Lawrence Berkeley National Laboratory

Recent Work

Title

Properties of ferromagnetic gal-xmnxp thin films synthesized by ion implantation and pulsed-laser melting

Permalink

https://escholarship.org/uc/item/9kk7g647

Authors

Scarpulla, M. Farshchi, R. Cardozo, B. et al.

Publication Date

2005-06-24

Properties of ferromagnetic $Ga_{1-x}Mn_xP$ thin films synthesized by ion implantation and pulsed-laser melting

 $\underline{M. Scarpulla}^{1,2}$; R. Farshchi^{1,2}; B. Cardozo^{1,2}; W. Hlaing Oo⁴; K. Yu²; H. Ohldag³; E. Arenholz³; M. McCluskey⁴; O. Dubon^{1,2}

- 1. Materials Science & Engineering, University of California at Berkeley, Berkeley, CA, USA.
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA. USA.
- 3. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. USA.
- 4. Physics, Washington State University, Pullman, WA, USA.

The study of other III-Mn-V ferromagnetic semiconductors in addition to $Ga_{1-x}Mn_xAs$ is crucial to elucidating the nature and details of ferromagnetism in these systems [1]. We have synthesized ferromagnetic $Ga_{1-x}Mn_xP$ films with nominal $x \le 0.06$ and T_C up to 65 K using ion implantation and pulsed-laser melting (II-PLM). We have previously produced $Ga_{1-x}Mn_xAs$ films having T_C above 130 K and displaying behavior in line with well-annealed $Ga_{1-x}Mn_xAs$ films grown by molecular beam epitaxy [2-4].

These $Ga_{1-x}Mn_xP$ samples are insulating for $x \le 0.06$ and ρ_{xx} shows a change in activation energy near T_C . The anomalous Hall effect is similar to but larger than that from ferromagnetic $Ga_{1-x}Mn_xAs$ and ρ_{xx} displays large negative magnetoresistance (up to -44% at 7 T). T_C and other properties scale both with Mn content and with carrier concentration. Transmission electron microscopy, X-ray diffraction, and ion-channeling demonstrate that these films are single-crystalline and epitaxial (unlike [5]) and analysis of the ion-channeling results demonstrates that no interstitial Mn is present. SQUID magnetometry reveals in-plane magnetization and anisotropy characteristics similar to $Ga_{1-x}Mn_xAs$ films. Mn $L_{2,3}$ X-ray absorption reveals a peak structure identical to that from properly annealed and etched $Ga_{1-x}Mn_xAs$ [6,7]. Magnetic circular dichroism at the Mn L_3 edge follows the sample hysteresis loop and reaches $\sim 30\%$ at 5 kOe.

These measurements establish the presence of a carrier-mediated ferromagnetic phase in $Ga_{1-x}Mn_xP$ similar to that observed in $Ga_{1-x}Mn_xAs$. Fascinating differences arise because of the deeper (400 meV) Mn acceptor level in GaP; far-infrared photoconductivity and resistivity reveal an excitation gap of ~25 meV and infrared absorption shows a peak near 400 meV. Based on these observations and the behavior of this gap with Te compensation and Mn content, we attribute it to a separation between the valence and Mn-derived impurity bands.

The implications of our work on the understanding of carrier-mediated ferromagnetic exchange in III-Mn-V diluted magnetic semiconductors will be discussed.

- [1] A.H. MacDonald et al., Nature Mater. 4 195 (2005).
- [2] M.A. Scarpulla et al., Appl. Phys. Lett. 82 1251 (2003).
- [3] M.A. Scarpulla et al., Physica B 340-342 908 (2003).
- [4] M.A. Scarpulla et al., Proceedings of the 27th International Conference on the Physics of Semiconductors, eds. J. Menendez and C.G. Van de Walle (Springer, New York 2005), p. 1367. Also http://arxiv.org/cond-mat/0408021.
- [5] N. Theodoropoulou et al., Phys. Rev. Lett. 89 107203 (2002).
- [6] K.W. Edmonds et al., Appl. Phys. Lett. 84 4065 (2004).
- [7] K.W. Edmonds et al., Phys. Rev. B 71 064418 (2005).