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Abstract

Computational Considerations for Targeted Learning

by

Jeremy Robert Coyle

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Alan Hubbard, Chair

Targeted Learning represents a principled methodology that has the potential to leverage
the availability of big datasets and large scale computing facilities. However, many of the
methods are computationally demanding, and therefore require careful consideration as to
their implementation. This thesis comprises three cases studies at the intersection between
Targeted Learning and computation. Chapter 1 describes the Targeted Bootstrap, a novel
bootstrap technique that samples from a TMLE distribution and therefore has asymptotic
performance guarantees, while avoiding issues related to cross-validation on bootstrap sam-
ples. Chapter 2 considers the problem of estimating both a target parameter and nuisance
parameter on which it depends, when ideally both would be estimated with cross-validation.
By carefully considering what parts of the sample are used for what estimation tasks, nested
cross-validation can be avoided at great computational savings. This is achieved using the
novel SplitSequential cross-validation approach. Chapter 3 describes the opttx package for
learning optimal treatment rules. This package contains an implementation of SplitSequen-
tial Super Learner, and also contains a novel approach to learning an optimal rule for a
categorical treatment variable. Further, performance-based variable importance measures
are used to evaluate which of the covariates are most useful for making treatment decisions.
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Chapter 1

Targeted Bootstrap for the Sampling
Distribution of an Asymptotically
Linear Estimator

1.1 Introduction

The bootstrap is used to obtain statistical inference (confidence intervals, hypothesis tests) in
a wide variety of settings [Efron and Tibshirani, 1993, Davison and Hinkley, 1997]. Bootstrap-
based confidence intervals have been shown in some settings to have higher-order accuracy
compared to Wald-style intervals based on the normal approximation [Hall, 1988, DiCiccio
and Romano, 1988, Hall, 1992]. For this reason it has been widely adopted as a method for
generating inference in a range of contexts, not all of which have theoretical support. One
setting in which it fails to work in the manner it is typically applied is in the framework of
Targeted Learning. We describe the reasons for this failure in detail and present a solution
in the form of a Targeted Bootstrap, designed to be consistent for the first two moments of
the sampling distribution.

Suppose we want to estimate a particular pathwise differentiable parameter using a Tar-
geted Learning approach [van der Laan and Rose, 2011]. The typical workflow is to obtain
initial estimates for relevant factors of the likelihood using Super Learner [van der Laan
et al., 2007a], and then generate a targeted estimate using TMLE. By using Super Learner
and TMLE, we can generate correct inference for our parameter of interest without assum-
ing that the likelihood can be modeled by simple parametric models. Relying on the fact
that TMLE is an asymptotically linear estimator, we can use the normal approximation to
generate Wald style confidence intervals where the standard error is based on the influence
curve. These confidence intervals are first-order accurate. It is tempting to instead obtain
higher-order correct confidence intervals by applying the non-parametric bootstrap. How-
ever, in the case of TMLE with initial estimates obtained via the Super Learner algorithm,
näıve application of the nonparametric bootstrap is not justified and which we will shown
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to have poor performance, because Super Learner and therefore TMLE behaves differently
on nonparametric bootstrap samples than it does on samples from the true data generating
distribution. It is therefore important to develop a bootstrap method that works in the
context of Targeted Learning.

We illustrate the reason for this difference in Super Learner’s behavior, and present a
solution in the form of the Targeted Bootstrap, a novel model based bootstrap that samples
from a distribution targeted to a parameter of interest and the asymptotic variance of esti-
mators of that parameter. In the process, we outline a TMLE that targets both a parameter
of interest and its asymptotic variance. This TMLE can be used to generate another Wald
style confidence interval, by directly using the targeted estimate of the asymptotic variance.
Additionally, it can be used to generate a confidence of interval for the asymptotic variance
itself. We demonstrate the practical performance of the targeted bootstrap confidence inter-
vals relative to the Wald-type confidence intervals as well as confidence intervals generated
by other bootstrap approaches.

The remainder of this paper is organized as follows: First, we state the problem and
describe the example of estimating the Treatment Specific Mean (TSM). This example will
be used in the remainder of the exposition, with a more general presentation given in the
Appendix. Section 1.2 gives a review of TMLE and presents the TMLE for the Treatment
Specific Mean as well as TMLEs targeting asymptotic variance in general and specifically
for the TSM parameter. Section 1.3 reviews loss based estimation, including Super Learner.
Section 1.4 reviews bootstrap theory and section 1.4 presents the novel Targeted Bootstrap
approach. Section 1.5 presents simulation results demonstrating the performance of Targeted
Bootstrap.

Problem Statement

Suppose that we observe n independent and identically distributed copies of O with probabil-
ity distribution P0 known to be an element of the statistical modelM. In addition, assume
we are concerned with statistical inference of the target parameter value ψ0 = Ψ(P0) for a
given parameter mapping Ψ : M → IR. Consider a given estimator Ψ̂ : Mnp → IR that
maps an empirical distribution Pn of O1, . . . , On into an estimate of ψ0, and assume that this
estimator ψn = Ψ̂(Pn) is asymptotically linear at P0 with influence curve O → D(P0)(O) at
P0, so that we can write:

ψn − ψ0 = (Pn − P0)D(P0) + oP (1/
√
n)

In that case, we have that
√
n(ψn−ψ0) converges in distribution to a normal distribution

N(0,Σ2(P0)), where Σ2 : M → IR is defined by Σ2(P ) = PD(P )2 as the variance of the
influence curve D(P ) under P .

We wish to estimate a confidence interval for ψn. A one sided confidence interval is
defined by a quantity ψn,[α] such that P0(ψ0 < ψn,[α]) = α. Two sided confidence intervals
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are typically equal-tailed intervals, having the same error in each tail: P0(ψ0 < ψn,[α/2]) =
P0(ψ0 > ψn,[1−α/2]) = α. These can be constructed using a pair of one-sided intervals.

A one-sided Wald confidence interval can be generated using the asymptotic normality
discussed above: defining variance estimator σ̂2

n = Σ2(Pn), the endpoint is ψn,[α],Wald =
ψn − n−1/2σ̂nφ

−1(1 − α), where φ−1(1 − α) is the 1 − αth quantile of the standard normal
distribution. This approach ignores the remainder term oP (1/

√
n) and is therefore said to

be first order correct.

Example: Treatment Specific Mean

To provide a concrete motivating example, suppose we observe n i.i.d. observations of
O = (W,A, Y ) ∼ P0, for baseline covariates W , treatment A ∈ {0, 1}, and outcome Y ∈
{0, 1}, and suppose that M is the nonparametric model, making no assumptions about the
distribution from which O is sampled. The target parameter Ψ : M → R, is a Treatment
Specific Mean (TSM) defined as Ψ(P ) = EPEP (Y | A = 1,W ). Let Q̄(P )(W ) = EP (Y |
A = 1,W ) and ḡ(P )(W ) = EP (A | W ).

1.2 TMLE

Targeted minimum loss-based estimation (TMLE) is an estimation framework that produces
asymptotically linear substitution estimators of target parameters [van der Laan and Rubin,
2006, van der Laan and Rose, 2011]. TMLE fluctuates an initial estimate of the target
parameter, resulting in an estimate which makes the correct bias-variance trade-off. TMLE
estimators are asymptotically linear with a known influence curve, even when the components
of the likelihood are estimated using data-adaptive methods (like these).

TMLE Definition

A TMLE is defined by four components. First, the parameter, Ψ(P ) which maps M →
R. For example, the TSM parameter described above: Ψ(P0) = E0,W [E0,Y [Y |A = 1,W ]].
Second, an efficient influence curve, D∗(P0)(O), which defines the estimator with the minimal
asymptotic variance. Third, a submodel for relevant factor(s) of likelihood, P ∗n,ε(O). Finally,
a loss function, L(Oi, P

j
n,ε), with which to evaluate the submodel. Minimizing the loss in the

submodel is equivalent to setting PnD(P ∗n) = 0, which solves the efficient influence curve.

TMLE for Treatment Specific Mean

The efficient influence curve of Ψ at P is given by:

D∗(P )(O) =
A

ḡ(W )
(Y − Q̄(W )) + Q̄(W )−Ψ(P ).
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[van der Laan and Robins, 2003]. Note that Ψ(P ) only depends on P through Q̄(P ) and the
probability distribution QW (P ) of W . Let Q(P ) = (QW (P ), Q̄(P )) and let Q(M) = {Q(P ) :
P ∈ M} be its model space. We will also denote the target parameter as Ψ : Q(M) → IR
as a mapping that maps a Q in the parameter space Q(M) into a numeric value, abusing
notation by using the same notation Ψ for this mapping. Similarly, we will also denote D∗(P )
with D∗(Q,G). The efficient influence curve D∗(P ) satisfies the expansion Ψ(P )−Ψ(P0) =
−P0D

∗(P ) +Rψ(P, P0), where

Rψ(P, P0) = P0
ḡ − ḡ0

ḡ
(Q̄− Q̄0).

Let ψ∗n = Ψ(Q∗n) be a TMLE of ψ0 so that it is asymptotically linear at P0 with influence
curve D∗(P0). This TMLE can be defined by letting Q̄0

n being an initial estimator of Q̄0, ḡn
an estimator of g0, L(Q̄)(O) = −I(A = 1)(Y log Q̄(W )+(1−Y ) log(1−Q̄(W )) being the log-
likelihood loss function for Q̄0, the submodel LogitQ̄0

n(ε)) = LogitQ̄0
n+ εH(ḡn) with H(ḡn) =

A/ḡn(W ), Q̄1
n = Q̄0

n(ε0n) with ε0n = arg minε PnL(Q̄0
n(ε)), and ψ∗n = Ψ(Q1

n), where Q1
n =

(Q̄1
n, QW,n) and QW,n is the empirical distribution of W1, . . . ,Wn. Let P ∗n be a probability

distribution compatible with Q∗n.

TMLE for the Asymptotic Variance of a Target Parameter

Let O ∼ P0 ∈ M, and we have two target parameter Ψ :M→ IR and Σ2 :M→ IR. We
are given an estimator ψ∗n that is asymptotically linear at P0 with influence curve D(P0).
For simplicity, we will consider the case that ψ∗n = Ψ(P ∗n) is an efficient targeted maximum
likelihood estimator so that D(P ) = D∗(P ) and D∗(P ) is the efficient influence curve of Ψ
at P .

In this case, Σ2(P ) = P{D∗(P )}2. Let D∗Σ(P ) be the efficient influence curve of Σ2

at P . Suppose that Σ2(P ) = Σ2
1(QΣ(P )) for some parameter QΣ(P ) that can be defined

by minimizing the risk of a loss function LΣ(QΣ) so that QΣ(P ) = arg minQΣ
PLΣ(Q). In

addition, we assume that D∗Σ(P ) only depends on P through QΣ(P ) and some other param-
eter gΣ(P ). For notational convenience, we will denote these to alternative representations
of the asymptotic variance parameter and its efficient influence curve with Σ2(QΣ) and
D∗Σ(QΣ(P ), gΣ(P )) respectively. We now develop a TMLE of Σ2(P0) as follows. First, let
Q0

Σ,n be an initial estimator of QΣ(P0), which could be based on the super-learner ensemble
algorithm using the loss function LΣ(). Similarly, let gΣ,n be an estimator of gΣ,0. Set k = 0.
Consider now a submodel {Qk

Σ,n(ε | gΣ,n) : ε} ⊂ QΣ(M) so that the linear span of the com-

ponents of the generalized score d
dε
LΣ(Qk

Σ,n(ε | gΣ,n)) at ε = 0 spans D∗Σ(Qk
Σ,n, gΣ,n). Define

εkn = arg minε PnLΣ(Qk
Σ,n(ε | gΣ,n)) as the MLE and define the update Qk+1

Σ,n = Qk
Σ,n(εkn | gΣ,n).

We iterate this updating process till convergence at which step K we have εKn ≈ 0. We de-
note this final update with Q∗Σ,n and we call that the TMLE of QΣ(P0), while Σ2(Q∗Σ,n) is the

TMLE of the asymptotic variance Σ2(Q0) of the TMLE ψ∗n of ψ0. Let P̃ ∗n be a probability
distribution compatible with Q∗Σ,n.
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Application to the Treatment Specific Mean

The asymptotic variance of
√
n(ψ∗n − ψ0) is given by:

Σ2(P0) = EP0{D∗(P0)}2

= Q0,W

(
Q̄0(1− Q̄0)

ḡ0

+ (Q̄0 −Q0,W Q̄0)2

)
The following lemma presents its efficient influence curve D∗Σ(P ).

Lemma 1. The efficient influence curve D∗Σ(P ) of Σ2 at P is given by:

D∗Σ(P )(W,A, Y ) = DΣ2,QW (P )(W ) +DΣ2,Q̄(P )(O) +DΣ2,ḡ(P )(O),

where

DΣ2,QW (P )(W ) =
Q̄(1− Q̄)

ḡ
(W )−QW

Q̄(1− Q̄)

ḡ

+(Q̄(W )−Ψ(Q))2 −QW (Q̄−Ψ(Q))2

DΣ2,Q̄(P )(O) =
I(A = 1)

ḡ(W )

(
1− 2Q̄(W )

ḡ(W )
+ 2(Q̄(W )−Ψ(Q))

)
(Y − Q̄(W ))

DΣ2,ḡ(P )(O) = −Q̄(1− Q̄)(W )

ḡ2(W )
(A− ḡ(W )).

This allows us to develop a TMLE Σ2(QW,n, Q̄
∗
n, ḡ
∗
n) of Σ2(QW,0, Q̄0, ḡ0). Define the clever

covariates:

CY (ḡ, Q)(A,W ) ≡ I(A = 1)

ḡ(W )

(
1− 2Q̄(W )

ḡ(W )
+ 2(Q̄(W )−Ψ(Q))

)
CA(ḡ, Q̄)(W ) ≡ Q̄(1− Q̄)(W )

ḡ2(W )
.

Let Q0
n = (QW,n, Q̄

0
n) for an initial estimator Q̄0

n of Q̄0, where QW,n is the empirical dis-
tribution which will not be changed by the TMLE algorithm. Let k = 0. Consider the
submodels

LogitQ̄k
n(ε1) = LogitQ̄k

n + ε1CY (ḡkn, Q
k
n)

Logitḡkn(ε2) = Logitḡkn + ε1CA(ḡkn, Q̄
k
n).

In addition, consider the log-likelihood loss functions

L1(Q̄) = −I(A = 1)
{
Y log Q̄(W ) + (1− Y ) log(1− Q̄(W ))

}
L2(ḡ) = −{A log ḡ(W ) + (1− A) log(1− ḡ(W ))}
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Define the MLEs εk1n = arg minε PnL1(Q̄k
n(ε)) and εk2n = arg minε PnL2(ḡkn(ε)). This defines

now the first step update Q̄k+1
n = Q̄k

n(εk1n) and ḡk+1
n = ḡkn(εk2n). Now set k = k+ 1 and iterate

this process till convergence defined by (ε∗1n, ε
∗
2n) being close enough to (0, 0). Let ḡ∗n, Q̄

∗
n

denote these limits of this TMLE procedure, and let Q∗n = (QW,n, Q̄
∗
n). The TMLE of Σ2(P0)

is given by Σ2(P̃ ∗n) where P̃ ∗n is defined by (QW,n, Q̄
∗
n, ḡ
∗
n). We note that at (ε∗1n, ε

∗
2n = (0, 0),

we have

0 = PnDΣ2(P̃ ∗n) = 0,

and if the algorithm stops earlier at step K, and one defines P̃ ∗n = PK
n , one just needs to

make sure that

PnDΣ2(P̃ ∗n) = oP (1/
√
n).

Joint TMLE of both the Target Parameter and its Asymptotic
Variance.

We could also define a TMLE targeting both parameters Ψ and Σ2. This is defined exactly
as above, but now using a submodel {P k

n (ε) : ε} ⊂ M that has a score d
dε
L(P k

n (ε)) at ε = 0
whose components span both efficient influence curves (D∗ψ(P ), D∗Σ(P )). In this manner,

one obtains a TMLE P̃ ∗n that solves PnD
∗
ψ(P̃ ∗n) = PnD

∗
Σ(P̃ ∗n) = 0 and, under regularity

conditions, yields an asymptotically efficient estimator of both ψ0 and σ2
0. In this case our

TMLE of ψ0 could just be Ψ(P̃ ∗n): so in this special case, we have P ∗n = P̃ ∗n .
In particular, we could estimate both ψ0 and σ2

0 with a bivariate TMLE (Ψ(P̃ ∗n),Σ2(P̃ ∗n))
where P̃ ∗n is a TMLE that targets both ψ0 and σ2

0 = Σ2(P0). In this case, P ∗n = P̃ ∗n and
thus ψ∗n = Ψ(P̃ ∗n), σ∗n = Σ2(P̃ ∗n). This TMLE can be defined as the above iterative TMLE of
Σ2(P0) but now using the augmented submodel:

LogitQ̄k
n(ε1) = LogitQ̄k

n + ε0H(ḡkn) + ε1CY (ḡkn, Q
k
n),

where H(ḡ)(A,W ) = I(A = 1)/ḡ(W ). Conditions under which (Ψ(P̃ ∗n),Σ2(P̃ ∗n)) is an asymp-
totically efficient estimator of (Ψ(P0),Σ2(P0)) are given in theorem 6.

1.3 Super Learner

TMLE requires initial estimates of factors of the likelihood. For the treatment specific
mean example discussed in section 1.1 and section 1.2, we need estimates of Q̄(A,W ) and
ḡ(W ). In the targeted learning framework, these factors are typically estimated with Super
Learner [van der Laan et al., 2007a]. Super Learner is a model selection/model stacking
algorithm based on minimizing cross-validation based estimates of risk amongst a set of
candidate learners [van der Laan et al., 2007a, Polley and van der Laan, 2010]. For the
purposes of this paper, we applied Discrete Super Learner, which selects the risk-minimizing
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individual algorithm. A more flexible Super Learner, which selects a risk-minimizing convex
combination of learners is described in van der Laan et al. [2007a]. We will outline the
underlying loss based estimation framework and cross-validation approach that provides
Super Learner with its theoretical justification. This framework is covered in much greater
detail in Dudoit and van der Laan [2005], van der Laan and Dudoit [2003b], Vaart et al.
[2006].

Loss Based Estimation

Loss based estimation is a framework that allows us to objectively evaluate the quality of es-
timates and select amongst competing estimators based on this evaluation. Super Learner is
a particular implementation of this framework, and understanding this framework is impor-
tant to understanding the behavior of Super Learner on nonparametric bootstrap samples.
In the context of Super Learner, we will refer to estimators of the factors of the likeli-
hood as “learners”. This exposition will focus on the example of learning an estimate of
Q̄0(P0) = EP0 [Y |A,W ], but it applies equally well to other factors of the likelihood. Here,
Q̄(P ) indicates an estimate of Q̄ based on P . Consider the problem of selecting an estimate
Q̄ from a class of possible distributions Q̄. In the context of discrete Super Learner, this
becomes selecting from a set of candidate learners: Q̄k : k = 1, ..., K.

The key ingredient in this framework is a loss function, L(Q̄, O), that describes the
severity of the difference between a value predicted by a learner and the true observed value.
For example, the squared error loss: L(Q̄, O) = (Q̄ − Y )2. This leads to the risk, which
is the expected value of the loss with respect to distribution P : θ(Q̄, P ) = PL(Q̄, O) =
EP0 [L(Q̄, O)]. Evaluated at the truth, P0, we get the true risk θ0(Q̄) = θ(Q̄, P0), which
provides a criteria by which to select a learner: Q̄0 = arg minQ̄∈Q̄ θ0(Q̄) = Q̄(P0), the learner
we want is the one that minimizes the true risk. Crucially, this should be equal to the
parameter we’re trying to estimate, here Q̄0(A,W ). The value of this risk at the minimizer is
called the optimal risk, or the irreducible error: θ0(Q̄0) = minQ̄∈Q̄ θ0(Q̄). Then, in the context

of discrete Super Learner, the we can define oracle selector as k̃n = arg mink∈{1,...,Kn} θ0(Q̄k)
selects the learner that minimizes true risk amongst set of candidates. This is the learner
we would select if we knew P0

Empirical Risk Estimate

The empirical or resubstitution risk estimate, θ̂Pn(Q̄(Pn)) = θ(Q̄(Pn), Pn), estimates the
risk on the same dataset used to train the learner. This is known to be optimistic (biased
downwards) in most circumstances, with the optimism increasing as a function of model com-
plexity. Therefore, the resubstitution selector arg mink∈{1,...,Kn} θ̂Pn(Q̄k(Pn)) selects learners
which “overfit” the data, selecting learners which are unnecessarily complex, and therefore
have a higher risk than models which make the correct bias-variance trade-off. Hastie et al.
[2003] discusses this phenomenon in more detail.
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Cross-Validation

Cross-validation allows more accurate risk estimates that are not biased towards more com-
plex models. Our formulation relies on a split vector Bn ∈ {0, 1}n, which divides the data
into two sets, a training set (Oi : Bn(i) = 0), with the empirical distribution P 0

n,Bn
, and a val-

idation set (Oi : Bn(i) = 1), with the empirical distribution P 1
n,Bn

. Averaging over the distri-

bution of Bn, yields a cross-validated risk estimate: θ̂CV(Q̄) = EBnθ(Q̄(P 0
n,Bn

), P 1
n,Bn

). This

yields a cross-validated selector k̂n = arg mink∈{1,...,Kn} θCV(Q̄), which selects the learner that
minimizes the cross-validated risk estimate. Because cross-validation uses separate data for
training and risk estimation for each split vector Bn, it has an important oracle property.
Under appropriate conditions the CV selector will do asymptotically as well as the oracle
selector in terms of a risk difference ratio:

θ0(Qk̂)− θ0(Q̄0)

θ0(Qk̃)− θ0(Q̄0)

P→ 1 (1.1)

(1.2)

That is, the ratio of the risk difference between the cross-validated selector and the opti-
mal risk and the risk difference between the oracle selector and the optimal risk approaches
1 in probability. Conditions and proofs for this result are given in Dudoit and van der Laan
[2005], van der Laan and Dudoit [2003b], Vaart et al. [2006]. It is through this property that
Discrete Super Learner does asymptotically as well as the best of its candidate learners. We
will soon describe how this property fails for nonparametric bootstrap samples.

1.4 Bootstrap

Before presenting our generalization of the bootstrap, we briefly review the bootstrap the-
oretical framework. The key idea of the bootstrap is as follows: we wish to estimate the
sampling distribution of an estimator G(x) = P (ψn ≤ x), or more typically its existing
moments or quantiles. It is difficult to estimate this distribution directly because because we
only observe one sample from P0, and therefore only one realization of ψn. However, we can
draw B repeated samples of size n from some estimate of P0 and apply our estimator to those
samples. Denoting such a sample O#

1 , . . . , O
#
n and the empirical distribution corresponding

to that sample P#
n and estimate ψ#

n = Ψ(P#
n ), we can obtain an estimate of the desired

sampling distribution:

Ĝ(x) =
1

B

B∑
i=1

I(ψ#
n,i ≤ x)



CHAPTER 1. TARGETED BOOTSTRAP FOR THE SAMPLING DISTRIBUTION OF
AN ASYMPTOTICALLY LINEAR ESTIMATOR 9

Nonparametric Bootstrap

The nonparametric bootstrap applies this approach by sampling from the empirical distri-
bution, Pn. This approach has been demonstrated to be an effective tool for estimating the
sampling distribution in a wide range of settings.

However, the nonparametric bootstrap is not universally appropriate for sampling dis-
tribution estimation. Because Pn is a discrete distribution, repeated sampling from it will
create “copied” observations – bootstrap samples will have more than one identical obser-
vation in a sample. Bickel et al. [1997] notes that the bootstrap can fail if the estimator is
sensitive to ties in the dataset. One example of a class of estimators that may be sensitive to
ties are those that use cross-validation to make a bias-variance trade-off. If cross-validation
is applied to a non-parametric bootstrap sample, duplicate observations have the potential
to appear in both the training and testing portions of a given sample split. This creates an
issue for estimators that rely on cross-validation. Hall [1992] specifically notes issue of ties
for cross-validation based model selection.

The severity of this problem is determined by how many copied observations we can
expect. For a bootstrap sample of size n, and validation proportion pBn , the probability of
a validation observation having a copy in the training sample is given by:

p(copy) = 1−
(

1− 1

n

)(1−pBn )n

≈ 1− e−(1−pBn )

For 10-fold cross-validation pBn = 0.1, so we can expect ≈59% of validation observations
to also be in the training sample. An average of 59% of a CV-risk estimate on a bootstrap
sample is therefore something like a resubstitution risk estimate, therefore having the same
suboptimal properties described in section 1.3.

One ad-hoc solution to the problem of duplicate observations for cross-validation is to
do “clustered” cross-validation where a cluster is defined as a set of identical bootstrap
observations, and then split the clusters between training and validation. This way, no
observation will appear in both the training and testing sets. Although we lack rigorous
justification for this approach, it was evaluated in the simulation study below. It appears in
the results as “NP Bootstrap + CVID”.

Model Based Bootstrap

In contrast, the parametric bootstrap draws samples from an estimate of P0 based on
an assumed parametric model: Pn,β. The parametric bootstrap can be generalized to a
”model-based” bootstrap that using semi- or non-parametric estimates of factors of the like-
lihood. In the context of our treatment specific mean example, this means using estimates
of P (Y |A,W ) and ḡ. If Y is binary, as is the case in our simulation, P (Y = 1|A,W ) =
E(Y |A,W ) = Q̄(A,W ). Otherwise, we need an estimate of the distribution of ε(A,W ) such
that Y = E(Y |A,W ) + ε(A,W ). To be explicit, observations are drawn from an estimate
P̃n = Pn(Y |A,W )ḡnQW (Pn) according to the following algorithm:
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Algorithm 1: Model-Based Bootstrap

1 Sample W# from the empirical distribution of W: QW (Pn)
2 Using W#, sample A# from ḡ(W#)
3 Using A# and W#, sample Y # from Pn(A#,W#)

The Targeted Bootstrap, described below, is a particular model-based bootstrap using
estimates of Q̄∗n ḡ

∗
n targeted to ensure correct asymptotic performance.

Targeted Bootstrap

The idea of Targeted Bootstrap is to construct a targeted maximum likelihood estimator P̃ ∗n
so that Σ2(P̃ ∗n) is a TMLE of σ2

0 = Σ2(P0). Then we know that under regularity conditions,
Σ2(P̃ ∗n) is an asymptotically linear and efficient estimator of σ2

0 at P0 so that we can construct
a confidence interval for σ2

0. In addition, since it is a substitution estimator of σ2
0 it is often

more reliable in finite samples resulting in potential finite sample improvements in coverage
of the confidence interval. In addition, we will show that under appropriate regularity
conditions, due to the consistency of Σ2(P̃ ∗n), the bootstrap distribution of

√
n(Ψ̂(Pn,#) −

Ψ(P̃ ∗n)) based on sampling O#
1 , . . . , O

#
n ∼iid P̃ ∗n , given almost every (Pn : n),

√
n(Ψ̂(Pn)−ψ0)

converges to the desired limit distribution N(0, σ2
0), even when P̃ ∗n is misspecified. Thus, we

can show that the P̃ ∗n -bootstrap is consistent almost everywhere for the purpose of estimating
the limit distribution of

√
n(ψn−ψ0), but the bootstrap has the advantage of also obtaining

an estimate of the finite sample sampling distribution of the estimator under this bootstrap
distribution. Normally, the consistency of a model based bootstrap that samples from an
estimate P̃ ∗n of P0 relies on consistency of the density of P̃ ∗n as an estimator of the density of
P0. In this case, however, the consistency of the bootstrap only relies on the conditions under
which the TMLE Σ2(P̃ ∗n) is a consistent estimator of Σ2(P0). This in turn can allow that

parts of P0 are inconsistently estimated within (̃P )∗n. Therefore, we refer to this bootstrap
as the targeted bootstrap.

The TMLE of Σ2(P0) is typically represented as Σ2(Q∗Σ,n) for a smaller parameter P →
QΣ(P ) utilizing a possible nuisance parameter estimator g∗Σ,n of a gΣ(P0). As a consequence,

P̃ ∗n can be defined as any distribution for which QΣ(P̃ ∗n) = Q∗n, without affecting the consis-
tency of the targeted bootstrap. This demonstrates that the targeted bootstrap is robust to
certain types of model misspecification. For the best finite sample performance in estimat-
ing the actual sample sampling distribution of Ψ̂(Pn), it might still be helpful that also the
remaining parts of P0, beyond Q0, are well approximated; however that contribution will be
asymptotically negligible.

Bootstrap Confidence Intervals

Once a bootstrap sampling distribution is obtained, a number of methods have been proposed
to generate confidence interval endpoints from them. Hall [1988] presents a framework
by which to evaluate bootstrap confidence intervals. We follow that approach here. We
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are interested in studying the accuracy and accuracy of various confidence interval. For a
given confidence interval endpoint, ψn,[α], we say that it’s jth order accurate if we can write
P0(ψ0 < ψn,[α]) = α+O(n−j/2). Coverage probability of a one-sided interval is closely related
to its accuracy. We also discuss the coverage error of a two sided confidence interval.

The most general theoretical results for bootstrap confidence interval accuracy for the
nonparametric bootstrap come from the smooth functions setting of Hall [1988]. This setting
is for parameters that can be written as f(P0Y ) where Y is a vector generated from a set
of transformations of O, (i.e. hj(O)), and where f is a smooth function. This setting
accommodates many common parameters such as means and other moments but also leaves
out other common parameters like quantiles. Notably, it does not include the TSM or other
kinds of Targeted Learning parameters. Below we present some bootstrap confidence interval
methods and state the relevant theoretical results in this setting.

Bootstrap Wald Interval

A Wald interval using the bootstrap estimate of variance:

σ̂2
n,boot =

1

B

B∑
i=1

(
Ψ(Pn,#,i)− Ψ̄(Pn,#,i)

)2

with Ψ̄(Pn,#,i) = 1
B

∑B
i=1 Ψ(Pn,#,i). As before:

ψn,[α],Wald = ψn − n−1/2σ̂n,bootφ
−1(1− α)

The Wald interval method is first order accurate in the smooth functions setting [Hall,
1988].

Percentile Interval

Efron’s percentile interval directly using the α quantile of Ĝ(x):

ψn,[α],Percentile = Ĝ−1(α)

The percentile interval is also first order accurate in the smooth functions setting [Hall,
1988].

bootstrap-t interval

The bootstrap-t interval can be thought of as an improvement to the Wald style interval. It
relies on the following “studentized” distribution function.
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K(x) = P

(
n1/2(ψ̂n − ψ0)

σ̂n
< x

)

The bootstrap estimate of this distribution is as follows:

K̂(x) =
1

B

B∑
i=1

I

(
n1/2(ψ̂#

n − ψ̂n)

σ̂n
< x

)

Defining ŷα = K̂−1(α) as the estimate of the α quantile of this distribution, we modify
the Wald interval as follows:

ψn,[α],bootstrap-t = ψn + n−1/2σ̂nŷα

A commonly cited drawback of this method is it requires a reliable estimate of σ [Hall,
1988]. However, in our setting we have access to estimates of σ both from influence curves
and targeted estimates of variance. In our simulation study (below), we used the influence
curve variance estimate except in the case of the targeted and joint targeted bootstraps,
where we used the targeted estimate. The bootstrap-t interval is second order accurate in
the smooth functions setting [Hall, 1988].

BCa interval

The BCa (bias-corrected, accelerated) interval, first presented in Efron [1987], accounts for
bias and skew in a sampling distribution when forming a confidence interval. Its development
was motivated by the practice of employing monotone transformations to normalize the
sampling distribution of an estimator. It depends on two additional parameters. The bias
constant z0 captures the bias in the sampling distribution, while the acceleration constant a
captures the skewness of the sampling distribution.

Given both of these quantities, the BCa defines a new quantile to look up:

βz0,a,α = Φ

(
z0 +

z0 + zα
1− a(z0 + zα)

)
ψn,[α],BCa = Ĝ−1(βz0,a,α)

Where Φ(x) is the standard normal distribution and zα ≡ Φ−1(α) is its α quantile. To
generate this interval in practice, we require estimates of z0 and a. We estimate z0 as the
normal quantile for the proportion of the bootstrap estimates that fall below the original
sample estimate:
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ẑ0 = Φ−1
[
Ĝ(ψ̂n)

]
We use our knowledge of the influence function to estimate the acceleration constant a

from the original sample:

â =

∑n
i=1D(Oi)

3

6 (
∑n

i=1D(Oi)2)
3/2

The BCa interval is also second order accurate in the smooth functions setting [Hall,
1988].

1.5 Simulation

To evaluate the practical performance of the Targeted Bootstrap, we simulate data from the
following P0:

W1 ∼ U(−1, 1)

W2 ∼ U(−1, 1)

W ∗ = W2 −W1

A|W ∼ Bernoulli (inv.logit(−0.5W ∗))

Y |A,W ∼ Bernoulli (inv.logit(A(1− 0.5W ∗ + sin(W ∗))))

The identifiability assumptions needed to identify the treatment specific mean EP [Y1]
with EPEP (Y | A = 1,W ) are met in this simulation. Randomization (Ya ⊥⊥ A|W ) can be
seen to be met from the specification of P0. Positivity (ḡ(P0)(W ) = P0(A = 1|W ) > 0) is
also met: 0.26 < ḡ(P0)(W ) < 0.74. Samples of size n = 1000 were generated for each of
B = 1000 Monte Carlo simulations.

Estimation

In our simulation, we estimated Q̄(P0)(W ) = E[Y |A = 1,W ] using kernel regression with
bandwidth selected by 10-fold cross-validation (i.e. Discrete SuperLearner). Bandwidth was
chosen from a grid of 30 bandwidths chosen to contain an optimal bandwidth, as well as
bandwidths that would both over- and under-fit the truth for the sample sizes evaluated.
We estimate ḡ(P0)(W ) using a correctly specified logistic regression.

For each simulation iteration, we estimated Q, and fit three TMLEs: a TMLE for the
treatment specific mean, a TMLE for its asymptotic variance, and a joint TMLE for both the
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treatment specific mean and its asymptotic variance. After fitting the TMLEs, we generated
1000 repeated bootstrap samples from five different methods: the Nonparametric Bootstrap,
the Clustered Nonparametric bootstrap, model-based bootstrap based on the initial Super
Learner fit, the targeted bootstrap sampling from the TMLE distribution targeting the
asymptotic variance, and the joint targeted bootstrap sampling from the joint targeted
TMLE distribution.

The three TMLEs fit to the simulated dataset generated different confidence interval esti-
mates: one Wald style interval based on the influence curve from the first TMLE, and direct
estimates of the variance for the remaining two TMLEs. For the five bootstrap methods, we
estimated intervals for all four methods described in section 1.4. We evaluated coverage and
interval lengths for all estimated confidence intervals. We also compared the performance
of the Super Learner on full samples and samples from all the bootstrap approaches. To
evaluate the performance of Super Learner on bootstrap samples, we compared which band-
widths were selected on the various sample types, as well as the risk difference ratios for
those selections.

Results

As described above, Super Learner behaves differently on nonparametric bootstrap samples
than on full samples, behaving more like a resubstitution estimator. Figure 1.1 illustrates
this. While on full samples, the Super Learner (cross-validation) often selects bandwidths
close to those selected by the oracle selector (minimizing the true risk), on nonparametric
bootstrap samples, Super Learner most often selects the lowest available bandwidth, over-
fitting the data. On other kinds of bootstrap samples, including targeted bootstrap, Super
Learner behaves more like it does on full samples, suggesting that these bootstrap methods
don’t have the same problem. This difference in the selection behavior impacts the perfor-
mance of the resulting Super Learner in terms of the risk difference ratio (eq. (1.1)). This
can be seen in fig. 1.2. Again, other bootstrap samples behave more like full samples in
terms of the risk difference ratio.

Figures 1.3 to 1.5 show how Super Learner performance impacts confidence interval
performance for the resulting TMLE estimate. In general, the over-fit Super Learner being
used in TMLE on nonparametric bootstrap samples is more variable than the well-fit Super
Learner being used in full samples. Therefore, nonparametric bootstrap confidence intervals
are unnecessarily long and over-cover. The effect of this over-coverage on length is modest
at n = 1000, with the Wald intervals estimated from the nonparametric bootstraps are on
average just 4% longer than the standard influence-curve based confidence intervals. At
smaller sample sizes, the effect is more severe: nonparametric bootstrap intervals are 21%
longer than influence curve intervals at n = 250, and 39% longer at n = 100. This substantial
increase in length will negatively impact the power of nonparametric bootstrap confidence
intervals. In our simulation, the set of bandwidths from which Super Learner could select was
fixed with respect to sample size. We expect that, if smaller bandwidths had been available,
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Super Learner on nonparametric bootstrap samples would have chosen them, increasing the
impact of over-fitting on larger sample sizes.

These figures also show the importance of a bootstrap that jointly targets both the
parameter of interest and its asymptotic variance. For interval types other than Wald,
the (variance-only) targeted bootstrap intervals have very poor coverage. This is because
these intervals are not centered on the TSM estimate from the full dataset, and are instead
centered on the average estimate from the bootstrap intervals. In the case of targeted
bootstrap samples, these estimates are biased, because the targeted bootstrap is targeting
only the variance, and not the actual parameter of interest.

Figure 1.5 shows that at small sample sizes, the asymptotic Wald intervals have lower
than nominal coverage, with all methods under-covering by at least 2.5%. Small sample
sizes such as this are where the bootstrap has the most potential to improve upon asymp-
totic confidence intervals. At larger sample sizes, the second order terms become relatively
unimportant. However, even at this small sample size, asymptotic intervals are only mod-
estly anti-conservative in this simulation. Figure 1.7 might offer some explanation. Even at
n = 100, our simulated sampling distribution is already very close to normal.

Focusing only on the Joint Targeted Bootstrap, we can compare the performance of dif-
ferent bootstrap confidence interval types. Figure 1.6 shows this comparison. At modest
sample sizes, Bootstrap-t intervals over-cover and are longer than other interval types. The
other bootstrap methods generate intervals of similar length. Of the three, BCa has the clos-
est to nominal coverage over the range of sample sizes tested. Therefore, it is recommended
that this interval type be used with the Joint Targeted Bootstrap going forward.
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Figure 1.5: Confidence Interval Coverage and Length for n=100
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Figure 1.6: Joint Targeted Bootstrap Interval Performance Comparison
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1.6 Conclusion

We have shown the effectiveness of the targeted bootstrap for estimating properties of the
sampling distribution theoretically and through simulation results. Our simulation illus-
trates the problems of applying the nonparametric bootstrap to a TMLE estimate with
initial estimates based on Super Learner. Specifically, ties in nonparametric bootstrap sam-
ples sabotage the sample splitting that occurs in cross-validation, causing cross-validating
risk estimates to behave more like resubstitution estimates. This leads Super Learner to
select over-fit models on nonparametric bootstrap samples. By sampling from a continuous
distribution estimate, and one that is targeted to the parameters of interest, Targeted Boot-
strap does not create the ties that break cross-validation, and therefore generates confidence
intervals with acceptable performance. We have demonstrated the superiority of the targeted
bootstrap over the nonparametric bootstrap in the context of Targeted Learning.

Additional work is necessary to further explore the issue of bootstrap confidence intervals
for Targeted Learning. A simulation study with a continuous outcome variable (Y ), espe-
cially one with a skewed error distribution, would be interesting in several ways. First, it
would validate the Targeted Bootstrap approach for continuous outcomes, which theory tells
us should be consistent even when the error distribution is misspecified. Secondly, it would
allow us to investigate the magnitude of second order terms in a setting with a sampling
distribution that might be more skewed at smaller sample sizes. Another extension would
be to investigate additional bootstrap confidence interval types, especially the tilted and
automatic percentile interval types [DiCiccio and Romano, 1990].
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Chapter 2

Computationally Efficient
Cross-Validation in the Presence of
Nuisance Parameters

2.1 Introduction

Targeted learning is a principled framework for the estimation of target parameters of inter-
est from data while minimizing unjustifiable assumptions [Van Der Laan and Rose, 2011].
This framework makes frequent use of cross-validation, both for Super Learner based model
selection [van der Vaart et al., 2006a, van der Laan et al., 2007b], and CV-TMLE based
parameter estimation [Zheng and Van Der Laan, 2010]. The application of cross-validation
in these contexts has powerful theoretical justifications: oracle results for Super Learner
model selection, and the elimination of difficult-to-assess empirical process conditions from
CV-TMLE step.

In many cases, estimation of the parameters of interest, or target parameters, depends on
estimates of relevant nuisance parameters. Theory tells us that these nuisance parameters
are best estimated with Super Learner [van der Laan et al., 2007b]. This creates a situation
where both the target parameter and the nuisance parameters on which it depends are
estimated using cross-validation. In this setting, it becomes important to consider how
best to estimate the nuisance parameters while respecting the sample splits of the cross-
validation for the target parameter. Considerations of how much cross-validation is needed
and sufficient conditions for inference in similar contexts was discussed previously in Hubbard
et al. [2016].

A commonly suggested approach is to fully nest the nuisance parameter cross-validation
inside each training sample of the cross-validation for the target parameter [van der Laan
and Dudoit, 2003b]. However, Super Learner involves the repeated application of computa-
tionally demanding machine learning algorithms or “learners” to potentially large datasets,
which means that using to estimate the same nuisance parameter multiple times on different
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training sets comes at a large computational cost. In addition, the sample splitting required
by cross-validation reduces the effective sample size to which learners can be fit and from
which parameters can be estimated. This reduces the efficiency of estimation in the pres-
ence of nested cross-validation. These drawbacks suggest the need to balance the amount
cross-validation applied to any estimation problem.

A more näıve approach is to fit the Super Learners sequentially. That is, first fit the
Super Learner for the nuisance parameter on the full dataset. Then, using the estimates of
the nuisance parameter fit on the full dataset, fit the Super Learner for the target parameter
on the full dataset. Intuitively, this “violates” the cross-validation for the target parameter,
as some information from a validation set is included in nuisance parameter estimates for the
corresponding training set. The question becomes how much sample re-use can we “get away
with” and still achieve the desirable optimality properties that we get from cross-validation.

In this paper, we investigate a hybrid “Split Sequential” approach that doesn’t require
nested Super Learner, but also minimizes the amount of information from validation sets
used to generate nuisance parameter estimates for training sets. We present the algorithm
for this approach and compare it to the Nested and Sequential approaches described above.
Some theoretical results are presented, with proofs and details found in the corresponding
appendix. We illustrate the relative performance of these three methods via simulation
study.

The remainder of this paper is organized as follows: First, we illustrate the use of nested
cross-validation in the context of optimal treatment. Section 2.2 describes the problem of
nesting Super Learners formally. Section 2.3 outlines algorithmically the three approaches to
estimating a target parameter that depends on a nuisance parameter when cross-validation is
used to estimate both. Section 2.4 presents the theoretical results of these nesting schemes.
Section 2.5 describes a simulation study in the context of optimal treatment. Section 2.6
describes an additional study of dependent Super Learners motivated by the results of the
first simulation.

Motivating Example

To illustrate an application where nested cross-validation is of particular relevance, we con-
sider the problem of learning an optimal treatment rule estimating the mean outcome under
this rule. Specifically, we consider this for a single binary treatment (as opposed to multino-
mial or continuous treatments, or treatments at multiple timepoints). Suppose we observe n
i.i.d. observations of O = (W,A, Y ) ∼ P0, for baseline covariates W , treatment A ∈ {0, 1},
and outcome Y ∈ {0, 1}. We make no assumptions about the distribution of P0 and so
we say that P0 ∈ M where M is the fully non-parametric model. We can break the data
generating distribution P0 into three parts:

P0(O) = P0(Y |A,W )P0(A|W )P0(W )

≡ Q0(Y |A,W )g0(A|W )QW,0(W )
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where QW,0(W ) is the marginal distribution of the covariates, g0(A|W ) is treatment mech-
anism, the distribution of treatments conditional on the covariates, and Q0(Y |A,W ) is the
distribution of the outcomes conditional on the covariates and treatment. We also define
the condition mean of the outcome: Q̄Y,0(A,W ) ≡ E0 [Y |A,W ]. This allows us to define the
notation E0[Ya] ≡ E0,W

[
Q̄Y,0(A = a,W )

]
In this context we wish to estimate a dynamic treatment rule, a function d(V ) that takes

a subset of covariates V ⊆ W and assigns a treatment based on them. We are also interested
in the value of a dynamic rule, E0[Yd(V )] = E0,W [E0 [Y |A = d(V ),W ]], which, under causal
assumptions, can be interpreted as the mean outcome if, possibly contrary to fact, treatment
was assigned according to the rule. The optimal rule is the rule with the maximal value:
d0 ≡ arg maxd∈D E0

[
Yd(V )

]
.

A key quantity for optimal treatment is the blip function. For a binary treatment, A ∈
{0, 1}, we define a blip function as Q̄0(V ) ≡ E0[Y1−Y0|V ] ≡ E0[Q̄Y,0(1,W )− Q̄Y,0(0,W )|V ].
This also referred to as a contrast. The rule can be derived directly from this quantity:
d0(V ) = I(Q̄0(V ) > 0).

Estimation

We will use the estimation approach outlined in Luedtke and van der Laan [2016b] and
van der Laan and Luedtke [2015], which makes frequent use of cross-validation, both for
Super Learner based model selection [van der Vaart et al., 2006a, van der Laan et al., 2007b],
and CV-TMLE based parameter estimation [Zheng and Van Der Laan, 2010]. Luedtke and
van der Laan [2016b] presents several methods for learning optimal treatment rules with
Super Learner. However, for the sake of simplicity, we will focus on Super Learning of the
blip function.

Figure 2.1 illustrates the amount of cross-validation necessary in this context. Our pa-
rameter of interest is the mean outcome under the optimal rule: Ψ(P0) = EP0Yd0 . This is
indexed by the optimal rule itself d0(W ) = arg maxAQ0(A,W ). In order to obtain an esti-
mate d̂n(W ) of this rule, we first require estimates Q̄n(A,W ) and ḡn(A|W ) of the relevant
factors of the likelihood – Q̄0(A,W ) ≡ E0(Y |A,W ) and ḡ0(A|W ) ≡ P0(A|W ), respectively.
Having estimated these parameters,, we can now estimate the mean performance under the
rule E0[Yd0 ].
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Figure 2.1: Dependency between different parameters for the optimal treatment problem

The above estimation problem involves three applications of cross-validation: first in
Super Learners to estimate Q̄0(A,W ) and ḡ0(A|W ), next in a Super Learner to estimate
d0(W ), and finally in a CV-TMLE to estimate E0[Yd0 ]. As discussed in van der Laan and
Luedtke [2015], CV-TMLE is necessary as standard TMLE is optimistic (biased upward)
for the mean outcome under the rule. The most conservative possible approach would
be to nest these cross-validation procedures within one another: in each CV-TMLE fold,
estimate d0(W ) using Super Learner applied to the training set, and in each fold of that
Super Learner estimate Q̄0(A,W ) and ḡ0(A|W ) using Super Learner applied to the training
set of the training set. These nesting procedures are described more formally below. For
10-fold cross-validation, this procedure involves running the Super Learners for Q̄0(A,W )
and ḡ0(A|W ) 100 times, a huge computational burden. In addition, the Super Learners for
Q̄0(A,W ) and ḡ0(A|W ) are being estimated with only 0.92 ≈ 80% of the full sample, reducing
statistical efficiency for these estimates. In a longitudinal optimal treatment problem, the
amount of nested cross-validation gets even more severe, with each time-point requiring an
estimate of the rule at the next time-point. It’s therefore important to determine if we can
avoid this fully conservative approach.

2.2 Problem Statement

As illustrated by the optimal treatment example, there are some problems where estimating
a high dimensional parameter or function requires first estimating or knowing some other
high dimensional nuisance parameter or function. In the optimal treatment example we
needed to have estimates of Q̄0 and g0 to estimate the optimal rule. We now present this
learning task in generality.

Suppose the nuisance parameter γ0 is known to belong to some set Γ. For each γ in Γ,
we suppose that we have a loss function Lγ that takes as input an observation O and an
element of a set Θ and outputs a nonnegative real number. We wish to estimate some θ0
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known to belong to Θ, with the property that

θ0 ≡ arg min
θ∈Θ

EP0 [Lγ0(O, θ)] .

In the optimal treatment example, Θ is the set of binary treatment strategies which take as
input W , and θ0 is the optimal such strategy under P0. The set Γ is the set of pairs of a
treatment mechanism (a function mapping from covariates W to the probability of treatment
given W ) and an outcome regression (a function mapping from (A,W ) to the outcome given
treatment status A and covariates W ).

A näıve approach to estimate θ0 is to first estimate γ0 using all of the data and then
minimize the empirical mean of the loss, i.e. the empirical risk, using the estimate of γ0 as
the nuisance parameter value for the loss. Empirical risk minimization approaches are well
known to over-fit the data unless some sort of regularization is imposed [Hastie et al., 2003].
Rather than consider empirical risk minimization, we minimize the cross-validated rather
than empirical risk. Nonetheless, one still needs to estimate the nuisance parameter γ0 from
the data. In the next section we present three sample split schemes which can be used to
estimate γ0, and subsequently to estimate θ0.

2.3 Algorithms

We model our formal cross-validation exposition on Section 2 of van der Laan and Dudoit
[2003a]. Assume a random split vector Bn ∈ {0, 1}n that partitions the sample into training
and validation sets. Bn,i = 0 indicates that observation Oi is in the training sample, and
Bn,i = 1 indicates that observation Oi is in the validation sample. In this context, P 0

Bn
and

P 1
Bn

indicate the empirical distribution of the training and validation sets respectively.
Here, we will focus onK-fold cross-validation, where there areK realizations {bn,1, . . . , bn,K}

of the split vector, each one having roughly n1 = bn/Kc observations in the validation
sample, and all other observations in the training sample. KfoldSplitVectors describes the
generation of the split vectors for K-fold cross-validation algorithmically. The K validation
samples are all mutually exclusive and exhaustive. Other cross-validation schemes can also
be specified in terms of split vectors [van der Laan and Dudoit, 2003a].



CHAPTER 2. COMPUTATIONALLY EFFICIENT CROSS-VALIDATION IN THE
PRESENCE OF NUISANCE PARAMETERS 29

Function KfoldSplitVectors(n,K)

Input: Sample size: n
Number of folds: K
Output: Split vector realizations: {bn,k}Kk=1

1 Define the number of observations in each validation sample: n1 = bn/Kc
2 Define a vector that indexes the observations into each validation set:
V ≡ {Vi = di/n1e}ni=1

3 Randomly permute V
4 Then the split vectors are as follows: {bn,k = {I(Vi = k}ni=1}Kk=1

Bn is distributed according to PBn , which puts mass 1
K

on each realization bn,k generated
by KfoldSplitVectors.

Recursive Super Learner

We define the function RecursiveSL as a general recursive Super Learner procedure using
K-fold cross-validation. This function has many similarities to the canonical Super Learner
described in van der Laan et al. [2007b].

The canonical Super Learner has a number of components. First, a set of J candidate
estimators {θ̂j(Pn)}Jj=1 that are trained on set of data (here Pn) that each of which generates

predictions for arbitrary new data. Second, a metalearner or combination function θ̂α̂(Pn) ≡
m({θ̂j(Pn)}Jj=1, α) indexed by α that combines predictions J candidate estimators into a

single prediction. For example, a linear combination is often used: θ̂α(Pn) ≡
∑J

j=1 αj θ̂
j(Pn).

Finally, a loss function L(0, θ̂α̂(Pn)) to evaluate that combination. For example the squared

error loss L(0, θ̂α̂(Pn)) =
(
Y − θ̂α̂(Pn)(X)

)2

. The loss function and the candidate estimators

θ̂J are allowed to rely on an estimate of the nuisance parameter ρ0.
Once the candidate estimators, metalearner, and loss function are specified, the task

of Super Learner is to choose α̂ to minimize the risk associated with the specified loss
function. This is accomplished by selecting α̂ to minimize the cross-validated risk estimate.
The RecursiveSL algorithm below describes this process in more detail. Specifically, the
algorithm relies on is given a set of split vector realizations {bn,k}Kk=1, generated, for example
with KfoldSplitVectors. For each realization bn,k, the J candidate estimators are fit on the

training set (i.e. θ̂jk = θ̂j(P 0
bn,k

)). These estimators are then used to estimate predicted
values on the corresponding validation sets. For a given α, the predictions are combined
using the specified metalearner, and the loss is averaged across predictions for all validation
sets, yielding a cross-validated risk estimate.

Because we use RecursiveSL to estimate both the parameter of interest θ0 and the nui-
sance parameter γ0, we use the notation η0 to represent the target of estimation when using
RecursiveSL and ρ0 to represent the correct value of the nuisance parameter on which the
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loss may rely. We then show how one can use this function to estimate the nuisance parame-
ters. Finally, we show how one can call this function to first estimate the nuisance parameter
and, given these estimates, estimate θ0.

To illustrate this in the context of the more concrete optimal treatment example, RecursiveSL
will be used to estimate three parameters: Q̄0(A,W ) ≡ E0(Y |A,W ), ḡ0(A|W ) ≡ P0(A|W ),
and the blip function Q0(V ) ≡ E0[Q̄Y,0(1,W )− Q̄Y,0(0,W )|V ]. The first two parameters do
not depend on any nuisance parameters, and so in those cases ρ0 = ∅, and η0 is Q̄0(A,W ),
and ḡ0(A|W ), respectively. Both Q̄0(A,W ) and ḡ0(A|W ) are nuisance parameters for Q0(V ),
so in this case ρ0 =

(
Q̄0(A,W ), ḡ0(A|W )

)
, and η0 = Q0(V ).

Function RecursiveSL({Oi}ni=1,{J candidate estimators for η0},ρ 7→
Lρ,EstNuis,{bn,k}Kk=1)

Input: Observations {Oi}ni=1

{J candidate estimators for η0}
Loss function Lρ for each ρ. For a correctly specified nuisance parameter ρ0, satisfies
η0 = arg minη EP0 [Lρ0(O, η)].
Nuisance parameter estimation procedure EstNuis
Split vector realizations {bn,k}Kk=1

Output: Convex combination α̂
Split specific SL estimates {η̂α̂k }
Full sample SL estimate η̂α̂

1 Estimate nuisance parameter separately for each fold, and for the full dataset:(
{ρ̂k}Kk=1, ρ̂n

)
=EstNuis({Oi}ni=1,{bn,k}Kk=1)

2 for k = 1, . . . , K do
3 for j = 1, ..., J do
4 Fit candidate estimator j on training sample from split vector bn,k, where the

estimator may depend on ρ̂k: η̂
j
k = η̂j(P 0

bn,k,ρ̂k
)

5 For combinations of the form η̂α̂ = m({η̂j}Jj=1, α), find the α that minimizes the
cross-validation risk:
α̂ = arg minα

1
K

∑K
k=1 P

1
bn,k

Lρ̂k (Oi, η̂
α
k )

6 Define the split specific SL estimates: η̂α̂k = m({η̂jk}Jj=1, α̂) for k ∈ 1, . . . , K

7 Refit candidate estimators on full sample (using full sample nuisance parameter
estimate ρ̂n) to obtain: η̂j = η̂j(Pn, ρ̂n), j = 1, ..., J

8 Define the full sample SL estimate: η̂α̂ = m({η̂j}Jj=1, α̂)

RecursiveSL differs from the canonical approach in two key ways. First, RecursiveSL
allows estimates of the nuisance parameter specific to each sample split ({ρ̂k}Kk=1). Different
algorithms for RecursiveSL vary in how they estimate the nuisance parameter (what function
is used for EstNuis). Second, once α̂ is selected, RecursiveSL generates two kinds of pre-
dictions. As in canonical Super Learner, the candidate learners are refit to the full dataset
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(θ̂j = θ̂j(P n)), generating full predictions η̂α̂ = m({η̂j}Jj=1, α̂). In addition, RecursiveSL,

generates split-specific estimates η̂α̂k = m({η̂jk}Jj=1, α̂) for k ∈ 1, . . . , K using the candidate
learners fit to the training sets. Both types of predictions have different uses, described
below. Now we describe the different algorithms in terms of how EstNuis, the procedure to
estimate the nuisance function, is specified.

First, NestedSL, fully nests the nuisance parameter estimation inside training sets, as
described in the introduction. Separate estimates of the nuisance parameter are generated
for each fold by running a full Super Learner on that fold’s training set. If 10-fold cross-
validation is used for both Super Learners, the number of splits, K, is 10, and the size of the
training set for the outer Super Learner is 0.9n. This means that the candidate algorithms
for the inner Super Learner are run K2 = 100 times and only fit on 0.92n observations.

In contrast, SplitSequentialSL and FullSequentialSL apply Super Learner to estimate the
nuisance parameter only once, using the full sample. FullSequentialSL then passes the full
SL fit to RecursiveSL, and SplitSequentialSL passes the split specific SL fits to the corre-
sponding splits of RecursiveSL. Both approaches have equivalent computational demands,
with substantial savings over NestedSL because they avoid nesting and therefore repeated
fitting of the Super Learner for γ0. The key difference is in the amount of sample reuse.
FullSequentialSL uses learner fits generated using the full sample with weights generated
using the full sample, but SplitSequentialSL uses split-specific learner fits and so only reuses
the full sample for the weights.

We use L̄ρ=0 to denote a loss function for γ0. In the algorithm below, we don’t pass
arguments for the set of J candidate estimators for γ0 or the loss function L̄, instead assuming
they are known. In practice these arguments could be passed to the function. There can be
a different number of candidate estimators for γ0 and θ0, but we use the same J for ease of
notation. The input and output is the same for all functions below so this is only written
for the first function. In the algorithms below, β̂ indicates the dependence of the resulting
estimators on learning the α for the nuisance parameter using validation data.

Function NestedSL({Oi}ni=1,{Vk}Kk=1)

Input: Observations {Oi}ni=1

Training samples {Tk}Kk=1

Split vector realizations: {bn,k}Kk=1

Output: Split specific SL estimate {γ̂β̂1 , . . . , γ̂
β̂
K}

1 for k = 1, . . . , K do
2 Calculate the size of the training set: n0 =

∑n
i=1 I(bn,k = 0)

3 Generate split vectors specific to this training set:
{bnested
n0,k, }Kk=1=KfoldSplitVectors(n0,k)

4 Run RecursiveSL({Oi : bn,k,i = 0},{J candidate estimators for γ0},L̄,0,{bnested
n0,k, }Kk=1)

and save the full sample SL estimate as γ̂k
5 Use nested SL estimate for all folds: {γ̂k ≡ γ̂k}Kk=1
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Function FullSequentialSL({Oi}ni=1,{Tk}Kk=1)

1 Run RecursiveSL(On,{J candidate estimators for γ0},L̄,0,{bn,k}Kk=1) and save the full

sample SL estimate γ̂β̂

2 Use full SL estimate for all folds: {γ̂k ≡ γ̂β̂}Kk=1

Function SplitSequentialSL({Oi}ni=1,{Tk}Kk=1)

1 Run RecursiveSL(On,{J candidate estimators for γ0},L̄,0,{bn,k}Kk=1) and save the split

specific estimates {γ̂β̂k }Kk=1

2 Use split specific SL estimates: {γ̂k ≡ γ̂β̂k }Kk=1

To estimate the parameter of interest θ0, one could then use the following calls:

Nested SL:
RecursiveSL({Oi}ni=1,{J candidate estimators for θ0},γ 7→ Lγ,NestedSL,{bn,k}Kk=1)
Full Sequential SL:

RecursiveSL({Oi}ni=1,{J candidate estimators for θ0},γ 7→ Lγ,FullSequentialSL,{bn,k}Kk=1)
Split Sequential SL:

RecursiveSL({Oi}ni=1,{J candidate estimators for θ0},γ 7→ Lγ,SplitSequentialSL,{bn,k}Kk=1).

Table 2.1 summarizes types of validation data reuse in generating nuisance parameter
estimates for the training samples of the cross-validation for the target parameter. The Split
Sequential method is a compromise between the Full Sequential and Nested methods in that
it reuses validation samples to learn the coefficients used to combine the learner, but not to
fit the learners themselves.

Learner Fits Coefficients

ψ̂j αn
Full Sequential yes yes

Split Sequential no yes
Nested no no

Table 2.1: Overview of validation data reuse for various cross-validation schemes. A yes
indicates that, for a given algorithm, the validation set was used to estimate the parameter
indicated by the column header
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General TMLE

Similar to the alternatives for recursively applying Super Learner, there are alternatives for
how to apply TMLE when initial estimates are based on Super Learner. Function GeneralTMLE
defines a general TMLE procedure that allows the initial estimates to be split specific, as with
RecursiveSL. By varying how the initial estimates are constructed, we generate three differ-
ent TMLE procedures that are directly analogous to the three recursive Super Learner proce-
dures described above. By generating the initial estimates using FullSequentialSL, we imple-
ment the canonical TMLE. If we instead generate the initial estimates using NestedSL, we im-
plement the canonical CV-TMLE. If we generate the initial estimates using SplitSequentialSL,
we implement a novel “Split Sequential” CV-TMLE, with properties similar to CV-TMLE,
but with a dramatically reduced computation cost. In this case, the initial estimates are
the split specific Super Learners, so that the CV-TMLE validation sets are only used when
finding the combination indexed by αOn .

Function GeneralTMLE({Oi}ni=1,{bn,k}Kk=1,Q̂k
ε ,EstNuis)

Input: Observations {Oi}ni=1

Split vector realizations {bn,k}Kk=1

Submodel Q̂k(ε)
Likelihood estimation procedure EstNuis
Output: Final Estimate ψ̂∗n
Influence Curve IC(ψ̂P ∗n , Oi)

1 Estimate relevant likelihood factors:

[Q̂1, . . . , Q̂K ]=EstNuis(O1, . . . , On},{Q̂1, . . . , Q̂J},{bn,1, . . . , bn,K})
2 for i ∈ 1, ..., n do

3 Generate initial estimates: Q̂0
i = Q̂k(Oi) where k : bn,k,i = 1

4 k = 0
5 do

6 Find ε that minimizes the cross-validated risk: εj+1
n = arg minεEBnP

1
n,Bn

L(Q̂j(ε))

7 Update estimate: Q̂j+1 = Q̂j(εj+1)
8 j = j + 1

9 while |ε| > 0 or some small threshold

10 Final estimate Ψ̂∗n = Ψ̂n(Q̂∗)

2.4 Theoretical Properties

We now establish theoretical properties for the split specific methods, which show that we
can expect performance similar to that of the nested methods. Proofs for these results are
in appendix B.
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Super-Learner

SplitSequentialSL satisfies an oracle inequality of the type presented previously in the lit-
erature [van der Laan and Dudoit, 2003a, van der Laan et al., 2006, van der Vaart et al.,
2006a, van der Laan et al., 2007b]. Throughout this section we assume that the size of the
smallest training sample increases at the same rate as n. This is true, for example, in K-fold
cross-validation where K does not increase with sample size. In the appendix we give more
general results which allow the size of the training samples to increase at a slower rate than
n.

Oracle using estimated nuisance parameter

Our first two results concern the case where the the true value of the nuisance parameter
is unknown, but is instead estimated from data. This case is interesting in the optimal
treatment example, where one wishes to select the optimal first time point rule given that,
as will happen in practice, one has the estimated second time point rule in hand. Suppose
Lγ0 satisfies the following conditions:

sup
θ,γ

sup
o∈O
|Lγ(o, θ)| <∞ (2.1)

sup
θ,γ

V arP (Lγ(O, θ))

EP [Lγ(O, θ)]
<∞. (2.2)

The first condition above holds if the loss is bounded uniformly. The second is a quadratic
loss property that is satisfied by many losses of interest, e.g. squared error loss [van der Laan
and Dudoit, 2003a] and the negative log loss [Corollary 5.4 in van der Laan et al., 2006].

We have the following theorem.

Theorem 1. Suppose {Lγ : γ ∈ Γ} satisfies (B.2) and (B.3). Fix δ > 0. Then we have the
following finite sample oracle ineqality:

EPnR
β̂
n(α̂) ≤ (1 + 2δ)EPn min

α
Rβ̂
n(α) +

CK log (1 +Nα(n) +Nβ(n))

n
,

where P n represents the distribution of an i.i.d. sample of size n from P and C is a constant
which may rely on P , the loss L, and δ.

The above theorem shows that, when the randomness in the candidate learners is averaged
across samples of size n, our method performs similarly (with respect to risk indexed by
the estimated nuisance parameter) to the oracle using the estimated nuisance parameter.
In practice we might want a probabilistic guarantee about the risk in our sample of size n,
rather than a statement about the average across all possible samples of size n. The following
result provides such a guarantee.
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Theorem 2. Suppose (B.2) and (B.3) hold. Fix δ > 0 and k > 0. Then, for a constant
C which may rely on P , the loss L, and δ, the following holds with probability at least
1− 2/(n− 1):

Rβ̂
n(α̂) ≤ (1 + 2δ) min

α
Rβ̂
n(α) +

CK log(1 +Nα +Nβ) log n

n
.

If Nα +Nβ = O(nd) for d > 0 and the number of folds K does not increase with sample
size, then the above implies that, with probability at least 1− 2/(n− 1), the left-hand side
in the theorem above is of the order O(d log2 n/n).

Oracle using known nuisance parameter

In many applications one may only care about the oracle using the known the true value of
the nuisance parameter, rather than an estimate thereof. In the optimal treatment example,
this corresponds to wanting to know the truly optimal first time point rule rather than the
optimal first time point rule subject to the implementation of a suboptimal (but known)
second time point rule.

The upcoming theorem uses α̂∗ ≡ arg minαRn(α) to denote the oracle choice of α, where
the oracle uses the known true value of the nuisance function. Note that α̂∗ relies on the
sample through the candidate learners.

Theorem 3. Suppose the conditions of Theorem 2. Further suppose that

EPn
[(
Rβ̂
n(α̂∗)−Rn(α̂∗)

)
−
(
Rβ̂
n(α̂)−Rn(α̂)

)]
= o

(
EPn

[
Rβ̂
n(α̂∗)−Rn(α̂∗)

])
.

Then, for any δ > 0,

EPnRn(α̂) ≤(1 + 2δ)EPnRn(α̂∗) +O

(
EPn

[
Rβ̂
n(α̂∗)−Rn(α̂∗)

]
+
K log(1 +Nα +Nβ)

n

)
.

The big-O expression above describes the behavior of the term when δ > 0 is treated as fixed
and n→∞.

In the appendix we give an inequality which bounds the expected risk if δ converges to
zero as sample size grows.

In the simple case where the nuisance function is one-dimensional and the risk function
is sufficiently differentiable in α and β, the condition in the above theorem is automatic by
a second-order Taylor expansion of (α, β) 7→ Rβ

n(α). More generally, such a statement will
be reasonable provided the functional Rn which takes as input the nuisance function and a
convex combination α is sufficiently differentiable. We will show that it is reasonable in our
example.
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CV-TMLE

Suppose one wishes to estimate the value of a univariate parameter Ψ and a distribution P0.
In this section we assume that one has available parameter mapping D∗ such that, for any
distribution P ,

Ψ(P )−Ψ(P0) = −EP0 [D∗(P )(O)] +Rem(P, P0),

where Rem(P, P0) is a remainder term that is small when P is close to P0 in the right sense,
typically in the sense that certain conditional probabilities or regression functions under P
approximate the true values under P0. Note that D∗ takes as input a distribution P and
outputs a real-valued function of O. We further assume that such a D∗ exists such that
P0D

∗(P0) = 0. In the appendix we explain how such a D∗ can be found when Ψ is pathwise
differentiable [Pfanzagl, 1990]. To avoid extra regularity conditions we make the additional
assumption that D∗(P )(O) is almost surely bounded for all P in the appendix.

When one implements a cross-validated TMLE, one chooses a loss L(Oi, P
j
n,ε), such that

minimizing the cross-validated risk yields the following result:

EBnP
1
BnD

∗(P̂β̂(P 0
Bn)) = oP (n−1/2)︸ ︷︷ ︸

remainder

.

For simplicity consider the case where the above remainder is exactly zero. We then have
that

ψcvtmlen −Ψ(P0) = (Pn − P0)D∗(P0)

+ PBn(P 1
Bn − P0)

[
D∗(P̂β̂(P 0

Bn))−D∗(P0)
]

︸ ︷︷ ︸
(?)

+PBnRem(P̂β̂(P 0
Bn), P0).

The equality uses the mutual exclusivity and exhaustiveness of the training samples. Our
goal is to multiply both sides above by

√
n and show that the first term on the right above

dominates. We can then apply the central limit theorem to the leading term and develop
Wald-type confidence intervals for Ψ(P0).

The PBn expectation of the remainder terms Rem(P̂β̂(P 0
Bn

), P0) will converge to zero in

probability faster than 1/
√
n provided we can estimate the needed components of P0 “well

enough”. The term (?) is the focus of the analysis we give in the appendix. If one had
used a TMLE rather than a CV-TMLE, then typically one would need to ensure that the
estimator of P0 satisfies some entropy conditions, i.e. is a Donsker class (One way to show
that a function class is Donsker is to consider how well the class can be approximated by a
much smaller class using the idea of covering numbers and metric entropy).

It is thus not surprising that, under an entropy condition on the class of functions β 7→
P̂β(P 0

Bn
), where the training sample P 0

Bn
is treated as fixed, we are able to establish control

over the first term on the final line above. We leave formal presentation of this condition to
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the appendix to avoid formal definitions and discussion of the uniform entropy condition in
the main text. Nonetheless, this entropy condition will hold in any reasonable parametric
family of interest.

Controlling the size of the class β̂ 7→ P̂β̂(P 0
Bn

)), conditional on the training sample P 0
Bn

,

is not enough to ensure that (?) converges to zero faster than 1/
√
n. We also need that

P̂β̂(P 0
Bn

)) approximates P0. In particular, we require that the mean-squared error of the

estimate D∗(P̂β̂(P 0
Bn

)) of D∗(P0) converges to zero in probability at some rate. The rate

plays little role in our result provided the class β 7→ P̂β(P 0
Bn

) does not grow too much
with sample size – essentially we just need that this mean squared error converges to zero
eventually.

2.5 Optimal Treatment Simulation

To compare the practical performance of the three dependent cross-validation procedures
described above, we used the Optimal Treatment example described in section 2.1. For each
of 1000 simulation iterations we sampled 1000 observations from P (O):

O = (W,A, Y )

P (O) = P (Y = 1|A,W )P (A = ai|W )f(W )

f(W ) = N (03, I3,3)

P (A = 1|W ) = logit−1(0.8 ∗W1)

P (Y = 1|A,W ) = 0.5 logit−1 [−5I(A = 1)(W1 − 0.5)

+5I(A = 0)(W1 − 0.5)]

+ 0.5 logit−1 (W2W3)

In this simulation, the value of the true optimal rule, E0[Yd0(V )] was approximately 0.563.

Estimation

The first task was to obtain an estimate of the optimal rule, d0(V ). We did this by estimating
the blip function Q̄0(V ) ≡ E0[Y1−Y0|V ] with Super Learner. This identifies the rule: d0(V ) =
I(Q̄0(V ) > 0). As described above, this requires estimates of both the treatment mechanism,
g0(A|W ), and the outcome distribution, Q0(Y |A,W ), which were also estimated using Super
Learners. We accomplished this using all three dependent super learners described above:
FullSequentialSL, NestedSL, and SplitSequentialSL. In all cases, once the Super Learner
combination indexed by α(On) was selected for the blip function, the individual learners
comprising the Super Learner for the blip function were refit to the full dataset, using
estimates of Q0(Y |A,W ) and g0(A|W ) generated from Super Learners also with learners
refit to the full dataset.
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With the rule estimated using SplitSequentialSL, TMLE was used to estimate the value
of this rule: E0[Yd(V )] = E0,W [E0 [Y |A = d(V ),W ]]. We did this using all three TMLE
approaches described above: canonical TMLE (FullSequential), CV-TMLE (Nested), and
SplitSequential CV-TMLE. Error-bars in the below graphs are Wald-style 95% confidence
intervals, representing uncertainty in the Monte Carlo simulation

Results

Figure 2.2 shows that, unsurprisingly, the nested approach takes much longer to compute
than the other two approaches, which both take roughly the same time. What was unex-
pected, however, is that all three approaches did quite similarly in terms of the performance
of the estimated rule, as seen in fig. 2.3, with all three approaches generating rules that
come close to the true optimal rule in terms of their values (indicated with a dashed line).
It’s possible that this estimation problem is simple enough that careful choice of learner
combination for the blip function is not essential.

Figure 2.4 shows that the results for the TMLE are more varied. Luedtke and van der
Laan [2014] showed that canonical TMLE is biased for the value of an optimal rule, a result
that we have reproduced here. Both the Nested and SplitSequential CV-TMLE approaches
have substantially less bias, although SplitSequential has slightly more than Nested CV-
TMLE. However, SplitSequential CV-TMLE has a smaller variance, and therefore a smaller
MSE, likely due to the increased sample sizes available for learning the rule. Figure 2.5 shows
that these results translate predictably for inference about the value of the estimated rule.
Canonical TMLE coverage is very low due to the substantial bias. In contrast, SplitSpecific
CV-TMLE coverage is only modestly impacted relative to the coverage of Nested CV-TMLE.

To summarize, this simulation clearly shows that in the context of optimal treatment,
SplitSequential CV-TMLE performs similar to Nested CV-TMLE in terms of learning the
value of the estimated rule, and that both methods dramatically outperform canonical TMLE
in this context. This means that, by using SplitSequential CV-TMLE we can achieve substan-
tial computational savings with only a minor impact on statistical performance. However,
the surprising result that nesting or lack thereof does not impact the performance of rule
estimation warrants further investigation. Section 2.6 will investigate the performance of
these three Super Learner approaches in a different context.
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Figure 2.2: Computation Time for the Estimation of the Optimal Rule
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Figure 2.3: Performance of the Estimated Optimal Rule
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Figure 2.4: Performance of the TMLE for the Value of the Estimated Rule
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Figure 2.5: Performance of the TMLE Inference for the Value of the Estimated Rule

2.6 Conditional Variance Simulation

Nesting estimates of nuisance parameters inside training sets for the parameters of interest
is important for the oracle results justifying the use of Super Learner. Therefore, it was
surprising that nesting of Super Learners did not seem to have a practical effect in the
optimal treatment example. Intuitively, nesting of Super Learners for nuisance parameters
is most important where using full estimates is likely to behave differently than using nested
estimates that are more supported by theory. To that end, we investigate the performance
of the three Super Learner approaches in the context of estimating a conditional variance.
We sought to obtain an estimate of V [Y |W ] = E[(Y − E[Y |W ]|W ])2] using Super Learner,
which depends on an estimate of the nuisance parameter E[Y |W ]. In this context, we expect
that estimating V [Y |W ] using an estimate of E[Y |W ] where the same dataset was used for
both estimates (e.g. FullSequentialSL) will result in a biased estimate of V [Y |W ]. For each
of 1000 simulation iterations we sampled 1000 observations from P (O):

O = (W,A, Y )

f(O) = f(Y |W )f(W )

f(W ) =
1

6
I(W ∈ (−3, 3))

f(Y |W ) = N (W 2, logit−1(−W 2))
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Estimation

Both E[Y |W ] and V [Y |W ], were estimated using kernel regression with bandwidth selected
by 10-fold cross-validation (i.e. Discrete SuperLearner). Bandwidth was selected from a
range of possible bandwidths by using numerical optimization. We estimated V [Y |W ] using
all three Super Learner approaches described above. We also investigated the question of
whether nuisance parameters should be refit to the full dataset, before the target parameter
is fit to the full dataset, as is typically done in Super Learner and as was done for the above
optimal treatment simulation. As an alternative, split specific validation set predictions
were used for all nuisance parameter estimates. This is analogous to how initial estimates are
generated in SplitSequential CV-TMLE. We expected that this would be especially important
in this context, because refitting E[Y |W ] to the full dataset before fitting V [Y |W ] to the
full dataset, should result in a biased estimate of V [Y |W ], regardless of how the bandwidth
was selected.

Results

Figure 2.6 shows the results of this simulation. The results are presented in terms of a
risk difference, between estimates of V [Y |W ] using the Super Learner selected bandwidth,
and estimates of V [Y |W ] using the oracle bandwidth (for the oracle using the known true
value of E[Y |W ]. Ideally, these values should approach zero as the Super Learner performs
comparably to the oracle. As expected, refitting the kernel smoothing model for E[Y |W ] to
the full dataset had worse performance than using predictions on validation sets. Focusing
on those results where validation set predictions were used, the SplitSequential and Nested
approaches perform similarly, and both seem to perform slightly better than the FullSequen-
tial approach, although more simulation iterations are necessary to have a conclusive result.
However, even in this simulation designed to cause problems for the FullSequential method,
the FullSequential method is performing better than expected. Further study is needed to
evaluate whether SplitSequential Super Learner is really necessary, or if FullSequential will
work for most practical cases.
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2.7 Conclusion

Cross-validation is a powerful but computationally demanding tool in the Targeted Learning
toolbox. SplitSequential cross-validation for both Super Learner and TMLE allows the use
of cross-validation for both nuisance and target parameters without the need for the compu-
tationally expensive and statistically inefficient method of nested cross-validation. Through
theory and simulation we have shown that this approach has statistical performance that’s
only slightly worse than nested cross-validation, and theory suggests that this difference is
asymptotically negligible.

While the simulation results for CV-TMLE are clear, the story for Super Learner is
somewhat more muddled. Further work is necessary to determine the situations in which
FullSequential Super Learner fails. However, as SplitSequential Super Learner is no more
computationally demanding than FullSequential Super Learner, but is better supported by
the theory established here, we recommend that it be the default approach in all cases of
Super Learner with a nuisance parameter. We therefore plan to implement a general version
of SplitSequential Super Learner in software.
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Chapter 3

opttx, an R package for Optimal
Dynamic Rules

3.1 Introduction

Precision medicine, the idea that treatment decisions should be tailored to the individual
characteristics of patients, is a rapidly growing field [Collins and Varmus, 2015]. One com-
ponent of precision medicine is the task of learning an optimal dynamic rule, a decision
rule that assigns treatment as a function of a patient’s covariates to optimize some out-
come. Much work has been done to develop methodologically rigorous approaches to this
task [Chakraborty and Moodie, 2013]. In order to make these methods accessible to re-
searchers, we have developed the opttx R software package. Specifically, we focus on the
Targeted Learning approach to optimal dynamic treatment [Luedtke and van der Laan,
2016a,b, van der Laan and Luedtke, 2015, 2014]. The development of this package was
motivated by a research question from the Pragmatic, Randomized Optimal Platelet and
Plasma Ratios (PROPPR) trial [Holcomb et al., 2015], a study of blood transfusion in vic-
tims of traumatic injury. This research question motivated several methodological additions
to the optimal treatment framework, including support for categorical treatment and vari-
able importance measures. Although the optimal treatment methodology and the PROPPR
dataset are longitudinal in nature, we focus on a cross-sectional optimal treatment setting
for simplicity. Currently, the opttx package only supports cross-section optimal treatment.
We plan to extend the software to the longitudinal case in the near future.

The remainder of this paper is organized as follows: Section 3.2 describes the PROPPR
study and describes how the research question fits into the optimal treatment framework.
Section 3.3 formally describes the general statistical estimation problem of learning an opti-
mal rule and estimating the mean outcome under that rule. Section 3.4 details the extension
of optimal treatment methodology to categorical treatments. Section 3.5 describes a new
Super Learner implementation created to support categorical optimal treatment. Section 3.6
compares the three proposed “pseudo-blip” approaches to categorical optimal treatment via
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simulation. Section 3.7 describes a variable importance measure for optimal treatment co-
variates. Finally, Section 3.8 presents the results of the application of the software to the
PROPPR example. A separate vignette describing the basic usage of the opttx package can
be found in appendix C.

3.2 Motivating Example

As an example to motivate discussion of the optimal treatment problem and extensions to
it, we will discuss the application of optimal treatment rule estimation to data from the
PROPPR trial. This trial sought to compare the effectiveness of different ratios of blood
products for recovery of victims of traumatic injury. Blood for transfusion is rarely available
as “whole blood”. Instead, it is available as separated blood products: plasma, platelets,
and red blood cells (RBCs). Researchers were interested in which of two randomized ratios
of plasma:platelets:RBCs – 1:1:1 or 1:1:2 would be more effective. Clinical intuition suggests
that a one-size-fits-all treatment approach is inappropriate given the wide variety of demo-
graphics and presentations of trauma victims. Therefore, an optimal treatment strategy
that assigns blood product ratios based on a patient’s baseline status and characteristics has
the potential to increase survival over a uniform treatment strategy. This research question
motivated development of the opttx software, and informed some of the features that were
developed, including support for categorical treatment variables, and variable importance
measures.

The PROPPR study had a large number of covariates (W ), including vital signs, lab
results, and demographic information. We included 49 covariates in total. The assigned
treatments were implemented by restricting the order in which doctors could administer
the various blood products. However, doctors were free to administer as much or as little
blood as was deemed appropriate, which meant that the ratio of blood actually administered
could be different than that determined by a patient’s randomization group. Comparing the
ratios of blood products actually received by patients to the treatment group assignment,
it is clear that patients often received ratios substantially different than those assigned by
randomization. For the purposes of this analysis, we chose to focus on the ratio of platelets
to RBCs actually administered to patients and defined three treatment (A) groups:

• A = 0 No RBCs — ratio is undefined

• A = 1 Low platelet ratio

• A = 2 High platelet ratio

A high ratio indicates that patients received a platelet:RBC ratio ≥0.75. We focused on
a joint outcome (Y ) of a patient’s status at a given time after treatment where we defined
success as Y = 1 when the patient was alive and hemostatic (no longer bleeding) and Y = 0
when the patient was either deceased or not yet hemostatic.
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3.3 Problem Statement

Following the road map outlined in van der Laan and Rose [2011], we formally outline the
statistical estimation problem.

Observed Data Structure

Moving from the PROPPR example to a general cross-sectional optimal treatment setting,
we observe n i.i.d. copies O1, . . . , On sampled from O = (W,A, Y ) ∼ P0: W are the pre-
treatment covariates, A is the treatment or exposure of interest, and Y is the outcome.
The PROPPR example has a categorical treatment, which we generalize here as A ∈ A ≡
{a1, . . . , anA}, where nA = |A| is the number of categories. We can factor the data generating
distribution P0 into three components:

P0(O) = P0(Y |A,W )P0(A|W )P0(W )

≡ Q0(Y |A,W )g0(A|W )QW,0(W )

where QW,0(W ) is the marginal distribution of the covariates, g0(A|W ) is treatment mech-
anism, the distribution of treatments conditional on the covariates, and Q0(Y |A,W ) is the
distribution of the outcomes conditional on the covariates and treatment. We also define the
condition mean of the outcome: Q̄Y,0(A,W ) ≡ E0 [Y |A,W ].

We make no assumptions about the distribution of P0 and so we say that P0 ∈M where
M is the fully non-parametric model.

Optimal Rule

A dynamic rule is a function d(V ) that takes a subset of covariates V ⊆ W and assigns
a treatment based on them. The value of a dynamic rule as E0

[
Y d(V )

]
, that is the mean

outcome if, possibly contrary to fact, everyone got treatment as assigned by the rule. The
optimal rule is the rule with the maximal value: d0 ≡ arg maxd∈D E0

[
Y d(V )

]
. The subset V

is assumed to be given by the researcher, and are selected based on subject-matter knowledge
of variables that are likely to be both effect modifiers and available when a treatment decision
needs to be made. In section 3.7 we describe variable importance measures to evaluate the
importance of each covariate in V , as well as a procedure to select a subset of covariates.

Blip Function

A key quantity for optimal treatment is the blip function. For a binary treatment, A ∈ {0, 1},
we define a blip function as Q̄0(V ) ≡ E0[Y 1 − Y 0|V ], the average treatment effect within a
stratum of V. The rule can be derived directly from this quantity d0(V ) = I(Q̄0(V ) > 0).
This approach relies on the treatment variable being binary. In section 3.4 we extend the
blip function to categorical treatments.
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Statistical Parameter

The value of a rule, and therefore the optimal rule itself are causal parameters based on
unobserved counterfactuals and must be identified with statistical parameters if they are to
be estimated from the observed data. We need to make two assumptions to identify these
causal parameters with statistical ones [van der Laan and Luedtke, 2015]:

• Positivity: P0(mina∈A g0(a|W ) > 0) = 1

• Randomization: Ya ⊥ A|W for all a ∈ A

Under these assumptions, the causal blip function is equal to the following statistical blip
function:

Q̄0(V ) ≡ E0[Q̄Y,0(1,W )− Q̄Y,0(0,W )|V ]

And the value of a rule E0 [Yd] is equal to the following statistical parameter:

E0 [Yd] ≡ E0,W [E0 [Y |A = d(V ),W ]]

Therefore, our optimal rule is equal to the following statistical parameter:

d0 ≡ arg max
d∈D

E0 [Yd]

Existing Literature

Many methods of learning an optimal rule from data have been developed. See Chakraborty
and Moodie [2013] for review. Here we briefly review three key approaches. The first,
Q-Learning, is based on generating an estimate of Q̄Y,0(A,W ) [Sutton and Barto, 1998].
Second, Structural Nested Mean Models (SNMM), posits a model for the blip Q̄0(V ), and
estimates its parameters using either estimating equations or regression [Robins, 2004b,
Murphy, 2003]. The third, Weighted Classification, uses classification approaches to predict
the optimal treatment assignment directly for each observation [B and van der Laan, 2012,
Zhang et al., 2012, Zhao et al., 2014, 2012]. In this approach, the classification loss function
is weighted by an estimate of the blip.

Super Learning of the optimal rule

Here we focused on the methods developed in van der Laan and Luedtke [2015] and Luedtke
and van der Laan [2016a]. These papers outline a methodology for learning an optimal rule
using Super Learner and estimating its value using Targeted Minimum Loss-based Estimation
(TMLE). Luedtke and van der Laan [2016a] presents three main approaches for using Super
Learner to estimate the optimal rule: Super Learning of the blip function (similar to SNMM
approach), Super Learning the weighted classification problem, and a joint Super Learner
combining the blip and weighted classification approaches. It also outlines a range of possible
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loss functions to use: regression type losses (for learning the blip), classification type losses
(for learning the weighted classification), and performance of the rule (estimated e.g. using
CV-TMLE). Currently, opttx only implements the blip learning approach, with extensions
to the other two approaches planned.

As outlined in Luedtke and van der Laan [2016a], we estimate the blip Q̄0(V ) ≡ E0[Q̄Y,0(1,W )−
Q̄Y,0(0,W )|V ] using Super Learner. We first estimate Q̄Y,0(A,W ) ≡ E0 [Y |A,W ], and
g0(A|W ) ≡ P0(A|W ) using Super Learner. This allows us to apply the doubly robust
A-IPW transform to our outcome [van der Laan and Robins, 2003]:

DQ̄Y ,g,a(O) ≡ I(A = a)

g(A|W )

(
Y − Q̄Y (A,W )

)
+ Q̄Y (A = a,W ) (3.1)

E[DQ̄Y ,g,a(O)|V ]
∗
= E[Y a|V ] (3.2)

The equality in eq. (3.2) relies on the randomization and positivity assumptions out-
lined above, and correct estimation of at least one of Q̄Y,0(A,W ) and g0(A|W ). Using this
transform, we can define a contrast:

Dblip

Q̄Y ,g
(O) = DQ̄Y ,g,a=1(O)−DQ̄Y ,g,a=0(O)

This allows us to estimate the blip function, Q̄0,a(V ), by regressing Dblip

Q̄Y ,g
(O) on V using

Super Learner (for example with squared error loss L(O, Q̄n,a) =
(
Dblip

Q̄Y ,g
(O)− Q̄n,a(V )

)2

). Our rule is then d(V ) = arg maxa∈A Q̄0,a(V ).

Inference for the mean outcome under the optimal rule.

Van der Laan and Luedtke [2015] provides CV-TMLE estimators and inference for two
performance parameters: performance of truely optimal rule E0[Y d0 ] and performance of the
rule actually learned from data E0[Y dn ]. The latter is an example of a data adaptive target
parameter. Parameters of this type are discussed in detail in Hubbard et al. [2016]. The
opttx package implements CV-TMLE for these parameters.

The inference approach presented in van der Laan and Luedtke [2015] relies on the
assumption that the optimal treatment is unique in all strata of V . Formulating this for
categorical treatment:

P0

(
E0

[
Y d0(V )|V

]
> max

a6=d0(V )
E0 [Y a|V ]

)
= 1

If V is high dimensional, it’s reasonable to expect that there exists some strata for which there
is no treatment effect. Luedtke and van der Laan [2016a] outlines an on-line estimator for
which inference can be derived even for exceptional laws, but it has not yet been implemented
in the opttx package.
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Challenges

Applying the optimal treatment methodology to the PROPPR study [Holcomb et al., 2015]
presents two key challenges. First, while the literature focus on optimal rules for binary
treatment, we have parameterized the treatment as categorical, requiring some modifications
to the methodology. Second, due to the chaotic environment associated with the treatment
of traumatic injury, it is unlikely that physicians can apply rules based on a large number
of covariates. Therefore, some procedure to identify a small subset of covariates that are
relevant for treatment decisions would be a useful addition to an optimal rule based on the
full set of covariates. The following sections describe these challenges in further detail and
outline solutions.

3.4 Categorical Treatment

Much of the current literature focuses on optimal treatment in the context of binary treat-
ment decisions. As such, learning an optimal rule is cast in terms of learning a blip function,
Q̄0(V ) ≡ E0[Q̄Y,0(1,W )−Q̄Y,0(0,W )|V ], which focuses on the difference in average outcomes
for the two treatments. As outlined in section 3.2, our PROPPR example has a categorical
treatment. Therefore, we need to modify our approach to consider contrasts between more
than two treatments. Two types of approaches present themselves. First, categorical treat-
ments can be cast in a longitudinal setting as a series of binary pseudo-treatments with no
intervening covariates. Luedtke and van der Laan [2016b] proposes to learning categorical
optimal treatment rules by learning the optimal decision for each of these binary pseudo-
treatments. The second type of approach is to directly generalize the blip function to more
than two treatments.

Categorical Treatment as a Series of Binary Treatments

Categorical Treatments can always be rewritten as a series of binary treatments. For exam-
ple, if the treatment variable has three levels, A ∈ A ≡ {a1, a2, a3}, it can be reformulated
as a joint treatment A′ = (A′0, A

′
1) ∈ {(0, 0), (0, 1), (1, 0)} where A = {a1, a2, a3} 7→ A′ =

{(0, 0), (0, 1), (1, 0)}
The likelihood then becomes:

P0(O) ≡ Q0(Y |A′1, A′0,W )g0,A′1
(A′1|A′0,W )g0,A′0

(A′0|W )QW,0(W )

where g0,A′1
(A′1 = 1|A′0 = 1,W ) = 0 by definition.

Rules for the two “treatments” A′1 and A′0 can then be learned from two blip functions
as described in Luedtke and van der Laan [2016b]. This approach is attractive because
it accommodates categorical treatments within the existing binary treatment methodology.
However each additional pseudo-treatment requires an additional Super Learner for the treat-
ment mechanism conditional on all past treatment decisions, so that in the example above,



CHAPTER 3. OPTTX, AN R PACKAGE FOR OPTIMAL DYNAMIC RULES 51

on would need a Super Learner for both g0,A′0
(A′0|W ) and g0,A′1

(A′1|A′0,W ). Additionally,
one needs a Super Learner for the blip function for each pseudo-treatment. This increases
computational complexity as a function of the number of treatment categories, limiting the
feasibility of this approach, especially in the case of large datasets. Although this additional
cost is somewhat reduced by avoiding nested cross-validation as described in chapter 2, it
still requires additional computation compared to a truly categorical approach.

Generalizing the Blip Function

We instead chose to focus on extensions to the blip function approach that allow for categori-
cal treatment. In the binary setting, the blip function approach enjoys some advantages over
Q-learning in that it is targeted to the part of the likelihood that is important for learning
the optimal rule. We can factorize E[Y |A,W ] = f(A,W ) + h(W ), and therefore we can
write the blip as Q̄0(V ) = E0 [f(1,W )− f(0,W )|V ]. This means that we can estimate the
blip without having to estimate h(W ). Any generalization of the blip function to categorical
treatment should maintain this property.

For categorical treatment, we define extensions to the blip function called “psuedo-blips”.
These blips are vector valued in that the output for a given V is a vector whose length is
equal to the number of categories of A:

Q̄pblip
0 (V ) =

{
Q̄pblip

0,a (V ) : a ∈ A
}

We consider three possible psuedo-blip formulations. First, one can choose a reference
category (e.g. A = 0) and define the blip for all other categories relative to the reference:
Q̄pblip-ref

0,a (V ) ≡ E0[Ya − Y0|V ] (as in Robins [2004a]). This has the advantage of reducing to
the normal blip in the case of binary treatments. Barring some subject matter justification
for choosing a particular reference category, it makes sense to choose the most frequently
observed category.

Another possible is to define the blip relative to the average of all categories Q̄pblip-avg
0,a (V ) ≡

E0[Ya − 1
nA

∑
a′∈A Y

′
a|V ], which eliminates the need to choose a reference category.

A slight adjustment to the average reference approach is to take a weighted average,
weighting by the probability of observing each treatment in strata of V : Q̄pblip-wavg

0,a (V ) ≡
E0[Ya −

∑
a′∈A p(A = a′|V )Y ′a|V ].

These three psuedo-blip approaches all have the property of identifying the optimal rule
as d(V ) = arg maxa∈A Q̄0,a(V ) without requiring an estimate of h(W ). In section 3.6, we
compare these three blip approaches to using no reference and simply learning Q̄4

0,a(V ) ≡
E0[Ya|V ] as is done in Q-learning, which does require estimation of h(W ). Like the blip
function for binary treatments, these “psuedo-blips” can be estimated by regressing contrasts
composed using the A-IPW transform described above in section 3.3 on V . For example, in
the case of the average approach, we can estimate Q̄pblip-avg

0,a (V ) by regressing the following
(vector-valued) contrast on V :
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Dpblip-avg

Q̄Yn ,gn
(O) =

{
DQ̄Yn ,gn,a=a(O)− 1

nA

∑
a′∈A

DQ̄Yn ,gn,a=a′(O) : a ∈ A

}

For the purposes of blip estimation, Q̄Yn and gn are estimated using Split Specific Super
Learner, as described in 2.

The opttx package supports estimation of all three psuedo-blips with Super Learner,
using a new Super Learner implementation that supports features not supported in the
SuperLearner package. These features are described in the next section.

3.5 Super Learner

Super Learner is an ensemble machine learning approach using cross-validation and a loss-
based estimation framework. A Super Learner is specified by three components. First,
a library of learners, ψ̂jPn(X) for j ∈ 1, . . . , J , a set of machine learning algorithms that
generate predictions based on a training set. Next, a metalearner m(Z;α) where Zj =
ψ̂jPn(X), e.g. m(Zj;α) =

∑J
j=1 αjZ

j, a learner that generates predictions that in some

way combine predictions from the library of learners. Finally, a loss function L(O, ψ̂Pn),

e.g. L(O, ψ̂Pn) =
(
Y − ψ̂Pn(X)

)2

that can be used to evaluate the performance of the

learners and metalearner. Using these three components the Super Learner is defined as
ψ̂αn,Pn = m(Z;αn), where αn is chosen via cross-validation to minimize the risk (expected
value of the loss function).

While the Super Leaner algorithm is very general, the SuperLearner package [Polley and
van der Laan, 2011] has some limitations that preclude its use in this setting. Specifically,
SuperLearner lacks support for categorical outcomes, which is required to directly estimate
g0(A|W ) for categorical A. Additionally, SuperLearner lacks support for estimating mul-
tivariate outcomes, which will allow us to estimate Q̄0

0,a(V ) for all a ∈ A simultaneously.
Finally, the dependencies between nuisance parameters in the optimal treatment setting re-
quire support for nesting cross-validation. This is discussed further in chapter 2. We’ve
implemented a Super Learner that supports these features in the origami package, avail-
able on GitHub [Coyle, 2014]. Below we describe our implementations of multinomial and
multivariate Super Learners.

Multinomial Super Learner

We need to estimate g0(A|W ) = P (A|W ) for categorical A. That is, we want to estimate
ψ0,a(W ) = P (A = a|W ) for all a ∈ A.

Many of the learners supported by the SuperLearner package can be applied directly to
multi-class classification problems. Those learners that only support binary outcomes can be
extended to support categorical outcomes using the same series of binary treatment approach
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described above. To full specify a multinomial Super Learner, we need a combination method
(metalearner) for multinomial outcomes. Here, we used a logistic combination:

m(Za;α) =
logit−1 (α logit(Za))∑
a∈A logit−1 (α logit(Za))

For a loss function, we used negative multinomial log likelihood:

L(O,ψα(X)) = −
∑
a∈A

I(A = a) log(ψα,a(X))

For binary treatments, this reduces to the binomial log likelihood.

Multivariate Super Learner

We also need to estimate Q̄0,a(V ) for all a ∈ A. We can think of this as a vector-valued or
multivariate outcome, the vector of Q̄0

0,a(V ) across A. Of course, we can simply apply Super
Learner for univariate outcomes separately for each a, but in cases where the blip function is
similar for all values of a, we could gain efficiency by estimating a combination that applies
to all a’s. We accomplished this by using a loss that averages across the a’s:

L(O,ψα(X)) =
1

nA

∑
a∈A

L(0, ψα(X))

Another nice feature of the multivariate approach is that it allows us to use a loss function
that directly targets a rule’s value:

LQ̄Y ,g(O,ψα(X)) = −DQ̄Y ,g,a=d(V )(O)

where d(V ) = arg max
a∈A

Q̄0
0,a(V )

3.6 Pseudo-blip Comparison

Using a Monte Carlo simulation, we compared the three different pseudo-blip functions in
terms of how well the learned rule performed. We drew 1000 samples of size n = 1000 from
the following distribution:
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O = (W,A, Y )

P (O) = P (Y = 1|A,W )P (A = ai|W )f(W )

f(W ) = N (05, I5,5)

P (A = ai|W ) =
logit−1(Wi)∑3
i=1 logit−1(Wi)

P (Y = 1|A,W ) = 0.5 logit−1 [−5I(A = a2)(W1 − 0.5)

+5I(A = a3)(W1 − 0.5)]

+ 0.5 logit−1 (W2W3)

Results

Figure 3.1 shows the performance in terms of the mean outcome of the learned rule for the
three different blip approaches. All the results are fairly similar, but in general squared error
loss outperformed rule value loss. Additionally, the reference category approach (pblip-ref
above), was appreciably worse than any of the other approaches including the Q-learning
approach (no reference). In this simulation, the best performing approach was the “average
reference” (pblip-avg above) approach with squared error loss, and this was used for the
remaining simulations and PROPPR data analysis.
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● ●CV−TMLE MSE

Figure 3.1: Pseudo-blip Comparison. The dashed line indicates the mean outcome under
the true optimal rule. Rules learned using a squared error loss are indicated in blue, and
rule learned using a CV-TMLE estimate of the rule value are indicated in red.

3.7 Variable Importance

An optimal rule that is learned using Super Learner as described above is somewhat opaque:
it can be thought of as a black box function that takes a vector of covariates V as input
and returns a treatment decision A. One could imagine implementing such a function in
software on a computer or mobile platform, enabling researchers and practitioners to make
optimal treatment decisions in a clinical setting. However, this black box approach presents
several barriers to practical implementation. First, without some insight into how a rule
is making treatment decisions, clinicians are unlikely to trust a black box over their own
clinical judgment. Second, if a rule is based on a large number of covariates, it might be
infeasible to collect and enter all the required covariates before a treatment decision needs to
be made. We hope to illuminate the black box and improve the feasibility of implementing
a treatment rule by determining which covariates in particular are influential in making
treatment decisions. To gain insight into the learned optimal treatment rule, we appeal to
variable importance measures (VIM). Specifically, we define variable importance in terms of
a risk difference, as was done in Dudoit et al. [2003]. Consider a partition of the covariates
on which the rule is based, V = {Vj : j ∈ J = {1, . . . , d}}, into a subset of covariates VS
for some S ⊂ J and its complement V̄S = V \ VS. We can then evaluate the importance
of the subset VS by calculating a risk difference comparing the performance of estimators
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including and excluding this subset: ψVIM
0,VS ,L

= E0[L(O, Q̄0(V )) − L(O, Q̄0(V̄S))]. Here, we
focus on univariate subsets (i.e. S ∈ {1, . . . , d}, to determine individual variable importance
for each covariate. This framework also allows us to evaluate the variable importance of sets
of covariates.

Within this framework, we consider three possible loss functions from Luedtke and van der
Laan [2016b], capturing different aspects of performance for learning an optimal rule. First,
a (multivariate) regression-type loss function such as the squared error loss:

L(O, Q̄pblip
0 (V )) =

1

nA

∑
a∈A

(
Dpblip

Q̄Y ,g,a
(O)− Q̄pblip

0,a (V )
)2

.
A risk difference calculated using this loss function indicates how the learning of the blip

function is impacted by omitting a particular covariate.
Second we can use a classification type loss function, such as the 0-1 loss:

L(O, Q̄pblip
0 (V )) = I

[(
arg max

a∈A
Dpblip

Q̄Y ,g,a
(O)

)
6=
(

arg max
a∈A

Q̄pblip
0,a (V )

)]

A risk difference based on a classification loss indicates how treatment assignment changes
when a particular covariate is omitted.

Finally, we can directly use the inverse of the rule value as a loss:

L(O, Q̄pblip
0 (V )) = −Q̄Y,0(A = arg max

a∈A
Q̄pblip

0,a (V ),W )

A risk difference based on rule value indicates how mean outcome is impacted by omitting
a particular covariate. This is perhaps the most relevant loss function, as it directly informs
the impact of each covariate on optimizing the outcome of interest.

Estimating this risk difference in turn for each of the covariates in V gives variable impor-
tance measures that can be compared to estimate the relative importance of the covariates
comprising V . This requires Super Learning of the rule for each subset V̄S that needs to be
studied, a computationally demanding procedure. This increases the importance of creating
an optimal treatment implementation that is computationally efficient.

The above loss functions, and therefore the corresponding variable importance parame-
ters, are all defined in terms of the true blip functions (Q̄pblip

0 (V )) for various subsets VS. If
instead we use the estimated blip functions (Q̄pblip

n (V )), we can define data-adaptive variable
importance parameters. That is, instead of asking “how important is VS for the true rule”,
we can ask “how important is VS for the learned rule”. While the parameters based on
the true blip functions are relevant for understanding how covariates impact the truly opti-
mal treatment rule, we argue that these data-adaptive parameters are more relevant in that
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they aid understanding of how covariates impact the rule that was actually learned. This
allows practitioners to understand how the rule that they could implement is functioning,
and understand how rules that rely on fewer variables compare. Therefore, the simulation
in the next section focuses on our ability to learn the data-adaptive variable importance
parameters.

Simulation

We studied the performance of estimators for the three different VIM parameters outlined
above via simulation. We generated 1000 samples of size n=1000 from the following data
generating distribution:

O = (W,A, Y )

P (O) = P (Y = 1|A,W )P (A = ai|W )f(W )

f(W ) = N (05, I5x5)

P (A = ai|W ) =
logit−1(Wi)∑3
i=1 logit−1(Wi)

P (Y = 1|A,W ) = 0.5 logit−1

(
3

3∑
i=1

I(A = ai) ∗ (i ∗Wi − 0.5)

)
+ 0.5 logit−1 (W2W3)

This simulated data generating distribution was also used to demonstrate the usage of
the opttx package in appendix C. For each simulation iteration, we calculated the true
values of the three data-adaptive variable importance measures using a large (n=1,000,000)
test sample, and estimated the values using cross-validated risk difference estimators. We
compared cross-validated estimates of the three VIM measures above to their true values,
with the goal of evaluating which VIM parameters are easiest to estimate from data, as
well as which most readily identify the important covariates for making optimal treatment
decisions.

Results

Figure 3.2 depicts the true values and estimates values for the three data-adaptive variable
importance parameters. The three measures generally agree as to the ordering of the co-
variates by importance, with W3 being most important, followed by W2, and W1, and with
W4 and W5 having no importance, as should be expected for pure noise covariates. There is
generally good correspondence between estimated and true values.

Figure 3.3 compares the performance of estimators for the three variable importance
measures. Of the three, the regression parameter has the lowest MSE. Therefore, although
the regression parameter is the least interpretable of the three parameters, we suggest using
it as it appears to be the easiest to estimate from data.



CHAPTER 3. OPTTX, AN R PACKAGE FOR OPTIMAL DYNAMIC RULES 58

Figure 3.4 compares the rank-order of variables by importance (higher rank is more
important) for the three methods. The ability to correctly order variables by importance is
necessary for variable selection procedures like backward selection. We can see that all three
approaches generally correctly separate the variables into two groups: the not important
group (W4 and W5), and the important group (W1, W2, and W3). This separation is most
pronounced in the regression approach, further supporting our recommendation that this
be the preferred approach. Within the important group, the ordering is less consistent
than could be hoped. It’s possible that is because the variables in this group are of similar
importance, and it is hard to correctly estimate the ordering. Again, the regression approach
appears to most consistently order the variables by importance.
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Figure 3.2: True and Estimated Data-Adaptive VIM Values. True values of the three data-
adaptive VIM parameters were calculated using a large (n=1,000,000) test sample. Estimates
are from cross-validated risk difference estimators.



CHAPTER 3. OPTTX, AN R PACKAGE FOR OPTIMAL DYNAMIC RULES 59

Bias Variance MSE

●

●

●

●

●

●

●

●

●

rule
value

rule
classification

regression

−0.20 −0.15 −0.10 −0.05 0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.10 0.15 0.20

V
IM

Figure 3.3: VIM Performance Comparison. To facilitate comparison between measures,
performance was normalized by dividing by the mean true value of the variable importance
measure.



CHAPTER 3. OPTTX, AN R PACKAGE FOR OPTIMAL DYNAMIC RULES 60

regression rule
classification

rule
value

5

4

3

2

1

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
True Rank

E
st

im
at

ed
 R

an
k

0.0 0.2 0.4 0.6
percent

Figure 3.4: VIM Rank Comparison. A comparison of the rank-order of variables by im-
portance (higher rank is more important) for the three methods. The ability to correctly
order variables by importance is necessary for variable selection procedures like backward
selection.
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3.8 PROPPR Data Example

Having evaluated the performance of the implemented methodologies via simulation, we then
applied the methods to the PROPPR data example [Holcomb et al., 2015]. Unfortunately,
at many time points, there seemed to be very little treatment effect of Platelet:RBC ratio
on the probability of achieving hemostasis for most strata of V . Therefore, for the sake of
illustration, we present results from a time point with a particularly pronounced apparent
treatment effect: the effect of Platelet:RBC ratio at one hour after admission to the hospital
on the probability of achieving hemostasis at two hours after admission.

Figure 3.5 shows estimates of the mean outcome (probability of hemostasis) as observed,
under the learned treatment rule, and under static treatments where everyone was assigned
to each of the three treatment levels. These estimates were obtained using CV-TMLE. There
is little evidence to support the conclusion that the learned rule outperforms the best static
treatment (a low platelet to RBC ratio), or the observed treatment regime. Although we lack
evidence to recommend the use of a dynamic treatment rule in this study, we proceeded to
evaluate which variables were important to the rule we did learn. Figure 3.6 shows the results
of this analysis, using the regression variable importance measure. By far the most important
variables were injury type (blunt or penetrating) and pulse. Platelet count, lactate, and
clotting factor were determined to be of middling importance. Unfortunately, it was difficult
to find a setting in which treatment had a definitive impact on outcome in the PROPPR
study. This made it difficult to effectively demonstrate optimal treatment methodologies
using this study. It is possible that an optimal rule to assign blood transfusion regimes to
patients could be learned to maximize survival, but learning such a rule might require a more
comprehensive set of covariates, more carefully defined treatment and outcomes, and/or a
larger sample size.
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Figure 3.5: Mean Outcomes from the PROPPR Study
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3.9 Conclusion

Although development of the opttx package is ongoing, with a number of important features
still not implemented, several key challenges to a practical implementation of the optimal
treatment methodology developed in Luedtke and van der Laan [2016b] have been overcome,
with solutions implemented in software. These solutions include the Split Sequential Super
Learner described in chapter 2, the use of categorical blip functions described in section 3.4,
and novel variable importance measures described in section 3.7. As it currently exists, the
opttx package can then be understood as a proof of concept for these solutions, with a focus
on evaluating their performance using simulation.

As noted throughout the paper, there are many important components of the optimal
treatment methodology not yet implemented in the opttx package. These include support
for longitudinal optimal treatment problems, weighted classification and joint Super Learning
approaches for the learning of the rule, support for continuous outcomes (Y ), support for
right censored outcomes, and support for the on-line Super Learner to fix inference in the case
of strata of V with no treatment effect. Due to these limitations the opttx package is rather
limited in its applicability to a range of important datasets. These features are all planned
extensions to the current package, and will be implemented as part of an upcoming software
development effort. We therefore expect that a more complete and accessible implementation
of optimal treatment will be available shortly.
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Appendix A

Targeted Bootstrap Theory

This appendix contains details of the theoretical results for the Targeted Bootstrap1.

A.1 TMLE for the asymptotic variance of the target

parameter

Asymptotic Efficiency

As with any TMLE we have the following general theorem for this TMLE P̃ ∗n .

Theorem 4. Consider O ∼ P0 ∈ M. Let Σ2 : M → IR be defined by Σ2(P ) = PD∗(P )2,
where D∗(P ) is the efficient influence curve of Ψ :M→ IR at P . Let D∗Σ(P ) be the efficient
influence curve of Σ2 at P . Let RΣ(P, P0) be defined by

Σ2(P )− Σ2(P0) = −P0D
∗
Σ(P ) +RΣ(P, P0).

Using the representation above, RΣ(P, P0) involves second order differences QΣ(P )−QΣ(P0)
and gΣ(P )− gΣ(P0)

Assume that PnD
∗
Σ(P̃ ∗n) = oP (1/

√
n), D∗Σ(P̃ ∗n) falls in a P0-Donsker class with probability

tending to 1, P0{D∗Σ(P̃ ∗n) − D∗Σ(P0)}2 → 0 in probability as n → ∞, and RΣ(P̃ ∗n , P0) =
oP (1/

√
n). Then, Σ2(P̃ ∗n) is an asymptotically efficient estimator of Σ2(P0) at P0:

Σ2(P̃ ∗n)− Σ2(P0) = (Pn − P0)DΣ2(P0) + oP (1/
√
n).

In particular, the confidence interval Σ2(P̃ ∗n) ± 1.96σn/
√
n with σ2

n being a consistent
estimator of P0DΣ2(P0), such as σ2

n = PnDΣ2(P̃ ∗n), contains Σ2(P0) with probability tending
to 0.95, under the assumptions of the above theorem.

In order to be able to apply this theorem P̃ ∗n will need to be a probability distribu-
tion compatible with both Q∗Σ,n and gΣ,n in the above definition of the TMLE in terms of

(Q∗Σ,n, gΣ,n). As we will see for consistency of the targeted bootstrap we only need that P̃ ∗n
is compatible with Q∗Σ,n.

1All results in this section due to Mark van der Laan
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Application to the treatment specific mean

Specifically applying theorem 4 to the case where the target parameter is the treatment
specific mean:

Theorem 5. Consider O ∼ P0 ∈M and M is the nonparametric model. Let Σ2 :M→ IR
be defined by Σ2(P ) = PD∗(P )2, where D∗(P ) is the efficient influence curve of Ψ :M→ IR
at P defined by Ψ(P ) = PQ̄(P ).

Let P̃ ∗n be the above defined TMLE targeting Σ2(P0), implied by (Q∗n, ḡ
∗
n): i.e. P̃ ∗n(W =

w) = QW,n(w), P̃ ∗n(A = 1 | W ) = ḡ∗n(W ), and P̃ ∗n(Y = 1 | A,W ) = Q̄∗n(W ). Assume that
PnD

∗
Σ(P̃ ∗n) = oP (1/

√
n), D∗Σ(P̃ ∗n) falls in a P0-Donsker class with probability tending to 1,

P0{DΣ2(P̃ ∗n)−D∗Σ(P0)}2 → 0 in probability as n→∞, and RΣ(ḡ∗n, Q
∗
n, ḡ0, Q0) = oP (1/

√
n).

Then, Σ2(P̃ ∗n) is an asymptotically efficient estimator of Σ2(P0) at P0:

Σ2(P̃ ∗n)− Σ2(P0) = (Pn − P0)DΣ2(P0) + oP (1/
√
n).

A.2 Joint TMLE for target parameter and its

asymptotic variance

Asymptotic Efficiency

Analogous to theorem 4, we can prove asymptotic efficiency for the joint TMLE:

Theorem 6. Consider O ∼ P0 ∈ M. Let Ψ : M → IR be a parameter with efficient
influence curve D∗(P ). Let Σ2 : M → IR be defined by Σ2(P ) = PD∗(P )2 and denote its
efficient influence curve with D∗Σ(P ).

Let P̃ ∗n be aTMLE targeting (Ψ(P0),Σ2(P0)), so that (Ψ(P̃ ∗n ,Σ
2(P̃ ∗n)) is the TMLE of

(ψ0, σ
2
0), satisfying PnDΣ2(P̃ ∗n) = oP (1/

√
n) and PnD

∗(P̃ ∗n) = oP (1/
√
n). In addition, we

assume 1) D∗(P̃ ∗n) and D∗Σ(P̃ ∗n) falls in a P0-Donsker class with probability tending to 1, 2)
P0{D∗Σ(P̃ ∗n) − D∗Σ(P0)}2 → 0 and P0{D∗(P̃ ∗n) − D∗(P0)}2 → 0 in probability as n → ∞, 3)
Rψ(P̃ ∗n , P0) = oP (1/

√
n), and RΣ(P̃ ∗n , P0) = oP (1/

√
n).

Then, (Ψ(P̃ ∗n),Σ2(P̃ ∗n) is an asymptotically efficient estimator of (Ψ(P0),Σ2(P0)) at P0:

Ψ(P̃ ∗n)−Ψ(P0) = (Pn − P0)D∗(P0) + oP (1/
√
n)

Σ2(P̃ ∗n)− Σ2(P0) = (Pn − P0)D∗Σ(P0) + oP (1/
√
n).

Application to the treatment specific mean

Specifically applying theorem 6 to the case where the target parameter is the treatment
specific mean:

Theorem 7. Consider O ∼ P0 ∈ M and M is the nonparametric model. Let Ψ :M→ IR
be defined by Ψ(P ) = PQ̄(P ) and let D∗(P ) be its efficient influence curve. Let Σ2 :M→ IR
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be defined by Σ2(P ) = PD∗(P )2, and let D∗Σ(P ) be its efficient influence curve. In addition,
let Rψ(P, P0) and RΣ(P, P0) be the corresponding second order terms as explicitly defined
above.

Let P̃ ∗n be the above defined TMLE targeting (Ψ(P0),Σ2(P0)), so that (Ψ(P̃ ∗n ,Σ
2(P̃ ∗n))

is the TMLE of (ψ0, σ
2
0). Here P̃ ∗n is the probability distribution implied by (Q∗n, ḡ

∗
n): i.e.

P̃ ∗n(W = w) = QW,n(w), P̃ ∗n(A = 1 | W ) = ḡ∗n(W ), and P̃ ∗n(Y = 1 | A,W ) = Q̄∗n(W ).
Assume that PnD

∗
Σ(P̃ ∗n) = oP (1/

√
n) and PnD

∗(P̃ ∗n) = oP (1/
√
n). In addition, we as-

sume 1) D∗(P̃ ∗n) and DΣ(P̃ ∗n) falls in a P0-Donsker class with probability tending to 1, 2)
P0{DΣ(P̃ ∗n) − DΣ(P0)}2 → 0 and P0{D∗(P̃ ∗n) − D∗(P0)}2 → 0 in probability as n → ∞, 3)
Rψ(P̃ ∗n , P0) ≡ P0

ḡ∗n−ḡ0

ḡ∗n
(Q̄∗n − Q̄0) = oP (1/

√
n), and RΣ(ḡ∗n, Q

∗
n, ḡ0, Q0) = oP (1/

√
n).

Then, (Ψ(P̃ ∗n),Σ2(P̃ ∗n) is an asymptotically efficient estimator of (Ψ(P0),Σ2(P0)) at P0:

Ψ(P̃ ∗n)−Ψ(P0) = (Pn − P0)D∗(P0) + oP (1/
√
n)

Σ2(P̃ ∗n)− Σ2(P0) = (Pn − P0)DΣ2(P0) + oP (1/
√
n).

Sufficient conditions for the assumptions 1), 2), and 3) are that ‖ ḡ∗n− ḡ0 ‖P0= oP (n−1/4),
‖ Q̄∗n − Q̄0 ‖P0= oP (n−1/4), ḡ0 > δ > 0 a.e., Pr(‖ ḡ∗n, Q̄∗n ‖∗v< M) → 1 for some M < ∞,

where ‖ h ‖P0=
√∫

h2(o)dP0(o), and ‖ h ‖∗v is the uniform sectional variation norm for a

multivariate real valued function h.

A.3 Targeted Bootstrap

Performance of cross-validation selector on targeted bootstrap
samples.

The following theorem can be applied to establish the behavior of the super-learner P̂ that
plays the role as initial estimator in the definition of the TMLE P̂ ∗, but now as estimator
of P̃ ∗n when applied to bootstrap samples from P̃ ∗n . In the definition of the TMLE P̂ ∗

one typically on constructs a targeted estimator of a parameter Q : M → Q(M) so that
Ψ(P ) = Ψ1(Q(P )) for some Ψ1, and the TMLE will then possibly also rely on a nuisance
parameter g : M → Q(M) chosen so that D∗(P ) = D∗(Q(P ), g(P )) only depends on P
through Q(P ), g(P ). In that case, the TMLE only relies on initial estimator of both Q, g, and
the following theorem can then be applied to establish the behavior of this initial estimator
on bootstrap samples, assuming that the estimators are based on using cross-validation to
select among many candidate estimators, as in the super-learner. So in the following theorem
Q plays the role of either P,Q, g in the above.

Theorem 8. Suppose we observe n independent identically distributed copies of O#
i ∼ P̃ ∗n ,

given Pn. Let M be the statistical model for P0. Let Q : M → Q(M) be the parame-
ter mapping of interest and let Q∗n = Q(P̃ ∗n) be the true value For a given random split
Bn ∈ {0, 1}n with p = 1/n

∑n
i=1Bn(i), let P#0

n,Bn
, P#1

n,Bn
be the empirical distributions of
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the training and validation sample. Let (O,Q) → L(Q)(O) be a loss function so that
P̃ ∗nL(Q∗n) = minQ∈Q(M) P̃

∗
nL(Q). Let Pn,# be the empirical probability distribution of O#

i ,

i = 1, . . . , n. Let Q̂k : Mnp → Q(M), k = 1, . . . , K(n), be a set of given estimators of Q0.

Suppose that for each k, Q̂k(Pn,#) ∈ Q(M) with probability 1.

Let k#
n = K̂(Pn,#) = argminkEBnP

#1
n,Bn

L(Q̂k(P
#0
n,Bn

)) be the cross-validation selector, and

let k̃#
n = K̃(Pn,#) = argminkEBnP̃

∗
nL(Q̂k(P

#0
n,Bn

)) be the comparable benchmark (oracle) se-
lector.

We define a loss-based dissimilarity

dn(Q,Q∗n) ≡ EBnP0{L(Q)− L(Q∗n)}.

11 Assumptions.12 A1. There exist a M1 <∞ so that

sup
Q∈Q(M)

sup
O
| L(Q)(O)− L(Q∗n)(O) |≤M1,

where the supremum over O is taken over a support of the distribution P̃ ∗n .13 A2. There exist
a M2 <∞ so that

sup
Q∈Q(M)

VARP̃ ∗n
[L(Q)− L(Q∗n)] (O)

P̃ ∗n [L(Q)− L(Q∗n)] (O)
≤M2. (A.1)

Finite Sample Result. For any δ > 0, there exists a C(M1,M2, δ) ≤ C/δ for some
C(M1M2) so that

EP̃ ∗ndn(Q̂K̂(Pn,#)(P
#0
n,Bn

), Q∗n) ≤ (1 + δ)EP̃ ∗ndn(Q̂K̃(Pn,#)(P
#0
n,Bn

), Q∗n)

+C(M1,M2, δ)
log(K(n))

np
.

Asymptotic equivalence of cross-validation selector and oracle selector on bootstrap samples:
Suppose that, for almost all (Pn : n),

EP̃ ∗ndn(Q̂K̃(Pn,#)(P
#0
n,Bn

), Q∗n)

logK(n)/(np)
→ 0,

as n→∞. Then, for almost all (Pn : n), we have

EP̃ ∗ndn(Q̂K̂(Pn,#)(P
#0
n,Bn

), Q∗n)

EP̃ ∗ndn(Q̂K̃(Pn,#)(P
#0
n,Bn

), Q∗n)
→ 1.

As a consequence, under the same conditions as needed for the oracle inequality for the
cross-validation selector on the original sample, but making sure to use bounds M1,M2 that
are uniformly in P0 ∈M, we have the same oracle inequality for the cross-validation selector
on the bootstrap sample. As a consequence, the cross-validation selector behaves as well
on the bootstrap samples as it does on the original sample. This is very important, since
one of our key conditions was that the second order term R(P#∗

n , P̃ ∗n) for the TMLE on the
bootstrap sample is still oP (1/

√
n), given that it is true for R(P̃ ∗n , P0).
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Consistency

Let O#
1 , . . . , O

#
n ∼iid P̃ ∗n , given Pn, Pn,# is the corresponding empirical distribution, and

P̃ ∗n is such that Σ2(P̃ ∗n) is a TMLE of Σ2(P0). The bootstrap distribution is defined as the
probability distribution F#

n of
√
n(Ψ(P ∗n,#) − Ψ(P̃ ∗n)), given Pn, where P ∗n,# is the TMLE

targeting ψ0 applied to the bootstrap empirical distribution Pn,#. Let Fn be the probability
distribution of

√
n(Ψ(P ∗n) − Ψ(P0)). For simplicity, let Fn, F

#
n be cumulative distribution

functions of these probability distributions. One views F#
n as an estimate of the distribution

Fn. Assume the regularity conditions guaranteeing that Fn converges to F0 = N(0,Σ2(P0)).
Asymptotic consistency of the bootstrap is defined by F#

n converging to F0, given (Pn : n).
We like to prove that indeed our targeted bootstrap distribution F#

n converges to F0, un-
der appropriate regularity conditions. In this manner, one can use F#

n as a finite sample
bootstrap distribution (which usually picks up second order terms/finite sample variability)
of Ψ(P ∗n), while one still guarantees that we obtain an asymptotically valid confidence in-
terval. Of course, one could also use Ψ(P ∗n) ± 1.96σ0

n/
√
n for a consistent estimator σ20

n of

P0D
∗(P0)2, such as σ∗n =

√
Σ2(P̃ ∗n), but a bootstrap confidence interval is based on a finite

sample probability distribution and that can improve finite sample coverage.
By definition of the TMLE P ∗n,# targeting ψ0, we have

Pn,#D
∗(P ∗n,#) = 0.

By application of our general identity P0D
∗(P ) = Ψ(P0)−Ψ(P ) +Rψ(P, P0), we have

P̃ ∗nD
∗(P ∗n,#) = Ψ(P̃ ∗n)−Ψ(P ∗n,#) +Rψ(P ∗n,#, P̃

∗
n).

As a consequence, we have

Ψ(P ∗n,#)−Ψ(P̃ ∗n) = (Pn,# − P̃ ∗n)D∗(P ∗n,#) +Rψ(P ∗n,#, P̃
∗
n).

Suppose that
√
nRψ(P ∗n,#, P̃

∗
n) → 0 in probability, given almost (Pn : n). This relies on

the TMLE P̂ ∗ :Mnp →M targeting ψ0 to behave as well under sampling from P0 as under
sampling from P̃ ∗n , or, at least, not much worse, so that the second order term still converges
to zero at a faster rate than 1/

√
n. In the next section we show that this can be expected

when using the super-leaner or other cross-validation based estimators. In fact, since P̃ ∗n is
itself a super-learner based fit (with a parametric model based extension) it is most likely
that the super-learner will do a better job to fit P̃ ∗n under sampling from P̃ ∗n than that it
estimates P0 under sampling from P0. So, we expect that Rψ(P ∗n,#, P̃

∗
n) be be oP (1/

√
n)

since we assumed Rψ(P̃ ∗n , P0) = oP (1/
√
n).

Suppose D∗(P ∗n,#) − D∗(P̃ ∗n) falls in a uniform Donsker class with probability tending
to 1, given (Pn : n), where the uniformity of the Donsker class is over M. If we know
that D∗(P ∗n) falls in a uniform Donsker class such as the class of functions with multivariate
sectional variation norm bounded by a M <∞, then we expect this to also hold for D(P ∗n,#)
if P ∗n,# is as smooth as P ∗n . So this condition would be problematic if P ∗n,# over fits the
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bootstrap sample relative to the TMLE P ∗n fitting the original sample. Again, due to our
uniform oracle inequality of the cross-validation selector established in the next section, one
does not expect this to happen at all.

In addition, assume P̃ ∗n{D∗(P ∗n,#)−D∗(P̃ ∗n)}2 → 0 in probability, given almost (Pn : n).
This is a weak condition relative to the second order condition above. Then, by empirical
process theory (check, tightness of the process uniformly in P should give this, and that is
what a uniform Donsker class gives us), we have

√
n(Pn,# − P̃ ∗n)(D∗(P ∗n,#)−D∗(P̃ ∗n))→ 0,

in probability as n→∞, given almost every (Pn : n). So, then, given almost every (Pn : n),

Ψ(P ∗n,#)−Ψ(P̃ ∗n) = (Pn,# − P̃ ∗n)D∗(P̃ ∗n) + oP (1/
√
n).

By the uniform standard CLT for sums of real valued independent identically distributed
random variables, we have that, if P̃ ∗n{D∗(P̃ ∗n)}2 → P0{D∗(P0)}2, then, given (Pn : n),√
n(Pn,# − P̃ ∗n)D∗(P̃ ∗n) converges to N(0,Σ2(P0)). So this condition relies on Σ2(P̃ ∗n) to be

consistent for Σ2(P0). In our case, we have that Σ2(P̃ ∗n) is even an efficient estimator of
Σ2(P0) so that this condition will hold very nicely. Thus, this proves consistency of the
bootstrap for almost all (Pn : n), under the above stated conditions.

To summarize, one assumption is that our TML estimator P̂ ∗ : Mnp → M (targeting

Ψ) under sampling from P̃ ∗n still satisfies that
√
nRψ(P̂ ∗(Pn,#), P̃ ∗n) converges to zero, which

means that our estimator P̂ ∗(Pn,#) needs to approximate the true P̃ ∗n under sampling from

P̃ ∗n at the same or good enough rate as P̂ ∗(Pn) converges to P0. This is supported by our
uniform oracle inequality for the cross-validation selector in the next section, and the fact
that P̃ ∗n will be much easier to estimate than it is to estimate the true P0: e..g, if P̃ ∗n = P ∗n
(i.e., we use the TMLE targeting both ψ0, σ

2
0), then P̃ ∗n is itself a realization of P̂ ∗ so that

the bias P̂ ∗(Pn,#) − P ∗n on bootstrap samples can be expected to be significantly less than

the bias P̂ ∗(Pn)− P0 based on the original sample.
Once P ∗n,# behaves that way, one also expects that the Donsker class property for

D∗(P ∗n,#) − D∗(P̃ ∗n) holds as well (i.e., we do not want that P ∗n,# is an over fit of P̃ ∗n rel-

ative to P̃ ∗n as an estimator of P0). Therefore, given the regularity conditions needed for the
efficiency of the TMLE of ψ0 under sampling from P0, the only real assumption on P̃ ∗n is
that Σ2(P̃ ∗n)) is consistent for Σ2(P0), which is precisely the way P̃ ∗n is targeted by being a
TMLE targeting Σ2(P0).

So we have shown the following theorem stating that the targeted bootstrap is consistent
almost everywhere, under appropriate regularity conditions.

Theorem 9. We make the following assumptions on P̃ ∗n : for almost all (Pn : n),

• The TMLE P ∗n,# satisfies

Pn,#D
∗(P ∗n,#) = oP (1/

√
n).
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•
√
nRψ(P ∗n,#, P̃

∗
n)→ 0 in probability.

• D∗(P ∗n,#)−D∗(P̃ ∗n) falls in a uniform Donsker class, where the uniformity is over M.

• P̃ ∗n{D∗(P ∗n,#)−D∗(P̃ ∗n)}2 → 0 in probability.

Then, given almost every (Pn : n),

Ψ(P ∗n,#)−Ψ(P̃ ∗n) = (Pn,# − P̃ ∗n)D∗(P̃ ∗n) + oP (1/
√
n).

If also ‖ D∗(P̃ ∗n) ‖∞< M with probability tending to 1, and P̃ ∗n{D∗(P̃ ∗n)}2 → P0{D∗(P0)}2

(i.e., Σ2(P̃ ∗n)→ Σ2(P0) in probability as n→∞), then, for almost all (Pn : n),

√
n(Pn,# − P̃ ∗n)D∗(P̃ ∗n)⇒d N(0,Σ2(P0)).

Thus, if Ψ(P̃ ∗n) is asymptotically efficient, so that
√
n(Ψ(P̃ ∗n) − Ψ(P0)) ⇒ N(0,Σ2(P0)),

then, for almost all (Pn : n), the bootstrap distribution of
√
n(Ψ(P ∗n,#)−Ψ(P̃ ∗n)) consistently

estimates the limit distribution of
√
n(Ψ(P̃ ∗n)−Ψ(P0)).

Application to the treatment specific mean

Considering the assumptions of theorem 9 in the specific case of the treatment specific mean,
we have the following:

Lemma 2. Sufficient conditions for the last three assumptions of theorem 9are that ‖
ˆ̄g(P ∗n,#) − ḡ(P̃ ∗n) ‖P̃ ∗n= oP (n−1/4), ‖ ˆ̄Q(P ∗n,#) − ˆ̄Q(P̃ ∗n) ‖P̃ ∗n= oP (n−1/4), ḡ0 > δ > 0 a.e.,

Pr(‖ (ˆ̄g(P ∗n,#) ˆ̄Q(P ∗n,#)) ‖∗v< M)→ 1 for some M <∞.

If also ‖ D∗(P̃ ∗n) ‖∞< M with probability tending to 1, and P̃ ∗n{D∗(P̃ ∗n)}2 → P0{D∗(P0)}2,
then, for almost all (Pn : n),

√
n(Pn,# − P̃ ∗n)D∗(P̃ ∗n)⇒d N(0,Σ2(P0)).

Sufficient conditions for the latter assumptions are ḡ0 > δ > 0, ‖ (ḡ, Q̄)(P̃ ∗n)−(ḡ0, Q̄0) ‖P0→ 0
in probability.

Thus, if Ψ(P ∗n) is asymptotically efficient, so that
√
n(Ψ(P ∗n) − Ψ(P0)) ⇒ N(0,Σ2(P0)),

then, for almost all (Pn : n), the bootstrap distribution of
√
n(Ψ(P ∗n,#)−Ψ(P̃ ∗n)) consistently

estimates the limit distribution of
√
n(Ψ(P ∗n)−Ψ(P0)). Sufficient conditions for the asymp-

totic efficiency of Ψ(P ∗n) are ‖ ḡ∗n− ḡ0 ‖P0= oP (n−1/4), ‖ Q̄∗n−Q̄0 ‖P0= oP (n−1/4), ḡ0 > δ > 0,
Pr(‖ ḡ∗n, Q̄∗n ‖∗v< M)→ 1 for some M <∞.

Thus a corollary of this Theorem is the following.

Corollary 1. Consider the distribution Fn of
√
n(Ψ(P ∗n)−Ψ(P0) and F#

n of
√
n(Ψ(P ∗n,#)−

Ψ(P̃ ∗n)) under sampling from P̃ ∗n . Assume
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• ‖ (ḡ, Q̄)(P̃ ∗n))− (ḡ0, Q̄0) ‖P0→ 0 in probability.

• ‖ ḡ∗n − ḡ0 ‖P0= oP (n−1/4), ‖ Q̄∗n − Q̄0 ‖P0= oP (n−1/4), ḡ0 > δ > 0, Pr(‖ ḡ∗n, Q̄∗n ‖∗v<
M)→ 1 for some M <∞.

• ‖ ˆ̄g(P ∗n,#)−ḡ(P̃ ∗n) ‖P̃ ∗n= oP (n−1/4), ‖ ˆ̄Q(P ∗n,#)− ˆ̄Q(P̃ ∗n) ‖P̃ ∗n= oP (n−1/4), Pr(‖ (ˆ̄g(P ∗n,#) ˆ̄Q(P ∗n,#)) ‖∗v<
M)→ 1 for some M <∞.

Then, Fn converges weakly to F0 = N(0, P0{D∗(P0)}2), and F#
n converges to F0, given

almost every (Pn : n). That is, ψ∗n is asymptotically efficient and the P̃ ∗n-targeted bootstrap
is consistent almost everywhere.

These conditions on ˆ̄g and ˆ̄Q on bootstrap samples from P̃ ∗n w.r.t. estimating ḡ(P̃ ∗n), Q̄(P̃ ∗n),
relative to how they estimate ḡ0, Q̄0 based on samples from P0, warrant some discussion.

The uniform oracle inequality (theorem 8) shows that if these estimators ˆ̄g, ˆ̄Q utilize cross-
validation (e.g., they are super-learners based on a specified library of candidate algorithms),
then the cross-validation selector will still perform asymptotically in an optimal way. So any
potential deterioration of these estimators on bootstrap samples must be due to P̃ ∗n being
harder to approximate than P0. Since P̃ ∗n it itself based on using the same super-learners
(i.e, the super-learners are cheating in some sense relative to the super-learner of (Q̄0, ḡ0)),
we strongly suggest that in practice this might not be an issue at all.

On the other hand, this might not generally hold up. For example, if the estimator ˆ̄g
is a kernel regression estimator using a kernel that is orthogonal to polynomial powers up
till some degree and bandwidth selected based on cross-validation, then the asymptotic rate
of convergence of this estimator depends on the underlying smoothness of P0. If now P̃ ∗n
(which itself is close to a kernel regression estimator) is now less smooth than P0 (at least
for n large enough), then one expects that the kernel regression estimator based on the
bootstrap samples will converge to their true counterparts at a slower rate. So in this case,
it appears that some over smoothing of P̃ ∗n might be required (e.g. use initial estimators
with a bandwidth larger than the one selected by cross-validation), which is consistent with
results on bootstrapping in the nonparametric regression and density estimation literature.
However, in most real data applications our covariates are high dimensional and we rely
on using many candidate algorithms using different approximation strategies (often relying
on extrapolation). Therefore, we suggest that in practice the advantages of P̃ ∗n to be of the
same form as an actual realization of these super-learners outweighs the concerns for P̃ ∗n being
less smooth than P0. Nonetheless, it is crucial that if the actual model M makes certain
smoothness assumptions, that these are enforced in P̃ ∗n ; i.e. P̃ ∗n ∈M with probability 1. It is
also good to realize that the bootstrapped estimators are allowed to lose some performance
relative to the original estimators as long as they still achieve the desired rates of convergence.
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Appendix B

Dependent Cross-Validation Theory

This appendix contains details of the theoretical results for dependent cross-validation1.

B.1 Cross-validation oracle inequality

Objective

Let Γ be some sub-collection of all functions that map from O to R. For each γ ∈ Γ, let Lγ

be some nonnegative loss function for estimating

θ0 ≡ arg min θ ∈ ΘEP [Lγ(P )(O, θ)],

where we will abuse notation and let γ(P ) represent both a parameter mapping on the
distribution P and let a value γ represent a corresponding value of that parameter mapping,
e.g. γ(P ) may be PrP (A = 1|W ). We will let γ0 = γ(P0).

Suppose a cross-validation scheme Bn as discussed in Section 2.1 of van der Laan and
Dudoit [2003a], and let P 0

Bn
and P 1

Bn
respectively represent the training and validation sam-

ples corresponding to the split Bn. Let n1 represent a lower bound on the size of the training
set resulting from the cross-validation split, e.g. in V -fold cross-validation n1 = bn/V c.

Throughout we will assume that, for a given split Bn, γ0 is estimated using only P 0
Bn

,
save for a parameter βn that is selected from a set of size Nβ(n) <∞ values. We will denote

this estimate γ̂βnBn . For example, βn could be the convex combination derived by running a
super-learner algorithm to learn γ0, but then using the candidate estimators only applied to
the training set associated with Bn.

Also suppose that we aim to learn θ0 using a super-learner with convex combination
αn that can take on Nα(n) values. For a given α and training sample P 0

Bn
, denote the

convex combination as θ̂αBn , where the candidates are learned on P and combined using the
weights α. By restricting αn to take finitely many values on the simplex, we can in fact cover

1All results in this section due to Alex Luedtke
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many algorithms besides what we typically think of as super-learners. More succinctly, these
algorithms can be viewed as a special case of the super-learner algorithm. For example, for
bandwidth selection in a kernel density estimator, we could take the candidates to be the
density estimators at different bandwidths, and the choices of α to be the “corners” of the
simplex, i.e. the points that contain a one in exactly one coordinate and zeroes in all others.

We define the cross-validated risk at the true γ0 as follows:

Rn(α) ≡ EBnEP

[
Lγ0(O, θ̂αBn)

]
.

We may want to consider the cross-validated risk under misspecification of the nuisance
parameter, given by

Rβ
n(α) ≡ EBnEP

[
Lγ̂

β
Bn (O, θ̂αBn)

]
.

Oracle does not know γ0

We first consider an oracle who does not know the true nuisance function value γ0. This oracle
then seeks to minimize the cross-validated risk that treats the estimated nuisance function
as the true nuisance function and aims to choose the convex combination α to minimize the
risk with this estimated nuisance function treated as the truth. For each sample of size n,
the oracle will treat a different estimated nuisance function as the true nuisance function,
and thus aim to minimize an objective function with different nuisance parameters.

Theorem 10. For each θ ∈ Θ and γ ∈ Γ, suppose o 7→ Lγ(o, θ) has Bernstein pair
(M(θ, γ), v(θ, γ)). Further suppose that Rγ(θ) ≡ EPL

γ(O, θ) ≥ 0 for every θ ∈ Θ, γ ∈ Γ.
Fix δ > 0 and 1 ≤ p ≤ 2. Then we have the following finite sample oracle ineqality:

EPnR
βn
n (αn) ≤ (1 + 2δ)EPn min

α
Rβn
n (α) +Remn(p, δ)

where P n represents the distribution of an i.i.d. sample of size n from P and

Remn(p, δ) ≡(1 + δ)
16 log (1 +Nα(n) +Nβ(n))

(n1)1/p
×

sup
θ∈Θ,γ∈Γ

[
M(θ, γ)

(n1)1−1/p
+

(
v(θ, γ)

Rγ(θ)2−p

)1/p(
1 + δ

δ

)2/p−1
]
.

Proof. For a given sample split Bn, let G1
Bn

= (P 1
Bn
− P ) represent the empirical process of

the training sample. By the same calculations used to prove Lemma 2.1 in van der Vaart
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et al. [2006b], we have that for any α1 in the set of size Kα:

Rβn
n (αn) ≤(1 + 2δ)Rβn

n (α1)

+
1√
n1
EBn

[
max
α,β

∫
Lγ̂

β
Bn (o, θ̂αBn)d

(
(1 + δ)G1

Bn − δ
√
n1P

)
(o)

]
+

1√
n1
EBn

[
max
α,β

∫
−Lγ̂

β
Bn (o, θ̂αBn)d

(
(1 + δ)G1

Bn + δ
√
n1P

)
(o)

]
≡(1 + 2δ)Rβn

n (α1) + r(Pn, δ). (B.1)

Because the above holds for any α1, it holds for the minimum over all α in the set of
size Kα. The remainder term r(Pn, δ) is the sum of two decentered empirical processes
whose expectations under P n, scaled by root-n1 and averaged over Bn. For a given Bn, the
decentered empirical processes can be controlled using Lemma 2.2 of van der Vaart et al.
[2006b]. In particular, EPnr(Pn, δ) ≤ Remn(p, δ) for any 1 ≤ p ≤ 2. Taking the expected
value of the above with respect to P n completes the proof.

Suppose {Lγ : γ ∈ Γ} satisfies the following conditions:

sup
θ,γ

sup
o∈O
|Lγ(o, θ)| <∞ (B.2)

sup
θ,γ

V arP (Lγ(O, θ))

EP [Lγ(O, θ)]
<∞. (B.3)

In this case, we can derive the following oracle inequality:

Corollary 2. Suppose {Lγ : γ ∈ Γ} satisfies (B.2) and (B.3). Fix δ > 0. Then we have the
following finite sample oracle ineqality:

EPnR
βn
n (αn) ≤ (1 + 2δ)EPn min

α
Rβn
n (α) + C(δ)

log (1 +Nα(n) +Nβ(n))

n1
,

where P n represents the distribution of an i.i.d. sample of size n from P and C(δ) is a
constant that may rely on P and the loss L.

Proof. This result is an immediate consequence of Theorem 10, taking p = 1 and setting
M(θ, γ) = supθ,γ supo∈O |Lγ(o, θ)| and v(θ, γ) = 1.5EP [Lγ(O, θ)2] (see Section 8.1 of van der
Vaart et al. [2006b]).

We may instead be interested in whether or not the risk of the estimated α converges
to the risk of the oracle in probability. While we could directly apply Markov’s inequality
to establish such a result, we will instead use the bounds on the Orlicz norm established
previously in the literature to get a finite sample bound on this probability. In this way,
we can say that, with probability at least 1 −K/n, the risk of our estimator deviates from
(1 + 2δ) times the risk of our oracle by a term that decays to 0 as log(1 +Nα +Nβ) log n/n.
This result is reminiscent of the finite sample bounds given in the machine learning literature.
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Theorem 11. Suppose (B.2) and (B.3) hold. Fix δ > 0 and k > 0. Then, for a constant
C which may rely on P , the loss L, and δ, the following holds with probability at least
1− 2/(nk − 1):

Rβn
n (αn)− (1 + 2δ) min

α
Rβn
n (α) ≤ Ck log(1 +Nα +Nβ) log n

n1
.

If n1 = Θ(n) and Nα+Nβ = O(nd) for d > 0, then again with probability at least 1−2/(nk−
1):

Rβn
n (αn)− (1 + 2δ) min

α
Rβn
n (α) ≤ O

(
dk log2 n

n

)
.

Proof. Note: to avoid adding extra notation, the constant C changes throughout this proof.
We will use the inequality in (B.1) with α1 replaced by the minimum over all α in the

set of size Kα. Consider the quantity:

EBn
[
r1(P 0

Bn , P
1
Bn)
]

= EBn

[
max
α,β

∫
Lγ̂

β
Bn (o, θ̂αBn)d

(
G1
Bn −

δ

1 + δ

√
n1P

)
(o)

]
.

Let ψ(x) ≡ exp(xp)− 1. The Orlicz norm ‖X‖ψ of a random variable X ∼ PX is given by

‖X‖ψ ≡ inf

{
C > 0 : EPXψ

(
|X|
C

)
≤ 1

}
.

We have:∥∥EBn [r1(P 0
Bn , P

1
Bn)
]∥∥

ψ
≤ EBn

∥∥r1(P 0
Bn , P

1
Bn)
∥∥
ψ
.

For C > 0 and a given Bn

EPnψ

(
r1(P 0

Bn
, P 1

Bn
)

C

)
= EP 0

Bn
EP 1

Bn

[
ψ

(
r1(P 0

Bn
, P 1

Bn
)

C

)]
.

It follows that, for a given Bn and P 0
Bn

, an upper bound u on
∥∥r1(P 0

Bn
, P 1

Bn
)
∥∥
ψ

for fixed

Bn, P 0
Bn

that does not rely on Bn, P 0
Bn

then the same upper bound u is valid for a ≡∥∥EBn [r1(P 0
Bn
, P 1

Bn
)
]∥∥

ψ
. For t > 0, Markov’s inequality gives:

Pr
(
EBn

[
r1(P 0

Bn , P
1
Bn)
]
> t
)
≤ Pr

(
ψ

(
EBn

[
r1(P 0

Bn
, P 1

Bn
)
]

a

)
> ψ

(
t

a

))
≤ 1

ψ(t/a)
≤ 1

ψ(t/u)
=

1

exp(t/u)− 1
, (B.4)

so that we can establish exponential tail bounds for EBn
[
r1(P 0

Bn
, P 1

Bn
)
]
.
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Fix Bn and P 0
Bn

so that P 1
Bn

can be treated as an i.i.d. sample of size n1 from P . Define:

s(α, β) ≡
∫
Lγ̂

β
Bn (o, θ̂αBn)d

(
G1
Bn −

δ

1 + δ

√
n1P

)
(o)

R(α, β) ≡ EP [Lγ̂
β
Bn (O, θ̂αBn)],

where the dependence on P 1
Bn

(only first definition), P 0
Bn

, and Bn are omitted in the notation.
The proof of Lemma 8.2 in van der Vaart et al. [2006b] established that, for each α and

β:

Pr

(
sI

(
s ≤
√
n1

(
v

M
+

δR

1 + δ

))
> t

)
≤ exp

(
−
t δR

1+δ

√
n1 +

(
δR
1+δ

)2
n1

4v

)

Pr

(
sI

(
s >
√
n1

(
v

M
+

δR

1 + δ

))
> t

)
≤ exp

(
−
√
n1
t+ δR

1+δ

√
n1

4M

)
,

where we omit the dependence of s, R on (α, β) and v, M on (θ̂αBn , γ̂
β
Bn

). Compared to the

notation of van der Vaart et al., we have replaced λ(f) with δR
1+δ

√
n1 and p, q with 1. By

Lemma 2.2.1 in van der Vaart and Wellner [1996]:∥∥∥∥sI (s ≤ √n1

(
v

M
+

δR

1 + δ

))∥∥∥∥
ψ

≤ 4v

R
√
n1

(
1 + δ

δ

)(
1 + e−( δR

1+δ )
2 n1

4v

)
∥∥∥∥sI (s > √n1

(
v

M
+

δR

1 + δ

))∥∥∥∥
ψ

≤ 4M√
n1

(
1 + e−

δR
1+δ

n1

4M

)
where the norms are taken over the distribution of P 1

Bn
. The convexity of ‖·‖ψ and the fact

that e−x ≤ 1 for x ≥ 0 shows that

‖s(α, β)‖ψ ≤
4M√
n1

(
1 + e−

δR
1+δ

n1

4M

)
+

4v

R
√
n1

(
1 + δ

δ

)(
1 + e−( δR

1+δ )
2 n1

4v

)
≤ 8M√

n1
+

8v

R
√
n1

(
1 + δ

δ

)
.

We can take the maximum over α, β and apply Lemma 2.2.2 of van der Vaart and Wellner
[1996] to show that:∥∥∥∥max

α,β
s(α, β)

∥∥∥∥
ψ

. log (1 +Nα +Nβ) max
α,β
‖s(α, β)‖ψ

.
1√
n1

log (1 +Nα +Nβ) sup
θ∈Θ,γ∈Γ

(
M(θ, γ) +

v(θ, γ)

EPLγ(O, θ)

(
1 + δ

δ

))
,

where . denotes less than or equal to up to a universal constant and we have used the fact
that our estimators of θ0 and γ0 fall in Θ and Γ. Noting that maxα,β s(α, β) = r1(P 0

Bn
, P 1

Bn
)
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for our fixed P 0
Bn

and that the upper bound established above does not rely on Bn or P 0
Bn

,
we can return to (B.4) to show that

Pr
(
EBn

[
r1(P 0

Bn , P
1
Bn)
]
> t
)
≤

(
exp

(
Ct

√
n1

log(1 +Nα +Nβ)

)
− 1

)−1

,

where C now relies on the distibution P , the loss L, and the choice of δ > 0. Thus

Pr

(
1√
n1
EBn

[
r1(P 0

Bn , P
1
Bn)
]
> t

)
≤
(

exp

(
Ct

n1

log(1 +Nα +Nβ)

)
− 1

)−1

.

Taking t = k log(1 +Nα +Nβ) log n/(Cn1) shows that, with probability at most 1/(nk − 1):

1√
n1
EBn

[
r1(P 0

Bn , P
1
Bn)
]
>
Ck log(1 +Nα +Nβ) log n

n1
.

The same arguments give the same type of result for the second term in (B.1). The claim
follows by a union bound.

Oracle knows γ0

Given a sample Pn, let the oracle be the selector which chooses α∗n to minimize the cross-
validated risk resulting from the actual loss of interest Lγ0 . That is:

α∗n = arg minαRn(α).

We have the following oracle inequality:

Lemma 3. Suppose the conditions of Theorem 10. Then:

EPnRn(αn) ≤(1 + 2δ)EPnRn(α∗n) + 2δEPn
[
Rβn
n (α∗n)−Rn(α∗n)

]
+ EPn

[(
Rβn
n (α∗n)−Rn(α∗n)

)
−
(
Rβn
n (αn)−Rn(αn)

)]
+Remn(p, δ),

where Remn(p, δ) is defined in Theorem 10.

Proof. We have that:

EPnRn(αn) = EPnR
βn
n (αn) + EPn

[
Rn(αn)− EPnRβn

n (αn)
]

≤ (1 + 2δ)EPnR
βn
n (α∗n) + EPn

[
Rn(αn)− EPnRβn

n (αn)
]

+Remn(p, δ),

where the inequality is an application of (B.1) at α1 = α∗n. The result follows by adding and
subtracting (1 + 2δ)EPnRn(α∗n) from the right-hand side.
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This leads to the following theorem, which gives conditions under which the oracle in-
equality holds up to the rate at which the nuisance function is estimated correctly.

Theorem 12. Suppose the conditions of Theorem 10. Further suppose that

EPn
[(
Rβn
n (α∗n)−Rn(α∗n)

)
−
(
Rβn
n (αn)−Rn(αn)

)]
= o

(
EPn

[
Rβn
n (α∗n)−Rn(α∗n)

])
.

Then we have that:

EPnRn(αn) ≤(1 + 2δ)EPnRn(α∗n) +O
(
δEPn

[
Rβn
n (α∗n)−Rn(α∗n)

])
+ o

(
EPn

[
Rβn
n (α∗n)−Rn(α∗n)

])
+Remn(p, δ).

Proof. The result is an immediate consequence of the stated condition and the preceding
lemma.

It is now worth considering the plausibility of the stated condition in practical situations.
For simplicity, suppose γ0 = β0 is a univariate nuisance parameter, and we are interested in
learning α0 = θ0 ∈ R1. Note in this case there are no candidate estimators so cross-validation
is not meaningful (we’re just estimating α0 and β0 on the full sample). We would like to
evaluate the performance of our estimate αn with the risk function α 7→ Rβ0(α), but β0 ∈ R1

is unknown so we use an estimate βn of this nuisance parameter. Under mild regularity
conditions, we have the following Taylor series expansion about (α0, β0):

EPn
[(
Rβn(αn)−Rβ0(αn)

)
−
(
Rβn(α0)−Rβ0(α0)

)]
=EPn [(αn − α0)(βn − β0)]

∂

∂α

∂

∂β
Rβ(α)

∣∣∣∣
α=α0,β=β0

+ o (EPn [(αn − α0)(βn − β0)])

Another Taylor series expansion shows that

EPn [Rβn(α0)−Rβ0(α0)] = O(EPn [βn − β0]).

B.2 Cross-validated one-step estimator and

cross-validated TMLE

Problem setup

Suppose we wish to estimate a univariate parameter Ψ evaluated at a distribution P , where
Ψ takes as input a distribution in our modelM and outputs a real number. All of the results
in this section can be generalized to a finite dimensional multivariate parameter.
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Let {P h
t : t ∈ (−δ, δ), some δ > 0} be a parametric submodel of M such that P h

t=0 = P
and P h

t has square integrable score o 7→ h(o) at t = 0. We suppose that there exists some
mapping D :M→ R which does not depend on h such that

Ψ(P h
t )−Ψ(P ) =

∫
D(P )(o)h(o)dP (o) + o(t)

for all such submodels and D(P )(O) is mean zero under P . If this property holds then Ψ
is called pathwise differentiable at P in the model M. The function D(P ) is known as a
gradient of Ψ at P in the model M. In a general model M gradients are not necessarily
unique, but the minimum variance gradient D∗(P ), known as the canonical gradient, is (P
almost surely) unique. For simplicity we assume that Ψ is pathwise differentiable at all
P ′ ∈M in this section, with canonical gradient D∗(P ′). We refer the reader to Bickel et al.
[1993] for a detailed exposition of pathwise differentiability.

For some distribution P ′ ∈M, we can always write

Ψ(P ′)−Ψ(P ) = −PD∗(P ′) +Rem(P, P ′) (B.5)

for some Rem(P, P ′), where we have used the notation Pf = EP [f(O)] for a function f . It
follows from the pathwise differentiability of Ψ at P that Rem(P, P ′) is small whenever P
is close to P ′ in the right sense

The exposition of the cross-validated estimators in this section is similar to that in Zheng
and van der Laan [2011]. Our results differ in that the estimate of the distribution P , used
to estimate the parameter Ψ(P ) and the canonical gradient D∗(P ), does not have to rely
only on the training sets in our setting. Our main motivation for this generalization is to
allow one to use the entire data set to select between different candidate estimators when
estimating the components of P needed to evaluate Ψ and D∗.

One-step estimator

The challenge of a non-cross-validated one-step estimator

First suppose one wishes to estimate Ψ using a one-step estimator. That is, one obtains an
estimate P 0

n ∈ M of P , or at least an estimate of the components of P needed to evaluate
Ψ and D∗, and returns as estimate ψosn ≡ Ψ(P 0

n) + PnD
∗(P 0

n). Using (B.5), we have that

ψosn −Ψ(P ) = (Pn − P )D∗(P 0
n) +Rem(P, P 0

n)

= (Pn − P )D∗(P ) + (Pn − P )
[
D∗(P 0

n)−D∗(P )
]

+Rem(P, P 0
n). (B.6)

Suppose that P 0
n is a good estimate of P in the sense that Rem(P, P 0

n) = oP (n−1/2), i.e.
converges to 0 in probability faster than 1/

√
n. If D∗(P 0

n) belongs to a Donsker class and
P (D∗(P 0

n) − D∗(P ))2 converges to zero in probability, then Lemma 19.24 of van der Vaart
[1998] yields

√
n
∣∣(Pn − P )

[
D∗(P 0

n)−D∗(P )
]∣∣→ 0 in probability. (B.7)
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Thus the middle term in (B.6) is oP (n−1/2). In this case
√
n[ψosn − Ψ(P )] =

√
n(Pn −

P )D∗(P ) + oP (1), and the right-hand side converges to a normal limit distribution by the
central limit theorem and Slutsky’s theorem.

If P 0
n is too data adaptive, D∗(P 0

n) may not satisfy the Donsker class condition, or the
Donsker class may be so large that (B.7) is of little use for reasonable sample sizes.

Cross-validated one-step estimator

For the cross-validated one-step and targeted minimum loss based estimators we focus on V -
fold cross-validation. In the notation of Section B.1, this means that Bn takes on V values
and that the elements of the training set P 1

Bn
are unique to each instance of Bn and all

observations are contained in exactly one training set. That is, the training sets are mutually
exclusive and exhaustive. We also assume that the training sets are of approximately equal
size so that n1 ≈ bn/V c.

For a parameter β belonging to some index set Σn, let P̂β be an estimator which takes as
input a training sample P 0

Bn
and outputs an estimate of P which falls in M. Note that we

have allowed these index sets to rely on sample size, so that the estimator of P may borrow
more information across training samples as the sample size grows. We assume that βn is
some choice of β that may rely on the entire observed sample of size n. It does not matter
what criteria was used to select βn.

Our main motivation in this section is when we have many candidate estimates of P , and
the β subscript indexes the choice of candidates of P . This may involve running several super-
learners for different condition expectations and conditional probabilities. The β subscript
then indexes the discrete approximations to all of these super-learners.

The cross-validated one-step estimator of Ψ(P ) is defined as

ψcvosn ≡ PBn

[
Ψ(P̂βn(P 0

Bn)) + P 1
BnD

∗(P̂βn(P 0
Bn))

]
.

We assume that our estimator of P satisfies the following consistency condition:

max
bn

Rem(P, P̂βn(P 0
bn)) = oP (n−1/2), (B.8)

where the maximum is over realizations of Bn. One could in principle replace P with some
partially misspecified P1 6= P representing the limit of our estimates of P , but we do not do
so here.

We assume that, for some M ∈ (0,∞),

P n

(
sup
o

∣∣∣D∗(P̂βn(P 0
Bn))(o)−D∗(P )(o)

∣∣∣ < M

)
→ 1. (B.9)

For sequence {δn} and training sample realization P 0
Bn

, define the random class

Dn(P 0
Bn) ≡

{
d =

D∗(P̂β(P 0
Bn

))−D∗(P )

M
: β ∈ Σn, Pd2 ≤ δ2

n, and sup
o
|d(o)| ≤ 1

}
.
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Entropy integral definition and an inequality. Let D be a class of functions mapping
from O to [−1, 1]. For a distribution P ′ and function f , define the L2(P ′) seminorm of f as
‖f‖P ′,2 = (P ′f 2)1/2. For a finitely discrete distribution Q, let N(ε,D, L2(Q)) represent the
minimal number of L2(Q) balls of radius ε which cover D. For δ > 0, define the uniform
entropy integral as

J(δ,D) = sup
Q

∫ δ

0

√
1 + logN(ε,D, L2(Q))dε,

where the supremum is over finitely discrete distributions. Suppose that supd∈D Pd
2 ≤ δ2

for some δ ∈ (0, 1). From Theorem 2.1 in Van Der Vaart and Wellner [2011], we know that

EPn
√
n sup
d∈D
|(Pn − P )d| . J(δ,D)

(
1 +

J(δ,D)

δ2
√
n

)
. (B.10)

We now continue with our presentation of the conditions for the cross-validated one-step
estimator theorem.

We assume that both of the following conditions hold for some deterministic sequence
δn → 0:

max
bn

P (D∗(P̂βn(P 0
bn))−D∗(P ))2 = oP (δ2

n) (B.11)

max
bn

EPn

[
J(δn,Dn(P 0

bn))

(
1 +

√
V J(δn,Dn(P 0

bn
))

δ2
n

√
n

)]
n→∞−→ 0. (B.12)

A deterministic sequence satisfying the first condition exists provided maxbn P (D∗(P̂βn(P 0
bn

))−
D∗(P ))2 = oP (1), but it can take some care for this sequence to also satisfy the latter con-
dition if the index class Σn grows with n.

We have the following theorem.

Theorem 13. Suppose that (B.8), (B.9), (B.11), and (B.12) hold. Then,

√
n [ψcvosn −Ψ(P )] =

1√
n

n∑
i=1

D∗(P )(Oi) + oP (1) Normal(0, σ2),

where σ2 is the variance of D∗(P )(O).

Proof. First note that

ψcvosn −Ψ(P ) =PBn

[
Ψ(P̂βn(P 0

Bn))−Ψ(P0) + P 1
BnD

∗(P̂βn(P 0
Bn))

]
=PBn(P 1

Bn − P )D∗(P ) + PBn(P 1
Bn − P )

[
D∗(P̂βn(P 0

Bn))−D∗(P )
]

+ PBnRem(P, P̂βn(P 0
Bn)). (B.13)
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The final term is oP (n−1/2) by assumption. The first term simplifies to (Pn − P )D∗(P )
because the training sets are mutually exclusive and exhaustive.

We now consider the middle term. Let An represent the event

D∗(P̂βn(P 0
bn

))−D∗(P )

M
∈ Dn(P 0

bn) for all instances bn of Bn.

By our assumptions, An occurs with probability approaching 1. Hence, for any t > 0,

P n
{√

n
∣∣∣PBn(P 1

Bn − P )
[
D∗(P̂βn(P 0

Bn))−D∗(P )
]∣∣∣ ≥ t

}
≤
∑
bn

P n
{√

n
∣∣∣(P 1

bn − P )
[
D∗(P̂βn(P 0

bn))−D∗(P )
]∣∣∣ ≥ t

}
≤
∑
bn

P n
{√

n
∣∣∣(P 1

bn − P )
[
D∗(P̂βn(P 0

bn))−D∗(P )
]∣∣∣ ≥ t and An

}
+ o(1)

≤
∑
bn

P nP n

{
√
n sup
d∈Dn(P 0

bn
)

∣∣(P 1
bn − P )d

∣∣ ≥ t

M

∣∣∣∣∣P 0
bn

}
+ o(1)

≤
M
∑

bn
P nEPn

[√
n supd∈Dn(P 0

bn
)

∣∣(P 1
bn
− P )d

∣∣∣∣∣P 0
bn

]
t

+ o(1). (B.14)

The final equality holds by Markov’s inequality and the law of total expectation. Conditional
on P 0

bn
, the class Dn(P 0

bn
) is fixed and we can apply the results in Section B.2. In particular,

we have the maximal inequality

EPn

[
√
n sup
d∈Dn(P 0

bn
)

∣∣(P 1
bn − P )d

∣∣∣∣∣∣∣P 0
bn

]
. J(δn,Dn(P 0

bn))

(
1 +

√
V J(δn,Dn(P 0

bn
))

δ2
n

√
n

)
,

where we used that the validation set P 1
bn

contains approximately n/V observations. The
expected value of this quantity over training samples times V converges to 0 by assump-
tion. Plugging this into (B.14) and noting that t > 0 was arbitrary yields that PBn(P 1

Bn
−

P )
[
D∗(P̂βn(P 0

Bn
))−D∗(P )

]
= oP (n−1/2). The result follows by (B.13) and the central limit

theorem, where we use that D∗(P ) is the canonical gradient and therefore mean zero and
square integrable.

We now give sufficient conditions under which (B.12) holds. First we suppose that the
entropy of the class is uniformly bounded in the sense that

P n

{
max
bn

sup
Q

logN(ε,Dn(P 0
bn), L2(Q)) ≤ G(ε) for all ε > 0, n

}
= 1 (B.15)

for some G which satisfies
∫ 1

0

√
1 +G(ε)dε <∞. The only random quantities in the proba-

bility statement above are the training samples P 0
bn

. We have the following corollary.
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Corollary 3. The conclusion of Theorem 13 follows if the condition (B.12) is replaced by
the stronger condition (B.15).

Proof. Without loss of generality we can take δn so that n−1/4 = o(δn). There is no loss
of generality because (B.11) holds for δn shrinking slower than n−1/4 if (B.11) holds for δn
shrinking faster than n−1/4.

For any δ ∈ (0, 1), we have

max
bn

J(δ,Dn(P 0
bn)) ≤

∫ δ

0

√
1 +G(ε)dε ≡ UB(δ) with probability 1.

By the dominated convergence theorem, UB(δn) converges to 0 as n → ∞. Using that
limn→∞ δ

−2
n n−1/2 = 0, we have that, for all n large enough,

max
bn

J(δn,Dn(P 0
bn))

(
1 +

√
V J(δn,Dn(P 0

bn
))

δ2
n

√
n

)
≤ UB(δn) (1 + UB(δn))

with probability 1. Taking the expectation of the left and taking the limit as n→∞ yields
(B.12).

Another possible scenario is that the estimators corresponding to each β are very different
from each other so that using the covering number bound does not gain us much relative to
just considering each candidate separately. Suppose that the index set Σn contains at most
Kβ(n) <∞ elements. Then a trivial bound on the covering number N(ε,Dn(P 0

bn
), L2(Q)) is

given by Kβ(n). This yields the following result.

Corollary 4. Suppose that each index set Σn for β at sample size n contains at most Kβ(n) <
∞ elements. Then∣∣∣PBn(P 1

Bn − P )
[
D∗(P̂βn(P 0

Bn))−D∗(P )
]∣∣∣ = OP

(√
1 + logKβ(n)

n

(
δn +

√
1 + logKβ(n)

n/V

))
.

Consequently, the condition (B.12) in Theorem 13 can be replaced by the condition that
(δn + n−1/2)

√
logKβ(n)→ 0.

Proof. First note that J(δ,Dn(P 0
bn

)) ≤ δ
√

1 + logKβ(n) for all instances of bn and P 0
bn

.
Consequently, the bound from Van Der Vaart and Wellner [2011] yields

max
bn

EPn

[
√
n sup
d∈Dn(P 0

bn
)

|P 1
bn − P |d

∣∣∣∣∣Pb0n
]
.
√

1 + logKβ(n)

(
δn +

√
1 + logKβ(n)

n/V

)
.

Replacing t in (B.7) with t times the upper bound above yields the first result. If (δn +
n−1/2)

√
logKβ(n)→ 0, then the right-hand side above, which upper bounds the expectation

in (B.12), converges to zero as n→∞.
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Suppose we let Kβ(n) increase as a polynomial in n. Then the corollary shows that the

term PBn(P 1
Bn
− P )

[
D∗(P̂βn(P 0

Bn
))−D∗(P )

]
converges to zero at the rate

max

{
δn

√
log n

n
,
log n

n

}
.

This rate is optimal up to a log factor. To see that this is rate is nearly optimal, note that
(Pn − P )dn = OP (

√
Pd2

n/n) by Chebyshev’s inequality when dn is a deterministic sequence
of functions with finite L2(P ) norm. In the above rate, δn (essentially) plays the role of√
Pd2

n. We say essentially because (B.11) requires that δn is a little bit slower than this
rate. If we had estimated D∗(P ) with a correctly specified parametric model then we would
typically expect our estimate D∗n to satifsy P (D∗n − D∗(P ))2 = OP (1/n), thus suggesting
that δn will converge to zero more slowly than n−1/2, and most likely also more slowly then
n−1/2

√
log n.

Cross-validated TMLE

Suppose now that βn has been chosen to satisfy the additional property that

PBnP
1
BnD

∗(P̂βn(P 0
Bn)) = oP (n−1/2).

The left-hand side is a function of the data only so whether or not βn satisfies this condition
can be verified empirically. Typically βn will be a high-dimensional vector where most
of the dimensions are used to estimate the needed components of the likelihood, and few
dimensions (often one dimension) are used to fluctuate these initial estimates to satisfy the
above identity. One can then estimate Ψ(P ) with

ψcvtmlen ≡ PBnΨ(P̂βn(P 0
Bn)).

Such an estimator is known as a cross-validated targeted minimum loss based estimator (CV-
TMLE). If the oP (n−1/2) term is equal to zero, then the results for the above estimator are
identical to that of the cross-validated one-step estimator given in the previous subsection.
Otherwise one has that

√
n
(
ψcvtmlen −Ψ(P )

)
=
√
n
(
PBnP

1
Bn

[
D∗(P̂βn(P 0

Bn)) + Ψ(P̂βn(P 0
Bn))

]
−Ψ(P )

)
+
√
nPBnP

1
BnD

∗(P̂βn(P 0
Bn)).

The second term on the right is asymptotically negligible and the first term yields the same
analysis as the cross-validated one-step estimator.
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Appendix C

opttx Vignette

To illustrate the use of the opttx package, we simulated from the data generating distribution
described in section 3.7.

#load opttx package

library(opttx,verbose=FALSE)

The format of the simulated data is as follows:

#load simulated example data

data(opttx_sim_data)

str(opttx_sim_data)

## 'data.frame': 1000 obs. of 11 variables:

## $ W1 : num -0.321 -0.335 -0.153 1.523 0.57 ...

## $ W2 : num -0.9513 0.0289 1.4711 0.88 -0.6791 ...

## $ W3 : num 0.963 -0.929 -1.271 -1.105 0.834 ...

## $ W4 : num 0.7469 -0.0845 -0.4186 1.5803 -3.2008 ...

## $ W5 : num 0.5841 1.3042 0.4621 1.8003 0.0368 ...

## $ A : Factor w/ 3 levels "1","2","3": 2 2 2 1 3 2 3 2 3 2 ...

## $ Y : num 1 0 0 1 0 1 1 1 1 0 ...

## $ d0 : int 3 2 1 1 3 1 2 1 2 1 ...

## $ Yd0 : num 1 0 0 1 0 1 1 1 1 0 ...

## $ g0W : num [1:1000, 1:3] 0.303 0.344 0.313 0.445 0.373 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : NULL

## .. ..$ : chr "A1" "A2" "A3"

## $ Q0aW: num [1:1000, 1:3] 0.182 0.284 0.128 0.615 0.457 ...

R Example C.0.1 shows the basic usage for the main opt tmle function, which learns the
optimal rule and estimates its performance using CV-TMLE. The most important arguments
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are the data.frame, the SL.library specification, and the relevant covariate, treatment, and
outcome nodes (Wnodes, Anode, and Ynode, respectively). Unless otherwise specified (using
the Vnode argument), all W nodes will be used to learn the rule.

R Example C.0.1.

#specify Super Learner Library for various components

SL.library <- list(Q = c("SL.glm", "SL.glmem", "SL.glmnet", "SL.glmnetem",

"SL.step.forward", "SL.gam", "SL.mean"),

g = c("mnSL.glmnet", "mnSL.multinom", "mnSL.mean"),

QaV = c("SL.glm", "SL.glmnet",

"SL.step.forward", "SL.gam", "SL.mean"))

#Important: convert library for QaV to a multivariate Super Learner library.

SL.library$QaV <- sl_to_mv_library(SL.library$QaV)

#Learn optimal rule and estimate its performance

opt_obj <- opt_tmle(opttx_sim_data, SL.library=SL.library,

Wnodes=c("W1","W2","W3","W4","W5"), Anode="A", Ynode="Y")

#show CV-TMLE estimates of rule performance

print(opt_obj)

## Treatment Assignments

##

## optimal tx

## observed tx 1 2 3 Sum

## 1 0.077 0.131 0.119 0.327

## 2 0.084 0.096 0.158 0.338

## 3 0.060 0.119 0.156 0.335

## Sum 0.221 0.346 0.433 1.000

##

##

## EYa Estimates

##

## Estimate SE CI Lower Bound CI Upper Bound Intervention

## 1 0.3825316 0.02556455 0.3324261 0.4326372 A=1

## 2 0.4656219 0.02572673 0.4151984 0.5160454 A=2

## 3 0.5014256 0.02703047 0.4484468 0.5544043 A=3

## 4 0.4522018 0.04445559 0.3650705 0.5393332 A=a_obs
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## 5 0.6366442 0.02432419 0.5889696 0.6843187 A=d(V)

## 6 0.4540000 0.01575221 0.4231262 0.4848738 EY

## Estimator

## 1 CV-TMLE

## 2 CV-TMLE

## 3 CV-TMLE

## 4 CV-TMLE

## 5 CV-TMLE

## 6 CV-TMLE

The CV-TMLE estimates of the mean outcomes under the various interventions can also
be easily plotted:

plot(opt_obj)

CV−TMLE

0.4 0.5 0.6 0.7

A=1

A=2

A=3

A=a_obs

A=d(V)

EY

E YA

R
ul

e

Having obtained an initial estimate of the optimal rule and its value, we can now estimate
the importance of the covariates for this rule:
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R Example C.0.2.

vimresult <- opttx:::backward_vim(opt_obj)

## Vnode W1

## Vnode W2

## Vnode W3

## Vnode W4

## Vnode W5

#plot VIM estimates

ggplot(vimresult$vimdf,aes(y=Vnode,x=est))+

geom_point()+

facet_wrap(~metric,scales="free")+theme_bw()
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