
UCLA
UCLA Previously Published Works

Title
Auritus

Permalink
https://escholarship.org/uc/item/9kh490h3

Journal
Proceedings of the ACM on Interactive Mobile Wearable and Ubiquitous Technologies, 6(2)

ISSN
2474-9567

Authors
Saha, Swapnil Sayan
Sandha, Sandeep Singh
Pei, Siyou
et al.

Publication Date
2022-07-04

DOI
10.1145/3534586

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9kh490h3
https://escholarship.org/uc/item/9kh490h3#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

AURITUS: An Open-Source Optimization Toolkit for Training and
Development of Human Movement Models and Filters Using
Earables

SWAPNIL SAYAN SAHA,

SANDEEP SINGH SANDHA,

SIYOU PEI,

VIVEK JAIN,

ZIQI WANG,

YUCHEN LI,

ANKUR SARKER,

MANI SRIVASTAVA

University of California - Los Angeles, USA

Abstract

Smart ear-worn devices (called earables) are being equipped with various onboard sensors and

algorithms, transforming earphones from simple audio transducers to multi-modal interfaces

making rich inferences about human motion and vital signals. However, developing sensory

applications using earables is currently quite cumbersome with several barriers in the way.

First, time-series data from earable sensors incorporate information about physical phenomena

in complex settings, requiring machine-learning (ML) models learned from large-scale labeled

data. This is challenging in the context of earables because large-scale open-source datasets are

missing. Secondly, the small size and compute constraints of earable devices make on-device

integration of many existing algorithms for tasks such as human activity and head-pose estimation

difficult. To address these challenges, we introduce AURITUS an extendable and open-source

optimization toolkit designed to enhance and replicate earable applications. AURITUS serves two

primary functions. Firstly, AURITUS handles data collection, pre-processing, and labeling tasks for

creating customized earable datasets using graphical tools. The system includes an open-source

dataset with 2.43 million inertial samples related to head and full-body movements, consisting of

34 head poses and 9 activities from 45 volunteers. Secondly, AURITUS provides a tightly-integrated

hardware-in-the-loop (HIL) optimizer and TinyML interface to develop lightweight and real-time

machine-learning (ML) models for activity detection and filters for head-pose tracking. To validate

This work is licensed under a Creative Commons Attribution International 4.0 License.

Swapnil Sayan Saha, swapnilsayan@g.ucla.edu.
Authors’ addresses: Swapnil Sayan Saha, swapnilsayan@g.ucla.edu, University of California - Los Angeles, Los Angeles, CA,
USA; Sandeep Singh Sandha, ssandha@ucla.edu, University of California - Los Angeles, Los Angeles, CA, USA; Siyou Pei,
sypei@g.ucla.edu, University of California - Los Angeles, Los Angeles, CA, USA; Vivek Jain, vivek13jain@g.ucla.edu, University
of California - Los Angeles, Los Angeles, CA, USA; Ziqi Wang, wangzq312@g.ucla.edu, University of California - Los Angeles,
Los Angeles, CA, USA; Yuchen Li, lyc1998kumamon@g.ucla.edu, University of California - Los Angeles, Los Angeles, CA,
USA; Ankur Sarker, ankursarker@g.ucla.edu, University of California - Los Angeles, Los Angeles, CA, USA; Mani Srivastava,
mbs@ucla.edu, University of California - Los Angeles, Los Angeles, CA, USA.

HHS Public Access
Author manuscript
Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in
PMC 2024 March 21.

Published in final edited form as:
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2022 July ; 6(2): . doi:10.1145/3534586.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the utlity of AURITUS, we showcase three sample applications, namely fall detection, spatial audio

rendering, and augmented reality (AR) interfacing. AURITUS recognizes activities with 91% leave

1-out test accuracy (98% test accuracy) using real-time models as small as 6-13 kB. Our models

are 98-740× smaller and 3-6% more accurate over the state-of-the-art. We also estimate head

pose with absolute errors as low as 5 degrees using 20kB filters, achieving up to 1.6× precision

improvement over existing techniques. We make the entire system open-source so that researchers

and developers can contribute to any layer of the system or rapidly prototype their applications

using our dataset and algorithms.

Keywords

earable; network architecture search; neural networks; machine learning; datasets; filters; human
activity; head-pose; TinyML; optimization; hardware-in-the-loop

1 INTRODUCTION

Earables – electronic devices that sit inside one’s ears – have undergone rapid

transformation in recent years [19, 46]. From being primarily used for wireless audio

capture and playback in a convenient form factor and natural placement, earables are

now being transformed into devices with rich multimodal sensing capabilities, on-device

local processing, and storage [19, 103]. While one could always re-purpose the existing

microphone and radio transceivers already in the earables [14, 19, 26, 72], many devices

have begun to add other sensors [102]. In-ear headphones and smart earbuds are now

equipped with ultra-low-power inertial measurement units (IMU) [46], beamforming

microphone arrays [19], temperature sensors [69], and heart-rate monitors [79]. Information

from these additional sensing modalities not only enhance the primary audio functionality

for purposes such as smarter spatial audio but, as recent research activity shows, can also

potentially be harnessed to sense the wearer’s physical states and contexts, such as facial

activity, head motion, vital signs, etc [45].

Among the current applications of earables, human activity detection [5, 38, 39, 51, 64, 75,

92] and head-pose recognition [28, 76] form the principal engineering research problem for

most applications [14, 19, 54, 63, 77, 91, 96]. The natural placement of ear-worn devices

can provide key information about the wearer’s movement and vital signals [19, 45]. As a

result, the ability to track head motion and gait data has spawned a plethora of emerging

applications. These include dead-reckoning [3, 72, 74], binaural audio rendering [102], robot

control [67], authentication [19, 98], context detection [26, 43], health monitoring [32, 60,

66, 80], mixed-reality (MR), AR and tangible interfaces [26, 65, 93, 102]. These emerging

applications have been shown to benefit not only general consumers but parties with special

needs and interests [19]. For example, dead-reckoning and 3D spatial audio can be combined

to provide localization cues for the visually-impaired [3, 14, 65, 102]. Gesture, posture,

and expression monitoring have been used to regulate food intake [63], mental health [45,

54, 96], sleep [60], vital signs [32, 66, 80], and proper posture [92] in patients through

mHealth. Fitness enthusiasts can use earables not only to listen to music during exercise but

also monitor their performance and respiration rate [75, 77, 80]. Given the opportunities,

SAHA et al. Page 2

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the global earable market is projected to grow exponentially, and significant commercial

ventures are already underway [19, 45, 79, 103].

1.1 Challenges

The bulk of emerging innovations builds upon recent advances in machine learning (ML) for

sensor-based activity detection and gesture recognition [2, 11, 52, 68] because classical

signal processing techniques do not yield high enough accuracy for complex activity

recognition. However, the development of ML classifiers for human activity detection (as

well as analytical head-pose filters) on earables face the following challenges:

• The Absence of Large-Scale Earable Datasets and Software Tools: The data-

hungry nature of ML training demands access to large-scale earable datasets.

Although abundant datasets are publicly available for smartphones and non-ear-

worn wearables [4, 15, 33, 44, 61, 83, 95, 104], the relative newness of earables

means that we are missing open-source and well-curated earable datasets [19].

In addition, the software tools enabling automation in the earable data collection

pipeline have not received significant attention. Hence, in the context of earables,

the reproducibility and rigorous benchmarking of the performance of models and

algorithms remain challenging.

• The Compute Constraints of Earables: Earables have tight memory, power,

and compute constraints [19]. For example, an earable has only 56 KB RAM and

16 MB of flash [46], compared to 4 GB of RAM and 64 GB of storage available

on a smartphone [57]. As a result, directly transferring existing ML classifiers

and filters for activity detection and head-pose estimation from other domains

(e.g., smartphones and smartwatches) is not feasible for onboard computation on

earable.

1.2 Contributions

To address the above challenges hindering earable research, we propose an open-source1

and extendable optimization toolkit called AURITUS that supports an earable research life

cycle from data collection to algorithmic development. To tackle earable dataset scarcity,

AURITUS provides access to an open-source, large-scale, IRB-approved2 earable dataset from

45 volunteers containing 34 distinct head-poses and 9 classes of simple activities of daily

living (ADL) with 2.43 million samples. The dataset is large enough to train high-accuracy

activity classifiers and head-pose filters encompassing sufficient statistical diversity. We

provide both sliced sequences and continuous trajectories in the world coordinate frame.

Further, AURITUS is accompanied with tools (data collection and labeling components in Fig.

1) to enable similar dataset collection, pre-processing, and labeling by other researchers and

application developers.

To enable the development and training of ML classifiers targeted for resource-constrained

earable platforms, AURITUS performs ML model training using completely automated

1 https://github.com/nesl/auritus
2IRB approved for public release. IRB number: 21-001253

SAHA et al. Page 3

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/nesl/auritus

hardware-aware neural architecture search (NAS). We achieve this optimization through

tight integration of state-of-the-art (SOTA) advances in TinyML and NAS [78, 85] in

the model development and generation stages as shown in Fig. 1. We develop a zoo of

well-characterized pre-trained activity classification models and head-pose estimation filters

using the optimization workflow in both Python and C targeted towards five different

microcontroller devices. The collection contains five lightweight activity models, five

conventional activity models, and four lightweight head-pose filters at various points in

accuracy - model size space with performance superior to existing models and filters. In

our evaluation, we achieve 98% activity detection accuracy (91% leave 1-out accuracy) with

6-13 kB models, which is 98-740× smaller and 3-6% more accurate than the state-of-the-art

(SOTA). The included head-pose estimation filters have errors as low as ~5 degrees with a

size of 20 kB; providing 1.6× improvement over the SOTA.

Finally, we showcase three representative applications developed using the workflow

provided by AURITUS, namely fall detection, spatial audio rendering, and AR interfacing.

The resulting software, applications, and libraries are completely open-source, explicitly

designed to facilitate replication and use by others. Overall, AURITUS provides a way to

allow others to develop new human movement models and filters on our dataset, collect

new data, label data, and compare the results with prior work through a combination of

automated scripts and human-in-the-loop. Our target communities include researchers who

will benefit from our benchmark dataset by allowing them to compare their newly developed

models with existing ones. We also target practitioners looking to deploy onboard human

motion inference models and filters by optimizing for specific hardware platforms. Our

contributions are summarized as follows:

• End-to-End Earable Application Development Framework: To the best of

our knowledge, we are the first to provide an end-to-end learning-enabled

application development framework for earables. The framework includes

the first large-scale open-source human movement dataset, data collection,

and labeling tools, a hardware-aware optimization toolkit, and a zoo of well-

characterized human movement models and filters.

• Hardware-in-the-loop Network Architecture Search: Among all existing NAS

frameworks developed for microcontrollers [8][27][56][57], we are the first to

provide a gradient-free Bayesian NAS for microcontrollers that supports use

of both proxies and communication with real hardware in real-time to receive

hardware metrics. We show that existing NAS frameworks fall short due to

absence of real hardware or proper search strategy in the NAS phase.

• A Zoo of Lightweight Models and Filters: We develop and provide 5

lightweight models, 5 conventional models, and 4 headpose filters with AURITUS

for activity detection and head-pose estimation. The said lightweight models and

filters have not been used in conjunction with NAS for earable activity detection

and head-pose tracking before.

• Pushing the State-of-the-Art: Our lightweight models and filters significantly

reduce inference error and resource consumption than existing earable activity

SAHA et al. Page 4

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

classifiers and head-pose filters. We also showcase three representative

applications using AURITUS that exploit the optimization pipeline.

• Challenges and Limitations in TinyML: Through AURITUS, we find several

unsolved technical problems characteristic not only for earables, but the overall

TinyML pipeline itself.

1.3 Organization

The rest of the paper is organized as follows: Section 2 presents background and related

work. Section 3 illustrates the data collection setup, statistical tests on participants and

activities, and our semi-automated graphical data labeling tool. Section 4 details both the

training and development pipeline for HIL activity detection models and filters. Afterwards,

Section 5 presents extensive experimental evaluations of the developed models and filters.

Section 6 provides three exemplary applications developed through AURITUS. Finally, Section

7 provides concluding remarks and future directions.

2 BACKGROUND AND RELATED WORK

There is a serious push towards embedding sensors in commercial earbuds. Apple, Samsung,

Bose, and Microsoft have already embedded directional microphone arrays, touch sensors,

and accelerometers in their earbuds for speech, motion detection, and gesture sensing

[19, 26]. Bragi earbuds are also capable of performing in-ear fitness tracking, gesture

recognition, and passive noise reduction [73]. In this paper, we focus on human activity

detection and head-pose recognition using earables that enable multiple interesting and

diverse applications as listed below:

Health Monitoring:

Gil et al. [32] proposed an earable device to measure cardiovascular conditions during

physical exercise. The authors fuse ECG, impedance, amperometric, and potentiometric

measurements with 3DoF inertial measurements to capture the electric potential around

the ear. Roddiger et al. [80] showed that filtering, interpolation, and principal component

analysis can allow earables to measure respiratory rates. Nirjon et al. [66] showed that it is

also possible to detect heart rate using ear-worn sensors. Recently, electrodes are being used

in earables to monitor sleep quality through in-ear EEG measurements [60].

Context Detection:

Emotion regulator conversational agents have been ported to earbuds to dynamically adjust

conversation style, tone, and volume in response to the wearer’s emotional, environmental,

social, and activity context. The context is gathered through speech prosody, motion signals,

and ambient sound [43].

AR, MR and Tangible Interfaces with 3D Sound:

Yang et al. [102] illustrated the fusion of acoustic and inertial sensors from earbuds and

smartphones to project 3D binaural audio based on wearer location and gazing orientation.

Nasser et al. [65] presented an AR concept with earables to provide thermal haptic cues

SAHA et al. Page 5

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

near the ear region, which then provides directions and notifications to visually impaired

individuals. Taniguchi et al. [93] designed an augmented earable hands-free interface to

control devices using tongue movements.

Security, Authentication, and Speech Recognition:

Head motion signatures and inertial disturbances generated during speech can be used for

standalone authentication purposes [19, 98]. This is useful to counteract voice fingerprinting

attacks. In addition, the fusion of IMU and the microphone can be potentially harnessed to

identify the voice in noisy environments [19].

Dead-Reckoning:

Prakash et al. [74] exploited the natural filtering of noise/vibrations (associated with inertial

sensor data) as inertial signals propagate from lower-body to the ear canals to develop a

subject, and pattern-independent step counting reflex model (called STEAR) using dynamic

time warp (DTW) algorithm. Ahuja et al. [3] showed that it is possible to perform on-

board dead-reckoning on earables using magnetometer-based heading estimation and a

belief-based step-counting algorithm from an earable IMU. The directional beamforming

microphones in earables can also be used to perform ultrasonic echo-localization for

generating indoor maps [72].

2.1 Activity Detection and Head-Tracking Using Earables

To better facilitate earable computing applications, it is necessary to realize more accurate

activity detection. Researchers [5, 38, 74, 75] have proposed several ML classifiers for

activity detection using earables, summarized in Table 1. The location of earables enables

the natural filtering of noise and vibrations by the upper body, providing the potential

for high accuracy and multi-granular activity detection with earables [19, 74, 75]. In

fact, Atallah et al. [5] validated the use of a 3DoF earable sensor for gait monitoring

by correlating acceleration features with gait parameters from a piezoelectric force-plate

instrumented treadmill. Existing techniques have used convolutional neural network (CNN),

k-nearest neighbors (kNN), random forests (RF), and k-means clustering for multiscale

activity detection. These include distinguishing between head-mouth (verbal) and full-body

mechanics (non-verbal) [38, 51], exercise activity detection [75, 77], facial expression

detection [54, 91, 96], and activity-level detectors [66]. However, existing work completely

ignores the compute constraints of earables. As shown in Table 1, these algorithms are not

deployable on embedded earable platforms due to their model size requiring high RAM

usage or having feature extraction overhead. In contrast, AURITUS uses hardware-aware NAS

to train ML classifiers targeted towards microcontroller class processors typically used in

earable platforms. Our trained models are directly transferred to the earable platforms to

benchmark their performance within the computation limits of earables.

With the advent of virtual reality (VR) and AR applications, the innate challenges of

head-tracking using inertial sensors have also been explored. Existing works usually perform

simple gyroscope integration [102], often fusing data from two earables with tilt/yaw

correction and predictive/positional tracking [28] from tertiary head-tracking devices (e.g.,

Oculus Rift). However, gyroscopes suffer from time-varying bias due to bias instability and

SAHA et al. Page 6

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

angular random walk, leading the integral to drift over time [48]. To enable long-term head

motion tracking, AURITUS provides lightweight yet accurate head-tracking filters that can

account for sensor errors statistically or heuristically. The filter parameters are optimized

using Bayesian optimization (BO).

2.2 Neural Architecture Search

Several NAS frameworks have been proposed for microcontroller-class devices. SpArSe

[27] treats NAS as a gradient-driven multi-objective BO problem, treating hardware

attributes via proxies and coupling pruning with NAS. MicroNets [8] uses a quantization-

aware gradient-driven approach to optimize task-aware DNN backbones. MCUNet [57]

tailors Once-for-All (OFA) NAS [12] for microcontrollers, using a two-stage evolutionary

NAS to train a single OFA network in an optimized search space for a broad spectrum of

target hardware. Adopting MCUNet is a challenge as it uses a custom inference engine and

its latency/resource measurements rely on a closed-source software stack. In AURITUS, we

perform hardware-aware NAS using multi-objective BO, where the acquisition function is

optimized using Monte Carlo sampling.

We adopt BO due to the following reasons: (i) BO provides a state-of-the-art approach to

optimize expensive objective functions in a few evaluations [87], (ii) BO allows explicit

inclusion of non-gradient-friendly constraints of the model size and accuracy tradeoffs

during the training process [27]. The choice of Monte Carlo sampling instead of the

gradient-driven approach of SpArSe [27] is based on the fact that neural architecture

search space consists of categorical variables where the sampling approach evaluates

the acquisition function only at valid configurations only [31, 86]. AURITUS includes the

hardware-aware training where the resource utilization of a model is computed at runtime by

its real deployment on the target hardware, instead of just using proxies as done by SpArSe

[27]. Our evaluation shows that proxies are only approximations of the real hardware

constraints, which are noisy for extremely resource-constrained devices. In addition, none of

the NAS frameworks can optimize energy and Tensorflow Lite Micro arena size in real-time,

as they do not use real-hardware during the NAS.

3. DATA COLLECTION AND LABELING PIPELINE

To address the challenge of open source data scarcity for earable, AURITUS provides a

pipeline specifically designed to ease data collection, pre-processing, and labeling of

earables. In this section, we introduce the experimental testbed used to collect human

movement data using earables (Section 3.1) and describe statistical tests on the collected

data, participants, and activities (Section 3.2) to verify data quality. To ease the data labeling

effort, AURITUS also incorporates a graphical data-labeling tool (Section 3.3).

3.1 Data Collection Setup

For data logging, we used the popular eSense3 earable device from Nokia Bell Labs [45,

46], shown in Fig. 2. We used the built-in Butterworth filter with the cutoff set to 5 Hz

3 https://www.esense.io/

SAHA et al. Page 7

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.esense.io/

to reject high-frequency noise beyond motion parameters. We used BLE advertisement and

connection intervals of 45-55 mS and 20-30 mS, respectively. The 6-channel inertial data

was broadcasted at ~100 Hz to an in-house smartphone application we developed using

eSense Android middleware backend [45].

The experimental testbed for head-pose data collection is also illustrated in Fig. 2. For

sub-mm resolution ground truth collection, the participants wore a hat with OptiTrack Prime

17W4 MoCap infrared markers [29] mounted in a rigid body configuration. The motion

data of the head and the marker visual cues were tracked using Motive:Tracker 5 [6] and

screen recorder applications, respectively. To synchronize the discrete data management

elements, we harmonized the local system clocks to the Network Time Protocol (NTP) [62]

and graphically identifiable calibration nods performed before the data collection phase.

The testbed contained 27 target markers, one of which is an origin marker. A participant is

supposed to move the head to and from an origin marker to target markers. To characterize

the position of each marked point in the 3D testbed, we used a Leica Disto X3 laser

rangefinder6 and a digital compass to obtain the distance, azimuth, and elevation angles

of the targets from the participant’s position. To log activity data, we asked participants

to perform nine common ADL [83] after providing them sample cues. Each participant

performed calibration nods in between each activity to signify the start and endpoints for

each ADL. We ensured that there were no path obstructions or distractions during activity

data collection and restarted the process when the earable became loose or any unforeseen

circumstances arose.

3.2 Participants and Activities

For the head-pose dataset, we collected 34 distinct head-poses from the 27 targets per

participant, obtaining ~2.43 million inertial samples in total. We considered two common

types of head movements. The simple class included movements of the head from the origin

marker to a target marker and back to the origin marker. We collected 411,103 such samples

(after preprocessing). The more complex class involved movements of the head from the

origin marker to a target marker 1 (phase A), target marker 1 to a target marker 2 (phase

B), and target marker 2 to the origin marker (phase C). We collected 1,068,211 samples for

the complex head movements (after preprocessing). For the activity dataset, nine classes of

actions were recorded, illustrated in Table 2. The length of time for each activity varied for

each participant, but on average, each activity IMU trace for each participant was around

23-25 seconds. A total of 958,182 inertial samples were recorded (after preprocessing). We

collected data from 45 participants (29M, 16F) in total. The sampling rate at which the

accelerometer and gyroscope data was collected was set to 100 Hz. For each participant,

we calibrated the gyroscope and the accelerometer three times (once before collecting

simple head movements, once before collecting complex head movements, and once before

collecting activity recognition data) to remove gyroscope static bias drift and set up the

accelerometer gain factors and accelerometer biases using static calibration techniques

described in [20] and [100]. For gyroscope calibration, we placed the earable on a flat

4 https://optitrack.com/cameras/prime-17w/
5 https://optitrack.com/software/motive/
6 https://shop.leica-geosystems.com/buy/package/x3

SAHA et al. Page 8

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://optitrack.com/cameras/prime-17w/
https://optitrack.com/software/motive/
https://shop.leica-geosystems.com/buy/package/x3

table in a static position, sampled the gyroscope for 10 seconds, and averaged the readings

to get the static bias value which we subtracted from subsequent gyroscope readings. For

accelerometer calibration, we placed the earable in six different stationary tilt angles and

used the iterative method in [100] to estimate the gain factors, Gi and biases, Bi for each

axis. The true acceleration in each axis is then given by: Ai = (Si − Bi)/Gi, where Si is the

raw accelerometer readings for each axis.

To ensure sufficient statistical diversity in physiological parameters without bias, the

Kolmogorov-Smirnov test [40] was performed on age, weight, height, and ear height from

the origin. Table 3 summarizes the normality test results. No bias was observed in age,

height, weight, and ear height from the origin, and at the 0.05 level, all parameters were

significantly drawn from a normally distributed population.

Fig. 3 illustrates the heatmap of the average dynamic time warping (DTW) distances among

the motion traces of the same class versus different classes. The DTW distance provides

a measure for the similarity between two temporal sequences with different speeds [9].

Intuitively, inertial traces belonging to the same class should have a small DTW distance,

and signals belonging to different classes should have a large DTW distance. We applied

Kruskal-Wallis ANOVA on the average DTW distance across 10 random accelerometer

vector sum snapshots (Ax
2 + Ay

2 + Az
2) from different participants, with each snapshot being

400 samples in length. The results are illustrated in Table 4. At the 0.05 level, the

distributions pertaining to the DTW distances from the same class and different classes

are significantly different, indicating the presence of well-separated clusters for each ADL

in low-dimensional latent space learnable by ML algorithms. The same test was applied

to selected simple head movements (varying sample count) from different participants

belonging to eight random target markers. The inertial traces consisted of gyroscope sum

snapshots (ωx + ωy + ωz), and the same statistical inference was observed for head

movements.

3.3 Graphical Data Labeling Tool

To ease labeling time-series data collected in continuous chunks, we designed a graphical

inertial data labeling tool to allow head-pose and activity data annotation using a graphical-

user-interface (GUI). Using the aid of the ground truth videos from Motive:Tracker, the

application developer selects points directly on the plot signifying the start and endpoints

of calibration nods and head movements. A single head rotation on the gyroscope-time

plot essentially consists of a triangular/bell-curved shape peak, with the rate of change of

the angular velocity proportional to the head motion velocity (faster = thinner and taller

peak, slower = thicker and smaller peak). After specifying all the endpoints and making

any numerical adjustments to the data, the developer exports the endpoints to the GUI

workspace and runs a script to perform automatic segmentation and labeling based on the

endpoints. Three such scripts are provided, one each for activity, simple head-pose, and

complex head-pose. The developer only needs to input the volunteer number and labels to

the scripts.

SAHA et al. Page 9

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4 DEVELOPMENT OF MODELS AND FILTERS

Although ML classifiers for activity detection are well explored in the domain of

smartphones and smartwatches [37, 81, 99], their direct transfer to the resource-constrained

domain of earable platforms is not feasible. AURITUS incorporates the ML model training

in combination with completely automated hardware-aware NAS. The NAS is designed to

ensure classifier inference is directly possible on edge in real-time within the available

flash and RAM constraints of the target device. Given different inputs and different

requirements from the application developer, the optimization workflow produce different

model implementations automatically. The system can either select to optimize a specific

model or give a model based on developer requirements. Further, to provide superior head-

pose tracking, AURITUS includes a set of filters with different computation complexity. We

provide the models and filters in Python and C for real-time application on embedded

hardware via Mbed real-time operating system (RTOS) and TensorFlow Lite Micro (TFLM)

backend. In this section, we outline the pipeline for training and developing activity

classifiers from the model and filter zoo on real hardware using Bayesian HIL NAS and

lightweight model architectures (Section 4.1). Next, we delineate the activity classifier

implementation details by discussing feature extraction, windowing, dataset splits, design

space, and hardware/software details (Section 4.2). Last, we discuss the generation of head-

pose estimation filters (Section 4.3)

4.1 Hardware-Aware Lightweight Model Generation

The memory and compute capability of TinyML devices are significantly smaller than cloud

or even mobile devices. For example, an Arduino BLE33 has only 320 KB of SRAM and

1 MB of flash, compared to 4 GB of RAM and 64 GB of storage on a smartphone. A

GPU can have 16 GB of memory on a workstation with secondary storage in the order of

terabytes. Thus. optimizing larger models for smaller devices directly using techniques such

as dimension reduction, pruning, quantization, and model compression alone are insufficient

to mitigate the loss of accuracy [12, 57]. Moreover, the type of ML operators supported

by such devices is limited by the processor architecture and the runtime interpreter. For

example, vanilla recurrent neural network (RNN) operators are not widely supported by

off-the-shelf TinyML software frameworks [8]. As a result, the design goals of models and

the ML operator space should be optimized through the integration of novel lightweight

model design paradigms and target hardware specifications in order to strike an equilibrium

between accuracy and efficiency [27, 49, 57].

4.1.1 Hardware-Aware Bayesian NAS.—To find the ideal activity detection model

candidate from a backbone deep neural network (DNN) search space for limited flash,

RAM, and latency requirements, we model the search as a parallelizable black-box BO

problem. The search space Ω consists of neural network weights w, hyperparameters θ,

network structure denoted as a directed acyclic graph (DAG) g with edges E and vertices

V representing activation maps, and common ML operations υ (e.g., convolution, batch

normalization, pooling, etc.) which act on V. The goal is to find a DNN that maximizes the

hardware SRAM and flash usage within the device capabilities while minimizing latency

and classification error on the validation set.

SAHA et al. Page 10

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

fopt = λ1ferror(Ω) + λ2fflash(Ω) + λ3fSRAM(Ω) + λ4flatency(Ω)

(1)

where

ferror(Ω) = Lvalidation(Ω), Ω = {{V , E}, w, θ, v}

(2)

fflash(Ω) =
− ‖ℎFB(w, {V , E})‖0

flashmax
∨ − HIL information

flashmax

∞, fflash(Ω) > flashmax

(3)

fSRAM(Ω) =
− maxl ∈ [1, L]{‖xl‖0 + ‖al‖0}

SRAMmax
∨ − HIL information

SRAMmax

∞, fSRAM(Ω) > SRAMmax

(4)

flatency(Ω) = FLOPS
FLOPStarget FLOPS

∨ HIL information
Latencytarget latency

(5)

The objective function fopt can be thought of as seeking a pareto-optimal configuration of

parameters Ω* under competing objectives [27], such that:

fk(Ω∗) < = fk(Ω) ∀k, Ω ∧ ∃j :fj(Ω∗) < fj(Ω) ∀Ω ≠ Ω∗

(6)

First, validation accuracy serves as a proxy for the error characteristics ferror (Ω) of the

model. Secondly, the size of the serialized flatbuffer model schema hFB (·) [21] generated

by TFL acts as a proxy for flash usage when real-hardware is absent. Thirdly, off-the-shelf

tools such as TFLM store network weights, quantization parameters, and network graphs

on flash. These tools use a predefined portion of the SRAM called the arena to store

intermediate activation maps and tensors, persistent buffer, and TFLM runtime interpreter

parameters. We use this standard RAM usage model as a proxy for SRAM usage fSRAM(Ω)

[27]. Lastly, since model latency is linearly proportional to the OPS count for a variety of

convolutional models for TinyML devices, we use FLOPS or OPS as a proxy for runtime

latency [8]. When real hardware is available, we obtain the SRAM, flash, and latency

parameters directly via the serial interface from the target compiler and RTOS, illustrated in

Fig. 4. We normalize all the hardware parameters by device capacity or target metrics.

SAHA et al. Page 11

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We use Gaussian process GP as the surrogate model to approximate fopt, which allows

priors on the distribution of moments to propagate forward as the search progresses. In

addition, the domain of random scalarizations λ can be specified by the developer to

guide the parallel search acquisition functions (hallucination or K-means clustering) into

the promising Pareto-optimal regions of the gradient plane. The acquisition function decides

the next set of Ωn to sample from the design space using Bayesian Upper-Confidence

Bounds (UCB), which balances exploration and exploitation [86]. Apart from speeding up

the NAS, parallel search ensures that NAS is not being performed on network morphs early

on (exploitation) and information gain is maximized in the search process (exploration),

yielding a stage-wise "coarse-to-fine" search space.

f(Ω) ∼ GP(μ(Ω), k(Ω, Ω′))

(7)

Ωt = arg max
Ω

(μt − 1(Ω) + β0.5σt − 1(Ω))

(8)

Note that while minimizing the latency and classification error within the hardware SRAM

and flash bounds of the device should generate classifiers that perform reasonably well in

theory, we observed that without fflash(Ω) and fSRAM(Ω) in fopt, the NAS program generates

models that do not fully exploit the device capabilities and produces small models that may

be 2 – 5% less accurate than larger models. fflash(Ω) and fSRAM(Ω) act as regularizers in fopt,

penalizing the NAS program for picking small models, while also promoting the generation

of a fine-grained surrogate model. Note that all SOTA NAS frameworks for microcontrollers

[8][27][56][57] use a formulation similar to fopt.

4.1.2 Conventional Activity Classifiers.—We included five conventional ML activity

classifiers from literature, namely bagged trees [83], AdaBoost [52], coarse decision tree

(DT) [2], support vector machine (SVM) [4][83], and multilayer perceptron (MLP) [82] in

the model zoo to compare against lightweight activity classifiers.

• Bagged Trees: Bootstrap aggregation combines several decision trees trained

on bootstrap samples to form an ensemble classifier, using majority voting to

provide the final label [83].

• AdaBoost: Combines weak decision stumps to form an ensemble classifier in a

weighted form depending on misclassified points [52].

• Coarse DT: Graph of decisions where each node makes binary decisions based

on values of the input activation and predefined rules, optimized through splitting

and pruning [2].

SAHA et al. Page 12

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• SVM: An SVM finds a linear decision hyperplane in the feature space whose

margin is maximum from the support vectors (cleanly split examples) of two

classes, using kernels to project data into a linearly separable manifold [4][83].

• MLP: A 2-layer fully-connected feedforward neural network with sigmoid

hidden neurons, trained using scaled conjugate gradient backpropagation with

cross entropy loss [82].

4.1.3 Lightweight Activity Classifiers.—To enable real-time activity classification

on resource-constrained devices through our HIL model optimization tool, we designed

and included several lightweight classifiers suitable for onboard activity inference in the

model and filter zoo. We implemented temporal convolutional network (TCN) [53, 94], fast

gated RNN [50], fast RNN [50], Bonsai [49] and ProtoNN [35] models for lightweight yet

accurate activity detection. These models use several design techniques to reduce model size

and latency while maintaining performance on-par with conventional ML and deep learning

(DL) algorithms for time-series processing:

• Temporal Convolution: Without explosion of parameter, memory footprint,

layer count, or overfitting, TCN kernels allow the network to discover the

global context in long inertial sequences while maintaining input resolution and

coverage. In TCN, the convolution operation has three desirable properties:

– Causality: The output of the operator at the current timestep t depends

only on the current and past inputs but not future inputs. This ensures

temporal ordering of the input sequences without requiring recurrent

connections. The ordering is maintained via weight sharing among the

input chunks.

– Dilated Convolution: The receptive field Fi of each unit in the ith layer

in a TCN dilated causal kernel of size k × k with dilation factor l is

given by:

F i, TCN = F i − 1 + (kl − 1) × l, F0 = 1

(

9

)

Fi,TCN is larger than Fi,CNN, which is i × (k − 1) + k. When dilated

CNN are stacked on top of each other, the dilation factor increases

exponentially, increasing model capacity and receptive field size with

fewer layers and parameter count over vanilla CNN or RNN

– Residual Blocks: Two stacks of dilated causal convolution layers, f and

g, are fused through gated residual blocks z for expressive yet bounded

SAHA et al. Page 13

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

non-linearity, complex interactions and temporal correlation modeling

in the input sequence:

z = tanh(Wf, k ∗ x) ⊙ σ(Wg, k ∗ x)

(

1

0

)

where W are the weights in each layer, σ is the sigmoid function and x
is the input.

• Stabilized RNN with LSQ Matrices: Vanilla RNN, albeit lightweight, suffer

from exploding and vanishing gradient problem (EVGP) for long temporal

sequences. Existing solutions to EVGP (e.g., gated RNN (long short-term

memory (LSTM) and unitary RNN) come at the cost of either accuracy loss

or increased memory and latency overhead. Fast RNN [50] solves EVGP by

adding a weighted residual connection with two scalars (α, β) to generate well-

conditioned gradients:

ht = σ(Wxt + Uht − 1 + b), ht = αht + βht − 1

(11)

where 0 ≤ α ≪ 1, β ≈ 1 − α, β ≤ 1, σ is a non-linear activation function, W and

U are RNN matrices, b is bias vector, h is the hidden state and x is the input. By

varying α and β, we can control the update extent of ht based on xt. Fast GRNN

[50] then converts this residual connection to a gate while enforcing W and U to

be low-rank, sparse and quantized (LSQ):

ht = tanh(W′xt + U′ht − 1 + bℎ)

(12)

ht = (ζ(1 − zt) + v) ⊙ ht + zt ⊙ ht − 1, zt = σ(W′xt + U′ht − 1 + bz)

(13)

W′ = W1(W2)T, U′ = U1(U2)T

(14)

SAHA et al. Page 14

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where, ζ ≥ 0, υ ≤ 1. Fast GRNN, thus, is able to provide the capabilities of gated

RNN without the associated compute overhead.

• Sparse Low-Dimensional Projection: Bonsai [49] is a shallow and sparse

DT with non-linear activations, making inferences on data projected in low-

dimensional space called prototypes. Similarly, ProtoNN [35] is a lightweight k-

nearest neighbor (kNN) classifier designed to operate on prototypes. The sparse

projection matrix is learned using stochastic gradient descent and iterative hard

thresholding. Sparsely projecting high-dimensional feature space onto a low-

dimensional linear manifold reduces parameter count for Bonsai and ProtoNN,

allowing them to be computationally efficient.

4.2 Activity Classifier Implementation Specifics

In this sub-section, we provide details on the implementation of the activity classification

training pipeline, including feature extraction, windowing, dataset splits, design space

optimization, and specifications of target hardware and host machine for training.

4.2.1 Feature Computation and Windowing.—For activity classification using

conventional ML algorithms, 241 spatial features were extracted from our dataset with

varying sliding window sizes (1, 3, 5, and 10 seconds) and stride of 0.5 seconds, shown in

Table 5. Each feature (except the time window) was applied separately to 3 accelerometer

and 3 gyroscope channels (180 features). Each feature (except the time window) was also

applied to the vector sum of accelerometer and gyroscope channels (60 features). We

included time window as a feature to account for sampling rate jitter and missing data in

the dataset [84]. For Bonsai and ProtoNN, we apply five lightweight features from the 241

features on the accelerometer and gyroscope vector sums, namely maxima, minima, range,

variance, and standard deviation, totaling 10 features. A sliding window of varying size

(1,2,3 and 5 seconds) with a stride length of 0.5 seconds were chosen for Bonsai, ProtoNN,

Fast RNN, Fast GRNN, and TCN. We do not extract any features for Fast RNN, Fast

GRNN, and TCN and feed raw windowed inertial samples to the three classifiers. For all

classifiers, no normalization or standardization was applied to the raw data.

4.2.2 Hardware and Software Specifications.—All models were trained on a host

machine with 256 GB RAM, 2× 24 GB Nvidia GeForce RTX 3090, and 3.7 GHz AMD

Ryzen Threadripper 3970X 32-core CPU. For benchmarking HIL NAS, we use three real

ARM Cortex-M target boards and two virtual hardware models (proxies) with varying

resource constraints. The processors run Mbed RTOS and TFLM interpreter on-board.

To communicate with the target hardware via system commands from the host machine,

we used the Mbed command-line interface (CLI). The target hardware specifications are

outlined in Table 6:

All the conventional ML models were implemented in MATLAB and later converted to C

optimized for Cortex-M processors. All lightweight models were implemented in Jupyter

notebook (Python), using Keras and Microsoft EdgeML via a Tensorflow and TFLM [21]

backend. The TCN, ProtoNN, and Bonsai models were converted to flatbuffer model schema

[21] using TFL and the other models were converted to C-compatible formats for further

SAHA et al. Page 15

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

benchmarking. All models used cross-entropy loss except Bonsai, which used multi-class

hinge loss.

4.2.3 Dataset Splits.—We split the dataset in three different ways for our evaluation:

• Split with no unseen participants: In this split, there are no unseen participants,

i.e. data from all participants are present in the training set. This was used

to report test accuracy. We used holdout validation (train: validation: test)

ratios of 80:10:10 and 70:15:15 for classical models and MLP, respectively.

For the lightweight models, we used holdout validation of 80:10:10 for the

TCN and 90:0:10 for Bonsai, ProtoNN, FastRNN, and FastGRNN. Except for

MLP, we ensured that the dataset splits are the same for all classifiers for a fair

comparison.7

• Split with leave-1 out: The data is split per user, such that the models are

trained on data from 44 participants, and tested on data from a participant not

present in the training set. This was used to report leave-1 out test accuracy. We

performed a 10-way cross-validation, choosing a random participant each time to

be left out of the training set while the model is trained on other 44 participants.

We then average the leave-1 out accuracy of the 10 models. The train: validation

ratio was 90:10 for the data from the 44 participants.

• Split with leave-n out: The data is again split per user, however, the number

of participants left out now varies. This was used to perform leave-n out cross-
validation studies. The train: validation ratio was 90:10 for the data from the

participants present in the training set.

4.2.4 Design Space Optimization.—For the conventional classifiers, we used a

variation of the BO pipeline we showed earlier for hyperparameter tuning. We used 80

iterations for the candidate models in the search space with the expected improvement per

epoch as the acquisition function to select the most optimal hyperparameter for each model.

We did not include hardware constraints in fopt for conventional ML models but aimed

to maximize the test accuracy of the conventional activity detection models. For the five

lightweight classifiers, we used 50 iterations for the candidate models in the search space.

We incorporate hardware constraints only for the TCN in fopt, as we observed Bonsai,

ProtoNN, Fast RNN, and Fast GRNN to be resource-efficient without requiring explicit

hardware-aware optimization by design. Table 7 lists the architectural search space for all 10

models in the model and filter zoo, as well as support for HIL optimization. We fixed some

of the parameters of each model to default or well-known values and excluded them from

the search space.

4.3 Head-pose Filters

For real-time head-pose estimation, we fed the raw, unprocessed head-pose streams to

analytical orientation estimation algorithms. We include four filters in the model and filter

7Bonsai, ProtoNN, FastRNN, and FastGRNN do not have any validation step, so we transferred the validation data to the training set.

SAHA et al. Page 16

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

zoo for head tracking. To optimize the filter parameters for root-mean-squared error (RMSE)

minimization, we use BO.

• Complementary Filter: The complementary filter [48] acts as a low-pass filter

for accelerometers to mitigate high-frequency Gaussian noise, and a high-pass

filter for gyroscopes to counteract time-varying drift, thereby amplifying the

strengths and attenuating the weakness of each sensor in the IMU for attitude

estimation. The filter simply integrates the gyroscope readings to get the 3D

attitude from the gyroscope and takes linear accelerometer components in the

appropriate direction to get the 2D attitude. The only tunable parameter in

the filter is β, which weighs the contribution of accelerometer and gyroscope

attitude. While the filter is simple and lightweight, it does not account for

statistical treatment of drift and noise, leading to quick orientation drift. The

filter also suffers from gimbal lock due to operation in the Euler domain and

hence does not perform optimally for fast movements.

• Mahony Filter: The Mahony filter [24] solves the gimbal lock problem

by operating in the quaternion domain. It also reduces the attitude drift

caused by gyroscope bias by adjusting gyroscope error using accelerometer

readings through proportional-integral compensation without significant markup

in computation time. The two tunable parameters are Kp and KI. KI mitigates the

steady-state error in orientation estimation, while Kp reduces the rise time to the

actual orientation estimate produced from accelerometer readings.

• Madgwick Filter: The Madgwick filter [59] improves attitude estimation error

upon the Mahony filter by incorporating accelerometer attitude increment

in the orientation estimation formula. The filter performs one-step gradient

descent to get the optimal attitude increment from accelerometer readings. The

filter is computationally inexpensive (109 scalar operations), works well for

low-sampling rate IMU, and includes pre-calibration steps. The only tunable

parameter in the filter is β, which serves the same purpose as β in the

complementary filter.

• Indirect Extended Kalman Filter (IEKF): The KF is an iterative optimal state

estimation algorithm (from fusing consecutive samples of single or multiple

noisy indirect modalities) under Gaussian variations [41]. It is composed of

prediction (process or transition or time update) and correction (measurement

update). KF is a subset of Bayes filter with Gaussian prior, linear process

and measurement model with Gaussian noise and satisfying Markov property,

with the goal of maximizing posterior probability EKF can deal with globally

non-linear system dynamics via Taylor series and Jacobians. It linearizes the

non-linear process model locally about the running state mean [10]. Instead of

modeling the attitude directly, IEKF models the error in attitude estimate. We

use the gravity estimation from the gyroscope and accelerometer orientation as

the error model, and update the actual attitude by multiplying the errors with

the head pose. While IEKF yields the most accurate head-pose estimate, it is the

most computationally expensive among the four filters.

SAHA et al. Page 17

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5 ALGORITHMIC EVALUATION, COMPARISON AND DISCUSSION

In this section, we illustrate the experimental results related to the performance of our

hardware-aware optimization framework, trained models, and filter zoo on our dataset. We

also compare proposed models and filters with the SOTA in earable activity detection and

head pose estimation. For our proposed activity detection models, we carried out activity

detection on all the 9 activities reported in Table 2.

5.1 Activity Detection Model Size and Accuracy

Table 8 showcases the best performance of conventional ML activity classifiers in terms of

test accuracy (no unseen participants), average leave 1-out test accuracy, and model size on

the entire dataset. The hyperparameters stated were the most optimal found by BO. From

Table 8, we can see that the test accuracy of classifiers ranges from 98.5-100%, while the

leave-1 out test accuracy ranges from 81.3-91%. Even though bagged trees had the highest

test accuracy among all classifiers, SVM generalized the best overall on unseen participants.

However, the SVM model was also 4× larger than the bagged ensemble model. MLP had the

lowest model size of 418 kB among all conventional classifiers, while AdaBoost was 195×

larger (largest model among all) but ~ 1% less accurate than MLP in terms of leave-1 out

test accuracy.

Table 9 illustrates the accuracy (test accuracy (no unseen participants) and average leave-1

out test accuracy), RAM usage, flash usage, FLOPS, and energy consumption of lightweight

classifiers on the entire dataset. Excluding Bonsai and ProtoNN, none of the classifiers

require feature extraction. For the TCN, we showcase five models targeted towards five

different hardware classes (specified in parenthesis in Table 9), optimized via our HIL

Bayesian NAS pipeline. To showcase energy usage for lightweight classifiers, we ran

the industry-standard EEMBC EnergyRunner benchmark [7] for TCN, FastGRNN, and

FastRNN running on ARM Cortex M4 processors, while using a widely used power

monitor8 to log power usage of Bonsai and ProtoNN running on ARM Cortex-A processors.

Our HIL NAS adapts the TCN model to achieve better accuracy with an increase in

computing resources. The highest test accuracy of 98.3% was obtained by FastRNN, which

also had the smallest model size of 6.04 kB among all models. However, FastGRNN

achieved the highest leave-1 out accuracy of 91%, requiring only 7.08 kB more flash

than FastRNN while being 4.3% more accurate. Observe that the largest model in Table

9 is 5.6× smaller than the smallest model in Table 8. Furthermore, FastGRNN and SVM

provide the same leave-1 out test accuracy, but the former is 1700× smaller than the latter

without requiring any feature extraction overhead. FastGRNN also has the lowest energy

usage of 41 mW among all lightweight classifiers, which is 9mW less than the industry

standard recommended power consumption9 for TinyML classifiers [7] We can make several

high-level inferences from Table 8 and Table 9:

• The relationship between model accuracy and model size is non-linear, i.e.,

models with more parameters necessarily do not yield higher accuracies. With

8 https://www.msoon.com/lvpm-software-download
9 https://github.com/mlcommons/tiny

SAHA et al. Page 18

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.msoon.com/lvpm-software-download
https://github.com/mlcommons/tiny

appropriate architectural encodings, it is possible to achieve better accuracy with

smaller models. Han et al. [36] showed that only a small number of weights/

parameters contribute to the model performance. Thus, we can further reduce

the model size shown in Table 8 without losing accuracy significantly. The

improvement is reflected through intelligent and lightweight model architectural

formulations shown in Table 9.

• Lightweight classifiers are less robust to domain shifts than conventional

classifiers, as evident from the leave 1-out test accuracies. This is because the

lightweight classifiers do not have enough redundant weights or parameters

to model globally significant attributes that may be common across all users,

but instead overfit on the participant-specific characteristics in the temporal

sequences, sacrificing generalizability over accuracy.

• Energy usage of the lightweight classifiers depend on the underlying hardware

on which the energy benchmarks are being run, as well as runtime interpreter

and RTOS being used. For example, the energy consumption of TCN ranges

from 50-418 mW depending on the hardware platform. The L-series STM32

boards are branded as ultra-low-power, while the F-series STM32 boards

are high-performance 10. Thus, the same classifier implemented on different

hardware can yield different energy consumption, evident from FastRNN and

FastGRNN’s implementation on two STM32 boards. In addition, Raspbian

RTOS and TensorFlow Lite interpreter consume more power to run the same

model over Mbed/Arduino RTOS and Tensorflow Lite Micro interpreter.

Fig. 6 showcases the accuracy and model size of our earable activity detection models

(colored black) versus proposed models in literature (colored red), namely CNN [38], RF

[75], and kNN [38]. For activity detection on seen participants, compared to the SOTA

RF model, FastRNN is 98× smaller and 6% more accurate without needing additional

feature extraction overhead. For activity detection on unseen participants, compared to the

SOTA CNN model, FastGRNN is 740× smaller and 3% more accurate without needing

additional feature extraction overhead. In addition, our lightweight models are suitable for

implementation on devices on Class 0 devices (Internet-of-Things (IoT) devices with < 100

kB flash [47]), while the SOTA, as well as our conventional classifiers, can only be run on

mobile devices or Class 1 (IoT devices with ~ 100 kB flash [47]) and Class 2 (IoT devices

with ~ 250 kB flash [47]) devices. Using our model zoo, it is possible to generate activity

detection models suitable for a broad spectrum of hardware classes with different compute

constraints while maintaining superior accuracy.

5.2 Activity Detection Multiclass Metrics and Effect of Window Size

Fig. 7 outlines the leave-1 out class-dependent errors (precision, recall, and F1 score) for

all 10 activity classifiers. The multiclass metrics were obtained for different window sizes

(1, 3, 5, and 10 seconds for conventional classifiers; 1, 2, 3 and 5 seconds for lightweight

classifiers). From Fig. 7 (left), we can see that the median precision and recall of each

10 https://www.st.com/en/evaluation-tools/stm32-nucleo-boards.html

SAHA et al. Page 19

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.st.com/en/evaluation-tools/stm32-nucleo-boards.html

classifier are roughly similar. We can also observe that SVM, TCN, Bonsai, and ProtoNN

are the most stable in terms of multiclass classification quality across different window sizes.

The SVM classifier achieves the highest median precision, recall, and F1 score, indicating

a high degree of completeness and exactness and a low number of false positives and false

negatives across classes. On the other hand, AdaBoost and MLP have the largest range

of class-dependent error for different window sizes, indicating a significant dependence of

accuracy on window size.

Fig. 8 shows the normalized leave-1 out test accuracies for all 10 classifiers with varying

window sizes. The accuracy of all classifiers improves with larger window sizes. This is

because, with larger time windows, the classifier has access to more spatial and temporal

information. Small windows may not always have enough differential features to classify

each activity separately. However, time windows longer than 2.5-3.5 seconds [97] may

not be helpful when rapid changes in activities occur or when a macro-activity can be

decomposed into transient micro-activities. Furthermore, longer time windows can reduce

inference speed [97]. Thus, for practical deployment, it is recommended to keep window

size around 2.5-3.5 seconds [97].

5.3 Activity Detection Cross-Validation Studies (Leave-n Out)

To test the generalization capability of all 10 classifiers with a varying number of unseen

participants in the training set, we performed a leave-n out study where we tested the

accuracy of all the classifiers with a varying number of participants left out of the training

set. Fig. 9 showcases summarizes the results of the study. While the test accuracy on unseen

participants drops with an increase in the number of participants left out of the training

set, the accuracy of lightweight classifiers drops by around 11.8% more on average over

conventional classifiers for the same value of n. As discussed in Section 5.1, lightweight

models suffer from generalizability due to a low number of redundant weights to model

global features. The problem is particularly worse for FastRNN, FastGRNN, and TCN,

which attempt to make inferences on raw data, compared to Bonsai and ProtoNN, which

make inferences on features. FastRNN, FastGRNN, and TCN require the injection of

domain adaption, possibly via domain adversarial training to make these NN robust across

domains [16, 30] if they are to work without feature extraction.

5.4 Performance of Hardware-in-the-loop Bayesian Neural Architecture Search

To showcase how our NAS helps adapt the same model for different hardware, we optimized

the TCN model for five different hardware with different compute capabilities. Fig. 10

illustrates how our hardware-aware NAS tunes the TCN architecture for three of those

hardware to improve model accuracy by maximizing the available compute resources of

the device. As the SRAM capacity of the device increases, the NAS framework increases

the number of layers and filters in the TCN model. To prevent EVGP, NAS also adds

skip connections as the number of layers increases. Another interesting observation is

how our NAS pipeline assigns the dilation factor to each layer. To capture both local

and global dynamics within a limited computing budget, NAS assigns a small dilation

factor to the lower layer to capture short-term local context, and a large dilation factor

in higher layers to capture long-term global inter-dependencies in the temporal sequence.

SAHA et al. Page 20

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Classically, a human designer would assign dilation factors that increase by a constant factor

with each successive layer instead of the complex dilation factor assignment that the NAS

performs. This observation further strengthens the need for intelligent AutoML frameworks

for deployable ML model development.

We also performed an ablation study to see how proxyless (with real-hardware) and

proxied versions (with proxy to simulate hardware metric) of our NAS framework differ

in performance with three real hardware devices. The results are shown in Fig. 11 (left).

From Fig. 11 (left), we can observe that as the resource budget of target hardware loosens,

the difference in accuracy between the best performing model found by proxyless NAS

and proxied NAS reduces. In both cases, the accuracy of the model improves with more

capable hardware. The difference in accuracy, albeit within ±6%, arises from the runtime

interpreter and RTOS overhead which the proxy for SRAM and flash fails to account for. As

a result, some well-performing model candidates found by proxied NAS may not fit on the

real hardware when one takes We can infer this from the offset observed between SRAM

usage reported by proxyless and proxied NAS. Overall, HIL becomes important for ultra

resource-constrained devices, where all overheads need to be accounted for.

Besides quantifying the difference between proxyless and proxied NAS for memory and

accuracy modeling, we also studied the relationship between FLOPS, model latency (from

real hardware), and model accuracy, summarized in Fig. 11 (right). We observed that there

is a strong positive correlation (Pearson Coefficient, ρ = 0.998) between FLOPS and model

latency, indicating that it is possible to develop an analytical model correlating FLOPS and

model latency without requiring HIL. The same observation was made by Banbury et al.
[8] for models geared towards microcontrollers. Analytical models for latency will be much

faster over getting the latency metric directly from real hardware [78]. However, we found

that more FLOPS do not always translate to higher model accuracy. We did not observe a

significant correlation (ρ = 0.0107) between FLOPS and model accuracy, which was also

observed in Table 9. As discussed earlier, only a small portion of model parameters are

responsible for contributing towards model accuracy, resulting in no correlation between

FLOPS and classification performance.

5.5 Head-Pose Filter Size and Error Characteristics

Fig. 12 summarizes the error characteristics and resource usage of the head-pose filters

in filter zoo. From Fig. 12 (a), we can observe that the IEKF provided the lowest mean

absolute error (MAE) of 6.49° and 3.53° for head-tracking in the azimuth and elevation

plane, respectively. This is expected, as the IEKF can minimize the variance in the attitude

estimate optimally through the innovation and estimate covariance matrices. Compared to

Yang et al. [102], the IEKF provides 1.6× improvement in error characteristics as shown in

Fig. 12 (b) using a single earable IMU. Note that the average MAE of the IEKF increases

by ~ 2° when translational motion artifacts (e.g., walking) are introduced along with head

movements. Although the IEKF provides superior error characteristics over other filters, it is

also the most resource-intensive as shown in Fig. 12 (c). Compared to Madgwick or Mahony

filter, the IEKF requires 17% more flash and 3.3× more SRAM when implemented for

Mbed RTOS, while providing 1.8× lower MAE. Given the resource usage, IEKF cannot be

SAHA et al. Page 21

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

implemented on AVR RISC processors running Arduino. A trade-off would be to choose the

Mahony filter, which requires an average of 1.5 kB of SRAM while providing an MAE of

8.62°. The filter requires 19.8 kB and 40.4 kB of flash when implemented on Cortex-M4 and

AVR RISC microcontrollers, respectively. The lightest of all filters is the complementary

filter, which, unfortunately, also suffers from the largest MAE, as it cannot account for drift

and noise as elegantly as other filters. Note that since these filters are analytical, they are

wearer-independent, unlike the activity detection models.

Fig. 12 (d) showcases the importance of tuning filter parameters. Without optimization, the

average MAE of the filters increases anywhere between 8.1° and 72.9°. As a result, before

using the filters in the filter zoo for head-pose estimation, it is recommended to calibrate

the filters on some samples of the wearer’s head movements. We suggest the following

orientation filter calibration program:

• First, the accelerometer and the gyroscope within the earable must be calibrated

to remove static gyroscope bias drift and estimate the accelerometer gains and

biases using the techniques described in Section 3.2.

• The user immediately wears the earable after calibration, then faces roughly

straight ahead (azimuth angle of 0°) and starts IMU data logging, all while not

making any significant head movements. The wearer then moves the head slowly

from 0° to any angle larger than 10° but less than 90° to the right, and back. Note

that the user does not have to move the head exactly back to the initial azimuth

angle of 0°.

• The wearer repeats the process but for the elevation plane (vertical head

movement). Note that we suggest the user complete the two data logging steps

within a minute of performing accelerometer and gyroscope calibration.

• Since the gyroscope and the accelerometer has just been calibrated, we can

obtain the 3D ground truth orientation (roll (ϕt), pitch (θt), and yaw (ψt)) for

the user’s head trajectory at timestep t directly from the IMU readings using the

following equations:

ϕt

θt
a

=
arctan Ay, t

Ax, t
2 + Az, t

2 ⋅ 180
π

arctan Ax, t

Ay, t
2 + Az, t

2 ⋅ 180
π

,
ϕt

θt

ψt
ω

=
ϕt − 1

θt − 1

ψt − 1

+
ωx, t

ωy, t

ωz, t

fs
−1

fs
−1

fs
−1

(15)

ϕt

θt

ψt
GT

=
0.5(ϕt, a + ϕt, ω)
0.5(θt, a + ϕt, ω)

ψt, ω

(16)

SAHA et al. Page 22

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where, Ax,y,z refers to accelerometer readings, ωx,y,z refers to gyroscope

readings, and fs refers to IMU sampling rate.

• The filter parameters can then be tuned by plugging in the recorded IMU data

and the ground truth orientation and performing an exhaustive search over the

possible range of filter parameters to minimize filter MAE.

The orientation program does not cause any hassle to the user as the user does not have

to follow any strictly bounded head motion trajectory. In theory, the number of data

points required for calibration equals the number of tunable and initial filter parameters

(e.g., Madgwick and complementary filters have only a single tunable parameter, Mahony

filter has two tunable parameters, while the IEKF has 4 tunable parameters and a 9×9

initial process noise covariance matrix). More data points can help provide a global and

over-parametrized notion to the exhaustive search, possibly yielding better optimal values

of the filter parameters. However, the search will be slow if the number of points is too

large. Furthermore, if the user attempts to collect the orientation filter calibration data over

a long time period, then the initial static IMU calibration parameters will become invalid.

Therefore, more data points will not essentially lead to better estimates of filter parameters.

6 APPLICATIONS AND CASE STUDIES

To highlight the utility of AURITUS, we showcase three canonical applications developed by

using the tools provided in AURITUS. These include fall detection (Section 6.1), spatial audio

generation (Section 6.2) and interacting with objects in an AR digital twin (Section 6.3).

6.1 Fall Detection

Falls cause frequent injuries and death among the elderly population, with ~684,000 fatal

cases occurring annually [1, 42, 101]. With an increasing number of elderly people living

alone [90], there is a strong association between living alone and suffering from a fall (χ2

= 0.005) [23] among senior citizens, with 37 million cases requiring medical attention [1].

Thus, it is necessary to develop an accurate yet lightweight and real-time fall detection

system that can reduce the lead time between detection of a fall and receiving medical

attention [90, 101]. Thereby, we designed ultra-lightweight ML models using AURITUS

that can distinguish between falls and non-falls through earables. Fig. 13 illustrates the

performance of fall detection in terms of model size and leave-1 out test accuracy for

various window sizes. In general, the leave-1 out accuracy of fall detection models improved

with larger window sizes. Among all the models, Bonsai and ProtoNN had the highest

average leave-1 out fall detection accuracy of 99% and 98%, respectively for 5-second

windows. We managed to squeeze the model size to only 2.3 kB for Bonsai using BO. The

model size is so small that Bonsai requires negligible resources to be run in real-time on

microcontroller-class devices. Bonsai can also maintain its accuracy within ±1% for window

sizes smaller than 5 seconds (e.g., 2 and 3 seconds). Small window sizes are important for

fall detection as the essential part of the fall event typically lasts around 2 seconds [58].

SAHA et al. Page 23

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6.2 Binaural Audio Rendering

Spatial audio refers to the process of generating audio that provides the listener with a

perception about the direction, distance, size, and type of object [25]. Also known as

binaural audio, 3D audio is useful for indoor acoustic AR [102], providing directional

localization cues [19], exercise feedback [77], and interacting with virtual objects [71].

Given the small size and portability of earables coupled with the presence of both head-

tracking sensors and stereo speakers, it is possible to generate a lightweight perception-

processing-feedback setup by combining head-tracking with binaural audio. Generally, a

head-pose filter supplies azimuth and elevation angles to a pair of two head-related transfer

functions (HRTF) [17, 102]. The HRTF is the response of how the human ear perceives

the location of the sound. Mono audio is convolved with the HRTF finite impulse response

filters to generate binaural audio, with the interpolated HRTF calculated at the position of

the head-tracked.

We implemented a 3D spatial audio framework in MATLAB using AURITUS to showcase

the utility of our head-tracking filters. We used the ARI HRTF database [17]. The database

has data points for 1550 positions for over 200 subjects, with an azimuthal resolution of

2.5° (−45° to +45°) and elevational resolution of 5° (−30° to +80°) [17]. The HRTF for a

point outside the angular range in the dataset is found using interpolation. For head tracking,

we used the IEKF. Since eSense is non-programmable, we created our own hardware

setup to stream head-tracking data in real-time to the HRTF, shown in Fig 14 (left). The

setup consists of an Arduino Nano 3.0 connected to an MPU-9265 9DoF IMU. We only

used the accelerometer and gyroscope data from the 9DoF IMU as the original earable

does not have a magnetometer. We also calibrated the accelerometer and gyroscope of the

MPU-9265 using calibration techniques described in Section 3.2. The audio is streamed

through headphones from the HRTF kernel.

Fig 14 (right) shows a snapshot for the binaural audio sound source localization test. In the

test, we asked a participant to roughly locate which azimuth direction a virtual sound source

is situated at by listening to spatial audio using our hardware setup. It is generally assumed

that the human sound source localization resolution using binaural cues varies widely around

±6 − ±20° [22, 70], and a head-pose filter must be able to provide the direction of the

head with an MAE less than 20°. From our sound source localization test, we obtained a

localization error of ±22.7°. The error is on the higher end of the localization spectrum

not due to IEKF errors, but partly due to the use of non-personalized HRTF database

[102]. In addition, some of the binaural cues were outside the −45° to +45° azimuth range

provided by the dataset, causing errors to be introduced in spatial sound generation due to

interpolation of HRTF kernel. The participant we selected for the test may have had an aural

localization resolution around ±20°, which added to the cumulative errors from the HRTF

database.

6.3 Interacting with AR Frameworks

One of the most promising applications of earables is the ability to control virtual objects

an AR digital twin [19]. We used the same hardware setup developed in Section 6.2

to control the orientation and motion of actors in a virtual world wirelessly using head

SAHA et al. Page 24

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

movements. Fig. 15 showcases the interaction between the AR framework and the head-pose

application. We used the open-source CONIX Arena [71] AR architecture to showcase this

application. The head-pose application communicates with the virtual world using MQTT

(Pub/Sub) messages. The Pub/Sub message specifies the ARENA server to connect to,

the realm (world), an object ID within the realm specifying the actor, the attribute (e.g.,

head orientation) to alter, and the values of the parameters of that attribute (e.g., Euler

angles). We observed negligible delays in updating the parameters through MQTT, with

the head-pose filter (an IEKF) running at 100 Hz. The framework thus allows one to

control the parameters of virtual actors using real sensor values in the real world in near

real-time without significant latency. Although we developed the application to control the

head-pose of virtual humans, it is also possible, for example, to control real drones, cars, and

appliances using head-movements through their digital twin in the ARENA realm.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Given the commercialization potential of earables, an open-source end-to-end toolkit can

enable the accelerated development of future ventures, catalyzing the adoption of new

technologies and sensing modalities in smart earbuds [19]. AURITUS provides a tightly-

coupled collection of open-source and extendable libraries, datasets, and tools that allow

application developers and researchers in earable computing to collect human movement

data, label time-series data interactively, and develop new human movement models and

filters. The model and filters in AURITUS are designed to meet hardware constraints without

sacrificing accuracy. In the process, AURITUS advances the SOTA activity classification

models and head-pose filters in their accuracy even with lightweight models and filters.

Moreover, our experience with AURITUS demonstrates that the toolkit is capable of

supporting a variety of different applications and research needs. Several lessons, limitations

and directions of future work for our framework are as follows:

• Since the activities in our dataset are scripted and of short periods, the evaluation

has some limitations. Firstly, the activities are not completely natural and

continuous due to missing context and context change. Secondly, due to short

activity periods, the effects of earable placement and displacement are not

significant. Both of these effects can provide erroneous classification results in

the wild and lead to an upper bound in accuracy our system can reach.

• While our work shows that AURITUS is capable of supporting diverse applications,

our framework is currently limited to work with inertial sensor data only.

Smart earbuds also include other modalities (e.g., audio, BLE, temperature,

etc.), which can be disruptive for a number of physiological applications [19].

The largest change for such an expansion would be in the data collection and

labeling pipeline. The smartphone application needs to be expanded to collect

data for other modalities, while modality-specific ground truth data collection

hardware (e.g., microphones, binaural audio generators, and bio-electrical and

physiological signal measurement devices) need to be invested in. While the

lightweight model generation pipeline generalizes to any modality without

changes, any optional feature extraction and windowing need to be domain-

SAHA et al. Page 25

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

specific (e.g., log-Mel spectrogram for audio, received signal strength indicator

for BLE, and fast Fourier transform coefficients for heart rate).

• Our findings indicate that over-the-air model adaption is important to handle

cross-user variations and domain variance for lightweight models, which our

framework currently does not handle. This would require the earable devices

to be capable of collecting human movement data and adapting the decision

boundaries of the baseline model onboard on the fly to reduce performance drop

[13, 55]. However, since earables are constrained in SRAM, more work needs to

be done to allow efficient on-device training. Domain adversarial training may

also be able to generate models robust to ambient disturbances and cross-user

variations [16, 30].

• Although most commercial earables (including eSense) do not yet support

firmware changes and only allow access to data, we speculate that future

earables will allow onboard programming with apps specifically developed for

onboard inference. For example, early wrist-worn devices were fixed worn

devices with applications running on smartphones. Modern smartwatches now

allow programming and on-device processing [18]. When such devices emerge in

earable computing, AURITUS would provide developers with the necessary model

training and development framework.

• We found out that sensor data from earable devices suffer from missing data,

cross-channel timestamp misalignment, and window jitter, due to packet drops

and the absence of on-chip clocks. This can reduce the performance of ML

models when training for complex event processing [84]. The solution can be

to either inject ML models with uncertainty awareness via uncertainty-injected

training pipeline [84, 89] or use onboard clocks and hardware enhancements for

precise time-synchronization [88] and handling packet drops.

ACKNOWLEDGMENTS

We thank Nokia Bell Labs for providing us with the eSense earable hardware, which we used in this paper.

The research reported in this paper was sponsored in part by: the CONIX Research Center, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA; by the IoBT REIGN
Collaborative Research Alliance funded by the Army Research Laboratory (ARL) under Cooperative Agreement
W911NF-17-2-0196; by the NIH mHealth Center for Discovery, Optimization and Translation of Temporally-
Precise Interventions (mDOT) under award 1P41EB028242; by the National Science Foundation (NSF) under
awards # OAC-1640813 and CNS-1822935; and, by and the King Abdullah University of Science and Technology
(KAUST) through its Sensor Innovation research program. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed or
implied, of the ARL, DARPA, KAUST, NIH, NSF, SRC, or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
here on.

REFERENCES

[1]. 2021. Falls - World Health Organization. Retrieved from: https://www.who.int/en/news-room/fact-
sheets/detail/falls, Accessed: 29th Oct. 2021.

[2]. Ahad Md Atiqur Rahman, Antar Anindya Das, and Ahmed Masud. 2020. IoT sensor-based
activity recognition.

SAHA et al. Page 26

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.who.int/en/news-room/fact-sheets/detail/falls
https://www.who.int/en/news-room/fact-sheets/detail/falls

[3]. Ahuja Ashwin, Ferlini Andrea, and Mascolo Cecilia. 2021. PilotEar: Enabling In-ear Inertial
Navigation. In Adjunct Proceedings of the 2021 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International
Symposium on Wearable Computers. 139–145.

[4]. Anguita Davide, Ghio Alessandro, Oneto Luca, Perez Xavier Parra, and Ortiz Jorge Luis Reyes.
2013. A public domain dataset for human activity recognition using smartphones. In Proceedings
of the 21th International European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning. 437–442.

[5]. Atallah Louis, Wiik Anatole, Jones Gareth G, Lo Benny, Cobb Justin P, Amis Andrew, and Yang
Guang-Zhong. 2012. Validation of an ear-worn sensor for gait monitoring using a force-plate
instrumented treadmill. Gait & posture 35, 4 (2012), 674–676. [PubMed: 22169386]

[6]. Aurand Alexander M, Dufour Jonathan S, and Marras William S. 2017. Accuracy map of an
optical motion capture system with 42 or 21 cameras in a large measurement volume. Journal of
biomechanics 58 (2017), 237–240. [PubMed: 28549599]

[7]. Banbury Colby, Reddi Vijay Janapa, Torelli Peter, Holleman Jeremy, Jeffries Nat, Kiraly Csaba,
Montino Pietro, Kanter David, Ahmed Sebastian, Pau Danilo, et al. 2021. MLPerf Tiny
Benchmark. Advances in Neural Information Processing Systems (2021).

[8]. Banbury Colby, Zhou Chuteng, Fedorov Igor, Matas Ramon, Thakker Urmish, Gope Dibakar,
Reddi VijayJanapa, Mattina Matthew, and Whatmough Paul. 2021. Micronets: Neural network
architectures for deploying tinyml applications on commodity microcontrollers. Proceedings of
Machine Learning and Systems 3 (2021).

[9]. Berndt Donald J and Clifford James. 1994. Using dynamic time warping to find patterns in time
series.. In KDD workshop, Vol. 10. Seattle, WA, USA:, 359–370.

[10]. Bonnabel Silvere. 2007. Left-invariant extended Kalman filter and attitude estimation. In 2007
46th IEEE Conference on Decision and Control. IEEE, 1027–1032.

[11]. Bulling Andreas, Blanke Ulf, and Schiele Bernt. 2014. A tutorial on human activity recognition
using body-worn inertial sensors. ACM Computing Surveys (CSUR) 46, 3 (2014), 1–33.

[12]. Cai Han, Gan Chuang, Wang Tianzhe, Zhang Zhekai, and Han Song. 2019. Once-for-All:
Train One Network and Specialize it for Efficient Deployment. In International Conference on
Learning Representations.

[13]. Cai Han, Gan Chuang, Zhu Ligeng, and Han Song. 2020. TinyTL: Reduce Memory, Not
Parameters for Efficient On-Device Learning. Advances in Neural Information Processing
Systems 33 (2020).

[14]. Cao Gaoshuai, Yuan Kuang, Xiong Jie, Yang Panlong, Yan Yubo, Zhou Hao, and Li Xiang-Yang.
2020. Earphonetrack: involving earphones into the ecosystem of acoustic motion tracking. In
Proceedings of the 18th Conference on Embedded Networked Sensor Systems. 95–108.

[15]. Casilari Eduardo, Santoyo-Ramón Jose A, and Cano-García Jose M. 2017. Umafall: A
multisensor dataset for the research on automatic fall detection. Procedia Computer Science
110 (2017), 32–39.

[16]. Chen Changhao, Miao Yishu, Chris Xiaoxuan Lu Linhai Xie, Blunsom Phil, Markham Andrew,
and Trigoni Niki. 2019. Motiontransformer: Transferring neural inertial tracking between
domains. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 8009–8016.

[17]. Chen Wei, Hu Ruimin, Wang Xiaochen, and Li Dengshi. 2020. HRTF Representation with
Convolutional Auto-encoder. In International Conference on Multimedia Modeling. Springer,
605–616.

[18]. Chen Xiao, Chen Wanli, Liu Kui, Chen Chunyang, and Li Li. 2021. A comparative study of
smartphone and smartwatch apps. In Proceedings of the 36th Annual ACM Symposium on
Applied Computing. 1484–1493.

[19]. Choudhury Romit Roy. 2021. Earable computing: A new area to think about. In Proceedings of
the 22nd International Workshop on Mobile Computing Systems and Applications. 147–153.

[20]. Chung Hakyoung, Ojeda Lauro, and Borenstein Johann. 2001. Accurate mobile robot dead-
reckoning with a precision-calibrated fiber-optic gyroscope. IEEE transactions on robotics and
automation 17, 1 (2001), 80–84.

SAHA et al. Page 27

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[21]. David Robert, Duke Jared, Jain Advait, Vijay Janapa Reddi Nat Jeffries, Li Jian, Kreeger Nick,
Nappier Ian, Natraj Meghna, Wang Tiezhen, et al. 2021. TensorFlow Lite Micro: Embedded
Machine Learning on TinyML Systems. Proceedings of MLSys 3 (2021).

[22]. Dorman Michael F, Loiselle Louise H, Cook Sarah J, Yost William A, and Gifford René H. 2016.
Sound source localization by normal-hearing listeners, hearing-impaired listeners and cochlear
implant listeners. Audiology and Neurotology 21, 3 (2016), 127–131. [PubMed: 27077663]

[23]. Elliott Sharon, Painter Jane, and Hudson Suzanne. 2009. Living alone and fall risk factors in
community-dwelling middle age and older adults. Journal of community health 34, 4 (2009),
301–310. [PubMed: 19333744]

[24]. Euston Mark, Coote Paul, Mahony Robert, Kim Jonghyuk, and Hamel Tarek. 2008. A
complementary filter for attitude estimation of a fixed-wing UAV. In 2008 IEEE/RSJ
international conference on intelligent robots and systems. IEEE, 340–345.

[25]. Faller Christof. 2004. Parametric coding of spatial audio. Technical Report. EPFL

[26]. Fan Xiaoran, Shangguan Longfei, Rupavatharam Siddharth, Zhang Yanyong, Xiong Jie, Ma
Yunfei, and Howard Richard. 2021. HeadFi: bringing intelligence to all headphones. In
Proceedings of the 27th Annual International Conference on Mobile Computing and Networking.
147–159.

[27]. Fedorov Igor, Adams Ryan P, Mattina Matthew, and Whatmough Paul N. 2019. SpArSe: Sparse
Architecture Search for CNNs on Resource-Constrained Microcontrollers. Advances in Neural
Information Processing Systems 32 (2019).

[28]. Ferlini Andrea, Montanari Alessandro, Mascolo Cecilia, and Harle Robert. 2019. Head motion
tracking through in-ear wearables. In Proceedings of the 1st International Workshop on Earable
Computing. 8–13.

[29]. Furtado Joshua S, Liu Hugh HT, Lai Gilbert, Lacheray Herve, and Desouza-Coelho Jason. 2019.
Comparative analysis of optitrack motion capture systems. In Advances in Motion Sensing and
Control for Robotic Applications. Springer, 15–31.

[30]. Ganin Yaroslav, Ustinova Evgeniya, Ajakan Hana, Germain Pascal, Larochelle Hugo, Laviolette
François, Marchand Mario, and Lempitsky Victor. 2016. Domain-adversarial training of neural
networks. The journal of machine learning research 17, 1 (2016), 2096–2030.

[31]. Garrido-Merchán Eduardo C and Hernández-Lobato Daniel. 2020. Dealing with categorical and
integer-valued variables in bayesian optimization with gaussian processes. Neurocomputing 380
(2020), 20–35.

[32]. Gil Bruno, Anastasova Salzitsa, and Yang Guang Z. 2019. A smart wireless Ear-Worn device for
cardiovascular and sweat parameter monitoring during physical exercise: design and performance
results. Sensors 19, 7 (2019), 1616. [PubMed: 30987280]

[33]. Gjoreski Hristijan, Ciliberto Mathias, Wang Lin, Ordonez Morales Francisco Javier, Mekki
Sami, Valentin Stefan, and Roggen Daniel. 2018. The university of sussex-huawei locomotion
and transportation dataset for multimodal analytics with mobile devices. IEEE Access 6 (2018),
42592–42604.

[34]. Gopinath Sridhar, Ghanathe Nikhil, Seshadri Vivek, and Sharma Rahul. 2019. Compiling KB-
sized machine learning models to tiny IoT devices. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 79–95.

[35]. Gupta Chirag, Suggala Arun Sai, Goyal Ankit, Simhadri Harsha Vardhan, Paranjape Bhargavi,
Kumar Ashish, Goyal Saurabh, Udupa Raghavendra, Varma Manik, and Jain Prateek. 2017.
Protonn: Compressed and accurate knn for resource-scarce devices. In International Conference
on Machine Learning. PMLR, 1331–1340.

[36]. Han Song, Mao Huizi, and Dally William J. 2016. Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. International Conference on
Learning Representations (ICLR) (2016).

[37]. Hassan Mohammed Mehedi, Uddin Md Zia, Mohamed Amr, and Almogren Ahmad. 2018. A
robust human activity recognition system using smartphone sensors and deep learning. Future
Generation Computer Systems 81 (2018), 307–313.

[38]. Hossain Tahera, Islam Md Shafiqul, Rahman Ahad Md Atiqur, and Inoue Sozo. 2019. Human
activity recognition using earable device. In Adjunct Proceedings of the 2019 ACM International

SAHA et al. Page 28

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM
International Symposium on Wearable Computers. 81–84.

[39]. Islam Md Shafiqul, Hossain Tahera, Rahman Ahad Md Atiqur, and Inoue Sozo. 2021. Exploring
Human Activities Using eSense Earable Device. In Activity and Behavior Computing. Springer,
169–185.

[40]. Johnson Richard A, Miller Irwin, and Freund John E. 2000. Probability and statistics for
engineers. Vol. 2000.

[41]. Kalman RE. 1960. A New Approach to Linear Filtering and Prediction Problems. Journal of
Basic Engineering 82, 1 (1960), 35–45.

[42]. Kannus Pekka, Parkkari Jari, Koskinen Seppo, Niemi Seppo, Palvanen Mika, Järvinen Markku,
and Vuori Ilkka. 1999. Fall-induced injuries and deaths among older adults. Jama 281, 20 (1999),
1895–1899. [PubMed: 10349892]

[43]. Katayama Shin, Mathur Akhil, Marc Van den Broeck, Okoshi Tadashi, Nakazawa Jin, and
Kawsar Fahim. 2019. Situation-Aware Emotion Regulation of Conversational Agents with
Kinetic Earables. In 2019 8th International Conference on Affective Computing and Intelligent
Interaction (ACII). IEEE, 725–731.

[44]. Kawaguchi Nobuo, Ogawa Nobuhiro, Iwasaki Yohei, Kaji Katsuhiko, Terada Tsutomu, Murao
Kazuya, Inoue Sozo, Kawahara Yoshihiro, Sumi Yasuyuki, and Nishio Nobuhiko. 2011. HASC
Challenge: gathering large scale human activity corpus for the real-world activity understandings.
In Proceedings of the 2nd augmented human international conference. 1–5.

[45]. Kawsar Fahim, Min Chulhong, Mathur Akhil, and Montanari Allesandro. 2018. Earables for
personal-scale behavior analytics. IEEE Pervasive Computing 17, 3 (2018), 83–89.

[46]. Kawsar Fahim, Min Chulhong, Mathur Akhil, Montanari Alessandro, Acer Utku Günay, and
Marc Van den Broeck. 2018. eSense: Open Earable Platform for Human Sensing. In Proceedings
of the 16th ACM Conference on Embedded Networked Sensor Systems. 371–372.

[47]. King James and Awad Ali Ismail. 2016. A distributed security mechanism for resource-
constrained IoT devices. Informatica 40, 1 (2016).

[48]. Kok Manon, Hol Jeroen D, and Schön Thomas B. 2017. Using Inertial Sensors for Position and
Orientation Estimation. Foundations and Trends in Signal Processing 11, 1-2 (2017), 1–153.

[49]. Kumar Ashish, Goyal Saurabh, and Varma Manik. 2017. Resource-efficient machine learning in
2 kb ram for the internet of things. In International Conference on Machine Learning. PMLR,
1935–1944.

[50]. Kusupati Aditya, Singh Manish, Bhatia Kush, Kumar Ashish, Jain Prateek, and Varma Manik.
2018. FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural
Network. In NeurIPS.

[51]. Laporte Matias, Baglat Preety, Gashi Shkurta, Gjoreski Martin, Santini Silvia, and Langheinrich
Marc. 2021. Detecting Verbal and Non-Verbal Gestures Using Earables. In Adjunct Proceedings
of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and
Proceedings of the 2021 ACM International Symposium on Wearable Computers. 165–170.

[52]. Lara Oscar D and Labrador Miguel A. 2012. A survey on human activity recognition using
wearable sensors. IEEE communications surveys & tutorials 15, 3 (2012), 1192–1209.

[53]. Lea Colin, Vidal Rene, Reiter Austin, and Hager Gregory D. 2016. Temporal convolutional
networks: A unified approach to action segmentation. In European Conference on Computer
Vision. Springer, 47–54.

[54]. Lee Seungchul, Min Chulhong, Montanari Alessandro, Mathur Akhil, Chang Youngjae, Song
Junehwa, and Kawsar Fahim. 2019. Automatic Smile and Frown Recognition with Kinetic
Earables. In Proceedings of the 10th Augmented Human International Conference 2019. 1–4.

[55]. Lee Seulki and Nirjon Shahriar. 2020. Learning in the Wild: When, How, and What to Learn for
On-Device Dataset Adaptation. In Proceedings of the 2nd International Workshop on Challenges
in Artificial Intelligence and Machine Learning for Internet of Things. 34–40.

[56]. Liberis Edgar, Dudziak Łukasz, and Lane Nicholas D. 2021. μNAS: Constrained Neural
Architecture Search for Microcontrollers. In Proc. of the 1st WKSH on Machine Learn. and
Sys. 70–79.

SAHA et al. Page 29

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[57]. Lin Ji, Chen Wei-Ming, Lin Yujun, Gan Chuang, Han Song, et al. 2020. MCUNet: Tiny
Deep Learning on IoT Devices. Advances in Neural Information Processing Systems 33 (2020),
11711–11722.

[58]. Liu Kai-Chun, Hsieh Chia-Yeh, Huang Hsiang-Yun, Hsu Steen Jun-Ping, and Chan Chia-Tai.
2019. An analysis of segmentation approaches and window sizes in wearable-based critical fall
detection systems with machine learning models. IEEE Sensors Journal 20, 6 (2019), 3303–3313.

[59]. Sebastian OH Madgwick Andrew JL Harrison, and Vaidyanathan Ravi. 2011. Estimation of
IMU and MARG orientation using a gradient descent algorithm. In 2011 IEEE international
conference on rehabilitation robotics. IEEE, 1–7.

[60]. Mandekar Swati, Jentsch Lina, Lutz Kai Dr, Behbahani Mehdi Dr, and Melnykowycz Mark.
2021. Earable Design Analysis for Sleep EEG Measurements. In Adjunct Proceedings of
the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and
Proceedings of the 2021 ACM International Symposium on Wearable Computers. 171–175.

[61]. Micucci Daniela, Mobilio Marco, and Napoletano Paolo. 2017. Unimib shar: A dataset for
human activity recognition using acceleration data from smartphones. Applied Sciences 7, 10
(2017), 1101.

[62]. Mills David L. 1991. Internet time synchronization: the network time protocol. IEEE
Transactions on communications 39, 10 (1991), 1482–1493.

[63]. Min Chulhong, Mathur Akhil, and Kawsar Fahim. 2018. Audio-Kinetic Model for Automatic
Dietary Monitoring with Earable Devices. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services. 517–517.

[64]. Min Chulhong, Mathur Akhil, and Kawsar Fahim. 2018. Exploring audio and kinetic sensing
on earable devices. In Proceedings of the 4th ACM Workshop on Wearable Systems and
Applications. 5–10.

[65]. Nasser Arshad, Zhu Kening, and Wiseman Sarah. 2019. Thermo-haptic earable display for the
hearing and visually impaired. In The 21st International ACM SIGACCESS Conference on
Computers and Accessibility. 630–632.

[66]. Nirjon Shahriar, Robert F Dickerson Qiang Li, Asare Philip, John A Stankovic Dezhi Hong,
Zhang Ben, Jiang Xiaofan, Shen Guobin, and Zhao Feng. 2012. Musicalheart: A hearty way of
listening to music. In Proceedings of the 10th ACM Conference on Embedded Network Sensor
Systems. 43–56.

[67]. Odoemelem Henry, Hölzemann Alexander, and Van Laerhoven Kristof. 2019. Using the eSense
wearable earbud as a light-weight robot arm controller. In Proceedings of the 1st International
Workshop on Earable Computing. 26–29.

[68]. Ordóñez Francisco Javier and Roggen Daniel. 2016. Deep convolutional and lstm recurrent
neural networks for multimodal wearable activity recognition. Sensors 16, 1 (2016), 115.
[PubMed: 26797612]

[69]. Ota Hiroki, Chao Minghan, Gao Yuji, Wu Eric, Tai Li-Chia, Chen Kevin, Matsuoka Yasutomo,
Iwai Kosuke, Hossain M Fahad Wei Gao, et al. 2017. 3d Printed “Earable” Smart Devices for
Real-time Detection of Core Body Temperature. ACS sensors 2, 7 (2017), 990–997. [PubMed:
28721726]

[70]. Parhizkari Parvaneh. 2008. Binaural Hearing Human Ability of Sound Source Localization.
Master’s thesis. Blekinge Institute of Technology.

[71]. Pereira Nuno, Rowe Anthony, Farb Michael, Liang Ivan, Lu Edward, and Riebling Eric.
2021. ARENA: The Augmented Reality Edge Networking Architecture. In 2021 IEEE/ACM
International Symposium on Mixed and Augmented Reality (ISMAR’21) (Bari, Italy). IEEE/
ACM.

[72]. Pfreundtner Felix, Yang Jing, and Sörös Gábor. 2021. (W) Earable Microphone Array and
Ultrasonic Echo Localization for Coarse Indoor Environment Mapping. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
4475–4479.

[73]. Plazak Joseph and Kersten-Oertel Marta. 2018. A Survey on the Affordances of “Hearables”.
Inventions 3, 3 (2018), 48.

SAHA et al. Page 30

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[74]. Prakash Jay, Yang Zhijian, Wei Yu-Lin, and Choudhury Romit Roy. 2019. Stear: Robust step
counting from earables. In Proceedings of the 1st International Workshop on Earable Computing.
36–41.

[75]. Radhakrishnan Meera and Misra Archan. 2019. Can earables support effective user engagement
during weight-based gym exercises?. In Proceedings of the 1st International Workshop on
Earable Computing. 42–47.

[76]. Radhakrishnan Meera, Misra Kushaan, and Ravichandran V. 2021. Applying “Earable” Inertial
Sensing for Real-time Head Posture Detection. In 2021 IEEE International Conference on
Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom
Workshops). IEEE, 176–181.

[77]. Radhakrishnan Meera, Rathnayake Darshana, Han Ong Koon, Hwang Inseok, and Misra Archan.
2020. ERICA: enabling real-time mistake detection & corrective feedback for free-weights
exercises. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems.
558–571.

[78]. Ren Pengzhen, Xiao Yun, Chang Xiaojun, Huang Po-Yao, Li Zhihui, Chen Xiaojiang, and Wang
Xin. 2021. A comprehensive survey of neural architecture search: Challenges and solutions.
ACM Computing Surveys (CSUR) 54, 4 (2021), 1–34.

[79]. Röddiger Tobias, Beigl Michael, and Exler Anja. 2020. Design space and usability of earable
prototyping. In Proceedings of the 2020 International Symposium on Wearable Computers. 73–
78.

[80]. Röddiger Tobias, Wolffram Daniel, Laubenstein David, Budde Matthias, and Beigl Michael.
2019. Towards respiration rate monitoring using an in-ear headphone inertial measurement unit.
In Proceedings of the 1st International Workshop on Earable Computing. 48–53.

[81]. Ronao Charissa Ann and Cho Sung-Bae. 2016. Human activity recognition with smartphone
sensors using deep learning neural networks. Expert systems with applications 59 (2016), 235–
244.

[82]. Saha Swapnil Sayan, Rahman Shafizur, Rasna Miftahul Jannat, Hossain Tahera, Inoue Sozo, and
Ahad Md Atiqur Rahman. 2018. Supervised and neural classifiers for locomotion analysis. In
Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium
on Pervasive and Ubiquitous Computing and Wearable Computers. 1563–1570.

[83]. Saha Swapnil Sayan, Rahman Shafizur, Rasna Miftahul Jannat, Islam AKM Mahfuzul, and
Ahad Md Atiqur Rahman. 2018. DU-MD: An open-source human action dataset for ubiquitous
wearable sensors. In 2018 Joint 7th International Conference on Informatics, Electronics
& Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern
Recognition (icIVPR). IEEE, 567–572.

[84]. Saha Swapnil Sayan, Sandha Sandeep Singh, and Srivastava Mani. 2021. Deep Convolutional
Bidirectional LSTM for Complex Activity Recognition with Missing Data. In Human Activity
Recognition Challenge. Springer, 39–53.

[85]. Sanchez-Iborra Ramon and Skarmeta Antonio F. 2020. Tinyml-enabled frugal smart objects:
Challenges and opportunities. IEEE Circuits and Systems Magazine 20, 3 (2020), 4–18.

[86]. Sandha Sandeep Singh, Aggarwal Mohit, Fedorov Igor, and Srivastava Mani. 2020. Mango: A
Python Library for Parallel Hyperparameter Tuning. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 3987–3991.

[87]. Sandha Sandeep Singh, Aggarwal Mohit, Saha Swapnil Sayan, and Srivastava Mani. 2021.
Enabling Hyperparameter Tuning of Machine Learning Classifiers in Production. In 2021 IEEE
Third Intl’ Conf. on Cognitive Machine Intelligence (CogMI). IEEE, 1–10.

[88]. Sandha Sandeep Singh, Noor Joseph, Anwar Fatima M, and Srivastava Mani. 2019. Exploiting
smartphone peripherals for precise time synchronization. In 2019 IEEE Global Conference on
Signal and Information Processing (GlobalSIP). IEEE, 1–6.

[89]. Sandha Sandeep Singh, Noor Joseph, Anwar Fatima M, and Srivastava Mani. 2020. Time
awareness in deep learning-based multimodal fusion across smartphone platforms. In 2020
IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation
(IoTDI). IEEE, 149–156.

SAHA et al. Page 31

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[90]. Sucerquia Angela, López José David, and Vargas-Bonilla Jeshs Francisco. 2017. SisFall: A fall
and movement dataset. Sensors 17, 1 (2017), 198. [PubMed: 28117691]

[91]. Sun Wei, Franklin Mingzhe Li Benjamin Steeper, Xu Songlin, Tian Feng, and Zhang Cheng.
2021. TeethTap: Recognizing Discrete Teeth Gestures Using Motion and Acoustic Sensing on an
Earpiece. In 26th International Conference on Intelligent User Interfaces. 161–169.

[92]. Takayama Yushi, Ishii Shun, Yokokubo Anna, and Lopez Guillaume. 2021. Detecting forward
leaning posture using eSense and developing a posture improvement promoting system. In
Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable
Computers. 178–179.

[93]. Taniguchi Kazuhiro, Kondo Hisashi, Kurosawa Mami, and Nishikawa Atsushi. 2018. Earable
TEMPO: a novel, hands-free input device that uses the movement of the tongue measured with a
wearable ear sensor. Sensors 18, 3 (2018), 733. [PubMed: 29494482]

[94]. van den Oord Aäron, Dieleman Sander, Zen Heiga, Simonyan Karen, Vinyals Oriol, Graves
Alex, Kalchbrenner Nal, Senior Andrew, and Kavukcuoglu Koray. 2016. WaveNet: A Generative
Model for Raw Audio. In 9th ISCA Workshop on Speech Synthesis Workshop (SSW 9).

[95]. Vavoulas George, Chatzaki Charikleia, Malliotakis Thodoris, Pediaditis Matthew, and Tsiknakis
Manolis. 2016. The mobiact dataset: Recognition of activities of daily living using smartphones.
In International Conference on Information and Communication Technologies for Ageing Well
and e-Health, Vol. 2. SCITEPRESS, 143–151.

[96]. Verma Dhruv, Bhalla Sejal, Sahnan Dhruv, Shukla Jainendra, and Parnami Aman. 2021.
ExpressEar: Sensing Fine-Grained Facial Expressions with Earables. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 3 (2021), 1–28.

[97]. Wang Gaojing, Li Qingquan, Wang Lei, Wang Wei, Wu Mengqi, and Liu Tao. 2018. Impact of
sliding window length in indoor human motion modes and pose pattern recognition based on
smartphone sensors. Sensors 18, 6 (2018), 1965. [PubMed: 29912174]

[98]. Wang Xue and Zhang Yang. 2021. Nod to Auth: Fluent AR/VR Authentication with User
Head-Neck Modeling. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems. 1–7.

[99]. Weiss Gary M, Timko Jessica L, Gallagher Catherine M, Yoneda Kenichi, and Schreiber Andrew
J. 2016. Smartwatch-based activity recognition: A machine learning approach. In 2016 IEEE-
EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE, 426–429.

[100]. Peter Won Seong-hoon and Golnaraghi Farid. 2009. A triaxial accelerometer calibration method
using a mathematical model. IEEE transactions on instrumentation and measurement 59, 8
(2009), 2144–2153.

[101]. Xu Tao, Zhou Yun, and Zhu Jing. 2018. New advances and challenges of fall detection systems:
A survey. Applied Sciences 8, 3 (2018), 418.

[102]. Yang Zhijian, Wei Yu-Lin, Shen Sheng, and Choudhury Romit Roy. 2020. Ear-ar: indoor
acoustic augmented reality on earphones. In Proceedings ofthe 26th Annual International
Conference on Mobile Computing and Networking. 1–14.

[103]. Zeagler Clint. 2017. Where to wear it: functional, technical, and social considerations in
on-body location for wearable technology 20 years of designing for wearability. In Proceedings
of the 2017 ACM International Symposium on Wearable Computers. 150–157.

[104]. Zhang Mi and Sawchuk Alexander A. 2012. USC-HAD: a daily activity dataset for ubiquitous
activity recognition using wearable sensors. In Proceedings of the 2012 ACM conference on
ubiquitous computing. 1036–1043.

SAHA et al. Page 32

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

CCS Concepts:

Human-centered computing → Ubiquitous and mobile computing systems and
tools; • Computing methodologies → Machine learning, • Computer systems
organization → Embedded systems.

SAHA et al. Page 33

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.
Architecture of AURITUS. The first two modules take care of collecting and labeling

high resolution earable data interactively. The development and generation modules allow

model and filter optimization through automated HIL Bayesian NAS and optimization,

respectively. Yellow boxes signify a process (e.g., transformation, optimization, etc.) and red

cylinders signify stored artefacts (e.g., data, models, libraries, etc.).

SAHA et al. Page 34

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Experimental setup for head-pose and ground truth data collection, with the positions (in

inches) of target markers characterized in Cartesian coordinates w.r.t. origin marker.

SAHA et al. Page 35

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Heatmap of average DTW distance across all activity classes and selected simple head

movements. The distance should be small among inertial traces of same class (marked with

blue bounding box) and large for different classes.

SAHA et al. Page 36

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
HIL model optimization for earable activity detection using Bayesian NAS. The system

supports both the use of proxy and real hardware to get hardware constraint estimates.

SAHA et al. Page 37

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Illustration of lightweight model architectures geared towards TinyML devices. (a) The

addition of a residual connection with two scalars (α, β) stabilizes vanilla RNN training

while taking advantage of the relative lightweightness of vanilla RNN against gated RNN.

(b) Converting the residual connection to a gate while enforcing U and W to be LSQ

yields lightweight yet accurate gated RNN. (c) Sparsely projecting input features to a

low-dimensional space allows DT and kNN to be computationally efficient. (d) Enforcing

causal convolution and dilated kernels allows spatial and temporal feature extraction in long

time-series sequences without requiring recurrent connections or significant compute.

SAHA et al. Page 38

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Performance comparison of our earable activity detection models (colored black) versus

proposed models in literature (colored red). For activity detection on seen participants,

FastRNN provides 6% accuracy improvement over the SOTA, while being 98× smaller. For

activity detection on unseen participants, FastGRNN provides 3% accuracy improvement

over the SOTA, while being 740× smaller. Both classifiers are suitable for deployment on

ultra-resource-constrained devices.

SAHA et al. Page 39

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Boxplot showing leave-1 out multiclass error metrics for our proposed classifiers for varying

window sizes.

SAHA et al. Page 40

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Effect of window size on normalized leave-1 out test accuracy on conventional and

lightweight activity classifiers.

SAHA et al. Page 41

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
Generalization performance (leave-n out test accuracy) of our earable activity classifiers

with increase in the number of participants left out of the training set. The window size was

10 seconds for conventional classifiers and 5 seconds for lightweight classifiers.

SAHA et al. Page 42

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10.
Example architectural adaption and device capability exploitation by Bayesian NAS based

on resource usage for TCN activity classifier. The RAM and flash constraints of the device

are written inside parenthesis. Li refers to ith layer of TCN.

SAHA et al. Page 43

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.
(Left) Accuracy and SRAM usage estimation comparison between proxyless Bayesian

NAS and proxied Bayesian NAS for different devices. The SRAM usage is normalized

by maximum RAM capacity of each device. (Right) Relationship between FLOPS, model

latency and accuracy for TCN earable activity classifiers geared towards different devices.

FLOPS and latency have a strong linear correlation.

SAHA et al. Page 44

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 12.
(a) Error characteristics (planar and average) of the head-pose filters (tuned) in filter zoo .

IEKF* refers to IEKF with translational movements and IEKF# refers to IEKF with only

head movements. (b) Comparison of error characteristics of proposed head-pose filters

against SOTA (c) SRAM and flash usage of proposed filters for ARM Cortex M4 (running

Mbed) and AVR RISC (running Arduino) processor architectures (d) Error reduction via BO

of filter parameters.

SAHA et al. Page 45

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 13.
(Left) Leave-1 out fall detection accuracy of lightweight ML models for various window

sizes trained to distinguish between falls and non-falls. (Right) Model size versus leave-1 out

fall detection accuracy of lightweight ML models trained to distinguish between falls and

non-falls.

SAHA et al. Page 46

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 14.
(Left) Hardware setup for binaural audio rendering experiment. (Right) Snapshot of sound

source localization test with real participants to quantify head-pose filter performance.

SAHA et al. Page 47

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 15.
Controlling head-orientation of virtual actors in an AR space (CONIX ARENA) using real

head-pose. The head-pose filter application communicates with the AR framework through

Pub/Sub topic hierarchy, which in turn alters atrribute parameters (in this case, head pose) of

target actor in the AR world.

SAHA et al. Page 48

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 49

Table 1.

Performance metrics of existing activity detectors and head-pose filters for earables

Activity Detectors (Full Body)

Classifier Accuracy (%) Feature Extraction Model Size (kB)

CNN [38] 88.3 No 9758

kNN [38] 81.2 Yes 381

Random Forest (RF) [75] 92.94 Yes 593

K-means Clustering [66] 96.8 Yes -

Head-Pose Filters

Filters Error characteristics

Ferlini et al. [28] 5.4 degrees (short) and 18.7 degrees (long)

Yang et al. [102] ~8 degrees (after 3 rounds of rotations)

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 50

Table 2.

Summary of executed activities.

ADL Description

1 Walking (W) The participant is asked to walk forward in a straight line, make a turn (clockwise or anti-clockwise) at the end of a
corridor and repeat (average speed: 1.5-3.5 mph).

2 Jogging (R) Similar to walking, but the participant runs slowly at uniform pace instead of normal walking pace (average speed:
3.0-5.0 mph).

3 Jumping (J) Each participant jumps at a particular spot without translational motion.

4 Standing (St) The participant stands freely with true-to-life head and limb movements allowed.

5 Turning Left (Tl) The participant walks forward in a counter-clockwise circle.

6 Turning Right (Tr) The participant walks forward in a clockwise circle.

7 Sitting (Si) Each participant is asked to sit on an office chair freely, allowing for natural limb and head movements.

8 Lying (L) Each participants lay on a sofa in various common sleeping positions.

9 Falling (F) The participant falls freely on a padded sofa from a standing position.

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 51

Table 3.

Results of Kolmogorov-Smirnov test on dataset participant statistics.

Parameter DF Statistic P > D Inference

Age (yrs) 45 0.1271 0.37217 Can’t reject normality at 0.05 significance level

Height (m) 45 0.13309 0.30585 Can’t reject normality at 0.05 significance level

Weight (kg) 45 0.14081 0.43016 Can’t reject normality at 0.05 significance level

Ear height from origin (inches) 45 0.11569 0.55641 Can’t reject normality at 0.05 significance level

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 52

Table 4.

Results of Kruskal-Wallis ANOVA between DTW distances of human motion from same class and different

classes.

Motion Type χ 2 P > χ2 Inference

Activity 6.96337 0.00832 At the 0.05 level, the populations are significantly different

Head-Pose 5.56564 0.01832 At the 0.05 level, the populations are significantly different

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 53

Table 5.

Features extracted for Bonsai, ProtoNN, and the five conventional activity classifiers. Only the shaded features

were used for Bonsai and ProtoNN.

Dominant Sign Entropy Integration Interquartile Range

Kurtosis Mean Abs. Dev. Maximum Minimum

Mean Avg. Mov. Mean Avg. Mov. Med. Avg. Mov. Max.

Avg. Mov. Min. Avg. Mov. SD Avg. Mov. Var. Avg. Mov. MAD

Autocorrelation Avg. Vec. Norm Avg. Z Score Median

Norm Pearson CC Range Skewness

Slope Sign Change Signal Mag. Area Standard Deviation Variance

Variation Zero Crossing Time Window

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 54

Table 6.

List of hardware evaluated for NAS.

Hardware SRAM (kB) Flash (kB) Proxy/HIL

Qualcomm CSR8670 (eSense platform) 128 16000 Proxy

STM32F446RE 128 512 HIL, Proxy

STM32F407VET6 192 512 Proxy

STM32L476RG 128 1024 HIL, Proxy

STM32F746ZG 320 1024 HIL, Proxy

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 55

Table 7.

Design space for all 10 models in the model and filter zoo. The classifiers marked (F) require feature

extraction overhead.

Candidate Model Design Space (Ω) HIL Other Parameters (Fixed)

Bagged Trees (F)

Number of learners: 10-500

✗ ✗Maximum number of splits: 1-23401

Number of predictors to sample: 1-241

AdaBoost (F)

Number of learners: 10-500

✗ ✗Maximum number of splits: 1-23401

Learning rate: 0.001-1

Coarse DT (F)
Maximum number of splits: 1-23401

✗ ✗
Split criterion: {Gini, Twoing, Deviance Reduction}

SVM (F)

Kernel: {Quadratic, Cubic, Linear}

✗ ✗
Multiclass method: One-vs-All, One-vs-One

Box constraint level: 0.001-1000

Standardize data: true, false

MLP (F) Number of hidden units: {15, 20, 50, 100} ✗ Number of layers: 2

TCN

Number of filters: 2-64

✓

Number of stacks: 1

Kernel size: 2-16 Dropout: 0.0

Use residual: true, false Activation: ReLU

Number of layers: 3-8 Normalization (weight, batch, layer): False

Dilation factors: [1,2,4,8,16,32,64,128,256] Learning Rate: 0.001 (Adam)

Fast GRNN

Hidden Units: 20-60 ✗

Learning Rate: 0.01

Decay Step and Rate: 200, 0.1

Sparsity (U, W): (1.0, 1.0)
Fast RNN

Nonlinearity (update, gate): (tanh, sigmoid)

Rank (U, W): (Full, Full)

Bonsai (F)

Sigmoid Parameter: 1-4

✗

Regularization (Z, W, V, T): (0.0001, 0.001, 0.001, 0.001)

Depth: 1-6 Sparsity (Z, W, V, T): (0.2,0.3,0.3,0.62)

Projection dimension: 10-70 Learning rate: 0.01

ProtoNN (F)

Projection dimension: 10-70

✗

Regularization (W, B, Z): (0.000005, 0, 0.00005)

Number of prototypes: 10-70 Sparsity (W, B, Z): (0.8,1.0,1.0)

γ: 0.0015-0.05 Learning rate: 0.03

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 56

Table 8.

Best performance of conventional ML activity classifiers on our dataset. The optimal window size was 10

seconds for all classifiers.

Classifier Optimal Hyperparameters Test Accuracy
(%)

Leave 1-out Test
Accuracy (%)

Model Size
(kB)

DT ensemble

Learners: 237, Splits: 23019, Mode: Bagging 100 90.0±8.5 5700

Learners: 344, Splits: 715, Learning Rate: 0.44 Mode:
AdaBoost 98.7 86.7±9.5 81600

Coarse DT Splits: 736, Criterion: Dev. Red., S.gate Dec. Splits: All 98.5 81.3± 11.4 1100

SVM (1-1) Kernel: Cubic, Penalty Level: 26.5, Normalization: Yes 99.9 91.0±5.4 22500

MLP
Hidden Layer: 2, Hidden Unit: 50 99.8 87.7±8.2

418
Hidden Layer: 2, Hidden Unit: 100 99.5 86.7±8.6

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SAHA et al. Page 57

Table 9.

Best performance of lightweight ML activity classifiers on our dataset. The optimal window size was 5

seconds for all classifiers. Note that the results shown for TCN are using proxies.

Classifier Optimal Hyperparameters RAM
(kB)

Flash
(kB)

FLOPS
(M)

Test
Accuracy
(%)

Leave 1-out
Test
Accuracy
(%)

Energy
(mW)

TCN

(eSense) Filters: 15, Kernel Size: 2, Dilations: [1,
2, 4, 8, 32, 128, 256], Skip Connections: No

39.3 52.8 7.52 94.6 80.0±9.4 -

(STM32F407VET6) Filters: 17, Kernel Size: 3,
Dilations: [2, 4, 32, 128, 256], Skip Connections:
No

47.6 54.6 10.3 94.0 83.0±10.3 -

(STM32F446RE) Filters: 18, Kernel Size: 2,
Dilations: [2, 4, 8, 16, 32, 64, 128, 256], Skip
Connections: Yes

55.4 73.4 12.3 95.3 83.2±9.7 116^

(STM32L476RG) Filters: 13, Kernel Size: 7,
Dilations: [1, 4, 16, 32], Skip Connections: No

49.9 53.3 10.1 95.0 82.0±14.4 50^

(STM32F746ZG) Filters: 21, Kernel Size: 2,
Dilations: [2, 8, 16, 64, 128, 256], Skip
Connections: Yes

55.6 66.4 10.1 96.7 79.0±9.9 418^

Fast GRNN Hidden Unit: 50 ~ 2 13.12 - 97.6 91.0±5.0 41-133#

Fast RNN Hidden Unit: 32 ~ 2 6.04 - 98.3 86.7±3.10 41-133#

Bonsai Depth: 3, Sigmoid Parameter: 1.0, Projection
Dimension: 22

~ 2 14.8 0.0136 80.3 78.7±5.9 250∨

ProtoNN Projection Dimension: 70, γ: 0.004, Prototypes:
70

~ 2 24.9 0.0174 74.0 66.7±8.4 275∨

^
EEMBC EnergyRunner™ benchmark [7], RTOS: Mbed, Interpreter: TFLM

#
EEMBC EnergyRunner™ benchmark, RTOS: Arduino, Compiler: SeeDot [34], Hardware: STM32L476RG and STM32F446RE

∨
Monsoon Power Monitor, OS: Raspbian, Interpreter: TFL, Hardware: Broadcom BCM2711

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 21.

	Abstract
	INTRODUCTION
	Challenges
	Contributions
	Organization

	BACKGROUND AND RELATED WORK
	Health Monitoring:
	Context Detection:
	AR, MR and Tangible Interfaces with 3D Sound:
	Security, Authentication, and Speech Recognition:
	Dead-Reckoning:
	Activity Detection and Head-Tracking Using Earables
	Neural Architecture Search

	DATA COLLECTION AND LABELING PIPELINE
	Data Collection Setup
	Participants and Activities
	Graphical Data Labeling Tool

	DEVELOPMENT OF MODELS AND FILTERS
	Hardware-Aware Lightweight Model Generation
	Hardware-Aware Bayesian NAS.
	Conventional Activity Classifiers.
	Lightweight Activity Classifiers.

	Activity Classifier Implementation Specifics
	Feature Computation and Windowing.
	Hardware and Software Specifications.
	Dataset Splits.
	Design Space Optimization.

	Head-pose Filters

	ALGORITHMIC EVALUATION, COMPARISON AND DISCUSSION
	Activity Detection Model Size and Accuracy
	Activity Detection Multiclass Metrics and Effect of Window Size
	Activity Detection Cross-Validation Studies (Leave-n Out)
	Performance of Hardware-in-the-loop Bayesian Neural Architecture Search
	Head-Pose Filter Size and Error Characteristics

	APPLICATIONS AND CASE STUDIES
	Fall Detection
	Binaural Audio Rendering
	Interacting with AR Frameworks

	CONCLUSION, LIMITATIONS, AND FUTURE WORK
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Fig. 12.
	Fig. 13.
	Fig. 14.
	Fig. 15.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.
	Table 7.
	Table 8.
	Table 9.

