let X and Y be the random variables that represent the input and output of the un-

derlying communication channel with their conditional distribution PY |X(y|x) to be inherited

from the channel. The channel capacity is defined as

C , sup
pX(x)

I(X;Y ) (1.1)

is proven to be the highest information rate that can be achieved with diminishing error prob-

abilities and is measured in units of information per unit of time. Here, I(X;Y ) denotes the

mutual information between X and Y . The capacity of channel W is a parameter of the chan-

nel and can be calculated based on its conditional probabilities. For example, the capacity of

an additive white Gaussian noise (AWGN) channel with B Hz bandwidth and signal-to-noise

ratio S/N is given by

C = B log2

(
1 +

S

N

)
, (1.2)

which shows that the communication channel has a higher capacity for larger SNRs.

The encoding function E : {m1,m2, · · · ,mM} → X n is defined as a mapping from the

set of M messages provided by Alice to elements in X n, where X denotes the input alphabet

of the channel. The decoding functionD : Yn1 → {m1,m2, · · · ,mM} is similarly defined as a

mapping from the received symbols back to the set of all possible messages. Here, Y denotes

channel’s output alphabet. The rate and error probability of this coding scheme are defined as

R ,
log|X |(|M |)

n
, and Pe , Ei

[
Pr.
(
D
(
E(mi)

)
6= mi

)]
. (1.3)

Theorem 1. (Channel coding) Given a noisy channel W with capacity C(W ) and an infor-

mation transmission rate R < C(W ), there exists a family of codes {Ci}∞i=1 with

rate(Ci) = ri, code-length(Ci) = ni, and Pe(Ci) = Pi ∀i, (1.4)

3



where ri 6 R (∀i), and for any given ε > 0 there exists a κε such that Pi 6 ε (∀i > κε).

Moreover, the channel capacityC(W ) is the smallest number with such property (tight bound).

While the Shannon proved the existence of capacity achieving codes, an explicit con-

struction of such codes remained unsolved for almost half a decade. Indeed, E. Arıkan was

the first to explicitly construct a family of capacity achieving codes in his nominal paper [10],

which are today known as polar codes. Prior to the invention of polar codes, different fam-

ilies of codes were usually compared with each other based on their practicality (encod-

ing/decoding complexity) and their finite-length error performances. Some of the most no-

table code constructions include algebraic codes such as Reed-Solomon (RS) or Reed-Muller

(RM) codes, convolutional codes, Turbo codes, low-density parity-check (LDPC) codes, or

the more recently discovered spatially-coupled codes. Figure 1.2 taken from [2] illustrates the

spectral efficiencies achieved by some these coded communication schemes.

     

               

              

           
      
                

            
              
              
            
             
            
               
            
              
            
               
            

        














  














           
         Figure 1.2: Theoretical spectral and power efficiency limits for various signal constellations

and spectral efficiencies achieved by multiple coded communication schemes as appears in [2].
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1.2 Polar Coding: Overview

The invention of polar codes by Arıkan [10] is undoubtedly one of the most original

and profound developments in coding theory to date. Polar codes achieve the capacity of any

memoryless symmetric channel, with low encoding and decoding complexity. Nevertheless,

when polar coding was first discovered, it was widely regarded as being of mostly theoretical

interest, since major obstacles prevented the utilization of polar codes in practice. However,

only seven years later, at its November 2016 meeting, 3GPP has voted to adopt polar codes in

the 5G wireless standard.

Like many fundamental discoveries, polar codes are rooted in a simple and beautiful

basic idea. Polarization is induced via a simple linear transformation consisting of many

Kronecker products of a small binary matrix G, called the polarization kernel, with itself.

Following Arıkan [10], we take

G ,


 1 0

1 1


 , G⊗2 =




1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1



, · · · , G⊗m

def
= m-th Kronecker power of G (1.5)

Let W : {0, 1} → Y be a binary memoryless symmetric (BMS) channel, characterized in

terms of its transition probabilities W (y|x), for all y ∈Y and x∈{0, 1}. Further let U =

(U1, U2, . . . , Un) be a block of n = 2m bits chosen uniformly at random from {0, 1}n. We

encode U as X = UG⊗m and transmit X through n independent copies of W , as shown by

2.1. A primer on polar codes
Like many fundamental discoveries, polar codes are rooted in a simple and beautiful basic idea. Po-
larization is induced via a simple linear transformation consisting of many Kronecker products of
a small binary matrix G, called the polarization kernel, with itself. Following Arıkan [8], we take

G def
=

[
1 0
1 1

]
, G⊗2 =

⎡
⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎤
⎦ , · · · , G⊗m def

= m-th Kronecker power of G (1)

Let W: {0, 1} → Y be a symmetric binary-input DMC, characterized in terms of its transition pro-
babilities W(y|x) defined for all y ∈ Y and x ∈ {0, 1}. Let U = (U1, U2, . . . , Un) be a block of
n = 2m bits chosen uniformly at random from {0, 1}n. Suppose U is encoded as X = UPnG⊗m,
where Pn is the n × n bit-reversal permutation matrix (this matrix is not essential, see [8, p. 3064]
for a definition). Finally, X is transmitted through n independent copies of W, as shown below:

.

.

.
.
.
.

U1

U2

Un

Y1

Y2

Yn

X1

X2

Xn

W

W

W

G⊗m (2)

This, in a nutshell, is the polarization transformation of Arıkan [8]. To understand what polariza-
tion means in this context, let us consider a number of channels associated with the transformation
in (2). First, there is the channel Wn: {0, 1}n → Y n that corresponds to n independent uses of W.
Arıkan [8] also introduces the channel W∗: {0, 1}n → Y n with transition probabilities given by
W∗(y|u) = Wn(y

∣∣uPnG⊗m). Finally, and most importantly, Arıkan [8] further defines, for each
i = 1, 2, . . . , n, the channel Wi : {0, 1}→ Y n×{0, 1}i−1 that is “seen” by the bit Ui, as follows:

Wi
(
y, v|ui)

def
=

1
2n−1 ∑

u∈{0,1}n−i

W∗
(

y
∣∣(v, ui, u)

)
=

1
2n−1 ∑

u∈{0,1}n−i

Wn
(

y
∣∣(v, ui, u)PnG⊗m

)
(3)

where (·, ·) stands for vector concatenation. It is easy to show that Wi
(
y, v|ui) is indeed the prob-

ability of the event that (Y1, Y2, . . . , Yn) = y and (U1, U2, . . . , Ui−1) = v given the event Ui = ui,
provided U = (U1, U2, . . . , Un) is a priori uniform. Consequently, if one considers a “hypothetical
decoder” that attempts to estimate the i-th input bit Ui in (2) having observed the channel output Y
and the first i − 1 bits of the input U, then Wi is the effective channel seen by such decoder. We
refer to Wi as the i-th bit-channel for i = 1, 2, . . . , n (Wi is called a “split channel” in [8]).

The key observation of [8] is that as n grows, the bit-channels start polarizing: they approach
either a noiseless channel or a useless channel. Formally, given a binary-input memoryless sym-
metric (BMS) channel W, its capacity I(W) and Bhattacharyya parameter Z(W) are given by

I(W)
def
=

1
2 ∑

y∈Y
∑

x∈{0,1}
W(y|x) log2

W(y|x)
1
2W(y|0) + 1

2W(y|1)
; Z(W)

def
= ∑

y∈Y

√
W(y|0)W(y|1)

Given a small constant δ ∈ (0, 1), let us say that a bit-channel Wi is δ-good if I(Wi) ! 1 − δ and δ-
bad if I(Wi) " δ. Then the polarization theorem of Arıkan [8, Theorem 1] can be stated as follows.

Theorem 1. For every δ ∈ (0, 1), almost all bit-channels become either δ-good or δ-bad as n → ∞.
In fact, as n → ∞, the fraction of δ-good bit-channels approaches the capacity I(W) of the under-
lying channel W, while the fraction of δ-bad bit-channels approaches 1 − I(W).

2

(1.6)
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This, in a nutshell, is the polarization transformation of Arıkan [10]. To understand what

polarization means in this context, let us consider a number of channels associated with the

transformation in (2.3). First, there is the channel W n: {0, 1}n → Yn that corresponds to

n independent uses of W . Arıkan [10] also introduces the channel Wn: {0, 1}n→ Yn with

transition probabilities given by Wn(y |u) = W n
(
y
∣∣uG⊗m

)
. Finally, and most importantly,

Arıkan [10] further defines, for each i = 1, 2, . . . , n, the channel Wi : {0, 1}→ Yn×{0, 1}i−1

that is “seen” by the bit Ui, as follows:

Wi

(
y , v |ui) ,

1

2n−1

∑

u∈{0,1}n−i
Wn

(
y
∣∣(v , ui,u)

)
=

1

2n−1

∑

u∈{0,1}n−i
W n
(
y
∣∣(v , ui,u)G⊗m

)
(1.7)

where (·, ·) stands for vector concatenation. It is easy to show that Wi

(
y , v |ui) is indeed

the probability of the event that (Y1, Y2, . . . , Yn) = y and (U1, U2, . . . , Ui−1) = v given the

event Ui = ui.

The key observation of [10] is that, as n grows, the n bit-channels Wi defined in (2.4)

start polarizing: they approach either a noiseless channel or a useless channel. Formally, given

a BMS channel W , its capacity I(W ) and Bhattacharyya parameter Z(W ) are given by

I(W ) , 1

2

∑

y∈Y

∑

x∈{0,1}

W (y|x) log2

W (y|x)
1
2
W (y|0) + 1

2
W (y|1)

; Z(W )
def
=
∑

y∈Y

√
W (y|0)W (y|1).

Given a constant δ ∈ (0, 1), let us say that a bit-channel Wi is δ-good if I(Wi) > 1 − δ and

δ-bad if I(Wi) 6 δ. Then the polarization theorem of Arıkan [10, Theorem 1] can be stated

as follows.

Theorem 2. For every δ ∈ (0, 1), almost all bit-channels become either δ-good or δ-bad as

n → ∞. In fact, as n → ∞, the fraction of δ-good bit-channels approaches the capacity

I(W ) of the underlying channel W , while the fraction of δ-bad ones approaches 1− I(W ).

Theorem 2 naturally leads to the construction of capacity-achieving polar codes. Specif-

ically, an (n, k) polar code is constructed by selecting a set A of k good bit-channels to carry
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the information bits, while the input to all the other bit-channels is frozen to zeros. The code

parameters k and δ are usually selected according to the target rate and/or the desired proba-

bility of error.

Note that the i-th bit-channel Wi is precisely the channel seen by the input bit Ui under

a hypothetical decoder that works as follows: it attempts to estimate Ui, having observed the

channel output y and the first i− 1 bits of the input (u1, u2, . . . , ui−1) = v . A beautiful idea

of Arıkan [10] was to convert this hypothetical decoder into a real one by substituting the

first i − 1 decisions (û1, û2, . . . , ûi−1) in place of the hypothetical observations v . Thus, the

successive cancellation decoder of [10] proceeds as follows: sequentially, for i = 1, 2, . . . , n,

set ûi = 0 if i∈Ac and

ûi =





0 if i∈A and Wi

(
y , û1, û2, . . . , ûi−1|0

)
> Wi

(
y , û1, û2, . . . , ûi−1|1

)

1 if i∈A and Wi

(
y , û1, û2, . . . , ûi−1|0

)
< Wi

(
y , û1, û2, . . . , ûi−1|1

) (1.8)

Arıkan [10] furthermore shows how the recursive (FFT-like) structure of polar codes, originat-

ing from (1.5), can be used to accomplish the successive-cancellation decoding in (1.8) with

complexity O(n log n) and latency O(n). Today, many extremely efficient realizations of this

decoder in custom VLSI are known [11–17].

Since its discovery by Arıkan [10] in 2009, polar coding has been applied to a wide

range of fundamental problems in information theory. These include multiple-access chan-

nels [18–20], broadcast channels [21, 22], wiretap channels [23–26], source coding [27–29],

and write-once memories [30]. There have been great many works on code construction, enco-

ding, and decoding [31–39], system design and hardware implementation [11, 40–42], and

finite-length analysis [3, 43–48]. Moreover, the channel polarization paradigm has been both

generalized and extended well beyond the domain of information theory [49–51].

As this dissertation is being prepared, the fifth generation of wireless networks (5G)

is being developed and standardized. Herein, we briefly review the latest developments con-
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cerning polar codes in this ongoing 5G standardization process. Note that the 5G standard has

three major connectivity modes: enhanced mobile broadband (eMBB), machine-type commu-

nications (MTC), and ultra-reliable low-latency communications (URLLC). At its November

2016 meeting, 3GPP decided to adopt polar codes as the coding scheme for eMBB control

channels, in both downlink and uplink. They will replace convolutional codes that have been

used to code the control channels in 3G and 4G. Later, 3GPP has adopted polar codes for

the eMBB physical broadcast channels (PBCH). Moreover, polar codes are currently among

the candidates for coding the main data channels in the MTC and the URLLC connectivity

modes. Indeed, a number of leading companies in the wireless sector view polar coding as

one of the key new technologies introduced in the 5G standard.

Note that PBCH and control channels are used to initiate the communication between

a base station and the user. Thus an error in decoding either PBCH or the control channel

will render the entire communication useless. Consequently, the coding scheme for these

channels must be highly reliable. Furthermore, a delay in decoding these channels will usually

result in the loss of some data packets; consequently, the decoder latency must be extremely

low. Finally,the requirements on the user side place stringent hardware and power constraints

on the decoder. Discussions on the precise specification of polar-coding architectures for

PBCH and control channels are still ongoing. Nevertheless, there is a general consensus to use

polar codes under list decoding concatenated with an outer cyclic redundancy check (CRC)

code, as originally was proposed in [39]. It is now almost certain that CRC-aided successive-

cancellation list (SCL) decoders for polar codes will be part of 5G chipset modems.

Even upon the completion of the 5G standardization process, the particular encod-

ing/decoding architectures to be deployed at the mobile devices will remain open. Several im-

portant challenges will have to be resolved in order to pave the way towards efficient system-

on-chip polar codecs that meet the required performance targets.
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1.3 Dissertation Contributions

The goal behind this research was to further advance the current state-of-the-art in

polar coding. In this dissertation, we will investigate some of the challenges that must be

overcome for a more successful implementation of polar codes in the communication systems.

We will also introduce new directions in polar coding coming from the theoretical perspective,

which lie beyond the horizon of todays wireless technology.

We begin by covering some preliminary materials about conventional polar coding.

An overview of the channel polarization theorem is provided, which builds the foundation

of polar coding. This is followed by a summary of the construction algorithms for polar

codes. We also touch upon the successive cancellation decoding algorithm of polar codes,

which becomes more relevant towards the end of the dissertation. Readers can find a detailed

discussion on scaling properties of polar codes in this section in which we also provide our

motivation behind the first topic of this dissertation.

As discussed earlier in (1.5), the conventional construction of polar codes is based

on Kronecker powers of a 2 × 2 binary matrix, which is usually referred to by the Arıkan’s

polarization kernel. However, Korada et. al. [29] showed that the polarization theorems hold

for almost any ` × ` binary kernel, as long as it is non-singular and cannot be transformed

into an upper triangular matrix under column permutations. Moreover, a clever selection of

such kernel can improve the finite-length scaling properties of polar codes. In particular, they

constructed a 16× 16 kernel with an error exponent greater than that of the Arıkan’s kernel.

In Chapter 2, we continue this line of thinking by first looking for kernels larger than

Arıkan’s with smaller scaling exponents. The scaling exponent, denoted by µ, captures the

speed of the polarization, or in general the speed of which the gap to the capacity decays as

the code-length increases. Random linear codes are proven to achieve the optimal scaling
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exponent of µ = 2. However, the scaling exponent of the conventional polar codes is only

bounded as 3.579 6 µ2 6 4.714 for arbitrary channels and explicitly calculated as µ2 = 3.626

for the binary erasure channels. We found the first example of such kernels at ` = 8 through

brute force simulations with µ8 = 3.577 for when the underlying communication channel is

limited to binary erasure channels. This is rather disappointing because of the following:

• The difference between µ8 and µ2 is negligible particularly for short block-lengths.

• It is computationally impossible to extend the brute force search beyond ` = 8.

• And, replacing the 2 × 2 kernels with larger ones is not free. Indeed, it comes with a

drastic increase in the decoding complexity.

In order to address these issues, we have first developed a heuristic algorithm to con-

struct large kernels with good scaling exponents. This construction is based on the relation

between the scaling exponent of a kernel and its polarization behavior under erasure channels.

The polarization behavior of an `× ` kernels characterizes the evolution of Bhattacharyya pa-

rameter through one step of polarization, which can be explicitly formulated in the case of

erasure channels. We construct two larger kernels for ` = 16 and ` = 32 with scaling ex-

ponents µ16 = 3.356 and µ32 = 3.122. We also investigate a conjecture that was originally

given in [45] and stated that one can find ` × ` kernels with scaling exponent arbitrary close

to µopt = 2 if ` is large enough. Indeed, we prove this conjecture and show that the scaling

exponents of almost-all binary `× ` polarization kernels are bounded by µ` 6 2 + ε if

log `

log log `
> c0ε, (1.9)

where c0 is a universal constant. However, this only holds for when the underlying communi-

cation channel is an erasure channel. We leave the extensions of this theorem for future.

The increased computational complexity of polar codes constructed from larger ker-

nels are commonly viewed as their main practicality challenge. The computational complexity
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relates to both space and time complexities of the decoder, which determine the chip size and

its throughput eventually. While decoding traditional polar codes under successive cancella-

tion algorithm has computational complexity of only O(n log n), this value scales by a factor

of 2` for when Arıkan’s kernel is replaced with an arbitrary ` × ` one. We study this effect

at the end of this chapter. We propose a low-complexity implementation of the successive

cancellation decoder for a class of large kernels that we refer to by the permuted kernels. This

class includes all kernels that can be generated form the Kronecker powers of Arıkan’s 2 × 2

kernel through row permutations. In fact, our heuristic algorithm for ` = 8 generates one

such kernel. Furthermore, we generalize this method to cover a wider class of kernels whose

structures share certain similarities with the Arıkan’s kernels and its powers.

In Chapter 3, we revisit the successive cancellation (SC) decoding algorithm of polar

codes. The task of the polar SC decoder is to sequentially estimate the values of the uncoded

bits u1, u2, · · · , un. Some of these bits correspond to the more noisy bit-channels and hence

their values are frozen and known to the decoder. The rest of the information bits are to be

decided according to the received symbols and their corresponding likelihoods. However, the

nature of this decoding method cannot recover from a single mistake while estimating the un-

coded bit since there is no coming back. To capture the magnitude of this problem, we recall

the definition of the Arıkan’s genie, which comes to the rescue for a limited number of times

when SC decoder makes mistakes. This can be viewed as a fictional side information avail-

able to the decoder, which we can artificially provide to the decoder for simulation purposes.

Although the Arıkan’s genie is an abstract concept, but both numerical simulations and math-

ematical derivations prove that significant performance improvements are in place if one were

able to simulate the genie.

The CRC-aided list decoding algorithm of polar codes [39] is the first successful at-

tempt at simulating the Arıkan’s genie. It is based on first precoding the information bits with
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a high-rate cyclic redundancy check (CRC) and then pursue not only the most likely path in

the successive cancellation decoder but to generate a list of L likely candidates. Upon arriving

at those L candidates, decoder cross matches them with the CRC check to eliminate all incor-

rect candidates. This acts as if the CRC is some side information, which allows the decoder to

catch and correct some of its mistakes at the end. As shown in multiple references, CRC-aided

SCL decoding of polar codes drastically improves their performance. However, achieving the

desired performance targets in wireless communication systems requires decent sized lists. In

turn, increased list-size negatively affects the latency, throughput, and power consumption of

the resulting decoder.

One may ask if the performance of CRC-aided SCL decoding with a list of size L

can be achieved without following L decoding paths? We believe that it can. We propose a

new method that is based on using a convolutional outer code, in lieu of a CRC code, and

try to correct decision errors in the successive-cancellation decoding process locally, on the

fly. Indeed, we run the Viterbi algorithm on the output of the SC decoder. Upon detecting a

decision error on bit ui, a genie-like feedback is activated to correct the error and reset the SC

decoder back to time i. In a nutshell, we propose to implement Arıkan’s genie via the Viterbi

algorithm with feedback to the SC decoder. Notably, this entails exploring only one path in

the decision tree, apart from an occasional reset of about a dozen bits back.

Time synchronization is fundamental in all wireless standards, especially those based

upon time-division duplex (TDD) methods. For instance, current 4G-TDD systems [52] re-

quire accuracy of at least 1.5µs. While these accuracy requirements are already tight, they

will be even more stringent in future wireless systems. Therefore, dealing with synchroniza-

tion errors will become inevitable. Synchronization errors occur when the mismatch of clocks

in the transmitter and the receiver exceeds what the underlying protocol can tolerate. Such

errors result in the insertion and/or deletion of bits in the transport block. Channels corrupted
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by insertions/deletions have memory; hence techniques developed for memoryless channels

do not apply [53]. While polarization theory has been extended to some channels with mem-

ory [51, 54, 55], unfortunately these results do not apply to the deletion channel. Indeed, even

the capacity of the deletion channel is not fully known [56, 57]. Moreover, there is a glaring

lack of good coding schemes for correcting insertions and deletions. Somewhat embarrass-

ingly, there is still no satisfactory solution even to the simple problem of correcting only two

deletion errors [53, 56]. In this part of our research, we ask: Can polarization theory along

with the power methods of polar coding be extended to channels with deletions?

In Chapter 4, we propose a new coding scheme for correcting a limited number of dele-

tion errors, whose complexity scales only polynomially, rather than exponentially, with the

number of deletions d. In fact, the decoding complexity with this approach is O(d2n log n).

The proposed algorithm extends the successive-cancellation decoding idea to channels with

deletions and cleverly exploits the beautiful recursive structure of polar codes. Let us consider

the well-known FFT-like polar graph composed of m = log2(n) decoding layers, that under-

lies SC decoding. It is precisely the structure of this graph that makes it possible to reduce the

decoding complexity from exponential to polynomial in d. Rather than guessing-and-checking

all the
(
n
d

)
possible deletion patterns, each node in the graph propagates its uncertainty about

the deletion pattern to the next decoding layer. Magically, with high probability, the correct

deletion pattern becomes visible when the last polar bit-channel is decoded.

The secret to this magic is, indeed, the structure of the polar graph. When process-

ing each node in this graph, we only need to know a subset of the received bits. Moreover,

this subset always forms a consecutive interval in the channel output. Therefore, in order to

compute the output from any node in decoding graph, all we need to know is the number of

deletions before and after the corresponding interval. This means that instead of
(
n
d

)
possi-

bilities, there are at most (d + 1)(d + 2)/2 different scenarios to consider at each node. We
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prove that, as far as successive-cancellation decoding is concerned, these O(d2) scenarios are

a sufficient statistic for the actual deletion pattern.

We also investigate channel-polarization paradigm for the proposed decoding algo-

rithm. In particular, we characterize the resulting bit-channels and analyze their evolution as

the block-length grows. Our decoding algorithm, in effect, re-defines polar bit-channels, so

that (2.4) no longer applies. In fact, instead of n bit-channels at each decoding layer, we now

have O(d2n) of them. We prove that these bit-channel polarize for when d is a constant and

conjecture that same result holds for all values of d that grow sublinearly with n, d = o(n).

Each chapter is followed by a short survey of a few related open problems in the field of

polar coding, some of which were originated through this research. For some of the research

problems we propose, we can see a clear path towards their successful implementation in

wireless communication systems. On the other hand, for many others, we feel that substantial

technical challenges lie in front of us. It is our intent that this work should open avenues for

future research and provide useful techniques that will be of value to other investigators.
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Chapter 2

Polar Codes with Large Kernels

15



2.1 Preliminary Topics

2.1.1 Background and Context

Shannon’s coding theorem implies that for every binary-input memoryless symmetric

(BMS) channel W , there is a capacity I(W ) such that the following holds: for all ε > 0 and

Pe > 0, there exists a binary code of rate at least I(W ) − ε which enables communication

over W with probability of error at most Pe. Ever since the publication of Shannon’s famous

paper [1], the holy grail of coding theory was to find explicit codes that achieve Shannon

capacity with polynomial-time complexity of construction and decoding. Today, several such

families of codes are known, and the principal remaining challenge is to characterize how fast

we can approach capacity as a function of the code block length n. Specifically, we now have

explicit binary codes (which can be constructed and decoded in polynomial time) of length n

and rate R, such that the gap to capacity ε = I(W ) − R required to achieve any fixed error

probability Pe > 0 vanishes as a function of n. The fundamental theoretical problem is to

characterize how fast this happens. Equivalently, we can fix ε = I(W )−R and ask how large

does the block length n need to be as a function of ε. That is, we are interested in the scaling

between the block length and the gap to capacity, under the constraint of polynomial-time

construction and decoding.

It is known that the optimal scaling is of the form n = O(1/εµ), where µ is referred

to as the scaling exponent. It is furthermore known that the best possible scaling exponent

is µ = 2, and it is achieved by random linear codes — although, of course, random codes

do not admit efficient decoding. In this chapter, we present the first family of binary codes

that attains both optimal scaling and quasi-linear complexity on the the binary erasure channel

(BEC). Specifically, for any fixed δ > 0, we exhibit codes that ensure reliable communication

on the BEC at rates within ε > 0 of the Shannon capacity, with block length n = O(1/ε2+δ),
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construction complexity Θ(n), and encoding/decoding complexity Θ(n log n).

To establish this result, we use polar codes, invented by Arıkan [10] in 2009. How-

ever, while Arıkan’s polar codes are based upon a specific 2 × 2 kernel, we use ` × ` binary

polarization kernels, where ` is a sufficiently large constant. The main technical challenge is

to prove that this construction works. To this end, we choose the polarization kernel uniformly

at random from the set of all `× ` nonsingular binary matrices, and show that with probability

at least 1− O(1/`), the resulting scaling exponent is at most 2 + δ. Since ` is a constant that

depends only on δ, the choice of a polarization kernel can be, in principle, de-randomized with

complexity which is independent of the block length (and depends only on `).

In the following, we provide a brief summary of what is known about the scaling

exponent of major families of linear codes.

A sequence of papers starting with [58, 59] in 1960s and culminating with [60, 61]

shows that for any discrete memoryless channel W and any code of length n and rate R that

achieves error-probability Pe on W , we have

I(W )−R > const(Pe,W )√
n

− O

(
log n

n

)
, (2.1)

where the constant (which is given explicitly in [61]) depends on W and Pe, but not on n. This

immediately implies that if n = O (1/εµ), where ε = I(W ) − R is the gap to capacity, then

µ > 2. We further note that expressions similar to (2.1) were derived from the perspective of

threshold phenomena in [62] and from the perspective of statistical physics in [63]. The fact

that µ > 2 also follows from a heuristic argument. For simplicity, consider the special case of

transmission over the BEC with erasure probability p. As n→∞, the number of erasures tend

to the normal distribution with mean np and standard deviation
√
np(1− p). Thus, channel

randomness yields a variation in the fraction of erasures of order 1/
√
n. This implies that, in

order to achieve a fixed error probability, the gap to capacity ε has to scale at least as 1/
√
n.

17



It is well known [60, 61] that the lower bound µ = 2 is achieved by random linear

codes. For the special case of transmission over the BEC, the proof of this fact reduces to

computing the rank of a certain random matrix. Indeed, the generator matrix of a random

linear code of length n and rate R is a matrix with Rn rows and n columns whose entries are

i.i.d. uniform in {0, 1}. The effect of transmission over the BEC with erasure probability p is

equivalent to removing each column of this generator matrix independently with probability

p. The probability of error (under maximum-likelihood decoding) is equal to the probability

that such residual matrix is not full-rank. This probability is easy to compute, and the desired

scaling result immediately follows.

Unfortunately, random linear codes cannot be decoded efficiently. On general BMS

channels, this task is NP-hard [64]. On the BEC, decoding a general binary linear code takes

time O(nω), where ω is the exponent of matrix multiplication. This leads to the following

natural question: what is the lowest possible scaling exponent for binary codes that can be

constructed, encoded, and decoded efficiently? For the BEC, we take efficiently to mean

linear or quasi-linear complexity. Here is a brief survey of the current state of knowledge on

this question.

Forney’s concatenated codes [65] are a classical example of a capacity-achieving fam-

ily of codes. However, their construction and decoding complexity are exponential in the

inverse gap to capacity 1/ε (see [44] for more details), so they are definitely not efficient.

Let us also point out that we can define a scaling exponent also for codes that do not achieve

capacity by substituting the channel capacity with the specific threshold of the code. In this

context, for a large class of ensembles of LDPC codes and channel models, the scaling expo-

nent is also µ = 2 [66]. However, the threshold of such LDPC ensembles does not converge

to capacity.

In recent years, three new families of achieve capacity-achieving codes have been dis-

18



covered; let us review what is known regarding their scaling exponents.

Polar codes: Achieve the capacity of any BMS channel under a successive-cancellation de-

coding algorithm [10] that runs in time O(n log n). It was shown in [44] that the block

length, construction complexity, and decoding complexity are all bounded by a polyno-

mial in 1/ε, which implies that the scaling exponent µ is finite. Later, a sequence of

papers [3,43,46,47] provided rigorous upper and lower bounds on µ. The specific value

of µ depends on the channel W . It is known that µ = 3.63 on the BEC. The best-known

bounds valid for any BMS channel W are given by 3.579 6 µ 6 4.714.

Spatially-coupled LDPC codes: Achieve the capacity of any BMS channel under a belief-

propagation decoding algorithm [67] that runs in linear time. A simple heuristic argu-

ment yields that the scaling exponent of these codes is roughly 3 (see [68, Section VI-D]).

However, a rigorous proof of this statement remains elusive and appears to be technically

challenging.

Reed-Muller codes: Achieve capacity of the BEC under maximum-likelihood decoding [69,

70] that runs in timeO(nω). While it has been observed empirically that the performance

of Reed-Muller codes on the BEC is close to that of random codes [71], no bounds on

the scaling exponent of these codes are known.

2.1.2 Finite-Length Scaling of Polar Codes

The performance of polar codes has been analyzed in several regimes. In the error

exponent regime, the rate R < I(W ) is fixed, and it is studied how the error probability Pe

scales as a function of the block length n. This approach is represented as the vertical/blue

cut in Figure 2.1. In [72] it is proved that the error probability under SC decoding behaves

roughly as 2−
√
n. An even more refined scaling is proved in [73].
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Figure 2.1: Performance of a family of codes with rate R = 0.5 as appears in [3].

In the error floor regime, the code is fixed, i.e., the rate R and the block length n

are fixed, and it is studied how the error probability Pe scales as a function of the channel

parameter. This approach corresponds to taking into account one of the four curves in Figure

2.1. Each curve corresponds to a code of an assigned block length n; on the x-axis it is

represented the parameter z of the transmission channel; and on the y-axis the error probability

Pe. The error exponent regime captures the behavior of the blue vertical cuts of fixed channel

parameter z (or, equivalently, of fixed gap to capacity I(W ) − R). The error floor regime

captures the behavior of a single curve of fixed block length n. The scaling exponent regime

captures the behavior of the red horizontal cuts of fixed error probability Pe. The figure is

courtesy of [3]. In [74] it is proved that the stopping distance of polar codes scales as
√
n,

which implies good error floor performance under BP decoding. The authors of [74] also

provide simulation results that show no sign of error floor for transmission over the BEC and

over the binary-input AWGN channel. This conjecture is settled in [3], where it is showed that

polar codes do not exhibit error floors for the transmission over any BMS channel.
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In this chapter, our main focus is on the scaling exponent regime, where the error

probability Pe is fixed, and it is studied how the gap to capacity I(W )−R scales as a function

of the block length n. This approach is represented as the horizontal/red cut in Figure 2.1.

As mentioned earlier, if n is O (1/(I(W )−R)µ), then we say that the family of codes has

scaling exponent µ. For polar codes, the value of µ depends on the particular channel taken

into account. In [47], it is presented a heuristic method for computing the scaling exponent for

the transmission over the BEC under SC decoding; this method yields µ ≈ 3.627. In [44], it is

shown that the block length, construction, encoding and decoding complexity are all bounded

by a polynomial in the inverse of the gap to capacity for the transmission over any BMS

channel. This implies that there exists a finite scaling exponent µ. Rigorous bounds on µ are

provided in [3, 43, 46]. In [46], it is proved that 3.579 6 µ 6 6, and it is conjectured that

the lower bound can be increased up to 3.627, i.e., up to the value heuristically computed for

the BEC. In [43], the upper bound is refined to 5.702. The current best upper bounds on the

scaling exponent are provided in [3]: for any BMS channel, µ 6 4.714; and for the special

case of the BEC, µ 6 3.639, which approaches the value obtained heuristically in [47]. As a

side note, let us point out that the heuristic method of [47] is based on a “Scaling Assumption”

that requires the existence of a particular limit. The results of [3, 43, 46], as well as the result

presented in this paper, do not rely on such an assumption.

In [3], it is also proved that, by allowing a less favorable scaling between the gap to

capacity and the block length (i.e., a larger scaling exponent), the error probability goes to 0

sub-exponentially fast in n. This intermediate regime is referred to as moderate deviations

regime. Here, neither the rate nor the error probability are fixed, and it is studied how the gap

to capacity I(W )−R and the error probability Pe jointly scale as functions of the block length

n (see [3, Theorem 3]).

In a nutshell, the scaling exponent of Arıkan’s polar codes is around 4 (its exact value
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depends on the transmission channel and it can be bounded as 3.579 6 µ 6 4.714). On the

contrary, random codes achieve the optimal scaling exponent of 2. This means that, in order

to obtain the same gap to capacity, the block length of polar codes needs to be roughly the

square of the block length of random codes. Hence, one natural question is how to improve

the scaling exponent of polar codes.

One possible approach consists in acting on the decoding algorithm. In particular,

the successive cancellation list decoder proposed in [39] empirically provides a significant

performance improvement. However, in [48], it is proved a negative result for list decoders:

the introduction of any finite list cannot improve the scaling exponent under MAP decoding

for the transmission over any BMS channel. Furthermore, for the special case of the BEC, it is

also proved that the scaling exponent under SC decoding does not change even if one is given

a finite number of helps from a genie.

Another approach is to consider the polarization of kernels larger than the original

2× 2 matrix. Indeed, such kernels have the potential to improve the scaling behavior of polar

codes. For the error exponent, in [29] it is proved that, as ` goes large, the error probability

scales roughly as 2−n. For the scaling exponent, in [4] it is observed that µ can be reduced

when ` > 8. In the recent paper [75], it is shown that, for the transmission over the erasure

channel, the optimal scaling exponent µ = 2 is approached by using a large kernel and a large

alphabet. Furthermore, in [45], the author gives evidence supporting the conjecture that, in

order to obtain µ = 2, it suffices to consider a large kernel over a binary alphabet. Here,

we finally settle such a conjecture: we show that the scaling exponent µ(`) obtained from the

polarization of an `×` kernel tends to 2, as ` goes large. We furthermore characterize precisely

how large ` needs to be as a function of the gap between µ(`) and 2. The resulting binary codes

maintain the beautiful recursive structure of conventional polar codes, and thereby achieve

construction complexity Θ(n) and encoding/decoding complexity Θ(n log n). This implies
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that block length, construction, encoding, and decoding complexity are all linear or quasi-

linear in 1/ε2, which meets the information-theoretic lower bound.

2.1.3 Polarization Theory for Large Kernels

We recall again that polarization nduced via a simple linear transformation consisting

of many Kronecker products of a binary matrix K, called the polarization kernel, with itself.

The conventional polar codes introduced by Arıkan in [10] correspond to the choice

K =


 1 0

1 1


 . (2.2)

In general, we can construct polar codes for any kernel K that is an ` × ` non-singular bi-

nary matrix, which cannot be transformed into an upper triangular matrix under any column

permutations [29].

Let W : {0, 1} → Y be a BMS channel, characterized in terms of its transition proba-

bilities W (y|x), for all y ∈Y and x∈{0, 1}. Further, let U = (U1, U2, . . . , Un) be a block of

n = `m bits chosen uniformly at random from {0, 1}n. We encode U as X = UK⊗m and

transmit X through n independent copies of W , as shown below:
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.

.
.
.
.

U1

U2

Un

Y1

Y2

Yn

X1

X2

Xn

W

W

W

K⊗m (2.3)

To understand what polarization means in this context, we consider a number of channels

associated with this transformation (see also Chapter 5 of [54] and Chapter 2.4 of [45]).

Let W n: {0, 1}n → Yn be the channel that corresponds to n independent uses of W ; let

Wn: {0, 1}n → Yn be the channel with transition probabilities given by
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Figure 2.2: Graphical representation of the i-th polar bit-channel.

Wn(y |u) = W n
(
y
∣∣uK⊗m

)
; and, for i ∈ [n], let W (i) : {0, 1}→ Yn×{0, 1}i−1 be the chan-

nel that is “seen” by the bit Ui, defined as

W (i)
(
y , v |ui) def

=
1

2n−1

∑

u∈{0,1}n−i
Wn

(
y
∣∣(v , ui,u)

)
=

1

2n−1

∑

u∈{0,1}n−i
W n
(
y
∣∣(v , ui,u)K⊗m

)
,

(2.4)

where (·, ·) stands for vector concatenation. It is easy to show that W (i)
(
y , v |ui) is indeed the

probability of the event that (Y1, Y2, . . . , Yn) = y and (U1, U2, . . . , Ui−1) = v given the event

Ui = ui. Consequently, if one considers a “hypothetical decoder” that attempts to estimate the

i-th input bit Ui in (2.4) having observed the channel output Y and the first i − 1 bits of the

input U , then W (i) is the effective channel seen by such decoder. We refer to W (i) as the i-th

bit-channel for i = 1, 2, . . . , n (Wi is called a “split channel” in [10]). A graphical illustration

of the i-th bit-channel is given in Figure 2.2.

The key observation of [10] is that, as n grows, the n bit-channels Wi defined in (2.4)

start polarizing: they approach either a noiseless channel or a useless channel. Formally, given

a BMS channel W , its capacity I(W ) and Bhattacharyya parameter Z(W ) are given by

I(W )
def
=

1

2

∑

y∈Y

∑

x∈{0,1}

W (y|x) log2

W (y|x)
1
2
W (y|0) + 1

2
W (y|1)

,

Z(W )
def
=
∑

y∈Y

√
W (y|0)W (y|1).

(2.5)
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Given δ ∈ (0, 1), let us say that a bit-channel W (i) is δ-bad if Z(W (i)) > 1 − δ and δ-good

if Z(W (i)) 6 δ. Then the polarization theorem of Arıkan [10, Theorem 1] can be informally

stated as follows.

Theorem 3. [Polarization Theorem] For every δ ∈ (0, 1), almost all bit-channels become ei-

ther δ-good or δ-bad as n → ∞. In fact, as n → ∞, the fraction of δ-good bit-channels

approaches the capacity I(W ) of the underlying channel W , while the fraction of δ-bad bit-

channels approaches 1− I(W ).

This theorem naturally leads to the construction of capacity-achieving polar codes, as

long as δ is o(1/n). Specifically, an (n, k) polar code is constructed by selecting a set A of k

good bit-channels to carry the information bits, while the input to all the other bit-channels is

frozen to zeros. In practice, the code parameters k and δ are usually selected according to the

target rate of the code and/or the desired probability of error.

The error probability under SC decoding is upper bounded by the sum of the smallest k

Bhattacharyya parameters of the synthetic channels. Let us also mention that the polarization

theorem stated above was originally proved in [10] for δ = n−5/4 (which suffices to give

capacity-achieving codes) and later improved to δ ∼ 2−
√
n in [72].

Let us now focus on the binary erasure channel, where the erasure probability z is

equal to the Bhattacharyya parameter Z(W ) defined in (2.5). It is easy to see that when the

underlying channel W is a BEC(z), then, for all i, the i-th bit-channel W (i) is a BEC(zm(i)),

where zm(i) is a polynomial of degree at most n in z (see also Section 3.4 of [45]). The proof

of the polarization theorem follows by studying the evolution of the Bhattacharyya parameters

zm(i), as m grows. For a fixed kernel K, these n = `m Bhattacharyya parameters zm(i) can

be viewed as the values of the random variable Zm induced by the uniform distribution on the

`m bit-channels. More formally, the recursive construction of K⊗m allows {Zm}m∈N to form
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the supermartingale:

Zm+1 = fBm,K(Zm), for Bm ∼ Uniform[`], (2.6)

with the initial condition Z0 = z and where, for i ∈ [`], fi,K(z) denotes the erasure probability

of the i-th bit-channel after one step of polarization. We shall refer to the set
{
fi,K(z) : i ∈ [`]

}

as the polarization behavior ofK. We will show in the next section that fi,K(z) is a polynomial

of degree at most ` in z. For the special case of the kernel (2.2), we have that

f0,K(z) = 2z − z2,

f1,K(z) = z2.

(2.7)

One can view (2.6) as a stochastic process on an infinite binary tree, where in each step

we take one of the ` available branches with uniform probability. The polarization theorem is

then reduced to the martingale convergence theorem for supermartingales, which in this case

implies that

lim
m→∞

Zm(1− Zm) = 0. (2.8)

This shows that the erasure probability of the bit-channels polarizes to 0 or 1 as m → ∞.

Furthermore, by applying the chain rule of mutual information, one can show that this polar

transform preserves capacity. Hence, the fraction of bit-channels that polarizes to 0 approaches

I(W ). The speed with which this polarization phenomenon takes place is the determining

factor in the decay rate of the gap to capacity as a function of the block length `m. We

elaborate on this in the next subsection.
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2.1.4 Binary Erasure Channels and Polarization Behavior

Let us recall again that, when the transmission channel is a BEC(z), each polar bit-

channel channels is also a BEC whose erasure probability is a polynomial in z. In this section,

we give more insight into this fact by first describing the successive cancellation decoding

method for BECs, and then establishing a connection between the decodability of the ith bit-

channel and the column spaces of some sub-matrices of K.

Let K ∈ F`×`2 be a non-singular binary kernel. Assume that the underlying channel is

a BEC(z) and let e denote the erasure pattern, which is a length-` vector in {0,4}` with the

property that ei = 4 if the i-th symbol is erased and ei = 0 otherwise. Let us also definewt(e)

to denote the number of erasures in e. Given that each symbol gets erased independently with

probability z, the probability of observing a fixed erasure pattern such as e is given by

P(observing deletion pattern e) = zwt(e)(1− z)`−wt(e). (2.9)

Definition . Assume that the underlying communication takes place over BEC(z). Further

assume that the input-output relation at the encoder is given by x = uK, where K is a given

polarization kernel. We define the erasure pattern e to be an (i,K)-uncorrectable erasure

pattern if it makes ui undecidable.

The erasure probability at the i-th bit-channel can now be formulated as

fi,K(z) =
∑

e : e is (i,K)−uncorrectable

zwt(e)(1− z)`−wt(e), (2.10)

which is equivalent to

fi,K(z) =
∑̀

s=0

zs(1− z)`−s
(
# of erasure patterns with s erasures that make ui undecidable

)
.

(2.11)
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Table 2.1: The list of (2, K3)-uncorrectable erasure patterns.

erasure pattern e 000 004 040 044 400 404 440 444

erasure weight 0 1 1 2 1 2 2 3

decodable y y y n y y n n

Definition. The polarization behavior of an `×` kernelK is defined as the set of ` polynomials

{f1,K(z), f2,K(z), · · · , f`,K(z)} (2.12)

that define the erasure probabilities of polar bit-channels after one step of polarization.

Example 1. Assume that the polarization kernel is given by

K3 =




1 0 0

1 1 0

1 0 1


 .

We can formulate the relation between uncoded bits u and the received symbols y as y =

uK3 + e, where 0 +4 = 4 and 1 +4 = 4. In successive cancellation decoding of u2, we

assume that the value of u1 is known. We proceed by canceling out the effect of u1 as

y − u1

[
1 0 0

]
= (u2, u3)


 1 1 0

1 0 1


+ e =

(
u2 + u3 + e1︸ ︷︷ ︸

c1

, u2 + e2︸ ︷︷ ︸
c2

, u3 + e3︸ ︷︷ ︸
c3

)
. (2.13)

It is now clear that the only combinations that can possibly help to recover u2 are c1 + c3 and

c2. Therefore, u2 is decodable if e2 = 0 or both e1, e3 = 0. This is also demonstrated in

Table 2.1. The erasure probability of W (2) is hence given by

f2,K3(z) = 1−
(
(1− z) + z(1− z)2

)
. (2.14)
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Next, we look at the general case by first fixing an erasure pattern with s erasures.

For convenience, let the last s coordinates denote its erasure locations. Hence, the received

symbols are given as

x`−s1 = uK[:,1:`−s] , (2.15)

where K[:,1:`−s] denotes the sub-matrix of K that is formed by removing its last s columns.

Furthermore, note that in the successive cancellation decoding of ui, we assume that ui−1
1 is

known. We can now re-write (2.15) as

x`−s1 = uK[:,1:`−s] =

[
ui−1

1

∣∣u`i
]
K[:,1:`−s] =

[
ui−1

1

∣∣0`−i+1

]
K[:,1:`−s] +

[
0i−1

∣∣u`i
]
K[:,1:`−s]

︸ ︷︷ ︸
=u`iK[i:`,1:`−s]

,

(2.16)

where K[i:`,1:`−s] denotes the sub-matrix of K that is formed by removing its first i−1 rows as

well as its last s columns. It is now clear that, in order to decode ui, one needs to express the

column vector (1, 0, · · · , 0)t as a linear combination of columns in K[i:`,1:`−s]. In other words,

ui = decodable ⇐⇒ (1, 0, 0, . . . , 0︸ ︷︷ ︸
`−i

)t ∈ column space of K[i:`,1:`−s], (2.17)

which is also equivalent to the following condition

∃ψi−1
1 ∈ Fi−1

2 : (ψ1, · · · , ψi−1, 1, 0, 0, · · · , 0︸ ︷︷ ︸
`−i

)t ∈ column space of K[:,1:`−s]. (2.18)

Let ej denote the j-th element of the canonical basis and define the linear subspace Ej ⊂ F`2

as

Ej , span〈e1, e2, · · · , ej〉.

Therefore, the decodability condition can be further simplified as

ui = decodable ⇐⇒ (Ei \ Ei−1) ∩ (column space of K[:,1:`−s]) 6= ∅. (2.19)
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2.2 Construction of Large Polarization Kernels

2.2.1 Derivation Methods for Polarization Behavior

Earlier in this chapter, we provided an example of of how to compute the polarization

behavior of a given ` × ` kernel K. However, it is easy to verify that the naive approach

requires us to cross check all possible 2` deletions patterns with all 2` column combinations of

the kernel to explicitly the (i,K)-uncorrectable erasure patterns. Therefore the computational

complexity of this method is asymptotically given by O(22`).

In this subsection, we provide an alternative method which reduces the asymptotic

computational complexity of formulating the polarization behavior to O(`32`). We also prove

that this problem is equivalent to finding the minimum distance of an arbitrary linear code,

which is proven to be NP-hard.

We begin by explaining set of operations that preserve the polarization behavior of a

kernel. Recall again that a non-singular binary `× ` matrix is a polarizing kernel conditioned

that it cannot be transformed into an upper-triangular matrix under any column permutations.

We refer readers to [29] for the proof. It is clear that the Arıkan’s kernel is the only binary

polarization kernel of size ` = 2. However, this number increases as ` becomes larger.

Lemma 2.1. The number of binary polarization kernels of size ` is given by

2
`(`−1)

2

(∏̀

i=1

(2i − 1)− `!
)
. (2.20)

Proof. The number of non-singular binary `× ` matrices in F`×`2 is given by
`−1∏

i=0

2` − 2i = 2
`(`−1)

2

∏̀

i=1

(2i − 1). (2.21)

However, there are 2
`(`−1)

2 non-singular upper-triangular matrices in F`×`2 . These matrices

along with their permuted version (column-wise) are pairwise distinct. Subtracting this num-

ber from (2.21) completed the proof.
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As we will show later in this section, it is possible to estimate the scaling exponent

of polar codes constructed from kernel K for the binary erasure channels based on its po-

larization behavior. However, to find fast polarizing kernels, we not only need to go though

extensive calculations for the polarization behavior but to also repeat the same process for

all polarization kernels. On the other hand, the number of such kernels given in (2.20) is an

indicator of how practically impossible would this task be.

In the following, we show that the polarization behavior of a given kernel K remains

unchanged under certain row operation and under any column permutations. This will reduce

the search field to only non-singular lower-triangular matrices in F`×`2 whose size is given by

2
`(`−1)

2 . The same operations allow us to reduce the computational complexity of deriving the

polarization behavior to O(`32`).

Let us denote the linear combinations of columns in K by Kv, where v ∈ F`2. Fur-

ther let i denote the location of the last non-zero element in Kv. As (2.18) suggests, the

combination v can help decode ui if non of symbols that correspond to supp(v) are erased.

Definition . Let K be a given binary ` × ` polarization kernel. The nested chain of kernel

codes with respect to K denoted by {0} = C0 ⊂ C1 ⊂ · · · ⊂ C` = {0, 1}` are defined as

Ci := {v|v ∈ {0, 1}`, K[i+1:`]v = 0} ∀i : 0 6 i 6 `. (2.22)

Lemma 2.2. Assume K be a given ` × ` binary polarization kernel, whose kernel codes

are defined according to (2.22). Let e be a given erasure pattern. Then, e is an (i,K)-

uncorrectable erasure patten if and only if supp(e) does not cover any codewords in Ci \Ci−1.

Proof. Follows immediately from (2.17), (2.18), and (2.19).

Lemma 2.3. Assume a same setup as in Lemma 2.2 is in place. Then, e is an (i,K)-

uncorrectable erasure patten if and only if supp(e) covers a codeword in C⊥i−1 \ C⊥i .
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Proof. Let e be an (i,K)-uncorrectable erasure pattern. Therefore, there exists at least two

different information vectors u1 and u2 that generate the same bits in the nonerased locations.

In other words, supp(e) covers the codeword (u1 + u2)K, which is a codeword in C⊥i−1 \ C⊥i .

The reverse follows similarly.

Lemma 2.4. Let K and K∗ be two polarization kernels such that K∗ is constructed from K

by adding its j-th row to its i-th row, where 1 6 i < j 6 `. Then, K and K∗ have the same

polarization behavior.

Proof. Let {Ci}`i=0 and {C∗i }`i=0 denote the kernel codes corresponding to K and K∗ respec-

tively. It suffices to show that for all t, Ct = C∗t . Note that K[t+1:`] is nothing but a parity check

matrix for Ct. Now, consider the following three cases:

• If j 6 t, then K[t+1:`] = K∗[t+1:`]. Therefore, Ct = C∗t .

• If i 6 t < j, then we again have K[t+1:`] = K∗[t+1:`] and hence Ct = C∗t .

• If t < i, then K[t+1:`] can be transformed to K∗[t+1:`] using simple linear row operations.

So, for any v ∈ F`2 we have K[t+1:`]v = 0 if and only if K∗[t+1:`]v = 0, which translates

to Ct = C∗t .

Lemma 2.5. LetK andKπ be two polarization kernels such thatKπ is constructed fromK by

applying a permutation on its columns. Then, K and Kπ have the same polarization behavior.

Proof. Applying a permutation π on columns of K is equivalent to applying the same per-

mutation on both the erasure patterns e and the column combination vectors v. Therefore,

each (i,K)-uncorrectable erasure pattern e maps to an (i,Kπ)-uncorrectable erasure pattern

π(e) with the same weight, which in turn preserves the overall erasure probability of the i-th

bit-channel defined in (2.10).
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It is now clear that by using the column permutations and the one-directional row

operations we can always transform a non-singular kernel K to a lower triangular kernel K ′

with the same polarization behavior. Therefore, the computation is only necessary for non-

singular lower triangular kernels whose total number is 2`(`−1)/2. We need to mention that

not all of these kernels have different polarization behaviors. In fact the actual number of

polarization behaviors is much less than 2`(`−1)/2 and it is still an unsolved problem to find a

relation between those kernels with same polarization behaviors.

Let us rewrite the definition in (2.11) as

pi(z) =
∑̀

w=0

Ei,wz
w(1− z)`−w, (2.23)

where Ei,w is the number of erasure patterns of weight w that kill the bit channel Wi. It is easy

to see that

0 6 Ei,w 6
(
`

w

)
∀w.

However, Ei,w =
(
`
w

)
means that all erasure patterns with weight w make channel W (i) uncor-

rectable and there should be no codeword with Hamming weight ` − w in the coset Ci+1 \ Ci

otherwise the channel would have survived from the erasure pattern e with weight w, which

has erasures in all the coordinates with value 0 in the codeword. Let us define

di , wtmin(Ci \ Ci−1) for all 1 6 i 6 `. (2.24)

d∗i , wtmin(C⊥i−1 \ C⊥i ) for all 1 6 i 6 `. (2.25)

Theorem 4. Let di be defined according to (2.24). We have

Ei,w <

(
`

w

)
for 0 6 w 6 `− di,

Ei,w =

(
`

w

)
for w > `− di;

Or in other words di = `−max{w|Ei,w <
(
`
w

)
}.
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Proof. Assume that Ei,w =
(
`
w

)
for some w.Then every single erasure pattern with weight w

kills the channel. Since these erasure patterns are also subset of erasure patterns with larger

weights, so all erasure patterns with larger weights kill the channelWi as well andEi,w′ =
(
`
w′

)

for all w′ > w. Suppose that `−d′i is the largest number such that Ei,`−d′i <
(

`
`−d′i

)
. Let us also

denote the codeword with minimum Hamming weight in Ci+1 \ Ci by vi. The corresponding

linear combination K[i:`−1]vi survives if there are erasures in all the columns that are not

selected by vi. Hence

`− di 6 `− d′i. (2.26)

Also note that if Ei,`−d′i <
(

`
`−d′i

)
then there should be an erasure pattern with ` − d′i erasures

that does not kill the channel. So there should be a linear combination of columns from the

remaining d′i columns that can recover ui. Hence there is a codeword v in Ci+1 \ Ci which has

no intersection with the erased coordinates, and its support should be included in the set of

non-erased coordinates, and

di 6 d′i. (2.27)

(2.26) and (2.27) complete the proof together.

Theorem 5. Let d∗i be defined according to (2.25). We similarly have

Ei,w > 0 for d∗i 6 w,

Ei,w = 0 for w < d∗i ;

Or in other words d∗i = min{w|Ei,w > 0}.

Proof. Proof follows similar to that of Theorem 4 by noting that any erasure pattern e with

wt(e) < d∗i is correctable.
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These theorems establish a relation between finding the minimum Hamming weight in

Ci+1 \ Ci and the polarization behavior of the kernel K. Indeed, computing the polarization

behavior is in general a harder problem that finding the corresponding minimum weights.

We can derive the kernel K from any chain of the nested codes and hence Ci+1 can be an

arbitrary linear code in F`2 with dimension i + 1. Let us construct Ci+1 from a given linear

code C ⊂ F`−1
2 with adding an extra bit in the first coordinate (code extension). Also assume

that Ci is obtained from Ci+1 by shortening in the first coordinate. Now it is clear that the coset

Ci+1 \ Ci is the set of all codewords in C but with an extra 1 in the beginning, and hence

min{wt(v)|v ∈ Ci+1 \ Ci} = 1 + dmin(C).

Finally, we recall the results from [76] where it is shown that finding the minimum distance of

a linear code in general is NP-hard. This in turn shows that the computational complexity of

the polarization behavior is also NP-hard in general.

For a given `× ` kernel K, there are 2` erasure patterns and 2` linear combinations. As

mentioned earlier, the straightforward way to find the polarization behavior is to cross check

each erasure pattern e with all linear combinations in Ci+1 \ Ci to see if there is the erasure

pattern e is (i,K)-correctable or not. However the complexity of running this algorithm is

clearly O(22`), which soon becomes impractical as ` grows. In the following, we propose an

alternative solution that exploits the linear construction of cosets Ci \ Ci−1 and reduces the

overall complexity to O(`32`).

Let us fix the erasure pattern e. Define

Ci/ supp(e)c = {v| supp(v) ⊂ supp(e)c} ∀i, (2.28)

where supp(e)c denotes the complement vector for supp(e). It is then clear that e is an

(i,K)-uncorrectable erasure pattern if and only if Ci/ supp(e)c = Ci−1/ supp(e)c. So, in
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order to determine if e is an uncorrectable erasure pattern or not, it suffices to determine if

Ci/ supp(e)c = Ci−1/ supp(e)c holds.

First we point out the generating matrices of both Ci and Ci−1 can be derived from

their parity check matrices in polynomial complexity. Note that Ci/ supp(e)c is nothing but Ci

shortened to locations in supp(bfe)c, which is a linear code whose generating matrix can be

derived from the generating of Ci in polynomial computational complexity of at most O(`3).

The same goes for Ci−1/ supp(e)c. Let us denote the generating and parity check matrices of

these codes respectively by Gi,e, Hi,e, Gi−1,e, and Hi−1,e. Then

e = (i,K)-uncorrectable if and only if Gi,eHi−1,e = 0, (2.29)

which is a computation with complexity at most O(`3). This process should be repeated for

each erasure pattern e individually. Hence, the overall computational complexity of calculat-

ing the polarization behavior for the `× ` kernel K reduces to O(`32`).

The proposed algorithm becomes handy when the computation of the polarization be-

havior for a specific large kernel is required. Based on this approach, we derive the polariza-

tion behavior of a constructed 16 × 16 kernel with scaling exponent µ16 = 3.356 in the next

subsection.

2.2.2 Heuristic Construction Algorithm for Large Kernels

When studying the polar bit-channels in finite lengths, they cannot be considered as

fully noiseless or fully noisy. We instead define thresholds ε and 1 − ε′ so that bit-channels

with Bhattacharyya parameter Z(W ) 6 ε and Z(W ) > 1 − ε′ are considered noiseless and

useless respectively. Let us also refer to the rest of them by unpolarized bit-channels. The

polarization speed in fact captures the speed of which the ratio of unpolarized channels goes

to zero as the block-length increases and can be formulated as the following:
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Assumption6 (Scaling Assumption). Given an ` × ` kernel K and a binary discrete memo-

ryless channel W , there exists a µ(W,K) ∈ (0,∞) such that for any 0 < ε < 1− ε′ < 1

lim
n→∞

number of unpolarized channels
number of total channels

n
m

µ(W,K)

exists in (0,∞).

In [46], authors proposed a heuristic method to calculate the scaling exponent of polar

codes for binary erasure channels based on Arikan’s 2×2 polar transformation. They also pre-

sented an analytical approach to derive a sequence of both upper and lower bounds. Both the

heuristic and the analytical approaches depend solely on the polarization behavior of Arıkan’s

kernel. In the following, we review their both techniques when applied to a larger polarization

kernel and estimate the scaling exponent of a few larger kernels.

From this point forward, we always assume that underlying channel W is the BEC(z)

where z ∈ [0, 1]. Let us fix an ` × ` kernel K whose polarization behavior is given by poly-

nomials
{
pi(z)

}`
i=1

. We recall the formulation for evolution of the Bhattacharyya parameter

from (2.6) as a random process Zn such that

Z0 = z, (2.30)

Zn = pi(Zn−1) w.p.
1

`
for all 1 6 i 6 `.

Here, Zn captures the average erasure probability of bit-channels after n levels of polarization.

Let us also fix the polarization thresholds 0 < a < b < 1 and define

fn(z, a, b) = P(Zn ∈ [a, b]), (2.31)

which determines the ratio of the unpolarized channels after n levels of polarization. Note that

by combining (2.31) and (2.30) we have

f0(z, a, b) = 1{z∈[a,b]}, fn+1(z, a, b) =

∑`−1
i=0 fn(pi(z), a, b)

`
. (2.32)
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It is easy to show that Assumption 6 is equivalent to the following: There exists µ ∈

(0,∞) such that, for any z, a, b ∈ (0, 1) such that a < b, the limit

f(z, a, b) , lim
n→∞

`
n
µ fn(z, a, b) (2.33)

exists in (0,∞). Furthermore,

`−
1
µf(z, a, b) =

∑`−1
i=0 f(pi(z), a, b)

`
. (2.34)

It is also possible to show that the value of µ is independent of the selection for

f0(z, a, b) as long as

f0(0, a, b) = f0(1, a, b) = 0 and max
z
f0(z, a, b) = 1. (2.35)

This allows us to numerically find the value of µ by initializing f0(z, a, b) as

f0(z, a, b) = 4z(1− z) (2.36)

and recursively calculating fn+1(z, a, b) according to

fn+1(z, a, b) = f̂n+1(z, a, b)/f̂n+1(
1

2
, a, b), (2.37)

where

f̂n+1(z, a, b) =
∑̀

i=0

fn(pi(z), a, b). (2.38)

Given that the scaling assumption is true, we have µ = limn→∞ f̂n(1
2
, a, b).

We combined the method for derivation of the polarization behavior from previous

section and the method for estimating the scaling exponent of a kernel based on it polarization

behavior to search for a faster polarizing kernel among all lower-triangular `× ` polarization

kernels with ` 6 7. To increase the precision of our estimated, we chose the iteration stop

condition of ||fn+1(z, a, b)− fn(z, a, b)||∞ 6 1010. The results are tabulated in Table 2.2.
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Table 2.2: Scaling exponent of small kernels

` 2 3 4 5 6 7

# of µ’s 1 2 10 107 943 14346

µmax 3.626 8.910 15.231 22.311 29.894 38.030

µmin 3.626 4.938 3.626 4.235 4.122 3.978

The first interpretation from Table 2.2 is that there are no kernels of size ` 6 7 with

scaling exponents less than that of Arıkan’s. Furthermore, the total number of total different

scaling exponents is still smaller than the number of lower-triangular polarization kernels, e.g.

14346 < 2
6×5

2 = 32768, which shows that the two kernel operations introduced in the previous

section are probably not the only ones that preserve the polarization behavior; Or, there are

multiple different polarization behaviors that yield in a same scaling exponent.

Continuing the brute-force search becomes almost impossible after ` = 8. However,

we were able to find a 8 × 8 kernel, herein denoted by K8, with scaling exponent µ8 =

3.577. This is the first example of a binary polarization kernel with scaling exponent less than

Arıkan’s. Note than all Kronecker powers of K2 also have the same scaling exponent as K2.

The slightly faster polarizing kernel, K8, is presented in the following:

K8 =




1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0

1 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0

1 0 1 1 0 0 1 0

1 1 1 1 1 1 1 1




.
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Table 2.3: Polynomial coefficients Ei,w in polarization behavior of K8 and K⊗3
2 .

K8 K⊗3
2

i \ ` 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

1 0 8 28 56 70 56 28 8 1 0 8 28 56 70 56 28 8 1

2 0 0 16 48 68 56 28 8 1 0 0 16 48 68 56 28 8 1

3 0 0 8 40 66 56 28 8 1 0 0 8 40 66 56 28 8 1

4 0 0 4 24 62 56 8 8 1 0 0 0 0 16 32 24 8 1

5 0 0 0 0 8 32 24 8 1 0 0 4 24 54 56 28 8 1

6 0 0 0 0 4 16 20 8 1 0 0 0 0 4 16 20 8 1

7 0 0 0 0 2 8 12 8 1 0 0 0 0 2 8 12 8 1

8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

The polynomial coefficients in polarization behavior of K8 are tabulated in Table 2.3.

The same is presented for K⊗3
2 for comparison purposes. We observe that the two polarization

behaviors almost match except for the middle two bit-channels. Moreover, the polynomials for

K8 are fully sorted, while it is not the case for K⊗3
2 . Let us denote the polarization behaviors

of K8 and K⊗3
2 by

{
pi(z)

}8

i=1
and

{
p
′
i(z)
}8

i=1
respectively. The third and the probably the

most important observation is that

∀i 6= 4, 5 : pi(z) = p
′

i(z) while p4(z) > p
′

5(z) > p
′

4(z) > p5(z). (2.39)

This in a nutshell shows that the middle two bit-channels of K8 are a bit more polarizing than

the two middle bit-channels associated with K⊗3
2 . This leads us to conjecture that a kernel

whose polarization behavior is more polarized, should have a smaller scaling exponent. Al-

though we are providing a technical formulation for what more polarizing means, we settle on

this approach and design a heuristic algorithm to construct large with small scaling exponents.
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Figure 2.3: An overview of the heuristic kernel construction algorithm.

The idea behind our heuristic approach is to design the kernel with an even size `where

the Bhattacharyya parameters of the top `/2 bit-channels polarize to 1 and the Bhattacharyya

parameters of the bottom bit-channels polarize to 0. We construct the kernel in two steps.

First, we follow a greedy recursive construction from both top and bottom to simultaneously

derive the parity check matrices of the nested kernel codes C`/2 ⊂ C`/2+1 ⊂ · · · ⊂ C` and the

generating matrices of the other half the kernels codes C0 ⊂ C1 ⊂ · · · ⊂ C`/2−1. Next, we

transform the nested chain of codes to an `×` kernelK. Figure 2.3 shows a graphical overview

of the heuristic algorithm. Figure 2.3.a corresponds to the first step, where we recursively

construct the nested chain of kernel codes. Figure 2.3.b shows the second step, where we

continue the construction of the kernel by deriving the parity check matrices of the top half.
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In the following, we describe the algorithm details and then we apply it to construct

some larger kernels.

We begin by pointing out that for small values of z, the dominant term in 2.23 is the

non-zero term Ei,wz
w(1 − z)`−w with smallest w. A faster polarization to 0 requires this w

to be as large as possible so that the dominant term decays faster. The largest choice would

be w = `, which can be achieved by setting the last row of the kernel as 1 (all-1 vector.) On

the other hand, when z is close to 1, we prefer to maximize the coefficients Ei,w for terms

with large w’s. As discussed earlier in Section 2.2.1, we can pursue this maximization by

maximizing the minimum Hamming weight in coset C1 \ C0. So we put the vector 1 in C1 and

we get the maximum value of wtmin(C1 \ C0) = `.

Let us denote the parity check matrix and the generator matrix of the code Ci by Hi

and Gi respectively. Further let � denote the sumset operation, which is also known as the

Minkowski sum. The greedy construction algorithm is given as follows.

Heuristic Algorithm:

• Step 1. Construct the nested chain of kernel codes {0} ⊂ C0 ⊂ · · · ⊂ C` = {0, 1}` from

both ends by following the following rules for i = 1, · · · , `/2:

1. Extend Gi from Gi−1 by picking a vector gi that maximizes

di = wtmin(Ci \ Ci−1) = dmin

(
{gi}� Ci−1

)
, (2.40)

while preserving the Ci ⊥ C`−i+1.

2. Extend H`−i from H`−i+1 by picking a vector h`−i that maximizes

d∗`−i = wtmin(C⊥`−i \ C⊥`−i+1) = dmin

(
{h`−i}� C⊥`−i+1

)
, (2.41)

while preserving the Ci ⊥ C`−i.

• Step 2. For i = `/2, `/2− 1, · · · , 1, construct the parity check matrix of Ci by extending

Hi+1 with hi. The desired kernel is then given by K` = [ht1|ht2| · · · |ht`]t.
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The conditions in (2.40) and (2.41) are the direct results of Theorems 4 and 5 from the

previous section. To get insight about the orthogonality condition, Ci ⊥ C`−i, we point out that

for any i < `/2, the parity check matrix of Ci includes H `
2
. Hence, all of the codewords in Ci

are orthogonal to the rows in H `
2
. So, gi must also be orthogonal to all the rows in the bottom

half of the kernel. The same argument goes for h`−i.

Example 2. Now we apply the proposed method to design an 8× 8 kernel. Let us first set

G1 = H7 = [1 1 1 1 1 1 1 1].

Next, we look for h6 that has a maximal distance to 1. We can set

h6 = g2 = 00001111,

to achieve the optimal distance of 4. We can maintain the same distance for the next steps by

h5 = g3 = 11001100

h4 = g4 = 10101010.

It is interesting to observe that C4 is nothing but the well-known self-dual (8, 4, 4)-Hamming

code, which is also known as the Reed-Muller code RM(1, 4). The constructed kernel, Kh,8,

is presented in the following. We can derive K8 from Kh,8 with simple row operations and

column permutations defined in the previous section.

Kh,8 =




1 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 1 0 0 0 0

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1




.
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Example 3. We follow a similar method to construct a 16×16 kernel. As expected, the parity

check matrix of the RM(1, 5) shows up after five steps of the recursion both as a parity check

matrix for the C11 and a generator matrix of the code C5. This is shown in the following:

g1= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

g2= 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

g3= 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

g4= 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

g5= 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

h11= 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

h12= 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

h13= 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

h14= 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

h15= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Unfortunately, we cannot continue the construction by simply picking up rows from the Reed-

Muller codes. It is also computationally impractical to look at all vectors of length 16 and cross

check them with the other half of the kernel to find the distance maximizer. To our fortunate

luck, the quadratic bent functions come to the rescue, which are defined as the vectors with

largest distance from RM codes (see [77] page 429.) Without proof, we state that there are 28

quadratic bent functions all with distance 6 from RM(1, 5), which are basically the quadratic

combinations of v1, v2, v3, and v4 defined below

v1 = 0101010101010101 v2 = 0011001100110011

v3 = 0000111100001111 v4 = 0000000011111111

which greatly reduces the search radius for the remaining vectors.
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Table 2.4: Heuristic construction of the kernel K16 based on bent functions.

Step 1 Step 2

h15 = 1 g1 = 1 h15 = 1 h0 = v1v2v3v4

h14 = v4 g2 = v4 h14 = v4 h1 = v1v2v3

h13 = v3 g3 = v3 h13 = v3 h2 = v1v2v4

h12 = v2 g4 = v2 h12 = v2 h3 = v1v3v4

h11 = v1 g5 = v1 h11 = v1 h4 = v2v3v4

h10 = v1v3 + v3v4 + v2v4 g6 = v1v3 + v2v3 + v2v4 h10 = v1v3 + v3v4 + v2v4 h5 = v2v4

h9 = v1v4 + v2v4 + v2v3 g7 = v1v2 + v2v4 + v3v4 h9 = v1v4 + v2v4 + v2v3 h6 = v3v4

h8 = v2v3 g8 = v3v4 h8 = v2v3 h7 = v1v2 + v3v4

The completed construction is tabulated in Table 2.4. The polarization behavior of the

kernel K16 and polarization behavior are given in the following. The scaling exponent of K16

for BEC is computed as µ16 = 3.356, which is no longer negligible in finite lengths.

K16 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1

0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




.
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Table 2.5: Polarization behavior of K16.

i\w 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1

1 0 0 64 448 1680 4256 7952 11424 12868 11440 8008 4368 1820 560 120 16 1

2 0 0 32 352 1544 4144 7896 11408 12866 11440 8008 4368 1820 560 120 16 1

3 0 0 16 208 1284 3920 7784 11376 12862 11440 8008 4368 1820 560 120 16 1

4 0 0 8 112 812 3472 7560 11312 12854 11440 8008 4368 1820 560 120 16 1

5 0 0 0 0 80 960 4752 9520 12150 11280 7992 4368 1820 560 120 16 1

6 0 0 0 0 40 480 2616 7760 11430 11120 7976 4368 1820 560 120 16 1

7 0 0 0 0 8 96 624 2608 6732 8688 7200 4224 1808 560 120 16 1

8 0 0 0 0 12 144 808 2752 6138 8832 7384 4272 1812 560 120 16 1

9 0 0 0 0 0 0 32 320 1440 3680 5392 3888 1780 560 120 16 1

10 0 0 0 0 0 0 16 160 720 1920 3256 3408 1740 560 120 16 1

11 0 0 0 0 0 0 0 0 16 128 448 896 1008 448 112 16 1

12 0 0 0 0 0 0 0 0 8 64 224 448 536 352 104 16 1

13 0 0 0 0 0 0 0 0 4 32 112 224 276 208 88 16 1

14 0 0 0 0 0 0 0 0 2 16 56 112 140 112 56 16 1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

We conclude this section by pointing out that the same heuristic algorithm can be

used to construct larger kernels, e.g. ` = 32. However, the derivation of the polarization

behavior itself becomes computationally challenging as ` grows. While this is proven to be

an NP-hard problem, there have been attempts at reducing its computational complexity, see

for example [78]. Furthermore, there are other methods known that are capable of estimating

the scaling exponent of polar codes with large kernels other than what we used here, see for

example [79]. While the heuristic construction presented in this section produces good kernels

for small values of `, it remains open to find an algorithm that provably produces kernels whose

scaling exponents tend to the optimal value of µ = 2 as ` grows.
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2.3 Optimal Scaling of Polar Codes with Large Kernels

2.3.1 Main Theorem

Our main result provides the first family of binary codes for transmission over the

BEC that achieves optimal scaling between the gap to capacity ε and the block length n, and

that can be constructed, encoded, and decoded in quasi-linear time. In other words, the block

length, construction, encoding, and decoding complexity are all bounded by a polynomial in

1/ε and, moreover, the degree of this polynomial approaches the information-theoretic lower

bound µ > 2. Somewhat informally (cf. Theorem 8), this result can be stated as follows.

Theorem 7. Consider transmission over a binary erasure channel, W with capacity I(W ).

Fix Pe ∈ (0, 1) and arbitrary δ > 0. Then, for all R < I(W ), there exists a sequence of

binary linear codes of rate R that guarantee error probability at most Pe on the channel W ,

and whose block length n satisfies

n 6 β(
I(W )−R

)µ with µ 6 2 + δ, (2.42)

where β =
(
1 + 2P−0.01

e

)3 is a universal constant. Moreover, the codes in this sequence have

construction complexity Θ(n) and encoding/decoding complexity Θ(n log n).

A couple of remarks are of order. First, in the definition of the constant β, the term

Pe is raised to the power of −0.01. We point out that we could have similarly chosen any

negative constant as the exponent of Pe. Second, the error probability is upper-bounded by

a fixed constant Pe. However, a somewhat stronger claim is possible. It can be shown that

Theorem 7 still holds if the error probability is required to decay polynomially fast with the

block length n.

The proof consists of three main steps. In the following, we describe the main ideas

behind each of them.
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Step 1: Characterization of the Bhattacharyya process. As mentioned in Sec-

tion 2.1.2, when m → ∞, almost all the bit-channels polarize, i.e., the process Zm almost

surely takes its value inside the set {0, 1}. In order to study the finite-length behavior of po-

lar codes, we need to understand how fast the process Zm polarizes. In other words, given

a (small) number ε > 0, how fast does the quantity P{Zm ∈ [ε, 1 − ε]} vanish with m? To

answer this question, we first relate the decay speed of Zm with some simpler quantity that

can be directly computed from the kernel matrix K.

Recall that the Bhattacharyya process corresponding to the channel BEC(z) and the

matrix K has the closed form recursive expression given by (2.6). In order to bound the value

of P{Zm ∈ [ε, 1 − ε]}, we look at the behavior of the process gα(Zm) = (Zm(1 − Zm))α for

α > 0. By Markov inequality, we have

P{Zm ∈ [ε, 1− ε]} 6
( ε

2

)−α
E[gα(Zm)]. (2.43)

Furthermore, in order to bound E[gα(Zm)], we can write:

gα(Zm) = (fBm,K(Zm−1)(1− fBm,K(Zm−1)))α

= (Zm−1(1− Zm−1))α
(
fBm,K(Zm)(1− fBm,K(Zm))

Zm−1(1− Zm−1)

)α

= gα(Zm−1)

(
fBm,K(Zm)(1− fBm,K(Zm))

Zm−1(1− Zm−1)

)α
. (2.44)

Hence, after some simple calculations, we conclude that

E[gα(Zm)] 6 (λ∗α,K)m, (2.45)

where

λ∗α,K = sup
z∈(0,1)

1

`

∑̀

i=1

(fi,K(z)(1− fi,K(z)))α

(z(1− z))α
. (2.46)

Step 2: Sharpness of the one-step erasure probabilities. We show that

λ∗α,K 6 `−1/2+5α, (2.47)

48



Figure 2.4: The erasure probabilities of polar bit-channels for K16.

with probability 1−O(1/`) over the random choice of K. To do so, we prove that, as ` grows,

the functions fi,K will behave as step functions for most of the non-singular kernels. Note that,

for any i and for any K, fi,K is an increasing polynomial with fi,K(0) = 0 and fi,K(1) = 1.

As ` increases, we prove that, with probability 1 − O(1/`) over the choice of K, fi,K(z) has

a sharp threshold around the point z = i/`. More precisely,

fi,K(z) 6 `−(2+log `), for z 6 i

`
− 5`−1/2 log `,

fi,K(z) > 1− `−(2+log `), for > i

`
+ 5`−1/2 log `,

(2.48)

see also Figure 2.4. The figure on the left shows that fi,K(z) exhibits a sharp transition of

order roughly O(`−1/2), when the kernel K is random. The two figures on the right compare

different choices of the kernel K: the red curve corresponds to Arıkan’s kernel; the black

curve to the kernel K16 from the previous section; and the blue curve is obtained by taking

the average of the functions fi,K(z) for a random kernel. Let us now go back to (2.46) and

use this “sharpness" property of fi,K in order to upper bound λ∗α,K . In the right-hand-side of

(2.46), let us only evaluate the term inside the supremum for z = 1/2. By using the sharpness

property, it is not hard to see that this term will be of order

`−1/2 log `+ `−α(2+log `) 6 `−1/2+5α, (2.49)
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for sufficiently large `. With some more effort, we can show a bound which is valid for any

z ∈ (0, 1) (and not only for z = 1/2).

Step 3: Finite-length scaling law. We derive a finite-length scaling law for polar

codes by using the results of the previous steps. From (2.43), (2.45), and the upper bound on

λ∗α,K , we conclude that

P{Zm ∈ [ε, 1− ε]} = O
(
ε−α(`−1/2+5α)m

)
. (2.50)

Denote the desired error probability by Pe and let ε = Pe`
−m. Then,

P{Zm ∈ [Pe`
−m, 1− Pe`

−m]} = O(`m/(2+δ)), (2.51)

where δ can be made arbitrarily small by choosing a small enough α. As the blocklength n

is equal to `m, (2.51) implies that the gap to capacity is of order n1/(2+δ). By bounding also

P{Zm > 1− Pe`
−m}, the desired scaling result follows.

2.3.2 Proof of the Main Theorem

As mentioned in the preliminary topics the main result of this chapter is to provide a

family of binary codes that achieves optimal scaling between gap to capacity and block length,

as well as quasi-linear complexity of construction, encoding and decoding. This is done by

showing that binary polar codes obtained from large kernels possess those properties.

Theorem 8. [Binary Polar Codes with Optimal Scaling and Quasi-Linear Complexity]

Consider the transmission over a BEC W with capacity I(W ). Let K ∈ F`×`2 be a kernel that

is selected uniformly at random among all `× ` non-singular binary matrices. Fix Pe ∈ (0, 1)

and let C`(n,R, Pe) be the code obtained by polarizing K with block length n = `m for some

m ∈ N and rate R < I(W ) such that the error probability under successive cancellation
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decoding is at most Pe. Fix a small constant δ > 0. Then, there exists `0(δ) such that for any

` > `0(δ), with high probability over the choice of K, there is a code C`(n,R, Pe) that satisfies

n 6 β

(I(W )−R)µ
, with µ 6 2 + δ, (2.52)

where β is a constant given by (1 + 2P−0.01
e )3. This code has construction complexity Θ(n),

and encoding/decoding complexity Θ(n log n).

It also possible to show that ` needs to be of order exp (1/δ1.01), and additional details

about this fact are provided at the end of the section. The theorem above follows from the

following result that characterizes the behavior of the polarization process.

Theorem 9. [Optimal Scaling of Polarization Process] Let K ∈ F`×`2 be a kernel that is

selected uniformly at random among all ` × ` non-singular binary matrices. Let Zm be the

random process defined in (2.6) with initial condition Z0 = z. Fix Pe ∈ (0, 1) and a small

constant δ > 0. Then, there exists `0(δ) such that, with high probability over the choice of K,

for any ` > `0(δ) and for any m > 1

P{Zm 6 Pe`
−m} > 1− z − c0`

−m
µ , (2.53)

with

µ(K) 6 2 + δ, (2.54)

and where c0 is a constant given by 1 + 2P−0.01
e .

For the sake of clarity, note that in (2.53) the kernelK is fixed and the probability space

is defined with respect to the random processZm, while (2.54) holds with high probability over

the choice of the kernel K. We are now ready to present the proof of Theorem 8.
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Proof of Theorem 8. Consider the transmission over the BEC(z) of a polar code with block

length n = `m and rate R obtained by polarizing the ` × ` kernel K, where ` > `0(δ). By

Theorem 9, there is at least a fraction 1−z−c0`
− m
µ(K) of the synthetic channels whose erasure

probability is at most Pe`
−m, where c0 = 1 + 2P−0.01

e and, with high probability over the

choice of K, µ(K) 6 2 + δ. Then, if we take

R = 1− z − (1 + 2P−0.01
e )`−

m
µ(K) , (2.55)

a simple union bound yields that the error probability under successive cancellation decoding

is at most Pe. As I(W ) = 1 − z, by re-arranging (2.55), formula (2.52) immediately follows

with β = (1 + 2P−0.01
e )2+δ. Without loss of generality, we can assume that δ < 1, hence

we can take β as prescribed by the statement of the theorem. The claim on the construction

complexity follows from the fact that the erasure probabilities of the synthetic channels can

be computed exactly according to the recursion (2.6). The claim on the encoding/decoding

complexity follows from [29, 54].

The rest of the section is devoted to prove Theorem 9. The basic idea consists in

bounding the number of un-polarized synthetic channel. To do so, let us define the polarization

measure function gα(z) as

gα(z) ,
(
z(1− z)

)α
, (2.56)

where α ∈ (0, 1) is a fixed parameter. The first step is to show that an upper bound on

E[gα(Zm)] yields an lower bound on P{Zm 6 Pe`
−m}. This is done in Lemma 2.6, whose

statement and proof immediately follow.

Lemma 2.6. LetK ∈ F`×`2 be an `×` non-singular binary kernel such that none of its column

permutations is upper triangular. Let Zm be the random process defined in (2.6) with initial
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condition Z0 = z. Fix α ∈ (0, 1) and define gα(z) as in (2.56). Fix ρ, Pe ∈ (0, 1) and assume

that, for any m > 1,

E[gα(Zm)] 6 `−mρ. (2.57)

Then, for any m > 1,

P{Zm 6 Pe`
−m} > 1− z − c1`

−m(ρ−α), (2.58)

where c1 = 2P−αe + Pe.

Proof. First of all, we upper bound P{Zm ∈ [Pe `
−m, 1− Pe `

−m]} as follows:

P
{
Zm ∈

[
Pe `
−m, 1− Pe `

−m]} (a)
= P

{
gα(Zm) > gα(Pe `

−m)
}

(b)
6 E[gα(Zm)]

gα(Pe `−m)
(c)
6 `−mρ

gα(Pe `−m)
(d)
6 2P−αe `−m(ρ−α),

(2.59)

where the equality (a) uses the concavity of the function gα(·); the inequality (b) follows

from Markov inequality; the inequality (c) uses the hypothesis E[gα(Zm)] 6 `−mρ; and the

inequality (d) uses that 1− Pe `
−m > 1/2 for any m > 1.

Let us define

A = P
{
Zm ∈

[
0, Pe `

−m)} ,

B = P
{
Zm ∈

[
Pe `
−m, 1− Pe `

−m]} ,

C = P
{
Zm ∈

(
1− Pe `

−m, 1
]}
,

(2.60)

and let A′, B′, and C ′ be the fraction of synthetic channels in A, B, and C, respectively, that
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will have a vanishing erasure probability as n→∞. More formally,

A′ = lim inf
m′→∞

P
{
Zm ∈

[
0, Pe `

−m) , Zm+m′ 6 `−m
′
}
,

B′ = lim inf
m′→∞

P
{
Zm ∈

[
Pe `
−m, 1− Pe `

−m] , Zm+m′ 6 `−m
′
}
,

C ′ = lim inf
m′→∞

P
{
Zm ∈

(
1− Pe `

−m, 1
]
, Zm+m′ 6 `−m

′
}
.

(2.61)

Recall that any `× ` non-singular binary matrix none of whose column permutations is upper

triangular polarizes symmetric channels [29]. Hence, as K satisfies this condition by hypoth-

esis, we immediately have that

A′ +B′ + C ′ = lim inf
m′→∞

P
{
Zm+m′ 6 `−m

′
}

= 1− z. (2.62)

In addition, from (2.59), we have that

B′ 6 B 6 2P−αe `−m(ρ−α). (2.63)

In order to upper bound C ′, we proceed as follows:

C ′ = lim inf
m′→∞

P
{
Zm+m′ 6 `−m

′ | Zm ∈
(
1− Pe `

−m, 1
]}
· P
{
Zm ∈

(
1− Pe `

−m, 1
]}

6 lim inf
m′→∞

P
{
Zm+m′ 6 `−m

′ | Zm ∈
(
1− Pe `

−m, 1
]}
.

(2.64)

By using again that the kernel K is polarizing, we obtain that the last term equals the capacity

of a BEC with erasure probability at least 1− Pe `
−m. Consequently,

C ′ 6 Pe `
−m. (2.65)

As a result, we conclude that

P
{
Zm ∈

[
0, Pe `

−m)} = A > A′
(a)
= 1− z −B′ − C ′

(b)
> 1− z − 2P−αe `−m(ρ−α) − Pe `

−m,

(c)
> 1− z −

(
2P−αe + Pe

)
`−m(ρ−α),

where the equality (a) uses (2.62); the inequality (b) uses (2.63) and (2.65); and the inequality

(c) uses that α and ρ ∈ (0, 1). This chain of inequalities implies the desired result.
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The second step consists in giving an upper bound on E[gα(Zm)] of the form (λ∗α,K)m,

where λ∗α,K depends on the particular kernel K. This is done in Lemma 2.7, whose statement

and proof immediately follow.

Lemma 2.7. Let K ∈ F`×`2 be an `× ` binary kernel. Let Zm be the random process defined

in (2.6) with initial condition ZK
0 = z. Fix α ∈ (0, 1) and define gα(z) as in (2.56). For

z ∈ (0, 1), define λα,K(z) as

λα,K(z) ,
1
`

∑`
i=1 gα(fi,K(z))

gα(z)
, (2.66)

and let λ∗α,K be its supremum, i.e.,

λ∗α,K , sup
z∈(0,1)

λα,K(z). (2.67)

Then, for any m > 0, we have that

E[gα(Zm)] 6 (λ∗α,K)mgα(z). (2.68)

Proof. We prove the claim by induction. The base step m = 0 follows immediately from the

fact that Z0 = z. To prove the inductive step, first we write

E
[
gα(Zm+1)

]
= E

[
E[gα(fBm,K(Zm)) | Zm]

]
,

where the first expectation on the RHS is with respect to Zm and the second expectation is

with respect to Bm. Then, we have that

E
[
E[gα(fBm,K(Zm)) | Zm]

]
= E

[
gα(Zm)

1
`

∑`
i=1 gα(fi,K(Zm))

gα(Zm)

]

6 E
[
gα(Zm)

]
sup

z∈{0,1}

1
`

∑`
i=1 gα(fi,K(z))

gα(z)
︸ ︷︷ ︸

λ∗α,K

,

which concludes the proof.
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The third and final step is to prove that λ∗α,K concentrates around 1/
√
`, when K is

selected uniformly at random among all ` × ` non-singular binary matrices. This is done in

Theorem 10 that is stated below and whose proof is presented in the next Section.

Theorem 10. Let K ∈ F`×`2 be a kernel that is selected uniformly at random among all ` × `

non-singular binary matrices. Fix α ∈ (0, 1/16) and define λ∗α,K as in (2.67). Then, there

exists `1(α) such that, for any ` > `1(α),

P
{

log`(λ
∗
α,K) 6 −1

2
+ 5α

}
> 1− 2

`
, (2.69)

where the probability space is over the choice of the kernel K.

At this point, we are ready to put everything together and give the proof of Theorem 9.

Proof of Theorem 9. Pick ` sufficiently large and define

α = min

(
δ

12(2 + δ)
,

1

100

)
. (2.70)

Then, by Theorem 10, we have that, with high probability over the choice of the kernel K,

λ∗α,K 6 `−(1/2−5α). (2.71)

Consequently, as gα(z) 6 1 for any z ∈ (0, 1), by Lemma 2.7 we have that

E[gα(Zm)] 6 `−m(1/2−5α). (2.72)

Note that, with high probability, the kernel K is such that none of its column permutations is

upper triangular. Then, we can apply Lemma 2.6 and we deduce that

P{Zm 6 Pe`
−m} > 1− z − c1`

−m(1/2−6α), (2.73)

where c1 = 2P−αe + Pe. Note that, as α 6 1/100 and Pe 6 1, we have that c1 6 1 + 2P−0.01
e .

By plugging in (2.73) the choice of α given by (2.70), the thesis immediately follows.
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2.4 Concentration of Scaling Exponent for Large Kernels

2.4.1 Concentration Theorem

Let us recall that the goal is to show that for most non-singular binary kernelsK ∈ F`×`2

and for ` > `1(α),

λα,K(z) 6 `−
1
2

+5α ∀z ∈ (0, 1), (2.74)

where α ∈ (0, 1) is fixed and `1(α) is a large integer that depends only on α.

Our strategy is to split the interval (0, 1) into the three sub-intervals (0, 1/`2), [1/`2, 1−

1/`2], and (1− 1/`2, 1). Then, we will show that (2.74) holds for each of these sub-intervals.

In fact, as we will see, polarization is much faster at the tail intervals. Theorem 11 captures

this approach.

Theorem 11. [Concentration of λ∗α,K] Let K ∈ F`×`2 be a kernel that is selected uniformly at

random among all ` × ` non-singular binary matrices. Fix α ∈ (0, 1/16) and define λα,K(z)

as in (2.66). Let `1(α) be the smallest integer such that

log `1(α)

log log `1(α)
> 1

α
. (2.75)

Then, for all ` > `1(α), the following results hold.

1. Near optimal polarization in the middle:

P
{
λα,K(z) < `−

1
2

+5α, ∀z ∈
[ 1

`2
, 1− 1

`2

]}
> 1− 1

`
, (2.76)

2. Faster polarization in the tails:

P
{
λα,K(z) < `−

1
2 , ∀z ∈

(
0,

1

`2

)
∪
(

1− 1

`2
, 1
)}

> 1− 1

`
, (2.77)

where the probability spaces are over the choice of the kernel K.
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The proof of Theorem 10 immediately follows from the result above.

Proof of Theorem 10. By applying the union bound on (2.76) and (2.77), we obtain that

P
{
λα,K(z) < `−

1
2

+5α, ∀z ∈ (0, 1)

}
> 1− 2

`
, (2.78)

which yields the desired result.

In the following, we introduce the average polarization behavior and provide some

auxiliary lemmas. Eventually, we provide the proof of Theorem 11.

2.4.2 Average Polarization Behavior

Here, we use the condition (2.19) and we give an explicit formula for the probability

that ui is decodable, i.e., for P{(Ei \ Ei−1) ∩ (column space of K[:,1:`−s]) 6= ∅}, while K is

selected uniformly at random.

For i ∈ [`], define the average erasure probability Fi(z) as

Fi(z) , EK [fi,K(z)] =

∑
K fi,K(z)

τ`
, (2.79)

where τ` denotes the number of non-singular `× ` binary matrices, i.e.,

τ` =
`−1∏

j=0

(2` − 2j). (2.80)

Then, it is easy to verify that Fi(z) represents the erasure probability of the i-th bit-channel

given that (i) the kernel is selected uniformly at random among the ` × ` nonsingular binary

matrices, and (ii) the transmission channel is a BEC(z).

Next, we analyze the asymptotic behavior of Fi(z) and show that, as ` becomes large,

Fi(z) becomes close to a step function with jump at z ∼ i/̀ . We then prove some concentration

results to show that, with high probability over the choice of the kernelK, fi,K(z) is also close

to a sharp step function centered around z ∼ i/̀ .
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We first recall that Fi(z) is the probability of observing an erasure at the i-th bit-

channel, where there are two sources of randomness: (i) the selection of the kernel, and (ii)

the number and location of the erased received symbols. Let the random variable S denote the

number of erased symbols at the receiver. As z is the erasure probability of the transmission

channel, we have that

P{S = s} =

(
`

s

)
zs(1− z)`−s. (2.81)

Since we also average over all ` × ` non-singular kernels, the location of these s erasures

does not affect the average erasure probability of the bit-channels. Hence, without loss of

generality, we can assume that the erasures happened at the last coordinates. Let R`−s ⊂ F`2

denote the linear span of the first ` − s columns of the kernel. Since the kernel is selected

uniformly at random, it is easy to see that R`−s is also chosen uniformly at random from all

subspaces of dimension ` − s in F`2. Recalling the decodability condition in (2.19), we have

that

P{ui = erasure|S = s} = P{R`−s ∩ (Ei \ Ei−1) = ∅}, (2.82)

where R`−s is a subspace of dimension ` − s in F`2 that is chosen uniformly at random. The

probability space on the LHS is defined with respect to (i) the location of the s erasures, and

(ii) the selection of the random kernel K, while the probability space on the RHS is defined

with respect to just the selection of random subspaceR`−s. Now we can rewrite Fi(z) as

Fi(z) =
∑̀

s=0

P{S = s}P{ui = erasure|S = s} =
∑̀

s=0

(
`

s

)
zs(1− z)`−spi|s, (2.83)

where we define the average conditional erasure probability pi|s as

pi|s , P{R`−s ∩ (Ei \ Ei−1) = ∅}. (2.84)

The following lemma provides a closed-form expression for pi|s.
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Lemma 2.8 (Closed-Form for Average Conditional Erasure Probability). Let pi|s be the aver-

age conditional erasure probability defined in (2.84). Then, for any i and s,

pi|s =




`

`− s




−1
min{`−s,i−1}∑

t=max{i−s,0}



i− 1

t



`−s−t−1∏

j=0

2` − 2i+j

2`−s − 2t+j
, (2.85)

where



a

b


 is the binary Gaussian binomial coefficient.

Proof. Let ∆`−s be the total number of subspaces in F`2 with dimension `− s. Then,

∆`−s =




`

`− s


 ,

`−s−1∏

j=0

2` − 2j

2`−s − 2j
. (2.86)

Define Γ`−s,it as the number of subspacesA of dimension `−s in F`2 such thatA∩(Ei\Ei−1) =

∅ and dim(A ∩ Ei−1) = t. Equivalently, Γ`−s,it represents the number of subspaces A of

dimension `− s in F`2 such that dim(A∩Ei−1) = dim(A∩Ei) = t. Consequently, the integer

t in the definition of Γ`−s,it satisfies the following conditions:

max{i− s, 0} 6 t 6 min{`− s, i− 1}. (2.87)

A simple basis counting argument (see [80]) yields that

Γ`−s,it =



i− 1

t




︸ ︷︷ ︸
number of subspaces

in Ei−1 with dim = t

×
`−s−t−1∏

j=0

2` − 2i+j

2`−s − 2t+j

︸ ︷︷ ︸
normalized number of basis extensions

from dim = t to dim = `− s

. (2.88)

Then, the desired conditional erasure probability can be written as

pi|s =

min{`−s,i−1}∑

t=max{i−s,0}

Γ`−s,it

∆`−s
. (2.89)

The thesis immediately follows from (2.88) and (2.89).
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Now, we use this closed-form expression to provide lower and upper bounds on the

average conditional erasure probability pi|s and on the average erasure probability Fi(z).

Lemma 2.9 (Lower Bound for Average Conditional Erasure Probability). Let pi|s be the av-

erage conditional erasure probability defined in (2.84). Then, for any i and s,

pi|s > 1− 2−(s−i). (2.90)

Proof. If i > s, then the proof is trivial. Hence, let us assume that i < s. We drop all but the

first term from (2.89) to write

pi|s =

min{`−s,i−1}∑

t=0

Γ`−s,it

∆`−s
> Γ`−s,i0

∆`−s
=

`−s−1∏

j=0

2` − 2i+j

2`−s − 2j

`−s−1∏

j=0

2` − 2j

2`−s − 2j

=
`−s−1∏

j=0

2` − 2i+j

2` − 2j
. (2.91)

The remainder of the proof is derived by simple algebra as follows

`−s−1∏

j=0

2` − 2i+j

2` − 2j
>

`−s−1∏

j=0

2` − 2i+j

2`
=

`−s−1∏

j=0

(
1− 2−(`−i)+j)

> 1−
`−s−1∑

j=0

2−(`−i)+j > 1− 2−(s−i). (2.92)

Lemma 2.10 (Lower Bound for Average Erasure Probability). Let Fi(z) be the average era-

sure probability of the i-th bit-channel as defined in (2.79). Fix β, δ ∈ R+ and assume that

z >
i

`
+
dδ log `e

`
+

(
β ln `

2`

)1/2

, (2.93)

where log and ln denote the logarithm in base 2 and e, respectively. Then, we have that

Fi(z) > (1− `−β)(1− `−δ). (2.94)
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Proof. We begin by dropping the first i + dδ log `e terms in (2.83) and applying the lower

bound from (2.90):

Fi(z) =
∑̀

s=0

(
`

s

)
zs(1− z)`−spi|s >

∑̀

s=i+dδ log `e

(
`

s

)
zs(1− z)`−s(1− 2−(s−i))

> (1− `−δ)
∑̀

s=i+δdlog `e

(
`

s

)
zs(1− z)`−s. (2.95)

Now, we point out that the sum on the RHS of (2.95) is the tail probability of a binomial

distribution with ` trials and a success rate of z. More formally, let X ∼ B(`, z). Then, from

(2.95) we immediately obtain that

Fi(z) > (1− `−δ)P{X > i+ dδ log `e}. (2.96)

Furthermore,

P{X > i+ dδ log `e} = 1− P{X < i+ dδ log `e}
(a)
> 1− exp

(
−2

(
z`− (i+ dδ log `e)

)2

`

)

(b)
> 1− `−β, (2.97)

where in (a) we use Hoeffding’s inequality and in (b) we use (2.93). By combining (2.95) with

(2.97), the claim readily follows.

First, we use the closed-form expression in order find a lower bound on the average

conditional erasure probability and on the average erasure probability.

Lemma 2.11 (Upper Bound for Average Conditional Erasure Probability). Let pi|s be the

average conditional erasure probability defined in (2.84). Then, for any i and s,

pi|s 6 2

(
2

3

)i−s−1

. (2.98)
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Proof. If s > i− 1, then the proof is trivial. Hence, let us assume that s < i− 1. We start by

proving that the term with t = i− s is the dominant one in the expression (2.89) for pi|s. For

all t > i− s, we have that

Γ`−s,it

Γ`−s,it−1

=



i− 1

t






i− 1

t− 1




×
(`−s−t−1∏

j=0

2` − 2i+j

2`−s − 2t+j

)/(`−s−t∏

j=0

2` − 2i+j

2`−s − 2t+j−1

)
,

which using simple algebra can be simplified as

(2i−1 − 2t−1)(2`−s − 2t−1)

2t−1(2t − 1)(2` − 2i+`−s−t)
6 1

2t−1
× 2i−1 × 2`−s

2t−1 × 2`−1
=

2i−s−t+1

2t−1
6 2−t+1 6 1

2
.

Therefore, we have that, for any t > i− s,

Γ`−s,it 6 2−
(
t−(i−s)

)
Γ`−s,ii−s ,

which implies that

ps|i 6
Γ`−s,ii−s

∆`−s

(
1 + 2−1 + 2−2 + · · ·

)
6 2Γ`−s,ii−s

∆`−s
. (2.99)

In a similar fashion, we fix ` and i, and we show the exponential decay of the dominant term

in pi|s, denoted by ζs , Γ`−s,ii−s /∆`−s, as s decreases. We again use simple algebra to obtain

ζs
ζs+1

=
∆`−s−1

∆`−s
×



i− 1

i− s







i− 1

i− s− 1




×
( `−i−1∏

j=0

2` − 2i+j

2`−s − 2i−s+j

)/( `−i−1∏

j=0

2` − 2i+j

2`−s−1 − 2i−s−1+j

)

=
(2i−1 − 2i−s−1)(2`−s − 1)

(2i−s − 1)(2` − 2`−s−1)
=

(
2s − 1

2s+1 − 1

)
1− 2−(`−s)

1− 2−(i−s)

6 1

2
× 1

1− 2−(i−s) 6
1

2
× 1

1− 1/4
=

2

3
. (2.100)
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As a result, we conclude that, for any s < i− 1,

pi|s
(2.99)

6 2Γ`−s,ii−s

∆`−s

(2.100)

6 2ζi−1

(
2

3

)i−s−1

6 2

(
2

3

)i−s−1

, (2.101)

which implies the desired result.

Lemma 2.12 (Upper Bound for Average Erasure Probability). Let Fi(z) be the average era-

sure probability of the i-th bit-channel as defined in (2.79). Fix β, δ ∈ R+ and assume that

z <
i

`
− g(δ)

`
−
(
β ln `

2`

)1/2

, (2.102)

where log and ln denote the logarithm in base 2 and e, respectively, and

g(δ) =
δ log `+ log 6

log 3− 1
= O(δ log `). (2.103)

Then, we have that

Fi(z) < `−β + `−δ. (2.104)

Proof. Let us recall the formulation of Fi(z) from (2.83) and split the summation into two

parts, where a trivial upper bound is applied to each part: we drop
(
`
s

)
zs(1 − z)`−s for all

terms in the summation with s 6 i− g(δ)− 1, and we drop pi|s from the remaining terms that

correspond to s > i− g(δ). More formally, we have

Fi(z) =

i−g(δ)−1∑

s=0

(
`

s

)
zs(1− z)`−spi|s +

∑̀

s=i−g(δ)

(
`

s

)
zs(1− z)`−sps|i

<

i−g(δ)−1∑

s=0

ps|i +
∑̀

s=i−g(δ)

(
`

s

)
zs(1− z)`−s. (2.105)

We apply the upper bound in (2.98) to the first summation, and obtain that

i−g(δ)−1∑

s=0

ps|i 6
i−g(δ)−1∑

s=0

2

(
2

3

)i−s−1

6
∞∑

s=g(δ)

2

(
2

3

)s
= 6

(
2

3

)g(δ)
= `−δ. (2.106)
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The second summation is again upper bounded by applying Hoeffding’s inequality on the tail

probability of the binomial distribution X ∼ B(`, z) with ` trials and a success rate of z as

∑̀

s=i−g(δ)

(
`

s

)
zs(1− z)`−s = P{X > i− g(δ)} 6 P

{
X > z`+

(
β` ln `

2

)1/2
}
6 `−β.

(2.107)

2.4.3 Proof of the Concentration Theorem

At this point, we have gathered all the required tools to prove Theorem 11. Our proof

consists of two steps. First, we show that the polarization behavior of a random non-singular

` × ` kernel is given, with high probability, by the function Fi(z) analyzed in the previous

subsection. Then, we explain how to relate this fact to an upper bound on λα,K(z).

As the theorem itself suggests, we split the proof into two parts: the first part takes care

of the middle interval and proves (2.76), while the second one takes care of the tail intervals

and proves (2.77).

Proof of (2.76). First, we combine the results from Lemma 2.10 and Lemma 2.12 to show

that Fi(z) roughly behaves as a step function. In fact, we have that




Fi(z) > (1− `−β)(1− `−δ), if z > i
`

+ dδ log `e
`

+

(
β ln `

2`

)1/2

Fi(z) < `−β + `−δ, if z < i
`
− b

δ log `+log 6
log 3−1

c
`

−
(
β ln `

2`

)1/2 . (2.108)

Our strategy is to show that, with high probability over the choice of the kernel K, fi,K(z) is

sharp for a fixed value of i. Then, we will use a union bound to show that fi,K(z) is sharp for

all i ∈ [`]. To do so, we set β = δ = 4.5 + log `. Furthermore, we can assume that ` > 32, as
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(2.75) holds and α < 1/16. It is easy to verify that




Fi(z) > 1− 2`−4.5−log ` > 1− (2`4+log `)−1, if z > i
`

+ c`−1/2 log `

Fi(z) < 2`−4.5−log ` < (2`4+log `)−1, if z 6 i
`
− c`−1/2 log `

, (2.109)

where

c =
(4.5 + log `) + (log 6)(log `)−1

log 3− 1
`−1/2 +

(
4.5(log `)−1 + 1

2 log e

)1/2

6 5, ∀` > 32.

(2.110)

Note that there are infinitely many values of z for which we need fi,K(z) to behave similar

to (2.109). Hence, a simple union bound would not give us the proof. Fortunately, for all

i ∈ [`], fi,K(z) and consequently Fi(z) are increasing functions of z. Hence, it suffices to

consider only two points in (0, 1) for each i, one slightly larger than z = i/̀ and one slightly

smaller.

Define

ai ,
i

`
+ c`−1/2 log `. (2.111)

From (2.109), we have that

E
[
1− fi,K(ai)

]
= 1− Fi(ai) < (2`4+log `)−1, (2.112)

where the expectation is taken over all non-singular ` × ` kernels. From Markov inequality,

we deduce that

P
{
fi,K(ai) 6 1− 1

`2+log `

}
= P

{
1− fi,K(ai) >

1

`2+log `

}
6

EK
[
1− fi,K(ai)

]

1/`2+log `
6 1

2`2
.

(2.113)

Define

Ai ,
{
K ∈ F`×`2

∣∣K is non-singular and fi,K(ai) > 1− 1

`2+log `

}
. (2.114)

66



Therefore, (2.113) can be re-written as

P{K ∈ Ai} > 1− 1

2`2
. (2.115)

Similarly, set

bi ,
i

`
− c`−1/2 log `, (2.116)

and define

Bi ,
{
K ∈ F`×`2

∣∣K is non-singular and fi,K(bi) >
1

`2+log `

}
. (2.117)

A very similar use of Markov inequality shows that

P{K ∈ Bi} > 1− 1

2`2
. (2.118)

Then, define

D =
(
∩`j=1 Aj

)
∩
(
∩`j=1 Bj

)
. (2.119)

By union bound, we obtain that

P{K ∈ D} > 1−
∑̀

i=1

P{K /∈ Ai} −
∑̀

i=1

P{K /∈ Bi} > 1− 2`

2`2
= 1− 1

`
. (2.120)

Assume that K ∈ D throughout the remainder of proof. This implies that, for i ∈ [`],




fi,K(z) > 1− 1
`2+log ` , for z = i

`
+ c`−1/2 log `

fi,K(z) < 1
`2+log ` , for z = i

`
− c`−1/2 log `

. (2.121)

As fi,K(z) is an increasing function of z, (2.121) is equivalent to




fi,K(z) > 1− 1
`2+log ` , for z > i

`
+ c`−1/2 log `

fi,K(z) < 1
`2+log ` , for z 6 i

`
− c`−1/2 log `

. (2.122)
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Given these concentration results, we can proceed to the second step of the proof. Let us

define

T0(z, `) , z`− c`1/2 log `,

T1(z, `) , z`+ c`1/2 log `.

(2.123)

Note that, for any z ∈ (1/`2, 1 − 1/`2), the number of indices i such that fi,K(z) does not

satisfy (2.122) is upper bounded by

T1(z, `)− T0(z, `) = 2c`−1/2 log `, (2.124)

as

i

`
− c`−1/2 log ` < z <

i

`
+ c`−1/2 log `⇐⇒ z`− c`1/2 log ` < i < z`+ c`1/2 log `.

(2.125)

We can re-write λα,K(z) which was defined earlier in (2.66) as

λα,K(z) =

1

`

∑

i∈(T0(z,`),T1(z,`))

gα(fi,K(z))

gα(z)
+

1

`

∑

i/∈(T0(z,`),T1(z,`))

gα(fi,K(z))

gα(z)
(2.126)

By using (2.122), we have that, for any i /∈
(
T0(z, `), T1(z, `)

)
,

gα(fi,K(z)) 6 gα

(
1

`2+log `

)
<
(
`−2−log `

)α
. (2.127)

By combining (2.127) with the trivial upper bound of gα(fi,K(z)) 6 1 for the left summation,

we obtain that

λα,K(z) 6
1
`
2c`1/2 log `

gα(z)
+

(
`−2−log `

)α

gα(z)
(2.128)

Furthermore, note that, for any z ∈ (1/`2, 1− 1/`2),

gα(z) >
(
`−2(1− `−2)

)α
. (2.129)
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By combining (2.128) and (2.129), we have that

λα,K(z) 6 1

(1− `−2)α

(
2c`−1/2+2α log `+ `−α log `

)
. (2.130)

As (2.75) holds with α 6 1/16, ` is large enough so that

(1− `−2)α 6 2,

log ` 6 `α,

−α log ` 6 −1/2 + 3α,

4c+ 2 6 `2α.

(2.131)

By applying the inequalities in (2.131) to (2.130), we finally obtain that

λα,K(z) 6 4c`−1/2+2α log `+ 2`−α log ` 6 4c`−1/2+3α + 2`−1/2+3α

= (4c+ 2)`−
1
2

+3α 6 `−
1
2

+5α, (2.132)

which concludes the proof.

Proof of (2.77). The proof of the tail intervals also follows from analyzing the average erasure

probabilities. We present the proof mainly for the lower tail, where z ∈ (0, 1/`2). Similar

arguments yield the proof for the upper tail.

We begin by recalling the previously derived upper bound on the average conditional

erasure probability in (2.98):

pi|s = P{R`−s ∩ (Ei \ Ei−1) = ∅} 6 3

(
2

3

)i−s
, (2.133)

where the probability space is defined with respect to the selection of a random subspace

R`−s ⊂ F`2 of dimension = ` − s. Once again, let us point out that the above mentioned

probability is equal to P{R′`−s ∩ (Ei \ Ei−1) = ∅}, where R′`−s is the linear span of some

randomly chosen `− s columns of a random kernel K ∈ F`×`2 .
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Let us define the conditional erasure probabilities of a fixed kernel K by

qi|s(K) , P{R`−s ∩ (Ei \ Ei−1) = ∅|K} = P{R`−s(K) ∩ (Ei \ Ei−1) = ∅}, (2.134)

whereR`−s(K) is the linear span of `−s columns inK that are selected uniformly at random.

Note that in (2.134) the kernel K is fixed and the probability is with respect to the selection of

the columns of the kernel (i.e., with respect to the location of the s channel erasures). Hence,

it is clear that

EK [qi|s(K)] = pi|s 6 3

(
2

3

)i−s
. (2.135)

Similar to the proof for the middle interval, we provide some concentration results about

qi|s(K), when K is selected uniformly at random among the non-singular `× ` matrices. Let

us first fix the value of i, and s. Then, by Markov inequality, we have

P

{
qi|s(K) > 6`2(`+ 1)

(
2

3

)i−s}
6 1

2`2(`+ 1)
, (2.136)

where the probability is defined with respect to the selection of the kernel. By union bound,

for any i ∈ {1, . . . , `} and s ∈ {0, . . . , `}, we deduce that

qi|s(K) 6 6`2(`+ 1)

(
2

3

)i−s
, (2.137)

with probability of at least 1− 1/2`.

Pick a kernel K such that (2.137) holds. Furthermore, as K is non-singular, qi|0(K) =

0. Hence, an upper bound on fi,K(z) is given by

fi,K(z) =
∑̀

s=1

qi|s(K)

(
`

s

)
zs(1− z)`−s

6
∑̀

s=1

6`2(`+ 1)

(
2

3

)i−s(
`

s

)
zs(1− z)`−s

= 6`2(`+ 1)

(
2

3

)i∑̀

s=1

(
`

s

)(
3z

2

)s
(1− z)`−s. (2.138)
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Note that

∑̀

s=1

(
`

s

)(
3z

2

)s
(1− z)`−s =

(
1 +

z

2

)`
− (1− z)` < (1 + z)` − (1− z)`

6 2`z(1 + z)`−1, (2.139)

where the last inequality in (2.139) comes from the fact that ∀x ∈ (0, 1), there exists a x0 ∈

(1− x, 1 + x) such that

(1 + x)` − (1− x)` =
(
(1 + x)− (1− x)

)[∂(1 + x)`

∂x

∣∣∣∣
x=x0

]

= 2`x(1 + x0)`−1 6 2`x(1 + x)`−1. (2.140)

Next, we point out that, for any z < `−2 and any ` > 2, we have

(1 + z)`−1 6
(

1 +
1

`2

)`−1

6
(

1 +
1

`2

)`2
< exp(1) < 3. (2.141)

Now, we replace (2.139) and (2.141) in (2.138) to obtain that

fi,K(z) < 36`3(`+ 1)

(
2

3

)i
z 6 38`4

(
2

3

)i
z, (2.142)

where the last inequality holds for ` > 18.

Finally, we use (2.142) to derive the following upper bound on λα,K(z) for any z ∈

(0, 1/`2):

λα,K(z) =
1
`

∑`
i=1 gα(fi,K(z))

gα(z)
=

1

`

∑̀

i

(
fi,K(z)

(
1− fi,K(z)

))α

(
z(1− z)

)α

<
1

`

∑̀

i=1

(
fi,K(z)

)α
z−α(1− z)−α < `4α−1

(
38α

∑̀

i=1

(
2

3

)iα)
(1− z)−α. (2.143)

As α 6 1/16, (
38

1− z

)α
<

(
38

1− (1/18)2

)1/16

<
3

2
. (2.144)
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Furthermore,

∑̀

i=1

(
2

3

)iα
<
∞∑

i=1

(
2

3

)iα
=
∞∑

j=0

d1/αe∑

k=1

(
2

3

)(jd1/αe+k)α

<
∞∑

j=0

d1/αe∑

k=1

(
2

3

)(jd1/αe)α

= d 1

α
e
∞∑

j=0

(
2

3

)(jd1/αe)α

6
(

1 +
1

α

) ∞∑

j=0

(
2

3

)j
= 3

(
1 +

1

α

)
<

4

α
. (2.145)

Moreover, from (2.75) we obtain that

6α−1 6 `1/4. (2.146)

By combining (2.143), (2.144), (2.145) and (2.146) and by using again that α 6 1/16, we

conclude that, for any z ∈ (0, 1/`2),

λα,K(z) < `4α−1 × 3

2
× 4

α
6 `4α−3/4 6 `−1/2, (2.147)

which yields the desired bound on the lower tail.

The proof for the upper tail follows very similar arguments. First, we define

hi,K(z) , 1− fi,K(z),

ri|s(K) , 1− qi|s(K). (2.148)

Next, we use the upper bound on the average conditional erasure probability from (2.90) to

provide an upper bound on E
[
ri|s(K)

]
that is very similar to (2.135), i.e.,

EK [ri|s(K)] 6 2−(s−i). (2.149)

By following steps similar to (2.136)-(2.147) and by using that α 6 1/16 and 4α−1 6 `1/4,

we show that, for any z ∈ (1− 1/`2, 1),

λα,K(z) 6 `−1/2, (2.150)
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with probability at least 1 − 1/(2`) over the choice of the kernel. By combining (2.147) and

(2.150) and using one last union bound, we conclude that

P
{
λα,K(z) < `−

1
2 , ∀z ∈

(
0,

1

`2

)
∪
(

1− 1

`2
, 1
)}

> 1− 1

`
. (2.151)

In the end, we point out that the increase in kernel size, while improving the error

performance, worsens the overall decoding complexity of the code. The recursive imple-

mentation of the successive cancellation decoding for polar codes is based on a scheduling

problem on the butterfly-like graph of polar codes, where each node represents a polarization

kernel. These kernels perform the successive cancellation decoding within themselves and

then communicate with each other on a specific schedule that reveals the uncoded information

bits sequentially and efficiently.

The asymptotic overall decoding complexity for the conventional polar codes is given

by the O(n log n), where n denotes the code-length. However, the internal SC calculations

within the kernels becomes more complicated when the conventional kernel is replaced with

larger `×` ones, which effectively changes the asymptotic decoding complexity toO(2`n log n).

In the next section, we propose a method that exploits the structure of the kernel to reduce the

decoding complexity for certain polarization kernels.
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2.5 Decoding Algorithms for Polar Codes with Large Kernels

2.5.1 Permuted Arıkan Kernels

Introduced by Arikan [10], polar codes are the first codes that were proved to achieve

the symmetric capacity of a binary-input discrete memoryless channel (B-DMC) W . Polar

codes can be viewed as part of a much larger family of codes that are generated according to

the 2× 2 matrix

F2
def
=




1 0

1 1


 .

These length n = 2m codes are cosets of a linear subspace that is spanned by some

k rows of F⊗m2 , the m-th Kronecker power of F2. In this section we suggest a different ap-

proach towards polar codes with high performance and efficient SC decoding. In our approach

we consider a special type of kernels called permuted kernels. These kernels are formed by

permuting the rows of F⊗`2 . One example of a permuted kernel is the kernel K8 from Sec-

tion 2.2.2. On the other hand, the kernel K16 also defined in 2.2.2 is not a permuted kernel.

While a successive cancellation decoder for a polar code with the kernel F2 and dimension k

decides on the n input bits u0u1 . . . un−1 (n − k of them are known to the decoder) one after

the other according to the sequential order from 0 to n − 1, a SC decoder for polar codes

with permuted kernels decides on the input bits according to a permuted order of their in-

dices. Therefore, we call the SC decoder for a polar code with a permuted kernel a permuted

successive cancellation (PSC) decoder.

For simplicity, we only describe our PSC decoding algorithm for length-` polar codes

in this section, which is an efficient implementation of the SC decoder, in terms of both time

and space complexity. We also propose two new 16×16 permuted kernels and show simulation

results for their performance.
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Let us begin by introducing the notation and definitions used throughout the remainder

of this chapter and review the basic concepts for polar codes. We modify our indexing of

vectors from 1, · · · , ` to 0, 1, · · · , ` − 1 to preserve consistency with most of the papers that

study the implementation of polar codes.

For a positive integer n, denote by [n] the set of n integers {0, 1, . . . , n − 1}. For

a positive integer ` and for all r ∈ [`], denote by [n]r the set of all elements in [n] that are

equal to r modulo `, where ` should be clear from the context. A binary vector of length

n is denoted by un−1
0 = u0u1 . . . un−1. For A ⊆ [n], denote by uA the subvector of un−1

0

that is specified according to indices from A. In particular, if ` divides n and r ∈ [`] then

u[n]r = uru`+r . . . un−`+r. All operations on vectors and matrices in this paper are carried out

over the field GF (2). The componentwise addition modulo-2 of two binary vectors un−1
0 and

vn−1
0 is denoted by un−1

0 ⊕ vn−1
0 . For an ` × ` matrix K, denote by K⊗m the mth Kronecker

power of K.

Similar to before, we defineW : X → Y to be a generic B-DMC with input alphabet

X = {0, 1}, output alphabet Y , and transition probabilities W(y|x), where for all x ∈ X

and y ∈ Y , W(y|x) is the conditional probability that the channel output is y given that the

transmitted input is x. For a positive integer n, denote by Wn : X n → Yn the channel that

corresponds to transmission over n independent copies of W . Hence, for every xn−1
0 ∈ X n

and yn−1
0 ∈ Yn, the transition probabilityWn(yn−1

0 |xn−1
0 ) is given by

Wn(yn−1
0 |xn−1

0 )
def
=

n−1∏

i=0

W(yi|xi).

Let K denote an ` × ` polarization kernel. Let n = `m and let Rn be the permutation

matrix for which un−1
0 Rn = u[n]0u[n]1 . . . u[n]`−1

, for all un−1
0 ∈ X n. For an ` × ` kernel K,

define the matrix Gm,K recursively by G1,K
def
=K and

Gm,K
def
=(In/` ⊗K)Rn(I` ⊗Gm−1,K). (2.152)
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For a set A ⊂ [n] of size k, and a vector fn−k−1
0 , let C be the code that encodes a

length n input vector un−1
0 , for which u[n]\A = fn−k−1

0 , to the codeword xn−1
0 = un−1

0 Gm,K .

If i ∈ [n] \ A, then ui is called a frozen bit. For all i ∈ [n], the i-th bit-channel with respect to

Gm,K ,W(i)
m,K : X → Yn ×X i, is defined by the transition probabilities

W(i)
m,K(yn−1

0 , ui−1
0 |ui)

def
=

∑

un−1
i+1 ∈Xn−i−1

1

2n−1
Wn(yn−1

0 |un−1
0 Gm,K). (2.153)

A polar code C of length m and with kernel K is defined by setting A to be the set of k

indices corresponding to the bit-channels with the lowest Bhattacharyya parameters. Note

that by the definition of polar codes, the values of the frozen bits are also required. If the

channel is symmetric, then the frozen bits are all taken to be zero. For asymmetric channels,

an assignment of the frozen bits that guarantees a vanishing probability of error is known to

exist, however no practical method that finds such an assignment is known.

A successive cancellation (SC) decoder for C outputs a decision vector ûn−1
0 in n steps,

where at the ith step the decoder decides on the value of ûi according to the following rule. If

i ∈ [n] \ A then ûi is set to the value of the frozen bit ui. Otherwise, the decoder calculates

the pair of transition probabilities

W(i)
m,K(yn−1

0 , ûi−1
0 |ui = 0), W(i)

m,K(yn−1
0 , ûi−1

0 |ui = 1). (2.154)

and sets ûϕ to the more likely value according to these probabilities. Notice that, in general, the

complexity of the SC decoder may be exponential in n, since the calculation of the transition

probabilities requires a summation of 2n−i−1 terms. However, we show that specific structured

kernels allow a simpler formulation.

The recursive structure of the matrix Gm,K induces recursive formulas for the bit-

channels as follows.
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Lemma 2.13. Let K = (Kr,s) be an ` × ` kernel. For all i ∈ [n], if i = ϕ` + j for some

ϕ ∈ [n/`] and j ∈ [`] then

W(i)
m,K(yn−1

0 , ui−1
0 |ui) =

1

2`−1

∑

u
(ϕ+1)`−1
ϕ`+j+1

`−1∏

s=0

W(ϕ)
m−1,K(y

(s+1)n/`−1
sn/` , T (s)(u[ϕ`])| ⊕`−1

r=0 Kr,s · uϕ`+r),

(2.155)

where T (s)(u[ϕ`])
def
= ⊕`−1

r=0 Kr,s · u[ϕ`]r .

Notice that u[ϕ`]r is a vector of length ϕ andKr,s ∈ GF (2), hence T (s)(u[ϕ`]) is a vector

of length ϕ as required by the definition of the ϕth bit channel. The term ⊕`−1
r=0Kr,s · uϕ`+r is

simply the inner product of u(ϕ+1)`−1
ϕ` with the sth column of K.

From Lemma 2.13, it follows that a SC decoding algorithm at the kernel level, i.e., for

a length-` polar code with kernel K, that has time complexity t and space complexity s can

be extended to a SC decoding algorithm for a length-n polar code with kernel K that has time

complexity O(tn log n/(` log `)) and space complexity O(sn/(` − 1)). In particular, there

exists an implementation for the SC decoder that runs in O(2`n log n/(` log `)). In practice,

this time complexity may be too large even for relatively small values of `. For this reason

we propose to use a special type of kernel called a permuted kernel that can simultaneously

reduce the time complexity of the SC decoder and achieve better scaling exponents.

A permutation ρ of length ` is a bijection ρ : [`] → [`]. For a permutation ρ, the

permutation matrix corresponding to ρ is denoted by Mρ and defined by

(Mρ)r,s
def
=





1, if s = ρ(r)

0, otherwise,
(2.156)

i.e., u`−1
0 Mρ = v`−1

0 , where vρ(r) = ur, for all r ∈ [`]. A permuted kernel with respect to ρ is

defined by Kρ
def
=MρGL, where GL

def
=GL,F2 and ` = 2L. For ease of notation, for all i ∈ [n] we

denote the i-th bit-channel with respect to Gm,Kρ byW(i)
m,ρ and denoteW(i)

m,F2
byW(i)

m .
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Let Cρ be the polar code with kernel Kρ and length n = `. For i ∈ [`], let Di =

{ρ(0), ρ(1), . . . , ρ(i− 1), ρ(i)} and let di = max{Di}.

Lemma 2.14. For all i ∈ [`], the i-th bit-channel with respect to Kρ is equal to

W(i)
L,ρ(y

`−1
0 , ui−1

0 |ui) =
∑

v[di+1]\Di

W(di)
L (y`−1

0 , vdi−1
0 |vdi), (2.157)

where v`−1
0 = u`−1

0 Mρ, i.e., for all r ∈ [`], vρ(r) = ur.

Lemma 2.14 provides a connection between bit channels with respect to Kρ and bit

channels with respect to F2, which will be useful for our SC decoding algorithm for Cρ, pre-

sented in the next section.

2.5.2 Permuted Successive Cancellation Decoding

In this section we formalize our SC decoder for a length-` = 2L code Cρ defined by a

permuted kernelKρ. As mentioned above, SC decoding for Cρ is equivalent to SC decoding of

a length-` polar code with kernel F2 that decides on the input bits in a permuted order accord-

ing to ρ. For this reason, we call our SC decoding scheme permuted successive cancellation

(PSC) decoding. We present an implementation of PSC decoding for any permutation ρ, which

requires significantly less computational power and memory compared to the conventional SC

decoder at the kernel level. Our proposed algorithm admits better time complexity only when

ρ is not the identity permutation. For the identity permutation the algorithm coincides with

the conventional SC decoder. Analysis of time and space complexity is also presented.

The PSC decoding algorithm is similar to the list SC decoding from [39] in the sense

that it computes many pairs of transition probabilities for some bit channels. Therefore, we

will adapt some of the notation and terminology from [39]. In particular, for all 0 6 λ 6 L
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define Λ
def
=2λ. For 0 6 ϕ < Λ/2 we have

W(2ϕ)
λ (zΛ−1

0 , b2ϕ−1
0 |bϕ) =

∑

b2ϕ+1

1

2
W(ϕ)

λ−1(z
Λ/2−1
0 , b[2ϕ]0 ⊕ b[2ϕ]1|b2ϕ ⊕ b2ϕ+1) · W(ϕ)

λ−1(zΛ−1
Λ/2 , b[2ϕ]1|b2ϕ+1),

(2.158)

and

W(2ϕ+1)
λ (zΛ−1

0 , b2ϕ
0 |b2ϕ+1) =

1

2
W(ϕ)

λ−1(z
Λ/2−1
0 , b[2ϕ]0 ⊕ b[2ϕ]1|b2ϕ ⊕ b2ϕ+1) · W(ϕ)

λ−1(zΛ−1
Λ/2 , b[2ϕ]1|b2ϕ+1).

(2.159)

Notice that, for r ∈ {0, 1}, [2ϕ]r is the set of all elements in [2ϕ] that are equal to r modulo-2.

The index ϕ is called a phase and λ is called a layer. Thus, the pair of transition probabilities in

phase i and layer λ is determined by two pairs of transition probabilities in phase ϕ = bi/2c

and layer λ − 1; one corresponds to the output (z
Λ/2−1
0 , b[2ϕ]0 ⊕ b[2ϕ]1) and the other to the

output (zΛ−1
Λ/2 , b[2ϕ]1). From the recursive formulas above we obtain a binary tree of pairs of

transition probabilities where the root of this tree is W(i)
L (y`−1

0 , vi−1
0 |vi), for some i ∈ [n].

Each pair of transition probabilities in this tree is associated with a branch number 0 6 β <

2L−λ. For λ = L the branch number of W(i)
λ (y`−1

0 , vi−1
0 |vi) (the root of the tree) is 0. If the

branch number of W(i)
λ (zΛ−1

0 , bi0|bi) is β then W(ϕ)
λ−1(z

Λ/2−1
0 , b[2ϕ]0 ⊕ b[2ϕ]1|b2ϕ ⊕ b2ϕ+1) and

W(ϕ)
λ−1(zΛ−1

Λ/2 , b[2ϕ]1|b2ϕ+1), ϕ = bi/2c, have branch numbers 2β and 2β + 1, respectively. With

this terminology, we can refer to each pair of transition probabilities by a triple (ϕ, λ, β) and

denote

Pλ,β[bϕ0 ]
def
=W(ϕ)

λ (zΛ−1
0 , bϕ−1

0 |bϕ). (2.160)

We assign the same triple (ϕ, λ, β) to the output and input of each pair of transition probabili-

ties in the tree and denote Bλ,β[ϕ]
def
=bϕ.

Remark 2.1. We use the notations (zΛ−1
0 , bϕ−1

0 ) and bϕ for the output and input of the bit

channel W (ϕ)
λ of branch number β, whereas the notations (y`−1

0 , vϕ−1
0 ) and vϕ are used only
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for W (ϕ)
L . The values of (zΛ−1

0 , bϕ−1
0 ) and bϕ are determined recursively from (y`−1

0 , vϕ−1
0 ) and

vϕ.

For i ∈ [`], let ûi−1
0 be the bits decoded so far by the PSC decoding algorithm. Re-

call that in the i-th step, the SC decoder calculates the pair of transition probabilities defined

in (2.154). Denote these transition probabilities by

Qi[b]
def
=W(i)

1,ρ(y
`−1
0 , ûi−1

0 |ui = b). (2.161)

Also, recall that Di = {ρ(0), ρ(1), . . . , ρ(i)} and di is the maximum over Di. The

decoding window in the ith step is denoted by DWi = [di + 1] \Di. By Lemma 2.14,

Qi[b] =
∑

vs: s∈DWi

PL,0[vi0], (2.162)

where vρ(i) = ui = b and for all r ∈ [i], vρ(r) = ûr. If j ∈ DWi then vj was not determined yet

and is therefore called an unknown bit. As with every SC decoder for polar codes, for every

i ∈ [`], the PSC decoding algorithm processes the ith step of the decoding by two stages:

1) Recursive transition probabilities computations.

2) Recursive decision making.

Next, we will describe these two stages.

1) Recursive transition probabilities computations:

In the beginning of the algorithm, where i = 0, d0 = ρ(0), and DW0 = [d0 + 1], the

algorithm recursively computes PL,0[vd0
0 ], for every choice of vd0−1

0 . Thus, for every layer λ

and any branch number β it calculates and stores the pair of transition probabilities that are

required for the calculation of PL,0[vd0
0 ]. Figure 2.5 illustrates the execution of this stage for

i = 0 and a length-four permutation ρ = (2, 0, 3, 1). For every 0 < i 6 `, if di = di−1,
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λ = 0, β =0

Pλ,β[0] Pλ,β[1]

λ = 0, β =1

Pλ,β[0] Pλ,β[1]

λ = 0, β =2

Pλ,β[0] Pλ,β[1]

λ = 0, β =3

Pλ,β[0] Pλ,β[1]

0 1 0 1 0 1 0 1

λ = 1, β =0

Pλ,β[00] Pλ,β[01] Pλ,β[10] Pλ,β[11]

λ = 1, β =1

Pλ,β[00] Pλ,β[01] Pλ,β[10] Pλ,β[11]

0 1 0 1
0 1 0 1 0 1 0 1

λ = 2, β = 0

Pλ,β[000] Pλ,β[001] Pλ,β[010] Pλ,β[011] Pλ,β[100] Pλ,β[101] Pλ,β[110] Pλ,β[111]

0 1
0 1

0 1 0 1
0 1

0 1 0 1

Figure 2.5: Transition probabilities computations for each of the layers at step i = 0 and for

ρ = (2, 1, 3, 0).

then PL,0[vdi0 ] was already computed, for every choice of vDWi
, and the algorithm does not

need to compute anything new. Otherwise, it must recursively calculate and store PL,0[vdi0 ],

for every choice of vDWi
. The recursive calculation of Pλ,β[bj0] is carried out through equa-

tions (2.158) and (2.159) (depending on the parity of j) using Pλ−1,2β[b[2ϕ+1]0 ⊕ b[2ϕ+1]1 ] and

Pλ−1,2β+1[b[2ϕ+1]1 ], where ϕ = bj/2c. Notice, that if the algorithm needs to calculate Pλ,β[bj0]

it will never make use of Pλ,β[br0], for r < j and it can remove any such transition probability

from the memory. Thus the algorithm stores
∑L

λ=0 2L−λ = 2L+1 − 1 = 2` − 1 vectors of

transition probabilities pairs with various lengths.
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2) Recursive decision making:

For every 0 6 i < `, after computing all the relevant pairs of transition probabilities in

the previous stage, the algorithm computesQi[b] according to (2.162) and decides on the value

of ûi = vρ(i) according to the SC decoding decision rule, i.e. ûi = ui if ui is a frozen bit and

otherwise it is set to the more likely value based on Qi[b], b ∈ {0, 1}. Once the value of vρ(i)

is determined, the algorithm recursively updates the values of the outputs/inputs for any other

layers and branch numbers if these values are available. The recursive update of the inputs

is carried out as follows. If Bλ,β[j] was updated and j is odd then Bλ+1,2β+1[ϕ] = Bλ,β[j],

ϕ = bj/2c, and the transition probabilities in layer λ+1 and branch number 2β+1, associated

withBλ+1,2β+1[ϕ] 6= Bλ,β[j] are removed. If bothBλ,β[2ϕ] andBλ,β[2ϕ+1] are available then

Bλ+1,2β[ϕ] = Bλ,β[2ϕ]⊕Bλ,β[2ϕ+1] and the transition probabilities in layer λ+1 and branch

number 2β associated with Bλ+1,2β[ϕ] 6= Bλ,β[2ϕ]⊕Bλ,β[2ϕ+ 1] are removed.

An execution of this stage for i = 0 and the permutation ρ = (2, 1, 3, 0) will result in

only removing transition probabilities in layer 2. If, for example, the algorithm decision on

the value of vρ(0) was vρ(0) = 0, then the probabilities that are stored in layer 2 are P2,0[000],

P2,0[010], P2,0[100], and P2,0[110]. Repeating the recursive transition probabilities compu-

tation stage for i = 1 does not require any new transition probabilities computation since

d1 = d0 = 2. Assuming the decision for vρ(1) is 0 as well, at the decision-making stage the

algorithm removes from layer 0 the transition probabilities associated with vρ(1) = 1. It then

computes B1,1[0] = 0 and removes the transition probabilities associated with B1,1[0] = 1

from layer 1 and branch number 1. Since ρ(1) is odd and ρ(1) − 1 was not yet calculated,

it cannot make a decision for layer 1 and branch number 0. Figure 2.6 shows the result of

propagating the decision vρ(1) = 0 to the layers and branch numbers that are affected by this

decision.
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0 1 0 1

Figure 2.6: The remaining transition probabilities in the affected layers and branch numbers at

the end of step i = 1, after propagating the decisions v2 = 0 and v1 = 0, where ρ = (2, 1, 3, 0).

Next, we discuss the time and space complexity of our algorithm and compare the

performance and decoding complexity of some polar codes with permuted kernels.

Both space complexity and time complexity of the algorithm are highly dependent

on the permutation and therefore we express them as O(sρn) and O(tρn log n), respectively,

where sρ and tρ are constants that depend only on the permutation ρ. To compute tρ, we count

the total number of pairs of transition probabilities that were calculated by the algorithm using

equations (2.158) and (2.159), and divide this number by `. Similarly, to compute sρ, we find

the maximum number of transition probabilities pairs that were simultaneously stored in the

memory and divide this number by `.

Remark 2.2. In the computation of the time complexity we ignore the computation of Qi[b],

i ∈ [`], by equation (2.162), given the transition probabilities pairs PL,0[vi0], since this requires

at most 2tρ` operations. Similarly, for the computation of the space complexity we ignored the

extra space used by the algorithm to store the phases of the unknown bits for each layer and

branch number, as well as values of some known bits that are still being used. The space for

this extra information is o(sρ`).

Unfortunately, there is no simple formula to compute sρ and tρ. Yet, we will show how

to derive these quantities by considering a more complex example of a length-8 permutation

ρ = (1, 4, 0, 2, 7, 3, 6, 5). At step 0 the algorithm computes P3,0[v0v1]. To this end it needs to
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compute the 16 pair of transition probabilities Pλ,β[b0], for every 0 6 λ < 3 and 0 6 β <

23−λ. At step 1 it needs to compute P3,0[v4
0] when v1 is known, i.e., 23 new pairs of transition

probabilities. To this end it must compute P2,0[b2
0] and P2,1[b2

0], where B2,1[0] = v1. Thus, it

must compute 4 + 2 = 6 new pairs of transition probabilities at layer 2. At layer 1 it needs

to compute P1,β[b1
0], for every 0 6 β < 4, i.e., 2 · 4 = 8 new pairs. Overall it computes

22 pairs at this step. The algorithm will only compute new probabilities at step 4, where it

computes 16 new pairs of transition probabilities. Overall it computes 54 pairs of transition

probabilities and the decoding computation complexity of a length-n polar code with kernel

Kρ is O(tρn log n), where tρ = 2.25. The maximum number of transition probabilities pairs

that were stored in the memory at the same time is 30 and hence the space complexity of the

algorithm in this example is O(sρn), where sρ = 4.286.

Figure 2.7 depicts the performance comparison of three polar codes of length n = 28

over binary erasure channels. All codes are optimized for the channel BEC(0.2) and rate

R = 3
5
. The ML bound on performance of the F2 polar code is also given, based upon

methods in [39]. Two of these codes are constructed via Kσ, where

σ = (0, 1, 2, 3, 4, 6, 8, 10, 5, 9, 7, 11, 12, 13, 14, 15) (2.163)

and Kπ, where

π = (0, 1, 2, 4, 8, 3, 5, 6, 9, 10, 12, 7, 11, 13, 14, 15). (2.164)

The other polar code is the conventional Arikan’s polar code, constructed from the 2 × 2

kernel F2. We chose these permuted kernels since they have relatively low scaling exponents,

µ(Kσ) = 3.541 and µ(Kπ) = 3.479. The time complexity of the PSC decoding algorithm for

length-n polar codes with kernels Kσ and Kπ is O(tσn log n) and O(tπn log n), respectively,

where tρ = 1.907 and tπ = 2.407. The space complexity for these codes is O(sσn) and

O(sπn), respectively, where sσ = 9.143 and sπ = 11.429. It is observed that the polar code
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Figure 2.7: FER comparison of three polar codes over binary erasure channels at length n =

28 constructed with F2, Kσ, and Kπ.

constructed from Kπ and decoded with PSC outperforms both the conventional polar code

and the code constructed by Kσ. The latter also outperforms the conventional polar code. The

results are in agreement with the convention that the smaller the scaling exponent, the better

the polar code performance. Notice that for some erasure channels the frame-error-rate of the

polar code constructed from Kπ is lower than the ML bound. Since the actual performance of

the ML decoder can only be worse than the ML bound, the polar code constructed from Kπ

outperforms Arikan’s polar code even when the latter is decoded by the ML decoder. It is to

be noted that the conventional construction algorithms such as [38] cannot be applied directly

for the kernels with ` > 4 due to the exponential increase in the number of bit channel outputs.

Here, we utilized a Monte-Carlo construction algorithm, which may be improved by using a

larger number of iterations.
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Convolutional Polar Codes
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3.1 Genie-aided Decoding of Polar Codes

Polar codes provably achieve the capacity of memoryless symmetric channels with low

encoding and decoding complexity. Nonetheless, for short and moderate block-lengths, polar

codes fail to deliver competitive performance under successive cancellation decoding. Con-

sequently, much effort has been devoted to improving the performance of polar codes, either

through enhanced decoding algorithms or by modifying the code structure, or both. CRC-

aided list decoding of polar codes is the most successful approach along this line of research.

However, list decoding requires following L decoding paths, which leads to a significant in-

crease in decoding complexity if L is large.

The encoding structure of the [n, k]-polar code consists of an n × n nonsingular gen-

erator matrix G with n = 2m, which as input takes a length-n binary vector u and outputs

x = uG. This is formulated by

x = uG, where G = B




1 0

1 1




⊗m

. (3.1)

Here, ⊗ denotes the Kronecker product, B is the n × n bit-reversal permutation matrix, x is

the length-n polar codeword, and u is a length-n binary vector that includes k information bits

and n− k predetermined frozen values. The coordinates on u are divided into two subsets: k

indices that carry the information bits, and n−k indices that are frozen to some predetermined

values (conventionally zero). The selection of these bits is also predetermined and optimized

based on the underlying communication channel.

Given the channel observation vector y, the successive cancellation decoder estimates

û0, û1, · · · , ûn−1 one-by-one by first efficiently calculating a pair of probabilities:

P (ûi = 0|y,ui−1
0 ) and P (ûi = 1|y,ui−1

0 ) (3.2)

88



at each step; and then making a decision on ûi ∈ {0, 1}. The priority is with a genie-like

decision when ui has a fixed frozen value. Otherwise, the most likely case is selected. The

location of frozen bits depends on noise level of the corresponding bit-channels, which itself

depends on the communication channel. Ideally, the n − k noisiest bit-channels are frozen,

leaving the k less noisy ones for the information bits. There are multiple algorithms in the

literature capable of tracking these noise levels very efficiently even for large values of n.

Constructions based on Gaussian approximation [81] and channel degradation [38] are among

the most common methods. We refer readers to [10] for the detailed definitions along with

some discussions on the theory of polar codes and their capacity achieving properties. It is

also to be noted that while we do not gain anything from a fixed initialization of the frozen

values in the case of the symmetric channels, allocating some dynamic values such as parities

of the information bits may increase the minimum distance of the code, and hence improve

the error rate [82].

Successive cancellation decoding is an iterative algorithm that utilizes the butterfly

structure of polar codes to efficiently calculate the probability pair in (3.2) for i = 0, 1, · · · , n−

1 respectively. Upon calculation of the probability pairs for each i ∈ {0, 1, · · · , n − 1}, the

decision on ûi is prioritized by first looking up the available frozen values, and then the freshly

calculated probabilities. Algorithm 1 provides a high-level description of the SC decoding

algorithm.

Let pi denote the probability of making an incorrect decision for ui. Then it is easy to

show that the frame error rate (FER) is formulated as

Pe = 1−
∏

i∈I

(1− pi), (3.3)

where I ⊂ {0, 1, · · · , n − 1} denotes the subset of indices corresponding to the information

bits [see [83] for the proof.] A trivial upper bound, commonly known as the union bound can
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Algorithm 1 Summary of the SC decoding algorithm
Input: received vector y

Output: a decoded vector û

1 for i = 0, 1, . . . , n− 1 do

2 calculate P (ui = 0|y, ui−1
0 ) and P (ui = 1|y, ui−1

0 )

if ui is frozen then

3 set ûi to the frozen value of ui

4 else

5 if P (ui = 0|y, ui−1
0 ) > P (ui = 1|y, ui−1

0 ) then

6 set ûi ← 0

7 else

8 set ûi ← 1

9 return the length-k information sub-vector of û

be deducted from (3.3) as

Pe 6
∑

i∈I

pi. (3.4)

An important observation is that while almost all bit-channels Wi (i ∈ I) are almost

noiseless, but p′is range in decibels is significantly large. For example, if one was able to

replace to replace all pi’s for i ∈ I with some kind of average such as

pave ,
1

|I|
∑

i∈I

pi or pave ,
(∏

i∈I

pi
) 1
|I| , (3.5)

then overall frame error rate would become much smaller. In other words,

Pe,avg = 1− (1− pavg)
|I| � Pe = 1−

∏

i∈I

(1− pi) (3.6)
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The proof of the above argument is based on a simple induction on |I| and the facts that

(1− p1)(1− p2) > (1− p1 + p2

2
)2, (3.7)

(1− p1)(1− p2) > (1−√p1p2)2. (3.8)

This motivates us to search for a scheme that helps to balance out the noise levels of

these bit-channels. We propose two such algorithms in the next two sections. But before

getting there, we need to discuss a secondary motivation behind this work.

Soon after discovery of polar codes, it was pointed out that the performance of SC

decoder can be further improved if it is equipped with some side information that can help

with correcting the first few mistakes it may make during the process. Such mechanism is

usually cited as the Arıkan’s genie due to its discovery by E. Arıkan. We explain this over the

following example.

Example 4. Let us assume that the SC decoder is equipped with some side information that

helps correcting its first mistake (if there is any) during the decoding process. The probability

of successful decoding is then given by

Psuccess =
∏

i∈I

(1− pi)
︸ ︷︷ ︸
no genie needed

+
∑

i∈I

pi
∏

j∈I,j 6=i

(1− pj)
︸ ︷︷ ︸

1-genie needed

. (3.9)

The FER in this case is then expressed as

P (1)
e = 1−

(∏

i∈I

(1− pi)
)(

1 +
∑

i∈I

pi
1− pi

)
. (3.10)

The proof follows by dividing the event of successful decoding into two disjoint events: suc-

cessful decoding without using the genie; and successful decoding by using the genie once.

The latter itself can be divided into |I| disjoint events based on the the index of the bit-channel

Wi for which the genie was used. The probability of successful decoding condition on using

91



Algorithm 2 A high-level description of SC decoding equipped with γ-limited Arikan’s genie
Input: received vector y

Output: a decoded vector û

1 set g ← γ

for i = 0, 1, . . . , n− 1 do

2 calculate P (ui = 0|y, ui−1
0 ) and P (ui = 1|y, ui−1

0 )

if ui is frozen then

3 set ûi to the frozen value of ui

4 else

5 if P (ui = 0|y, ui−1
0 ) > P (ui = 1|y, ui−1

0 ) then

6 set ûi ← 0

7 else

8 set ûi ← 1

9 if ûi 6= ui and γ > 0 then

10 set ûi ← ui

set γ ← (γ − 1)

11 return the length-k information sub-vector of û

the genie on the i-th bit-channel is given by
∏

i∈I(1−pi), while the probability of genie being

needed for the i-th bit-channel is given by pi.

By allowing the SC decoder to use the Arikan’s genie up to γ times, a similar ex-

pression for FER can be deducted, which is given in Theorem 12. We remove the proof to

avoid duplicate materials. But, we point out that it follows from an inclusion-exclusion kind

of argument similar to that of the Example 4.
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Figure 3.1: Frame error rate (FER) of [1024, 512]-polar codes under SC decoding equipped

with Arikan’s genie.

Theorem 12. Assume SC decoder is allows to use Arikan’s genie provided from some side

information for up to γ times. An explicit expression for FER is then given by

P (γ)
e = 1−

(∏

i∈I

(1− pi)
)(

1 +
∑

Γ⊂I
|Γ|6γ

∏

i∈Γ

pi
1− pi

)
. (3.11)

A summary of the SC decoding algorithm equipped with Arikan’s genie is provided

in Algorithm 2. As shown in Figure 3.1, having access to the Arikan’s genie, even for a

very limited number of times, improves performance of the polar codes drastically. Here,

γ is the maximum number of bit corrections provided from the genie. However, we do not

always have access to such side information and implementation of the polar genie without

side information is completely nontrivial.
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The first attempts in simulating the polar genie were presented along with the list

decoding algorithm of polar codes in [39]. Polar list decoder is capable of providing a list of

L highly likely candidates for û. It is shown that selecting the most likely candidate from the

list brings the error rate down to near optimal value (ML) even when small values of L are

taken. However, by precoding the k information bits with a cyclic redundancy check (CRC),

one can first reject the unverified candidates from the list and then make the ML selection.

Hence, the CRC acts like a genie that informs the decoder about invalid codewords. Simulation

results provided in [39] showed a drastic performance improvement of list + CRC decoder over

conventional polar codes. Despite the existence of more advanced decoding algorithms such

as those proposed in [84, 85], which eliminate most of the unnecessary calculations in the list

decoder, a true simulation of the Arikan’s genie, that is capable of correcting errors on-the-go,

does not exist in the literature.

3.2 Viterbi Decoding as an Implementation of the Genie

Despite the impressive empirical results of polar codes under list decoder combined

with CRC, their increased decoding complexity makes them impractical for many scenarios.

More importantly, the genie (CRC) is not activated until the end of the successive cancellation

decoding. Hence, it cannot eliminate incorrect and unnecessary calculations on the go. An

imperfect solution to this problem would be to implement multiple shorter and disjoint CRCs,

which would provide us a few check points during the decoding process. A similar approach

is taken in [86], where authors utilize multiple CRCs in order to terminate some percentage of

the unnecessary calculations before reaching the end, and hence improves both space and time

complexity of the list decoder. However, not only the genie remains mostly inactive, but also

the dependency on the list is still in place since the CRC has no local correction capabilities.
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In this section, we introduce the first implementation of the polar genie that does not

rely on the list decoder. Our construction is based on replacing the CRC with a convolutional

code, which provides some local correction capability over its whole length. The SC decoder

is then also equipped with the Viterbi Algorithm (VA) [87] to detect incorrectly decoded bits

with some short delays. Upon detection of error by the VA module, a genie-like feedback is

activated to set back the SC decoder to the corresponding index. The SC decoder then restarts

its calculations by utilizing the newly provided values from the genie. This structure allows

the successive cancellation polar decoder to verify its output by running it through a Viterbi

decoder for the convolutional code. In contrast to conventional CRC-aided list decoding,

wherein incorrect decoding paths are rejected only after reaching the last information bit,

the Viterbi decoder detects incorrect decisions “on the fly” after a short delay. Simulation

results show noticeable improvements by utilizing even simplest convolutional codes. List

independent structure of the proposed method also translates into the average computational

complexity being very close to that of the SC decoder, particularly for the high SNR regime in

which the feedback is rarely activated, which makes it suitable for some practical scenarios.

A different approach has been in studied in [88], where conventional CRCs are re-

placed with some pseudo-random cross-checks between consecutive blocks of the polar code

in order to significantly reduce the decoding latency of list decoder. Our decoder structure

has some similarities to the SC flip decoder that was first proposed in [89]. SC flip decoding

does not require a list, but it again utilizes the CRC to validate the codeword upon reaching

the last bit. When the decoded message is rejected by the CRC, the decoder resets back to a

bit-channel that is estimated to be the one with highest probability of mistake. The set-back

mechanism is similar to the Viterbi-aided SC decoding algorithm in our paper. However, the

method used to estimate the location of error is very inefficient since the CRC does not have

any local error detection capabilities. We overcome this problem by replacing the CRC with
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Figure 3.2: Encoding structure of the concatenated polar code from Example 5.

an optimized convolutional code and then use VA to detect errors on the go as if there was

a genie. A different concatenation scheme of polar codes with convolutional codes was also

considered in [90].

We recall that n denotes the length of the uncoded vector u as defined in (3.1) where its

subset of n− k frozen indices are denoted by F . That leaves us with k indices, denoted by I,

that traditionally were reserved for only information bits. The improvement in our construc-

tions comes from a convolutional code that we use to precode some k1 pure information bits

into n1 = k coded ones. These k bits are then seated in the coordinates in I and sent to a con-

ventional polar encoder as if they were all information bits. It can be viewed as concatenation

between a [n1, k1] convolutional code and a [n, k = n1] polar code.

Example 5. Let Gconv = [1 + D2, 1 + D + D2] denote the generator matrix of a rate-1
2

con-

volutional code. The terminated convolutional code of length n1 = 2k1 + 4 is then generated

from a given sequence of k1 pure information bits, vk1−1
0 . Let νn1−1

0 denote the generated con-

volutional codeword. Next, the uncoded vector u is generated by multiplexing these k = n1

bits with n− k frozen bits (all-zero) while preserving the appearance order of νk−1
0 in u. The

length-n vector u is then multiplied byG defined in (3.1) to form the length-n polar codeword

x. Figure 3.2 provides the schematic of the encoder. The overall rate is given by

R =
k1

n
∼ k

2n
. (3.12)
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Convolutional codes provide a natural local error correction capability, which can be

utilized as a genie-like aid provided for successive cancellation decoder. The traceback depth

in convolutional codes determines the required delay to validate a bit from the received se-

quence by Viterbi Algorithm. It is known that the successive cancellation of polar codes

suffers from the error propagation phenomena, i.e. when it makes the first mistake during the

decoding process, it is bound to make a large number of additional mistakes on the average.

This property translates to a poor bit error rate (BER) for polar codes in general. Hence, it is

desired to utilize a convolutional code with low traceback depth in order to increase the chance

of correcting an error before future incorrect bits appear.

The traceback depth is estimated to have a linear relation with the constraint length of

convolutional codes. However, as we point out in the following, precoding with convolutional

codes with large constraint lengths has its own merits:

• The free distance, denoted by dfree, measures the error correction capability of convo-

lutional codes; and, the common constructions of convolutional codes with large dfree

usually require a large constraint length.

• We cannot tolerate a large rate loss only to add a second layer protection for the infor-

mation bits, since a simple reduced-rate polar code may show a better performance in

fair comparisons. On the other hand, common constructions of convolutional codes with

high rates also require larger constraint lengths [91].

We observe that the construction of the optimal convoutional code is nontrivial; indeed, it is

not even clear if there exists a choice that improves the overall performance.

Lastly, we point out that not all of k bits in I require extra protection. In fact, most

of the indices in I correspond to almost-noiseless bit channels. Accordingly, one can modify

the structure in Figure 3.2 to protect only a small portion of the information bits with con-
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Figure 3.3: Improved encoder structure with shorter convolutional codes.

volutional codes, and hence drop the k = n1 requirement. This modification allows us to

use convolutional codes with low traceback depths and simulate the polar genie more effi-

ciently. Figure 3.3 depicts the improved encoding scheme. Less noisy bit channels are left

unprotected. The new overall rate is given by

R =
k1 + n1 − k

n
. (3.13)

With less concern about the rate loss from convolutional code, we take the simple

rate-1
2

convolutional code from Example 5 and search for the optimal length of underlying

convolutional code, n1, to provide a second layer error protection for the n1 noisiest bits. FER

at each code length is derived according to methods discussed in the next section. Figure 3.4

shows the search oriented simulation results for [8192, 4096]-concatenated polar codes. In

this figure, k1 denotes the length of information bit sequence fed to the convolutional encoder

with generator matrix G defined in Example 5. The length of the terminated convolutional

codeword is given by n1 = 2k1 +4. The simulation results for this setup show that the optimal

codelength is given by nopt
1 = 108.

Next, we propose the Viterbi-aided SC decoding algorithm that utilizes the concate-

nated convolutional code to simulate Arıkan’s genie on-the-go during the decoding process.

Recall that I ∪ F = {0, · · · , n − 1} in which I denotes the location of the unfrozen

indices in u. Let Iconv = {σ0, σ1, · · · , σn1−1} ⊂ I correspond to the indices in which the
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Figure 3.4: Frame error rate of [8192, 4096] polar codes concatenated with convolutional

codes of different lengths.

symbols of length-n1 convolutional code are located. For simplicity we assume, σ0 < σ1 <

· · · < σn1−1. Viterbi-aided SC decoding of polar codes works as follows. Given the received

vector y from the channel, a SC decoding block starts by estimating û0, û1, · · · one by one.

After estimating ûi, two different cases may appear:

• i ∈ (I ∪ F) \ Iconv : decoder continues the process normally as it would have done in

the absence of the convolutional code.

• i ∈ Iconv or equivalently i = σj for some j : the freshly estimated value of ûσj is fed to

the Viterbi decoder for further validations.

An overview of the concatenation between SC decoder and the VA module is presented

in Figure 3.5, where output from SC decoder is split into two sequences: unprotected less-

noisy bits, and n1 bits that form the convolutional codeword for the second step verification.

The Viterbi decoder takes as input the estimated values of ûσj from the SC decoding module’s
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Figure 3.5: An overview of the Viterbi-aided SC decoder.

output. If discovers any disparities on ûσj , or those provided earlier from the SC decoder, i.e.

ûσ` , ` 6 j, a feedback arm gets activated. Upon activation of the feedback, the correct value

of ûσ` , denoted by ˆ̂uσ` , is sent back to the SC decoding block. The SC decoder then resets its

index back to σ`, and restarts the calculations from there by replacing ûσ` with the new value

provided from Viterbi decoder. However, there are two main noticeable challenges about this

approach that slightly complicate the decoder structure.

First, we point out again that the Viterbi Algorithm has some delay in validating the

value of ûσj . This is due to the fact that VA is only capable of decoding a symbol, once all

of the existing trellis paths agree on that index. Note that the input symbol for the Viterbi

algorithm is formed of 2 bits. Let us denote input and output sequences of the Viterbi decoder

by ûσ0ûσ1 , ûσ2ûσ3 , · · · and ˆ̂uσ0
ˆ̂uσ1 ,

ˆ̂uσ2
ˆ̂uσ3 , · · · respectively. As depicted in Figure 3.6, there is

some delay between the last received input symbol and the most recent verified one, which is

statistically bounded by traceback depth of the convolutional code [in this case τb ≈ 10]. The

sample trellis depicts the delay in symbol verification. A symbol is verified when all of the

trellis paths agree on it. The feedback is activated when a symbol is verified to be incorrectly

estimated by SC.

The second complication with this feedback mechanism is that VA module is only ca-

pable of finding some disparities. However, if the paths on trellis agree on some symbol other
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Figure 3.6: A Snapshot of the Viterbi-aided SC decoding algorithm.

than the one provides from SC, all one can deduce is that the SC decoder made a mistake on

that symbol and has to repeat calculations from that index to discover the correct value itself.

Let us formulate this by assuming that the mismatch between input and output symbols is

discovered at index σ`−1σ`, i.e. ˆ̂uσ`−1
ˆ̂uσ` 6= ûσ`−1

ûσ` . Note that we are not allowed to imme-

diately replace ûσ`−1
ûσ` with ˆ̂uσ`−1

ˆ̂uσ` when a mismatch occurs since the latter is a function

of the input sequence and has to be re-calculated according to the new input symbols. So,

the feedback mechanism adds the incorrect symbol ûσ`−1
ûσ` to the list of blocked symbols for

indices {σ`−1, σ`}. Then, the SC decoder restarts the decoding process at σ`−1 by selecting

the next most likely unblocked symbol. To determine the next most likely symbol, we first

flip value of the less reliable bit-channel. If that comes back unverified as well, we proceed

by flipping the value of the more reliable bit-channel; and, if they both return unverified, the

SC decoder flips both of them. Detailed instructions are tabulated in Figure 3.7. Here, an

error consists of a symbol that gets corrected by the Viterbi algorithm. Blocked symbols are

stored in the memory. The calculations are always restarted from bit-channel uσ`−1
. Then, SC

decoder keeps or flips the natural decisions based on instructions in the table.
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Figure 3.7: Instructions for reseting the SC decoder back to the discovered error location.

Example 6. Suppose that the SC decoder is reset to index σ`−1 and is provided with an ordered

set of blocked symbols {αβ,∼ αδ} from the Viterbi decoder, where ∼ α denotes the flipped

value of α. Further assume that σ`−1 corresponds to the less reliable bit-channel between the

two. It is observed that both values of α,∼ α got rejected from the Viterbi decoder. Hence,

the chances are that the decoding mistake was made on the more reliable bit-channel in the

first place. SC decoder then proceeds by keeping ûσ`−1
= α and flipping the decision on the

next bit, i.e. ûσ` =∼ β. It is recommended to track these instructions over Figure 3.7 as well.

Before proceeding to the numerical results, we point out that the Viterbi algorithm also

accepts soft information (symbol likelihoods) as input. In the other hand, the SC decoder is

also capable of calculating the likelihoods for the bits in its output sequence. One may wonder

if we can improve the current decoding scheme by feeding the calculated soft information

from the SC decoder to the Viterbi decoder instead of the hard decisions. However, despite its

simplicity, new instructions for the SC decoder with blocked symbols are completely nontriv-

ial and require further investigations.

102



1.4 1.6 1.8 2 2.2 2.4
10

−4

10
−3

10
−2

10
−1

Figure 3.8: Performance comparison between conventional polar codes under SC decoder

and concatenated polar codes under Viterbi-aided SC decoder.

We assume the communication channel to be B-AWGN with SNR ranging from 1.5 dB

to 2.25 dB. The optimal length of the convolutional code for each SNR point is constructed

by the simulation-based search method introduced earlier. The parameters of the concatenated

polar codes are given by [n, k1] = [8192, 4096], with length of the concatenated convolutional

code varying between 100 6 n1 6 128. Figure 3.8 depicts the comparison between the

newly proposed codes under Viterbi-aided SC decoding, and the conventional [8192, 4096]-

polar codes under SC decoding. A noticeable improvement is observed particularity at high

SNR regime. The lower bound (LB) curve corresponds to a genie-aided SC decoder, which is

enabled on all those bit-channels whose coordinates belong to the convolutional codeword. In

other words, it prevents SC decoder from making decoding mistakes on those n1 bit-channels

in Iconv entirely. Surprisingly, the Viterbi-aided SC decoder fits very close to the lower bound,

which highlights the efficiency of Arıkan’s genie simulation via this method.
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Table 3.1: Percentage of iterations required during Viterbi-aided SC decoding at SNR = 2dB.

# of iterations 0 1 2− 5 6− 15 16+

Probability (%) 99.5 0.35 0.06 0.05 0.04

Despite the performance being very close to the lower bound while keeping the average

decoding complexity almost unchanged, polar list decoder outperforms the currently proposed

Viterbi-aided SC decoder. However, it is possible to extend this method by allocating a second

convolutional code with rate higher than 1
2

to a subset of those k−n1 unprotected bit-channels.

We require a secondary simulation-based search to find the optimal convolutional precoder

for the next batch of information bits similar to the methods proposed in this section It is then

projected to reach the next lower bound on FER, which corresponds to the genie being enabled

on locations that belong to both of the convolutional codewords.

To conclude, we provide the complexity analysis by first mentioning that the decoding

complexity of the Viterbi algorithm is an asymptotic linear function of n1 and hence can be ig-

nored when compared to the SC decoder. More importantly, the Viterbi decoding block never

activates the feedback if the message is correctly estimated by SC itself. A quick look at the

performance of the SC decoder in Figure 3.8 indicates that this event (successful decoding) for

instance happens with very high probability [Pr. > 0.99] at SNR = 2dB. Furthermore, a single

iteration fixes the error in most of the cases, in which SC made a mistake. We refer the reader

to Table 3.1 for the distribution of required iterations at SNR = 2dB. The average number of

set-backs called on SC decoder is then given by ∼ 2.13%, which shows an extremely low

increase in average decoding complexity.
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This chapter contains materials as it appears in [8]:

- A. Fazeli, K. Tian, and A. Vardy, “Viterbi-Aided Successive-Cancellation Decoding of

Polar Codes," Proceedings of IEEE Global Communications Conference, Dec. 17, pp.

1-6.

It also, in part, contains materials from the paper in preparation:

- A. Fazeli, K. Tian, and A. Vardy, “Convolutional decoding of polar codes", to be submit-

ted to IEEE Transactions on Information Theory.

The dissertation author was the primary investigator and author of these papers.
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Chapter 4

Polar Codes for Deletion Channels
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4.1 Deletion Channels: Overview

Imperfect sampling devices can cause synchronization problems in a communica-

tion system, which can cause loss of a few received symbols or sometimes observing a few

unwanted ones among the received ones. These types of error are usually referred to by

insertion or deletion errors. Channels corrupted by insertions or deletions have memory, hence

the polar coding techniques developed for memoryless channels can not be performed straight-

forwardly. See [53, 56] for detailed surveys of the synchronization errors.

Levenshtein [92] was first to propose algebraic error-correcting codes based on

Varshamov-Tenengolts (VT) codes [93] that was capable of correcting one asymmetric er-

ror. In general, the performances of the d-deletion-correcting codes are measured in their

asymptotic redundancy. For example, Levenshtein proved that VT codes are asymptotically

optimal single synchronization-correcting codes. He also derived the lower bound Θ(d log n)

on the asymptotic redundancy of codes that can correct d deletions with zero error probability.

Various coding schemes with zero-error decoders have been proposed to correct the

deletion errors. Some notable algebraic codes that generalize Levenshtein’s scheme for arbi-

trary d’s include [94], [95], and [96]. Gallager [97] was first to utilize convolutional codes for

correcting the synchronization errors. Brink et al. [98] proposed an improved convolutional

encoder which can produce a subset of Levenshtein single-synchronization-correcting codes

periodically by pruning branch. A decoding scheme based on parallel Viterbi algorithms is

proposed in [99], which later on was improved in [100] by adopting the Levenshtein dis-

tance as metric of convolutional decoder. There are also multiple concatenation-based coding

schemes. Notable such constructions include concatenation of LDPC codes with repetition

codes in [101], concatenation of Reed-Solomon codes with repetition codes in [102], concate-

nation of LDPC codes with Levenshtein single-synchronization-correcting codes in [103], and
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non-zero rate codes for channels with d = pn deletions [104]. Extension of polar codes to

channels with memory also drew a lot of community attention. We refer readers to two recent

works [55, 105] which establish strong polarization theorems for processes with memory.

In this chapter, we propose a novel polar coding scheme for the d-deletion channel,

where d could be a fixed value or a sub-linear function of the code-length, i.e. d = o(n). First

implementation of a modified low-complexity SC decoder for deletion channels was initially

presented in [106]. Here, we present new theoretical results that provide a mathematical guar-

antee for the performance of our SC decoder. Our scheme is based on a probabilistic decoding

algorithm (instead of the zero-error decoders), which requires only O(d2n log n) computa-

tional complexity in comparison to the naive implementation with O(nd+1 log n) computa-

tional complexity in [107]. It provably achieves the symmetric information rate of any binary

discrete memoryless channel with d deletions, while there is no restriction on the error/deletion

patterns. Furthermore, we show how the same setup applies to binary noisy channels with ad-

ditional deletions.

Let us begin by first explaining our channel model. Here, n denotes the block-length

and d denotes the number of deletions. In general, d could be a constant, a function of the

block-length such as cn, or a random number generated from a binomial distribution. Further-

more, the location of the deleted symbols could be selected uniformly at random, or in some

cases according to another probability distribution over all
(
n
d

)
possible scenarios. We denote

such probability distributions by Dn,d if required. We follow the conventional definition of

the binary deletion channel that appeared in [92], where the transmitted symbols are denotes

by Xn
1 ∈ {0, 1}n while Y n

1 ∈ Yn denotes the received symbols prior to the deletion effect.

The final n − d received symbols are also given by Ỹ
n−d
1 ∈ Yn−d. Here, d randomly chosen

symbols among xi’s go through the deletion transformation: xi → ∧ (∧ denotes the empty

word.)
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Figure 4.1: Channel models in presence of deletions.

While our focus in this paper is on noiseless deletion channels, we point out that all

of the methods used here are applicable to general noisy channels with deletion. The noisy

d-deletion channel can be considered as the cascade between B-DMC and d-deletion channel.

There is no commonly known channel model for the noisy d-deletion channel. However, since

the synchronization problems often happen at the receiver and after the noise effect of the

wireless channel, we place the DMC prior to the d deletion channel. Here, we only look at the

less-complex case of fixed number of deletions. However, we explain the necessary steps one

would want to take to generalize these results to other scenarios. We point out that the same

framework, in both theory and implementation, applies to noisy deletion channels as well.

Hence, we define everything with respect to the more general case for which we are not aware

of any known practical coding schemes that achieve capacity at presence of even fixed number

of deletions. Figure 4.1 captures both noisy and noiseless deletion channels as defined above.

Figure 4.1.a is the textbook definition of d-deletion channel, while Figure 4.1.b illustrates the

noisy d-deletion channel that is defined as a concatenation between n i.i.d. copies of a B-DMC

and the d-deletion channel.

Assume the underlying transmission to take place over a binary-input discrete mem-

oryless channel (B-DMC) W : {0, 1} → Y with input alphabet {0, 1}, output alphabet Y ,

and transition probabilities W (y|x). In our simulation, we mainly assume W to be a binary
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symmetric channel (BSC). We use W n to denote the channel corresponding to n uses of W

prior to the deletions, which translates to

W n : {0, 1}n → Yn with W n(yn1 |xn1 ) =
n∏

i=1

W (yi|xi). (4.1)

Similarly, we use W̃ n,d(ỹn−d1 |xn1 ) to denote the corresponding channel after the d deletions

take effect. In this notation, we assume that the d deletions are selected uniformly at random

from the n possible locations. Alternatively, we denote the channel by W̃ n,D(ỹn−d1 |xn1 ) if the

deleted symbols are selected according to a probability distribution such as Dn,d or simply D

for when the parameters are clear in the context.

For any given B-DMC such as W , we will deal with its symmetric capacity

I(W ) ,
∑

y∈Y

∑

x∈{0,1}

1

2
W (y|x) log

W (y|x)
1
2
W (y|0) + 1

2
W (y|1)

(4.2)

and its Bhattacharyya parameter that is an upper bound on the error probability under ML

decoder and is defined by

Z(W ) ,
∑

y∈Y

√
W (y|0)W (y|1). (4.3)

Let us now review basic concepts of polar codes and recite the definition of polar bit-

channels in presence of deletions. The encoder in our setup will be an (n, k) polar encoder,

where n = 2m corresponds to m levels of polarization and k denotes the number of informa-

tion bits in the polar code that leaves us with n− k frozen bits. The relation between xi’s and

ui’s is given by

x = uGn, Gn = Bm




1 0

1 1




⊗m

(4.4)

where the generating matrix, Gn, is the m−th Kronecker power of the Arıkan’s 2 × 2 kernel

(recall that n = 2m) that is multiplied by the length-n bit-reversal matrix Bm and u denotes
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Figure 4.2: The i-th polar bit-channel with deletions induced from distribution D.

the uncoded information vector that includes k information bits and n − k frozen bits. Note

that the linear mapping un1 → xn1 is one to one. Hence, we can define a new channel W̃n,D for

simplicity with the transition probabilities given by

W̃n,D(ỹn−d1 |un1 ) , W̃ n,D(ỹn−d1 |un1Gn). (4.5)

The successive cancellation decoding (SC) of polar codes is based on decoding ui for

i = 1, 2, · · · , n sequentially while assuming the values of the previous ui’s. In other words, to

decode ui, we assume that the previous bits, u1, · · · , ui−1, are all known (or correctly decoded)

and hence available to the decoder similar to the channel observation vector after deletions ỹ.

We also assume that the future bits are distributed uniformly at random, i.e. Uj ∼ Bern(1
2
) for

j = i+ 1, · · · , n. Let

W
(i)
n,D(ỹn−d1 , ui−1

1 |ui) ,
∑

uni+1∈{0,1}n−i

1

2n−1
W̃n,D(ỹn−d1 |un1 ) (4.6)

denote the i−th polar bit-channel in presence of d−deletions generated from distribution D.

Figure 4.2 depicts this definition. Here, the i-th polar bit-channel, W (i)
n,D, has input ui, output

(ỹn−d1 , ui−1
1 ), and deletion pattern distribution D. The polar SC decoder works by calculating
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the likelihood parameters

hi,D(ỹn−d1 , ûi−1
1 ) ,

W
(i)
n,D(ỹn−d1 , ûi−1

1 |ui = 0)

W
(i)
n,D(ỹn−d1 , ûi−1

1 |ui = 1)
(4.7)

sequentially for i = 1, 2, · · · , n, while making hard decisions on each ui according to the

following rule:

ûi ,





ui if ui is a frozen bit

0 if hi,D(ỹn−d1 , ûi−1
1 ) > 1

1 otherwise

. (4.8)

In the next section, we explain how the conventional implementation of the polar SC

decoder can be modified so that we can still calculate the likelihood parameters in (4.7) in

presence of additional deletions with low computational complexity. We also postpone the

discussion about location and values of the frozen bits to the last section.

4.2 Decoding Algorithms for Deletion Channels

In this section, we look into different decoding algorithms of polar codes in presence

of deletions. While we assume that the reader is familiar with basic concepts of the polar SC

decoder, we provide a quick overview of the recursive likelihood calculations, the decoding

graph, and its computational complexity before going into the details of our modified decoding

algorithm. [10] is a great reference to review these topics.

We begin by discussing two naive extensions of the SC decoding algorithm for chan-

nels with deletion. There are
(
n
d

)
different deletion patterns. By fixing any such pattern, we can

replace the removed symbols with erasure and generate a length−n vector ŷn1 ∈ (Y ∪ {e})n.

It is possible to then simply feed the generated vector to the conventional polar SC decoder

and estimate the uncoded information vector that corresponds to this specific deletion pattern.
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Let us denote any such estimation by ûn1 . The next step of the decoding algorithm would be

to select the most likely deletion pattern based on the estimated ûn1 ’s. This can be realized in

one of the two following ways:

• Decoder A. As first introduced in [107], one can precode the information bits with some

cyclic redundancy check (CRC) which can be used to detect the correct estimated pat-

tern. This is somehow similar to the application of CRC’s in list decoding of polar

codes [39], where CRC helps decoder to pick the correct codeword without comparing

their likelihoods. While this approach usually results in a better performance than SC

decoding alone, its computational complexity is of order O(nd+1 log n) for fixed values

of d. In additional to its impracticality, this scheme also suffers from a rate loss caused

by the added CRC. Note that for the CRC to be able to select one and only one of the
(
n
d

)

candidates with high probability, it has to have at least O(d log n) redundancy bits.

• Decoder B. A secondary approach, in absence of CRCs, aims at finding the most-likely

deletion pattern. To do so, the decoder needs to select one of the
(
n
d

)
candidates for

ûn1 . However, it is not possible to compare the likelihoods of these estimated candidates

by running the SC decoder for each deletion pattern separately since the likelihoods are

conditioned on their corresponding deletion pattern. There is a way, although inefficient,

to fix this problem. Note that polar SC decoder is not only efficient in estimating the

information vector, but is also very efficient in calculating the likelihood of any desired

information vector given the channel observations. Let us denote such conditional prob-

abilities by P (u|ŷ). Here ŷ is constructed from ỹ by inserting back d erasures that

correspond to deleted locations. Let τ denote the number of different estimated û’s from
(
n
d

)
deletion patterns. Since some deletion patterns may result in a same û, we have

τ 6
(
n
d

)
. Now, one can run the SC decoder for τ

(
n
d

)
many times to calculate P (u|ŷ) for
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each such setup. The most-likely information vector is then revealed by comparing the

following summations:

P (u) = EŷP (u|ŷ). (4.9)

The decoding complexity in this case is given by O(n2d+1 log n), which is even worse

than Decoder A.

Both decoders provide great recovery from the deletions. However, the immense in-

crease in the decoding complexity forces us to design an alternative decoding algorithm. We

also point out that neither of the two decoding method in above are correct implementations

of the SC decoder in presence of deletions. The correct implementation of the SC decoder re-

quires the decoding algorithm to sequentially perform ML decoding on bit-channels W (i)
n,D for

i = 1, 2, · · · , n. A naive way to do so would be to setup
(
n
d

)
parallel SC decoders blocks each

with a different deletion pattern to start with. In other words, each SC decoder picks a specific

deletion pattern and reconstructs the vector of received symbols denoted by ŷn1 in which the

deleted symbols are treated as erasures. Then, we start from i = 1 and go until i = n, where

in each step all decoders are clocked simultaneously to calculate the conventional channel

probabilities

W (i)
n (ŷn1 , û

i−1
1 |ui = 0) and W (i)

n (ŷn1 , û
i−1
1 |ui = 1), (4.10)

and then a hard decision is made on ui similar to (4.8) that is based on the value of

hi,D(ỹn−d1 , ûi−1
1 ) =

∑
W

(i)
n (ŷn1 , û

i−1
1 |ui = 0)

∑
W

(i)
n (ŷn1 , û

i−1
1 |ui = 1)

. (4.11)

The summations are taken over all
(
n
d

)
deletion patterns with the assumption that they are all

equally likely. A slight modification is required if D is a nonuniform distribution, which we

leave to the reader.
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Figure 4.3: The polar encoding/decoding graph for n = 8.

It is now clear why we no longer depend on CRCs to make the final decision. However,

the decoding complexity is stillO(nd+1 log n). In the following, we propose an alternative im-

plementation of the SC decoder, which only requiresO(d2n log n) in computation complexity.

Let us proceed by first reviewing some details about the successive cancellation decoding al-

gorithm for polar codes.

The construction of the polar generating matrix (4.4) based allows its encoding circuit

to be realized over a FFT-like graph that is sometimes referred to as the Tanner graph of polar

codes, or more commonly as just the polar graph. The butterfly structure of this graph allows

the encoding algorithm to be realized with O(n log n) computational complexity. Moreover,

the very same graph can be used in decoder to successively estimate ui’s again withO(n log n)

computational complexity. Figure 4.3 depicts the graph of a length-8 polar code. Here, all

nodes are labeled with 〈ϕ, β〉λ, where ϕ, β, and λ denote the phase, branch number, and the

layer respectively. The bit reversal permutation is absorbed in between the layers. The polar

graph has m + 1 layers that correspond to m steps of the polarization. Each layer also has n

nodes in it. These nodes are labeled with 〈ϕ, β〉, where ϕ denotes their phase number and β

denotes their branch number. We sometimes drop λ if its value is clear from the context. This
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notation is consistent with [39]. We refer the readers to this paper for further discussions about

the motivation behind this type of labeling and how it helps with the efficient implementation

of the polar codes in general. For nodes within layer λ we have

0 6 ϕ < 2λ and 0 6 β < 2m−λ. (4.12)

There are also two data structures that help with the decoding algorithm. The first one

stores a binary value ∈ {0, 1} for each node in the graph that corresponds to their hard values

and is denoted by B. The other one, denoted by P stores the probabilities (or the likelihoods)

of each node being equal to 0 or 1 given the received vector y. The structure of the polar graph

allows one to efficiently calculate these values in a recursive fashion. We do not cover more

details about the conventional successive cancellation decoder since we practically redefine

them all for channels with deletion in the following.

The idea behind our modified SC decoding algorithm is to not fixing a deletion pattern

from the beginning but to limiting our deletion pattern gradually during the recursive process

of the SC decoder. Let us briefly explain the process in the first step of the SC decoding

recursion, which also helps with understanding the pseudo codes that follow after.

The first step in the conventional SC decoding algorithm attempts at decoding the first

information bit, u1. To do so, it recalls itself asking for the evaluation of two intermediate bit-

channels in layer λ = m− 1 that are labeled with 〈ϕ, β〉 = 〈0, 0〉 and 〈0, 1〉. See nodes v1 and

v2 on the polar graph depicted in Figure 4.4. These two bit-channels are independent and are

looking at two disjoint sub-vectors of length-n
2

from ŷi’s as the output. However in presence

of deletions, it is unclear which of the ỹi symbols should be mapped to the top half, and which

belong to the bottom half. Note that, we do not need to distinguish between all different
(
n
d

)

deletion patterns at this stage. Instead, we simply decide on the number of deletions that

belong to the each half and postpone further calculations to the future steps. Let d1 denote the
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number of deleted symbols from the first half of the yi’s. It is clear that

0 6 d1 6 d. (4.13)

So, we only require to make d + 1 copies of nodes v1 and v2 at this stage, where each copy

corresponds to a different subset of received symbols that belong to its output span. By doing

so, we partition all mappings of the form ỹ → ŷ into d + 1 subsets. We chunk down these

subsets in the next steps of the decoding algorithm.

Let us for example assume d is even and then look at the most-likely scenario, where

ỹ
(n−d)/2
1 is mapped to the top half and ỹn−d(n−d)/2+1 is mapped to the bottom half of the ŷi’s.

Also, assume that the decoding pattern is generated according to the uniform distribution.

Let Ud denote the uniform distribution of d deletions. The two corresponding intermediate

bit-channels with inputs v1, and v2 are respectively defined as

W
(1)
n/2 ,Ud/2

(ỹ
(n− d)/2
1 |v1), and W

(2)
n/2 ,Ud/2

(ỹn−d(n− d)/2+1|v2). (4.14)

The relation between the first two original bit-channel W (1)
n,Ud , W

(2)
n,Ud , and these d + 1

intermediate bit-channels in general is given by

W
(1)
n,Ud(ỹ

n−d
1 |u1)

=
d∑

t=0

Pr.
[
ỹ
n/2−t
1 → ŷ

n/2
1

]{1

2

∑

u2

W
(1)
n/2 ,Ut(ỹ

n/2−t
1 |u1 + u2)W

(2)
n/2 ,Ud−t(ỹ

n−d
n/2−t+1|u2)

}
(4.15)

=
1(
n
d

)
d∑

t=0

{(
n/2

t

)(
n/2

d− t

)
× 1

2

∑

u2

W
(1)
n/2 ,Ut(ỹ

n/2−t
1 |u1 + u2)W

(2)
n/2 ,Ud−t(ỹ

n−d
n/2−t+1|u2)

}
,

and

W
(2)
n,Ud(ỹ

n−d
1 , u1|u2)

=
d∑

t=0

Pr.
[
ỹ
n/2−t
1 → ŷ

n/2
1

]{1

2
W

(1)
n/2 ,Ut(ỹ

n/2−t
1 |u1 + u2)W

(2)
n/2 ,Ud−t(ỹ

n−d
n/2−t+1|u2)

}
(4.16)

=
1(
n
d

)
d∑

t=0

{(
n/2

t

)(
n/2

d− t

)
× 1

2
W

(1)
n/2 ,Ut(ỹ

n/2−t
1 |u1 + u2)W

(2)
n/2 ,Ud−t(ỹ

n−d
n/2−t+1|u2)

}
,
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Figure 4.4: An instance of the SC recursion in the modified decoder.

where, Pr.
[
ỹ
n/2−t
1 → ŷ

n/2
1

]
denotes the probability that t out of d deletions appear in the first

half of yi’s. Note that these d + 1 scenarios are not equally likely. Hence, we combine

their corresponding channel probabilities in a weighted fashion. Also, from this point on, we

assume that the distribution of deleted symbols is always uniform and reduce the notation of

bit-channels to W (i)
n unless otherwise is stated.

We recall that in the conventional successive cancellation decoding, the subsets of

received symbols that correspond to the intermediate bit-channels always form a continuous

sub-vector of yn1 . Indeed, the output span of a node labeled by 〈ϕ, β〉λ is given by

{yβ2λ+1, yβ2λ+2, · · · , y(β+1)2λ}, (4.17)

which not surprisingly is independent of ϕ. Now, consider the scenario when d symbols are

deleted and we are to map the remaining ỹn−d1 received symbols back to these n positions. The

node 〈ϕ, β〉λ is only concerned about the part of the mapping that corresponds to its output;

And, to determine that, it only requires to know the number deletions that occurred on or

before yβ2λ and the number of deleted symbols among {yβ2λ+1, yβ2λ+2, · · · , y(β+1)2λ}. Let
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d0 and d1 denote these numbers respectively. The desired order-preserving mapping can be

expressed as

ŷβ2λ+1, ŷβ2λ+2, · · · , ŷ(β+1)2λ ←− ỹβ2λ−d0+1, ỹβ2λ−d0+2, · · · , ỹ(β+1)2λ−d0−d1
. (4.18)

Let us for simplicity define

ỹn−d1 \ 〈d0, d1, β, λ〉 , ỹβ2λ−d0+1, ỹβ2λ−d0+2, · · · , ỹ(β+1)2λ−d0−d1
, (4.19)

which allows us to rewrite the layer-m bit-channels in (4.6) asW (i)
n (yn−d1 \〈0, d, 0,m〉, ui−1

1 |ui).

Theorem 13.Assume Λ = 2λ and 0 < 2ψ+1 < Λ. We can rephrase the recursive construction

of the layer-λ polar bit-channels based on SC cancellation decoder in presence of deletions

as the following [see (22), (23) in [10] or (4), (5) in [39] for the original formulation]:

branch β︷ ︸︸ ︷
W

(2ψ+1)
Λ (ỹn−d1 \ 〈d0, d1, β, λ〉, u2ψ

1 |u2ψ+1) =
1(
Λ
d1

)
d1∑

t=0

{(
Λ/2

t

)(
Λ/2

d1 − t

)
×

1

2

∑

u2ψ+2

W
(ψ+1)
Λ/2 (ỹn−d1 \ 〈d0, t, 2β, λ− 1〉, u2ψ

1,even ⊕ u2ψ
1,odd|u2ψ+1 + u2ψ+2)

︸ ︷︷ ︸
branch 2β

.W
(ψ+1)
Λ/2 (ỹn−d1 \ 〈d0 + t, d1 − t, 2β + 1, λ− 1〉, u2ψ

1,even|u2ψ+2)
︸ ︷︷ ︸

branch 2β+1

}
, (4.20)

and

branch β︷ ︸︸ ︷
W

(2ψ+2)
Λ (ỹn−d1 \ 〈d0, d1, β, λ〉, u2ψ+1

1 |u2ψ+2) =
1(
Λ
d1

)
d1∑

t=0

{(
Λ/2

t

)(
Λ/2

d1 − t

)
×

1

2
W

(ψ+1)
Λ/2 (ỹn−d1 \ 〈d0, t, 2β, λ− 1〉, u2ψ

1,even ⊕ u2ψ
1,odd|u2ψ+1 + u2ψ+2)

︸ ︷︷ ︸
branch 2β

.W
(ψ+1)
Λ/2 (ỹn−d1 \ 〈d0 + t, d1 − t, 2β + 1, λ− 1〉, u2ψ

1,even|u2ψ+2)
︸ ︷︷ ︸

branch 2β+1

}
. (4.21)

Proof. We only discuss the first formulation since the other one follows from a similar argu-

ment. The output span of the corresponding bit-channel, that is the subsequence of ỹn−d1 , is
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given by

ỹβΛ−d0+1, ỹβΛ−d0+2, · · · , ỹ(β+1)Λ−d0−d1 .

Now, we have to cut this sequence in two, where the first tail will form the output span of

a bit-channel whose phase and branch numbers are given by 〈ψ + 1, 2β〉λ−1 and the other

will form the output span of another bit-channel with phase and branch numbers given by

〈ψ + 1, 2β + 1〉λ−1. To do so, we have to determine how many of the d1 deleted symbols

belonged to the top half and how many belonged to the other one. The length of the output

span prior to deletions is given by Λ = 2λ. Furthermore, all
(

Λ
d1

)
deletion patterns are equally

likely. So, the conditional probability of observing t deletions in the first half is given by

Pr.[t symbols deleted among yβ2λ+2λ−1

βΛ+1 | d1 symbols deleted among y(β+1)Λ
βΛ+1 ]

=

(
Λ/2
t

)(
Λ/2
d1−t

)
(

Λ
d1

) . (4.22)

Note that a simple double-counting argument yields in

d1∑

t=0

(
Λ/2

t

)(
Λ/2

d1 − t

)
=

(
Λ

t

)
, (4.23)

which helps with understanding of the weighted averages in (4.20), (4.21) while not necessary

for the proof. The rest of the proof follows similar to the proof of the original formulation that

appeared in [10].

It is now clear that the original nodes in the polar graph should be replaced with mul-

tiple copies for the decoding purposes, where each replacement addresses a different set of

mappings from the the received symbols to its corresponding output span. In particular, any

original node such as 〈ϕ, β〉λ should be replaced with a group of τd(β, λ) new nodes, where
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Figure 4.5: The modified decoding graph of a length-4 polar code with d = 1 deleted symbol.

τd(β, λ) denotes the number of integer solutions to




d− (n− (β + 1)2λ) 6 d0 + d1 6 d

0 6 d0 6 β2λ

0 6 d1 6 2λ

. (4.24)

Figure 4.5 depicts the modified decoding graph for a polar code of length 4 in presence

of 1 deletion error. A node that was originally labeled with 〈ϕ, β〉 is now replaced with a group

of nodes each labeled with δ〈d0, d1〉 internally, where d0 and d1 denote the number of deletions

prior and inside the output span of the original 〈ϕ, β〉λ node. The
∑

symbol corresponds to

the calculation of weighted averages based on the conditional probabilities in (4.22). The
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number of new nodes within these decoding groups can be upper bounded by

τd(β, λ) 6
(
d+ 2

2

)
, (4.25)

which clearly is not a tight bound for many choices of β and λ. However, it gives us the

following result on the new overall computational complexity that is based on the extended

decoding graph.

Corollary 4.1. The computational complexity of the modified polar SC decoding algorithm

for noisy channels with d deleted symbols is asymptotically upper bounded by O(d2n log n),

where n = 2m denotes the length of the polar code. The number of deletions can be an

arbitrary function of n.

Next, we go over the details of modified SC decoder. We provide some high-level

pseudo-codes that are consistent with [39] in notation. Parts of these pseudo-codes are exact

replicas of the space inefficient implementation of SC decoder in [39], which are reintroduced

here for the sake of completeness.

For each layer λ, we require two data structures, namely Bλ and Pλ, where Bλ stores

the hard values of the nodes in the extended decoding graph and Pλ stores the corresponding

probability pairs (or likelihoods). Nodes in the graph are labeled with 〈ϕ, β〉λ|〈d0, d1〉. Here,

ϕ and β denotes the phase and branch number of the node. 〈d0, d1〉 also uniquely represents

the available symbols in the output span of this node, which can also be viewed as the state of

this bit-channel. We may also drop λ if its value is clear within the context.

The probability array data structure Pλ is used as follows. Let a layer 0 6 λ 6 m,

phase 0 6 ϕ < Λ = 2λ, the branch number 0 6 β < 2m−λ, and the output state 〈d0, d1〉 be

given, where d0 and d1 satisfy the conditions in (4.24). Denote the output corresponding to

branch β of W (ϕ+1)
Λ with state 〈d0, d1〉 as (ŷΛ−d1

1 , uϕ1 ). Then, upon ending the SC decoding

122



algorithm, we will have for both values of b = 0, 1 that

Pλ[〈ϕ, β〉|〈d0, d1〉][b] = W
(ϕ+1)
Λ (ŷΛ−d1

1 , uϕ1 |b). (4.26)

To introduce the bit array data structureBλ, we first point out that a same hard decision

applies to all nodes with the same ϕ and β. Similar to before, let layer 0 6 λ 6 m, phase

0 6 ϕ < Λ = 2λ, and the branch number 0 6 β < 2m−λ be given. We also denote the

input corresponding to branch β of all bit-channels W (ϕ+1)
Λ (regardless of their output state)

by û(λ, ϕ, β). Then, this data structure is used to ultimately store

Bλ[〈ϕ, β〉] = û(λ, ϕ, β). (4.27)

Algorithm 3 illustrates the high-level description of the modified SC decoder for polar

codes when d out of n transmitted symbols are deleted uniformly at random. The main dif-

ference between Algorithm 3 and its original version is in the initialization of the probability

array. Given any 0 6 β < n, there are min{d, β} + 2 different sets of mappings from the

received symbols to the output of the node 〈0, β〉0. d1 = 1 determines one set of such map-

ping, in which the output is nothing but the erasure (deleted symbol). The other min{d, β}+1

output spans also correspond to the case where d1 = 0 but d0 varies from 0 to its maximum

value. This initializations are described in lines (1)-(5) of the algorithm. We recommend the

reader to follow these initializations in the example provided in Figure 4.5.

The structure of the decoding graph allows us to fill out our data structures recursively

and efficiently. This is realized in the main loop of the Algorithm 3, where functions recur-

sivelyCalcP and recursivelyUpdateB are called. A high level description of these functions is

given in Algorithms 4 and 5. Note that Algorithm 5 is the same for channels with or with-

out deletion, while Algorithm 4 differs from its original form in [39] in the calculations for

the update rule. The combinatorial coefficients used in (4.20) and (4.21) can be calculated in

advance to avoid duplicate calculations.
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Theorem 14. Algorithm 3, 4, and 5 are a valid implementation of the polar SC decoder in for

channel with deletion defined in (4.5) and (4.6).

Proof. Proof follows similar to that of Lemma 2 in [39].

Algorithm 3 A high-level description of SC decoding with d random deletions
Input: received vector ỹn−d1

Output: a decoded codeword ĉ

1 for β = 0, 1, . . . , n− 1 do // Initialization

2 for d0 = 0, 1, . . . ,min{d, β} do

3 P0[〈0, β〉|〈d0, 0〉][0]← W (ỹβ+1−d0|0), P0[〈0, β〉|〈d0, 0〉][1]← W (ỹβ+1−d0|1)

4 for d0 = 0, 1, . . . ,min{d− 1, β} do

5 P0[〈0, β〉|〈d0, 1〉][0]← 1/2, P0[〈0, β〉|〈d0, 1〉][1]← 1/2

6 for ϕ = 0, 1, . . . , n− 1 do // Main loop

7 recursivelyCalcP(m,ϕ)

8 if uϕ+1 is frozen then

9 set Bm[〈ϕ, 0〉] to the frozen value of uϕ+1

10 else

11 if Pm[〈ϕ, 0〉|〈0, d〉][0] > Pm[〈ϕ, 0〉|〈0, d〉][1] then

12 set Bm[〈ϕ, 0〉]← 0

13 else

14 set Bm[〈ϕ, 0〉]← 1

15 if ϕ mod 2 = 1 then

16 recursivelyUpdateB(m,ϕ)

17 return the decoded codeword: ĉ = (B0[〈0, β〉])n−1
β=0
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Algorithm 4 An implementation of recursivelyCalcP(λ, ϕ) for channels with deletion
Input: layer λ and phase ϕ

1 if λ = 0 then return // Stopping condition

2 Set ψ ← bϕ/2c and Λ← 2λ // Recurse first, if needed

3 if ϕ mod 2 = 0 then recursivelyCalcP(λ− 1, ψ)

4 for β = 0, 1, . . . , 2m−λ − 1 do // calculation

5 for ∀d0, d1 that satisfy conditions in (4.24) do

6 if ϕ mod 2 = 0 then // apply Equation (4.20)

7 for u′ ∈ {0, 1} do

8 Pλ[〈ϕ, β〉|〈d0, d1〉][u′]← 1
2

∑d1

t=0

∑
u′′

(
Λ/2
t

)(
Λ/2
d1−t

)(
Λ
d1

)−1 ·

Pλ−1[〈ψ, 2β〉|〈d0, t〉][u′ ⊕ u′′] · Pλ−1[〈ψ, 2β + 1〉|〈d0 + t, d1 − t〉][u′′]

9 else // apply Equation (4.21)

10 set u′ ← Bλ[ϕ− 1, β] for u′′ ∈ {0, 1} do

11 Pλ[〈ϕ, β〉|〈d0, d1〉][u′′]← 1
2

∑d1

t=0

(
Λ/2
t

)(
Λ/2
d1−t

)(
Λ
d1

)−1 ·

Pλ−1[〈ψ, 2β〉|〈d0, t〉][u′ ⊕ u′′] · Pλ−1[〈ψ, 2β + 1〉|〈d0 + t, d1 − t〉][u′′]

Algorithm 5 An implementation of recursivelyUpdateB(λ, ϕ) as appears in [39]
Require: ϕ is odd

1 set ψ ← bϕ/2c

2 for β = 0, 1, . . . , 2m−λ − 1 do

3 Bλ−1[〈ψ, 2β〉]← Bλ[〈ϕ− 1, β〉]⊕Bλ[〈ϕ, β〉]

4 Bλ−1[〈ψ, 2β + 1〉]← Bλ[〈ϕ, β〉]

5 if ψ mod 2 = 1 then

6 recursivelyUpdateB(λ− 1, ψ)

125



4.3 Channel Polarization Theorems for Deletion Channels

In this section we discuss the polarization theorems for noisy channels with deletion.

We begin by outlining the proof for weak polarization theorem when d = o(n). It is followed

by the strong polarization theorem for fixed values of d. Many parts of the proofs, in particular

those that are very similar to the existing theorems in literature, are omitted to save in space.

We provide detailed references for reader who prefer to track them down.

Theorem 15. [Weak Polarization] Define the noisy d-deletion channel as depicted in Fig-

ure 4.1-b. Assume that d = o(n). Also assume that a rate-1 polar encoder is in place, which

related Ui’s and Xi’s according to (4.4). Here, U ′i are assumed to be i.i.d. random variables

with uniform distribution over {0, 1}. Also let X, Y denote the input and output of a single

copy of the middle noisy channel W , where X is uniformly distributed over {0, 1}. Then for

any 0 < ε < 1, we have

lim
n→∞

1

n
|i : H(Ui|U i−1

1 Ỹ n−d
1 ) > 1− ε| > H(X|Y ), (4.28)

lim
n→∞

1

n
|i : H(Ui|U i−1

1 Ỹ n−d
1 ) < ε| = 1−H(X|Y ). (4.29)

Proof. Note that (4.28) immediately follows from the channel polarization theorems for B-

DMCs since for all i

H(Ui|U i−1
1 Ỹ n−d

1 ) > H(Ui|U i−1
1 Y n

1 ). (4.30)

The second claim also follows from the mutual information chain rule and the following

lemma that shows the total capacity preserving property of the channel when d = o(n) and n

is sufficiently large. While the proof is removed due to lack of space, we point out that this is

practically a special case of [108, Theorem 5.1].
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Lemma 4.1. Let the noisy d-deletion channel and its related parameters to be defined similar

to Theorem 15. The symmetric information rate is then lower bounded by

I(Un
1 ; Ỹ n−d

1 )

n
> 1− h2

(n− d
n

)
− n− d

n
H(X|Y ). (4.31)

Next, we proceed by stating the strong polarization theorem, and then outlining its

proof in three main steps.

Theorem 16.[Strong Polarization] Assume d is a fixed number. LetZm denote a random vari-

able that takes values from Z
(
W

(i)
n,Ud(Ỹ, U

i−1
1 |Ui)

)
for i = 1, · · · , n with equal probabilities.

Note that m = log n. Also let X, Y denote the input and output of a single copy of the middle

noisy channel W , where X is uniformly distributed over {0, 1}. For any β < 1/2, we have

lim
n→∞

P (Zm 6 2−2βm) = 1−H(X|Y ). (4.32)

Proof. At first, we define auxiliary channels W ∗(i)
n which differ with our previously defined

bit-channels only in their deletion distribution pattern:

Fi,d , argmaxDd Z
(
W

(i)
n,Dd(Ỹ

n−d
1 , U i−1

1 |Ui)
)
,

W ∗(i)
n (Ỹ n−d

1 , U i−1
1 |Ui) , W

(i)
n,Fi,d(Ỹ

n−d
1 , U i−1

1 |Ui). (4.33)

Also define Z∗m to be random variable that takes values from Z
(
W
∗(i)
n

)
for i = 1, · · · , n

uniformly. It satisfies to prove

lim
n→∞

P (Z∗m 6 2−2βm) = 1−H(X|Y ). (4.34)

To do so, we apply the following lemma which is a special case of [109, Lemma 4.2]. The

proof is long but exactly the same as appears in [109], and hence removed to avoid duplication.
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Lemma 4.2. LetB1, B2, · · · be an i.i.d. process whereBi is uniformly distributed over {1, 2}.

Also let Z∗0 , Z
∗
1 , · · · be a [0, 1]-valued random process such that

∀m > m0 : Z∗m 6





2Z∗m−1, if Bm = 1

Z∗2m−1, if Bm = 2
, (4.35)

where m0 is a fixed non-negative integer. Suppose also Z∗m converges almost surely to a

{0, 1}-valued random variable Z∗∞ with P (Z∗∞ = 0) = α. Then, for any β < 1/2, we have

lim
m→∞

P (Z∗m 6 2−2βm) = α. (4.36)

Now we recall that

Z(W (i)) 6
√

1− (1−H(W (i)))2, (4.37)

where H(W (i)) is equal to the entropy of the input of W (i) given its output when we assume

uniform distribution on the inputs. Therefore, H(W (i)) ∼ 0 is equivalent to Z(W (i)) ∼ 0.

Combining this fact with (4.28), and (4.29) results in P (Z∞ = 0) = 1−H(X|Y ), where Z∞

is the limit of the random process Zm. We state, without proof, that the same argument is also

applicable to Z∗∞, which would satisfy the second condition of Lemma 4.2.

Lastly, we have to establish the Bhattacharyya inequalities through recursive structure

of the polar graph as required in (4.35). Let us for simplicity look at first instance of this

recursion that is depicted in Figure 4.4. Let η = n
2

and define a new auxiliary channel W∆(1)
n

that is formed by erasing the d middle output symbols of Ỹ n−d
1 from W

∗(1)
n , i.e.

W∆(1)
n (ỹη−d1 , ỹn−dη+1 |u1) ,

∑

ỹηη−d+1∈Yd
W ∗(1)
n (ỹn−d1 |u1). (4.38)

It is clear that W∆(1)
n is statistically degraded with respect to the W ∗(i)

n . Hence,

Z(W ∗(1)
n ) 6 Z(W∆(1)

n ). (4.39)
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Note that in Figure 4.4 we always map ỹη−d1 to the top half of ŷη1 , while ỹn−dη+1 are always mapped

to the bottom half of ŷnη+1. Therefore, ỹη−d1 only belongs to the output of the intermediate bit-

channel observed from V1; and, ỹn−dη+1 only appears in the output of the other bit-channel that

is observed from V2. The Bhattacharyya parameter of W∆(1)
n can then be formulated as

Z
(
W∆(1)
n (ỹη−d1 , ỹn−dη+1 |u1)

)
=

∑

ỹη−d1 ,ỹn−dη+1

√
W

∆(1)
n (ỹη−d1 , ỹn−dη+1 |u1 = 0)×

√
W

∆(1)
n (ỹη−d1 , ỹn−dη+1 |u1 = 1), (4.40)

which is equal to

1

2

∑

ỹη−d1 ,ỹn−dη+1

((
W

(1)
η,D1

(ỹη−d1 |v1 = 0)W
(2)
η,D2

(ỹn−dη |v2 = 0)

+W
(1)
η,D1

(ỹη−d1 |v1 = 1)W
(2)
η,D2

(ỹn−dη |v2 = 1)
)

×
(
W

(1)
η,D1

(ỹη−d1 |v1 = 0)W
(2)
η,D2

(ỹn−dη |v2 = 1)

+W
(1)
η,D1

(ỹη−d1 |v1 = 1)W
(2)
η,D2

(ỹn−dη |v2 = 0)
))1/2

, (4.41)

whereD1 andD2 are the resulting distributions of length-η from erasing the middle d symbols

in ỹn−d1 . Note that these distributions are not necessary uniform even if the initial length-n

distribution was uniform, which is the main reason behind definition of the worst distribution

in (4.33). We replace D1,D2 with the worst distribution as well to arrive at

Z
(
W∆(1)
n (ỹη−d1 , ỹn−dη+1 |u1)

)

6 1

2

∑

ỹη−d1 ,ỹn−dη+1

((
W ∗(1)
η (ỹη−d1 |v1 = 0)W ∗(2)

η (ỹn−dη |v2 = 0)

+W ∗(1)
η (ỹη−d1 |v1 = 1)W ∗(2)

η (ỹn−dη |v2 = 1)
)

×
(
W ∗(1)
η (ỹη−d1 |v1 = 0)W ∗(2)

η (ỹn−dη |v2 = 1)

+W ∗(1)
η (ỹη−d1 |v1 = 1)W ∗(2)

η (ỹn−dη |v2 = 0)
))1/2

. (4.42)
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Next, we apply then Jensen’s inequality and proceed to

Z
(
W∆(1)
n (ỹη−d1 , ỹn−dη+1 |u1)

)

6
∑

ỹη−d1 ,ỹn−dη+1

√
W
∗(1)
η (ỹη−d1 |v1 = 0)W

∗(1)
η (ỹη−d1 |v1 = 1)

+

√
W
∗(2)
η (ỹn−dη |v2 = 0)W

∗(2)
η (ỹn−dη |v2 = 1)

= Z
(
W ∗(1)
η (ỹη−d1 |v1)

)
+ Z

(
W ∗(2)
η (ỹn−dη |v2)

)
= 2Z

∗(1)
m−1. (4.43)

The proof of the other inequality in (4.35) that corresponds to Bm = 2 also follows the same

steps through expanding the recursive formulation of second bit-channel. Hence, it is removed

to avoid duplication.

We finish this section by pointing out that the strong polarization proof can be extended

to d = o(n) as well. However, it requires further modifications in theorems and lemmas that

we simply recalled from existing literature.

Chapter 4, in part, contains materials from

- K. Tian, A. Fazeli, and A. Vardy, “Polar coding for channels with deletion," submitted

to IEEE Transactions on Information Theory.

The dissertation author was the primary investigator and author of this paper.
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