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Abstract 

This report describes an algorithm for automatically translating BIF system-level behavioral 
descriptions to behavioral VHDL. BIF is a new intermediate representation for behavioral synthesis, 
based on annotated state tables that supports user control of the synthesis process by allowing 
specification of partial design structures, unit bindings, and modification of the design at various 
levels of abstraction. This flexibility creates a need for behavioral verification of the design at each 
level of abstraction to provide feedback information to the user. Since VHDL is a well formalized, 
simulatable language it makes an ideal target for translation. 

We discuss the complexities inherent in representing BIF's hierarchical state specifications in 
VHDL and examine a general model for the combined representation of hierarchy, timing, concur­
rency, and arbitrary state transitions in VHDL. 

We conclude the report with several examples from a recently implemented translator. 
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1 Introduction 

BIF is an intermediate design representation format, based on annotated textual state tables, that 

captures the complete behavior and structure of a design at each level of the behavioral synthesis 

process. (The format is described in detail in [DuHG89] and [DuHG90].) This report presents a 

method for translating BIF behavioral descriptions into VHDL. It seems necessary then, before we 

describe the details of the algorithm, to justify the need for BIF as a behavioral representation, 

rather than VHDL. Why do we use BIF to describe the behavior and structure of a design initially 

and not VHD L? Several reasons follow. 

VHDL is primarily a simulation language and thus its semantics are closely based on that of an 

event-driven simulator with the implicit notion of simulation time. Unfortunately, these semantics 

make the task of synthesis harder. There is no direct correspondence to hardware for features 

such as resolution functions, which are present in the language primarily to support simulation. 

Furthermore, since behavioral descriptions are written with the implicit notion of a simulation clock, 

several constructs in the language (such as events indicating signal changes) do not have feasible or 

efficient realizations in hardware. Designers also find it hard to mix styles when trying to describe 

designs for both synthesis and simulation using VHDL. BIF avoids these problems because it is 

designed to be a language primarily for synthesis. The translation algorithm, presented later in 

. this report, makes the simulation of BIF unnecessary by translating directly to simulatable VHDL. 

VHDL combines behavioral, timing, and structural models into one language. Each model has 

its own particular semantics, features, and syntax. From the designer's perspective, this flexibility 

makes VHDL a highly complex and confusing medium, both conceptually and syntactically. Thus, 

the learning curve for designers is low, and most designers who are used to a single model for design 

description find VHDL difficult to use. Furthermore, the richness of the language allows different 

designers to describe the same behavior in many dissimilar ways. Although these descriptions may 

simulate correctly, they create problems in synthesis, since synthesis tools have to account for a 

myriad of different description styles. BIF, on the other hand, uses a single model with a small 

but adequate set of common description features and integrates multiple levels of abstraction into 
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a concept with which designers are immediately familiar and comfortable: state tables. BIF also 

maintains a comparable syntax across these levels, reducing the amount of time and effort expended 

by the designer to learn and use the format. 

As a final reason, we will show in the next sections that certain desirable features for description 

are not explicitly supported by VHDL. Specifically, behavioral hierarchy, time-outs, and hierarchical 

events, though extensively used in specifying the behavior of complex designs, do not have obvious 

implementations in VHDL. 

In the next section we discuss some of the issues relevant to behavioral modeling and how BIF 

addresses them. Emerging from this discussion is the need for simulation of the design represen­

tation throughout the synthesis process and thus the need for translation from BIF to simulatable 

VHDL. Section 3 describes the issues involved in the translation process, section 4 lists the steps 

of the translation algorithm, and section 5 exhaustively details a translation example. Section 6 

presents a table of designs that have been translated, and section 7 summarizes the report. Further 

detailed examples are included in the appendices. 
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2 Behavioral Modeling for Synthesis 

Behavior can be defined as the functional interpretation of a design. Behavioral modeling for 

synthesis provides a method for describing the design's function so that it may subsequently be 

realized in hardware.· The behavioral description can then be successively refined in phases by 

various synthesis tools or mechanisms which gradually map behavior to structure until the entire 

description is transformed to the desired hardware representation. Synthesis can be targeted to 

register transfer descriptions, logic level, standard cell, and ultimately, layout description; but in 

every intervening phase, the intermediate structure and behavior must fulfill the initial behavioral 

requirement. Correctness of the description is best determined by simulating the behavior at each 

level of abstraction. Therefore, simulation, or a simple path to simulation, is a vital requirement 

for a behavioral synthesis/modeling environment. 

Behavioral description, by definition, does not necessarily define any specific structure. This 

should not require, however, that the description be entirely free of structural information. In 

many cases, the user may, to some degree, be familiar with the desired structure of the design as 

well as having a complete knowledge of the desired behavior. An ideal design description language 

should allow the designer freedom to define or mix both the behavior and structure of a design in 

the same language. BIF attempts to conform to this ideal by allowing the user to specify partial 

design structures as initial constraints. In addition, behavior to structure bindings are permitted by 

allowing the user to selectively bind behavioral operators to components, and behavioral variables to 

storage elements or wires. For example, if the designer knows that the operator+ in the behavioral 

description a +-- a + b is in a particularly time-critical portion or state of the design, then he or 

she may wish to specify that operator be bound to a fast adder, such as a carry-look-ahead adder, 

rather than a slower default: a+-- a+ { cla_adder} b. 

For the remainder of this section, we divide behavioral modeling issues into two categories: 

functional issues relating to the behavioral language itself, such as the use of one particular mod­

eling construct over another, and issues concerning how the language interacts with the user's 

environment, such as the use of graphical abstractions and/ or simulation feedback. 
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One common modeling construct used for large designs is hierarchical representation. In BIF 

this concept specifically addresses the case for which behavior is most naturally described by a hier­

archy of behavioral "modules" descending from a top level table of super-states to many operation 

"leaf'' states. Hierarchy in this fashion easily applies to state tables by expanding the definition of 

an individual state to define or encompass a table at a lower level of hierarchy. 

Concurrency, the concept of simultaneous processes, goes hand-in-hand with hierarchy for de­

scribing large, complex designs. Concurrency is also easily described in BIF by allowing the user 

the option to define a table as operating in parallel with another table. 

Representation of asynchronous behavior is important for designs that are not clocked or that 

exhibit a mixture of synchronous and asynchronous behavior. With the addition of an event field 

to the general state table archetype, BIF allows transfer of control from one state to another on 

the basis of signal transitions. 

'.Timing specification allows the designer to specify performance, introduce technological con­

straints, or simply guarantee correct behavior. BIF allows duration constraints to be placed on 

operations or states, the latter being represented by a timeout event occuring after a specified 

amount of time. 

Figure 1 shows the BIF design environment. The intermediate format is shown in the center, 

synthesis tools are shown on the left, and the user interface is shown on the right. At each level of 

abstraction the user can, either directly or through the use of tools, update, modify, or refine the 

design representation. This makes BIF very suitable as an intermediate format for design capture 

and design exchange between high level synthesis tools. In addition, each level can be simulated to 

show the user exactly how the design is behaving. If errors are detected, the user can modify the 

description appropriately or, as in the case of synthesis tool development, modify the tool. This 

provides a complete feedback loop at every phase of the synthesis process, allowing the user to view 

the format, observ~ the waveform simulation, and make any or all changes needed. 

The user interface to BIF, XBIF, is a graphical/tabular editor which uses labeled forms to 

capture the various fields of a BIF description. XBIF's textual forms have runtime syntax checking 
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capabilities for any text entered. This helps the user eliminate errors early in design capture. 

Details of the XBIF user interface can be found in [Hadl90]. 

The translator from BIF to VHDL is shown in the oval in the upper half of the user interface in 

Figure 1. The output from the translator can be fed directly to. a VHDL simulator such as [Vant89] 

and observed by the user. The remainder of this report discusses the translation algorithm used 

by BIF-to-VHDL. 
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3 Issues in Translating BIF Into VHDL 

VHDL does not naturally support the features of behavioral hierarchy, hierarchical events and 

time-outs, while BIF is well suited to such description styles. Using BIF as a front-end to designing 

with VHDL thus requires the translation of a BIF description into VHDL. This translation is 

achieved through the creation and use of special templates and auxiliary signals which facilitate the 

description of these features in VHDL automatically. This section describes the techniques used to 

translate some of these constructs from BIF into VHDL, including the basic data structures used, 

the translation templates, and the role of auxiliary signals used in the VHDL description. The 

example shown in Figure 2 shows a BIF operations-based description which exhibits a combination 

of several features including hierarchy, concurrency, event-based transitions and tL91e-outs. This 

BIF description is used as a running example for the rest of this section. //' 

Although 'Figure 2 employs only one of the several levels of design abstraction supported by BIF 

- the operations-based table, the details of the translation algorithm remain largely unchanged for 

the remaining table formats. The unit-based formats additionally require that VHDL component 

descriptions exist for each component referenced in a table. The control-based format translation 

is identical to that of the operations-based format, since the former uses only control inputs to 

describe actions. 

3.1 Representation of Behavioral Hierarchy and Concurrency 

The BIF description in Figure 2 shows a behavioral hierarchy where Table Top_Table is composed 

of two sub-tables h_table and c_table, along with events that effect transitions between any states of 

these sub-tables. Hierarchy, shown by the arrows between tables, is described naturally by allowing 

the Next State field to contain the name of a sub-table. The Event field contains "(subtable)" to 

distinguish the next state from a next state triggered by an event. 

Concurrency is indicated by the keyword Concurrent, as shown in h_table, which has a_table 

and b_table running concurrently under it. 
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Table h_table 

Concurrent 

ubTable a_table 

ubTable b_table 

0 1 

2 

0 1 

2 

c x 

c 

y == 'l' 

(else) 

b 1(1) < =b+"OOlO" 

Table 
c_table 

0 1 

Table e_tablel 

lP· State Cc 

0 1 

2 

a<= a+l 

a<= a+2 

2 

2 of Table elk l 
c_table 

1 

2 

h 

(else) 

.l.'. 

d>o 

(else) 

Figure 2: BIF Example 
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Hierarchy is described in detail in section 3.3. 

3.2 Hierarchical Events and Time-outs 

Figure 2 shows a hierarchical event "reset j" at the highest level of description (Table Example). 

If this hierarchical event occurs, it overrides any local event at a lower level. For instance, if the 

design is in state 1 of e_table, and the events "Xi" and "reset j" occur simultaneously, the design 

would be forced into state top of table Example. 

Time-out events are indicated by the keyword timeout and a duration. Time-outs are of two 

types: global and local. Table top_table shows a global time-out of 150 ns if its present state is c. 

This implies that a total of 150 ns will be spent in c_table, including any of its states or states of 

sub-tables, after which control will be transfered to state h of top_table. A local time-out forces a 

transition to the next state of the present state after a certain duration. For instance, if control is in 

the first conditionjactionlnext-state triplet of state 1 in c_table, the event "timeout 5ns" sequences 

the design back to state 1 after a duration of 5 ns. 

3.3 The Table-Tree 

The first step in converting the hierarchical BIF description into VHDL is to capture the hierarchy 

in a data structure. The Table-Tree is one such structure used to represent the hierarchical and 

concurrent structure of BIF descriptions. It is organized as a multi-way tree with nodes corre­

sponding to BIF tables and edges corresponding to the relationships of hierarchy between tables. 

The root node is the highest (outermost) level of hierarchy and the leaf nodes represent the lowest 

(innermost) level of hierarchy. The immediate children of a table node correspond to the sub-tables 

that the latter defines. 

Edges between . nodes in the Table-Tree are assigned weights based on the type of hierarchy 

and/ or concurrency that the edge implies. Figure 3 lists all the edge weights and their meanings. 

The basic translation algorithm traverses the Table-Tree and generates VHDL code using tern-
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Edge Weight Meaning 

0 Conditional hierarchical call 

1 Unconditional hierarchical call with 1 substate 

2 Unconditional hierarchical call with more than 1 substate 

3 Concurrency 

Figure 3: Edge Weights 

plates that are based on the values of edge weights and the types of sub-trees as described in the 

following subsections. Figure 4 shows the Table-Tree for the BIF description in Figure 2. 

Figure 5 shows a graphical depiction of the hierarchy between the top most table Example 

and table top_table. The two tables are represented by correspondingly labeled nodes in Figure 4 

separated by an arc weighted with the value 1. This is the simplest form of hierarchy and occurs 

whenever a parent table has a single state and the condition in that state is assumed to be true. 

In this example, a next-state event pair is given in table Example to indicate a transition on the 

rising edge of reset and to denote the hierarchical relationship between it and top_table. When the 

event occurs, which applies to all tables beneath the parent table, control is returned to the first 

state of table Example, and thus, to the first state of top_table. 

The table top_table defines two sub-tables, c_table and h_table, as shown in Figure 6. The edges 

between the three nodes in the Table-Tree are assigned value 2. This kind of hierarchy differs from 

type 1 only in that it allows more than one state to define a sub-table. 

Figure 7 shows how table c_table defines two sub-tables, d_table and e_table. In state 1 of c_table, 

d_table is to be a sub-table only if reg is equal to the bit value "10". This case identifies conditional 

hierarchy which is assigned value 0 in the Table-Tree. Notice in Figure 2 that the transition arc from 

the second state of c_table to e_table actually meets the specification for edge weight 2. However, 

since c_table has a zero weighted arc from its first state to d_table, the second arc is reassigned 
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Figure 4: BIF Table-Tree 
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top_table X falling 

h_table c_tab/e 

timeout 150ns 

Figure 6: Edge Weight 2 

value 0. Together, the three tables become a single Zero-Tree. 

3 .4 Zero-Trees 

After the edge weights have been assigned to the Table-Tree, subtrees identified as Zero-Trees are 

generated and given unique names. 

The conditional hierarchy represented by Zero-Trees presents a slight problem for the translation 

algorithm. If the definition of a sub-table occurs in one condition!actionlnext-state it should not be 

"active" under a different condition in the same state. Since the resulting VHDL code uses signals 

based on state and table names, directly implementing the tree as a hierarchy would cause the 

sub-table to be activated regardless of the condition. For instance, in Figure 4, c_table is the root 

of a Zero-Tree with two children, d_table and e~table. The conditional definition of the sub-table 

d_table requires that it be activated only when c_table is in its first state and the condition reg == 

))01" is true. However, a straightforward translation, mapping tables to VHDL processes, would 

require that d_table test the same condition. Since the condition occurs in c_table it should only 

be tested in the VHDL process corresponding to c_table. The solution is to reparent the Zero-Tree 

with a dummy node and make the original parent node one of the children, as shown in Figure 8. 
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The new node then guarantees correct sequencing behavior between the children . 

. e } 
I \ 

88 
Figure 8: Reparenting a Zero-Tree 

3.5 Resolving Hierarchical Events in VHDL 

3.5.1 Wait Statements 

Although VHDL is capable of representing behavioral hierarchy in a straightforward fashion using 

wait statements, the resulting description can become very large, repetitive and cumbersome. Since 

a hierarchical event forces the behavior to enter a default state for all (and any) sub-states, a normal 

state signal update can be performed only if no hierarchical events "above" the current state have 
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occurred. The straightforward approach to describing such hierarchy uses wait statements that test 

for all overriding hierarchical events at every event point in the VHD L behavior. This method can 

easily lead to an explosion in the number of hierarchical events tested and default states assigned. 

The resulting VHDL code is very long, unreadable and hard to maintain. Figure 9 shows an 

example of this case. The left-hand side of the figure describes a hierarchy of 26 tables, each having 

a single event which hierarchically affects all tables beneath it. On the right is the straightforward 

method for describing this behavior in VHDL. Each table is represented by a VHDL process which 

waits on all events that might occur in tables at higher levels of hierarchy. The last process, "Z", 

not only must wait on 26 separate events, but must properly determine which of the 26 events 

occurred and take appropriate action. 

el 

A e2 

B e3-e2~ 

rr=--:___-:_ -_ -_ - - - _-_-_-_- -11 
II C ... Y e2 

1
1 

1
1 1

1 

'1 z II 
I I ,, ,, 
1' II 
, , ,, 
, , ,, 
Lb-_-_-_-_-- - - -_-_ -_ -_ -::!J 

HIERARCHICAL DESCRIPTION 

A: PROCESS 
BEGIN 

~AIT UNTIL (el); 

END 
B: PROCESS 

BEGIN 
WAIT UNTIL (el OR e2); 
IF el THEN ... 
ELSEIF e2 THEN ... 
ENDIF ... 

END 

C: PROCESS 

Y: PROCESS 

Z: PROCESS 
BEGIN 

WAIT UNTIL (el OR e2 OR e3 OR e4, ... , OR e26); 
IF el THEN ... 
ELSEIF e2 THEN ... ... 
ELSEIF e25 THEN .. . 
EL SEIF e26 THEN .. . 
ENDIF 

END 

VHDL CODE 

Figure 9: Hierarchy Using Wa~t Statements 

Another shortcoming of the vhdl wait statement is the lack of the ability to combine the "wait 

on event" statement with the "wait until time-out". Figure 10 shows a behavioral description of 

a table that sequences two sub-tables based on a time-out specification. The first sub-table, A, 
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contains two states, Al and A2, and a transition from Al to A2 on the occurrence of EVENT. 

The specification for state Al requires that the design wait in that state for a maximum of lOns 

or until the occurrence of EVENT. In VHDL, the desired wait statement for process Al does not 

have these semantics and thus does not fulfill the required behavior. 

A B 

DESIRED BEHAVIOR 

'> ; 

A: PROCESS 
BEGIN 

WAIT FOR 10 ns; 

END 

Al: PROCESS 
BEGIN 

WAIT UNTIL (EVENT) FOR lONS; 

END 

INCORRECT VHDL CODE 

Figure 10: Events and Time-outs In Wait Statements 

3.5.2 State Signals and Resolution Functions 

The approach taken to avoid the problems using wait statements is as follows. A signal is used 

to represent the state of the design at each level of the hierarchy. These state signals (along with 

the signals corresponding to actions performed in that state) can be. assigned in many different 

blocks of the generated VHDL code. Since each of these assignments to state signals represents a 

state transition at that level of hierarchy, the assignment that corresponds to the highest level of 

hierarchy should override all other assignments. Hence a VHDL resolution function is written that 

automatically selects the assignment to the state signal at the highest level of hierarchy. 

This is achieved by defining the state signal driver in the resolution function as an array, with 

assignments to the driver placed in the array in a hierarchical order. By always picking the first 

element of the array, the state signal is guaranteed to be assigned the state transition corresponding 

to the highest level of hierarchy. 
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Figure 11 shows how the described process would work for two tables writing different values 

to the same signal at the same time. 

TOP 

A B 

Al 

EV NT2 j C 

Ll 
Table Description 

A: BLOCK (TOP = A) 
BEGIN 

IF EVENTl='l' and not EVENTl'stable THEN 
TOP <= GUARDED B; 

ENDIF; 
END; 

Al: BLOCK(TOP = A AND TABLE_A = Al) 
BEGIN 

IF EVENT2='1' and not EVENT2'stable THEN 
TOP <= GUARDED C; 

ENDIF; 
END; 

VHDL Code 

TYPE TOP_TABLE IS A,B,C; ~B 
TYPE TOP _RES IS ARUAY ~ATURAL RANGE < > OF TOP _TABLE· 
FUNCTION TOP _RES.FUN( (INPUT: TOP _RES) RE:tURN TOP _TABLE IS TOP _RES.FU 

BEGIN ~ 
RETURN INPU'T(O); Table Al C 

END TOP_RES.FUN· 
SIGNAL TOP: TOP _RES.FUN TOP _TABLE REGISTER:= A; 

Resolution Function For "TOP" Signal Resolution For "TOP" 

Figure 11: Signal Resolution 

Table TOP contains two sub-tables A and B. If the event EVENT1 j occurs while in A, control 

is transferred to B. However, if the event EVENT2 j occurs while in state Al of A, control is 

transferred to C. Since all event transitions that apply to A apply to each of its states hierarchically, 

when both events occur simultaneously, the first event should "override" the second. The VHDL 

code on the right shows an abbreviated version of this design. The control context for table TOP 

is represented by the value of the VHDL signal variable "TOP". Transfer of control to table B 

on the first event is shown by the statement TOP <= GU ARDEDB in the first block. In the 

second block the transition to table C on the· second event is defined in ·the same manner by 

TOP <= GU ARDEDC. When both events occur simultaneously the signal "TOP" can have 

two possible assignments. Therefore, its resulting value must be resolved. The VHDL resolution 

function for the signal is shown beneath the table description. When the function is called it 

unconditionally returns the first element of the list of conflicting values being assigned to "TOP". 
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Since block A is defined before block Al in the VHDL code the value 'the former assigns to "TOP" 

will precede the value assigned by Al in the input list. Thus, "TOP" will be assigned the value 

"B", corresponding to a transfer of control in the design to table B as required by the behavioral 

description. 

This method assumes that processes are evaluated in the VHDL simulator in the order that 

they are defined. In addition, it requires that the multiple- values for a signal be placed in the 

resolution function's input array in the order that they are received. 

For a complete description of VHDL resolution functions see (Arms89]. 

3.6 VHDL Code Templates 

The basic translation strategy generates one VHDL block for every BIF state. The only exceptions 

are states with global time-outs, which may be assigned a second block to generate the time-out 

event. (cf Figures 12 and 13). The event is tested for in the first block. Each block may consist of 

several processes. Two templates, the Block Template and the Block-Process Template, are used to 

map BIF states into VHDL code. 

The Block Template consists of a VHDL block with a guard at its entry point which tests for 

the state signal and the event causing the entry to that state. Within the block, guarded signal 

assignments are used to sequence the state signal to the next state of the design. The Block 

Template is used for all non-leaf nodes in the Table-Tree, except for those nodes which belong to 

a Zero-Tree. 

Figure 12 shows a table, P, containing a state 1 and a global event RESET. On the lower 

right is the VHD L code resulting from the Block Template for this state. The variable top_table 

corresponds to the single sub-table of P (the sub-table itself is not shown) and is initialized to its 

first state by being. assigned the enumerated value top_table_J. This occurs only when the guard 

condition is fulfilled, in this case, by the event RESET rising. Since state 1 loops back to itself on 

the RESET event the variable bif_self_P_J is needed· to indicate a self transition. The self-variable 
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and other auxiliary VHDL signals are described in the next section. 

Table p l 
Present State Condition Actions Next State Event 

ol Table (subtable) top_tab/e 

1 reset j 

,------------, 
I P _l: BLOCK (reset='l' and not reset'stable(O ns)) I 

BEGIN 
I top_table < = guarded top..table_l; I 
I bif ....selLP _l < = guarded bif....selLP _l + 1; I 
L EN~BLOCK P_l;_ - - - - - - _J 

Figure 12: An Example Using the Block Template 

Figure 13 shows the same table with the transition event changed to a time-out value. In this 

case, the resulting VHDL code is divided into two separate blocks, the first generating the time-out 

event and the second testing the event as a guard condition. 

Table p J 
~ 

Present State Condition Actions Next State Event 

01 Table (subtable) top_tab/e 

1 timeout 150ns 

,-------------------, 
I 
I 
I 
I 
I 

P_l: BLOCK 
BEGIN 

biLtimeout_F_l <= 'O','l' after 150 ns; 
END BLOCK P_l; 

P _2: BLOCK (biLtimeout_F -1='1' and not biLtimeout_F _l 'stable(O ns)) 
BEGIN 

top_table < = guarded top_table--1; 

I bif ....selLP _2 < = guarded bif ....selLP _2 + 1; I 
L EN1:_BLOCK p -2; - - - - - - _______ _J 

Figure 13: The Block Template with Time-outs 

The Block-Process Template is also a VHDL block with a guard at its entry point, but tests 
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only for the state signal at entry. Two processes are encapsulated within this block: one describing 

the actions performed in that state, and the other generating the next state information for the 

current BIF state. The Process Template is used for leaf nodes and Zero-Trees. 

Figure 14 shows a table, Q, containing a single state 1 which performs the function a <= a+ 1 

if the condition reg == "00" is true. Upon completion, control returns to state 1 after 5 ns. On 

the lower right is the VHDL code resulting from the Block-Process Template for this state. The 

guard condition is fulfilled only when the variable table_Q assumes the enumerated value table_Q_J, 

meaning that the design is in state 1 of table Q. The first process, Q_LO, checks the condition 

reg == "00" and performs the required action if the condition is true. The delayed assignment of 

bif_timeout_Q_J simulates an event on that signal after 5 ns. The second process, Q_LJ, checks to 

see if the event on the time-out variable has occured and if so, generates the next state information 

for this state, in this case, a loop back to itself. As in the previous figure, the variable bif_self_Q_J 

is used to indicate a self transition. 

3. 7 Auxiliary VHDL Signals 

The translation process introduces three types of auxiliary signals. 

The global signal bif_timeout is used to force time-outs in the generated VHDL description. 

Figures 13 and 14 show how the signal is generated and tested in each VHDL code template. 

States which have transitions back to themselves need to be handled in a special manner, since 

VHDL's simulation model will not register re-entry into that state unless forced to acknowledge 

this fact. The global signal. bif_self is incremented to notify the simulator that a transition back to 

the same state has occurred. The examples in Figures 12 and 14 both employ the biLself variable. 

BIF's event controlled state sequencing model requires that the value of the condition field of 

a triplet be tested .at the time of entry into a particular state. However, the exiting event (which 

sequences the design to the next state) may occur at ariy time after entry into the state. During 

that time period, the value of the condition tested at entry may change. The translation algorithm 
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Table _Q_ 
Present State 

0 1 

1 
Condition Actions Next State 

reg==''OO" a<=a+l 1 

Event 

timeout 5ns 

r----------
Q_1: BLOCK(table_Q = table_Q_l) 

-------, 

I· 
I 
I 

BEGIN 
Q_LO: PROCESS 
BEGIN . 

IF GUARD THEN 
if reg=b" 00" then 

a<= a+l; 
biLtimeout_Q_l <= '0','1' after 5 ns; 

end if; 
END IF; 

WAIT ON GUARD, bif...self_Q_l; 
END PROCESS Q_LO; 
Q_Ll: PROCESS 
BEGIN 

IF GUARD THEN 
if biLtimeout_Q_l='l' and not biLtimeouLQ_l 'stable then 

bif...self_Q_l <= bif..self_Q_l+l; 
end if; 

END IF; 
WAIT ON GUARD, biLtimeouLQ-1; 
END PROCESS Q_Ll; 

L _ END ~LOC~ Q_l; _ _ _ __ ______ _J 

I 

Figure 14: An Example U.sing the Block-Process Template 
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uses a local signal, bif_case, to store the value of the condition that was tested at the time of entry 

into the state. Figure 15 shows an example similar to the one in Figure 14 but which contains an 

additional conditionjactionjnext-state triplet in state 1. If the condition reg == "11" is true the 

action decrements the value of a and the design waits on the event "reset t" before looping back 

to itself. Since there are now multiple conditions in this state, the first process, Q_LO, assigns the 

biLcase variable a value to indicate which condition was true and the second process, Q_Ll, checks 

this value and waits for a change on either signal bif_timeout_Q_l or reset. 

Table Q l 
Present State Condition 

0 1 reg=="OO" 

reg=="ll" 

Actions Next State 

a<=a+l 1 

a<=a-1 1 

Event 

timeout 5ns 

reset j 

r-----------------, 
I Q_l: BLOCK(table_Q = table_Q_l) 

SIGNAL biLcase: integer:=O; 
I BEGIN 

Q_LO: PROCESS 
BEGIN 

IF GUARD THEN 
if reg=b"OO" then 

a<= a+l; 
biLtimeout_Q_l <= '0','1' after 5 ns; 
bi Lease < = 1; 

else if reg=b"ll" then 
a<= a-1 ; 
bif_case <= 2; 

end if; 
END IF; 

WAIT ON GUARD, bif..self_Q_l; 
END PROCESS Q_LO; 

Q_Ll: PROCESS 
BEGIN 

IF GUARD THEN 
if biLcase=l then 

if biLtimeout_Q_l= '1' and not biLtimeout_Q_l 'stable then 
bif..self_Q_l <= bif..selLQ_l+l; 

end if; . 
else if biLcase=2 then 

if reset='l' and not reset'stable then 
bif..self_Q_l < = bif..self_Q_l + 1; 

end if; 
end if; 

END-IF; 
WAIT ON GUARD, biLtimeout_Q_l, reset; 
END PROCESS Q_Ll; 

END BLOCK Q_l; 

L-----------------~ 

Figure 15: The Use of the bif_case Variable 
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3.8 Overall Structure of Translated VHDL Code 

Figure 16 shows the overall structure of the VHDL code translated from BIF. The generated VHDL 

description begins with the library specification for any packages that may be used in the VHDL 

description. This is followed by the entity part which describes the primary inputs declared in BIF's 

symbol list. The architecture part contains a number of behavioral VHDL blocks, with each block 

roughly corresponding to a state in the BIF representation. Each such block is defined by either 

the Block Template or the Block-Process Template as described earlier. The generated VHDL code 

ends with a small configuration part. 

BIF Description VHDL Description 

TADLE: TOP 
llfl8'1M1a1Tllllle 

STATE EVENT NEXT STATE porta 

ANY resetr1stng TAOLE TOP vn 

••dd rtstng TAOLE TOP 
rega 

e A x r1s1ng 

A 

TAOLE: A State Signal Resolution ;~~:;;:~: I 
STATE CONDITION 

• I !true> 
Signal Declarations 

I true> 

TADLE: D 

TAOLE 0 STATE CONOITlot>I NEXT STATE 

• I !true> 

ltrueJ 

Figure 16: Organization of Translated VHDL Code. 
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4 The 'franslation Algorithm 

4.1 Outline of Translation Algorithm 

The basic strategy used to perform the translation is to capture the. hierarchical structure of the 

behavior in a Table-Tree and apply translation templates to this hierarchical structure in order to 

generate the behavioral VHDL code. 

Appendix I contains the VHDL code that was automatically generated using this algorithm for 

the BIF description shown in Figure 5. 

Step 1. Create Module Names in VHDL. The BIF file name is appended with the characters 

"_e", "_a" and "_c" for the entity, architecture and configuration parts of the translated VHDL 

code. 

Step 2. Generate Signal Names. BIF's symbol list is scanned to convert BIF variables and 

ports into equivalent VHDL carriers. Primary inputs in BIF are translated into primary 

inputs in VHDL. Primary outputs and internal variables in BIF are translated into VHDL 

internal signals. If an internal signal is assigned in more than one state, the signal is marked 

as a resolved signal. 

Step 3. Generate Hierarchical Table Tree. The BIF hierarchical description is scanned to 

generate its equivalent Table Tree. Edge weights are assigne~ to the tree based on the type 

of hierarchical call. 

Step 4. Generate and Extract Zero-Trees. In a second pass of the Table Tree, Zero-Trees are. 

created by assigning all siblings of a zero-edge a weight of zero. Each Zero-Tree is assigned a 

unique name, and a list of all Zero-Trees ·is created. 

Step 5. List All Tables and States. Each BIF table and Zero-Tree is scanned to generate a 

list of names in that table or tree. Default entry states are marked. 
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Step 6. Generate Architecture Table. An internal tabular representation of the BIF descrip­

tion is created using an Architecture Table. This table is similar to a BIF description, except 

that the current state and next state fields contain (state-tuples) pairs which specify the table 

name and the state name for the BIF description. 

Step 7. Split Global Time-Out States. Each State in the Architecture Table that has a Global 

Time-Outs is split into two states: the first which eventually creates the VHDL time-out sig­

nal, and the second which checks for the Time-Out condition. 

Step 8. Assign VHDL Template. VHDL templates are assigned to states of the Architecture 

Table based on their position in the Table-Tree. Non-leaf nodes are mapped into Templatel 

blocks, while leaf nodes are mapped into Template2 blocks. 

Step 9. Fully Qualify State-Tuples. The state-tuples in the Architecture Table represent state 

information local to that level of hierarchy only. In this step, each state-tuple in the Archi­

tecture Table is fully qualified by specifying global state information. 

For current state-tuple entries in the Architecture Table, a bottom-up search is performed 

to generate state-signal names for every level to the root of the Table-Tree. For next state­

tuple entries in the Architecture Table, a top-down search from the root to the state entry is 

performed to generate state-tuples for intermediate levels. 

Step 10. Generate Auxiliary Signals. For any state which has a self-loop (where next-tuple 

= present-tuple), a auxiliary signal of the form bif-self-< block_label> is created: Similarly, a 

auxiliary signal of the form bif_timeouL< block_label> is created for any state that has a global 

or local time-out. If any state ha~ triplets with multiple conditions, a auxiliary local signal 

of the form bif_case is created for the corresponding VHDL block. 

Step 11. Generate VHDL code. If the BIF descripdon uses constructs such as bit-field ma­

. nipulation, the corresponding VHDL package has to be loaded. Hence a VHDL library 

declaration is first generated where necessary. Next, the entity description for the VHDL 

code is generated by declaring all primary inputs from Step 2. The VHDL Architectural 
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body is generated next. The body begins with the definition of state-signals derived from 

the state-list in Step 5. This is followed by a definition of internal signal names from the 

symbol table in Step 2 and the global auxiliary signals (biL.self and biLtimeout) in Step 10. 

The remainder of the Architectural body consists of the VHDL templates selected in Step 8. 

Within each generated VHDL template, the local signal biLcase is declared if used in that 

block. Finally, a dummy configuration body is created. 
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5 A Detailed Example 

The following· example traces each step of the BIF to VHDL algorithm for the example shown in 
Figure 2. 

Step 1. Derive names. 

Entity name: example_e 
Architecture name: example_a 
Configuration name: example_c 

Step 2. Define a symbol table. 

Symbol Name Port Type Symbol Type 
reset m bit 
x m bit 
y m bit 
reg m bit_ vector 
elk m bit 
a signal integer 
b signal bit_ vector 
c signal integer 
d signal integer 

Step 3. Form hierarchy table tree. 

I example top_table h_table 

example no_edge ( top,1) no_edge 
top_table no_edge no_edge (h,2) 
h_table no_edge no_edge no_edge 
c_table no_edge no_edge no_edge 
a_table no_edge no_edge no_edge 
Uable no_edge no_edge no_edge 
d_table no_edge no_edge no_edge 
e_table no_edge no_edge no_edge 

Step 4. Derive zero-trees. 

Tree Name Tree Type Element Table 

MSB LSB Resolved 

1 0 

yes 
3 0 no 

no 
yes 

c_table a_table b_table 

no_edge no_edge no_edge 
(c,2) no_edge no_edge 
no_edge (*,3) (*,3) 
no_edge no_edge no_edge 
no_edge no_edge no_edge 
no_edge no_edge no_edge 
no_edge no_edge no_edge 
no_edge no_edge no_edge 

biLOtree_l 0 c_table, d_table, e_table 

Step 5. Generate state lists. 

Table Name 
top_table 
biLOtree_l 
a_table 
b_table 
c_table 
example 
d_table 
e_table 

Element State Name 
h, ( c, biLOtree_l) 
c_table, d_table, e_table 
1,2 
l,2 
1,2 
top 
1 
1 
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d_table e_table 

no_edge no_edge 
no_edge no_edge 
no_edge no_edge 
(1,0) (1,0) 
no_edge no_edge 
no_edge no_edge 
no_edge no_edge 
no_edge no_edge 



Step 6. Generate an architecture table. 

Present State J Condition J Actions J Next State I Event 

(example,top) true null (example, top) ( reset,rising) 
( top_table,h) true null (top_table,c) (x,falling) 
(top_table,c) true null (top_table,h) (150 ns) 
( a_table, 1) y=='l' al(l) <=a+ 1 ( a_table, 1) ( clk,falling) 

else null {a_table,21 ( clk,falling) 
( a_table,2) true al(l) <=a+ 2 ( a_table, 1) ( clk,falling) 
(b_table, 1) true b I ( 1) < = b + " oo 10" (b_table,2) ( clk,falling) 
(b_table,2) true null ( c_table,2) ( clk,falling) 
( dable, 1) reg== "00" llreg == "01" cj(l) <= c + 1 (c_table,1) (5 ns) 

reg== "10" cl(l) <= c + 1 ( d_table,*) (subtable) 
else cl(l) <= c + 1 ( c_table,2) (2 ns) 

( dable,2) true null ( e_table, *) (x,rising) 
( d_table, 1) d < 10 dj(l) <= d + 1 ( d_table,1) ( clk,falling) 

else null ( c_table, *) ( clk,falling) 
(dab le, 1) d>O dl(l) <= d - 1 ( e_table, 1) ( clk,falling) 

else null ( c_table, *) ( clk,falling) 

Step 7. Assign a template type to each state (B for Block Template, BP for Block-Process Template). 

Step 8. Replace Present-State and Next State fields with tuple representing table and state 
name 

Step 9. Generate auxiliary signals. 
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Present State I Condition I Actions 

null true null 

( top_table,h) true null 

( top_table, biLOtree_l) true ( timeout,150ns) 
( top_table, biLOtree_l) true null 

( top_table,h) y ==' 1' aj(l) <=a+ 1 
(a_table,1) else null 
( top_table,h) true aj(l) <=a+ 2 
(a_table,2) 
( top_table,h) true bj(l) <= b + "0010" 
(b_table,1) 
( top_table,h) true null 

( top_table, biLOtree_l) reg== "OO" (timeout,5 ns) 
(biLOtree_l ,c_table) llreg == "10" 
cline2-5 (ct able, 1) reg==" 10" null 

else (timeout, 2 ns) 
( top_table, biLOtree_l) true null 
(biLOtree_l, ct able) 
( c_table,2) 
( top_table; biLOtree_l) d < 10 dj(l) <= d + 1 
(biLOtree,d_table) else null 

( top_table, biLOtree_l) d>O dj(l) <= d - 1 
(biLOtree,e_table) else null 

Step 10. Generate an entity statement. 

LIBRARY PACK; 
USE PACK.DEFS.ALL; 

ENTITY example_e IS 
PORT (reset: in bit; 

x : in bit; 
y : in bit; 
elk: in bit; 
reg: in bit_vector(1 downto O)); 

END example_e; 

Step 11. Generate an architecture statement. 

(1) Architecture name. 

ARCHITECTURE example_a OF example_e IS 

(2) Output state signal declarations from Step 5. 
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I Next State I Event I Template 

( top_table,h) (reset ,rising) B 
(a_table,1) 
(b_table, 1) 
self 
( top_table, biLOtree_l) ( x,falling) B 
(biLOtree_l ,c_table) 
( dable, 1) 

BP 
( top_table,h) (timeout ,rising) B 
( a_table,1) 
(b_table, 1) 
self ( clk,falling) BP 
( a_table,2) ( clk,falling) 
(a_table,1) ( clk,falling) BP 

(b_table,2) ( clk,falling) BP 

( top_table, biLOtree_l) ( clk,falling) BP 
(biLOtree_l, c_table) 
( dable,2) 
self ( timeout,rising) BP 

(biLOtree_l ,d_table) (subtable) 
( dable,2) (timeout, rising) 
(biLOtree_l ,e_table) (x,rising) BP 

self (elk, falling) BP 
(biLOtree_l ,c_table) ( clk,falling) 
(c_table,1) 
self ( clk,falling) BP 
(biLOtree_l ,c_table) ( clk,falling) 
(c_table,1) 



TYPE TABLE_top_table IS (top_table_h,top_table_bif_Otree_1); 
TYPE top_table_RES IS ARRAY(IATURAL RAIGE <>) OF TABLE_top_table; 
FUNCTIOI top_table_RES_FUI (IIPUT: top_table_RES) RETURI TABLE_top_table IS 
BEGUI 

RETURI IIPUT(O); 
EID top_table_RES_FUI; 
SIGIAL top_table: top_table_RES_fUI TABLE_top_table REGISTER := top_table_h; 

TYPE TABLE_a_table IS (a_table_1,a~table_2); 
TYPE a_table_RES IS ARRAY(IATURAL RAIGE <>) OF TABLE_a_table; 
FUNCTION a_table_RES_FUI (IIPUT: a_table_RES) RETURI TABLE_a_table IS 
BEGIN 

RETURN IIPUT(O); 
EID a_table_RES_FUI; 
SIGNAL a_table: a_table_RES_FUI TABLE_a_table REGISTER := a_table_i; 

TYPE TABLE_b_table IS (b_table_1,b_table_2); 
TYPE b_table_RES IS ARRAY(IATURAL RANGE <>) OF TABLE_b_table; 
FUNCTION b_table_RES_FUI (INPUT: b_table_RES) RETURI TABLE_b_table IS 
BEGIH 

RETURN IHPUT(O); 
END b_table_RES_FUI; 
SIGNAL b_table: b_table_RES_FUH TABLE_b_table REGISTER := b_table_i; 

TYPE TABLE_bif_Otree_i IS (bif_Otree_i_c_table,bif_Otree_i_d_table, 
bif_Otree_i_e_table); 

TYPE bif_Otree_i_RES IS ARRAY(NATURAL RAIGE <>) OF TABLE_bif_Otree_1; 
FUNCTIOI bif_Otree_i_RES_FUH (INPUT: bif_Otree_i_RES) RETURI 

TABLE_bif _Otree_1 IS 
BEGUI 

RETURN INPUT(O); 
END bif_Otree_i_RES_FUN; 
SIGNAL bif_Otree_1: bif_Otree_i_RES_FUI TABLE_bif_Otree_i 

REGISTER := bif_Otree_i_c_table; 

TYPE TABLE_c_table IS (c_table_1,c_table_2); 
TYPE c_table_RES IS ARRAY(NATURAL RANGE <>) OF TABLE_c_table; 
FUNCTION c_table_RES_FUN (INPUT: c_table_RES) RETURN TABLE_c_table IS 
BEGIN 

RETURN INPUT ( 0) ; 
END c_table_RES_FUI; 
SIGNAL c_table: c_table_RES_FUH TABLE_c_table REGISTER ·= c_table_1; 

{3) Output signals of port type "SIGNAL" from the symbol table. 

TYPE a_RES IS ARRAY(NATURAL RANGE <>) OF integer; 
FUNCTION a_RES_FUN (INPUT: a_RES) RETURN integer IS 
BEGIN 

RETURN INPUT ( 0) ; 
END a_RES_FUN; 
SIGNAL a: a_RES_FUN integer REGISTER := O; 

TYPE d_RES IS ARRAY(NATURAL RANGE <>) OF integer; 
FUNCTION d_RES_FUN (INPUT: d_RES) RETURN integer IS 
BEGIN 

RETURN INPUT(O); 
END d_RES_FUN; 
SIGNAL d: d_RES_FUN integer REGISTER := O; 

signal b: bit_vector(3 downto 0) := b"OOOO"; 
signal c: integer := O; 
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(4) Output auxiliary variables. 

signal bif_self_lb_O: integer .- O; 
signal bif_self_lb_4: integer .- O; 
signal bif_self_lb_8: integer .- O; 
signal bif_self_lb_10: integer := O; 
signal bif_self_lb_11: integer := O; 
signal bif_timeout_lb_2: bit.- '0'; 
signal bif_timeout_lb_8: bit := '0'; 

(5) Output the a1chitecture body from the architecture table in Step 9. 

BEGIH 
LB_O: BLOCK (reset='1' and not reset'stable(O ns)) 
BEGIH 

top_table <= guarded top_table_h; 
a_table <=guarded a_table_1; 
b_table <=guarded b_table_1; 
bif_Otree_1 <=guarded bif_Otree_1; 
c_table <=guarded c_table; 
bif_self_lb_O <=guarded bif_self_lb_O + 1; 

END BLOCK LB_O; 

LB_1: BLOCK (top_table=top_table_h and (x='O' and not x'stable(O ns))) 
BEGIH 

top_table <= guarded top_table_bif_Otree_1; 
a_table <=guarded a_table; 
b_table <=guarded b_table; 
bif_Otree_1 <=guarded bif_Otree_1_c_table; 
c_table <=guarded c_table_1; 

END BLOCK LB_1; 

LB_2: BLOCK (top_table=top_table_bif_Otree_1) 
BEGIH 

LB_2_0: PROCESS 
BEGIH 

IF GUARD THEN 
bif_timeout_lb_2 <= '0','1' after 150 ns; 

ELSE 
END IF; 

WAIT ON GUARD; 
END PROCESS LB_2_0; 

END BLOCK LB_2; 

LB_3: BLOCK (top_table=top_table_bif_Otree_1 and (bif_timeout_lb_2='1' 
and not bif_timeout_lb_2'stable(O ns))) 

BEGIH 
top_table <= guarded top_table_h; 
a_table <=guarded a_table_1; 
b_table <=guarded b_table_1; 
bif_Otree_1 <=guarded bif_Otree_1; 
c_table <= guarded c_table; 

END BLOCK LB_3; 

LB_4: BLOCK (top_table=top_table_h and a_table=a_table_1) 
signal bif_case.: integer := O; 

BEGIN 
LB_4_0: PROCESS 
BEGIH 

IF GUARD THEN 
if y='1' then 

a <= transport a+ 1 after 1 ns; 
bif_case <= 1; 
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else 
bif_case <= 2; 

end if; 
ELSE 

a <= null; 
END IF; 

WAIT 01 GUARD,bif_self_lb_O,bif_self_lb_4; 
END PROCESS LB_4_0; 
LB_4_1: PROCESS 
BEGIN 

IF GUARD THEI 
if not (reset='1' and not reset'stable) then 

if bif_case=1 then 
if clk='O' and not clk'stable then 

a_table <= a_table_1; 
bif_self_lb_4 <= bif_self_lb_4 + 1; 

end if; 
elsif bif_case=2 then 

if clk='O' and not clk'stable then 
a_table <= a_table_2; 

end if; 
end if; 

end i:f; 
ELSE 

a_table <=null; 
END IF; 

WAIT OH GUARD,clk; 
END PROCESS LB_4_1; 

END BLOCK LB_4; 

LB_5: BLOCK (top_table=top_table_h and a_table=a_table_2) 
BEGIH 

LB_5_0: PROCESS 
BEGIN 

IF GUARD THEN 
a <= transport a + 2 a:fter 1 ns; 

ELSE 
a <= null; 

END IF; 
WAIT OH GUARD; 
END PROCESS LB_5_0; 
LB_5_1: PROCESS 
BEGIN 

IF GUARD THEN 
i:f clk='0' and not clk'stable then 

a_table <= a_table_1; 
end i:f; 

ELSE 
a_table <= null; 

END IF; 
WAIT OH GUARD,clk; 
END PROCESS LB_5_1; 

END BLOCK LB_5; 

LB_6: BLOCK (top_table=top_table_h and b_table=b_table_1) 
BEGIN 

LB_6_0: PROCESS 
BEGIN 

IF GUARD THEN 
b <= transport b + b"0010" a:fter 1 ns; 

END IF; 
WAIT ON GUARD,bi:f_sel:f_lb_O; 
END PROCESS LB_6_0; 
LB_6_1: PROCESS 
BEGIN 

IF GUARD THEN 
i:f not (reset=}1' an ~ reset'stable) then 

i:f clk='0' and not Glk'stable then 
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b_table <= b_table_2; 
end if; 

end if; 
ELSE 

b_table <= null; 
END IF; 

WAIT OH GUARD,clk; 
END PROCESS LB_6_1; 

END BLOCK LB_6; 

LB_7: BLOCK (top_table=top_table_h and b_table=b_table_2) 
BEG ID 

LB_7_1: PROCESS 
BEGIN 

IF GUARD THEW 
if clk='O' and not clk'stable then 

top_table <= top_table_bif_Otree_1; 
bif_Otree_1 <= bif_Otree_1_c_table; 
c_table <= c_table_2; 

end if; 
ELSE 

top_table <= null; 
bif_Otree_1 <=null; 
c_table <= null; 

END IF; 
WAIT ON GUARD,clk; 
END PROCESS LB_7_1; 

END BLOCK LB_7; 

LB_8: BLOCK (top_table=top_table_bif_Otree_1 and 
bif~Otree_1=bif_Otree_1_c_table and c_table=c_table_1) 
signal bif_case: integer := O; 

BEGIN 
LB_8_0: PROCESS 
BEGIN 

IF GUARD THEW 
c <= transport c + 1 after 1 ns; 
if reg=b"OO" or reg=b"01" then 

bif_timeout_lb_8 <= '0','1' after 2 ns; 
bif_case <= 1; 

elsif reg=b"10" then 
bif_Otree_1 <= bif_Otree_1_d_table; 
bif_case <= 2; 

else 
bif_timeout_lb_8 <= '0','1' after 2 ns; 
bif_case <= 3; 

end if; 
ELSE 

bif_Otree_1 <=null; 
END IF; 

WAIT ON GUARD,bif_self_lb_8; 
END PROCESS LB_8_0; 
LB_8_1: PROCESS 
BEGIN 

IF GUARD THEN 
if bif_case=1 then 

if bif_timeout_lb_8='1' and not bif_timeout_lb_8'stable then 
c_table <= c_table_i; 
bif_self_lb_8 <= bif_self_lb_8 + 1; 

end if; 
elsif bif _case=3 then 

if bif~timeout_lb_8='1' and not bif_timeout_lb_8'stable then 
c_table <= c_table_2; 

end if; 
end if; 

ELSE 
c_table <= null; 

END IF; 
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WAIT 01 GUARD,bif_timeout_lb_8; 
EID PROCESS LB_8_1; 

END BLOCK LB_8; 

LB_9: BLOCK (top_table=top_table_bif_Otree_1 and 
bif_Otree_1=bif_Otree_1_c_table and c_table=c_table_2) 

BEGI1l 
LB_9_1: PROCESS 
BEGI1l 

IF GUARD THEI 
if x='1' and not x'stable then 

bif_Otree_1 <= bif_Otree_1_e_table; 
end if; 

ELSE 
bif_Otree_1 <= null; 

END IF; 
WAIT OH GUARD,x; 
END PROCESS LB_9_1; 

END BLOCK LB_9; 

LB_10: BLOCK (top_table=top_table_bif_Otree_1 and 
bif_Otree_1=bif_Otree_1_d_table) 
signal bif_case: integer := O; 

BEGI1l 
LB_10_0: PROCESS 
BEGI1l 

IF GUARD THEN 
if d < 10 then 

d <= transport d + 1 after 1 ns; 
bif_case <= 1; 

else 
bif_case <= 2; 

end if; 
ELSE 

d <= null; 
d <= null; 

END IF; 
WAIT ON GUARD,bif_self_lb_10; 
END PROCESS LB_10_0; 
LB_10_1: PROCESS 
BEGI1l 

IF GUARD THEN 
if bif_case=1 then 

if clk='O' and not clk'stable then 
bif_self_lb_10 <= bif_self_lb_10 + 1; 

end if; 
elsif bif_case=2 then 

if clk='O' and not clk'stable then 
bif_Otree_1 <= bif_Otree_1_c_table; 
c_table <= c_table_1; 

end if; 
end if; 

ELSE 
bif_Otree_1 <=null; 
c_table <= null; 

END IF; 
WAIT ON GUARD,clk; 
END PROCESS LB_10_1; 

END BLOCK LB_10; 

LB_11: BLOCK (top_table=top_table_bif_Otree_1 and 
bif_Otree_1=bif_Otree_1_e_table) 
signal bif_case: integer := O; 

BEGIN 
LB_11_0: PROCESS 
BEGIN 

IF GUARD THEN 
if d > 0 then 

33 



d <= transport d - 1 after 1 ns; 
bif_case <= 1; 

else 
bif_case <= 2; 

end if; 
ELSE 

d <= null; 
EID IF; 

WAIT OB GUARD,bif_self_lb_11; 
EBD PROCESS LB_11_0; 
LB_11_1: PROCESS 
BEGII 

IF GUARD THEI 
if bif_case=1 then 

if clk='O' and not clk'stable then 
bif_self_lb_11 <= bif_self_lb_11 + 1; 

end if; 
elsif bif_case=2 then 

if clk='O' and not clk'stable then 
bif_Otree_1 <= bif_Otree_1_c_table; 
c_table <= c_table_1; 

end if; 
end if; 

ELSE 
bif_Otree_1 <= null; 
c_table <= null; 

END IF; 
WAIT ON GUARD,clk; 
END PROCESS LB_11_1; 

END BLOCK LB_11; 

END example_a; 

Step 12. Output the configuration statement. 

CONFIGURATION example_c OF example_e IS 
FOR example_a 
END FOR; 

END example_c; 
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6 Experiments 

The BIF-to-VHDL translation algorithm was used to generate VHDL code for several designs 

exhibiting a variety of design features, as shown in Figure 17. The size of each BIF description is 

indicated in a column by the number of words used. 

On the examples tested, the size of the BIF descriptions are between 12.43 and 23.5% of 

the corresponding VHDL descriptions, with an average ratio of 16. 73. The BIF descriptions are 

therefore much more concise in describing complex behavior. 

It should be noted that the translated VHDL code for these examples is actually quite small 

in size as compared to VHDL code written in a straightforward fashion using wait statements. 

This decrease in the size of the VHD L code is achieved through the novel method of controlling 

the explosion in hierarchical events using the resolution function scheme as described in Section 

3. Furthermore, the translated VHDL code has high readability since there is almost a one-to-one 

correspondence to states described in the BIF description. 

Example Description BIF size VHDL size BIF/VHDL Hierarchy Concurrency Global Local Asynch Clocked 
(words) (words) (ratio) Timeout Timeout Events Transitions 

bus...arbiter PLD Hb 152 808 0.188 • 
mano_l39 FSM 82 510 0.160 • 
tlc Trfc Lt Cont 81 628 0.129 • • • • 
cc Cntrl Counter 203 864 0.235 • • • 
tec14 Hierarchy 106 521 0.204 • • 
tec17 Concurrency 81 494 0.164 • • • 
tec26 Struct Mod 58 365 0.159 • 
tec34 Quotient Ace 70 507 0.138 • 
tec38 Bus Mem Ctl 67 540 0.124 • 
example.J. LS Timeout 88 491 0.179 • • • 
example...2 GI Timeout 86 493 0.174 • • • 
example..3 Hier & Concur 113 748 0.151 • • • • 
ICCAD_90 Figure 5 192 1120 0.171 • • • • • 

Figu~e 17: Experiments 
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7 Summary 

This report described an algorithm for automatically translating BIF into behavioral VHDL code. 

The issues that were addressed highlighted some of the deficiencies of VHDL when trying to describe 

behavioral hierarchy, hierarchical events, and time-outs. We presented BIF as a good input path to 

VHDL and introduced methods for efficient representation for simulation of complex hierarchical 

behavior in VHDL. 

The BIF to VHDL translator was tested on a number of examples and the results showed a 

greater measure of conciseness in BIF design descriptions over VHDL. 
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A Appendix 

A.1 Technical Report Example: BIF 

SYMBOL_TABLE { 

type 
BOOLEAN {O}; 
EVENT {O}; 
TWO_BIT {1 .. O}; 
REG_FOUR = REGISTER(4,LOAD,,, ,RESET,ENABLE); 

port 
reset,x,clk 
reg 

var 
a,c,d 
b 

input o-f EVENT; 
input of TWO_BIT; 

INTEGER; 
REG_FOUR; 

} 

TABLE example { 

} 

OPS_BASED 

FIRST 
STATE: top 
{ 

{ 

}, 

{ 

} 

} 

CONDITION: (true); 
ACTIONS: ; 
NEXT_STATE: SUBTABLE Top_Table; 
EVENT: (call); 

CONDITION: (true); 
ACTIONS: ; 
NEXT_STATE: top; 
EVENT: (reset rising); 

TABLE Top_Table { 

OPS_BASED 

FIRST 
STATE: h 
{ 

{ 

}, 

{ 

CONDITION: (true); 
ACTIONS: ; 
NEXT_STATE: SUBTABLE H_Table; 
EVENT: (call); 

CONDITION: (true); 
ACTIONS: ; 
NEXT_STATE: c; 



} 

EVEIT: (x falling); 
} 

} I 

STATE: c 
{ 

{ 

} I 

{ 

} 
} 

COHDITION: (true); 
ACTIONS: ; 
NEXT_STATE: SUBTABLE C_Table; 
EVENT: (call); 

CONDITION: (true); 
ACTIONS: ; 
NEXT_STATE: h; 
EVEHT: (timeout 150 ns); 

TABLE H_Table { 

} 

CONCURRENT { 

} 

SUBTABLE A_Table, 
SUBTABLE B_Table 

TABLE A_Table { 

} 

OPS_BASED 

FIRST 
STATE: 1 
{ 

}, 

{ 

}, 
{ 

} 

CONDITION: (y=='1'); 
ACTIONS: a= a+ 1; 
HEXT_STATE: 1; 
EVEHT: (elk falling); 

CONDITION: (else); 
ACTIONS: ; 
HEXT_STATE: 2; 
EVENT: (elk falling); 

STATE: 2 
{ 

{ 

} 
} 

CONDITION: (true); 
ACTIONS: a= a+ 2; 
NEXT_STATE: 1; 
EVENT: (elk falling); 

TABLE B Table { 

OPS_BASED 

FIRST 



} 

} 

STATE: 
{ 

{ 

} 

}, 

COIDITIOI: (true); 
ACTIOIS: b I (delay 1 ns) = b + "0010"; 
llEXT_STATE: 2; 
EVEIT: (elk falling); 

STATE: 2 
{ 

{ 

} 
} 

CONDITION: (true); 
ACTIONS: i 
NEXT_STATE: 2 OF TABLE C_Table; 
EVENT: (elk falling); 

TABLE C_Table { 

OPS_BASED 

FIRST 
STATE: 1 
{ 

}, 

UC_ACTIONS: c = c + 1; 
{ 

}, 
{ 

} ' 
{ 

} 

CONDITION: (reg=="OO" I I reg=="01"); 
ACTIONS: ; 
NEXT_STATE: 1; 
EVENT: (timeout 5 ns); 

CONDITION: (reg=="10"); 
ACTIONS: ; 
NEXT_STATE: SUBTABLE D_Table; 
EVENT: (call); 

CONDITION: (else); 
ACTIONS: ; 
NEXT_STATE: 2; 
EVENT: (timeout 2 ns); 

STATE: 2 
{ 

{ 

} 
} 

CONDITION: (true); 
ACTIONS: ; 
NEXT_STATE: SUBTABLE E_Table; 
EVENT: (x rising); 

TABLE D_Table { 

OPS_BASED 

FIRST 
STATE: 1 
{ 

{ 



} 
} 

}, 
{ 

} 

COIDITIOI: (d < 10); 
ACTIOIS: dl(delay 1 ns) = d + 1; 
:rlEXT_STATE: 1; 
EVEIT: (elk falling); 

COIDITIOI: (else); 
ACTIOIS: i 
NEXT_STATE: TABLE C_Table; 
EVENT: (elk falling); 

TABLE E_Table { 

} 

OPS_BASED 

FIRST 
STATE: 
{ 

} 

{ 

}, 
{ 

} 

CONDITION: (d > O); 
ACTIONS: d = d - 1; 
NEXT_STATE: 1; 
EVENT: (elk falling); 

CONDITION: (else); 
ACTIONS: ; 
NEXT_STATE: TABLE C_Table; 
EVENT: (elk falling); 



A.2 Technical Report Example: VHDL 

LIBRARY PACK; 
USE PACK.DEFS.ALL; 

ENTITY example_e IS 
PORT (reset: in bit; 

x: in bit; 
y: in bit; 
elk: in bit; 
reg: in bit_vector(1 do~nto O)); 

END example_e; 

ARCHITECTURE example_a OF example_e IS 
TYPE TABLE_top_table IS (top_table_h,top_table_bif_Otree_1); 
TYPE top_table_RES IS ARRAY(NATURAL RANGE <>) OF TABLE_top_table; 
FUNCTION top_table_RES_FUJl (INPUT: top_table_RES) RETURN TABLE_top_table IS 
BEGIN 

RETURN IIPUT(O); 
END top_table_RES_FUN; 
SIGNAL top_table: top_table_RES_FUN TABLE_top_table REGISTER:= top_table_h; 

TYPE TABLE_a_table IS (a_table_1,a_table_2); 
TYPE a_table_RES IS ARRAY(NATURAL RANGE<>) OF TABLE_a_table; 
FUNCTION a_table_RES_FUH (INPUT: a_table_RES) RETURN TABLE_a_table IS 
BEGIN 

RETURN HJPUT(O); 
END a_table_RES_FUN; 
SIGNAL a_table: a_table_RES_FUN TABLE_a_table REGISTER := a_table_1; 

TYPE TABLE_b_table IS (b_table_1,b_table_2); 
TYPE b_table_RES IS ARRAY(NATURAL RANGE<>) OF TABLE_b_table; 
FUNCTION b_table_RES_FUN (INPUT: b_table_RES) RETURN TABLE_b_table IS 
BEGIN 

RETURN INPUT(O); 
END b_table_RES_FUN; 
SIGNAL b_table: b_table_RES_FUN TABLE_b_table REGISTER := b_table_1; 

TYPE TABLE_bif_Otree_1 IS (bif_Otree_1_c_table,bif_Otree_1_d_table,bif_Otree_1_e_table); 
TYPE bif_Otree_1_RES IS ARRAY(NATURAL RANGE<>) OF TABLE_bif_Otree_1; 
FUNCTION bif_Otree_1_RES_FUN (INPUT: bif_Otree_1_RES) RETURN TABLE_bif_Otree_1 IS 
BEGIN 

RETURN INPUT(O); 
END bif_Otree_1_RES_FUN; 
SIGNAL bif_Otree_1: bif_Otree_1_RES_FUN TABLE_bif_Otree_1 REGISTER:= bif_Otree_1_c_table; 

TYPE TABLE_c_table IS (c_table_1,c_table_2); 
TYPE c_table_RES IS ARRAY(NATURAL RANGE<>) OF TABLE_c_table; 
FUNCTION c_table_RES_FUN (INPUT: c_table_RES) RETURN TABLE_c_table IS 
BEGIN 

RETURN INPUT(O); 
END c_table_RES_FUN; 
SIGNAL c_table: c_table_RES_FUN TABLE_c_table REGISTER := c_table_1; 

TYPE a_RES IS ARRAY(NATURAL RANGE <>) OF integer; 
FUNCTION a_RES_FUN (INPUT: a_RES) RETURN integer IS 
BEGIN 

RETURN IHPUT(O); 
END a_RES_FUN; 
SIGNAL a: a_RES_FUN integer REGISTER := O; 

TYPE d_RES IS ARRAY(NATURAL RANGE <>) OF integer; 
FUNCTION d_RES_FUN (INPUT: d_RES) RETURN integer IS 
BEGIN 

RETURN INPUT(O); 
END d_RES_FUN; 
SIGNAL d: d_RES_FUN integer REGISTER := O; 



signal b: bit_vector(3 do1mto 0) := b"OOOO"; 
signal c: integer := 0; 

signal bif_self_lb_O: integer := O; 
signal bif_self_lb_4: integer := O; 
sig~al bif_self_lb_8: integer := O; 
signal bif_self_lb_10: integer := O; 
signal bif_self_lb_11: integer := O; 

signal bif_tirneout_lb_2: bit := '0'; 
signal bif_tirneout_lb_8: bit := '0'; 

BEGIN 
LB_O: BLOCK (reset='!' and not reset'stable(O ns)) 
BEGII 

top_table <= guarded top_table_h; 
a_table <=guarded a_table_1; 
b_table <=guarded b_table_1; 
bif_Otree_1 <=guarded bif_Otree_1; 
c_table <=guarded c_table; 
bif_self_lb_O <=guarded bif_self_lb_O + 1; 

EID BLOCK LB_O; 

LB_1: BLOCK (top_table=top_table_h and (x='O' and not x'stable(O ns))) 
BEGIN 

top_table <=guarded top_table_bif_Otree_1; 
a_table <= guarded a_table; 
b_table <=guarded b_table; 
bif_Otree_1 <= guarded bif_Otree_1_c_table; 
c_table <=guarded c_table_1; 

EID BLOCK LB_1; 

LB_2: BLOCK (top_table=top_table_bif_Otree_1) 
BEGIN 

LB_2_0: PROCESS 
BEGIN 

IF GUARD THEN 
bif_tirneout_lb_2 <= '0','1' after 150 ns; 

ELSE 
EID IF; 

WAIT OH GUARD; 
EID PROCESS LB_2_0; 

EID BLOCK LB_2; 

LB_3: BLOCK (top_table=top_table_bif_Otree_1 and (bif_timeout_lb_2='1' and not bif_tirneout_lb_2'stable(O ns))) 
BEGIN 

top_table <= guarded top_table_h; 
a_table <=guarded a_table_1; 
b_table <=guarded b_table_1; 
bif_Otree_1 <=guarded bif_Otree_1; 
c_table <= guarded c_table; 

EID BLOCK LB_3; 

LB_4: BLOCK (top_table=top_table_h and a_table=a_table_1) 
signal bif_case: integer := O; 

BEGIN 
LB_4_1: PROCESS 
BEGIN 

IF GUARD THEN 
if y='1' then 

a<= a+ 1; 
bif_case <= 1; 

else 
bif_case <= 2; 

end if; 
ELSE 

a <= null; 



END IF; 
WAIT 01 GUARD,bif_self_lb_O,bif_self_lb_4; 
EID PROCESS LB_4_1; 
LB_4_2: PROCESS 
BEGUl 

IF GUARD THEI 
if not (reset='1' ~nd not reset>stable) then 

if bif_case=1 then 
if clk='O' and not clk'stable then 

bif_self_lb_4 <= bif_self_lb_4 + 1; 
end if; 

elsif bif _case=2 then 
if clk='O' and not clk'stable then 

a_table <= a_table_2; 
end if; 

end if; 
end if; 

ELSE 
a_table <=null; 

END IF; 
WAIT ON GUARD,clk; 
END PROCESS LB_4_2; 

END BLOCK LB_4; 

LB_5: BLOCK (top_table=top_table_h and a_table=a_table_2) 
BEGUl 

LB_5_1: PROCESS 
BEGIN 

IF GUARD THEN 
a <= a+ 2; 

ELSE 
a <= null; 

END IF; 
WAIT ON GUARD; 
END PROCESS LB_5_1; 
LB_5_2: PROCESS 
BEGIH 

IF GUARD THEN 
if clk='O' and not clk'stable then 

a_table <= a_table_1; 
end if; 

ELSE 
a_table <=null; 

END IF; 
WAIT ON GUARD,clk; 
END PROCESS LB_5_2; 

END BLOCK LB_5; 

LB_6: BLOCK (top_table=top_table_h and b_table=b_table_1) 
BEGIN 

LB_6_1: PROCESS 
BEGIN 

IF GUARD THEN 
b <=transport b + b"0010" after 1 ns; 

END IF; 
WAIT OH GUARD,bif_self_lb_O; 
END PROCESS LB_6_1; 
LB_6_2: PROCESS 
BEGIN 

IF GUARD THEN 
if not (reset='!' and not reset'stable) then 

if clk='O' and not clk'stable then 
b_table <= b_table_2; 

end if; 
end if; 

ELSE 
b_table <=null; 

END IF; 



IF GUARD THEN 
if bif_case=1 then 

if clk='Q' and not clk'stable then 
bif_self_lb_11 <= bif_self_lb_11 + 1; 

end if; 
elsif bif_case=2 then 

if clk='O' and not clk'stable then 
bif_Otree_1 <= bif_Otree_1_c_table; 
c_table <= c_table_1; 

end if; 
end if; 

ELSE 
bif_Otree_1 <=null; 
c_table <= null; 

EHD IF; 
WAIT ON GUARD,clk; 
EHD PROCESS LB_11_2; 

END BLOCK LB_11; 

END example_a; 

CONFIGURATION example_c OF example_e IS 
FOR example_a 
END FOR; 

END example_c; 



A.3 Supplementary Example 1: BIF 

SYHBOL_TABLE { 
type 

Event {O}; 
port 

RESET,X,Y input of Event; 
} 

TABLE Example_! { 
OPS_BASED 
FIRST 
STATE: top 
{ 

} 

{ 

} . 
{ 

} 

CONDITIOH: (true); 
ACTIOIS:; 
NEXT_STATE: TABLE Top_Table; 
EVENT : (call) ; 

COHDITIOH: (true); 
ACTIOHS:; 
HEXT_STATE: top; 
EVEHT: (RESET rising); 

} /* End TABLE Example_! */ 
TABLE Top_Table { 

OPS_BASED 
FIRST 
STATE: A 
{ 

{ 

} 

}, 

COHDITION: (true); 
ACTIONS:; 
HEXT_STATE: TABLE A_Table; 
EVENT: (call); 

STATE: B 
{ 

{ 

} 
} 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: TABLE B_Table; 
EVENT: (call); 

} /* End TABLE Top_Table */ 
TABLE A_Table { 

OPS_BASED 
FIRST 
STATE: 
{ 

{ 

}, 
{ 

} 

} ' 

CONDITIOH: (true); 
ACTIONS:; 
NEXT_STATE: B OF TABLE Top_Table 
EVENT: (after 20 ns); 

CONDITIOH: (true); 
ACTIONS:; 
NEXT_STATE: 2; 
EVEHT: (x rising); 



WAIT 01 GUARD,clk; 
EID PROCESS LB_6_2; 

EID BLOCK LB_6; 

LB_7: BLOCK (top_table=top_table_h and b_table=b_table_2) 
BEGII 

LB_7_2: PROCESS 
BEGIH 

IF GURD THE! 
if clk='O' and not clk'stable then 

top_table <= top_table_bif_Otree_1; 
bif_Otree_1 <= bif_Otree_1_c_table; 
c_table <= c_table_2; 

end if; 
ELSE 

top_table <= null; 
bif_Otree_1 <=null; 
c_table <= null; 

END IF; 
WAIT OB GUARD,clk; 
END PROCESS LB_7_2; 

END BLOCK LB_7; 

LB_8: BLOCK (top_table=top_table_bif_Otree_1 and bif_Otree_1=bif_Otree_1_c_table and c_table=c_table_1) 
signal bif_case: integer := O; 

BEGIH 
LB_8_1: PROCESS 
BEGIH 

IF GUARD THEB 
c <= c + 1; 
if reg=b"OO" or reg=b"01" then 

bif_timeout_lb_8 <= '0','1' after 5 ns; 
bif_case <= 1; 

elsif reg=b"10" then 
bif_Otree_1 <= bif_Otree_1_d_table; 
bif_case <= 2; 

else 
bif_timeout_lb_8 <= '0','1' after 2 ns; 
bif_case <= 3; 

end if; 
ELSE 

bif_Otree_1 <=null; 
END IF; 

WAIT OB GUARD,bif_self_lb_8; 
END PROCESS LB_8_1; 
LB_8_2: PROCESS 
BEGI1l 

IF GUARD THED 
if bif _case=1 then 

if bif_timeout_lb_8='1' and not bif_timeout_lb_8'stable then 
bif_self_lb_8 <= bif_self_lb_8 + 1; 

end if; 
elsif bif_case=3 then 

if bif_timeout_lb_8='1' and not bif_timeout_lb_8'stable then 
c_table <= c_table_2; 

end if; 
end if; 

ELSE 
c_table <=null; 

EBD IF; 
WAIT OB GUARD,bif_timeout_lb_8; 
EDD PROCESS LB_8_2 ;' 

END BLOCK LB_8; 

LB_9: BI;OCK (top_table=top_table_bif_Otree_1 and bif_Otree_1=bif_Otree_1_c_table and c_table=c_table_2) 
BEGIN 

LB_9_2: PROCESS 
BEG ID 



IF GUARD THEI 
if x='1' and not x'stable then 

bif_Otree_1 <= bif_Otree_1_e_table; 
end if; 

ELSE 
bif_Otree_1 <=null; 

EID IF; 
WAIT 01l GUARD,x; 
E1lD PROCESS LB_9_2; 

EID BLOCK LB_9; 

LB_10: BLOCK (top_table=top_table_bif_Otree_1 and bif_Otree_1=bif_Otree_1_d_table) 
signal bif_case: integer := O; 

BEGI1l 
LB_10_1: PROCESS 
BEGI1l 

IF GUARD THEN 
if d < 10 then 

d <=transport d + 1 after 1 ns; 
bif_case <= 1; 

else 
bif_case <= 2; 

end if; 
ELSE 

d <=null; 
END IF; 

WAIT 01l GUARD,bif_self_lb_10; 
END PROCESS LB_10_1; 
LB_10_2: PROCESS 
BEGIN 

IF GUARD THE1l 
if bif_case=1 then 

if clk='O' and not clk'stable then 
bif_self_lb_10 <= bif_self_lb_10 + 1; 

end if; 
elsif bif_case=2 then 

if clk='O' and not clk'stable then 
bif_Otree_1 <= bif_Otree_1_c_table; 
c_table <= c_table_i; 

end if; 
end if; 

ELSE 
bif_Otree_1 <=null; 
c_table <= null; 

END IF; 
WAIT 01l GUARD,clk; 
END PROCESS LB_10_2; 

END BLOCK LB_10; 

LB_11: BLOCK (top_table=top_table_bif_Otree_1 and bif_Otree_1=bif_Otree_1_e_table) 
signal bif_case: integer := O; 

BEGI1l 
LB_11_1: PROCESS 
BEGI1l 

IF GUARD THEN 
if d > 0 then 

d <= d - 1; 
bif_case <= 1; 

else 
bif_case <= 2; 

end if; 
ELSE 

d <= null; 
END IF; 

WAIT ON GUARD,bif_self_lb_11; 
END PROCESS LB_11_1; 
LB_11_2: PROCESS 
BEGI1l 



STATE: 2 
{ 

} 

{ 

}, 
{ 

} 

COIDITIOI: (true); 
ACTIOIS:; 
NEXT_STATE: B OF TABLE Top_Table 
EVEIT: (after 20 ns); 

CONDITIOI: (true); 
ACTIONS:; 
NEXT_STATE: 1; 
EVENT: (x falling); 

} /* End TABLE A_Table */ 
TABLE B_Table { 

OPS_BASED 
FIRST 
STATE: 
{ 

{ 

}, 
{ 

} 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: A OF TABLE Top_Table 
EVENT: (~fter 25 ns); 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: 2; 
EVENT: (y rising); 

}, 

STATE: 2 
{ 

} 

{ 

}, 
{ 

} 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: A OF TABLE Top_Table 
EVENT: (after 25 ns); 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: 1; 
EVENT: (y falling); 

} /* End TABLE B_Table */ 



A.4 Supplementary Example 1: VHDL 

ENTITY example_1_e IS 
PORT (reset,x,y: in bit); 

END example_1_e; 

ARCHITECTURE example_1_a OF example_1_e IS 
TYPE TABLE_top_table IS (top_table_a,top_table_b); 
TYPE top_table_RES IS ARRAY (NATURAL RAIGE <>) OF TABLE_top_table; 
FUICTION top_table_RES_FUN (INPUT: top_table_RES) RETURN TABLE_top_table IS 
BEGII 

RETURI INPUT ( 0) ; 
END top_table_RES_FUN; 
SIGNAL top_table: top_table_RES_FUN TABLE_top_table REGISTER := top_table_a; 

TYPE TABLE_a_table IS (a_table_1,a_table_2); 
TYPE a_table_RES IS ARRAY (NATURAL RANGE <>) OF TABLE_a_table; 
FUNCTION a_table_RES_FUN (INPUT: a_table_RES) RETURN TABLE_a_table IS 
BEGU 

RETURN INPUT(O); 
END a_table_RES_FUN; 
SIGNAL a_table: a_table_RES_FUN TABLE_a_table REGISTER ·= a_table_1; 

TYPE TABLE_b_table IS (b_table_1,b_table_2); 
TYPE b_table_RES IS ARRAY (NATURAL RANGE<>) OF TABLE_b_table; 
FUNCTION b_table_RES_FUN (INPUT: b_table_RES) RETURN TABLE_b_table IS 
BEGIN 

RETURI INPUT(O); 
END b_table_RES_FUN; 
SIGNAL b_table: b_table_RES_FUN TABLE_b_table REGISTER ·= b_table_1; 

signal bif_self_lb_O: integer := O; 
signal bif_timeout_lb_1: bit := '0'; 
signal bif_timeout_lb_2: bit := '0'; 
signal bif_timeout_lb_3: bit := '0'; 
signal bif_timeout_lb_4: bit := '0'; 

BEGIN 
LB_O: BLOCK (reset='1' and not reset'stable(O ns)) 
BEGIN 

top_table <= guarded top~table_a; 
a_table <=guarded a_table_1; 
b_table <=guarded b_table; 
bif_self_lb_O <=guarded bif_self_lb_O + 1; 

END.BLOCK LB_O; 

LB_1: BLOCK (top_table=top_table_a and a_table=a_table_1) 
BEGIN 

LB_1_1: PROCESS 
BEGIN 

IF GUARD THEN 
bif_timeout_lb_1 <= '0','1' after 20 ns; 

END IF; 
WAIT OH GUARD,bif_self_lb_O; 
END PROCESS LB_1_1; 
LB_1_2: PROCESS 
BEGIN 

IF GUARD THEN 
if not (reset='1' and not reset'stable) then 

if bif_timeout_lb_1='1' and not bif_timeout_lb_1'stable then 
top_table <9 top_table_b; 
b_table <= b_table_1; 

elsif x='1' and not x'stable·then 
a_table <= a_table_2; 

end if; 
end if; 

ELSE 



top_table <= null; 
a_table <=null; 
b_table <= null; 

EID IF; 
WAIT 01 GUARD,bif_timeout_lb_1,x; 
EID PROCESS LB_1_2; 

.END BLOCK LB_1; 

LB_2: BLOCK (top_table=top_table_a and' a_table=a_table_2) 
BEGII 

LB_2_1: PROCESS 
BEGI.11' 

IF GUARD THEN 
bif_ tirneout_lb_2 <= '0', '1' after 20 ns; 

END IF; 
WAIT 01 GUARD; 
EBD PROCESS LB_2_1; 
LB_2_2: PROCESS 
BEGI1l 

IF GUARD THEB 
if bif_timeout_lb_2='1' and not bif_timeout_lb_2'stable then 

top_ table <= top_table_b; 
b_table <= b_table_1; 

elsif x='O' and not x'stable then 
a_table <= a_table_1; 

end if; 
ELSE 

top_table <=null; 
a_table <= null; 
b_table <= null; 

END IF; 
WAIT OB GUARD,bif_timeout_lb_2,x; 
END PROCESS LB_2_2; 

END BLOCK LB_2; 

LB_3: BLOCK (top_table=top_table_b and b_table=b_table_1) 
BEGIN 

LB_3_1: PROCESS 
BEGIH 

IF GUARD THEN 
bif_tirneout_lb_3 <= '0','1' after 25 ns; 

END IF; 
WAIT ON GUARD; 
END PROCESS LB_3_1; 

LB_3_2: PROCESS 
BEGIN 

IF GUARD THEN 
if bif_timeout_lb_3='1' and not bif_timeout_lb_3 1stable then 

top_table <= top_table_a; 
a_table <= a_table_1; 

elsif y='1' and not y'stable then 
b_table <= b_table_2; 

end if; 
ELSE 

top_table <= null; 
a_table <=null; 
b_table <= null; 

END IF; 
WAIT ON GUARD,bif_timeout_lb_3,y; 
END PROCESS LB_3_2; 

END BLOCK LB_3; 

LB_4: BLOCK (top_table=top_table_b and b_table=b_table_2) 
BEGIN 

LB_4_1: PROCESS 
.BEGIH 

IF GUARD THEN 
bif_timeout_lb_4 <= '0','1' after 25 ns; 



EID IF; 
WAIT 01 GUARD; 
EID PROCESS LB_4_1; 
LB_4_2: PROCESS 
BEGII 

IF GUARD THEI 
if bif_timeou~_lb_4='1' and not bif_timeout_lb_4'stable then 

top_table <= top_table_a; 
a_table <= a_table_1; 

elsif y='O' and not y'stable then 
b_table <= b_table_1; 

end if; 
ELSE 

top_table <=null; 
a_ table <= null; 
b_table <=null; 

EID IF; 
WAIT OD GUARD,bif_timeout_lb_4,y; 
EDD PROCESS LB_4_2; 

EDD BLOCK LB_4; 

EID example_1_a; 

CODFIGURATIOD example_1_c OF example_1_e IS 
FOR example_1_a 
END FOR; 

END example_1_c; 



A.5 Supplementary Example 2: BIF 

SYKBOL_TABLE { 

} 

type 
Event= {O}; 
Cond = {O}; 

port 
RESET,X,Y 
a 

/• Condition (a == 1) •/ 

input of Event; 
input of Cond; 

TABLE Example_2 { 

OPS_BASED 

FIRST 
STATE: top 
{ 

{ 

}, 

{ 

} 

} 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: TABLE Top_Table; 
EVERT: (call); 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: top; 
EVENT: (RESET rising); 

} /* End TABLE Example_2 */ 

TABLE Top_Table { 

OPS_BASED 

FIRST 
STATE: A 
{ 

{ 

}, 

{ 

} 

}, 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: TABLE A_Table; 
EVENT: (call); 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: B; 
EVENT: (after 20 ns); 

STATE: B 
{ 

{ 

}, 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: TABLE B_Table; 
EVENT: (call); 



{ 

} 
} 

CONDITIOI: (true); 
ACTIOIS:; 
NEXT_STATE: A; 
EVENT: (after 25 ns); 

} /* End TABLE Top_Table •/ 

TABLE A_Table { 

OPS_BASED 

FIRST 
STATE: 
{ 

{ 

}, 

{ 

} 

}, 

CONDITION: (a== '1'); 
ACTIOIS:; 
NEXT_STATE: 2; 
EVENT: (x rising); 

CONDITION: (else); 
ACTIONS:; 
NEXT_STATE: 1; 
EVENT: (x falling); 

STATE: 2 
{ 

{ 

} 
} 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: '1; 

EVENT: (x falling); 

} /* End TABLE A_Table •/ 

TABLE B_Table { 

OPS_BASED 

FIRST 
STATE: 1 
{ 

{ 

} 

}, 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: 2; 
EVENT: (y rising); 

STATE: 2 
{ 

{ 

} 
} 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: 1; 
EVENT: (y falling); 

} /* End TABLE B_Table •/ 



IF GUARD THEI 
bif_timeout_lb_3 <= '0','1' after 25 ns; 

END IF; 
WAIT 01 GUARD; 
END PROCESS LB_3_1; 

EID BLOCK LB_3; 

LB_4: BLOCK (top_table=top_table_b and (bif_timeout_lb_3='1' and not bif_timeout_lb_3'stable(O ns))) 
BEGIN 

top_table <= guarded top_table_a; 
a_table <=guarded a_table_1; 
b_table <= guarded b_table; 

END BLOCK LB_4; 

LB_5: BLOCK (top_table=top_table_a and a_table=a_table_1) 
signal bif_case: integer := O; 

BEGIN 
LB_5_1: PROCESS 
BEGIN 

IF GUARD THEN 
if a=' 1' then 

bif_case <= 1; 
else 

bif_case <= 2; 
end if; 

END IF; 
WAIT OH GUARD,bif_self_lb_O,bif_self_lb_5; 
END PROCESS LB_5_1; 
LB_5_2: PROCESS 
BEGIN 

IF GUARD THEN 
if not (reset='1' and not reset'stable) then 

if bif _case=1 then 
if x='1' and not x'stable then 

a_table <= a_table_2; 
end if; 

elsif bif_case=2 then 
if x='O' and not x'stable then 

a_table <= a_table_1; 
bif_self_lb_5 <= bif_self_lb_5 + 1; 

end if; 
end if; 

end if; 
ELSE 

a_table <= null; 
END IF; 

WAIT OH GUARD,x; 
END PROCESS LB_5_2; 

END BLOCK LB_5; 

i 

LB_6: BLOCK (top_table=top_table_a and a_table=a_table_2) 
BEGIN 

LB_6_2: PROCESS 
BEGIN 

IF GUARD THEN 
if x='O' and not x'stable then 

a_table <= a_table_1; 
end if; 

ELSE 
a_table <= null; 

END IF; 
WAIT OH GUARD, x; 
END PROCESS LB_6_2; 

END BLOCK LB_6; 

LB_7: BLOCK (top_table=top_table_b and b_table=b_table_1) 
BEGI1l 

LB_7_2: PROCESS 



A.6 Supplementary Example 2: VHDL 

ENTITY- example_2_e IS 
PORT (reset,x,y,a: in bit); 

EID example_2_e; 

ARCHITECTURE example_2_a OF example_2_e IS 
TYPE TABLE_top_table IS (top_table_a,top_table_b); 
TYPE top_table_RES IS ARRAY (BATURAL RANGE <>) OF TABLE_top_table; 
FUNCTION top_table_RES_FUI (INPUT: top_table_RES) RETURI TABLE_top_table IS 
BEGI1l 

RETURN INPUT(O); 
END top_table_RES_FUB; 
SIGNAL top_table: top_table_RES_FUI TABLE_top_table REGISTER := top_table_a; 

TYPE TABLE_a_table IS (a_table_1,a_table_2); 
TYPE a_table_RES IS ARRAY (NATURAL RANGE <>) OF TABLE_a_table; 
FUNCTION a_table_RES_FUB (INPUT: a_table_RES) RETURN TABLE_a_table IS 
BEGIH 

RETURN IBPUT(O); 
END a_table_RES_FUN; 
SIGNAL a_table: a_table_RES_FUN TABLE_a_table REGISTER := a_table_1; 

TYPE TABLE_b_table IS (b_table_1,b_table_2); 
TYPE b_table_RES IS ARRAY (NATURAL RANGE <>) OF TABLE_b_table; 
FUNCTION b_table_RES_FUN (INPUT: b_table_RES) RETURN TABLE_b_table IS 
BEGIN 

RETURN INPUT(O); 
END b_table_RES_FUN; 
SIGNAL b_table: b_table_RES_FUN TABLE_b_table REGISTER := b_table_1; 

signal bif_self_lb_O: integer := O; 
signal bif_self_lb_5: integer := O; 
signal bif_timeout_lb_1: bit ·= 'O'; 
signal bif_timeout_lb_3: bit := 'O'; 

BEGIH 
LB_O: BLOCK (reset='1' and not reset'stable(O ns)) 
BEGIN 

top_table <= guarded top_table_a; 
a_table <=guarded a_table_1; 
b_table <= guarded b_table; 
bif_self_lb_O <=guarded bif_self_lb_O + 1; 

END BLOCK LB_O; 

LB_1: BLOCK (top_table=top_table_a) 
BEGIN 

LB_1_1: PROCESS 
BEGIN 

IF GUARD THEN 
bif_timeout_lb_1 <= 'O', '1' after 20 ns; 

END IF; 
WAIT ON GUARD,bif_self_lb_O; 
END PROCESS LB_1_1; 

END BLOCK LB_1; 

LB_2: BLOCK (top_table=top_table_a and (bif_timeout_lb_1='1' and not bif_timeout_lb_1'stable(O ns))) 
BEGIN 

top_table <= guarded top_table_b; 
a_table <=guarded a_table; 
b_table <=guarded b_table_1; 

END BLOCK LB_2; 

LB_3: BLOCK (top_table=top_table_b) 
BEGIN 

LB_3_1: PROCESS 
BEGIN 



BEGII 
IF GUARD THEI 

if y='1' and not y'stable then 
b_table <= b_table_2; 

end if; 
ELSE 

b_table <= null; 
END IF; 

WAIT 01 GUARD,y; 
END PROCESS LB_7_2; 

END BLOCK LB_7; 

LB_8: BLOCK (top_table=top_table_b and b_table=b_table_2) 
BEGIN 

LB_8_2: PROCESS 
BEGI1l 

IF GUARD THEN 
if y='O' and not y'stable then 

b_table <= b_table_1; 
end if; 

ELSE 
b_table <= null; 

END IF; 
WAIT ON GUARD,y; 
END PROCESS LB_8_2; 

END BLOCK LB_8; 

END example_2_a; 

CONFIGURATION example_2_c OF example_2_e IS 
FOR example_2_a 
END FOR; 

END example_2_c; 



A. 7 Supplementary Example 3: BIF 

l• 
* Complete Concurrency example from 
* BIF Technical Report Revision. 
•I 

SYMBOL_TABLE { 

} 

type 
Event 

port 
RESET,X 

{O}; 

input of Event; 

TABLE Example_3 { 

OPS_BASED 

FIRST 
STATE: top 
{ 

{ 

} ' 

{ 

} 
} 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: TABLE Top_Table; 
EVE1lT: (call); 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: top; 
EVE1lT: (RESET rising); 

} /• End TABLE Example_3 •/ 

TABLE Top_Table { 

OPS_BASED 

FIRST 
STATE: H 
{ 

{ 

}, 

{ 

} 

} ' 

CONDITION: (true); 
ACTIONS:; 
NEXT_STATE: TABLE H_Table; 
EVE1lT: (call); 

CONDITI01l: (true); 
ACTIONS:; 
NEXT_STATE: C; 
EVENT: (X rising); 

STATE: C 
{ 

{ 

CONDITION: (true); 
ACTIONS:; 



IEXT_STATE: TABLE C_Table; 
EVEIT: (call); 

} 
} 

} /* End TABLE Top_Table •/ 

TABLE H_Table { 

CONCURRENT { 

} 

TABLE A_Table, 
TABLE B_Table 

} /* End TABLE H_Table •/ 

TABLE A_Table { 

OPS_BASED 

FIRST 
STATE: 1 
{ 

{ 

} 

}, 

CONDITION: (true); 
ACTIONS: reg= reg+ 1; 
NEXT _STATE: 2; 
EVENT: (after 5 ns); 

STATE: 2 
{ 

{ 
CONDITION: (true); 
ACTIONS: reg= reg+ 3; 
NEXT_STATE: H OF TABLE Top_Table; 
EVENT: (after 5 ns); 

} 

} 

} /* End TABLE A_Table •/ 

TABLE B_Table { 

} 

OPS_BASED 

FIRST 
STATE: 
{ 

{ 

} 

}, 

STATE: 
{ 

{ 

} 
} 

CONDITION: (true); 
ACTIONS: index= 1; 
NEXT_STATE: 2; 
EVENT: (after 2 ns); 

2 

CONDITION: (index < 3); 
ACTIONS: reg= reg + 2; 

ind~x = index + 
NEXT_STATE: 2; 
EVENT: (after 2 ns); 

I• End of TABLE B_Table •/ 

1; 



TABLE C_Table { 

OPS_BASED 

FIRST 
STATE: 1 
{ 

{ 

} 

}, 

COIDITIOI: (true); 
ACTIOIS: ; 
llEXT_STATE: 2; 
EVEIT: (after 10 ns); 

STATE: 2 
{ 

{ 

} 

} 

COllDITIOI: (true); 
ACTIOIS: ; 
NEXT_STATE: H OF TABLE Top_Table; 
EVEIT: (X rising); 

} /* End TABLE C_Table •/ 



A.8 Supplementary Example 3: VHDL 

EITITY example_3_e IS 
PORT (reset,x: in bit); 

EID example_3_e; 

ARCHITECTURE example_3_a OF example_3_e IS 
TYPE TABLE_top_table IS (top_table_h,top_table_c); 
TYPE top_table_RES IS ARRAY(JIATURAL RAIG.E <>) OF TABLE_top_table; 
FUICTIOI top_table_RES_FUI (IIPUT: top_table_RES) RETURI TABLE_top_table IS 
BEG!Jl 

RETURI IIPUT(O); 
EID top_table_RES_FUI; 
SIGNAL top_table: top_table_RES_FUI TABLE_top_table REGISTER := top_table_h; 

TYPE TABLE_a_table IS (a_table_1,a_table_2); 
TYPE a_table_RES IS ARRAY(HATURAL RAIGE <>) OF TABLE_a_table; 
FUNCTIOI a_table_RES_FUN (INPUT: a_table_RES) RETURI TABLE_a_table IS 
BEGIN 

RETURI INPUT(O); 
EID a_table_RES_FUH; 
SIGNAL a_table: a_table_RES_FUH TABLE_a_table REGISTER := a_table_1; 

TYPE TABLE_b_table IS (b_table_1,b_table_2); 
TYPE b_table_RES IS ARRAY(NATURAL RANGE <>) OF TABLE_b_table; 
FUNCTIOI b_table_RES_FUH (INPUT: b_table_RES) RETURN TABLE_b_table IS 
BEGIH 

RETURI IHPUT(O); 
EID b_table_RES_FUH; 
SIGHAL b_table: b_table_RES_FUH TABLE_b_table REGISTER := b_table_1; 

TYPE TABLE_c_table IS (c_table_1,c_table_2); 
TYPE c_table_RES IS ARRAY(HATURAL RANGE <>) OF TABLE_c_table; 
FUNCTION c_table_RES_FUH (IHPUT: c_table_RES) RETURN TABLE_c_table IS 
BEGIH 

RETURN IHPUT(O); 
EHD c_table_RES_FUH; 
SIGHAL c_table: c_table_RES_FUH TABLE_c_table REGISTER := c_table_1; 

TYPE a_reg_RES IS ARRAY(HATURAL RANGE <>) OF integer; 
FUNCTION a_reg_RES_FUH (INPUT: a_reg_RES) RETURN integer IS 
BEGIN 

RETURN INPUT(O); 
END a_reg_RES_FUH; 
SIGNAL a_reg: a_reg_RES_FUN integer REGISTER := O; 

TYPE index_RES IS ARRAY(NATURAL RANGE <>) OF integer; 
FUNCTION index_RES_FUH (INPUT: index_RES) RETURN integer IS 
BEGIH 

RETURH IHPUT(O); 
END index_RES_FUH; 
SIGHAL index: index_RES_FUN integer REGISTER := O; 

signal b_reg: integer := O; 
signal reg: integer := 100; 
signal bif_self_lb_O: integer := O; 
signal bif_self_lb_3: integer := O; 
signal·bif_self_lb_5: integer:= O; 
signal bif_timeout_lb_2: bit 
signal bif_timeout_lb_3: bit 
signal bif_timeout_lb_4: bit 
signal bif_timeout_lb_5: bit 
signal bif_timeout_lb_6: bit 

B]!;GIH 

:= 
:= 
·= 
·= 
·= 

'0'; 
'0' i 
'0' i 
'0'; 
'0' i 

LB_O: BLOCK (reset='!' and not reset'stable) 
BEGIN 



top_table <= guarded top_table_h; 
a_table <=guarded a_table_1; 
b_table <=guarded b_table_1; 
bif_self_lb_O <=guarded bif_self_lb_O + 1; 

END BLOCK LB_O; 

LB_1: BLOCK (top_table=top_table_h and (x='1' and not x'stable)) 
BEGIN 

top_table <=guarded top_table_c; 
a_table <=guarded a_table; 
b_table <= guarded b_table; 
c_table <=guarded c_table_1; 

END BLOCK LB_1; 

LB_2: BLOCK (top_table=top_table_h and a_table=a_table_1) 
BEGIN 

LB_2_1: PROCESS BEGIN IF GUARD THER 
a_reg <=reg+ 1; 
bif_timeout_lb_2 <= '0','1' after 5 ns; 

ELSE 
a_reg <=null; 

END IF; 
WAIT ON GUARD,bif_self_lb_O; 
END PROCESS LB_2_1; 
LB_2_2: PROCESS 
BEGUl 

IF GUARD THEN 
if not (reset='!' and not reset'stable) then 

if bif_timeout_lb_2='1' and not bif_timeout_lb_2'stable then 
a_table <= a_table_2; 

end if; 
end if; 

ELSE 
a_ table <= null; 

END IF; 
WAIT ON GUARD,bif_timeout_lb_2; 
END PROCESS LB_2_2; 

END BLOCK LB_2; 

LB_3: BLOCK (top_table=top_table_h and a_table=a_table_2) 
BEGIN 

LB_3_1: PROCESS 
BEGUl 

IF GUARD THEN 
a_reg <= reg+ 3; 
bif_timeout_lb_3 <= 'O', '1' after 5 ns; 

ELSE 
a_reg <=null; 

END IF; 
WAIT ON GUARD; 
END PROCESS LB_3_1; 
LB_3_2: PROCESS 
BEGIN 

IF GUARD THEN 
if bif_timeout_lb_3='1' and not bif_timeout_lb_3 1stable then 

a_table <= a_table_1; 
b_table <= b_table_1; 
bif_self_lb_3 <= bif_self_lb_3 + 1; 

end if; 
ELSE 

a_table <=null; 
b_table <= null; 

END IF; 
WAIT OH GUARD,bif_timeout_lb_3; 
END PROCESS LB_3_2; 

END BLOCK LB_3; 

LB_4: BLOCK (top_table=top_table_h and b_table=b_table_1) 



BEGU 
LB_4_1: PROCESS 
BEGUI 

IF GUARD THEI 
index<= 1; 
bif_tirneout_lb_4 <= '0','1' after 2 ns; 

ELSE 
index<= null; 

END IF; 
WAIT ON GUARD,bif_self_lb_O; 
END PROCESS LB_4_1; 
LB_4_2: PROCESS 
BEGUl 

IF GUARD THEN 
if not (reset='!' and not reset'stable) then 

if bif_timeout_lb_4='1' and not bif_timeout_lb_4'stable then 
b_table <= b_table_2; 

end if; 
end if; 

ELSE 
b_table <= null; 

END IF; 
WAIT ON GUARD,bif_timeout_lb_4; 
END PROCESS LB_4_2; 

END BLOCK LB_4; 

LB_5: BLOCK (top_table=top_table_h and b_table=b_table_2) 
BEGIN 

LB_5_1: PROCESS 
BEGUl 

IF GUARD THEN 
if index < 3 then 

b_reg <=reg+ 2; 
bif_timeout_lb_5 <= '0','1' after 2 ns; 

end if; 
ELSE 

b_table <= null; 
END IF; 

WAIT ON GUARD,bif_self_lb_5; 
END PROCESS LB_5_1; 
LB_5_2: PROCESS 
BEGIN 

IF GUARD THEN 
if bif_timeout_lb_5='1' and not bif_tirneout_lb_S'stable then 

b_table <= b_table_2; 
bif_self_lb_5 <= bif_self_lb_5 + 1; 
index<= index+ 1; 

end if; 
ELSE 

index <= null; 
b_table <= null; 

END IF; 
WAIT ON GUARD,bif_timeout_lb_5; 
END PROCESS LB_5_2; 

END BLOCK LB_5; 

LB_6: BLOCK (top_table=top_table_c and c_table=c_table_1) 
BEGIN 

LB_6_1: PROCESS 
BEGill 

IF GUARD THEN 
bif_timeout_lb_6 <= '0','1' after 10 ns; 

END IF; 
WAIT ON GUARD; 
END PROCESS LB_6_1; 
LB_6_2: PROCESS 
BEGill 

IF GUARD THEN 



if bif_timeout_lb_6='1' and not bif_timeout_lb_6'stable then 
c_table <= c_table_2; 

end if; 
ELSE 

c_table <= null; 
EID IF; 

WAIT 01 GUARD,bif_timeout_lb_6; 
EID PROCESS LB_6_2; 

EID BLOCK LB_6; 

LB_7: BLOCK (top_table=top_table_c and c_table=c_table_2) 
BEGII 

LB_7_2: PROCESS 
BEGUI 

IF GUARD THEI 
if x='i' and not x'stable then 

top_table <= top_table_h; 
a_table <= a_table_i; 
b_table <= b_table_i; 

end if; 
ELSE 

top_table <=null; 
a_table <=null; 
b_table <= null; 

EID IF; 
WAIT 01 GUARD,x; 
EID PROCESS LB_7_2; 

EID BLOCK LB_7; 

reg <= a_reg ghen (not a_reg'stable) else 
b_reg ghen (not b_reg'stable) else 
reg; 

EID example_3_a; 

COIFIGURATIOI example_3_c OF example_3_e IS 
FOR example_3_a 
EID FOR; 

EID example_3_c; 
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