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Abstract

Spatial transcriptomics has transformed genomic research by measuring spatially resolved gene 

expressions, allowing us to investigate how cells adapt to their microenvironment via modulating 

their expressed genes. This essential process usually starts from cell-cell communication (CCC) 

via ligand-receptor (LR) interaction, leading to regulatory changes within the receiver cell. 

However, few methods were developed to connect them to provide biological insights into 

intercellular regulation. To fill this gap, we propose iMiracle, an iterative multi-view graph neural 

network that models each cell’s intercellular regulation with three key features. Firstly, iMiracle 

integrates inter- and intra-cellular networks to jointly estimate cell-type- and micro-environment-
driven gene expressions. Optionally, it allows prior knowledge of intra-cellular networks as pre-

structured masks to maintain biological relevance. Secondly, iMiracle employs iterative learning 

to overcome the sparsity of spatial transcriptomic data and gradually fill in the missing edges in 

the CCC network. Thirdly, iMiracle infers a cell-specific ligand-gene regulatory score based on 

the contributions of different LR pairs to interpret inter-cellular regulation. We applied iMiracle 

to nine simulated and eight real datasets from three sequencing platforms and demonstrated 

that iMiracle consistently outperformed ten methods in gene expression imputation and four 

methods in regulatory score inference. Lastly, we developed iMiracle as an open-source software 

and anticipate that it can be a powerful tool in decoding the complexities of inter-cellular 

transcriptional regulation.

This work is licensed under a Creative Commons Attribution International 4.0 License.
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1 Introduction

In eukaryotic organisms, precise spatial and temporal regulation of transcription is crucial 

for a range of fundamental biological processes, from development to adaptation to disease 

progression [6, 15, 16, 39–41, 57]. Thanks to concerted community efforts and technological 

advancements, there has been a remarkable leap over the past decades in our understanding 

of transcription regulation within individual cells [4, 7, 17, 23, 56, 59]. Thus, it has 

opened avenues for therapeutic strategies targeting specific transcriptional pathways and 

mechanisms [28]. While the current use of transcriptional technologies is promising, cells 

live in an organized combination of extracellular matrix, cells, and interstitial fluid that 

jointly influence gene expression [11, 46]. Aberrations in such intercellular communications 

within this spatial context may disrupt gene expression profiles, ultimately leading to 

cellular changes and pathogenic outcomes [24]. Despite its importance, the exploration 

of inter-cellular communication and its downstream impacts on transcriptional regulation 

remains underdeveloped. This gap limits our ability to fully understand multi-cellular 

functions and their implications for health and disease, highlighting an urgent need for 

new computational efforts.

To bridge this gap, we propose a novel, iterative multiview graph neural network (GNN) 

model named iMiracle to investigate intercellular transcriptional regulation for each cell. 

This model is designed with three distinct features to tackle the current challenges. First, 

iMiracle integrates inter- and intra-cellular networks for accurate expression imputation 

using ligand-receptor interactions with neighboring cells. Optionally, it allows users to 

include prior knowledge of intra-cellular networks, such as protein-protein interaction 

network (PPI) and gene regulatory network (GRN), as pre-structured masks to boost 

biological relevance [9]. Second, iMiracle employs iterative learning to gradually fill in the 

missing edges in the cell-cell communication (CCC) network, circumventing the limitations 

posed by the sparsity of spatial transcriptomic data. Lastly, iMiracle infers a cell-specific 

ligand-gene regulatory score based on the contributions of different LR pairs to interpret 

inter-cellular regulation.

We applied iMiracle to nine simulated and eight real datasets across three sequencing 

technologies for comprehensive performance benchmarking. We found that iMiracle 

consistently outperforms ten methods in the gene expression imputation task and four 

methods in the regulatory score inference task. Lastly, we developed iMiracle into an open-

source software package 1 to facilitate its use by the scientific community for investigating 

inter-cellular transcriptional regulation at the individual cellular level. With the rapid 

expansion of spatial transcriptomics data, we anticipate that iMiracle will be a powerful 

1 https://github.com/aicb-ZhangLabs/iMiracle 
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tool in decoding the nuances of CCC in complex tissues, thus enriching our understanding of 

inter-cellular-level ligand-gene regulatory impacts.

2 Related Work

single-cell RNA sequencing (scRNA-seq) technology allows simultaneous gene expression 

profiling over thousands of cells, providing new opportunities to decipher inter-cellular 

transcriptional regulation [10, 21, 27, 42, 50]. Numerous methods have emerged to construct 

CCC networks based on ligand-receptor (LR) expression profiles [25]. While useful at their 

onset, they only focus on inter-cellular communication probabilities and do not delve into 

the transcriptional impacts on receiver cells. Later on, several methods were proposed to fill 

this gap by combining inter- and intra-cellular communications to link ligand genes from 

the sender cells directly to the target genes of the receiver cells. For example, NicheNet 

[3] combines inter-cellular CCC networks with prior knowledge of intra-cellular signaling 

and GRN to predict ligand-target gene regulatory scores. Cytotalk [60], on the other hand, 

combines cell-type-specific gene-co-expression networks with CCC networks to infer the 

regulatory potential of ligands on target genes. However, a challenge persists: scRNA-seq 

experiments require cell dissociation from their native tissue context, posing difficulties for 

accurate cell-specific inter-cellular regulatory relationship inference.

Current advancements in spatial transcriptomics have enabled spatially resolved gene 

expression profiling, enhancing our ability to explore transcription regulation within their 

native microenvironments [22, 32, 36]. Therefore, several computational methods were 

developed to utilize this new type of data. For instance, HoloNet [29] employed a multiview 

GNN to reconstruct gene expression and utilized an attention mechanism to calculate cell-

type level ligand-gene regulatory score. However, the inherently sparse nature of spatial 

transcriptomics presents challenges in fully delineating the CCC network, resulting in an 

incomplete understanding of inter-cellular gene regulation [1]. Furthermore, it still lacks the 

granularity needed to explore ligand regulatory impacts at the level of individual cells.

3 Method

3.1 Method overview

As shown in Fig. 1, our iMiracle model contains two key modules: 1) an iterative GNN for 

accurate gene expression imputation of individual cells using a multi-view CCC network 

among LR pairs; 2) cell-specific regulatory score inference from ligand genes (in sender 

cells) to target genes (in receiver cells). Formally, given the observed sparse cell-by-gene 

matrix Xobs ∈ ℝn × m (n cells and m genes), the spatial coordinates C ∈ ℝn × 2, and the cell 

type information T ∈ ℝn × t (t is the number of cell types), iMiracle imputes the dense gene 

expression matrix as X̂ ∈ ℝn × m and provides a ranked list LRγ c, g  to infer the regulatory 

score for cell c and gene g.

In its imputation module, iMiracle uniquely breaks down gene expression X̂ into two 

distinct components: firstly, a cell-type-specific baseline expression X̂b ∈ ℝn × m, which is 

determined by the cell type, and secondly, a cell-specific expression X̂s ∈ ℝn × m, which is 
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influenced by the micro-environment through CCC. As shown in Fig. 1, iMiracle integrates 

a multi-view inter-cellular CCC network with either a Multi-Layer Perceptron (MLP) or an 

optional pre-defined GRN/PPI to predict X̂, X̂b, and X̂s. Then, iMiracle iteratively updates 

the LR pairs based on the imputed gene expressions, repeating the estimation process until 

convergence. In its second module, iMiracle infers ligand-target gene regulatory score based 

on the contribution of each LR pair to a gene of interest in a cell-specific manner. We will 

introduce the model details in the following sections.

3.2 Module 1: Gene expression imputation via an iterative GNN

iMiracle imputes the gene expression matrix X̂ without reference scRNA-seq data via three 

steps: constructing a multi-view CCC network, integrating inter- and intra-cellular networks, 

and iterative learning, as detailed below.

Multi-view CCC network construction.—As shown in Fig. 1, for each LR pair, we 

calculate the communication probability for each cell by synthesizing gene expression 

information and spatial distance, represented by GC
lr. Then we combine all LR pairs’ CCC 

information via a multi-view network GC = ∪lr GC
lr, where ∪ is the view aggregation. The 

CCC construction requires three steps:

Step 1: identify expressed LR pairs. Starting with LR pairs from CellChatDB 

[25] (3,267 pairs for humans and 3,387 for mice), we extract the expression 

level for ligand l and receptor r from Xobs. We define Sl and Sr as the sets of 

expression levels for l and r, respectively, and compute their geometric means as 

El = gmean Sl  and Er = gmean Sr , each in ℝn × 1. Then proportions of expressed cells 

are: ξl = 1
n ∑i = 1

n 1 El i > 0  and ξr = 1
n ∑i = 1

n 1 Er i > 0 . One LR pair is considered 

expressed if both ξl and ξr exceed the predefined threshold θ (set at 15% by default), 

forming the set of biologically active LR pairs:

LRθ = lr ∣ ξl > θ ∧ ξr > θ .

(1)

Step 2: calculate the distance for each cell. The Euclidean distance between cell c1
and cell c2 is calculated using their spatial coordinates (C c1, :  and C c2, : ). This 

results in the distance matrix D ∈ ℝn × n, capturing the spatial proximity of cells.

Step 3: compute the CCC network with gene expression. For each lr ∈ LRθ, the CCC 

network GC
lr is computed:

GC
lr = El ⊗ Er ⊙ D−1 .

(2)

The outer product ⊗ yields a matrix where each entry signifies the combined 

expression of l and r for each cell pair. Elementwise multiplication ⊙ merges this 

spatial data into the interaction strength assessment. Combining GC
lr for all LR pairs 
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results in the multi-view CCC network GC, enabling iMiracle to effectively model 

diverse CCC patterns.

Inter- and intra-cellular networks integration.—iMiracle integrates inter- and intra-

cellular networks to infer gene expressions in individual cells. For each lr pair, the GNN 

outputs node embeddings to capture CCC’s impact from lr as

Hlr = GNN T, Gc
lr ,

(3)

where Hlr ∈ ℝn × d is the d-dimensional node embedding inferred from the lr-specific GNN. 

To model the intra-cellular regulation, iMiracle transforms Hlr into a gene expression matrix 

for each lr pair, followed by a shared decoder:

X̂s
lr = Decoder Hlr .

(4)

Here X̂s
lr ∈ ℝn × m reflects the gene expression regulated by the specific lr interactions. The 

decoder, typically implemented as an MLP, is designed to map each cell’s embedding to its 

gene expression vector. Optionally, iMiracle can integrate the pre-structured GRN/PPI via:

X̂s
lr′ = X̂s

lr ⊙ Mlr,

(5)

where Mlr ∈ ℝm is a binary mask derived from the GRN/PPI, with ones representing possible 

regulation and zeros otherwise. In addition, iMiracle uses an MLP to capture baseline gene 

expression profiles that are solely influenced by cell type:

X̂b = MLP T .

(6)

Then iMiracle synthesizes the cell-type-specific and cell-specific expression as the final 

gene expression X̂:

X̂ = X̂b + ∑
lr ∈ LRθ

X̂s
lr′ .

(7)

Iterative learning.—Spatial transcriptomic data usually has excessive missing values in 

Xobs, leading to incomplete CCC estimation and thus limiting the imputation performance. 

To address this issue, iMiracle employs iterative learning to gradually refine the multi-view 
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graph GC based on the imputed expression matrix X̂. Specifically, after the i-th training 

iteration, LRθ
i + 1  is updated as:

LRθ
i + 1 = lr ∣ ξl

i + 1 > θ ∧ ξr
i + 1 > θ .

(8)

Here ξl
i + 1  and ξr

i + 1  represent the updated proportions of expressed cells, which are computed 

using the updated X̂ i + 1
. We next update the CCC network for each LR pair that exists in 

both LRθ
i  and LRθ

i + 1 . Combining previous CCC network Gc
lr i , Gc

lr i + 1  is updated as:

Gc
lr i + 1 = αGc

lr i + 1 − α Gc
lr i + 1 .

(9)

A blending coefficient α harmonizes the contributions from both old and new estimates to 

ensure a smooth update. For LR pairs in LRθ
i + 1  but not in the LRθ

i , they directly form new 

CCC networks: Gc
lr i + 1

, which is derived from X̂ i + 1
. Merging existing and newly added 

CCC networks, we have:

GC
i + 1 = ∪lr ∈ LRθ

i + 1 Gc
lr i + 1 .

(10)

Model training and hyperparameter tuning.—During the training phase, iMiracle 

aims to minimize the Mean Squared Error (MSE) between X̂ and Xobs. The loss function is 

particularly focused on non-zero entries of Xobs:

ℒ =
∑i = 1

n ∑j = 1
m 1 Xobs, i, j ≠ 0 X̂ i, j − Xobs, i, j

2

∑i = 1
n ∑j = 1

m 1 Xobs, i, j ≠ 0
,

(11)

where 1 ⋅  is an indicator that equals 1 if Xobs, i, j ≠ 0 and 0 otherwise. We will stop the 

iteration if no new views can be added, as it suggests a saturation in constructing a full CCC.

We developed iMiracle using PyTorch version 1.12.1, operational on an Nvidia GeForce 

RTX A6000 GPU. Our computational setup is powered by an AMD EPYC 7302 16-Core 

Processor (1.0 TiB of memory) and operates on the Ubuntu 20.04.1 LTS system. In the 

gene imputation process, if there’s no decrease for 10 consecutive epochs, we terminate 

the training and proceed to evaluate whether there’s a need to update views. For the ligand-

target gene regulatory score inference, training is halted if the loss fails to reduce by more 

than 0.001 over 10 successive epochs, after which we assess the necessity of updating views. 

For both tasks, we set the hidden dimension d to 32, the blending coefficient α to 0.2, the 

number of neighbors k to 5 for graph construction, a default two GNN layers, the maximum 
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number of epochs to 1000, and use a learning rate of 0.01 with the Adam optimizer (details 

in the parameter analysis).

3.3 Module 2: Cell-specific regulatory score inference

After training, iMiracle aims to identify ligands (in sender cells) that significantly impact 

gene expression (in receiver cells). For a specific cell c and gene g, the lr-related regulatory 

score ψ lr, c, g  is defined as:

ψ lr, c, g = X̂s
lr′ c, g .

(12)

Here X̂s
lr′ c, g  represents the lr-regulated strength for cell c and gene g. Based on ψ lr, c, g , 

iMiracle evaluates lr pairs within LRθ and gives a ranked list:

LRγ c, g = sort lr ∈ LRθ, ψ lr, c, g descending order .

(13)

LRγ c, g , ordered by regulatory score, enables iMiracle to pinpoint key LR pairs affecting 

gene regulation in individual cells, offering insights into inter-cellular regulation dynamics.

3.4 Simulation details

Following [29], we created simulated data, which includes 1000 cells in a 100-unit square 

space, for benchmarking. We assigned cell types based on their locations (using a parameter 

kb that controls the mixing of cell types) and modeled gene expression for 50 genes (using 

a negative binomial distribution with high: nℎ, pℎ  and low: nl, pl ). To simulate CCC, 50 LR 

pairs were selected, with specific high-expression areas (a radius of r units and nc, pc ) 

designated for intensified interactions. Gene expressions were updated to reflect these 

selected LR interactions. Next, we randomly masked the simulated data, maintaining a 

density of 20% to reflect the spatial data’s sparsity. To ensure fairness, we designed nine 

different settings (Table 1) and reported performance across varied settings.

3.5 Data preprocessing and experimental setup

Preprocessing details.—We include human dorsolateral prefrontal cortex (DLPFC) 

datasets from 10X Visium platform [35], mouse olfactory bulb dataset from Steroseq [5], 

and mouse olfactory bulb dataset from SlideseqV2 [48]. We follow pre-processing steps as 

suggested in the original paper (a summary can be seen in Table 2). Detailed methodologies 

for preprocessing and obtaining PPI and GRN are shown in the appendix.

Benchmark baselines and evaluation metrics.—For the gene imputation task, data 

is down-sampled with 10% of non-zero entries allocated for testing and another 10% for 

validation [53]. To ensure fairness, this procedure is repeated ten times, each with different 

mask configurations. Imputed gene expressions are compared to ground truth using L1 

Distance, Root-Mean-Square Error (RMSE), and Cosine Similarity. We evaluate ten leading 
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methods, including scRNA-seq data analysis tools like scVI [34], ALRA [31], eSNN [49], 

MAGIC [51], and scGNN [53], which overlook spatial information. Additionally, gimVI 

[33] and Tangram [2], capable of integrating reference scRNA-seq, are tested in a reference-

free mode for fairness. Spatial transcriptomics-specific methods like seSNN [43], STLearn 

[37], and STAGATE [8] are included.

For ligand-gene regulatory score inference using simulated data, we employed four 

evaluation metrics: Precision, Normalized Discounted Cumulative Gain (NDCG), Spearman 

Correlation, and Kendall Rank Correlation. Our comparison includes NicheNet [3], SpaTalk 

[44], and HoloNet [29], assessing their ability to rank LR pairs based on their influence 

on specific genes within cells, with a random guess approach as a naive baseline. We use 

default settings for all baseline methods.

4 Results

4.1 iMiracle delineates the full landscape of CCC network via iterative learning

To test the efficacy of iterative learning, we evaluated its role in the gradual delineation of 

the full landscape of CCC on eight datasets. Specifically, we compared the number of views 

in the constructed CCC, in other words, the number of included LR pairs. We found that 

iMiracle’s iterative learning process noticeably increased the LR pairs included in GC. For 

instance, on the 10x Visium datasets, iMiracle identified an increase of 27 to 56 LR pairs 

across six samples in the final iteration compared to the first round (Fig. 2A). This trend 

was consistent across all sequencing platforms, with an addition of 16 LR pairs in Stereoseq 

(Fig. 2B) and 26 in SlideseqV2 (Fig. 2C). The increased LR pair information enriched 

the spatial information in the GNN, potentially facilitating the downstream expression 

imputation and regulatory score inference tasks.

4.2 iMiracle consistently boosts imputation accuracy on diverse datasets

Next, we evaluated iMiracle’s imputation performance against ten recent methods on diverse 

real datasets across three popular platforms (10x Visium, Stereoseq, and SlideseqV2) and 

two species (human and mouse). Due to the lack of gold standard benchmark datasets, we 

down-sampled the observed data and used the masked values as the ground truth to calculate 

three metrics, including L1 Distance, RMSE, and Cosine Similarity.

As shown in Table 3, iMiracle notably outperformed the best spatially-informed methods 

and demonstrated even larger improvements when compared to the top scRNA-seq-

based baselines. On the SlideseqV2 dataset, for example, iMiracle achieved a 47% 

RMSE improvement over STAGATE, the foremost spatial method, and a 52% RMSE 

improvement over scGNN, the top non-spatial method. Specifically, among all methods 

utilizing cell coordinates, GNN-based approaches, such as STAGATE and iMiracle, 

demonstrated superior performance, supported by an average RMSE improvement of 66% 

over other spatial techniques. In addition, iMiracle exhibited higher imputation accuracy 

than STAGATE (RMSE 0.407 vs 0.765), attributable to its iterative learning and the multi-

view network that combines both gene expression and distance information, as opposed 

to STAGATE’s single-view GNN architecture derived mainly from the spatial distance. 
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We also tested other datasets and found that iMiracle consistently reported the best gene 

imputation accuracy in all three metrics, indicating the robustness of our method across 

diverse sequencing platforms.

4.3 iMiracle highlights accurate inter-cellular ligand-gene regulatory insights

We benchmarked iMiracle with four other methods in terms of their ability to accurately 

capture ligand-target gene regulatory relationships across various simulated datasets (Fig. 

3A, details see methods). Using known ligand-gene score as ground truth, we found that 

iMiracle consistently outperformed all the other methods (Fig. 3B). For instance, iMiracle 

demonstrated a noticeable improvement in NDCG (0.79 vs 0.24, Fig. 3B) when compared 

to NichNet, a gain largely due to its effective integration of spatial information. Among 

the spatial methods, iMiracle stood out as the best, surpassing SpaTalk and HoloNet 

(NDCG 0.79 vs 0.56/0.48, Fig. 3B). This trend was not only evident in NDCG but also 

consistent across other metrics such as precision, Spearman Correlations, and Kendall 

Rank Correlations. Such consistent performance highlights the benefit of using iterative 

learning to comprehensively map the CCC network, as well as its integration of both inter- 

and intra-cellular networks. This approach provides a more detailed, cell-specific view of 

cellular communication. Furthermore, iMiracle’s improved performance was affirmed under 

various parameter settings (details in the appendix), underscoring the model’s adaptability 

and effectiveness in diverse research contexts.

4.4 iMiracle reveals substantial regulatory heterogeneity across cells of the same type

One unique advantage of iMiracle is its ability to split gene expression into separate 

components driven by cell-type and the microenvironment, offering vital insights into how 

ligands differentially influence target genes within a specific spatial context. Therefore, our 

approach can quantitatively assess cell-specific spatial impacts of inter-cellular regulation 

and reveal regulatory variations among cells of the same type. We demonstrated this via a 

case study by estimating each LR’s regulatory score to GJA1, a canonical marker gene in 

Astrocytes with essential functions in gap junction formation and DLPFC functionality [38, 

47].

Specifically, we identified regions with high LR regulatory scores and gene expression of 

GJA1 and intersected them with different layers, resulting in three unique regions to begin 

with (Fig. 4A&E). The top three LR pairs with the highest average regulatory scores were 

selected: PTN-SDC4, APP-SORL1, and LRRC4B-PTPRD. It’s noteworthy that two out of 

three LR pairs (PTN-SDC4 and LRRC4B-PTPRD) were identified via iterative learning, 

highlighting the importance of relying on dense imputed data.

We first compared the observed expression patterns with the two predicted components from 

iMiracle: cell-type-driven and micro-environment-driven expressions (Fig. 4B-D). These 

patterns showed high consistency in our visualizations. When we analyzed the cell-specific 

regulatory scores, we noticed substantial heterogeneity and distinct patterns for different 

LR pairs. For instance, the PTN-SDC4 pair exhibited consistent scores across all regions, 

whereas the APP-SORL1 and LRRC4B-PTPRD pairs showed strong preferences in specific 

regions (Fig. 4F-H). This finding underscores the importance of including cell-specific 
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contexts in modeling processes, as relying solely on average cell-type-specific scores would 

obscure such significant regulatory diversity.

Finally, we compared both cross-region and within-region regulatory heterogeneity of the 

top 5 LR pairs. Only one LR pair PTN-SDC4 was consistent across all three regions, while 

the remaining ones were highly regional-specific (Fig. 4I). For instance, LRRC4B-PTPRD 
pair ranked among the top 5 LR pairs in 99.6% of cells in region 1, whereas it was 

present in only 4.2% and 45.1% of cells in regions 2 and 3, respectively. Next, we looked 

at the regulatory heterogeneity within each region. Specifically, we calculated the Jaccard 
similarity of the identified top 5 LR pairs among cells within each region, as shown in 

Fig. 4J-L. Similarly, distinct LR usage preferences were discovered among cells within 

all three selected regions, demonstrating the pressing need to account for each cell’s micro-

environment when characterizing inter-cellular transcription regulation.

4.5 Ablation study to evaluate the effectiveness of iMiracle’s modeling components

To assess each component of our model, we performed a variant analysis, considering 

four different versions: 1) “w/o GRN”, which excludes the integration of prior biological 

knowledge; 2) “w/o iterations”, a straightforward, non-iterative approach using sparse gene 

expressions; 3) “shared GNN”, where the same GNN parameters are applied to all ligand-

receptor (LR) pairs; and 4) “view decoder”, implementing a unique decoder for each LR 

pair. This analysis allowed us to isolate and understand the individual contribution of each 

component to the overall performance of the model.

Firstly, after removing prior knowledge of intra-cellular network, we observed a slight 

decrease in gene imputation accuracy (1–11%, Fig. 5A) and a more pronounced reduction 

in regulatory score inference (NDCG: 0.43 vs 0.84, Fig. 5B). This outcome underscores 

the critical role of integrating biological knowledge for generating biologically meaningful 

interpretations. Next, the non-iterative model variant exhibited a slightly reduced accuracy 

in the regulatory score inference (NDCG: 0.78 vs 0.84, Fig. 5B), indicating the advantages 

of adopting an iterative approach. Then we found that employing shared GNN parameters 

led to a significant decline in gene imputation performance (25–32%, Fig. 5A), highlighting 

the necessity for diverse message propagation strategies across different views in GC. Lastly, 

using view-specific decoders adversely affected regulatory performance (NDCG: 0.66 vs 

0.84, Fig. 5B), pre-sumably due to the increased complexity in training arising from a higher 

number of parameters.

We also tested iMiracle’s adaptability to different GNN architectures using GCN [26], 

GAT [52], GraphSAGE [20], and Graph-Transformer [45]. Results showed comparable 

performance across these architectures (Fig. 5C), demonstrating iMiracle’s flexibility and 

efficacy with various GNN models. We use GraphTransformer as our default setting.

4.6 Parameter analysis

To showcase the robustness of iMiracle in response to varying parameters, we employed 

the simulated data to assess its precision over a broad spectrum of blending coefficients α, 

hidden dimensions d, the number of neighbors k for graph construction, and the GNN layers 
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L [12–14, 54, 55, 58]. As depicted in Fig. 6A, an α value of zero indicates exclusive reliance 

on newly imputed gene expressions for determining the existing graph structure. Conversely, 

an α value of one signifies maintaining the original graph structure of existing views. Both 

extremes lead to a reduction in precision. An α value of 0.2 results in optimal performance, 

underscoring the importance of smoothly integrating updated gene expression profiles into 

the multi-view graph. Exploring a wide range of hidden dimensions d, from 2 to 2048, we 

observed that iMiracle demonstrates considerable robustness in regulatory score inference, 

except at extreme values (i.e., 2, 1024, or 2048) from Fig. 6B. We choose 32 as the default 

d. Also, we set the number of neighbors k = 5 for graph construction, and the GNN layers 

L = 2 for optimal balance between performance and complexity as shown in Fig. 6C-D.

5 Conclusion and Discussion

In our study, we introduce iMiracle, a novel computational tool tailored for spatial 

transcriptomic data, aiming to unravel the complexities of inter-cellular transcriptional 

regulation. Unlike conventional methods that offer only averaged ligand regulatory 

scores across diverse micro-environments, iMiracle uniquely identifies the effects of gene 

expression caused by neighboring cells using CCC, separating these from effects due to the 

inherent characteristics of the cell type itself. This distinction enables iMiracle to investigate 

regulatory dynamics with unparalleled precision for a deeper understanding of inter-cellular 

transcriptional regulation.

iMiracle distinguishes itself from existing approaches via three key features designed 

explicitly for spatial transcriptomic data. Firstly, it integrates spatial distance and LR 

expression profiles to construct a multi-view inter-cellular CCC network, offering more 

biologically relevant insights with greater depth of information than methods mainly based 

on spatial distance (e.g., STAGATE). This integration, especially when combined with 

prior knowledge of intra-cellular networks (such as GRNs and PPIs), allows for more 

accurate and interpretable gene expression imputation, a benefit confirmed through extensive 

benchmarking on various datasets (Table 3). Secondly, iMiracle utilizes iterative learning to 

progressively refine the CCC network, effectively addressing data sparsity and uncovering 

more impactful LR pairs, as shown in our analyses on several real datasets (Fig. 2). 

Finally, it excels in inferring cell-specific ligand-gene regulatory scores, a feature often 

over-looked in approaches that neglect micro-environment effects (Fig. 3). We demonstrated 

the evident benefit of this feature by reporting substantial regulatory heterogeneity in cells 

under different spatial contexts (Fig. 4). A minor concern regarding iMiracle is that it 

necessitates a cell-by-cell-type (or spot-by-cell-type-proportion) matrix as input to estimate 

baseline cell-type-specific gene expression. As a result, inaccuracies in cell type assignment 

or cell proportion calculation could affect the imputation performance. However, the impact 

of such inaccuracies is likely to be mitigated by ongoing and future advancements in spatial 

resolution and sequencing depth in technologies.

iMiracle has been developed as an open-source software freely available for researchers 

exploring inter-cellular gene expression regulation at the individual cellular level. Given 

the rapid advancements in spatial transcriptomics and the increasing availability of public 

data, iMiracle may serve as an essential tool in unraveling the complexities of cell-to-cell 
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communication networks in complex tissues, thereby enriching our understanding of inter-

cellular transcriptional regulation dynamics across various biological contexts.
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A: Data Preprocessing Details

For real-world data preprocessing, we first filtered the cells and genes for quality assurance. 

Only cells with at least 500 detected genes and genes expressed in at least 10% of cells were 

retained. Next, we normalized the total counts per cell to a target sum of 1e4 and applied a 

log transformation to the data.

The protein-protein interaction (PPI) was obtained from a previous study named InWeb 

published in 2016 [30]. Specifically, we used the InWeb_InBioMap PPI table for Homo 

Sapiens which contained a total of 18,814 genes (vertices) and 883,356 interactions (edges). 

For the cell type-specific GRN in the brain prefrontal cortex region, we used a data 

processing pipeline from a set of private single-cell multiome data that contain scRNA-

seq and scATAC-seq modalities. We first conducted a cellranger-arc call and basic QC 

to create the curated scRNA-seq matrix and the scATAC-seq fragment. Then, we used 

ArchR (v1.0.1) [19] to do cell type-specific peak calling and peak-to-gene interaction with 

functions addReproduciblePeakSet() and addPeak2GeneLinks(). In the peak calling step, 

we used Macs2 (version 2.2.7.1) [61] and did not limit the maximum number of peaks 

per cell type. In the peak-to-gene linkage creation step, we used the LSI created with 30 

dimensions and used a correlation cutoff of 0.45 and a resolution of 500,000bp upstream and 

downstream. Then, we retrieve the motif-to-peak correspondence (motif annotation) from 

JASPAR2020 [18]. Using the annotation and the created peak-to-gene linkage, we construct 

the motif-to-gene graph if any peak connects to a gene and a motif.

To establish the mask from ligand to target gene, we processed genes associated with 

specific cell types and LR pairs. For each LR pair, genes were identified and expanded 

using PPI data to include associated genes. Subsequently, we integrated this information 

with GRN data to identify regulatory genes corresponding to each LR pair for different cell 

types. This process resulted in a comprehensive mapping, effectively linking LR pairs to 

their regulatory target genes, and thereby capturing the complex interplay within cellular 

communication networks.
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Figure 7: 
Additional regulatory score inference results.

B: Complexity Analysis

We explored the complexity of iMiracle from two aspects: its time complexity, determined 

by various computational steps, and its parameter count, influenced by the distinct 

components.

B.1 Time Complexity Analysis of iMiracle

The time complexity of iMiracle is composed of four key steps: the basic gene expression 

decoupling, the multi-view graph construction, lr-specific GNNs, and the shared decoder. 

The basic MLP, processing cell type and gene expression data, incurs a complexity of 

O n × t × d + d × m . For the multi-view graph construction, each adjacency matrix Alr

computation entails a complexity of O n2 . With p unique LR pairs, the total complexity 

for this component is O p × n2 . The computational load for each GNN layer is O E × d , 

where E  denotes the number of edges in the sparse adjacency matrix. For all p
LR pairs, this accumulates to O p × E × d . The decoders, applied to the embeddings 

from each lr-specific GNN, involve matrix operations resulting in a complexity of 

O p × n × d × d + d × m . Considering t ≪ m and d ≪ m, the overall time complexity of 

iMiracle can be summarized as O p × n2 + p × d × E + n × m .
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B.2 The Number of Parameters in iMiracle

iMiracle’s parameter complexity is influenced by its basic MLP, lr-specific GNNs, and 

decoders. The basic MLP comprises parameters of O t × d + d × m . For each lr-specific 

GNN, the parameter count is O t × d + d × d . With p unique LR pairs, the total parameters 

across all GNNs amount to p × O t × d + d × d . Similarly, the shared decoder contributes an 

additional O d × d + d × m  parameters. Given that t ≪ m and d ≪ m, the overall parameter 

count of iMiracle is O d × p × t + d + m .

C: Additional Performance Analysis

We benchmarked iMiracle with four other methods in terms of their ability to accurately 

capture ligand-target gene regulatory relationships under other eight simulation settings. As 

shown in Fig. 7, iMiracle consistently achieves the best performance across different settings 

and evaluation metrics.
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CCS Concepts

• Applied computing → Bioinformatics; • Computing methodologies → Machine 

learning approaches.
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Figure 1: 

Overview of iMiracle. iMiracle initiates with a sparse cell-by-gene matrix Xobs ∈ ℝn × m (n
cells and m genes), spatial coordinates C ∈ ℝn × 2, and cell type information T ∈ ℝn × t (t
cell types). It constructs multi-view cell-cell communication networks GC to model various 

ligand-receptor interactions. Node embeddings for each cell are generated per view through 

a graph neural network. A multilayer perceptron then decodes gene expression X̂s influenced 

by these LR interactions, integrating knowledge from an established gene regulatory 

network. iMiracle isolates the baseline gene expression matrix X̂b solely determined by 

cell types. The final imputed gene expression matrix X̂ merges the baseline matrix with 

expressions from ligand-receptor interactions. Through iterative learning, X̂ is used to 

progressively refine the multi-view graph, enhancing both imputation precision and the 

inference of ligand-to-gene regulatory scores.
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Figure 2: 
iMiracle fully delineates the CCC network via iterative learning, uncovering up to 181% 

more LR interactions in 10x Visium, 67% in Stereoseq, and 153% in SlideseqV2.
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Figure 3: 
iMiracle consistently outperforms other methods in the regulatory score inference. (A) In 

this simulation, 1000 cells are spatially arranged in a 100-unit square. Cell types were 

determined by their locations, incorporating high-expression zones for various LR pairs, to 

realistically model gene expression and CCC dynamics. This setup is utilized for inferring 

cellular-level regulatory scores. (B) Benchmarking results demonstrate iMiracle’s superior 

accuracy in inferring ligand-gene regulatory scores, surpassing all four baselines across all 

four metrics.
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Figure 4: 
iMiracle reveals substantial regulatory heterogeneity across cells. (A) Detailed ground truth 

segmentation of the cortical layers and white matter (WM) within the DLPFC section of 

sample 151507. (B) Visualization of the observed expression pattern of GJA1. (C) Prediction 

of the baseline expression profile for GJA1. (D) Prediction of the LR-regulated expression 

for GJA1. (E) Identification of three key regions within sample 151507. (F-H) Top three LR 

interactions and their corresponding regulatory scores. LR pairs PTN-SDC4 and LRRC4B-
PTPRD were discovered through an iterative learning approach, indicated by their red 

colors. (I) Heatmap illustration of the percentage of cells featuring the top five LR pairs in 

each identified region. (J-L) Jaccard similarity of the top five LR pairs for cells within each 

region, revealing substantial regulatory heterogeneity across cells.
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Figure 5: 
Variant analysis. (A) RMSE w.r.t. different variants of iMiracle for gene imputation. (B) 

Four regulatory score inference metrics w.r.t. variants of iMiracle. (C) Four regulatory score 

inference metrics w.r.t. GNN architectures.
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Figure 6: 
Parameter analysis. (A) Precision w.r.t. different blending coefficient α. (B) Precision w.r.t. 

different hidden dimension d. (B) Precision w.r.t. different number of neighbors k for graph 

construction. (B) Precision w.r.t. GNN layers L.
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Table 1:

Summary of simulation data parameters.

ID k b r (nh, ph) (nl, pl) (nc, pc)

1 2 10 (8, 0.5) (2, 0.8) (4, 0.8)

2 2 10 (8, 0.5) (2, 0.8) (8, 0.8)

3 5 10 (8, 0.5) (2, 0.8) (4, 0.8)

4 5 10 (8, 0.5) (2, 0.8) (8, 0.8)

5 5 10 (8, 0.5) (4, 0.8) (4, 0.8)

6 5 10 (8, 0.5) (4, 0.8) (8, 0.8)

7 5 20 (8, 0.5) (2, 0.8) (4, 0.8)

8 10 10 (8, 0.5) (2, 0.8) (8, 0.8)

9 20 10 (8, 0.5) (2, 0.8) (8, 0.8)
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Table 2:

Summary of real datasets.

Platform Organism Sample ID Raw Matrix 
(Cell, Gene)

Raw 
Density

Filter Matrix 
(Cell, Gene)

Filter 
Density

# Imputed 
Entries

10xVisium
Human Dorsolateral 

Prefrontal Cortex 
(DLPFC)

151507 4226, 33538 0.042 4147, 4028 0.262 437240

151508 4384, 33538 0.036 4148, 3342 0.258 358184

151509 4789, 33538 0.043 4700, 4188 0.258 508186

151510 4643, 33538 0.041 4547, 3908 0.259 461112

151669 3661, 33538 0.054 3617, 5246 0.277 525930

151670 3498, 33538 0.050 3433, 4909 0.272 457770

Stereoseq Mouse / 19109, 14376 0.024 4036, 1581 0.193 123444

SlideseqV2 Mouse / 20139, 11750 0.031 5161, 2611 0.217 292418
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Table 3:

Gene imputation benchmark.

Metric Method

Platform & Dataset

10xVisium Stereoseq SlideseqV2

DLPFC Mouse Mouse

151507 151508 151509 151510 151669 151670 / /

L1 
Distance

w/
o

scVI 0.794±0.004 0.838±0.006 0.800±0.002 0.670±0.003 0.810±0.003 0.696±0.005 1.442±0.005 1.127±0.006

ALRA 0.499±0.003 0.512±0.001 0.490±0.001 0.496±0.001 0.467±0.002 0.472±0.002 0.406±0.013 0.649±0.066

eSNN 1.254±0.001 1.373±0.001 1.266±0.001 1.294±0.000 1.017±0.001 1.071±0.001 2.802±0.002 2.071±0.002

Magic 0.779±0.001 0.825±0.001 0.787±0.000 0.664±0.001 0.795±0.001 0.692±0.000 1.324±0.001 1.080±0.000

scGNN 0.583±0.011 0.665±0.085 0.589±0.011 0.584±0.004 0.550±0.006 0.532±0.009 0.819±0.240 0.664±0.018

w

gimVI 0.838±0.003 0.890±0.003 0.835±0.001 0.737±0.002 0.863±0.003 0.765±0.001 1.325±0.001 1.153±0.002

seSNN 1.254±0.001 1.371±0.001 1.266±0.000 1.294±0.000 1.017±0.001 1.072±0.001 2.775±0.002 1.998±0.001

Tangram 1.691±0.001 1.811±0.001 1.689±0.000 1.420±0.000 1.728±0.001 1.474±0.000 2.899±0.001 2.185±0.000

STLearn 1.333±0.001 1.423±0.001 1.332±0.001 1.148±0.001 1.369±0.002 1.206±0.001. NA NA

STAGATE 0.297±0.001 0.300±0.002 0.295±0.005 0.294±0.004 0.274±0.005 0.278±0.002 0.289±0.006 0.502±0.007

iMiracle 0.271±0.001 0.280±0.001 0.271±0.002 0.272±0.001 0.263±0.001 0.265±0.002 0.203±0.003 0.284±0.004

Cosine 
Similarity

w/
o

scVI 0.907±0.001 0.913±0.001 0.906±0.001 0.903±0.001 0.909±0.001 0.904±0.001 0.941±0.001 0.919±0.002

ALRA 0.948±0.002 0.952±0.002 0.952±0.001 0.952±0.001 0.938±0.006 0.944±0.003 0.980±0.002 0.927±0.018

eSNN 0.842±0.000 0.841±0.000 0.839±0.000 0.840±0.000 0.846±0.000 0.843±0.000 0.777±0.001 0.838±0.000

Magic 0.915±0.000 0.920±0.000 0.914±0.000 0.909±0.000 0.916±0.000 0.910±0.000 0.968±0.002 0.936±0.000

scGNN 0.933±0.004 0.927±0.016 0.932±0.002 0.936±0.000 0.917±0.002 0.929±0.002 0.948±0.035 0.953±0.002

w

gimVI 0.957±0.000 0.965±0.001 0.955±0.001 0.947±0.001 0.962±0.001 0.948±0.002 0.964±0.000 0.936±0.001

seSNN 0.843±0.000 0.841±0.000 0.840±0.000 0.841±0.000 0.851±0.000 0.847±0.000 0.768±0.000 0.817±0.000

Tangram 0.713±0.001 0.725±0.001 0.717±0.001 0.716±0.001 0.717±0.001 0.715±0.000 0.772±0.001 0.763±0.001

STLearn 0.718±0.000 0.718±0.000 0.715±0.001 0.724±0.000 0.715±0.001 0.717±0.000 NA NA

STAGATE 0.983±0.000 0.985±0.000 0.983±0.001 0.984±0.001 0.980±0.001 0.980±0.000 0.990±0.000 0.961±0.000

iMiracle 0.985±0.000 0.987±0.000 0.985±0.000 0.985±0.000 0.982±0.001 0.982±0.000 0.996±0.000 0.990±0.000

RMSE

w/
o

scVI 0.940±0.005 0.993±0.006 0.949±0.003 0.803±0.003 0.959±0.003 0.834±0.005 1.628±0.005 1.307±0.007

ALRA 0.784±0.003 0.810±0.005 0.766±0.001 0.777±0.001 0.735±0.004 0.743±0.003 0.723±0.036 1.061±0.107

eSNN 1.378±0.001 1.503±0.000 1.393±0.000 1.419±0.001 1.143±0.002 1.199±0.001 2.778±0.001 2.177±0.001

Magic 0.917±0.001 0.972±0.001 0.929±0.000 0.792±0.000 0.936±0.001 0.824±0.000 1.453±0.001 1.238±0.001

scGNN 0.755±0.016 0.850±0.096 0.762±0.011 0.755±0.002 0.717±0.007 0.686±0.010 1.051±0.307 0.842±0.021

w

gimVI 0.955±0.002 1.002±0.001 0.957±0.001 0.858±0.001 0.970±0.002 0.890±0.002 1.448±0.001 1.217±0.004

seSNN 1.354±0.001 1.474±0.000 1.370±0.000 1.395±0.001 1.119±0.001 1.175±0.001 2.770±0.002 2.087±0.001

Tangram 1.768±0.001 1.889±0.001 1.767±0.000 1.503±0.000 1.804±0.001 1.557±0.000 2.970±0.001 2.284±0.000

STLearn 1.516±0.001 1.629±0.001 1.521±0.001 1.300±0.001 1.556±0.002 1.362±0.001 NA NA

STAGATE 0.384±0.002 0.393±0.002 0.379±0.007 0.380±0.007 0.357±0.007 0.365±0.004 0.485±0.008 0.765±0.005

iMiracle 0.358±0.000 0.359±0.001 0.365±0.001 0.371±0.001 0.342±0.000 0.346±0.001 0.324±0.003 0.407±0.007

The best results are bolded. Results marked ‘NA’ for stLearn indicate unavailable HE stained images required by the method. “w/o” and “w” mean 
methods without and with spatial information, respectively.
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