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The accurate space-time discretization of the partial differential equations (PDEs)

governing the dynamic behavior of complex physical phenomena is a core challenge in the

field of Computational Fluid Dynamics, and in the simulation of turbulence in particular.

However, it appears that over the last 30 years a disproportionate amount of attention has

been addressed toward the improvement of spatial discretization techniques, while tempo-

ral discretization has relied, in most cases, on old consolidated approaches. Large Eddy

Simulation (LES) and Direct Numerical Simulation (DNS) of the incompressible Navier-

Stokes Equation (NSE) today often use a mixed implicit/explicit (IMEX) time integration
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approach developed in the mid 1980s, which combines the second-order implicit Crank-

Nicolson (CN) method for the integration of the linear stiff terms and a third-order explicit

low-storage Runge-Kutta-Wray (RKW3) method for the nonlinear terms. This hybrid ap-

proach, dubbed CN/RKW3, guarantees overall second-order accuracy for the time integra-

tion, while allowing an efficient storage implementation.

Our work focuses on the development of new mixed implicit/explicit time integra-

tion schemes of the Runge-Kutta type for the simulation of high-dimensional stiff ODEs,

with particular attention to the simulation of the NSE. Compared with the venerable CN/R-

KW3 method, our numerical schemes have better accuracy, improved stability properties,

and require the same or slightly increased storage.

We have also developed new relaxation schemes for the iterative solution of linear

and, with some modification, nonlinear systems arising from the discretization of PDEs.

These schemes prove especially advantageous when applied as the smoothing step in the

multigrid solution of elliptic PDEs over stretched grids. A noteworthy application is the

iterative solution of the pressure Poisson equation arising when imposing the diverge-free

constraint during the simulation of the incompressible NSE using a fractional step method.

Compared with the standard approach, our schemes require significantly less computation,

while providing comparable converge rates.

We then discuss the implementation of an Ensemble Kalman Filter (EnKF) for the

short-term prediction of ocean waves. The approach leverages one of our low-storage

IMEX Runge-Kutta schemes for the highly-resolved simulation of the nonlinear equations

used to describe wave propagation. We found that, using EnKF for data assimilation of

wave measurement data, it is possible to perform accurate wave forecasting up to thirty

seconds into the future, provided a sufficient number of ensemble members is employed.
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Finally, we introduce a new direct multiple shooting algorithm for Nonlinear Model

Predictive Control (NMPC). The new approach allows analytic calculation of the dis-

cretized trajectories and associated gradients, which are required when solving the non-

linear programming problem arising within the NMPC formulation. For the discretization

of the trajectories, two solutions are proposed: one based on a Runge-Kutta discretization

of the continuous-time model, and one leveraging a nonlinear discrete-time model based on

Taylor-Lie algebra. This algorithm is then applied to the optimization of the power take-off

of a point-absorber wave energy converter (WEC). Results have shown that NMPC im-

proves the WEC power take-off with respect to linear MPC, since the nonlinear viscous

forces affecting WEC dynamics are better accounted for. Moreover, the nonlinear formula-

tion also allows the investigation of more complex configurations, such as one-way power

flow.
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Chapter 1

Introduction

We can define Computational Fluid Dynamics as the art of investigating the behav-

ior of complex phenomena involving fluid flows, such as gas and liquids, using a combina-

tion of applied mathematics, physical modeling, and numerical analysis. Most of these phe-

nomena take place in everyday life, such as meteorological events, convective heat transfer,

chemical reactions, combustion, fluid-structure interaction, human body processes and so

on. While providing scientists and engineers with a deeper understanding of the world that

surrounds us, Computational Fluid Dynamics has represented, and still represents, an in-

valuable driver of progress in the development of new numerical schemes for the analysis

and simulation of fluid flows.

The goal of this thesis is to present new numerical methods for the accurate and

efficient simulation of fluid phenomena, with a particular emphasis on the simulation of

turbulence and free-surface flows. All the schemes presented in this work offer a certain

degree of improvement with respect to other existing methods which are widely adopted

in the literature and often regarded as the state of the art for the discretization of particular

classes of problems. In this framework, improvement is considered in a broad sense: it may

1
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signify reduced computational time, reduced storage requirement, or improved numerical

properties, such as stability, accuracy, etc. Of course, this is achieved while ensuring that

the other properties of the numerical schemes do not deteriorate significantly with respect

to the standard approach.

Our work focuses in particular on two main fields of numerical methods: time dis-

cretization schemes for the simulation of partial differential equations and iterative methods

for the solution of large linear and nonlinear systems. More specifically, Chapter 2 presents

new high-order time discretization schemes for the integration of systems of partial dif-

ferential equations with a separable right-hand side in which one term is stiff but easy to

compute, e.g. linear, while the other is nonstiff and usually nonlinear. This is the case of

many physical models of complex fluid flows arising in Computational Fluid Dynamics.

Compared to the state of the art, our schemes present the same order of accuracy with com-

parable computational cost, but significantly reduced storage requirement and improved

stability properties.

Chapter 3 focuses on the improvement of a particular family of time integration

schemes of the Runge-Kutta type which is generally applied to the simulation of high-

dimensional systems of partial differential equations. Compared to the other schemes of

this kind available in literature, our methods offer improved stability and accuracy with

slightly increased computational cost and same or slightly higher storage requirement.

In Chapter 4, we introduce two new relaxation schemes, denoted as tweed and box

relaxation, for the iterative solution of linear and, with some modification, nonlinear sys-

tems using multigrid. These schemes show their maximal efficiency when employed for

the solution of elliptic systems defined over stretched structured grids. Compared to the

standard approach, which instead employs alternating-direction zebra for the relaxation
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step in the multigrid formulation, our schemes offer comparable convergence rate, with

significantly reduced computational time. This is achieved through the implementation of

ad hoc modifications of the Thomas algorithm for the solution of tridiagonal systems. This

allows to efficiently exploit the sparsity in the structure of the linear system arising within

the relaxation step. Chapter 5 describes these extensions and the details of their numerical

implementation.

In Chapter 6, one of our low-storage high-order Runge-Kutta schemes is leveraged

for the time integration of a nonlinear pseudospectral model for ocean wave propagation.

Such model is employed in an Ensemble Kalman Filter forecasting algorithm in order to

provide accurate short-time wave prediction. The forecasting performance of such frame-

work is then assessed against synthetic data emulating wave radar and monitoring buoys

measurements. Results show that accurate wave forecasting is possible up to thirty seconds

ahead, provided a large number of ensemble members is employed.

Finally, in Chapter 7, we introduce a new method for the calculation of the dis-

cretized trajectories and associated gradients within the Nonlinear Model Predictive Con-

trol formulation leveraging direct multiple shooting. In particular, two approaches have

been followed: one based on a Runge-Kutta discretization of the continuous-time model,

and the other based on a nonlinear discrete-time model derived using Taylor-Lie algebra.

These methods guarantee faster convergence rate in the iterative solution of the nonlinear

programming problem using a sequential quadratic programming algorithm. Following

this formulation, Nonlinear Model Predictive Control is then applied to the optimization of

the power take-off of a point absorber wave energy converter. Results show a significant

improvement with respect to both passive control and Linear Model Predictive Control, due

to a better representation of the viscous forces affecting the dynamics of the device. Fur-
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thermore, the nonlinear formulation allows to consider more realistic power flow configu-

rations, such as non-reversible power flow, in the form of nonlinear inequality constraints.

1.1 Organization of the thesis

The content of this thesis can be summarized as follows: Chapter 2 introduces new

low-storage high-order time integration schemes of the Runge-Kutta type for the integration

of linearly stiff ordinary differential equations. Compared to the state of the art, the new

schemes offer comparable or improved stability and accuracy properties with significantly

reduced storage requirement.

Chapter 3 introduces new low-storage IMEXRK schemes specifically designed for

incremental implementation. These schemes improve accuracy and stability properties of

the other two schemes of this kind available in literature: CN/RKW3 and the scheme

in [1]. Remarkably, this is achieved while guaranteeing the same or slightly increased

storage requirement. Moreover, the higher computational cost associated to some of these

schemes proves to be largely compensated by the improvement in accuracy and stability

that such schemes allow.

Chapter 4 describes two new relaxation algorithms for the smoothing step in the

multigrid solution of elliptic PDEs over stretched structured grids. Compared to the stan-

dard approach, the new schemes guarantee comparable convergence rate, at significantly

reduced computational time.

Chapter 5 presents some modifications of the Thomas algorithm typically used for

the factorization of tridiagonal matrices. Such algorithms allow the efficient solution of

sparse linear systems arising from the discretization of one-dimensional partial differen-

tial equations defined over closed connected domains. A remarkable application of these
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algorithms is given by the relaxation schemes in Chapter 4.

Chapter 6 describes the implementation of Ensemble Kalman Filter for the short-

term prediction of ocean wave elevation. A nonlinear pseudospectral model, leveraging

one our low-storage time integration schemes, is used to simulate wave propagation. Per-

formance is assessed considering different measurement setups involving either an ocean

wave radar or arrays of monitoring buoys.

Finally, Chapter 7 introduces a new approach to the analytic computation of dis-

cretized trajectories and associated gradients in Nonlinear Model Predictive Control lever-

aging a direct multiple shooting formulation. This guarantees a reduced computational

cost with respect to other approaches relying on numerical differentiation schemes, such as

finite differences, automatic differentiation, and complex step derivative.



Chapter 2

Low-storage implicit/explicit

Runge-Kutta schemes for the simulation

of stiff high-dimensional ODE systems

2.1 Introduction

Although a wide variety of methods have been used for spatial discretization and

subgrid-scale modeling in the Direct Numerical Simulation (DNS) and Large Eddy Sim-

ulation (LES) of turbulent flows, time marching schemes for such systems have relied, in

most cases, on an implicit scheme for the advancement of the stiff terms and an explicit

scheme for the advancement of the nonstiff terms. Among these so-called IMEX schemes,

an approach that gained favor due to [2] and [3] coupled the (implicit, second-order) Crank-

Nicolson (CN) scheme for the stiff terms with the (explicit) second-order Adams-Bashforth

(AB2) scheme for the nonstiff terms. This approach was refined in [4], which used the (im-

plicit) CN scheme for the stiff terms, at each RK substep, together with the (explicit) third-

6
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order low-storage Runge-Kutta-Wray (RKW3) scheme [5] for the nonstiff terms. This

venerable IMEX algorithm, dubbed CN/RKW3, still enjoys extensive use today, and is

particularly appealing, as only two registers are required for advancing the ODE in time,

though if three registers are used, the number of flops required by the algorithm may be

significantly reduced. In high-dimensional discretizations of 3D PDE systems on modern

computational hardware, the reduced memory footprint of this time marching algorithm,

in its two-register or three-register form, can significantly reduce the execution time of a

simulation. However, the CN/RKW3 scheme has the considerable disadvantage of being

only second-order accurate, and its implicit part is only A-stable. In recent years, there

have been relatively few attempts to refine the CN/RKW3 time-marching scheme for tur-

bulence simulations, perhaps due to a mistaken notion that modifying it to achieve higher

order might result in either increased storage requirements, significantly more computation

per timestep, or the loss of A stability of the implicit part. It turns out that this is untrue; in

fact, there is much to be gained by revising this algorithm.

When using an IMEX scheme, such as those described above, to march the incom-

pressible Navier-Stokes equation, one natural choice is to treat the (linear) diffusion terms

as the “stiff terms” and the (nonlinear) convective terms as the “nonstiff terms”. Note that

a better choice for discretizations with significant grid clustering implemented in one or

more spatial directions, as usually present when simulating wall-bounded turbulent flows,

is to treat the diffusion and linearized convection terms with derivatives in the direction

of most significant grid clustering (e.g., in the direction normal to the nearest wall) as the

“stiff” terms, and the remaining terms as the “nonstiff” terms, as suggested by [6]. Note

further that so-called fractional step methods are often combined with such IMEX schemes

in order to enforce the incompressibility constraint (see, e.g., [4]). This chapter focuses
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exclusively on the IMEXRK part of such time-advancement algorithms; various creative

choices for which terms to take implicitly at different points in the physical domain of inter-

est, and various methods for implementing fractional step techniques for enforcing exactly

the divergence-free constraint, may subsequently be addressed in an identical manner as

discussed in [4], and [6], and elsewhere in the literature.

Over the last 30 years, there has been significant development of (full-storage)

IMEXRK algorithms. A comprehensive review of this literature is given in [7], and a brief

summary of this subject is given in §2.1.1 below, including the general structure of full-

storage IMEXRK schemes, their general implementation, conditions on their parameters

for second-, third-, and fourth-order accuracy, and characterizations of their stability.

Further, in the years since the development of RKW3 in [5], there has been signifi-

cant development of alternative low-storage explicit RK schemes; a comprehensive review

of this literature is given in [8], and a brief summary of this subject is given in §2.1.2 be-

low, including the extension to implicit RK schemes, the introduction of a general 2-register

IMEXRK form, efficient 3-register & 2-register implementations of this form, as well as

the introduction of a general 3-register IMEXRK form, and efficient 4-register & 3-register

implementations of this form.

We then develop eight new low-storage IMEXRK schemes well suited for turbu-

lent flow simulations, and other computational grand challenge applications, using two,

three, or four registers of length N (the dimension of the ODE under consideration). With

an eye on the computational cost of their implementation, we focus on schemes with the

smallest number of stages possible for a given order, stability, and storage requirement. A

comprehensive summary of the schemes described in this chapter is given in Table 2.1. In

short:
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• §2.2 presents two second-order, 2-register IMEXRK schemes: the classic 3-stage, A-

stable, CN/RKW3 scheme; a new, (2, 3)-stage, that is, a scheme with 2 implicit

stages and 3 explicit stages, L-stable, strong-stability-preserving scheme, dubbed

IMEXRKCB2.

• §2.3 presents five new third-order 2-register IMEXRK schemes: a (2, 3)-stage strong-

ly A-stable scheme, dubbed IMEXRKCB3a; a (3, 4)-stage, strongly A-stable scheme

with ESDIRK implicit part, dubbed IMEXRKCB3b; three (3, 4)-stage, L-stable

schemes: one with coefficients selected to maximize stability of the ERK part on the

negative real axis while being strong stability preserving, dubbed IMEXRKCB3c;

one with coefficients selected to be strong stability preserving for the maximum pos-

sible timestep, dubbed IMEXRKCB3d; one with coefficients selected to maximize

accuracy of the ERK part, dubbed IMEXRKCB3e.

• §2.4 presents a new third-order, 3-register, 4-stage, L-stable, stage-order-2 scheme

dubbed IMEXRKCB3f.

• §2.5 presents a new fourth-order, 3-register, 6-stage, L-stable, stage-order-2 scheme

dubbed IMEXRKCB4.

In §2.6, we provide an analysis of the well-known order reduction phenomenon arising

during the integration of very stiff ODEs using these IMEXRK schemes. Finally, §2.7

considers the application of all of these low-storage IMEXRK schemes, and some of their

full-storage IMEXRK competitors, to a representative test problem in order to compare

their computational efficiency.



1
0

Table 2.1: Summary of the properties of the eight IMEXRK schemes presented in this

chapter (top) and eight of the leading IMEXRK competitors from literature (bottom),

including the leading-order computational cost per timestep for efficient finite-difference

(FD) and pseudospectral (PS) implementation of each scheme on the 1D

Kuramoto-Sivashinsky (KS) equation.

Scheme Order Registers
Stages
(sI, sE)

Stability of DIRK part
[σ(zI →∞; zE)]

Stability of ERK part
on negative real axis Truncation error

Other
properties FD cost for 1D KS PS cost

IMEXRKCB2 second [2R] (2, 3) L-stable [0] −5.81 ≤ zE ≤ 0 A(3) = 0.114
embedded,

SSP (c = 1.0)
90N flops (3-reg),
101N flops (2-reg)

6 FFTs
(3-reg)

IMEXRKCB3a

third

[2R]

(2, 3)
strongly A-stable

[−0.738]
−2.51 ≤ zE ≤ 0 A(4) = 0.226

90N flops (3-reg),
101N flops (2-reg)

6 FFTs
(3-reg)

IMEXRKCB3b

(3, 4)

strongly A-stable
[−0.732 − 0.366zE]

−2.21 ≤ zE ≤ 0 A(4) = 0.186 ESDIRK
130N flops (3-reg),
139N flops (2-reg)

8 FFTs
(3-reg)

IMEXRKCB3c

L-stable [0]

−6.00 ≤ zE ≤ 0 A(4) = 0.113
embedded,

SSP (c = 0.70)

133N flops (3-reg),
157N flops (2-reg)

8 FFTs
(3-reg)

IMEXRKCB3d −2.52 ≤ zE ≤ 0 A(4) = 0.207
embedded,

SSP (c = 0.77)

IMEXRKCB3e −2.79 ≤ zE ≤ 0 A(4) = 0.0824

IMEXRKCB3f [3R] (4, 4) L-stable [0] −6.00 ≤ zE ≤ 0 A(4) = 0.107 embedded,
SO2

162N flops (4-reg),
266N flops (3-reg)

8 FFTs
(4-reg)

IMEXRKCB4 fourth [3R] (6, 6) L-stable [0] −6.32 ≤ zE ≤ 0 A(5) = 0.0157 embedded,
SO2

253N flops (4-reg),
458N flops (3-reg)

12 FFTs
(4-reg)

CN/RKW3 second [2R] (3, 3) A-stable [−1] −2.51 ≤ zE ≤ 0 A(3) = 0.0387
115N flops (3-reg),
127N flops (2-reg)

6 FFTs
(3-reg)

Ascher(2,3,3) (see [9])

third

7 (2, 3)
strongly A-stable

[−0.732 − 0.732 zE]
−2.51 ≤ zE ≤ 0 A(4) = 0.206 92N flops 6 FFTs

Ascher(3,4,3) (see [9]) 9 (3, 4) L-stable [0.106 zE] −2.78 ≤ zE ≤ 0 A(4) = 0.103 141N flops 8 FFTs

Ascher(4,4,3) (see [9]) 10 (4, 4)

L-stable [0]

−2.14 ≤ zE ≤ 0 A(4) = 0.163 190N flops 8 FFTs

LIRK3 (see [10]) 9 (3, 4) −2.21 ≤ zE ≤ 0 A(4) = 0.100 139N flops 8 FFTs

ARK3(2)4L[2]SA (see [7]) 10 (4, 4) −3.66 ≤ zE ≤ 0 A(4) = 0.0722 embedded 159N flops 8 FFTs

LIRK4 (see [10])

fourth

13 (5, 6)

L-stable [0]

−3.41 ≤ zE ≤ 0 A(5) = 0.0404 249N flops 12 FFTs

ARK4(3)6L[2]SA (see [7]) 14 (6, 6) −4.23 ≤ zE ≤ 0 A(5) = 0.0122 embedded 270N flops 12 FFTs
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2.1.1 Full-storage IMEXRK schemes and their Butcher tableaux

A comprehensive review of (full-storage) IMEXRK schemes is given by Kennedy,

Carpenter, & Lewis [7]. In short, IMEXRK schemes incorporate a coordinated pair of

Diagonally Implicit Runge-Kutta (DIRK, with lower-triangular A) and Explicit Runge-

Kutta (ERK, with strictly lower-triangular A) schemes, with parameters as summarized in

the standard Butcher tableaux

cI
1 aI

1,1

cI
2 aI

2,1 aI
2,2

...
...
. . .

. . .

cI
s aI

s,1 · · · aI
s,s−1 aI

s,s

bI
1 · · · bI

s−1 bI
s

b̂I
1 · · · b̂I

s−1
b̂I

s

cE
1 0

cE
2 aE

2,1 0

...
...
. . .

. . .

cE
s aE

s,1 · · · aE
s,s−1 0

bE
1 · · · bE

s−1 bE
s

b̂E
1 · · · b̂E

s−1
b̂E

s

(2.1)

for the time advancement of an ODE of the form

dx(t)

dt
= f(x, t) + g(x, t), (2.2)

where f(x, t) represents the stiff part of the RHS [advanced with the DIRK method at left

in (2.1)], and g(x, t) represents the nonstiff part of the RHS [simultaneously advanced with

the ERK method at right in (2.1)].

If the stiff part of the ODE is linear [that is, if f(x, t) = Ax] then, denoting the

efficient solution of Ax = b as A−1b, a full-storage implementation of the IMEXRK scheme
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in (2.1) to advance from x = xn to x = xn+1 proceeds as follows

for k = 1 : s (2.3a)

if k == 1, y = x, else (2.3b)

y = x +
∑ k−1

i=1
aI

k,i ∆t f i +
∑ k−1

j=1
aE

k, j ∆t g j, end (2.3c)

f k = A (I − aI
k,k ∆t A)−1y [equivalently, f k = (I − aI

k,k ∆t A)−1A y ] (2.3d)

g k = g(y + aI
k,k ∆t f k, tn + cE

k ∆t) (2.3e)

end (2.3f)

x← x +
∑ s

i=1
bI

i ∆t f i +
∑ s

j=1
bE

j ∆t g j (2.3g)

x̂← x̂ +
∑ s

i=1
b̂I

i ∆t f i +
∑ s

j=1
b̂E

j ∆t g j (2.3h)

Line (2.3d) above is simply f k = f(z, tn + cI
k
∆t), where z is the solution of e(z) = z − y −

aI
k,k
∆t f(z, tn+cI

k
∆t) = 0 [that is, where z = y+aI

k,k
∆t f(z, tn+cI

k
∆t)], in the special case that

f(x, t) = Ax. More generally, if the stiff part f(x, t) is nonlinear, then line (2.3d) is replaced

by a Newton-Raphson iteration (see [11]) to find the z such that e(z) = 0:

Initialize: z0 = y + aI
k,k ∆t f(y, tn + cI

k∆t)

Iterate:
(
I − aI

k,k ∆t
∂f(x, tn + cI

k
∆t)

∂x

∣∣∣∣
x=zm

)
(zm+1 − zm) = −zm + y + aI

k,k ∆t f(zm, tn + cI
k∆t)

Upon exit: f k = f(zconverged , tn + cI
k∆t)


(3c’)

The Jacobian used in this iteration may be computed analytically or approximated numer-

ically. The low-storage IMEXRK algorithms developed in this chapter may be applied

in the linear or nonlinear setting, mutatis mutandis; §§2.1.2 - 2.1.2 provide low-storage

pseudocode implementations in the case in which the stiff part of the ODE is linear.

Finally, note that the b̂I
i

and b̂E
i

coefficients in the Butcher tableaux, if provided,
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are used to form a so-called embedded scheme to advance the solution at each timestep

with an order of accuracy reduced by one with respect to the main scheme. Using this

embedded scheme, one may estimate the error of the simulation at each timestep, and

adjust the stepsize at the next iteration accordingly.

As is well known (see, e.g., [12]), for the DIRK and ERK components in (2.1),

when used in isolation, to be first-order accurate, it is required that

τ
(1)I

1
=

∑
i
bI

i − 1 = 0 τ
(1)E

1
=

∑
i
bE

i − 1 = 0, (2.4a)

for these schemes, when used in isolation, to be second-order accurate, it is additionally

required that

τ
(2)I

1
=

∑
i
bI

ic
I
i − 1/2 = 0 τ

(2)E

1
=

∑
i
bE

i cE
i − 1/2 = 0, (2.4b)

for these schemes, when used in isolation, to be third-order accurate, it is additionally

required that

τ
(3)I

1
= (1/2)

∑
i
bI

ic
I
ic

I
i − 1/6 = 0 τ

(3)E

1
= (1/2)

∑
i
bE

i cE
i cE

i − 1/6 = 0 (2.4c)

τ
(3)I

2
=

∑
i, j

bI
ia

I
i, jc

I
j − 1/6 = 0 τ

(3)E

2
=

∑
i, j

bE
i aE

i, jc
E
j − 1/6 = 0, (2.4d)

and for these schemes, when used in isolation, to be fourth-order accurate, it is additionally
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required that

τ
(4)I

1
= (1/6)

∑
i
bI

ic
I
ic

I
ic

I
i − 1/24 = 0 τ

(4)E

1
= (1/6)

∑
i
bE

i cE
i cE

i cE
i − 1/24 = 0 (2.4e)

τ
(4)I

2
= (1/3)

∑
i, j

bI
ic

I
ia

I
i, jc

I
j − 1/24 = 0 τ

(4)E

2
= (1/3)

∑
i, j

bE
i cE

i aE
i, jc

E
j − 1/24 = 0 (2.4f)

τ
(4)I

3
= (1/2)

∑
i, j

bI
ia

I
i, jc

I
jc

I
j − 1/24 = 0 τ

(4)E

3
= (1/2)

∑
i, j

bE
i aE

i, jc
E
j cE

j − 1/24 = 0 (2.4g)

τ
(4)I

4
=

∑
i, j,k

bI
ia

I
i, ja

I
j,kcI

k − 1/24 = 0 τ
(4)E

4
=

∑
i, j,k

bE
i aE

i, ja
E
j,kcE

k − 1/24 = 0. (2.4h)

Recall that, in the scalar case, the exact solution of x′ = f (x) + g(x) has the following

terms:

xn+1 = xn + ∆t x′n + (∆t)2 x′′n /2! + (∆t)3 x′′′n /3! + O((∆t)4)

= xn + ∆t
{
f + g

}
(xn ,tn)
+

(∆t)2

2!

{
f ′ f + f ′g + g′ f + g′g

}
(xn ,tn)

+
(∆t)3

3!

{
f ′′ f f + 2 f ′′ f g + f ′′gg + g′′ f f + 2g′′ f g + g′′gg + f ′ f ′ f + f ′g′ f

+ g′ f ′ f + g′g′ f + f ′ f ′g + f ′g′g + g′ f ′g + g′g′g
}

(xn ,tn)
+ O((∆t)4);

note in particular that there are 2 terms at second order and 10 terms at third order that

involve both f and g. For the DIRK and ERK components in (2.1), when used together in

an IMEX fashion, to be second-order accurate, it is thus additionally required that

τ
(2)IE

1
=

∑
i
bI

ic
E
i − 1/2 = 0 τ

(2)IE

2
=

∑
i
bE

i cI
i − 1/2 = 0, (2.4i)

for these schemes, when used together in an IMEX fashion, to be third-order accurate, it is
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additionally required that

τ
(3)IE

1
= (1/2)

∑
i
bI

ic
E
i cE

i − 1/6 = 0 τ
(3)IE

2
= (1/2)

∑
i
bE

i cI
ic

I
i − 1/6 = 0 (2.4j)

τ
(3)IE

3
= (1/2)

∑
i
bI

ic
I
ic

E
i − 1/6 = 0 τ

(3)IE

4
= (1/2)

∑
i
bE

i cI
ic

E
i − 1/6 = 0 (2.4k)

τ
(3)IE

5
=

∑
i, j

bI
ia

E
i, jc

E
j − 1/6 = 0 τ

(3)IE

6
=

∑
i, j

bE
i aI

i, jc
I
j − 1/6 = 0 (2.4l)

τ
(3)IE

7
=

∑
i, j

bE
i aE

i, jc
I
j − 1/6 = 0 τ

(3)IE

8
=

∑
i, j

bI
ia

I
i, jc

E
j − 1/6 = 0 (2.4m)

τ
(3)IE

9
=

∑
i, j

bI
ia

E
i, jc

I
j − 1/6 = 0 τ

(3)IE

10
=

∑
i, j

bE
i aI

i, jc
E
j − 1/6 = 0, (2.4n)

and for these schemes, when used together in an IMEX fashion, to be fourth-order accurate,

44 additional constraints are required (see [7]), which for brevity aren’t listed here.

Stability

The stability of an RK scheme may be characterized by considering the model

problem dx/dt = λx and defining z = λ∆t, σ(z) = xn+1/xn, and σ(∞) , lim|z|→∞ σ(z). The

stability function of an RK scheme with Butcher tableau parameters A and b is then given

by σ(z) = 1 + zbT (I − zA)−1e, where e denotes a vector of ones; the RK scheme is said to

be stable for any z such that |σ(z)| ≤ 1. Further, considering its application to stiff systems,

an RK scheme is said to be

• A-stable if |σ(z)| ≤ 1 over the entire LHP of z,

• strongly A-stable if it is A-stable and |σ(∞)| < 1, and

• L-stable if it is A-stable and σ(∞) = 0.

The stability of an IMEXRK scheme is a bit more difficult to characterize. Of

course, one may start by characterizing the stability of the implicit and explicit parts con-



16

sidered in isolation. To evaluate the stability of the implicit and explicit components of an

IMEX scheme working together, we consider the model problem dx/dt = λ f x+λgx, where

the first term on the RHS is handled implicitly, and the second term on the RHS is handled

explicitly. Defining zI = λ f ∆t, zE = λg ∆t, and σ(zI, zE) = xn+1/xn, we may write (see [7])

σ(zI, zE) =
det

[
I − zIAI − zEAE + zIe(bI)T + zEe(bE)T

]

det
[
I − zIAI

] . (2.5)

We may then characterize the stability of the implicit and explicit parts of an IMEXRK

scheme working in concert, when the implicit part of the problem is stiff, by looking at

σ(zI, zE) as zI → ∞ for finite zE.

Strong-stability preserving (SSP) schemes

Consider the 1D hyperbolic PDE

∂u/∂t = −∂ f (u)/∂x; (2.6)

denoting ui(t) as the discretization of u(x, t) on N spatial grid points xi, and denoting u(t)

as a vector containing all of the ui(t), we write the spatial discretization of this PDE as the

ODE

du/dt = L(u). (2.7)

If a TVD spatial discretization is used, such as a Godunov or MUSCL scheme with an

appropriate flux limiter incorporated (see [13]), then applying a simple Explicit Euler time

discretization to (2.7),

un+1 = un + ∆t L(un), (2.8)
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under the appropriate CFL condition on the timestep, ∆t ≤ ∆tCFL, results in a simulation

exhibiting a total variation of the discrete solution which does not increase in time, that is,

TV(un+1) ≤ TV(un), where TV(un) =
∑

j

∣∣∣un
j+1 − un

j

∣∣∣ . (2.9)

Strong-stability preserving (SSP) explicit time-discretization methods (see [14] and [15])

are simply higher-order time discretization methods that conserve this total variation di-

minishing property with a modified CFL condition on the timestep, ∆t ≤ c∆tCFL.

In [15] (see also [16]), a condition for an explicit Runge-Kutta scheme to be SSP

has been developed. This condition states that if an s-stage explicit Runge-Kutta scheme is

written in incremental form, that is,

u(0) = un

u(i) =
∑i−1

j=0

(
αi, j u( j) + ∆t βi, j L(u( j))

)
for i = 1, . . . , s

un+1 = u(s),

where all of the αi, j ≥ 0, and if the forward Euler method applied to the ODE (2.7) arising

from a TVD spatial discretization of the hyperbolic PDE (2.6) is strongly stable under the

appropriate CFL restriction, then such an explicit Runge-Kutta method is SSP provided

that all of the βi, j ≥ 0 and that the following CFL restriction is fulfilled:

∆t ≤ c∆tCFL, c = min
i, j

αi, j

βi, j

. (2.10)

In case an explicit scheme is coupled with an implicit scheme, as in an IMEXRK formu-

lation, then, provided the implicit scheme used to integrate the stiff part of the ODE is
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L-stable, in the stiff limit the time integration scheme becomes the explicit Runge-Kutta

scheme, and the order of accuracy of the limiting scheme is greater than or equal to the

order of accuracy of the IMEXRK scheme itself. Hence, as stated in [17], if the explicit

part of the IMEXRK scheme is SSP, then the IMEXRK scheme will also be SSP in the stiff

limit.

In [17], three full-storage second-order and two full-storage third-order IMEXRK

schemes are presented which are SSP in the stiff limit; no other IMEXRK schemes with this

SSP property were found in our review of the IMEXRK literature. In the present chapter

we introduce three new IMEXRK schemes which are SSP in the stiff limit (one which is

second-order and two which are third-order); unlike the schemes in [17], the IMEXRK

schemes derived here are of the low-storage variety.

2.1.2 Low-storage IMEXRK schemes

The existing literature on low-storage RK schemes to date appears to focus ex-

clusively on explicit schemes. Note that a cavalier implementation of a full-storage ERK

scheme [see the explicit part of (2.3)] requires storage of the state vector [x], the interme-

diate vector [y], and s values of the RHS vectors [g k]; that is, s + 2 vectors of length N,

where x = xN×1. We now summarize the two main classes of low-storage ERK schemes1,

a comprehensive review of which is given in Kennedy, Carpenter, & Lewis [8].

The two-register Williamson class of ERK schemes [18], denoted “[2N]” schemes,

1Both the Williamson class and the van der Houwen class of ERK schemes extend to ERK variants that

require, at minimum, three, four, or more registers for their implementation; with an eye on the computa-

tional cost of their implementation, we focus in this chapter on schemes which admit a two- or three-register

implementation.
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may be written to advance from x = xn to x = xn+1 as

for k = 1 : s

if k == 1, ∆x← ∆t g(x, tn + ck∆t), else

∆x← αk ∆x + ∆t g(x, tn + ck∆t)

end

x← x + βk ∆x

end

(2.11)

If handled with care, such schemes can often be implemented efficiently in two registers of

length N, x and ∆x.

The two-register van der Houwen class of schemes [19], denoted “[2R]” schemes,

restrict the parameters ai, j below the first subdiagonal in the Butcher tableau of the ERK

scheme to be equal to the parameters b j of the corresponding column, and may thus be

written to advance from x = xn to x = xn+1 as

for k = 1 : s

if k == 1, y← x, else

y← x + (ak,k−1 − bk−1)∆t g(y, tn + ck−1∆t)

end

x← x + bk ∆t g(y, tn + ck∆t)

end

(2.12)

Such schemes can often be implemented efficiently in two registers of length N (namely,

x and y). If implemented with three registers, however, the function g(y, tn + ck∆t) can
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be computed just once per timestep (instead of twice). RKW3 [5] is a commonly-used

example of a two-register, three-stage, third-order van der Houwen ERK scheme, with a

Butcher tableau of

0 0

8/15 8/15 0

2/3 1/4 5/12 0

1/4 0 3/4

(2.13)

In the three-register van der Houwen class of schemes, denoted “[3R]” schemes,

only the parameters ai, j below the second subdiagonal of the Butcher tableau of the ERK

scheme must equal the parameters b j of the corresponding column. An effective imple-

mentation of such [3R] schemes that uses only three registers of length N (namely, x, y and

z) is given by

for k = 1 : s

if k == 1, y← x, z← x, else,

z← y + ak,k−1 ∆t g(y, tn + ck−1∆t)

if k < s, y← x + (ak+1,k−1 − bk−1) g(y, tn + ck−1∆t), end

end

x← x + bk ∆t g(y, tn + ck∆t)

end

(2.14)

Again, if implemented with four registers, the function g(y, tn + ck∆t) can be computed

just once per timestep (instead of thrice). In the present chapter, we extend the two- and

three-register van der Houwen classes of ERK schemes to the DIRK case, which can be

accomplished with precisely the same restrictions on the (lower triangular) DIRK Butcher
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tableau as in the (strictly lower triangular) ERK case, as specified above. Further, we will

develop coordinated pairs of such [2R] and [3R] DIRK and ERK schemes in the IMEX set-

ting described in §2.1.1. In particular, we will develop a [2R] second-order IMEX scheme,

[2R] and [3R] third-order IMEX schemes, and a [3R] fourth-order IMEX scheme.

As shown in §2.1.1, six constraints on the parameters of the IMEX Butcher tableaux

(2.1) must be satisfied for second-order accuracy, fourteen additional constraints must be

satisfied for third-order accuracy, and fifty-two additional constraints must be satisfied for

fourth-order accuracy. Before proceeding, we thus introduce some significant simplifying

assumptions. Following [7] and [17] and the CN/RKW3 scheme of [4], we synchronize

the stages of DIRK and ERK components by imposing cI
i = cE

i = ci for i = 1, . . . , s. We

also coordinate the constituent DIRK and ERK components such that bI
i = bE

i = bi for

i = 1, . . . , s, as also done in [7] and [17], but which is not satisfied by CN/RKW3. Finally,

for each stage, a stage-order of one is also imposed such that

∑ i

j=1
aI

i, j =
∑ i−1

j=1
aE

i, j = ci for i = 1, . . . , s; (2.15)

it follows that c1 = aI
1,1 = aE

1,1 = 0. As a result of these assumptions, the number of

constraints on the IMEX parameters [see (2.4)] for second-order accuracy is reduced to

just two, the number of constraints for third-order accuracy is reduced to five, and the

number of constraints for fourth-order accuracy is reduced to fourteen.

For several of the IMEXRK schemes developed in this chapter, a lower-order em-

bedded scheme is also developed, relaxing the b̂I
i
= b̂E

i
restriction to provide increased

freedom during the design phase. As a general guideline, none of the leading-order trun-

cation terms of an embedded scheme should vanish, so that each of these terms will con-

tribute to the error estimate (subject to this restriction, the remaining free parameters of
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the embedded scheme are then optimized to maximize the magnitude of the leading-order

truncation terms). Unfortunately, this is not always achievable; as a result, not all of the

schemes developed in this chapter are listed with embedded schemes. For all of the em-

bedded schemes we do report, the DIRK part of the embedded scheme is at least A-stable,

which is a property of the embedded scheme recommended by [20]; note, however, that the

embedded scheme is not used for time marching, it is only used to adjust the timestep.

The IMEX Butcher tableaux in (2.1) for coordinated pairs of [2R] DIRK and ERK

schemes are thus simplified to

0 0

c2 aI
2,1

aI
2,2

c3 b1 aI
3,2

aI
3,3

c4 b1 b2 aI
4,3

aI
4,4

...
...

...
. . .

. . .
. . .

cs b1 b2 · · · bs−2 aI
s,s−1

aI
s,s

b1 b2 · · · bs−2 bs−1 bs

b̂I
1

b̂I
2
· · · b̂I

s−2
b̂I

s−1
b̂I

s

0 0

c2 aE
2,1

0

c3 b1 aE
3,2

0

c4 b1 b2 aE
4,3

0

...
...

...
. . .

. . .
. . .

cs b1 b2 · · · bs−2 aE
s,s−1

0

b1 b2 · · · bs−2 bs−1 bs

b̂E
1

b̂E
2
· · · b̂E

s−2
b̂E

s−1
b̂E

s

(2.16)

and the IMEX Butcher tableaux for coordinated pairs of [3R] DIRK and ERK schemes are

simplified to

0 0

c2 aI
2,1

aI
2,2

c3 aI
3,1

aI
3,2

aI
3,3

c4 b1 aI
4,2

aI
4,3

aI
4,4

...
...

...
. . .

. . .
. . .

cs b1 b2 · · · aI
s,s−2

aI
s,s−1

aI
s,s

b1 b2 · · · bs−2 bs−1 bs

b̂I
1

b̂I
2
· · · b̂I

s−2
b̂I

s−1
b̂I

s

0 0

c2 aE
2,1

0

c3 aE
3,1

aE
3,2

0

c4 b1 aE
4,2

aE
4,3

0

...
...

...
. . .

. . .
. . .

cs b1 b2 · · · aI
s,s−2

aE
s,s−1

0

b1 b2 · · · bs−2 bs−1 bs

b̂E
1

b̂E
2
· · · b̂E

s−2
b̂E

s−1
b̂E

s

(2.17)

Note also that, as the DIRK component the IMEXRK form considered above has an explicit
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first stage, its stability function (2.5) may be written

σ(zI, zE) =
1 +

∑ s
i=1 pi(z

E) [zI]i

1 +
∑ s−1

i=1 qi [zI]i
where pi(z

E) =
∑ s−i

j=0
p̂i, j [zE] j. (2.18)

General three-register implementation of [2R] IMEXRK schemes

Note that, if the stiff part of the ODE is linear [that is, if f(x, t) = Ax] then, denoting

the efficient solution of Ax = b as A−1b, a straightforward implementation of the low-

storage IMEXRK scheme in (2.16) that uses three registers2 of length N to advance from

x = xn to x = xn+1 proceeds as follows:

for k = 1 : s

if k == 1, y← x, else

y← x + (aI
k,k−1 − bI

k−1)∆t z + (aE
k,k−1 − bE

k−1)∆t y

end

z = (I − aI
k,k ∆t A)−1A y

y← g(y + aI
k,k ∆t z, tn + cE

k∆t)

x← x + bI
k ∆t z + bE

k ∆t y

x̂← x̂ + b̂I
k ∆t z + b̂E

k ∆t y

end

(2.19)

where z and y store the implicit and explicit parts of the RHS at each stage, x is used

to advance the solution of the main scheme3, and x̂ stores the solution of the embedded

2That is, in addition to any extra memory required to solve the linear system, which is problem dependent,

plus an additional register of length N for the embedded scheme, if adaptive time stepping is implemented.
3Note again that bI

i
= bE

i
= bi for i = 1, . . . , s for the schemes developed herein, though this property is

not shared by CN/RKW3 (see §2.2).
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scheme if adaptive time stepping is implemented. Note that one linear solve of the form

(I−c A)−1b, one matrix/vector product Ay, and one nonlinear function evaluation g(y, t) are

computed per stage, in addition to various level-1 BLAS (basic linear algebra subroutine)

operations. As discussed in §2.1.1, implementation in the case of a nonlinear stiff part is a

straightforward extension.

General two-register implementation of [2R] IMEXRK schemes

By applying the matrix inversion lemma: (Â + B̂ĈD̂)−1 = Â−1 − Â−1B̂(Ĉ−1 +

D̂Â−1B̂)−1D̂Â−1 with Â = Ĉ = I, D̂ = A, and B = −aI
k,k
∆t, the algorithm laid out in

§2.1.2 may be rewritten in a form that only requires two registers2 of length N:

for k = 1 : s

if k == 1, y← x, else

y← x + (aI
k,k−1 − bI

k−1)∆t A y + (aE
k,k−1 − bE

k−1)∆t g(y, tn + cE
k−1∆t)

end

y← (I − aI
k,k ∆t A)−1y

x← x + bI
k ∆t A y + bE

k ∆t g(y, tn + cE
k∆t)

x̂← x̂ + b̂I
k ∆t A y + b̂E

k ∆t g(y, tn + cE
k∆t)

end

(2.20)

In this case, one linear solve of the form (I − c A)−1b and two operations of the form4

x+ c A y+d g(y, t) are computed per stage, in addition to various level-1 BLAS operations.

4When using finite-difference methods, an operation of this form can, with care, usually be performed

in place in the computer memory using O(1) temporary storage variables; how this is best accomplished,

of course, depends on the precise form of A and g(y, t). When using spectral methods, such a two-register

implementation is generally not available.
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However, the storage requirement is reduced from three registers of length N to only two,

which is quite significant. In many cases, some of the coefficients in the above algorithm

turn out to be zero, so the increased computational cost associated with the extra nonlinear

function evaluations and matrix/vector products in this implementation is not as bad as one

might initially anticipate, as quantified in §2.7.

General four-register implementation of [3R] IMEXRK schemes

For the development of the stage-order-two schemes IMEXRKCB3f and IMEX-

RKCB4 in §2.4 and §2.5, the [3R] IMEXRK structure (2.17) will be used to provide in-

creased freedom during the design phase. Such schemes admit the following four-register

implementation:

for k = 1 : s

if k == 1, y← x, zI = x, zE ← x, else

zE ← y + aE
k,k−1 ∆t zE

if k < s, y← x + (aI
k+1,k−1 − bI

k−1)∆t zI + (aE
k+1,k−1 − bE

k−1) (zE − y)/aE
k,k−1, end

zE ← zE + aI
k,k−1 ∆tzI

end

zI = (I − aI
k,k ∆t A)−1A zE

zE ← g(zE + aI
k,k ∆t zI, tn + cE

k∆t)

x← x + bI
k ∆t zI + bE

k ∆t zE

x̂← x̂ + b̂I
k ∆t zI + b̂E

k ∆t zE

end

(2.21)

where zI and zE store the implicit and explicit parts of the RHS at each stage, y is a tem-

porary variable which contributes to advance the solution to the next stage, x is used to ad-

vance the solution of the main scheme, and x̂ stores the solution of the embedded scheme if
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adaptive time stepping is used. As in the three-register implementation of the [2R] scheme,

only one linear solve of the form (I−c A)−1b, one matrix/vector product, and one nonlinear

function evaluation are computed per stage.

General three-register implementation of [3R] IMEXRK schemes

Leveraging matrix inversion lemma as done in §2.1.2, we obtain a general three-

register implementation of any [3R] IMEXRK scheme:

for k = 1 : s

if k == 1, y← x, z← x, else

if k < s

z← y + aI
k,k−1 ∆t A z

y← A−1 (z − y)/(aI
k,k−1 ∆t)

z← z + aE
k,k−1 ∆t g(y, tn + cE

k−1∆t)

y← x + (aI
k+1,k−1 − bI

k−1)∆t A y + (aE
k+1,k−1 − bE

k−1)∆t g(y, tn + cE
k−1∆t)

else

z← y + aI
k,k−1 ∆t A z + aE

k,k−1 ∆t g(y, tn + cE
k−1∆t)

end

end

z← (I − aI
k,k ∆t A)−1 z

x← x + bI
k ∆t A z + bE

k ∆t g(z, tn + cE
k∆t)

x̂← x̂ + b̂I
k ∆t A z + b̂E

k ∆t g(z, tn + cE
k∆t)

end

(2.22)

Note that this algorithm requires the invertibility of the matrix A, a condition that is often

true when A arises from the discretization of a PDE. In this case, two linear systems, three
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matrix/vector products, and three nonlinear function evaluations must be performed per

stage (except for the last stage), plus an additional matrix/vector product and one nonlinear

function evaluation if the embedded scheme is used for adaptive time stepping.

Finally, note that a (hardware-dependent) trade-off between flops and storage must

ultimately be conducted to select between the two-register and three-register implementa-

tion of any [2R] scheme, or between the three-register and four-register implementation of

any [3R] scheme.

2.2 Two second-order, 2-register IMEXRK schemes

The classical second-order, A-stable CN/RKW3 method may easily be written in

the low-storage IMEXRK Butcher tableaux form (2.16) (albeit with the bI
i = bE

i = bi

constraint relaxed) with the four-stage IMEX Butcher tableaux

0 0

8/15 4/15 4/15

2/3 4/15 1/3 1/15

1 4/15 1/3 7/30 1/6

4/15 1/3 7/30 1/6

0 0

8/15 8/15 0

2/3 1/4 5/12 0

1 1/4 0 3/4 0

1/4 0 3/4 0

(2.23)

A DIRK scheme with c1 = 0 and cs = 1 [such as that shown at left in (2.23)] is known

as a first-same-as-last (FSAL) scheme. In such a scheme, the implicit part of the last stage

of one timestep is precisely the implicit part of the first stage of the next timestep, and

thus an FSAL scheme, such as the implicit part of the CN/RKW3 scheme shown above,

actually incorporates only s − 1 implicit solves per timestep. Note also that, since bE
s = 0
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above, g s actually never needs to be computed. Thus, though CN/RKW3 is written above

as a four-stage IMEX Butcher tableaux, a careful implementation of CN/RKW3 actually

incorporates only three implicit stages and three explicit stages per timestep.

The stability boundaries of the constituent CN and RKW3 schemes of (2.23) are

shown in Figures 2.1a-2.1b; the CN scheme, applied over each of three stages, is A stable,

and the stability of the RKW3 scheme is that of any third-order, three-stage ERK scheme,

with (denoting z = zE) a stability function of

σE(z) = 1 + z
∑ 4

i=1
bi + z2

∑ 4

i=1
bi ci + z3

∑ 4

i, j=1
bi aE

i, j c j + z4
∑ 4

i, j,k=1
bi aE

i, j aE
j,k ck

= 1 + z + z2/2 + z3/6,

where, again, |σE(z)| ≤ 1 indicates the stability region.

The CN/RKW3 scheme was initially developed simply by joining together two

existing schemes, CN and RKW3, in an IMEXRK fashion. It was, e.g., not designed with

the constraints (2.4i)-(2.4n) in mind, and thus leaves significant room for improvement. For

example, a remarkably simple second-order [2R] alternative to CN/RKW3 which

• requires fewer flops per timestep to implement than CN/RKW3,

• comes with a first-order embedded scheme, following the guidelines listed in §2.1.2,

for adaptive time stepping,

• whose implicit part is L-stable, and

• whose explicit part is both SSP and exhibits much improved stability on the negative

real axis as compared to CN/RKW3,
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Figure 2.1: Stability regions |σ(z)| ≤ 1 for the low-storage IMEXRK schemes

considered in this chapter.
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Figure 2.1: Stability regions |σ(z)| ≤ 1 for the low-storage IMEXRK schemes

considered in this chapter (continued from previous page).
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Figure 2.2: Stability regions |σ(z)| ≤ 1 for σ(z) = 1 + z + z2/2 + z3/6 + δ z4 for various

values of δ; note that the case with δ = 1/24 is given in Figure 2.1l, and the case with

δ = 1/54 is given in Figure 2.1j.
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dubbed IMEXRKCB2, is given by5

0 0

2/5 0 2/5

1 0 5/6 1/6

0 5/6 1/6

0 4/5 1/5

0 0

2/5 2/5 0

1 0 1 0

0 5/6 1/6

0 4/5 1/5

(2.24)

The coefficient for strong stability in (2.10) for this scheme is c = 1, which is the maximum

possible, as proved in [16]. Note also that the so-called “stiff accuracy” conditions have

been imposed on the implicit component of this scheme; that is, we have set aI
s,i
= bi for

i = 1, . . . , s. These conditions improve the convergence of such a scheme for the integration

of stiff ODEs, as noted in [20] and [21] and described further in §2.6. Moreover, these

conditions have the benefit of reducing by one the order of the polynomial in the numerator

of the stability function, facilitating the attainment of L-stability [i.e., σ(∞) = 0], as we

will show in §2.3.3. Applying the stiff accuracy conditions to (2.4a) and (2.15), we obtain

cs = 1. Together with the condition c1 = 0, it follows that all IMEX schemes developed

herein with DIRK components achieving L-stability via the stiff accuracy conditions, such

as (2.24), are FSAL, and thus require only s − 1 implicit solves per timestep. This is

especially apparent in (2.24), in which the entire first column of the Butcher tableau of the

implicit component equals zero. Since this IMEXRK scheme has two implicit stages and

three explicit stages per timestep, as a shorthand, we report the scheme as requiring (2, 3)

stages per timestep in Table 2.1; the stage requirements of the other schemes developed in

this chapter are denoted similarly.

5For details on how this scheme was discovered, see §2.3.3, which applies the same techniques used to

discover (2.24) to the 3rd-order, 3-stage implicit, 4-stage explicit, L-stable case.
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The stability boundaries of the constituent DIRK and ERK components of (2.24)

are shown in Figures 2.1c-2.1d.

2.3 Five third-order, 2-register IMEXRK schemes

2.3.1 A (2, 3)-stage, strongly A-stable scheme

As suggested by (2.24), to streamline the implementation, we can suppress the first

stage of the DIRK scheme by imposing b1 = aI
2,1 = 0. Following this simplification, the

entire first column of the DIRK scheme is zero, thus leading to a scheme with s−1 implicit

stages and s explicit stages. In the s = 3 case, the IMEXRK Butcher tableaux take the

general form

0 0

c2 0 aI
2,2

c3 0 aI
3,2 aI

3,3

0 b2 b3

0 0

c2 aE
2,1

0

c3 0 aE
3,2 0

0 b2 b3

(2.25a)

To achieve third-order accuracy, after imposing stage-order-one conditions on both implicit

and explicit part, we arrive at five nonlinear equations in five parameters:

b2 + b3 − 1 = 0, b2c2 + b3c3 − 1/2 = 0, b2c2
2 + b3c2

3 − 1/3 = 0, b3c2c3 − 1/6 = 0,

b2c2
2 + b3aI

3,3c3 + b3(c3 − aI
3,3)c2 − 1/6 = 0.

This system of nonlinear equations has a single closed-form solution among the real num-

bers. Defining c2 as the sole real root of the polynomial 18c3
2
− 27c2

2
+ 12c2 − 2 = 0,
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closed-form expressions for the parameters of this scheme, dubbed IMEXRKCB3a, are:

c2 = aI
2,2 = aE

2,1 =

(
27 +

3

√
2187 − 1458

√
2 + 9

3

√
3 + 2

√
2

)
/54,

c3 = aE
3,2 = c2/(6c2

2 − 3c2 + 1), b2 = (3c2 − 1)/(6c2
2), b3 = (6c2

2 − 3c2 + 1)/(6c2
2),

aI
3,3 = (1/6 − b2c2

2 − b3c2c3)/[b3(c3 − c2)], aI
3,2 = aI

3,3 − c3

(2.25b)

The stability boundaries of the constituent DIRK and ERK components of (2.25) are shown

in Figures 2.1e-2.1f; note that the stability boundary of the 3-stage, 3rd-order ERK com-

ponent necessarily coincides with that of RKW3. As compared with (2.24), which has

a Butcher tableaux of the same structure, the present scheme sacrifices L-stability of its

DIRK component in order to achieve third-order accuracy.

It is instructive to note that, even after removing the assumption b1 = 0, it is not

possible to achieve L-stability of the DIRK component of a third-order IMEXRK scheme

of the general form given in (2.16) using only three stages due to a conflict that arises in

the τIE(3) = 0 constraints (2.4j)-(2.4n), as observed previously by [9]. For this reason, the

remainder of this chapter explores four-stage schemes of an analogous form for third-order

accuracy.

2.3.2 A (3, 4)-stage, strongly A-stable scheme with ESDIRK implicit

part

Extending the simplifying assumptions used in the previous section to a four-stage

two-register scheme, by taking b1 = b2 = 0, and additionally imposing equal values for the

diagonal terms of the implicit scheme (that is, aI
i,i
= γ for i = 2, 3, 4), the Butcher tableaux
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(2.16) reduce to:

0 0

c2 0 γ

c3 0 aI
3,2

γ

c4 0 0 aI
4,3

γ

0 0 b3 b4

0 0

c2 aE
2,1

0

c3 0 aE
3,2

0

c4 0 0 aE
4,3

0

0 0 b3 b4

(2.26a)

After imposing stage-order-one conditions, determining all the parameters requires the so-

lution of the following system of five nonlinear equations:

b3 + b4 − 1 = 0,

b3c3 + b4c4 − 1/2 = 0,

b3c2
3 + b4c2

4 − 1/3 = 0,

b3c2c3 + b4c3c4 − 1/6 = 0,

b3c2c3 + b3c2c3 − b3c2
2 + b4c2c4 + b4c3c4 − b4c2c3 − 1/6 = 0.

This system of equations has two closed-form solutions, one of which does not lead to an

A-stable scheme, and the other of which, dubbed IMEXRKCB3b, is given by

γ = c2 = aE
2,1 = 1/2 +

√
3/6, c3 = aE

3,2 = 1/2 −
√

3/6, c4 = aE
4,3 = 1/2 +

√
3/6,

aI
3,2 = −

√
3/3, aI

4,3 = 0, b3 = b4 = 1/2.

(2.26b)

The stability boundaries of the constituent DIRK and ERK components of (2.26) are shown

in Figures 2.1g-2.1h. This scheme again achieves strong A-stability of its DIRK component

while, as compared with IMEXRKCB3a, slightly extending the limit of stability of the

ERK component in the imaginary directions, and slightly reducing the limit of stability of

the ERK component in the negative real direction.
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Imposing the nonzero diagonal terms of the DIRK scheme to be equal [a simplifi-

cation resulting in what is usually called an Explicit-first-stage Singly Diagonally Implicit

Runge Kutta (ESDIRK) method] facilitates use of the LU decomposition of the matrix

(I − γ∆tA) to simplify all of the implicit solves. This can significantly reduce the number

of flops needed for the implicit solves, but may increase the number of registers required

by the code; whether or not use of the LU decomposition in the implicit solves represents

an overall speedup of the simulation depends both on the structure and size of A and the

computational hardware being used.

2.3.3 Three (3, 4)-stage, L-stable schemes

The simplifying assumptions considered in the previous section again facilitated a

closed-form expression of the parameters, but prevented the DIRK component from achiev-

ing L-stability. In order to achieve L-stability of the DIRK component, as noted previously,

a useful simplifying assumption is the “stiff accuracy” conditions as,i = bi for i = 1, . . . , s

[and hence, by (2.4a) and (2.15), cs = 1]. Taking s = 4 and defining aI
i,i = αi for i = 2, 3,

the Butcher tableaux (2.16) reduce to the following form (with, again, an FSAL implicit

part):

0 0

c2 aI
2,1

aI
2,2

c3 b1 aI
3,2

aI
3,3

1 b1 b2 b3 b4

b1 b2 b3 b4

b̂I
1

b̂I
2

b̂I
3

b̂I
4

0 0

c2 aE
2,1

0

c3 b1 aE
3,2

0

1 b1 b2 aE
4,3 0

b1 b2 b3 b4

b̂E
1

b̂E
2

b̂E
3

b̂E
4

(2.27)

In order to impose third-order accuracy, five order constraints must again be im-
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posed. To achieve L-stability of the DIRK component, a further simplification of (2.27) is

motivated. To understand this simplification, we may rewrite the stability function of the

scheme as a rational function of zI and zE, as suggested by (2.5) and (2.18), as

σ(zI, zE) =
1 +

∑ 2
i=1 pi(z

E) [zI]i +
(
p̂3,0 + p̂3,1zE

)
[zI]3 + p̂4,0 [zI]4

1 +
∑ s−1

i=1 qi [zI]i
,

where the pi, p̂i, j, and qi are polynomials in the Butcher tableaux parameters. Due to

stiff accuracy, p̂4,0 = 0; thus, in order to impose L-stability of the DIRK component [i.e.,

limzI→∞ σ(zI, zE) = 0], it is sufficient to impose that q3 = aI
2,2

aI
3,3

b4 , 0 and

τ L-stab
1 = p̂3,0 = −aI

2,2 aI
3,3 b1 − aI

2,2 aI
3,3 b2 − aI

2,2 aI
3,3 b3 + aI

3,3 b2 c2

+ aI
3,3 b3 c2 + b1 b3 c2 + aI

2,2 b3 c3 − b3 c2 c3 = 0, (A)

τ L-stab
2 = p̂3,1 = −aI

2,2 aI
3,3 b4 + aI

3,3 b4 c2 + b1 b4 c2 − aI
3,3 b1 b4 c2 − b2

1 b4 c2 − b1 b2 b4 c2

+ aI
2,2 b4 c3 − aI

2,2 b1 b4 c3 − aI
2,2 b2 b4 c3 − b4 c2 c3 + b1 b4 c2 c3 + b2b4 c2 c3 = 0.

(B)

As noted in [7] and [20], suppressing the first column of the DIRK component, by imposing

b1 = 0 = aI
2,1
= 0 in (2.27), together with stiff-accuracy condition, satisfies both (A) and

(B) identically; we thus incorporate these additional simplifications in the two subsections

that follow. Notice that in the full-storage setting this strategy is not recommended, as it

sacrifices s − 1 degrees of freedom. For a [2R] scheme, however, only two degrees of

freedom are sacrificed to enforce these two equations, and thereby gain L-stability.

Maximizing the extent of stability of the ERK component over the negative real axis

A final (sixth) constraint is obtained by maximizing the stability envelope of the

ERK component over the negative real axis. Using Cramer’s rule, we may rewrite the
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Figure 2.3: The real value of σ(z) = 1 + z + z2/2 + z3/6 + δ z4 for real, negative values of

z and various values of δ: (dashed) δ = 1/60, 1/56, 1/55; (solid) δ = 1/54; (dot-dashed)

δ = 1/53, 1/50, 1/24. See also Figure 2.2.

stability function of the third-order, four-stage ERK component as

σE(z; δ) = 1+z bT (I−z AE)−1e = 1+z+z2/2+z3/6+δ z4, where δ =
∑ 4

i, j,k=1
bi aE

i, j aE
j,k ck.

For z on the negative real axis, the stability region |σE(z; δ)| ≤ 1 is defined by the two

conditions

−1 ≤ 1 + z + z2/2 + z3/6 + δ z4 ≤ 1.

Plots of σE(z; δ) for −7 ≤ z ≤ 0 and various values of δ are given in Figure 2.3. For

δ > δcrit =
(
139 − 5255/

3

√
−210253 + 60928

√
51 +

3

√
−210253 + 60928

√
51

)
/6144 = 0.0184557,

the condition −1 ≤ σE(z; δ) is satisfied everywhere in this interval; we thus choose δ =

1/54 = 0.0185 > δcrit, which gives |σE(z)| ≤ 1 for −6.00 < z < 0, as larger values of δ

reduce the extent of stability (see Figures 2.2 and 2.3).

Parametric variation reveals that the extent of the stability region along the imag-

inary axis is relatively insensitive to changes in δ. Among the third-order, four-stage

IMEXRK scheme available in literature, the one with the widest stability region of the

ERK part, which is the (full-storage) ARK3(2)4L[2R]SA scheme developed in [7], has
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a maximum extent along the negative real axis which is ∼ 40% less than that of that of

the present scheme, and a maximum extent along the imaginary axis which is only ∼ 5%

greater than that of the present scheme; the stability characteristics of the present scheme

are thus seen to be quite competitive.

Thus, in order to determine the parameters of the Butcher tableaux, we impose our

final (sixth) constraint as

τ δ=1/54 =
∑ 4

i, j,k=1
bi aE

i, j aE
j,k ck − 1/54 = 0. (C)

The complete solution of this set of six nonlinear constraint equations has been obtained

using Mathematica [22]. The scheme associated to such solution, dubbed IMEXRKCB3c,

is given by (2.27) with

aI
2,2 =

3375509829940

4525919076317
, aI

3,2 = −
11712383888607531889907

32694570495602105556248
, aI

3,3 =
566138307881

912153721139
,

b1 = 0, b2 =
673488652607

2334033219546
, b3 =

493801219040

853653026979
, b4 =

184814777513

1389668723319
,

c2 = aE
2,1 =

3375509829940

4525919076317
, c3 = aE

3,2 =
272778623835

1039454778728
, aI

4,3 =
1660544566939

2334033219546
;

(2.28a)

the associated second-order embedded scheme has the following coefficients:

b̂I
1 = 0, b̂I

2 =
366319659506

1093160237145
, b̂I

3 =
270096253287

480244073137
, b̂I

4 =
104228367309

1017021570740
,

b̂E
1 =

449556814708

1155810555193
, b̂E

2 = 0, b̂E
3 =

210901428686

1400818478499
, b̂E

4 =
480175564215

1042748212601
.

(2.28b)

The stability boundaries of the constituent DIRK and ERK components are shown in Fig-

ures 2.1i-2.1j. This scheme is SSP under the condition (2.10) with c = 0.7027915. This

result can be improved up to c = 0.7703947, which is achieved by replacing condition (C)
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with

τ δ=0 =
∑ 4

i, j,k=1
bi aE

i, j aE
j,k ck − 0 = 0. (C’)

This constraint does not lead to an IMEXRK scheme with an L-stable implicit compo-

nent; we thus instead choose a small positive δ, thus ensuring L-stability and a nearly

optimal value c for strong stability. Choosing δ = 1/10000 results in a scheme, dubbed

IMEXRKCB3d, given by (2.27) with

aI
2,2 =

418884414754

469594081263
, aI

3,2 = −
304881946513433262434901

718520734375438559540570
, aI

3,3 =
684872032315

962089110311
,

b1 = 0, b2 =
355931813527

1014712533305
, b3 =

709215176366

1093407543385
, b4 =

755675305

1258355728177
,

c2 = aE
2,1 =

418884414754

469594081263
, c3 = aE

3,2 =
214744852859

746833870870
, aE

4,3 =
658780719778

1014712533305
;

(2.29a)

the associated second-order embedded scheme has the following coefficients:

b̂I
1 = 0, b̂I

2 =
226763370689

646029759300
, b̂I

3 =
1496839794860

2307829317197
, b̂I

4 =
353416193

889746336234
,

b̂E
1 =

1226988580973

2455716303853
, b̂E

2 = 0, b̂E
3 =

827818615

1665592077861
, b̂E

4 =
317137569431

634456480332
.

(2.29b)

The coefficient for strong stability in this case is c = 0.7701444. The stability boundaries

of the associated DIRK and ERK components are shown in Figures 2.1k-2.1l. Since δ is

chosen close to zero, the stability region of the ERK component closely resembles that of

a third-order three-stage explicit Runge-Kutta scheme.

Maximizing accuracy of the ERK component

An alternative third-order four-stage 2-register L-stable strategy, with closed-form

parameter values and improved accuracy, is given by replacing the final constraint, (C),
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with

τ δ=1/24 =
∑ 4

i, j,k=1
bia

E
i, ja

E
j,kck − 1/24 = 0, (C”)

which sets to zero one of the fourth-order truncation terms for the explicit component. This

results in a scheme, dubbed IMEXRKCB3e, given by

0 0

1/3 0 1/3

1 0 1/2 1/2

1 0 3/4 −1/4 1/2

0 3/4 −1/4 1/2

0 0

1/3 1/3 0

1 0 1 0

1 0 3/4 1/4 0

0 3/4 −1/4 1/2

(2.30)

A second-order embedded scheme having all third-order truncation terms nonzero could

not be achieved because of assumption (C”). The stability boundaries of the constituent

DIRK and ERK components are shown in Figures 2.1m-2.1n; IMEXRKCB3e has im-

proved accuracy but reduced stability on the negative real axis for the ERK component, as

compared with IMEXRKCB3c. In particular, because of (C”), the stability region for the

ERK part coincides with the stability region of a standard 4-stage fourth-order explicit RK

scheme.

2.4 A third-order, 3-register, 4-stage, L-stable scheme

All of the schemes so-far described have stage-order one for both the implicit and

explicit components. It is well-known in the literature (see [21]) that this limits the order

of convergence of such methods when applied to stiffODEs. In particular, if the stiffness is

so high that the ODE turns into an index-1 DAE, some variables convert from differential
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to algebraic and their convergence rate is determined by the stage-order of the method. For

this reason, an attempt has been made to improve the stage-order of the implicit scheme, as

done in [7]. In this way, when the DIRK scheme is employed alone, a better convergence

will be observed during the integration of a stiff ODE, as we will show in §2.6.

Hence, after imposing the same bi and ci over the explicit and implicit components

and stiff accuracy for the implicit component as done previously, we impose the stage-

order-two condition for the implicit component, that is:

s∑

j=1

aI
i, j c j = c2

i /2, i = 2, 3, . . . , s − 1. (2.31)

With these constraints, τ
(3)I

2
= 0 in (2.4d) is automatically satisfied. Hence, we must only

impose four constraints for third-order accuracy, two for L-stability, 2(s−2) constraints for

stage-order two for the implicit component, and (s − 1) constraints for stage-order one for

the explicit component. We also impose c1 = 0 and c4 = 1 for FSAL structure. Considering

a four-stage three-register scheme,

0 0

c2 aI
2,1

aI
2,2

c3 aI
3,1

aI
3,2

aI
3,3

1 b1 b2 b3 b4

b1 b2 b3 b4

b̂I
1

b̂I
2

b̂I
3

b̂I
4

0 0

c2 aE
2,1

0

c3 aE
3,1

aE
3,2

0

1 b1 aE
4,2

aE
4,3

0

b1 b2 b3 b4

b̂E
1

b̂E
2

b̂E
3

b̂E
4

(2.32a)

after these constraints are imposed, we are left with three degrees of freedom. We choose

the constraint (C) to maximize the extent of the stability region of the explicit component

on the negative real axis, and perform a parametric variation over the coefficients c2 and c3,

the remaining two degrees of freedom, between 0 and 1 in order to identify an IMEXRK
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scheme with coefficients of the Butcher tableaux within the interval [−5, 5], L-stability of

the implicit part over the entire LHP, and minimum truncation error, defined, following [7],

as

A(q+1) =

√∑
i

(
τ

(q+1)I

i

)2

+
∑

i

(
τ

(q+1)E

i

)2

+
∑

i

(
τ

(q+1)IE

i

)2

. (2.32b)

where q is the order of accuracy of the Runge-Kutta scheme, in this case equal to 3. [The

same definition is used in Table 1 to compare the truncation error of the various schemes

considered.]

This approach is convenient, as the constraint equations depending on both bi and

ci become linear in bi, which allows a significant simplification of the corresponding op-

timization problem. Note that all of the schemes developed in [7] follow this approach.

In the present case, this strategy leads, for each pair (c2, c3), to a set of solutions which

depend on the roots of a fifth-order polynomial. Among these, only three are real, and only

one of these gives an L-stable solution6. The resulting scheme, dubbed IMEXRKCB3f, is

obtained for c2 = 49/50 and c3 = 1/25. The other parameter values are:

aI
3,1 = −

785157464198

1093480182337
, aI

3,2 = −
30736234873

978681420651
, aI

3,3 =
983779726483

1246172347126
,

aE
3,1 =

13244205847

647648310246
, aE

3,2 =
13419997131

686433909488
,

aE
4,2 =

231677526244

1085522130027
, aE

4,3 =
3007879347537

683461566472
,

b1 = −
2179897048956

603118880443
, b2 =

99189146040

891495457793
,

b3 =
6064140186914

1415701440113
, b4 =

146791865627

668377518349
,

(2.32c)

and aI
2,1 = aI

2,2 = c2/2 and aE
2,1 = c2 from stage-order conditions. The scheme is not SSP.

6The other solutions give a stability region which does not cover the entire LHP; note that this is not in

contradiction with the way we have imposed stability on the scheme during the optimization of the coeffi-

cients, since we only impose the behavior of the stability function at infinity, then check the boundary of the

resulting stability region only after all the parameters of the scheme have been determined.
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The associated second-order embedded scheme is given by:

b̂I
1 = 0, b̂I

2 =
337712514207

759004992869
, b̂I

3 =
311412265155

608745789881
, b̂I

4 =
52826596233

1214539205236
,

b̂E
1 = 0, b̂E

2 = 0, b̂E
3 =

25

48
, b̂E

4 =
23

48
.

(2.32d)

The stability boundaries of the DIRK and ERK components are shown in Figures 2.1o-

2.1p. Notice that the stability region of the explicit component coincides with that of

IMEXRKCB3c.

2.5 A fourth-order, 3-register, 6-stage, L-stable scheme

Solving the nonlinear system of equations arising from the imposition of the fourth-

order accuracy constraints is a difficult task. For this reason, stage-order conditions higher

than one are usually imposed, as pointed out in [20]. These conditions simplify the search

for a solution by significantly reducing the nonconvexity of the corresponding optimization

problem. For this reason, after imposing the same bi and ci over the explicit and implicit

components and stiff accuracy for the implicit component, we require stage-order two for

the implicit component7. We also again impose c1 = 0 and c6 = 1 for FSAL structure.

This reduces the number of nonlinear equations from fourteen, i.e. one for first order, one

for second order, three for third order, and nine for fourth order, to only ten, to which we

have to add two constraints for L-stability, 2(s − 2) constraints for stage-order two for the

implicit component and (s − 1) constraints for stage-order one for the explicit component.

7Note that, even if it were desired to impose the same stage-order for both implicit and explicit compo-

nents, in order to improve algebraic variable accuracy, this is not possible, as the low-storage structure used

here removes the necessary degrees of freedom to impose such a condition.
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Leveraging a six-stage three-register IMEXRK scheme, i.e.

0 0

c2 aI
2,1

aI
2,2

c3 aI
3,1 aI

3,2 aI
3,3

c4 b1 aI
4,2 aI

4,3 aI
4,4

c5 b1 b2 aI
5,3

aI
5,4

aI
5,5

1 b1 b2 b3 b4 b5 b6

b1 b2 b3 b4 b5 b6

b̂1 b̂2 b̂3 b̂4 b̂5 b̂6

0 0

c2 aE
2,1

0

c3 aE
3,1 aE

3,2 0

c4 b1 aE
4,2 aE

4,3 0

c5 b1 b2 aE
5,3

aE
5,4

0

1 b1 b2 b3 aE
6,4

aE
6,5

0

b1 b2 b3 b4 b5 b6

b̂1 b̂2 b̂3 b̂4 b̂5 b̂6

(2.33a)

we have 30 degrees of freedom to satisfy 25 constraints. [For the embedded scheme, the

coordination assumption b̂E = b̂I = b̂ is again imposed, which proves to provide sufficient

freedom in the search for a solution.] As in §2.4, we again perform a (tedious) parametric

variation over the coefficients c2, c3, c4, and c5 in the range [0, 1]. The last degree of

freedom is taken as one of the diagonal terms of the Butcher tableau of the implicit part

(we select aI
5,5

), which is varied in the range [0, 1/2] in order to minimize the truncation

error (2.32b). With this approach, it is possible to numerically solve the nonlinear systems

arising during the IMEXRK scheme design phase. In particular, 114 solutions are found for

each quintuplet (c2, c3, c4, c5, aI
5,5

). Among these, over half have imaginary coefficients,

and are therefore discarded immediately. Among of the remaining solutions, only a few

satisfy L-stability of the implicit part, and have coefficients in the range [−5, 5]. Among

the schemes that survived this initial downselection, we have selected the one offering the

smallest truncation error while still exhibiting a large extent of the stability region of the
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explicit part on the negative real axis. It has been found that the set

c2 = 1/4, c3 = 3/4, c4 = 3/8, c5 = 1/2, aI
5,5 = 1/2 (2.33b)

gives the best results. The scheme thus obtained, dubbed IMEXRKCB4 is given by:

aI
3,1 =

216145252607

961230882893
, aI

3,2 =
257479850128

1143310606989
, aI

3,3 =
30481561667

101628412017
,

aI
4,2 = −

381180097479

1276440792700
, aI

4,3 = −
54660926949

461115766612
, aI

4,4 =
344309628413

552073727558
,

aI
5,3 = −

100836174740

861952129159
, aI

5,4 = −
250423827953

1283875864443
,

aE
3,1 =

153985248130

1004999853329
, aE

3,2 =
902825336800

1512825644809
,

aE
4,2 =

99316866929

820744730663
, aE

4,3 =
82888780751

969573940619
,

aE
5,3 =

57501241309

765040883867
, aE

5,4 =
76345938311

676824576433
,

aE
6,4 = −

4099309936455

6310162971841
, aE

6,5 =
1395992540491

933264948679
,

b1 =
232049084587

1377130630063
, b2 =

322009889509

2243393849156
, b3 = −

195109672787

1233165545817
,

b4 = −
340582416761

705418832319
, b5 =

463396075661

409972144477
, b6 =

323177943294

1626646580633
,

(2.33c)

and aE
2,1
= c2 and aI

2,1
= aI

2,2
= c2/2 from the stage-order conditions. The scheme is not

SSP. The associated third-order embedded scheme is:

b̂1 =
5590918588

49191225249
, b̂2 =

92380217342

122399335103
, b̂3 = −

29257529014

55608238079
,

b̂4 = −
126677396901

66917692409
, b̂5 =

384446411890

169364936833
, b̂6 =

58325237543

207682037557

(2.33d)

The stability boundaries of the DIRK and ERK components are shown in Figures 2.1q-2.1r.
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2.6 Order reduction

We now consider the order reduction present when the schemes developed above

are applied to the van der Pol equation. It is well documented in the literature (see, e.g.,

[20]) that whenever an RK method is used to integrate a singular perturbation problem (that

is, an ODE characterized by a stiffness parameter ε whose behavior transitions towards that

of an index-1 DAE as the stiffness increases), the observed convergence rate appears to be

lower than the nominal order of accuracy of the RK scheme used. In the seminal work of

Hairer et al. [21], it is shown that the global error of DIRK schemes applied to singular

perturbation problems may be written in the convenient form E = C1 (∆t)n1 + C2 ε (∆t)n2 .

For the differential variables, DIRK methods have n1 = n and n2 = nS O + 1, where n is

the nominal order of accuracy and nS O is the stage order of the scheme. For the algebraic

variables, if the DIRK method satisfies the aforementioned “stiff-accuracy" conditions, it

turns out that8 n1 = n and n2 = nS O; if not, however, n1 = nS O + 1 and C2 = 0, which is

generally much worse.

For IMEXRK methods, very little is known about order reduction outside of the

empirical work of Kennedy & Carpenter in [7] and [23], where various IMEX schemes

are tested on a range of singular perturbation problems. In this work, the greatest order

reduction is observed in the case of the van der Pol equation; for this reason, we focus

on this model problem in the present chapter in order to characterize the order reduction

phenomenon. The van der Pol equation describes the dynamics of a nonlinear oscillator of

the form

dy

dt
= z, ε

dz

dt
= (1 − y2) z − y, (2.34)

where ε is known as the stiffness parameter. It is seen that, for ε → 0, this ODE sys-

8Indeed, it is precisely for this reason that these “stiff-accuracy” conditions are so named.
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tem transitions into an index-1 DAE, where y(t) is a differential variable, and z(t) tran-

sitions into an algebraic variable. The initial conditions used are y(0) = 2 and z(0) =

−0.6666654321121172. All of the schemes introduced in this chapter have been tested on

this system over the time interval 0 ≤ t ≤ T , taking T = 0.5, with various values for the

(constant) stepsize ∆t and stiffness parameter ε. The error at t = T has then been used to

estimate the convergence rate (that is, n1 and n2) as the stiffness parameter ε is decreased.

The procedure used is analogous to that described in [7]: by fixing ε and varying ∆t in the

∆t → ε limit, the change of slope in the convergence rate has been detected and used to

estimate n1 and n2. Results of such simulations are reported in Figure 2.4, and empirical es-

timates of the convergence rates for each method are reported in Table 2.2. When only the

DIRK component of the schemes are used, the results generally show good agreement with

the theoretical bounds provided in [21]. If the entire IMEX schemes are used, results do not

differ substantially from those reported in [7]. The order-reduction phenomenon tends to

be problem dependent; results in practice (see [7]) often indicate behavior significantly bet-

ter than the corresponding theoretical bounds. Note also that imposing stage-order two on

the DIRK component of a scheme does not influence the convergence of the entire IMEX

scheme, though it significantly improves the accuracy when the DIRK component only is

used.

2.7 Computational cost

To illustrate the relative computational cost of our new low-storage IMEXRK sche-

mes on a representative PDE model problem discretized on N ≫ 1 gridpoints, we now com-

pare the efficient implementation of each of the methods developed herein to CN/RKW3

and several full-storage IMEX Runge-Kutta schemes available in literature. We consider
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Table 2.2: Estimated convergence rates of the differential and algebraic variables on the

van der Pol equation for CN/RKW3 and the IMEXRK schemes presented in this

chapter, and their associated DIRK components only.

Method
IMEXRK scheme IMEXRK scheme

differential part algebraic part

CN/RKW3 (∆t)2 + ε(∆t)1 (∆t)2 + ε(∆t)1

IMEXRKCB2 (∆t)2 + ε(∆t)2 (∆t)2 + ε(∆t)1

IMEXRKCB3a (∆t)3 + ε(∆t)2 (∆t)2 + ε(∆t)1

IMEXRKCB3b (∆t)3 + ε(∆t)2 (∆t)2 + ε(∆t)1

IMEXRKCB3c (∆t)3 + ε(∆t)2 (∆t)2 + ε(∆t)1

IMEXRKCB3d (∆t)3 + ε(∆t)2 (∆t)2 + ε(∆t)1

IMEXRKCB3e (∆t)3 + ε(∆t)2 (∆t)2 + ε(∆t)1

IMEXRKCB3f (∆t)3 + ε(∆t)2 (∆t)2 + ε(∆t)1

IMEXRKCB4 (∆t)4 + ε(∆t)2 (∆t)3 + ε(∆t)1

Method
DIRK scheme only DIRK scheme only

differential part algebraic part

CN/RKW3 (∆t)2 + ε(∆t)2 (∆t)2 + ε(∆t)2

IMEXRKCB2 (∆t)2 + ε(∆t)2 (∆t)2 + ε(∆t)1

IMEXRKCB3a (∆t)3 + ε(∆t)2 (∆t)3 + ε(∆t)1

IMEXRKCB3b (∆t)3 + ε(∆t)2 (∆t)3 + ε(∆t)1

IMEXRKCB3c (∆t)3 + ε(∆t)2 (∆t)3 + ε(∆t)1

IMEXRKCB3d (∆t)3 + ε(∆t)2 (∆t)3 + ε(∆t)1

IMEXRKCB3e (∆t)3 + ε(∆t)2 (∆t)3 + ε(∆t)1

IMEXRKCB3f (∆t)3 + ε(∆t)3 (∆t)3 + ε(∆t)2

IMEXRKCB4 (∆t)4 + ε(∆t)3 (∆t)4 + ε(∆t)2

as a model PDE problem the one-dimensional Kuramoto-Sivashinsky equation

∂u

∂t
= −u

∂u

∂x
− ∂

2u

∂x2
− ∂

4u

∂x4
(2.35)

over the domain x ∈ [−L/2, L/2] with u = ∂u/∂x = 0 at x = ±L/2, where L is the

width of the domain. It should be remarked that, unlike the van der Pol case, this example
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Figure 2.4: Convergence rates for the low-storage IMEXRK schemes considered in this

chapter when applied to the van der Pol equation, as a function of ε. Solid lines are for

simulations using the DIRK component only (squares for the differential variables,

triangles for the algebraic variables), whereas dashed lines are for the simulations using

the entire IMEXRK scheme (diamonds for the differential variables, circles for the

algebraic variables).

represents a rather undemanding application of our IMEXRK schemes. The sole purpose of

this analysis is the comparison of the computational cost that our new schemes require with

respect to other IMEXRK schemes available in literature; the implementation of a selection

of these schemes in a DNS code for the simulation of an incompressible turbulent channel

flow is currently underway, and will be reported elsewhere. The RHS of (3.22) consists of

a nonlinear convective term, treated explicitly, and two linear terms, treated implicitly.
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Following a five-point central finite-difference (FD) approach on a uniform grid,

(3.22) can be approximated as

du

dt
= A u + g(u),

where A is a pentadiagonal Toeplitz matrix obtained by discretizing the last two terms

on the RHS of (3.22), and gi(u) = −ui(ui−2 − 8ui−1 + 8ui+1 − ui+2)/(12∆x). As an example,

using the 3-register implementation (2.19) of the CN/RKW3 method (2.23), 6N flops times

3 stages are required for the evaluation of the nonlinear term, 19N flops times 3 stages are

required for the implicit (pentadiagonal) solves, and 40N additional flops are required for

basic product/sum operations; thus, 115N flops per timestep are required.

Following a pseudospectral (PS) approach, with nonlinear products computed in

physical space and spatial derivatives computed in Fourier space, (3.22) can be written in

wavenumber space as

dûn

dt
= − ı kxn

2
(̂u2)n + (k2

xn
− k4

xn
)ûn (2.36)

where ı =
√
−1, kxn

= 2πn/L is the wavenumber, and (̂u2)n denotes the n’th wavenumber

component of the function computed by transforming u to physical space on N = 2p eq-

uispaced gridpoints, computing u2 at each gridpoint, and transforming the result back to

Fourier space. Since computing FFTs requires ∼ 5N log N real flops while all other op-

erations are linear in N, the number of FFTs performed represents the leading-order com-

putational cost for large N. As an example, the 3-register implementation of CN/RKW3

requires 2 FFTs per stage for each of three stages.

The computational cost of the other schemes may be counted similarly; results are

summarized in the last two columns of Table 2.1. It is seen that, if computational cost

is naïvely characterized simply by the number of floating point operations required per
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timestep, the present low-storage IMEXRK schemes are in fact competitive with both

CN/RKW3 and all of the full-storage IMEXRK schemes available in the literature of

the corresponding order. The fact that CN/RKW3 and all of our low-storage IMEXRK

schemes admit two-, three-, or four-register implementations, however, bestows them with

a distinct operational advantage for high-dimensional ODE discretizations of PDE systems.

2.8 Conclusions

We have developed eight new IMEX Runge-Kutta schemes with reduced storage

requirements, the properties of which are succinctly summarized and compared with com-

peting schemes in Table 2.1. It is seen that:

• IMEXRKCB2 is second-order accurate, like CN/RKW3; IMEXRKCB3a-3f are

third-order accurate, and IMEXRKCB4 is fourth-order accurate.

• IMEXRKCB2, 3a-3e, like CN/RKW3, admit both two-register and three-register

implementations, with the three-register implementations requiring slightly fewer

flops.

• IMEXRKCB3f, 4 admit both three-register and four-register implementations, with

the four-register implementations requiring significantly fewer flops; the four-register

implementations of these two schemes are thus generally recommended, unless the

additional storage that the four-register implementations require represents a partic-

ularly acute computational disadvantage.

• IMEXRKCB2, 3a generally require fewer floating-point operations per timestep

than CN/RKW3, whereas the other schemes we have developed generally require

progressively more; this comparison, however, is somewhat problem dependent.
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• IMEXRKCB2, 3c-3f, 4 are L-stable, whereas IMEXRKCB3a-3b are strongly A-

stable (CN/RKW3 is only A-stable), making them well suited for stiff ODEs.

• IMEXRKCB2, 3c, 3d, 3f, 4 are each provided with a reduced-order embedded

scheme following the guidelines listed in §2.1.2, making them well suited for ap-

plication in adaptive time-stepping applications.

• IMEXRKCB3b incorporates an ESDIRK implicit component, and is thus better

suited to leverage an LU decomposition during the implicit solves than either

CN/RKW3 or our other schemes.

• IMEXRKCB2, 3c, 3d are strong stability preserving (SSP) under the appropriate

timestep restriction, and are thus better suited for application to hyperbolic systems

than either CN/RKW3 or our other schemes.

• IMEXRKCB3f, 4 have stage order two, whereas CN/RKW3 and our other schemes

have stage order one; these two schemes thus show better convergence properties

when applied to especially stiff ODE systems.
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Chapter 3

Low-storage implicit/explicit

Runge-Kutta schemes for the simulation

of the Navier-Stokes Equations

3.1 Introduction

Many physical phenomena in fluid dynamics can be modeled as systems of partial

differential equations of the form

du

dt
= L u +N(u), (3.1)

where L is a linear spatial operator, and N is a nonlinear operator. This is the case,

for example, of the incompressible Navier-Stokes Equations, if we assume that no time-

dependent error is committed while accounting for the incompressibility requirement. In

general, the linear operator of the NSE is associated to the discretization of the diffusive

53
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terms, while the nonlinear operator accounts for the convective terms. In the case of the

NSE, the nonlinear operator is in fact bilinear. Since the diffusive terms are in generally

stiff, while the convective terms are usually nonstiff, time discretization for DNS and LES

simulations in the past three decades has relied principally on a mixed implicit/explicit ap-

proach, in which the integration of the diffusive term is carried out implicitly, while the

convective term is marched explicitly. In this way, numerical stability of the time stepping

scheme is limited solely by the Courant-Friedrichs-Lewy (CFL) condition [24].

The first attempt in Moin et al. [2] combined second-order explicit Adams-Bashforth

(AB2) for the integration of the bilinear term and second-order implicit Crank-Nicolson

(CN) at each substep for the integration of the linear term. However, since AB2 has no

stability over the imaginary axis, the integration of the convective term produces a weak

instability which generally does not compromise the overall stability of the simulation but

it definitely affects its accuracy. For this reason, AB2 was later replaced by explicit third-

order low-storage Runge-Kutta-Wray (RKW3) scheme [5]. The resulting hybrid scheme,

first presented in [3] and often referred to as CN/RKW3, improves the order of accuracy

of the time integration of the convective terms. Besides, it guarantees numerical stability

of the time stepping scheme under the CFL limit. Furthermore, its numerical implemen-

tation, 2which leverages an incremental formulation, allows to keep storage requirements

to a minimum. Independently, Spalart et al. [1] proposed an IMEXRK scheme following

the same incremental form. This scheme, referred to as IMEXRKiSMR, integrates the

solution un at time tn of PDE (3.1) over the time interval [tn, tn+1], following a three-step
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formulation:

u(1) = un + ∆t
(
αI

1Lu(1) + βI
1Lun + β

E
1 N(un)

)

u(2) = u(1) + ∆t
(
αI

2Lu(2) + βI
2Lu(1) + βE

2 N(u(1)) + γE
2 N(un)

)

un+1 = u(2) + ∆t
(
αI

3Lun+1 + β
I
3Lu(2) + βE

3 N(u(2)) + γE
3 N(u(1))

)
,

(3.2)

where ∆t = tn+1 − tn is the step size and un+1 is the solution at time tn+1. The coefficients

α
I/E

i
, β

I/E

i
, and γE

i
in (3.2) were determined in an attempt to match the Taylor expansion of

such scheme with the expansion of the discretized NSE up to third order [1]. Additional

constraints were impose in order to obtain an equal size for the integration substeps for both

implicit and explicit components. However, it was observed by the authors that it is not

possible, within this formulation, to satisfy all the third-order accuracy constraints arising

from Taylor expansion analysis. For this reason, the coefficients were chosen in order to

satisfy all accuracy constraints but one. This decision lead to a one-parameter family, in

which the remaining degree of freedom was chosen in order to find a compromise between

minimizing the third-order truncation error and having relatively even substeps. These

considerations lead to the coefficients

αI
1 =

37

160
, βI

1 =
29

96
, βE

1 =
8

15
,

αI
2 =

5

24
, βI

2 = −
3

40
, βE

2 =
5

12
, γE

2 = −
17

60

αI
3 =

1

6
, βI

3 =
1

6
, βE

3 =
3

4
, γE

3 = −
5

12
.

(3.3)

The scheme thus obtained is second-order accurate on the linear term, while it is third-order

accurate on the explicit term and the mixed implicit/explicit terms arising from Taylor ex-

pansion. Furthermore, the implicit part is strongly A-stable, while the explicit one has a sta-

bility limit along the imaginary axis equal to
√

3. In comparison, CN/RKW3, rearranged



56

in order to fit the incremental form in (3.2), presents a different choice of coefficients:

αI
1 = β

I
1 =

4

15
, βE

1 =
8

15
,

αI
2 = β

I
2 =

1

15
, βE

2 =
5

12
, γE

2 = −
17

60

αI
3 = β

I
3 =

1

6
, βE

3 =
3

4
, γE

3 = −
5

12
.

(3.4)

This alternative choice preserves third-order accuracy and imaginary stability of the explicit

part (RKW3 scheme is used in both cases), whereas it leads to a slight increase in the third-

order truncation error of the implicit component and mixed terms. Furthermore, the implicit

part is now only A-stable, since it matches the stability properties of Crank-Nicolson.

Our goal is to develop new low-storage Runge-Kutta schemes with the same incre-

mental formulation in (3.2), but better overall accuracy and improved stability properties

for both implicit and explicit components. In particular, schemes up to five steps will be

considered. For the four-step scheme only, the possibility of allowing extra storage in order

to improve certain stability properties will be investigated.

3.1.1 Low-storage IMEXRK formulation

Although particularly appealing from an implementation point of view, the incre-

mental form slightly complicates the imposition of the constraints needed for a scheme to

achieve a prescribed order of accuracy or desirable stability properties. For this reason,

the development of these schemes is carried out by first resorting to the IMEXRK formu-

lation leveraging Butcher coefficients [7, 9, 17, 25]. In this framework, each scheme is

represented by two coupled Butcher tableaux, one for the implicit integration of the stiff

component and the other for the explicit integration of the nonstiff component. In this way,
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a generic (s − 1)-step incremental scheme like the one in (3.2) can be represented as

0 0

c2 β
I
1

αI
1

c3 β
I
1
βI

2
+ αI

1
αI

2

...
...

...
. . .

. . .

cs−1 β
I
1
βI

2
+ αI

1
· · · βI

s−2
+ αI

s−3
αI

s−2

1 βI
1
βI

2
+ αI

1
· · · βI

s−2
+ αI

s−3
βI

s−1
+ αI

s−2
αI

s−1

βI
1 β

I
2 + α

I
1 · · · βI

s−2 + α
I
s−3 β

I
s−1 + α

I
s−2 α

I
s−1

0 0

c2 βE
1

0

c3 β
E
1
+ γE

2
βE

2
0

...
...

...
. . .

. . .

cs−1 β
E
1
+ γE

2
βE

2
+ γE

3
· · · βE

s−2
0

1 βE
1
+ γE

2
βE

2
+ γE

3
· · · βE

s−2
+ γE

s−1
βE

s−1
0

βE
1 + γ

E
2 βE

2 + γ
E
3 · · · βE

s−2 + γ
E
s−1 β

E
s−1 0

(3.5)

A trivial change of variables allows to resort to the standard formulation

0 0

c2 bI
1

aI
2,2

c3 bI
1

bI
2

aI
3,3

...
...

...
. . .

. . .

cs−1 bI
1

bI
2
· · · bI

s−2
aI

s−1,s−1

1 bI
1

bI
2
· · · bI

s−2
bI

s−1
bI

s

bI
1

bI
2
· · · bI

s−2
bI

s−1
bI

s

0 0

c2 aE
2,1

0

c3 bE
1

aE
3,2

0

...
...

...
. . .

. . .

cs−1 bE
1

bE
2
· · · aE

s−1,s−2
0

1 bE
1

bE
2
· · · bE

s−2
bE

s−1
0

bE
1

bE
2
· · · bE

s−2
bE

s−1
0

(3.6)

The structure of these Butcher tableaux offers some interesting insights into the properties

of this family of IMEXRK schemes. First of all, all the coefficients below the first subdiag-

onal for both the explicit and implicit component equal the bi coefficients. As we recently

showed in [26], this condition allows a low-storage implementation of these IMEXRK

schemes which requires only two-registers, or three registers in case less computation is

desired. Such implementation follows closely that of explicit low-storage [2R] Runge-

Kutta algorithms. A comprehensive review of this subject is given in [8]. Remarkably, the

structure of the Butcher tableaux in (3.6) appears to be even more restrictive, since also the
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coefficients along the first subdiagonal of the implicit component equal the bi coefficients.

A significant difference between these low-storage IMEXRK schemes and those

developed in [26] is that the coordination condition, i.e. bI
i
= bE

i
, is not imposed. This

increases the number of constraints that have to be satisfied in order to meet the desired

order of accuracy. However, a substantial reduction in the number of accuracy conditions

to impose still remains, since the synchronization condition, i.e. cI
i
= cE

i
, is verified.

The last observation regards the first-same-as-last (FSAL) condition, which is achie-

ved for both implicit and explicit part. This results in the scheme implementation requiring

only (s − 1) stages, even if the associated Butcher tableaux formally figure s stages. This

result is somehow to be expected, since the corresponding incremental form has only (s−1)

steps. Furthermore, the FSAL condition allows some simplifications in the structure of the

stability polynomial, as we will show in Section 3.1.3.

3.1.2 Accuracy conditions

Considering a generic ODE

du(t)

dt
= f(u, t) + g(u, t), (3.7)

where f represents the stiff part, to be treated implicitly, and g the nonstiff part, to be treated

explicitly, an s-stage IMEXRK scheme with synchronization condition only has to satisfy

2 constraints for first order accuracy, 4 constraints for second order, 10 for third order, and

28 for fourth order. Additionally, as is customary, stage-order-one (SO1) condition, i.e.
∑

j a
I/E

i, j
= ci for all i = 1, 2, . . . , s, is imposed. These conditions, also outlined in [27], are

reported below:
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• First order conditions

τ
(1)I

1
=

s∑

i=1

bI
i − 1 τ

(1)E

1
=

s∑

i=1

bE
i − 1 (3.8)

• Second order conditions

τ
(2)I

1
=

s∑

i=1

bI
i ci −

1

2
τ

(2)E

1
=

s∑

i=1

bE
i ci −

1

2
(3.9)

• Third order conditions

τ
(3)I

1
=

1

2

s∑

i=1

bI
i c2

i −
1

6
τ

(3)E

1
=

1

2

s∑

i=1

bE
i c2

i −
1

6

τ
(3)II

2
=

s∑

i, j=1

bI
i aI

i, j ci −
1

6
τ

(3)IE

2
=

s∑

i, j=1

bI
i aE

i, j c j −
1

6

τ
(3)EI

2
=

s∑

i, j=1

bE
i aI

i, j ci −
1

6
τ

(3)EE

2
=

s∑

i, j=1

bE
i aE

i, j c j −
1

6

(3.10)

• Fourth order conditions

τ
(4)I

1
=

1

6

s∑

i=1

bI
i c3

i −
1

24
τ

(4)E

1
=

1

6

s∑

i=1

bE
i c3

i −
1

24

τ
(4)II

2
=

s∑

i, j=1

bI
i ci aI

i, j c j −
3

24
τ

(4)IE

2
=

s∑

i, j=1

bI
i ci aE

i, j c j −
3

24

τ
(4)EI

2
=

s∑

i, j=1

bE
i ci aI

i, j c j −
3

24
τ

(4)EE

2
=

s∑

i, j=1

bE
i ci aE

i, j c j −
3

24

τ
(4)II

3
=

1

2

s∑

i, j=1

bI
i aI

i, j c2
j −

1

24
τ

(4)IE

3
=

1

2

s∑

i, j=1

bI
i aE

i, j c2
j −

1

24

τ
(4)EI

3
=

1

2

s∑

i, j=1

bE
i aI

i, j c2
j −

1

24
τ

(4)EE

3
=

1

2

s∑

i, j=1

bE
i aE

i, j c2
j −

1

24

τ
(4)III

4
=

s∑

i, j,k=1

bI
i aI

i, j aI
j,k ck −

1

24
τ

(4)IIE

4
=

s∑

i, j,k=1

bI
i aI

i, j aE
j,k ck −

1

24

τ
(4)IEI

4
=

s∑

i, j,k=1

bI
i aE

i, j aI
j,k ck −

1

24
τ

(4)IEE

4
=

s∑

i, j,k=1

bI
i aE

i, j aE
j,k ck −

1

24

τ
(4)EII

4
=

s∑

i, j,k=1

bE
i aI

i, j aI
j,k ck −

1

24
τ

(4)EIE

4
=

s∑

i, j,k=1

bE
i aI

i, j aE
j,k ck −

1

24

τ
(4)EEI

4
=

s∑

i, j,k=1

bE
i aE

i, j aI
j,k ck −

1

24
τ

(4)EEE

4
=

s∑

i, j,k=1

bE
i aE

i, j aE
j,k ck −

1

24
.

(3.11)
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However, the particular structure of the f and g operators in the discretized NSE (3.1)

is such that not all the order conditions need to be satisfied in order to time march these

equations with a prescribed order of accuracy. More specifically, since the stiff term is

linear and autonomous, condition τ
(3)I

1
does not need to be imposed to achieve third-order

accuracy, since such term is proportional to the second derivative of f. When fourth order

accuracy is addressed, further constraints are dropped from consideration, since not only

the stiff term is linear, but also the nonstiff component is bilinear and autonomous, and

therefore derivatives of g higher than second do not appear. Bicolored trees [28], which are

an extension of Butcher single-color trees (see [20, 29, 30]) allow to identify which terms

contribute to define the order of accuracy of the IMEXRK schemes when applied to the

time integration of the NSE. Bicolored trees up to fourth order are shown in Figure 3.1.

By inspection, we can conclude that τ
(4)I

1
, τ

(4)E

1
, τ

(4)II

2
, τ

(4)IE

2
, τ

(4)II

3
, and τ

(4)EI

3
do not appear

in the Taylor expansion of the NSE operator. Therefore, only nine constraints, instead of

ten, must be satisfied for third order accuracy, plus twelve additional constraints for fourth

order accuracy.

After a desired level of accuracy p has been achieved, the remaining degrees of

freedom will be used to minimize the error norm A(p+1), a metric first introduced in [31]

and adopted for both full-storage [7] and low-storage IMEXRK schemes [26]. This norm

is defined as the square root of the sum of the squares of all the error terms τ
(p+1)I/E

j
that

contribute to the leading order, i.e. (p + 1), of the truncation error related to the time

advancement of the NSE.
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Figure 3.1: Bicolored trees for accuracy conditions of IMEXRK schemes up to fourth

order.
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3.1.3 Stability

Considering the linear scalar test problem

du

dt
= λ f u + λgu (3.12)

and using the implicit part of a generic s-stage incremental IMEXRK scheme to integrate

the term λ f u and the explicit part to integrate λgu, linear stability can be analyzed using the

stability function [10, 27]

σ(zI, zE) =
det

[
I − zIAI − zEAE + zIe(bI)T + zEe(bE)T

]

det
[
I − zIAI

] =
P(zI, zE)

Q(zI)
(3.13)

where e is a vector of ones, I is the identity matrix, zI = λ f∆t, zE = λg∆t, AI/E = a
I/E

i, j
, and

bI/E = b
I/E

i
. Furthermore,

P(zI, zE) =

s∑

i=0


s−i∑

j=0

pi, j[z
E] j

 [zI]i

=

s−2∑

i=0


s−2−i∑

j=0

pi, j[z
E] j

 [zI]i +
(
ps−1,0 + ps−1,1 zE

)
[zI]s−1 + ps,0[zI]s (3.14)

Q(zI) =

s−1∑

i=0

qi[z
I]i =

s−2∑

i=1

qi[z
I]i + qs−1[zI]s−1, (3.15)

where each coefficient pi, j and qi is a function of the Butcher coefficients a
I/E

i, j
, b

I/E

i
, and ci.

In order to guarantee L-stability for a generic s-stage IMEXRK scheme, ps,0, ps−1,0, and

ps−1,1 must vanish, provided qs−1 at the denominator does not reduce to zero at the same

time. Since both the implicit and explicit part of these IMEXRK schemes satisfy the FSAL

condition, we have that ps,0 and ps−1,1 are already zero. Hence, L-stability will be achieved

by imposing ps−1,0 = 0, with qs−1 , 0. Whenever L-stability could not be achieved, at least
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strong A-stability, i.e. σ∞ = |ps−1,0/qs−1| < 1 will be sought.

In order to provide a graphic representation of the extension of the stability region

associated to the IMEXRK schemes here derived, we introduce two additional stability

functions: one, denoted as σI, associated to the term treated implicitly and the other, σE

for the term integrated explicitly. These stability functions are obtained from σ in (3.13)

as σI(z) = σ(zI, 0) and σE(z) = σ(0, zE). In this way, linear stability of each IMEXRK

scheme can be assessed by verifying that stability condition |σ(z)| ≤ 1 is satisfied for both

implicit and explicit components, independently.

3.2 Three-step incremental IMEXRK schemes

As already pointed out in [1] and also mentioned in the introduction, the nine de-

grees of freedom offered by a three-step incremental IMEXRK scheme do not allow to

satisfy the nine nonlinear equations required in order to impose third order accuracy. The

reason appears clear after resorting to the Butcher formulation, i.e.

0 0

c2 bI
1 aI

2,2

c3 bI
1

bI
2

aI
3,3

1 bI
1

bI
2

bI
3

bI
4

bI
1 bI

2 bI
3 bI

4

0 0

c2 aE
2,1 0

c3 bE
1

aE
3,2

0

1 bE
1

bE
2

bE
3

0

bE
1 bE

2 bE
3 0

(3.16)

Solving the nonlinear system composed by the eight constraints τ
(1)I,E

1
= 0, τ

(2)I,E

1
= 0,

τ
(3)E

1
= 0, τ

(3)IE,EI,EE

2
= 0, together with SO1 condition, the last constraint τ

(3)II

2
= 0 can be

expressed as a nonlinear function in the only parameter c3. Solving this equation leverag-
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ing a symbolic solver like Mathematica [22], gives 13 distinct roots, all of them having a

nonzero imaginary component. However, we can choose c3 in order to minimize the resid-

ual of τ
(3)II

2
by solving dτ

(3)II

2
(c3)/dc3 = 0, under the constraint that all the parameters are

real-valued. This is achieved if the radicand 17c2
3 − 60c3

3
+ 84c4

3 − 48c5
3

is non-negative,

which is verified for c3 ∈ [0, (7 − 11/
3

√
19 + 6

√
47 +

3

√
19 + 6

√
47)/12]. The optimum

within this interval is achieved for c3 ≈ 0.616466445813626. Approximating the solution

to c3 = 5/8, we obtain A(3) = |τ(3)II

2
| = 0.0179, which is a slight improvement as com-

pared to IMEXRKiSMR, for which A(3) = 37/1920 ≈ 0.0193. Furthermore, we have

σ∞ = 0.34, which reflects into better damping of the largest eigenvalues of the linear op-

erator L in (3.1) with respect to IMEXRKiSMR, for which σ∞ = 87/185 ≈ 0.47. Both

schemes prove to be superior to CN/RKW3, for which A(3) = 0.0353, and σ∞ = 1, being

the scheme only A-stable. The analytic coefficients for the scheme thus derived, dubbed

IMEXRKiCB2(3s), are listed in Table 3.1 in both Butcher and incremental form. Fig-

ures 3.2e-f show the stability regions for the implicit and explicit part. We have to remark

that the three-step formulation, together with the imposition of third order accuracy for the

explicit component automatically fixes the shape of the stability region for explicit com-

ponent, which appears unchanged with respect to IMEXRKiSMR and CN/RKW3 (see

Figures 3.2b and 3.2d).

At this point, third order accuracy could be achieved by either increasing the num-

ber of steps or by allowing one extra storage for the implicit part, due to the increased

number of degrees of freedom. In particular, adding one step would allow to shape the

stability region of the explicit component in order to extend it along the imaginary axis.

At the same time, better accuracy and stability properties could be achieved. Interestingly,

relaxing the storage requirements in the three-step scheme (3.2) for the implicit part does



65

Table 3.1: Optimal parameters for the second-order, strongly A-stable, three-step

incremental IMEXRK scheme IMEXRKiCB2(3s).

Butcher coefficients

Parameter Value

bI
1 (42861 − 752

√
38)/129459

bI
2 (6998 − 303

√
38)/43153

bI
3 8(1632 + 65

√
38))/43153

bI
4 (26436 + 101

√
38)/129459

aI
2,2 (2522730 − 164629

√
38)/8803212

aI
3,3 (12405 + 1208

√
38)/94152

bE
1 (113 +

√
38)/439

bE
2 −3(1522 + 1245

√
38)/97897

bE
3 8(22 +

√
38)/223

aE
2,1 (126 − 5

√
38)/204

aE
3,2 (1291 − 8

√
38)/3512

c2 (126 − 5
√

38)/204

c3 5/8

Incremental-form coefficients

Parameter Value

αI
1 (2522730 − 164629

√
38)/8803212

βI
1 (42861 − 752

√
38)/129459

αI
2 (12405 + 1208

√
38)/94152

βI
2 (−99558 + 9347

√
38)/800292

αI
3 (26436 + 101

√
38)/129459

βI
3 (176889 − 808

√
38)/1035672

βE
1 (126 − 5

√
38)/204

γE
1

0

βE
2 (1291 − 8

√
38)/3512

γE
2 (−32262 + 2399

√
38)/89556

βE
3 8(22 +

√
38)/223

γE
3 (−739 − 64

√
38)/1784
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not allow to achieve full third order accuracy, since the associated system of nine accuracy

constraints and SO1 condition admits only two families of solutions, one requiring aI
2,2
= 0,

the other bI
4
= 0, which is not acceptable since it would make one of the step explicit, thus

compromising the stability properties of the algorithm.

3.3 Four-step incremental IMEXRK schemes

Adding one step in the incremental formulation allows to increase the number of

design parameters from nine to twelve. The scheme thus obtained, in both incremental and

Butcher form, appears as

0 0

c2 bI
1

aI
2,2

c3 bI
1 bI

2 aI
3,3

c4 bI
1

bI
2

bI
3

aI
4,4

1 bI
1

bI
2

bI
3

bI
4

bI
5

bI
1 bI

2 bI
3 bI

4 bI
5

0 0

c2 aE
2,1

0

c3 bE
1 aE

3,2 0

c4 bE
1

bE
2

aE
4,3

0

1 bE
1

bE
2

bE
3

bE
4

0

bE
1 bE

2 bE
3 bE

4 0

u(1) = un + ∆t
(
αI

1L u(1) + βI
1L un + β

E
1 N(un)

)

u(2) = u(1) + ∆t
(
αI

2L u(2) + βI
2L u(1) + βE

2 N(u(1)) + γE
2 N(un)

)

u(3) = u(2) + ∆t
(
αI

3L u(3) + βI
3L u(2) + βE

3 N(u(2)) + γE
3 N(u(1))

)

un+1 = u(3) + ∆t
(
αI

4L un+1 + β
I
4L u(3) + βE

4 N(u(3)) + γE
4 N(u(2))

)
.

(3.17)

In this way, all third order accuracy constraints can be enforced, with three degrees of

freedom left for optimization. In order to simplify the solution of the nonlinear system of

nine equations, the parameters c2, c3, and c4 are chosen as free parameters. The design
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phase proceeds as follows: first, the ci parameters are chosen within the range [0, 1]. Then,

conditions τ
(1)E

1
= 0, τ

(2)E

1
= 0, and τ

(3)E

1
= 0 are imposed, together with SO1 condition

for the explicit component, in order to express bE
1,2,3

and all the aI
i,i

and aE
i,i−1

coefficients

as a function of the other coefficients. Once the ci coefficients have been chosen, these

equations are linear in the bE
i

coefficients and are easily solved. The resulting expressions

are replaced into τ
(3)EE

2
= 0. This gives a second order equation in bE

4
, which gives two

solutions. Replacing the values for bE
4 back into τ

(1,2,3)E

1
= 0 gives two sets of solutions

for the bE
i

parameters. After all bE
i

have been determined, their expressions are replaced

into τ
(3)EI

2
= 0 and τ

(3)IE

2
= 0. These two equations, together with τ

(1)I

1
= 0, τ

(2)I

1
= 0, and

SO1 for the implicit part, are linear in the bI
i parameters and are used to determine bI

1,2,3,4.

Substitution of the resulting expressions into the last constraint τ
(3)II

2
= 0 gives a second

order equation in bI
5
. Notice that, since we obtained two sets of parameters, one for each

choice of bE
4 , we actually have two second order equations to be solved. Therefore, we for

each choice of ci, we obtain four sets of parameters. Among the possible choices for the ci

parameters, we retain only those that satisfy the following criteria:

• All the Butcher coefficients are small and real-valued

• All the diagonal terms of the implicit scheme aI
i,i are positive and less than 1/2

• All the accuracy constraints are linearly independent

• The imaginary stability of the explicit part is close enough to the achievable limit

• The scheme is at least strongly A-stable with σ∞ < 1/10

• The fourth-order truncation error A(4) is less than 1/10
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Regarding stability, the function σE(z), after imposing third order accuracy, appears as

σE(z) = 1 + z
∑

i

bE
i + z2

∑

i

bE
i ci + z3

∑

i, j

bE
i aE

i, j c j + z4
∑

i, j,k

bE
i aE

i, j aE
j,k ck

= 1 + z + z2/2 + z3/6 + δ z4.

(3.18)

The stability region |σE(z)| ≤ 1 achieves the maximum extension along the imaginary axis

for δ = 1/24, with a value of 2
√

2. Compared to the three-step incremental schemes, this

corresponds to an improvement of more than 60%. Since this choice for δ also satisfies the

fourth-order constraint τ
(4)EEE

4
= 0, the stability region is the same as the classical fourth-

order explicit RK algorithm. It is important to observe that any value of δ greater that 1/24

leads to a scheme which is unstable for very small eigenvalues along the imaginary axis.

For this reason, only those sets of ci coefficients for which δ is sufficiently close to 1/24

without exceeding are considered.

Based on these guidelines, extensive search over the three-dimensional parame-

ter space lead to the coefficients of the four-step incremental IMEXRK scheme dubbed

IMEXRKiCB3(4s), which are reported in Table 3.2. We have to remark that, although

these coefficients are available in analytical form, the extreme length of their expression

makes them quite impractical to implement. For this reason, as done also in [26] and [27],

a rational expression accurate up to 24 digits is preferred. Figures 3.2g-h show the stability

regions of IMEXRKiCB3(4s) for both the implicit and explicit part. The scheme obtained

is strongly A-stable with σ∞ = 0.0325 and the imaginary stability limit for the explicit part

is 2.7838, which is only 2.5% less than the achievable maximum. The truncation error is

A(4) = 0.0592.

We want to remark that another exploratory search was conducted among the two-

and one-parameter subfamilies of IMEXRK schemes arising for those choices of ci caus-
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Table 3.2: Optimal parameters for the third-order, strongly A-stable, four-step

incremental IMEXRK scheme IMEXRKiCB3(4s).

Butcher coefficients

Parameter Value

bI
1

268403570813/1046659493064

bI
2

539124791465/1721977093901

bI
3

−197050443577/700240830834

bI
4

239563607837/443403175235

bI
5

204443804709/1191419405951

aI
2,2

147427810807/485660101531

aI
3,3

243165146010/1055051926313

aI
4,4

514970586192/1250290449433

bE
1

1450061836715/5978969592807

bE
2

106792727210/477274043037

bE
3

7353068969/671689278676

bE
4

253095336536/484142576807

aI
2,1

14/25

aI
3,2

798923023415/1433115308036

aI
4,3

223463754637/956128100809

c2 14/25

c3 4/5

c4 7/10

Incremental-form coefficients

Parameter Value

αI
1

147427810807/485660101531

βI
1

268403570813/1046659493064

αI
2

243165146010/1055051926313

βI
2

20920302827/2196806104873

αI
3

514970586192/1250290449433

βI
3

−216678405507/423298589287

αI
4

204443804709/1191419405951

βI
4

74577069499/580804002576

βE
1

14/25

γE
1

0

βE
2

798923023415/1433115308036

γE
2

−206225727739/649585186686

βE
3

223463754637/956128100809

γE
3

−226857275186/679788613965

βE
4

253095336536/484142576807

γE
4

−190080827984/853259476461
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ing some of the accuracy constraints to become linearly dependent, but no improvement

was found with respect to IMEXRKiCB3(4s). Similar results were obtained for the other

schemes developed in this chapter.

Since it was not possible to achieve L-stability within the four-step framework with-

out compromising A(4) and imaginary stability of the explicit component, we extended the

search in two different directions: first by considering extra storage for the implicit compo-

nent, then by allowing another extra step in the incremental formulation. The first approach

assumes the following scheme

0 0

c2 aI
2,1

aI
2,2

c3 bI
1 aI

3,2 aI
3,3

c4 bI
1

bI
2

aI
4,3

aI
4,4

1 bI
1

bI
2

bI
3

bI
4

bI
5

bI
1 bI

2 bI
3 bI

4 bI
5

0 0

c2 aE
2,1

0

c3 bE
1 aE

3,2 0

c4 bE
1

bE
2

aE
4,3

0

1 bE
1

bE
2

bE
3

bE
4

0

bE
1 bE

2 bE
3 bE

4 0

u(1) = un + ∆t
(
αI

1L u(1) + βI
1L un + β

E
1 N(un)

)

u(2) = u(1) + ∆t
(
αI

2L u(2) + βI
2L u(1) + γI

2L un + β
E
2 N(u(1)) + γE

2 N(un)
)

u(3) = u(2) + ∆t
(
αI

3L u(3) + βI
3L u(2) + γI

3L u(1) + βE
3 N(u(2)) + γE

3 N(u(1))
)

un+1 = u(3) + ∆t
(
αI

4L un+1 + β
I
4L u(3) + γI

4L u(2) + βE
4 N(u(3)) + γE

4 N(u(2))
)
,

(3.19)

in which the Butcher tableau for the implicit part has the same low-storage structure of the

[2R] IMEXRK schemes in [26], except for the coordination constraint. This formulation

provides 15 design parameters to satisfy nine nonlinear equations for third order accuracy,

plus the L-stability condition σ∞ = 0. As already shown in [26], L-stability is easily
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achieved by suppressing the first column of the Butcher tableau associated to the implicit

part, i.e. by setting bI
1
= aI

2,1
= 0. Among the remaining 13 parameters, c2, c3, c4, and

aI
4,4

are chosen as optimization variables, with each ci in the range [0, 1], while aI
4,4
∈

(0, 1/2]. The design procedure is analogous to the one followed for IMEXRKiCB3(4s).

First, τ
(1)E

1
= 0, τ

(2)E

1
= 0, and τ

(3)E

1
= 0, together with SO1 condition, are used to determine

bE
1,2,3

, aI
2,2

, aI
3,2

, aI
4,3

, and all the aE
i,i−1

coefficients. After substitution, the quadratic equation

τ
(3)EE

2
= 0 is solved for bE

4 . The two families of solutions are replaced into τ
(3)EI

2
= 0 and

τ
(3)IE

2
= 0. These two equations, together with τ

(1)I

1
= 0, τ

(2)I

1
= 0 and SO1 condition,

are then used to calculate the coefficients bI
2,3,4

and aI
3,3

. After substituting the previous

expressions into the quadratic equation τ
(3)II

2
= 0, we can finally solve for bI

5
.

Among the possible choices of the four design parameters, we chose that which

guarantees real-valued coefficients and small diagonal terms for the implicit component,

while offering the best compromise between imaginary stability of the explicit part and

fourth-order truncation error A(4). The coefficients of the resulting scheme, dubbed IMEX-

RKiCB3(4s+), are shown in Table 3.3. Figures 3.2i-j show the stability regions of such

scheme for both implicit and explicit part. The imaginary stability limit for the explicit

part is 2.8217, which is only 0.25% less than the theoretical limit, while the error is A(4) =

0.0698, which is nearly 20% higher than IMEXRKiCB3(4s). However, this result should

not sound discouraging, since in the context of turbulent simulations, the extension of the

imaginary stability for the explicit term, which is related to the CFL condition, and L-

stability, which guarantees good damping of the largest eigenvalues of the terms treated

implicitly, represent far more appealing features for a time stepping scheme.

Finally, we want to remark that the increased freedom given by allowing extra stor-

age could be exploited to develop an incremental IMEXRK scheme with ESDIRK con-
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Table 3.3: Optimal parameters for the third-order, L-stable, four-step incremental

IMEXRK scheme IMEXRKiCB3(4s+).

Butcher coefficients

Parameter Value

bI
1

0

bI
2

4078465402807/5118992086463

bI
3

−1068609889687/1488061735778

bI
4

94533336407/126055292720

bI
5

112416685574/655665149019

aI
2,1

0

aI
2,2

9/25

aI
3,2

379490756215/588608184103

aI
3,3

81921593785/419520366036

aI
4,3 −39458195936308/94684797045601

aI
4,4

12/25

bE
1

67447694372/739814670703

bE
2

640712099409/1099358471078

bE
3

−299809194319/611386646053

bE
4

878905218902/1076559421011

aI
2,1

9/25

aI
3,2

869434674241/1161054947863

aI
4,3

359201878931/1930920984086

c2 9/25

c3 21/25

c4 43/50
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Table 3.3: Optimal parameters for the third-order, L-stable, four-step incremental

IMEXRK scheme IMEXRKiCB3(4s+) (continued from previous page).

Incremental-form coefficients

Parameter Value

αI
1

9/25

βI
1

0

γI
1

0

αI
2

81921593785/419520366036

βI
2

218263380385/766574524329

γI
2

0

αI
3

12/25

βI
3

−454484525049/742613847476

γI
3

149986191080/986708857737

αI
4

112416685574/655665149019

βI
4

170133979507/630276463600

γI
4

−267746892839/888373818197

βE
1

9/25

γE
1

0

βE
2

869434674241/1161054947863

γE
2

−436940426403/1625331138472

βE
3

359201878931/1930920984086

γE
3

−210795378052/1269651340659

βE
4

878905218902/1076559421011

γE
4

−180800545132/267297489417
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dition, i.e. first-stage explicit, singly-diagonally implicit. This is a particularly appealing

condition since at every step of the incremental algorithm a linear system with the same

matrix on the LHS has to be solved, provided a constant time step is employed. An ES-

DIRK scheme would therefore allow to reuse the LU decomposition of such matrix after

the first step, thus reducing the overall computational cost. Interestingly, it was found that

imposing all aI
i,i

to be equal, together with third order accuracy constraints and SO1 condi-

tion, automatically leads to the unacceptable condition aI
i,i = 0, making the scheme explicit.

However, we want to point out that the high number of degrees of freedom required in the

simulation of turbulence generally makes the storage of the LU decomposition of the LHS

quite impractical. In addition, most simulations are performed with a non-constant time

step ∆t, which is instead recomputed every few time steps based on the CFL limit condi-

tion.

3.4 Five-step incremental IMEXRK schemes

An incremental IMEXRK scheme with five steps has the following Butcher and

incremental form

0 0

c2 bI
1 aI

2,2

c3 bI
1

bI
2

aI
3,3

c4 bI
1

bI
2

bI
3

aI
4,4

c5 bI
1 bI

2 bI
3 bI

4 aI
5,5

1 bI
1

bI
2

bI
3

bI
4

bI
5

bI
6

bI
1

bI
2

bI
3

bI
4

bI
5

bI
6

0 0

c2 aE
2,1 0

c3 bE
1

aE
3,2

0

c4 bE
1

bE
2

aE
4,3

0

c5 bE
1 bE

2 bE
3 aE

5,4
0

1 bE
1

bE
2

bE
3

bE
4

bE
5

0

bE
1

bE
2

bE
3

bE
4

bE
5

0
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u(1) = un + ∆t
(
αI

1L u(1) + βI
1L un + β

E
1 N(un)

)

u(2) = u(1) + ∆t
(
αI

2L u(2) + βI
2L u(1) + βE

2 N(u(1)) + γE
2 N(un)

)

u(3) = u(2) + ∆t
(
αI

3L u(3) + βI
3L u(2) + βE

3 N(u(2)) + γE
3 N(u(1))

)

u(4) = u(3) + ∆t
(
αI

4L u(4) + βI
4L u(3) + βE

4 N(u(3)) + γE
4 N(u(2))

)

un+1 = u(4) + ∆t
(
αI

5L un+1 + β
I
5L u(4) + βE

5 N(u(4)) + γE
5 N(u(3))

)
.

(3.20)

This gives 15 design parameters, which allow to impose third order accuracy, and L-

stability for the implicit part. As done for IMEXRKiCB3(4s), the ci coefficients are chosen

as free parameters to optimize the truncation error A(4) and extend the stability region of

the explicit scheme over the imaginary axis. To this matter, the addition of one stage in

the Butcher formulation has the direct effect of increasing by one the order of the poly-

nomial associated to the stability of the explicit scheme, which, after imposing third order

accuracy, appears as

σE(z) = 1 + z
∑

i

bE
i + z2

∑

i

bE
i ci + z3

∑

i, j

bE
i aE

i, j c j

+ z4
∑

i, j,k

bE
i aE

i, j aE
j,k ck + z5

∑

i, j,k,l

bE
i aE

i, j aE
j,k aE

k,l cl

= 1 + z + z2/2 + z3/6 + δ z4 + ε z5.

(3.21)

As done for IMEXRKiCB3(4s), we choose δ = 1/24, since this choice is equal to impos-

ing τ
(4)EEE

4
= 0. With this choice of δ, it was found that ε = 1/144 produces a stability

region with the largest extension along the imaginary axis, i.e. 2
√

3. Interestingly, any

value of ε higher than 1/144 results in a stability region which does not include the entire

portion of the imaginary axis between the origin and the furthest intersection of said region

with the imaginary axis. For this reason, during the process of designing the scheme coef-
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ficients, only those schemes with ε close enough but not exceeding 1/144 are considered.

Coefficients derivation is carried out as follows: first, the four ci coefficients are

chosen in the range [0, 1]. Then, equations τ
(1)E

1
= 0, τ

(2)E

1
= 0, and τ

(3)E

1
= 0 are solved,

together with SO1 condition, for the coefficients bE
1,2,3, and all the aI

i,i and aE
i,i−1. The re-

sulting expressions are replaced into τ
(3)EE

2
= 0, and τ

(4)EEE

4
= 0. Solving this system of

nonlinear equations gives six solutions for bE
4

and bE
5
. Differently from IMEXRKiCB3(4s)

and IMEXRKiCB3(4s+), this step requires the solution of a sixth-order polynomial, hence

an analytic expression for the corresponding Butcher coefficients is not available. The re-

maining coefficients are determined by first setting bI
1
= 0. This allows to suppress the first

column of the Butcher tableau associated to the implicit part in (3.20) and, together with

FSAL condition, it guarantees L-stability. Then, equations τ
(3)IE

2
= 0 and τ

(3)EI

2
= 0, after

replacing the numerical values of bE
i
, are solved, together with τ

(1)I

1
= 0, τ

(2)I

1
= 0 and SO1

condition, in order to determine bI
2,3,4,5

. Finally, the quadratic equation τ
(3)II

2
= 0 is solved

for bI
6
. Overall, twelve solutions are obtained for each choice of ci.

Search over the 4-dimensional parameter space gives the five-step scheme IMEXR-

KiCB3(5s) reported in Table 3.4. The truncation error norm A(4) equals 0.0121, which is

five times smaller than IMEXRKiCB3(4s). The stability regions for the implicit and ex-

plicit part are reported in Figures 3.2k-l. The imaginary stability limit for the explicit

component is 3.3129, which is less than 5% away from the achievable limit. Remarkably,

the imaginary stability of IMEXRKiCB3(5s) for the explicit part is nearly twice as big as

that achievable within the three-step formulation.
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Table 3.4: Optimal parameters for the third-order, L-stable, five-step incremental

IMEXRK scheme IMEXRKiCB3(5s).

Butcher coefficients

Parameter Value

bI
1

0

bI
2

637517882999/1527388578735

bI
3

−227762052797/1215799173540

bI
4

523301946593/1108095937880

bI
5

393321793971/1670714051336

bI
6

30593761609/491309463172

aI
2,2

6/25

aI
3,3

541585733727/2432898737681

aI
4,4

315106973550/1086783771481

aI
5,5

116591638520/589766421481

bE
1

581140573286/7425488636757

bE
2

299446732045/1101443065238

bE
3

−258748134110/1807994379809

bE
4

451687329886/916200602845

bE
5

294496188261/981711902785

aI
2,1

6/25

aI
3,2

154015187090/274176653309

aI
4,3

102238376128/601864533117

aI
5,4

529485677295/764067597889

c2 6/25

c3 16/25

c4 13/25

c5 9/10
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Table 3.4: Optimal parameters for the third-order, L-stable, five-step incremental

IMEXRK scheme IMEXRKiCB3(5s) (continued from previous page).

Incremental-form coefficients

Parameter Value

αI
1

6/25

βI
1

0

αI
2

541585733727/2432898737681

βI
2

87814798181/495035914552

αI
3

315106973550/1086783771481

βI
3

−888759388641/2167999316938

αI
4

116591638520/589766421481

βI
4

219266163916/1202718563581

αI
5

30593761609/491309463172

βI
5

21089212573/558948398641

βE
1

6/25

γE
1

0

βE
2

154015187090/274176653309

γE
2

−190760799409/1179450149947

βE
3

102238376128/601864533117

γE
3

−310203039833/1070147534785

βE
4

529485677295/764067597889

γE
4

−178427905715/570088596477

βE
5

294496188261/981711902785

γE
5

−78529999193/392684761114
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Figure 3.2: Stability regions for the incremental IMEXRK schemes considered in this

chapter.
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3.5 Numerical experiments

In order to verify the order of accuracy of the schemes here derived and assess their

performance in the representation of some statistics of interest during the simulation of

turbulence, the one-dimensional Kuramoto-Sivashinsky equation (KSE) is used

∂u

∂t
= −u

∂u

∂x
− ν

(
∂2u

∂x2
+
∂4u

∂x4

)
, (3.22)

where u(x, t) is the velocity field and ν is the viscosity. This equation is of particular

interest since, like the NSE, it possesses a nonlinear convective term. Besides, it has a

destabilizing second derivative and a stabilizing fourth derivative, which allow to generate

and maintain a turbulent behavior. A periodic domain x ∈ [0, 400] is considered and

1024 equally-spaced grid points are used for discretization. This allows to adopt a pseudo-

spectral approach for the discretization of all spatial derivatives, with the convective term

evaluated in conservative form, i.e. u ∂u/∂x = ∂(u2/2)/∂x, with 2/3 rule for de-aliasing.

The four schemes developed in this chapter, together with CN/RKW3 and IMEX-

RKiSMR are used to time march the KSE in (3.22) over a prescribed time horizon, assum-

ing ν = 0.5 and the initial condition

u(x, 0) = sin(π/2 x) + sin(3π/4 x), (3.23)

with a small Gaussian perturbation added in order to trigger chaotic behavior. The second-

and fourth-derivatives are treated implicitly, while the convective term is advanced explic-

itly.

The first batch of simulations is performed in order to verify the theoretical or-
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Figure 3.3: Relative error as a function of the step size for the schemes considered in

this chapter when applied to the integration of KSE: CN/RKW3 (red), IMEXRKiSMR

(magenta), IMEXRKiCB2(3s) (orange), IMEXRKiCB3(4s) (blue),

IMEXRKiCB3(4s+) (cyan), and IMEXRKiCB3(5s) (green).

der of accuracy. This is achieved by integrating the KSE over a time horizon of 10 time

units with a constant time step ranging from 10−3 to 10−1. Results are compared to a ref-

erence solution obtained by integrating the KSE using the fourth-order IMEXRK scheme

ARK4(3)6L[2]SA [7] with a constant time step ∆t = 10−5. Results (see Figure 3.3) con-

firm the theoretical prediction, with all our schemes except IMEXRKiCB2(3s) achieving

full third-order accuracy while CN/RKW3 and IMEXRKiSMR being only second order

overall. In this figure, relative error is defined as the square root of the sum of the squared

difference between the computed solutions and the reference at each grid point, divided by

the norm of the reference solution.

A second analysis we performed aims at assessing how different time stepping

schemes affect the correct representation of average statistics. To this matter, we inte-

grated the KSE over an horizon of 1000 time units, starting from initial conditions (3.23),

and we used the time-averaged energy spectrum for comparison. The velocity field u(x, t)

obtained is shown in Figure 3.4.

Three different settings have been considered: the first one assumes a constant step
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2

Table 3.5: Summary of the properties of the six incremental IMEXRK schemes

considered in the chapter.

Scheme Steps
Extra

storage

Accuracy

order
σ∞ CFLlim CFLlim / Steps

Truncation

error

CN/RKW3 3 - 2 1.00 1.7321 0.577 A(3) = 0.0353

IMEXRKiSMR 3 - 2 0.47 1.7321 0.577 A(3) = 0.0193

IMEXRKiCB2(3s) 3 No 2 0.34 1.7321 0.577 A(3) = 0.0179

IMEXRKiCB3(4s) 4 No 3 0.0325 2.7838 0.696 A(4) = 0.0592

IMEXRKiCB3(4s+) 4 Yes 3 0.0 2.8217 0.705 A(4) = 0.0698

IMEXRKiCB3(5s) 5 No 3 0.0 3.3129 0.663 A(4) = 0.0121
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Figure 3.4: Isocontours −0.5 and +0.5 of the velocity field u(x, t) propagated through

the KSE over an horizon of 1000 time units.

size ∆t = 0.4, which proves to be stable for all the schemes. Then, simulations are per-

formed using the maximum time step allowed at each iteration by the CFL limit condition,

i.e.

∆t = CFLlim min∆x/|ui| (3.24)

where CFLlim corresponds to the imaginary stability limit of the explicit component for

each incremental scheme. The last set of simulations is performed considering a con-

stant ∆t for each scheme such that the computational time for all simulations is the same,

i.e. ∆t = 0.3 for CN/RKW3, IMEXRKiSMR, and IMEXRKiCB2(3s), ∆t = 0.4 for

IMEXRKiCB3(4s) and IMEXRKiCB3(4s+), and ∆t = 0.5 for IMEXRKiCB3(5s). The

average energy spectrum used as reference is generated after marching the KSE with

ARK4(3)6L[2]SA using a constant time step ∆t = 10−3.

Results show that not only our schemes outperform the schemes in literature when
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(a) Results with constant time step ∆t = 0.4 for all schemes
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(b) Results with time step ensuring the same computational time for all schemes
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(c) Results with step size recalculated at each iteration using the CFL limit of each

scheme

Figure 3.5: Average energy spectrum (left) of the KSE solution propagated using

different time stepping schemes and relative error (right) with respect to the reference

solution: CN/RKW3 (red), IMEXRKiSMR (magenta), IMEXRKiCB2(3s) (orange),

IMEXRKiCB3(4s) (blue), IMEXRKiCB3(4s+) (cyan), and IMEXRKiCB3(5s)

(green). Reference solution is shown in the left figures with a solid black line.
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the same step size is considered (Figure 3.5a) due to the improved order of accuracy, but

they reveal superior even when the same computational time for all schemes is considered

(Figure 3.5b), or when the CFL limit is used to calculate the time step at each iteration

(Figure 3.5c). In particular, IMEXRKiCB2(3s) slightly outperforms the schemes from

literature in all three tests, while a more substantial difference can be appreciated for the

three third order schemes, which show comparable results when the same time step is used.

Similar results are obtained for the simulations performed considering the same compu-

tational time, with IMEXRKiCB3(5s) showing slightly worse performance with respect

to the other third order schemes. Interestingly, IMEXRKiCB3(5s) shows the best per-

formance for those tests in which the time step is calculated according to the CFL limit,

with a significant difference with respect to IMEXRKiCB3(4s) and IMEXRKiCB3(4s+).

This is somehow unexpected since the increased CFL limit of IMEXRKiCB3(5s) com-

ports bigger time steps. However, the reduction in the truncation error with respect to the

four-step schemes is such that no degradation of performance is observed. Nonetheless, the

increased computational cost that a five-step scheme requires with respect to performing

just three or four steps must be accounted for. To this matter, we introduced a measure of

efficiency for these family of schemes, defined as the ratio between the CFL limit and the

number of steps required. As shown in Table 3.5, the efficiency for the four-step schemes is

over 20% higher than that of the three-step schemes, while the five-step scheme IMEXR-

KiCB3(5s), despite offering the highest CFL limit, has an efficiency which is slightly lower.

This means that for those simulations in which only the steady-state value of some average

statistics is the main concern, IMEXRKiCB3(4s) or IMEXRKiCB3(4s+) should be pre-

ferred, while IMEXRKiCB3(5s) represents the optimal choice when the primary interest

is in the accuracy of the simulation.
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Figure 3.6: Comparison of stability regions of the explicit component for the four

schemes derived in this chapter.

3.6 Conclusions

We have developed four new incremental IMEXRK schemes for the time integra-

tion of the NSE. Their features and properties are summarized in Table 3.5. All such

schemes prove to outperform the only two other incremental IMEXRK schemes available

in literature, i.e. CN/RKW3 and IMEXRKiSMR. In particular, they offer better overall

accuracy, increased CFL limit (see Figure 3.6 for a comparison), and better asymptotic sta-

bility for the implicit part. Remarkably, this is achieved while retaining the same storage

requirements, except for the case of IMEXRKiCB3(4s+), which requires one additional

register. Simulations leveraging the KSE show that not only these schemes improve the

overall time accuracy of the solution but they also provide a more precise representation

of the average energy spectrum at the highest wavenumbers, as compared to the schemes

from literature. In particular, these schemes prove superior not only considering the same

time step, but also accounting for the increased computational time their implementation

requires. Even simulations with a time step based on the CFL limit of each scheme provide

better results. However, it was also observed that the increased CFL limit justifies the in-
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creased computational cost when switching from a three-step (such as IMEXRKiCB2(3s))

to a four-step scheme (such as IMEXRKiCB3(4s) or IMEXRKiCB3(4s+)), while the ad-

ditional gain obtained leveraging a five-step scheme (i.e. IMEXRKiCB3(5s)), is overshad-

owed by the extra computational cost its implementation requires.

Finally, one could argue that better performances could be achieved with a six-step

scheme, since three extra degrees of freedom could be leveraged to improve the overall ac-

curacy and the CFL limit. However, the 18 free parameters are not enough to satisfy all 21

constraints needed to achieve fourth order accuracy. Nonetheless, a reduction in the trunca-

tion error could be expected. To this matter, we want to point out that IMEXRKiCB3(5s)

is already ten times smaller than the error of the low-storage IMEXRK schemes presented

in [26] and six time smaller than the state-of-the-art full-storage third-order IMEXRK

scheme in Kennedy et al. [7]. Besides, the gain in the CFL limit would not justify the

additional step, as already observed when comparing four- and five-step schemes.

Future work involves the implementation of the schemes here developed into a DNS

code for the simulation of a fully-developed turbulent channel flow. Results will be com-

pared to the schemes currently employed in literature, i.e. CN/RKW3 and IMEXRK-

iSMR. However, we want to remark that while the implementation of such schemes appear

straightforward in case a velocity-vorticity formulation is adopted when discretizing the

NSE, more effort is instead needed in case a fractional step implementation is sought. In

particular, the splitting of the pressure term, which introduces a second order error and

which does not appear in the velocity-vorticity formulation, is acceptable whenever an

overall second-order time stepping scheme, such as CN/RKW3, is used, while it turns out

to dominate the time discretization error when higher order schemes are employed, as we

intend to do. For this reason, a third order correction term accounting for this splitting error
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needs to be introduced, like the one proposed in [32], in order to recover the actual order

of accuracy.
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Chapter 4

Tweed and box relaxation: improved

smoothing algorithms for multigrid

solution of elliptic PDEs

on stretched structured grids

4.1 Introduction

Geometric multigrid methods are among the fastest techniques available for the nu-

merical solution of the large linear systems arising from the high-resolution discretization

of elliptic PDEs on structured grids [33], and can generally be implemented efficiently on

parallel architectures [34]. Multigrid methods have also been extended to handle certain

non-elliptic PDEs (see [35] and the references in it). Appropriate relaxation schemes for

the smoothing step are essential to accelerate the convergence of multigrid methods. This

chapter examines two new relaxation schemes that are well suited for multigrid methods

89
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on stretched grids.

A typical model problem used to evaluate multigrid performance is the solution

of the elliptic 2D Poisson equation with Dirichlet boundary conditions, written here in its

general (heterogenous, anisotropic) form:

∂

∂xi

(
σi j

∂u

∂x j

)
= f (x, y) in Ω = [0, Lx] × [0, Ly], (4.1a)

u = g(x, y) on ∂Ω, (4.1b)

where x and y are the spatial coordinates, Ω is the domain of interest, ∂Ω is the boundary

of Ω, and the matrix with components σi j(x, y) is symmetric positive definite. In isotropic

media, σi j(x, y) = c(x, y) δi j. In homogeneous media, σi j(x, y) is constant in x and y. A

system of this form may be isotropic, homogeneous, both, or neither.

To demonstrate our new method, we will consider the discretization of (4.1) in the

homogeneous isotropic case, with σi j(x, y) = δi j, on a stretched rectilinear grid in which

all cells are rectangles (in 2D) or rectangular cuboids (in 3D); the extension of this method

to anisotropic, inhomogeneous systems, curvilinear grids, other elliptic PDEs, and other

boundary conditions follows using standard methods. Discretization of this problem on

an (nx + 1) × (ny + 1) stretched grid using a second-order central finite difference method,

with xi and y j denoting the grid coordinates in the x and y directions, respectively, and ui, j

denoting the discretized value of u at the {i, j} gridpoint, leads to a five-point discretization

of the Laplacian:

Wi ui−1, j + Ei ui+1, j + S j u j−1, j + N j ui, j+1 +Ci, j ui, j = fi, j, i = 2, . . . , nx, j = 2, . . . , ny, (4.2a)

u1,∗, unx+1,∗, u∗,1, u∗,ny+1 specified, (4.2b)
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Figure 4.1: Gridpoint arrangement for checkerboard smoothing.

where ∆xi−1/2 = xi − xi−1, ∆y j−1/2 = y j − y j−1, ∆xi = (∆xi−1/2 + ∆xi+1/2)/2, ∆y j = (∆y j−1/2 +

∆y j+1/2)/2, and

Wi =
1

∆xi∆xi−1/2

, Ei =
1

∆xi∆xi+1/2

, S j =
1

∆y j∆y j−1/2

, N j =
1

∆y j∆y j+1/2

,

and Ci, j = −(Wi + Ei + S j + N j). It is thus seen that, even if the PDE is homogeneous

and isotropic, grid stretching causes the discretized Poisson equation (4.2) to be inhomoge-

neous (with coefficients varying as a function of position) and anisotropic (with coefficients

varying as a function of direction).

In the case of an unstretched grid (with ∆x and ∆y constant in both x and y), we

have Wi = Ei = 1/(∆x)2 and S j = N j = 1/(∆y)2; that is, the discretization of the Lapla-

cian becomes homogeneous. Further, if ∆x = ∆y, the discretization of the Laplacian also

becomes isotropic, with Wi = Ei = S j = N j. As is well known (see [35]), for the case

with no grid stretching, standard smoothing approaches such as checkerboard (also called

red-black point Gauss-Seidel) relaxation (see Figure 4.1) performs exceptionally well when

applied within the multigrid framework (see, e.g., [36]). As discussed in §4.4, performance

of checkerboard relaxation starts to decay significantly when grid stretching is introduced.

When grid stretching is performed, gridpoints are clustered (that is, denser) in some
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directions more than others in certain regions of the computational domain, and thus two-

delta waves in the error of the solution (that is, gridpoint-to-gridpoint oscillations, which

checkerboard smoothing proves most effective at eliminating) are at mismatched spatial

wavenumbers in different spatial directions in these regions. When this happens, common

wisdom [35] is that zebra relaxation (that is, line relaxation on lines of alternating “color”)

should be applied in the direction orthogonal to the local direction of densest grid cluster-

ing. For example, in a square computational domain with grid clustering near the upper

and lower boundaries, zebra relaxation along the lines which are orthogonal to these two

boundaries proves to be quite effective, whereas zebra relaxation along lines in the opposite

direction proves to be much less effective. In a 2D or 3D computational domain with grid

clustering in multiple directions (see, e.g., Figure 4.2), zebra relaxation in one direction

alone is ineffective. In such case, alternating-direction zebra relaxation, in which zebra

relaxation is performed in each coordinate direction in succession (see Figure 4.3), is com-

monly the method used, and with it the rapid convergence of the multigrid approach may

be recovered. Note, however, that with the alternating-direction zebra relaxation approach,

in any given region, the lines upon which relaxation is performed are orthogonal to the

local direction of densest grid clustering during only half of the sweeps in the 2D case, and

during only a third of the sweeps in the 3D case.

Thus, rather than requiring two sweeps of zebra relaxation in 2D, or three sweeps of

zebra relaxation in 3D, simply to get the relaxation lines used to be locally oriented to the

local direction of densest grid clustering during a fraction of the sweeps, we instead suggest

a more effective motif for the line smoother. The algorithm described in this chapter rep-

resents, we believe, the first attempt at developing a line smoother for multigrid relaxation

which relaxes efficiently on branched lines that are locally-orthogonal to the local direc-
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(a) Hyperbolic tangent

stretching (4.7), c = 1.5

(b) Hyperbolic tangent

stretching (4.7), c = 3.0

(c) Hyperbolic tangent

stretching (4.8), c = 1.5

Figure 4.2: 2D stretched grids with clustering near the walls (a) and (b), and clustering

near the center (c).

tions of densest grid clustering everywhere in the computational domain, even when grid

clustering is applied in multiple directions, as indicated in Figure 4.2 for the 2D case.

Towards this end, two different smoothers have been developed, which we denote

tweed and box relaxation. Tweed relaxation efficiently addresses the problem of near-wall

grid clustering (see Figure 4.2a-b), whereas box relaxation addresses grid clustering near

the center (see Figure 4.2c). The key idea behind the tweed motif (see Figure 4.4) is to

perform relaxation in blocks of connecting lines arranged in such a way as to make such

lines everywhere perpendicular to the closest domain boundary. Red-black alternation, ap-

plied in a zebra-like fashion, makes the relaxation of each block independent from the other

blocks of the same color. The key idea behind the box motif (see Figure 4.5), in contrast, is

to perform relaxation in blocks of connecting lines arranged in such a way as to make such

lines everywhere perpendicular to the closest coordinate plane through the center of the

domain (and which are, thus, everywhere parallel to the closest domain boundary). Again,

red-black alternation, applied in a zebra-like fashion, makes the relaxation of each block

independent from the other blocks of the same color. Note that the tweed and box motifs

extend naturally to 3D, as illustrated in Figures 4.6 and 4.7, respectively.
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(a) x-direction smoothing (b) y-direction smoothing

Figure 4.3: Relaxation motifs for 2D alternating-direction zebra smoothing.

(a) Square grid (nx = ny) (b) Rectangular grid (nx > ny)

Figure 4.4: Relaxation motif for 2D tweed smoothing.

(a) Square grid (nx = ny) (b) Rectangular grid (nx > ny)

Figure 4.5: Relaxation motif for 2D box smoothing.
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(a) Square grid (nx = ny = nz)

(b) Rectangular grid (nx > ny > nz)

Figure 4.6: Relaxation motif for 3D tweed smoothing.



96

(a) Square grid (nx = ny = nz)

(b) Rectangular grid (nx > ny > nz)

Figure 4.7: Relaxation motif for 3D box smoothing.
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The outline of this chapter is as follows. Section 4.2 introduces the technical de-

tails regarding the implementation of tweed and box relaxation for the solution of 2D and

3D elliptic PDEs. Section 4.3 shows how to implement tweed and box relaxation in the

smoothing step of the multigrid algorithm, and derives convergence factors for different

combinations of smoothers, restriction schemes, and number of smoothing steps. Sec-

tion 4.4 presents convergence results of multigrid with tweed and box relaxation applied

to the solution of (4.2), and the results are compared with other available smoothing ap-

proaches. Conclusions and future work are discussed in Section 7.5.

4.2 Tweed and box relaxation

Tweed relaxation iteratively solves the linear system of equations arising from the

second-order central discretization of second-order 2D or 3D elliptic PDEs. A prototypical

example is given in (4.2); for convenience, we take nx and ny (and, in the 3D case, nz)

as even. As depicted in Figure 4.4, starting from each corner (labelled as “red”), points

are labeled in blocks of alternating colors by forming horizontal and vertical lines of points

drawn perpendicular to the domain boundaries, and extended until such lines connect inside

the domain. Due to the loose visual analogy between such gridpoint arrangements and

certain cloth textures, this smoothing scheme has been dubbed “tweed” relaxation. In the

2D case with nx = ny, as illustrated in Figure 4.4a, four legs of the same color converge at

the center of the domain. In the 2D case with nx , ny, as illustrated in Figure 4.4b, two

three-legged blocks arise, and the remaining gridpoints in the central part of the domain are

connected by lines of alternating color perpendicular to the closest boundaries.

Following an approach analogous to that used in zebra relaxation, in tweed relax-

ation, (4.2) is first solved exactly at each red point while holding the values of the unknowns
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Figure 4.8: Tweed motif near a corner of a 2D domain. Blue dashed lines indicate the

domain boundaries where the value of the unknown is specified.

at the black points fixed, then (4.2) is solved exactly at each black point while holding the

values of the unknowns at the red points fixed. In the case of zebra relaxation, such an

approach leads, for each (linear) block, to a single tridiagonal system of equations that

may be solved efficiently using Thomas algorithm. In the case of tweed relaxation, this

approach leads, for each block other than the corners1, to m tridiagonal systems that are

interconnected at a common branch point, where m = 2, 3, or 4; an efficient technique to

solve this subproblem2, which we refer to as the m-legged Thomas algorithm, is discussed

in [37] and chapter 5. In short, the m-legged Thomas algorithm performs a forward sweep

from the tips of each leg in towards the branch point, then performs a solve relating the

branch point to the points nearest to the branch point along each leg, then performs a back

substitution going back out to the tips of each leg.

To illustrate, consider the iterative solution of (4.2) over a uniform grid; the block

of red points that connect at the (4, 4) gridpoint in Figure 4.8 in this case are governed by

1At the corners, simple pointwise relaxation is performed.
2Note that the case with m = 2 can, of course, be solved directly with the Thomas algorithm itself.
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the following equations:



1

1/∆x2 −2/∆x2 − 2/∆y2 1/∆x2

1/∆x2 −2/∆x2 − 2/∆y2 1/∆x2





u1,4

u2,4

u3,4



=



g1, 4

f2, 4 − (u2,3 + u2, 5)/∆y2

f3, 4 − (u3,3 + u3, 5)/∆y2



,



1

1/∆y2 −2/∆x2 − 2/∆y2 1/∆y2

1/∆y2 −2/∆x2 − 2/∆y2 1/∆y2





u4,1

u4,2

u4,3



=



g4,1

f4, 2 − (u3,2 + u5, 2)/∆x2

f4, 3 − (u3,3 + u5, 3)/∆x2



,

[
1/∆x2 1/∆y2 −2/∆x2 − 2/∆y2

]


u3,4

u4,3

u4,4



= f4, 4 − u5, 4/∆x2 + u4,5/∆y2.

More generally, each tweed relaxation involving m legs of length p + 1 (including the

branch point) can be formulated as the solution of a system of linear equations of the

following form:
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. . .
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...
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i = 1, 2, . . . ,m, (4.3)

[
d1 d2 . . . dm dm+1

]



x
(1)
p

x
(2)
p

...

x
(m)
p

xcenter



= rcenter; (4.4)
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note that, on a stretched grid, the computations of the RHS terms ri
j
along the legs typically

require 4 flops. This system of mp + 1 equations in mp + 1 unknowns can be solved

efficiently by applying an m-legged extension of the Thomas algorithm, as described in

detail in [37]. A system of equations like the one in (4.4) requires 8mp +m + 1 operations.

Tweed relaxation applied to the iterative solution of (4.2) over an n × n square grid

requires, at each iteration, 4 pointwise relaxations (one for each corner), 2(n−3) two-legged

Thomas solves with legs of increasing size starting from the corners of the domain towards

the center, and one four-legged Thomas relaxation for the center cross. Hence, applying a

full round of tweed relaxation requires:

• Corners: 4 × 9 = 36 (Pointwise relaxation)

• Corner legs: 4 ×
(n−3)/2∑

i=1

[
(8 i + 4) (RHS computation) + mLThomas(p = i, m = 2)

]
=

12 n2 − 34 n − 6

• Center cross: 4 × 2(n − 1) (RHS computation) + 1 × mLThomas(p = (n − 1)/2, m =

4) = 24 n − 19

Overall, 12 n2 − 10 n + 11 flops are needed (to leading order, taking N = n2, ∼ 8N for the

forward sweeps and back substitutions, as in the regular Thomas algorithm, and ∼ 4N for

the RHS computations).

The extension of tweed relaxation to 3D is straightforward, as illustrated in Fig-

ure 4.6. As with the 2D scheme, the eight corner points are first relaxed using a pointwise

smoother. Then, starting from the corners, points are relaxed in blocks of alternate col-

ors, each composed of m = 2 or 3 legs. If nx > ny > nz, as illustrated in Figure 4.6b, or

nx = ny > nz (not pictured), four m = 4 blocks arise, with the y − z and x − z planes in the

center of the 3D grid covered with the 2D motif illustrated in Figure 4.4b. If nx > ny = nz

(not pictured), two blocks with m = 5 arise, with the y−z planes in the center of the 3D grid
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covered with the 2D motif illustrated in Figure 4.4a. If nx = ny = nz, as illustrated in Fig-

ure 4.6a, a single m = 6 block arises in the center. In all cases, it is seen that each gridpoint

is a member of exactly one relaxation block. Further, for large grids, the number of points

on the legs dominates the number of branch points. Thus, to leading order, the computa-

tion cost of 3D tweed for large grids is the same as that of a single set of sweeps (that is,

in a single direction) of 1D zebra relaxations. However, on a grid that is stretched in three

directions, the 3D alternating-direction zebra scheme requires three successive sweeps of

1D zebra relaxations, one in each direction. Hence, the leading-order computational cost

of 3D tweed relaxation is one third that of the three sweeps of the 3D alternating-direction

zebra scheme for such problems.

The 2D box relaxation strategy starts by performing a block relaxation on all points

adjacent to the boundaries, and proceeds towards the center while alternating the color of

the blocks. This creates a pattern of concentric box-shaped blocks of alternate color, as

depicted in Figure 4.5. The relaxation scheme terminates with one pointwise relaxation if

nx = ny, as shown in Figure 4.5a, or with one line relaxation in the x direction if nx > ny, as

shown in Figure 4.5b. To illustrate, consider the iterative solution of (4.2) over a uniform

grid, with a red box with corners (2, 2), (2, 4), (4, 2), (4, 4), as depicted in Figure 4.9. The

tridiagonal circulant system of equations associated with such a relaxation is:



−2/∆x2 − 2/∆y2 1/∆x2 1/∆y2

1/∆x2 −2/∆x2 − 2/∆y2 1/∆x2

1/∆x2 −2/∆x2 − 2/∆y2 1/∆y2

1/∆y2 −2/∆x2 − 2/∆y2 1/∆y2

1/∆y2 −2/∆x2 − 2/∆y2 1/∆x2

1/∆x2 −2/∆x2 − 2/∆y2 1/∆x2

1/∆x2 −2/∆x2 − 2/∆y2 1/∆y2

1/∆y2 1/∆y2 −2/∆x2 − 2/∆y2





u2, 2

u3, 2

u4, 2

u4, 3

u4, 4

u3, 4

u2, 4

u2, 3



=



f2, 2 − u1, 2/∆x2 − u2, 1/∆y2

f3, 2 − u3, 1/∆y2 − u3, 3/∆y2

f4, 2 − u4, 1/∆y2 − u5, 2/∆x2

f4, 3 − u3, 3/∆x2 − u5, 3/∆x2

f4, 4 − u5, 4/∆x2 − u4, 5/∆y2

f3, 4 − u3, 5/∆y2 − u3, 3/∆y2

f2, 4 − u2, 5/∆y2 − u1, 4/∆x2

f2, 3 − u1, 3/∆x2 − u3, 3/∆x2



(4.5)

More generally, each box relaxation involving a block of n points connected together re-
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Figure 4.9: Box relaxation scheme for a 5 × 5 uniform grid on a Cartesian domain. Blue

dashed lines indicate the domain boundaries, red lines connect the gridpoints involved in

the same block relaxation.

quires the solution of the following linear system:



b1 c1 a1

a2 b2 c2

. . .
. . .

. . .

am−1 bm−1 cm−1

cm am bm





x1

x2

...

xm−1

xm



=



r1

r2

...

rm−1

rm



(4.6)

The circulant tridiagonal system in (4.6) can be solved using a periodic (a.k.a. circulant)

Thomas solver such as that introduced in [38]. A minimal storage implementation of such

algorithm is presented in [37]. For an m×m system like that in (4.6), the circulant Thomas

solver requires 14m− 16 flops, which is about 14/8 = 1.75 times the computational cost of

the Thomas algorithm for tridiagonal systems.

Box relaxation applied to the iterative solution of (4.2) over an n × n square grid

requires, at each iteration, 1 pointwise relaxation at the center point and (n−1)/2 concentric

box relaxations. Hence, applying a full round of box relaxation requires:
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• Center point: 9 (Pointwise relaxation)

• Elsewhere:
(n−1)/2∑

i=1

[
32 i (RHS computation) + CircThomas(m = 8 i)

]
= 18 n2−8 n−10

Overall, 18 n2 − 8 n − 1 flops are needed (to leading order, taking N = n2, ∼ 14N for

the circulant Thomas solves, and ∼ 4N for the RHS computations), which makes box

relaxation about 50% more expensive than tweed relaxation.

The extension of box relaxation to 3D is illustrated in Figure 4.7. Starting from the

faces of the 3D domain, gridpoints are relaxed in blocks covering the faces of concentric

3D rectangular cuboids filling the domain. Along all the edges of each such rectangular

cuboid, a 3D box extension of the Thomas algorithm used, as discussed in [37]. Within

each of the six faces of each such rectangular cuboid, a sequence of concentric 2D box

relaxations is performed, using the circulant Thomas algorithm, as illustrated in Figure 4.5.

If nx = ny = nz, as illustrated in Figure 4.7a, this sequence of relaxations includes a point

relaxation at the center of each face of each box. If nx > ny > nz, as illustrated in Figure

4.7b, this sequence of relaxations includes a line relaxation at the center of each face of

each box.

Another approach worth mentioning is the sequential application of tweed and box

relaxation, akin to alternating-direction zebra relaxation. In the 2D case, this alternating

tweed/box relaxation approach requires ∼ 30 n2 flops, which makes it 20% more expensive

than alternating-direction zebra relaxation. This approach might prove useful whenever

grid clustering does not happen only in localized regions either near the center or close to

the boundaries, but stretching is present in several different areas of the domain.

Considering other 2D relaxation schemes, ∼ 9 n2 flops are required for checker-

board relaxation of (4.2) on an n × n grid, as 9 flops are required at each gridpoint, and

∼ 12 n2 flops are required for one-direction zebra relaxation of (4.2) on an n×n grid, as the
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Thomas algorithm requires ∼ 8 n flops and the computation of the RHS requires 4 n flops

on each of n lines; it follows that ∼ 24 n2 flops are required for alternating-direction zebra

relaxation. In other words, tweed relaxation has a computational cost which is comparable

to one-direction zebra relaxation, and is about half the computational cost of alternating-

direction zebra relaxation. The computational cost of box relaxation is about 25% less than

alternating-direction zebra relaxation.

In the following two sections, a multigrid algorithm is applied to (4.2) leveraging

the tweed and box relaxation schemes discussed above, and performance is compared (both

analytically and numerically) with multigrid leveraging the traditional checkerboard and

zebra relaxation schemes.

4.3 Multigrid algorithm and convergence analysis

Consider the problem of solving (4.2), of the form Lu = f , on a stretched (nx +

1) × (ny + 1) grid Ωp (including boundary points) via a multigrid algorithm, with nx = 2 p a

and ny = 2 p b where a and b are small positive integers, at least one of which is odd. The

multigrid algorithm leverages a sequence of grids Ωp,Ωp−1, . . . ,Ω0, where Ωℓ−1 is obtained

by coarsening Ωℓ by a factor of two in each direction (that is, removing every other interior

grid line in each direction), and thusΩ0 is (a+1)×(b+1). We indicate withLℓ the discretized

Laplacian on Ωℓ, as defined in (4.2), and will iterate on a sequence of discretized Poisson

problems of the form Lℓuℓ = f ℓ on Ωℓ for ℓ ∈ [0, p]. A skeleton V-cycle linear multigrid

algorithm is composed of the following steps:

(1) Initialize up = 0 and ℓ = p.

(2) Apply ν1 pre-smoothing relaxations to the problem Lℓuℓ = f ℓ on the grid Ωℓ.
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(3) Compute the remaining defect dℓ = f ℓ −Lℓuℓ of the solution uℓ, and restrict this defect

dℓ from Ωℓ to the next coarser grid Ωℓ−1, calling the result f ℓ−1. Set ℓ ← ℓ − 1.

(4) If ℓ > 0, initialize uℓ = 0 and repeat from (2); otherwise, solve L0u0 = f 0 for the

correction u0 directly.

(5) Prolongate the correction uℓ on Ωℓ to the next finer grid Ωℓ+1, calling the result vℓ+1,

and update the solution uℓ+1 defined on Ωℓ+1 with the correction vℓ+1; that is, take

uℓ+1 ← uℓ+1 + vℓ+1. Set ℓ← ℓ + 1.

(6) Apply ν2 post-smoothing relaxations to the problem Lℓuℓ = f ℓ on the grid Ωℓ. If

ℓ < p, repeat from (5); otherwise, repeat from (2) until the norm of the defect on Ωp,

|| f p − Lpup||, is sufficiently small.

The reason that the multigrid algorithm works so well is that most effective relaxation

schemes, such as checkerboard relaxation, smooth the error in the solution very quickly

(that is, they significantly refine the solution vector uℓ on the smallest scales representable

on the grid Ωℓ being used), but are inefficient at reducing the defect on the larger length

scales representable on the grid; thus, following the multigrid approach, the larger length

scales of the defect are addressed by applying smoothing to successively coarser represen-

tations of the problem at hand, as described above. There are various ways to accelerate the

multigrid algorithm. First, to reduce storage, the computation of the defect and its restric-

tion to the coarser grid, in step (3), can be combined into a single step, thereby eliminating

the need for the intermediate storage of dℓ. Similarly, the computation of the prolongation

of the correction, vℓ+1, and its use in updating the solution uℓ+1, in step (5), can also be

combined into a single step, thereby eliminating the need for storage of vℓ+1. Other cycling

strategies, performing more iterations at the coarser length scales, are sometimes used.
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Six different relaxation schemes are considered below for the smoothing applied at

steps (2) and (6), namely: checkerboard, one-direction zebra, alternating-direction zebra,

tweed, box, and alternating tweed/box. For the restriction step in (3), half weighting and

full weighting are considered: denoting with dℓ the defect on the gridΩℓ, and with f ℓ−1 this

defect restricted onto the next coarser grid Ωℓ−1, the half-weighting restriction operation is

f ℓ−1
i, j =

1

2
dℓ2i, 2 j +

1

8
(dℓ2i−1, 2 j + dℓ2i, 2 j−1 + dℓ2i+1, 2 j + dℓ2i, 2 j+1),

whereas the full-weighting restriction operation is

f ℓ−1
i, j =

1

4
dℓ2i, 2 j +

1

8
(dℓ2i−1, 2 j + dℓ2i, 2 j−1 + dℓ2i+1, 2 j + dℓ2i, 2 j+1)+

+
1

16
(dℓ2i−1, 2 j−1 + dℓ2i+1, 2 j−1 + dℓ2i−1, 2 j+1 + dℓ2i+1, 2 j+1).

For the prolongation step in (5), bilinear interpolation is used, which is the dual of the

full-weighting restriction operation: denoting with uℓ the correction on the grid Ωℓ, and

with vℓ+1 this correction prolongated onto the next finer gridΩℓ+1, the bilinear interpolation

operation is

vℓ+1
i, j =



uℓ
i/2, j/2

i = even, j = even

1
2
(uℓ

i/2, ( j−1)/2
+ uℓ

i/2, ( j+1)/2
) i = even, j = odd

1
2
(uℓ

(i−1)/2, j/2
+ uℓ

(i+1)/2, j/2
) i = odd, j = even

1
4
(uℓ

(i−1)/2, ( j−1)/2
+ uℓ

(i+1)/2, ( j−1)/2
+ uℓ

(i−1)/2, ( j+1)/2
+ uℓ

(i+1)/2, ( j+1)/2
) i = odd, j = odd

Calculation of two-grid convergence factors of the associated multigrid operator

provides a useful indication of the effectiveness of the combined application of different
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restriction and prolongation schemes, smoothers, and the number of pre-smoothing and

post-smoothing relaxations applied. To proceed, consider an (nx + 1)× (ny + 1) grid Ωℓ and

a coarsened (nx/2 + 1) × (ny/2 + 1) grid Ωℓ−1. Four different cases of grid stretching are

also considered: a uniform grid with ∆x = ∆y, and three stretched grids, two exhibiting

differing amounts of near-wall clustering, and one exhibiting near-center clustering. Near-

wall clustering of Ωℓ over the domain [0, Lx] × [0, Ly] is achieved with the hyperbolic

tangent stretching function

xi = (Lx/2){1 + tanh [c (2 i/nx − 1)]/ tanh c}, i = 0, . . . , nx,

y j = (Ly/2){1 + tanh [c (2 j/ny − 1)]/ tanh c}, j = 0, . . . , ny,

(4.7)

where c is a tuning parameter that determines the amount of stretching: c = 1.5 creates

mild stretching (see Figure 4.2a), and c = 3.0 creates more significant stretching (see Fig-

ure 4.2b). Near-center clustering is achieved with a simple shifted version of the stretching

function used in (4.7) such that

xi =



(Lx/2) tanh [2 c i/nx]/ tanh c, i = 0, . . . , nx/2,

(Lx/2){2 − tanh [c (2 − 2 i/nx)]/ tanh c}, i = nx/2, . . . , nx;

y j =



(Ly/2) tanh [2 c j/ny]/ tanh c, j = 0, . . . , ny/2,

(Ly/2){2 − tanh [c (2 − 2 j/ny)]/ tanh c}, j = ny/2, . . . , ny.

(4.8)

An example of a stretched grid generated using (4.8), with c = 1.5, is shown in Figure 4.2c.

We now denote the restriction operator from the fine to the coarse grid as Iℓ−1
ℓ

,

and the prolongation operator from the coarse grid to the fine grid as Iℓ
ℓ−1

. Pre- and post-

smoothing operators on Ωℓ are indicated as S
ν1
ℓ

and S
ν2
ℓ

, where ν1 and ν2 indicate the
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Table 4.1: Spectral radius of the two-grid multigrid operator Mℓ−1
ℓ

for the homogeneous

problem (i.e., a uniform grid) with respect to the number of smoothing steps ν for

different smoothers and restriction operators.

Half-weighting restriction

Smoother ν = 1 ν = 2 ν = 3 ν = 4 ν = 5 ν = 6

Checkerboard 0.4986 0.1238 0.0340 0.0240 0.0189 0.0155

One-direction zebra 0.5735 0.5014 0.4935 0.4905 0.4881 0.4858

Alternating-direction zebra 0.5836 0.5912 0.5868 0.5823 0.5778 0.5734

Tweed 0.5661 0.5032 0.4951 0.4919 0.4893 0.4869

Box 0.5494 0.5007 0.4929 0.4899 0.4874 0.4850

Alternating tweed/box 0.5833 0.5909 0.5865 0.5820 0.5775 0.5731

Full-weighting restriction

Smoother ν = 1 ν = 2 ν = 3 ν = 4 ν = 5 ν = 6

Checkerboard 0.2494 0.0739 0.0526 0.0408 0.0333 0.0283

One-direction zebra 0.2494 0.0622 0.0167 0.0116 0.0092 0.0077

Alternating-direction zebra 0.0839 0.0391 0.0265 0.0201 0.0162 0.0135

Tweed 0.2488 0.0621 0.0163 0.0109 0.0084 0.0069

Box 0.2465 0.0612 0.0161 0.0108 0.0084 0.0069

Alternating tweed/box 0.0830 0.0382 0.0257 0.0193 0.0154 0.0128

number of times the smoother is applied at each step. Following [35], the complete two-

grid multigrid operator, denoted Mℓ−1
ℓ

, is given by

Mℓ−1
ℓ = S

ν2
ℓ

(Iℓ − Iℓℓ−1L−1
ℓ−1Iℓ−1

ℓ Lℓ) S
ν1
ℓ
, (4.9)

where Iℓ is the identity matrix on the fine grid Ωℓ, and Lℓ and Lℓ−1 denote the discrete

Laplace operators on the fine and coarse grids, respectively.

Tables 4.1 through 4.4 show the computation of the spectral radius of the two-grid

multigrid operator Mℓ−1
ℓ

applied to the solution of (4.2) over a grid with nx = ny = 128

and Lx = Ly = 1 with half-weighting and full-weighting used for the restriction operation.

Since only the sum of pre- and post-smoothing steps affects the convergence of the two-grid

cycle, the spectral radius is reported as a function of the sum ν = ν1 + ν2.
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Table 4.2: Spectral radius of the two-grid multigrid operator Mℓ−1
ℓ

for the

inhomogeneous problem with near-wall clustering (4.7), taking c = 1.5, with respect to ν

for different smoothers and restriction operators.

Half-weighting restriction

Smoother ν = 1 ν = 2 ν = 3 ν = 4 ν = 5 ν = 6

Checkerboard 0.7900 0.6244 0.4936 0.3904 0.3090 0.2446

One-direction zebra 0.7921 0.6302 0.5113 0.4825 0.4774 0.4730

Alternating-direction zebra 0.6879 0.6385 0.6096 0.5903 0.5755 0.5629

Tweed 0.5478 0.4969 0.4867 0.4803 0.4744 0.4687

Box 0.7921 0.6302 0.5113 0.4840 0.4793 0.4754

Alternating tweed/box 0.6891 0.6490 0.6285 0.6138 0.6013 0.5899

Full-weighting restriction

Smoother ν = 1 ν = 2 ν = 3 ν = 4 ν = 5 ν = 6

Checkerboard 0.7855 0.6179 0.4867 0.3840 0.3035 0.2403

One-direction zebra 0.7863 0.6190 0.4879 0.3851 0.3043 0.2409

Alternating-direction zebra 0.0816 0.0344 0.0218 0.0162 0.0129 0.0107

Tweed 0.2108 0.0538 0.0257 0.0184 0.0143 0.0117

Box 0.7863 0.6190 0.4879 0.3851 0.3043 0.2409

Alternating tweed/box 0.0696 0.0286 0.0179 0.0126 0.0095 0.0073

Table 4.3: Spectral radius of the two-grid multigrid operator Mℓ−1
ℓ

for the

inhomogeneous problem with near-wall clustering (4.7), taking c = 3.0, with respect to ν

for different smoothers and restriction operators.

Half-weighting restriction

Smoother ν = 1 ν = 2 ν = 3 ν = 4 ν = 5 ν = 6

Checkerboard 0.9541 0.9103 0.8686 0.8287 0.7907 0.7545

One-direction zebra 0.9541 0.9104 0.8687 0.8290 0.7911 0.7550

Alternating-direction zebra 0.6356 0.5765 0.5395 0.5092 0.4821 0.4572

Tweed 0.5462 0.4799 0.4566 0.4386 0.4220 0.4062

Box 0.9541 0.9104 0.8687 0.8290 0.7911 0.7550

Alternating tweed/box 0.6538 0.6087 0.5743 0.5440 0.5161 0.4900

Full-weighting restriction

Smoother ν = 1 ν = 2 ν = 3 ν = 4 ν = 5 ν = 6

Checkerboard 0.9534 0.9090 0.8666 0.8263 0.7879 0.7512

One-direction zebra 0.9534 0.9091 0.8668 0.8265 0.7880 0.7514

Alternating-direction zebra 0.1002 0.0372 0.0219 0.0148 0.0110 0.0088

Tweed 0.1866 0.0537 0.0282 0.0204 0.0158 0.0135

Box 0.9534 0.9091 0.8668 0.8265 0.7880 0.7514

Alternating tweed/box 0.0987 0.0362 0.0223 0.0161 0.0125 0.0103
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Table 4.4: Spectral radius of the two-grid multigrid operator Mℓ−1
ℓ

for the

inhomogeneous problem with near-center clustering (4.8), taking c = 1.5, with respect to

ν for different smoothers and restriction operators.

Half-weighting restriction

Smoother ν = 1 ν = 2 ν = 3 ν = 4 ν = 5 ν = 6

Checkerboard 0.8865 0.7859 0.6968 0.6178 0.5478 0.4859

One-direction zebra 0.8876 0.7892 0.7047 0.6356 0.5822 0.5431

Alternating-direction zebra 0.7918 0.7463 0.7149 0.6911 0.6724 0.6574

Tweed 0.8876 0.7892 0.7047 0.6356 0.5823 0.5434

Box 0.5496 0.4974 0.4913 0.4888 0.4867 0.4846

Alternating tweed/box 0.5312 0.5433 0.5389 0.5353 0.5320 0.5289

Full-weighting restriction

Smoother ν = 1 ν = 2 ν = 3 ν = 4 ν = 5 ν = 6

Checkerboard 0.8826 0.7793 0.6884 0.6084 0.5380 0.4759

One-direction zebra 0.8829 0.7798 0.6891 0.6092 0.5388 0.4767

Alternating-direction zebra 0.0805 0.0375 0.0249 0.0185 0.0146 0.0119

Tweed 0.8829 0.7798 0.6891 0.6092 0.5388 0.4767

Box 0.1887 0.0408 0.0257 0.0195 0.0160 0.0136

Alternating tweed/box 0.0805 0.0363 0.0248 0.0188 0.0150 0.0125

We observe that appreciably reduced spectral radius (and, thus, a significantly im-

proved convergence rate) is obtained in the homogeneous case (Table 4.1) for any choice

of smoother with full-weighting restriction, and convergence improves with the number of

smoothing steps ν. However, all block relaxations, such as zebra, tweed, box, and alter-

nating tweed/box, show poor convergence when half-weighting restriction is used. Full-

weighting restriction is also required for rapid convergence in all of the stretched grid cases

considered in Tables 4.2 through 4.4, as discussed below.

For the cases with near-wall clustering (Tables 4.2 and 4.3), checkerboard and

one-direction zebra show a significant degradation in convergence for both choices of the

restriction operator. Convergence is greatly improved when alternating-direction zebra,

tweed, or alternating tweed/box are used for the smoothing and full-weighting restriction

is implemented. In particular, the convergence rate of alternating-direction zebra is slightly
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better than that of tweed for small ν, whereas the convergence rate is comparable for higher

ν; note again, however, that the computational cost of 2D tweed is roughly half the compu-

tational cost of 2D alternating-direction zebra, thereby rendering tweed with full-weighting

restriction the clearly superior choice. Though box relaxation alone is poorly suited for this

(near-wall clustering) case, alternating tweed/box slightly outperforms both alternating-

direction zebra and tweed for any choice of ν, albeit at substantially increased computa-

tional cost. Further, comparing Tables 4.2 and 4.3, it is seen that the convergence of tweed

relaxation is affected only slightly by the degree of grid stretching applied.

For the case with near-center clustering (Table 4.4), again, checkerboard and one-

direction zebra prove to be inadequate. In this case, convergence is greatly improved when

alternating-direction zebra, box, or alternating tweed/box are used for the smoothing and

full-weighting restriction is implemented. In particular, the convergence rate of alternating-

direction zebra is slightly better than that of box for all values of ν; note again, however,

that the computational cost of 2D box is about 25% less than the computational cost of 2D

alternating-direction zebra, thereby rendering box with full-weighting restriction a compet-

itive choice. Tweed relaxation alone is poorly suited for this (near-center clustering) case,

and alternating tweed/box provides similar convergence as both alternating-direction zebra

and tweed, albeit at substantially increased computational cost.

Further insight on checkerboard and zebra relaxation may be achieved by rigor-

ous or local Fourier analysis (see [35]). However, the complicated arrangement of grid-

points in tweed and box relaxation prevents the extension of these analysis tools to the new

smoothers proposed here.
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4.4 Tests

To assess the performance of the tweed and box relaxation schemes, we applied

the multigrid algorithm described in Section 4.3 to the solution of (4.2) over uniform and

stretched grids with different smoothing schemes implemented. The RHS vector f ℓ used

in these tests is defined using uniformly-generated random numbers, and full-weighting

restriction is used in every simulation reported. Also, we take Lx = Ly = 1, nx = ny = 128

(that is, p = 7), and ν1 = ν2 (that is, the same number of pre-smoothing and post-smoothing

relaxations are used) in every simulation reported.

Convergence of the multigrid algorithm in the uniform-grid case is reported in Fig-

ure 4.10, where the maximum defect, normalized by the initial maximum defect d0, is

reported at each multigrid iteration. It can be observed that checkerboard smoothing pro-

vides rapid convergence, and that some gains are obtained by introducing block relaxation

schemes, albeit at increased computational cost.

Convergence of the multigrid algorithm in the near-wall clustering case, with the

grid generated using (4.7) for c = 1.5 and c = 3.0, is reported in Figure 4.11. Generally

speaking, simulations show good agreement with the theoretical results presented in Sec-

tion 4.3. In particular, we observe that the convergence of checkerboard, one-direction ze-

bra, and box relaxation are significantly degraded, to the point of diverging in certain cases

when large grid stretching is applied (see Figure 4.12b). The convergence rates obtained in

the tests performed over a uniform grid (reported Figure 4.10) are retrieved in the near-wall

clustering case when alternating-direction zebra is applied, a result that is well-known in

the multigrid literature [35]. Remarkably, tweed relaxation achieves similar performance as

alternating-direction zebra with roughly half the computational cost. Alternating-direction
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Figure 4.10: Multigrid convergence on (4.2) over a 129 × 129 uniform grid with

different smoothers: checkerboard (green crosses), one-direction zebra (blue circles),

alternating-direction zebra (red squares), tweed (black upward-pointing triangles), box

(light blue downward-pointing triangles), alternating tweed/box (magenta diamonds).
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(f) c = 3.0, (ν1, ν2) = (3, 3)

Figure 4.11: Multigrid convergence on (4.2) over a 129 × 129 stretched grid with

near-wall clustering and different smoothers: checkerboard (green crosses), one-direction

zebra (blue circles), alternating-direction zebra (red squares), tweed (black

upward-pointing triangles), box (light blue downward-pointing triangles), alternating

tweed/box (magenta diamonds).
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(b) c = 1.5, (ν1, ν2) = (2, 2)
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(c) c = 1.5, (ν1, ν2) = (3, 3)

Figure 4.12: Multigrid convergence on (4.2) over a 129 × 129 stretched grid with

near-center clustering and different smoothers: checkerboard (green crosses),

one-direction zebra (blue circles), alternating-direction zebra (red squares), tweed (black

upward-pointing triangles), box (light blue downward-pointing triangles), alternating

tweed/box (magenta diamonds).
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(b) Alternating-direction zebra

Figure 4.13: Defect after three cycles of multigrid over a 129 × 129 stretched grid

defined through (4.7) with (ν1, ν2) = (2, 2) and different smoothing schemes.

zebra slightly outperforms tweed for small ν1 + ν2, while the convergence of tweed is im-

proved for larger ν1 + ν2. Alternating tweed/box gives even better convergence in certain

cases, albeit at significantly increased computational cost. Interestingly, as shown in Fig-

ure 4.13 after three multigrid cycles, the distribution of the absolute value of the defect dp

onΩp is focused near the center of the domain (i.e., in the region where the grid is coarsest)

in the case of tweed, and is distributed more uniformly throughout the domain in the case

of alternating-direction zebra.

Convergence of the multigrid algorithm in the near-center clustering case, with the

grid generated using (4.8) for c = 1.5, is reported in Figure 4.12. Again, simulations show

close agreement with the theoretical results presented in Section 4.3. In particular, the

convergence of checkerboard, one-direction zebra, and tweed relaxation are significantly

degraded, whereas the convergence rates are improved when alternating-direction zebra is

applied, albeit not recovering the convergence rate in the uniform grid case. Box relaxation

achieves somewhat slower convergence rates as alternating-direction zebra for all cases re-

ported, albeit with 25% reduced computational cost. Alternating tweed/box gives slightly
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Figure 4.14: Defect after three cycles of multigrid over a 129 × 129 stretched grid

defined through (4.8) with (ν1, ν2) = (2, 2) and different smoothing schemes.

better convergence than alternating-direction zebra in certain cases, albeit at significantly

increased computational cost. As shown in Figure 4.14 after three multigrid cycles, the

distribution of the absolute value of the defect dp on Ωp is focused away from the center

of the domain (where the grid is densest) in both the box and alternating-direction zebra

cases. It is also noted that the performance of alternating-direction zebra, box, and alternat-

ing tweed/box degrade as c is increased, failing to achieve convergence in the near-center

clustering case when extreme stretching is applied (that is, for c & 2.3).

4.5 Conclusions

Two new relaxation schemes appropriate for the smoothing step in multigrid algo-

rithms applied on 2D and 3D stretched grids have been introduced. The implementation

of multigrid leveraging such smoothers facilitates the efficient solution of large linear (and,

ultimately, nonlinear) systems arising from the discretization of elliptic PDEs on grids that

are stretched in multiple spatial directions.

Tests on the 2D Poisson equation computed on a stretched grid with near-wall grid
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clustering conclusively demonstrate that multigrid leveraging tweed relaxation recovers

the remarkable convergence speed of multigrid leveraging alternating-direction zebra re-

laxation, at roughly half of the computational cost in 2D (and, at roughly one third the

computational cost in 3D). Further, the amount of stretching applied appears to have a

rather minor effect on the convergence rate obtained.

Tests on the 2D Poisson equation computed on a stretched grid with near-center grid

clustering demonstrate that multigrid leveraging box relaxation, though effective, unfortu-

nately does not recover the convergence rate of that achieved using alternating-direction

zebra relaxation in this case. Application of alternating tweed/box relaxation to this case is

competitive with alternating-direction zebra relaxation, but comes at significantly increased

computational cost.

Future work involves the implementation of 2D and 3D tweed relaxation for the so-

lution of the Poisson equation for the pressure update in the numerical solution of turbulent

duct and cavity flows with grid clustering near the walls.
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Chapter 5

Extensions of the Thomas algorithm for

the efficient direct solution of discretized

PDEs on wireframe structures

5.1 Introduction

This chapter considers the solution of the sparse linear systems arising from the

low-order finite-difference modeling of PDEs defined over 1D connected domains using

3-point-stencil operators. Noteworthy applications of these new schemes include heat dif-

fusion over wireframe structures [39] and the deformation of loaded tensegrity structures

[40]. Another application is given by the new relaxation schemes recently proposed by our

group for the multigrid solution of elliptic PDEs discretized on structured 2D or 3D grids

which are stretched in multiple directions [41].

As a prototype problem, consider the steady advection-diffusion-reaction equation

119
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given by

0 = D
∂2u

∂x2
−C
∂u

∂x
+ R(x) (5.1)

with assigned boundary conditions, where D is the diffusivity, C is the advection speed, and

R is a reaction term. Using finite differences defined on a 3-point-stencil, the discretized

version of (5.1), defined along a simple 1D line segment using n + 1 points with equal

spacing ∆x, is

−
(

D

∆x2
+

C

2∆x

)
ui−1 +

D

∆x2
ui −

(
D

∆x2
− C

2∆x

)
ui+1 = Ri, i = 2, . . . , n, (5.2)

with u0 and un+1 specified. This system is tridiagonal, and its solution may be obtained via

the well-known Thomas1 algorithm (see, for example, [43]), which provides the solution

in ∼ 8n flops if solved from scratch, or in ∼ 5n flops if the LU decomposition of the LHS

matrix is precomputed.

If one considers a connection of individual 1D segments, the tridiagonal structure

of the problem is lost, and direct solution via the Thomas algorithm in its classical form

is no longer possible. The simplest example of this is a periodic connection of a single

1D segment into a ring, which results in a matrix of circulant structure, and which is solv-

able via the circulant (a.k.a. periodic) Thomas algorithm (see, e.g., [38]) in ∼ 14n flops if

1As a historical side note, Llewellyn Hilleth Thomas (1903-1992) was a prodigious British physicist and

mathematician. His early work in atomic physics includes “Thomas precession", a correction to the spin-

orbit interaction of an elementary particle in relativistic kinematics which represented the foundation for spin

polarization studies in the years to come [42]. Another key result was the development of the “Thomas-Fermi"

model, a statistical representation of the atom which proved useful in describing average properties of heavy

atoms in response to external stimuli, and is viewed nowadays as a precursor to modern density functional

theory. In the 1930s, while working at Ohio State, he invented an isochronous cyclotron, which is considered

a predecessor of modern high-field isochronous cyclotrons currently used in nuclear physics. During World

War II, he worked on ballistics and magnetohydrodynamics at the U.S. Army’s Ballistic Research Lab. It

was in 1946 that Thomas shifted focus and joined the Watson Scientific Computing Lab at Columbia. There,

Thomas made major contributions to the fields of numerical methods and the design of electronic hardware

for computers. It is in this period that he developed the Gaussian elimination algorithm for the efficient

factorization of tridiagonal matrices which now bears his name.
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solved from scratch, or ∼ 8n flops if the LU decomposition of the LHS matrix is precom-

puted. In more complicated structures, we may identify nodal points connected to three

or more 1D segments. In such cases, careful reordering of the gridpoints can be imple-

mented to minimize the matrix bandwidth, as performed by the Cuthill-McKee algorithm

[44], and the reverse Cuthill-McKee algorithm ( see [45, 46]), to generate a sparse banded

linear system, for which band LU approaches [47] represent the solution method of choice.

Though Cuthill-McKee type approaches indeed recover O(n) scaling for the solution of

such problems, the computational cost is significantly higher than that following the ap-

proach discussed herein, which couples structure-dependent modifications of the Thomas

algorithm itself together with appropriate grid ordering. Note that in the following we as-

sume that all the matrices arising from the discretization are diagonally dominant, and thus

no pivoting is required during the factorization process.

The outline of this chapter is as follows: Section 5.2 introduces the m-Legged

Thomas algorithm, which enables the fast direct solution of linear systems arising when

gridpoints are arranged along segments which are connected at one nodal point only. Sec-

tion 5.3 introduces the Box Thomas algorithm, which extends the circulant Thomas al-

gorithm to the solution of linear systems arising when gridpoints are arranged along 3D

box-shaped wireframe structures. Section 5.4 shows how to derive fast factorization algo-

rithms for the solution of linear systems arising when gridpoints are arranged along more

complicated wireframe structures with nontrivial nodal connections.

5.2 The m-legged Thomas algorithm

Consider the solution of the PDE (5.1) defined over a 1D domain comprised of m

legs, each discretized on p points, meeting at a common nodal point. The discretized ver-
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sion of (5.1) on this connected domain decouples into m almost-independent linear systems,

sharing information only through the central nodal point, and may be written
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i = 1, . . . ,m, (5.3a)
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d1 d2 . . . dm dm+1
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= gcenter . (5.3b)

This system of mp + 1 equations in mp + 1 unknowns can be efficiently solved by first

performing m forward sweeps of Gauss elimination to reduce each tridiagonal matrix on

the LHS of (5.3a), for i = 1, . . . ,m, to upper bidiagonal form, i.e.
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i = 1, . . . ,m, (5.4)

where, as usual, the b and g elements are changed during this forward sweep. This step

of the algorithm is embarrassingly parallel, and may easily be performed in m independent

threads. The last row of each resulting linear system in (5.4) is then extracted and assembled
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together with (5.3b) to compose the following system of m+1 equations in m+1 unknowns:
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The linear system in (5.5), due to the arrowhead structure of the matrix, can be solved in

∼ 8m operations. By expressing all of the x
(i)
p unknowns with respect to xcenter, and then

replacing them in the last row, it is possible to directly calculate x
(i)
p and xcenter as follows:

x(i)
p =

(
g(i)

p − c(i)
p xcenter

)
/b(i)

p for i = 1, . . . ,m; (5.6a)

xcenter =
(
e −

m∑

i=1

di g(i)
p /b

(i)
p

)/(
dm+1 −

m∑

i=1

di c(i)
p /b

(i)
p

)
; (5.6b)

that is, once xcenter is determined from (5.6b), the x
(i)
p unknowns may be determined from

(5.6a). At this point, the remaining unknowns (x
(i)

p−1
through x

(i)

1
for i = 1, . . . ,m) are then

calculated by performing back substitution in each of the upper bidiagonal systems in (5.4),

starting from the (p − 1)th row and working up. Again, this step is embarrassingly parallel

across m independent threads. A pseudo-code illustrating this m-legged version of the

Thomas algorithm is given in Algorithm 5.1, where the vector of unknowns x(i) and xcenter

are stored in g and e = gcenter, respectively, for optimized storage. The computational cost

of this algorithm is as follows: 5m(p−1) flops for the first double loop (lines 2 to 8), 9m+1

flops for the two single loops (lines 9 to 16), and 3m(p − 1) flops for the last double loop

(lines 17 to 21). Thus, overall, a system of equations like that in (5.3) requires 8mp+m+ 1

flops to solve.
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Algorithm 5.1 m-legged Thomas

1: function mlThomas(a, b, c, d, e, g, p, m)

2: for i = 1 : m do

3: for j = 2 : p do

4: a
(i)

j
← −a

(i)

j
/b

(i)

j−1

5: b
(i)

j
← b

(i)

j
+ a

(i)

j
c

(i)

j−1

6: g
(i)

j
← g

(i)

j
+ a

(i)

j
g

(i)

j−1

7: for i = 1 : m do

8: di ← −di/b
(i)
p

9: e← e + di g
(i)
p

10: dm+1 ← dm+1 + di c
(i)
p

11: e← e/dm+1

12: for i = 1 : m do

13: g
(i)
p ←

(
g

(i)
p − c

(i)
p e

)
/b

(i)
p

14: for i = 1 : m do

15: for j = p-1 : -1 : 1 do

16: g
(i)

j
←

(
g

(i)

j
− c

(i)

j
g

(i)

j+1

)
/b

(i)

j

Algorithm 5.2 Circulant Thomas - Minimum Storage

1: function CircThomas_MS(a, b, c, g, m)

2: for i = 2 : m-1 do

3: ai ← −ai/bi−1

4: bi ← bi + ai ci−1

5: ai ← ai ai−1

6: gi ← gi + ai gi−1

7: am−1 ← (am−1 + cm−1)/bm−1

8: gm−1 ← gm−1/bm−1

9: for i = m-2 : -1 : 1 do

10: ai ← (ai − ci ai+1)/bi

11: gi ← (gi − ci gi+1)/bi

12: gm ← (gm − cm g1 − am gm−1)/(bm − cm a1 − am am−1)

13: for i = 1 : m-1 do

14: gi ← gi − ai gm
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Algorithm 5.3 Circulant Thomas

1: function CircThomas(a, b, c, g, m)

2: d1 = a1

3: for i = 2 : m-1 do

4: ai ← −ai/bi−1

5: bi ← bi + ai ci−1

6: di = ai di−1

7: gi ← gi + ai gi−1

8: dm−1 ← (dm−1 + cm−1)/bm−1

9: gm−1 ← gm−1/bm−1

10: for i = m-2 : -1 : 1 do

11: di ← (di − ci di+1)/bi

12: gi ← (gi − ci gi+1)/bi

13: gm ← (gm − cm g1 − am gm−1)/(bm − cm d1 − am dm−1)

14: for i = 1 : m-1 do

15: gi ← gi − di gm

5.3 The Box Thomas algorithm

We now consider closed wireframe structures, beginning with a simple loop, for

which the discretization of (5.1) takes the form



b1 c1 a1

a2 b2 c2

. . .
. . .

. . .

am−1 bm−1 cm−1

cm am bm





x1

x2

...

xm−1

xm



=



g1

g2

...

gm−1

gm



. (5.7)

The circulant tridiagonal system (5.7) can be solved using a circulant Thomas solver, such

as that presented in [38]. A minimal-storage implementation of this algorithm is given in

Algorithm 5.2, where the vector of unknowns x is returned in g. This algorithm requires

6(m− 2) flops for the first loop (lines 2 to 7), 3 flops for lines 8 and 9, 6(m− 2) flops for the

second loop (lines 10 to 13), 9 flops for line 14, and 2(m − 1) flops for the third loop (lines

15 to 17). Overall, for a m×m system like that in (5.7), the circulant Thomas solver requires

14m−16 flops, which is ∼ 75% more expensive than the standard Thomas algorithm. If the
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Figure 5.1: Point arrangement for the construction of the linear system associated with

the box-shaped wireframe topology.

LU decomposition of A needs to be computed, an extra vector di for i = 1, . . . ,m − 1 must

be used, as illustrated in Algorithm 5.3; leveraging a precomputed LU decomposition, the

computational cost of circulant Thomas reduces to ∼ 7m.

For 3D box-shaped wireframe structures, some care is required with the point ar-

rangement in order to reduce the resulting discretized PDE problem to a form that can be

solved in O(n) operations. The ordering we propose is shown in Figure 5.1 for the case

with p = 5 gridpoints on each edge (excluding vertices). Overall, the discretization in-

cludes n = 12p + 8 points. We begin by defining one of the faces of the 3D box as the

lower face, and the opposite face as the upper face. The four edges defining each base are

composed of m = 4p+4 points. Starting from one of its vertices, all of the gridpoints on the

lower face are first enumerated counter-clockwise. The next point (point 25 in Figure 5.1)

is that point connected to point 1 which does not belong to the lower face. The following

points are the remaining points connected to the vertices of the lower face, enumerated in

counter-clockwise order. Enumeration proceeds in an upward-spiraling manner until the

upper face is reached. Here, enumeration follows using the same scheme as adopted for
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the lower face: the first point (point 45 in Figure 5.1) shares an edge with point 1 in the

lower face, and point enumeration proceeds along the edges of the upper face in counter-

clockwise order (ending with point 68 in Figure 5.1).

The sparsity structure of the resulting block tridiagonal matrix in this problem, de-

noted A, is illustrated in Figure 5.2a. Such a matrix is composed of a circulant tridiagonal

block Tl on the main block diagonal, involving the m = 4p+4 gridpoints on the lower face.

Two 4×m rectangular blocks Rl and S l appear on the lower and upper block diagonals of the

matrix. Each of these blocks has only 4 nonzero elements. Along the main block diagonal,

the block Tl is followed by a sequence of p diagonal blocks Di of size 4 × 4. Other 4 × 4

diagonal blocks appear on the lower and upper block diagonals, Ei and Fi, respectively.

These blocks account for the points along the edges connecting the lower and upper faces.

The remaining m gridpoints on the upper face form another circulant tridiagonal block Tu

on the main block diagonal. Again, two 4 × m rectangular blocks Ru and S u appear on the

first lower and upper block diagonals, respectively. As observed for the lower face, these

matrices have only 4 nonzero elements. Significantly, the point arrangement proposed here

does not minimize the bandwidth of the present linear system, and thus would not be iden-

tified by simple application of the Cuthill-McKee algorithm to the linear system arising in

this problem. However, this special ordering allows us to identify a solution algorithm that

minimizes the number of flops required to solve, as described below.

The solution of the linear system A x = g in this problem begins by performing a

forward sweep inspired by block Gauss elimination, designed to eliminate the blocks Ei

with i = 2, . . . , p along the block lower diagonal, as well as the block RT
u . This creates

certain fill-ins, specifically below Rl. We then perform a backward sweep inspired by the

second step of block Gauss elimination, which zeros the blocks Fi with i = p − 1, . . . , 1



128

F
1

R
l

S
l

T

F
2

S
u

R
T

u T
u

T
l

D
1

E
2 D

2

D
p

E
p

F
p−1

T
l

D
m

R
u

R
m

T
u

S
m

S
l

Figure 5.2: Sparsity pattern of the matrix A associated with the Box Thomas algorithm

(left) before, and (right) after the forward and backward sweeps.
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−

Figure 5.3: Sparsity pattern of the matrix on the LHS of (5.11) after rearranging in the

Box Thomas algorithm.

along the block upper diagonal, as well as the block S T
l
. This also creates additional fill-ins,

specifically above the block S u. The resulting sparsity structure of A after these two sweeps

is illustrated in Figure 5.2b, and is equivalent to the following linear system of equations:

Tl xl + S l xu = gl, (5.8a)

Rm xl+Dm xm + S m xu = gm, (5.8b)

Ru xl + Tu xu = gu, (5.8c)
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where x and g are partitioned such that x = (xl, xm, xu) and g = (gl, gm, gu) and, of course,

the Tl and Tu matrices have been modified from their original form. Considering (5.8a), it

is possible to determine xl as a function of xV
u , where superscript V indicates a partition of

the solution at the points xu involving only the four vertices of the upper face. Denoting as

S V
l

a partition of the columns of S l defined likewise, it is possible to define xl as

xl = x
(0)

l
+

4∑

i=1

x
(i)

l
xVi

u (5.9)

where each x
(i)

l
is obtained from the solution of a circulant tridiagonal system, i.e.

Tl x
(0)

l
= gl (5.10a)

Tl x
(i)

l
= −s

Vi

l
i = 1, . . . , 4 (5.10b)

where each s
Vi

l
represents the ith column of the partition S V

l
. Substituting (5.9) into (5.8c)

gives

(
Tu + Ru X

(1:4)

l
Vu

)
xu = gu − Ru x

(0)

l
= ru (5.11)

where X
(1:4)

l
is a m × 4 matrix grouping the four solutions x

(i)

l
, and Vu is the extraction

matrix defined as xV
u = Vu xu. Due to the extreme sparsity of Ru, computation of both the

RHS and the LHS of (5.11) can be performed in O(1) operations. The matrix on the LHS

of (5.11) is a superposition of a tridiagonal circulant matrix and a matrix which is empty

except in four columns, corresponding to the positions of the vertices of the upper face.

After performing a forward sweep in order to eliminate the elements on the lower diagonal

and, likewise, a backward sweep in order to eliminate the elements on the upper diagonal,

and rearranging to put the solution at the vertices of the upper face first, it is possible to
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partition the resulting matrix as illustrated in Figure 5.3, where P is a 5×5 full matrix, H is

a (4p− 1)× 5 full matrix, and T− is a (4p− 1)× (4p− 1) diagonal matrix. [Note, of course,

that such matrix rearrangement is done here for illustration purposes only; the subsequent

computations may actually be performed in place in the numerical implementation.] The

solution of the associated linear system can be rewritten as

P xW
u = rW

u , (5.12a)

H xW
u + T− xR

u = rR
u , (5.12b)

where the xu is partitioned such that xu = {xW
u , x

R
u }, where xW

u = {xV
u , x

last
u } contains the

values of the x at the four vertices of the upper face together with the last component of

xu (that is, point 68 in Figure 5.1), and the RHS ru = {rW
u , r

R
u } is partitioned analogously.

By (5.12a), xW
u may be determined from the solution of a (full) 5 × 5 system. Then, xR

u is

determined by solution of the subsequent diagonal system in (5.12b). Finally, xl is given

by (5.9), and xm is given by solution of the diagonal system in (5.8b).

We now calculate the computational cost of the algorithm described above. Elim-

ination of the Ei matrices requires ∼ 24p flops, and elimination of the Fi requires ∼ 24p

more flops. Five solutions of an m × m circulant tridiagonal system are required for the

determination of the xi
l
for i = 0, . . . , 4: since only the RHS changes every time, it is possi-

ble to calculate the LU decomposition in ∼ 28p flops, and then the calculation of the five

solutions requires an extra ∼ 140p flops. The determination of xu then requires ∼ 152p

flops. Then, calculation of xl requires ∼ 32p flops, plus ∼ 20p for xm. Overall, ∼ 420p

flops are needed; since n ∼ 12p, this means that ∼ 35n flops are required.

A minimal storage implementation of Box Thomas algorithm is given in Algo-
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rithm 5.4. The algorithm calculates the solution of the system and stores it into the RHS

vector, which has been split into three vectors gl, gm, and gu, which contain the solution

at the gridpoints on the lower face, intermediate edges, and upper face, respectively. The

three diagonals containing the nonzero elements of Tl are stored in al, bl, and cl; likewise,

the nonzero elements of Tu are stored in au, bu, and cu. Auxiliary vectors dl and du are also

introduced, which are needed while solving the two circulant systems associated with Tl

and Tu (dl does not appear directly in BoxThomas, but is defined within CircThomas). In

addition, matrices dm, em, and f m of size 4p×4 are defined: dm contains the main diagonals

of the 4 × 4 matrices Di for i = 1 : p; em contains the main diagonals of Ei for i = 2 : p,

and the four nonzero elements of RT
u in Figure 5.2 in the last row; f m contains the four

nonzero elements of S T
l

in the first row and the main diagonals of Fi for i = 1 : p − 1.

Two additional p × 4 matrices rm and sm are introduced: the first row of rm contains the

four nonzero elements of Rl, while the last row of sm contains the nonzero elements of S u.

Two initially empty m × 4 matrices sl and ru are defined, which are used while solving the

circulant linear systems associated to the points on the lower and upper faces. A temporary

scalar variable t is used to compute the product Ru X
(1:4)

l
in (5.11). To simplify the notation,

a vector of indices V j, for j = 1, . . . , 4, is defined which contains the positions of the grid-

points on the vertices of the lower or upper face, i.e. V j = (p + 1)( j − 1) + 1. Remarkably,

though an LU decomposition is not computed, much of the computation performed does

not need to be repeated for a different RHS g, since only the matrix ru needs to be recom-

puted, while all the other matrices and vectors may be reused. In this case, the algorithm

requires only ∼ 220p flops (that is, ∼ 18.3n flops), which is roughly half the computational

cost of solving the original linear system from scratch.

Application of the reverse Cuthill-McKee algorithm [45] to matrix A in Figure 5.2
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Figure 5.4: Sparsity structure of the matrix A in the Box Thomas problem after

reordering for bandwidth minimization by the reverse Cuthill-McKee algorithm.

produces a matrix with lower and upper bandwidth b equal to six (Figure 5.4). This result is

independent of the number of points along the edges p, and depends solely on the topology

of the 3D box. As discussed in [47], application of a linear solver for band matrices of size

n×n and given bandwidth b, for n≫ b, requires ∼ (2b2+5b+1)n flops. Thus, application of

such a solver to the solution of the 3D box problem, with a point arrangement minimizing

matrix bandwidth, has an overall computational cost of ∼ 103n, which is nearly three times

more expensive than the approach described in this chapter.

The extension of the algorithm described in this section to cases with a different

number of points on the edges in each dimension (namely px, py, and pz), is trivial. As-

suming the lower and upper faces of the box are made of (2px+2py+4) points, the solution

of the associated matrix requires ∼ (176px + 176py + 68pz) flops. Thus, for efficiency, the

box should be arranged such that the lower and upper faces contain the smallest number of

gridpoints possible.

Similarly, the extension from a cube, interpreted as a prism with a square base, to

a prism with an N-sided base (e.g., a triangular, pentagonal, or hexagonal prism) is also

trivial, simply by changing 4 to N in Algorithm 5.4 and the accompanying discussion.
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Figure 5.5: Sparsity pattern of the matrix A associated with the Tetrahedral Thomas

algorithm (left) before, and (right) after the forward and backward sweeps.

5.4 Extensions of the Box Thomas algorithm to other wire-

frame topologies

The Box Thomas algorithm developed in §5.3 may be extended easily to handle

the sparse linear systems arising from the discretization of 1D PDEs on a variety of differ-

ent 1D wireframe structures. We now consider the efficient solution of the discretization

of 1D PDEs on the edges of the four other platonic solids: the tetrahedron, octahedron,

dodecahedron, and icosahedron.

5.4.1 Tetrahedron

In the tetrahedral case, following the approach of §5.3, denote one of the triangular

faces as the base and, starting from one of the vertices of the base, enumerate all points

along the edges of the base counter-clockwise. Then, enumerate the points along the three

edges departing the base, one edge at a time, in an upward-spiraling manner until the apex is

reached. Assuming an equal number of points on each edge of the tetrahedron, p (excluding
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the vertices), there are (3p+3) points on the base, 3p points along the three edges departing

from it, and 1 point at the apex; overall, the system is composed of n = 6p + 4 points.

The sparsity structure of the resulting block tridiagonal matrix in this problem is

illustrated in Figure 5.5a. As with the Box Thomas algorithm discussed previously, a for-

ward sweep is first applied to eliminate the Ei blocks, for i = 2, . . . , p, and the vector eu;

this process creates fill-ins below the matrix Rm. Then, a backward sweep is applied to

eliminate the Fi blocks, for i = p − 1, . . . , 1, and the block S T
m; this process creates fill-ins

above the vector f T
u . The resulting matrix is shown in Figure 5.5b. The solution of the

associated linear system may be written

Tl xl +S l xu = gl (5.13a)

Ru xl+Bu xu = gu (5.13b)

where xl contains all the gridpoints along the base, and xu the remaining ones. Noting that

the matrix S l is composed of one nonzero column only and following the approach used in

§5.3, we may express xl as

xl = x
(0)

l
+ x

(1)

l
xV

u , (5.14)

where the superscript V indicates a partition of vector xu containing the apex only, and

vectors x
(0)

l
and x

(1)

l
are the solutions of

Tl x
(0)

l
= gl, (5.15a)

Tl x
(1)

l
= −sV

l , (5.15b)

where sV
l

represents the column of S l associated to the apex. Substituting (5.14) into (5.13)
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Figure 5.6: Sparsity pattern of the matrix A associated with the Octahedral Thomas

algorithm (left) before, and (right) after the forward and backward sweeps.

gives

(
Bu + Ru x

(1)

l
Vu

)
xu = gu − Ru x

(0)

l
(5.16)

where Vu is the matrix extracting the apex from the vector xu. Note that the matrix on the

LHS is diagonal plus a full last column; thus, this linear system may be solved in O(n)

operations via a single sweep of back substitution. In the rest of the chapter we will refer

to matrices with this shape as V-shaped matrices. Substituting the resulting solution for xu

into (5.14) gives the rest of the solution.

The extension from a tetrahedron, interpreted as a pyramid with a triangular base,

to a pyramid with an N-sided base (e.g., a square, pentagonal, or hexagonal pyramid) is

entirely straightforward.

5.4.2 Octahedron

The point enumeration in the octahedral case involves defining one vertex as the

lower vertex, the opposite vertex as the upper vertex, and the square connecting the other
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four vertices as the midplane. Points are enumerated starting from the lower vertex and

proceeding one point from each edge, in a counter-clockwise upward-spiraling manner,

until the midplane is reached. The points on the midplane are then enumerated counter-

clockwise, and the enumeration proceeds on the four edges connected to the upper vertex,

one point per edge, until the upper vertex is reached. Overall, denoting by p the number of

points on each edge (excluding vertices), we have 1 point for the lower vertex, 4p points on

the four edges connecting the lower vertex to the midplane, (4p+4) points on the midplane,

4p points on the four edges connecting the midplane to the upper vertex, and 1 point for

the upper vertex; overall, there are n = 12p + 6 points.

The sparsity structure of the resulting block tridiagonal matrix in this problem is

illustrated in Figure 5.6a. The first step involves a forward sweep to eliminate the matrices

El i for i = 2, . . . , p; this creates fill-ins below the vector eT
l
. This forward sweep is then

continued to eliminate the matrices Eu i for i = 2, . . . , p, as well the vector eu; this creates

additional fill-ins below the matrix Rmu. A backward sweep is then applied to eliminate

the matrices Fu i for i = p − 1, . . . , 1, and is continued to eliminate the matrices Fl i for

i = p − 1, . . . , 1, as well as the vector fl. This creates fill-ins above f T
u , and above S lm. The

resulting matrix is shown in Figure 5.6b. The solution of the associated linear system may

be written

Bl xl +S l xm = gl, (5.17a)

Rm xl+Tm xm + S m xu= gm (5.17b)

Ru xm + Bu xu = gu. (5.17c)
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Considering (5.17a), we may express xl as

xl = x
(0)

l
+

4∑

i=1

x
(i)

l
xVi

m , (5.18)

where each x
(i)

l
requires the solution of another V-shaped system, i.e.

Bl x
(0)

l
= gl, (5.19a)

Bl x
(i)

l
= −s

Vi

l
i = 1, . . . , 4, (5.19b)

where s
Vi

l
represents each of the 4 nonzero columns of S l, associated with each of the 4

vertices in the midplane of the octahedron. Likewise, xu may be expressed as a function of

xV
m:

xu = x(0)
u +

4∑

i=1

x(i)
u xVi

m (5.20)

with

Bu x(0)
u = gu, (5.21a)

Bu x(i)
u = −rVi

u i = 1, . . . , 4. (5.21b)

Substituting (5.18) and (5.20) into (5.17b) gives

(
Tm + Rm X

(1:4)

l
Vm + S m X(1:4)

u Vm

)
xm = gm − Rm x

(0)

l
− S m x(0)

u (5.22)

The matrix on the LHS of (5.22) is tridiagonal except for five columns in which additional

nonzero terms appear. To proceed, a forward sweep is first applied to eliminate the first

subdiagonal, and a backward sweep is applied to eliminate the first superdiagonal; this
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Figure 5.7: Sparsity pattern of the matrix A associated with the Dodecahedral Thomas

algorithm (left) before, and (right) after the forward and backward sweeps.
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Figure 5.8: Sparsity pattern of the matrix on the LHS of (5.28) after rearranging in the

Dodecahedral Thomas algorithm.

creates additional fill-ins within the columns with the additional nonzero terms mentioned

previously. Rearranging the matrix in order to have these five columns appear first gives

a matrix exactly like that illustrated in Figure 5.2, for which the solution method follows

exactly as given in (5.12). Once xm has been determined, substitution into (5.18) and (5.20)

gives the rest of the solution.



139

5.4.3 Dodecahedron

The point enumeration in the dodecahedral case involves defining one pentagonal

face as the lower face, the opposite face as the upper face, and the ten central vertices

together with the edges connecting them as the middle crown. The point enumeration then

follows in a manner analogous to the octahedral case. The first points to be enumerated

are those around the edges of the lower face, in a counter-clockwise fashion (starting from

a vertex). The points along the five edges connecting the lower face to the middle crown

are then enumerated, in an upward-spiraling fashion as before. Once the first vertex of the

middle crown is reached, the remaining points of the middle crown are enumerated counter-

clockwise, similar to what was done for the midplane of the octahedron. The enumeration

continues in an upward-spiraling fashion over the points connecting the middle crown to

the upper face. Once the first vertex of the upper face is reached, enumeration proceeds

counter-clockwise around the edges of the upper face.

The sparsity structure of the resulting block tridiagonal matrix in this problem is

illustrated in Figure 5.7a. Again, we start with a forward sweep to eliminate the El i, RT
lm

,

Eu i, and RT
u matrices on the lower block diagonal, and a bacward sweep to eliminate the

Fu i, S T
mu, Fl i, and S T

l
matrices on the upper block diagonal, which creates fill-ins below

Rl and Rmu, and above S u and S lm, as shown in Figure 5.7b. The resulting system can be

written as

Tl xl + S l xm = gl (5.23a)

Rlm xl+Dlm xlm + S lm xm = glm (5.23b)

Rm xl + Tm xm + S m xu = gm (5.23c)

Rmu xm+Dmu xmu + S mu xu = gmu (5.23d)

Ru xm + Tu xu = gu (5.23e)
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Noting that the R and S matrices all have only 5 nonzero columns, leveraging (5.23a), it is

possible to express xl and xu as functions of xm, i.e.

xl = x
(0)

l
+

5∑

i=1

x
(i)

l
x

V l
i

m (5.24)

where

Tl x
(0)

l
= gl, (5.25a)

Tl x
(i)

l
= −s

V l
i

l
i = 1, . . . , 5, (5.25b)

and

xu = x(0)
u +

5∑

i=1

x(i)
u x

Vu
i

m , (5.26)

where

Tu x
(0)

l
= gu, (5.27a)

Tu x
(i)

l
= −r

Vu
i

u i = 1, . . . , 5, (5.27b)

where s
V l

i

l
and r

Vu
i

u represent the ith nonzero column of the matrices S l and Ru, respectively.

Distinct from the octahedral case, the nonzero columns of S l and Ru are not aligned, as the

vertices on the lower and upper face connect to the middle crown through different points.

Substituting (5.24) and (5.26) into (5.23c) gives

(
Tm + Rm X

(1:5)

l
Vm1 + S m X(1:5)

u Vm2

)
xm = gm − Rm x

(0)

l
− S m x(0)

u (5.28)

The matrix on the LHS is tridiagonal with additional nonzero terms in 11 columns. As
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done previously, rearranging to put the 11 full columns first, and performing forward and

backward sweeps to eliminate the lower and upper subdiagonals of the lower-right block,

results in the matrix illustrated in Figure 5.8, where P is an 11 × 11 full matrix, H is a

(10p − 1) × 11 full matrix, and T− is a (10p − 1) × (10p − 1) diagonal matrix. Again,

the solution follows in a manner analogous to (5.12). After xm has been determined, xl

is determined through (5.24), and xu through (5.26). Finally, xlm and xmu are obtained

via (5.23b) and (5.23d).

5.4.4 Icosahedron

The point enumeration in the icosahedral case involves defining one vertex as the

lower vertex, the opposite vertex as the upper vertex, the five vertices adjacent to the lower

vertex (and the edges connecting them) as the lower plane, and the five vertices adjacent to

the upper vertex (and the edges connecting them) as the upper plane. The point enumera-

tion then follows as before. Starting from the lower vertex, proceed in a counter-clockwise,

upward spiraling fashion along the five edges connecting to the lower plane. Once the first

vertex of the lower plane is reached, the remaining points of the lower plane are enumerated

counter-clockwise. Then, proceed in a counter-clockwise, upward spiraling fashion along

the ten edges connecting to the upper plane. Once the first vertex of the upper plane is

reached, the remaining points of the upper plane are enumerated counter-clockwise. Then,

proceed in a counter-clockwise, upward spiraling fashion along the five edges connecting

to the upper vertex.

The sparsity structure of the resulting block tridiagonal matrix in this problem is

illustrated in Figure 5.9a. As before, a forward sweep is used to eliminate El i, RT
lm

, Em i,

RT
m2

, Eu i and eu, and a backward sweep is used to eliminate Fu i, S T
mu, Fm i, S T

m1
, Fl i and
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Figure 5.9: Sparsity pattern of the matrix A associated with the Icosahedral Thomas

algorithm (left) before, and (right) after the forward and backward sweeps.

P

H
T

−

Figure 5.10: Sparsity pattern of the matrix on the LHS of (5.34) after rearranging in the

Icosahedral Thomas algorithm.

fl, which creates fill-ins below eT
l

, Rm1
, and Rmu, and above f T

u , S m2
, and S lm, as shown in

Figure 5.9b. The resulting system can be written as

Bl xl +S l xm1 = gl (5.29a)

Rm1 xl+Tm1 xm1 +S m1 xm2 = gm1 (5.29b)

Rm xm1 + Dm xm +S m xm2 = gm (5.29c)

Rm2 xm1 +Tm2 xm2 + S m2 xu = gm2 (5.29d)

Ru xm2 + Bu xu = gu (5.29e)
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Leveraging (5.29a) and (5.29e), we may express xl and xu as functions of xm1 and xm2,

respectively, i.e.

xl = x
(0)

l
+

5∑

i=1

x
(i)

m1
x

Vi

m1
, (5.30)

where

Bl x
(0)

l
= gl, (5.31a)

Bl x
(i)

l
= −s

Vi

l
i = 1, . . . , 5, (5.31b)

and

xu = x(0)
u +

5∑

i=1

x(i)
u x

Vi

m2
, (5.32)

where

Bu x
(0)

l
= gu (5.33a)

Bu x
(i)

l
= −rVi

u i = 1, . . . , 5, (5.33b)

where Bl and Bu are V-shaped matrices, and s
Vi

l
and r

Vi
u represent the ith nonzero columns

of matrices S l and Ru, respectively. Distinct from the dodecahedral case, the topology of

the icosahedron allows a point arrangement for which such nonzero columns are aligned.

Replacing (5.30) into (5.29b) and rearranging gives

(Tm1 + Rl X
(1:5)

l
Vm)xm1 = gm1 − Rm1 x

(0)

l
− S m1 xm2. (5.34)

The matrix on the LHS is tridiagonal with additional nonzero terms in 6 columns. Rear-

ranging to put the 6 full columns first, and performing forward and backward sweeps to
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eliminate the lower and upper subdiagonals of the lower-right block, results the matrix il-

lustrated in Figure 5.10, where P is a full 6× 6 matrix, H is full and (5p − 1)× 6, and T− is

a (5p− 1)× (5p− 1) diagonal matrix. The solution of (5.34) can be expressed as a function

of xm2, i.e.

xm1 = x
(0)

m1
+

5∑

i=1

x
(i)

m1
x

Vi

m2
(5.35)

where

(Tm1 + Rl X
(1:5)

l
Vm) x

(0)

m1
= gm1 − Rm1 x

(0)

l
(5.36a)

(Tm1 + Rl X
(1:5)

l
Vm) x

(i)

m1
= −s

Vi

m1
i = 1, . . . , 5 (5.36b)

Replacing (5.35) and (5.32) into (5.29d) gives

(
Tm2 + Rm2 X

(1:5)

m1
Vm + S m2 X(1:5)

u Vm

)
xm2 = gm2 − Rm2 x

(0)

m1
− S m2 x(0)

u (5.37)

The matrix on the LHS of (5.37) exhibits the same sparsity pattern as that in (5.34), and

thus the same approach may be followed for its solution. After xm2 is determined, substi-

tution into (5.32) and (5.35) gives xu and xm1. Finally, xm and xl are obtained via (5.29c)

and (5.30).

5.5 Conclusions

This chapter introduces several efficient extensions of the Thomas algorithm for

the efficient solution of PDEs discretized with 3-point stencil operators over 1D connected

domains. The m-Legged Thomas algorithm facilitates the efficient solution of PDEs over

1D domains which are connected at a single point, while retaining the same leading-order
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computational cost as the original Thomas algorithm. For more complicated closed 1D

geometries, such as the edges of a 3D box, natural extensions of the circulant Thomas al-

gorithm for the solution of the resulting system of equations have been identified. In each

case, a careful enumeration of the gridpoints defined leads to a block tridiagonal matrix

with exploitable structure. Incomplete forward and backward sweeps are used to signifi-

cantly simplify this matrix, resulting in some modest fill-in. The resulting sparse systems

can ultimately be solved directly in a straightforward fashion. In each case considered,

the computational complexity of the resulting algorithm is O(n); further, the prefactor is

significantly smaller than that obtained by following a computational approach which sim-

ply rearranges the gridpoints to minimize the matrix bandwidth, as done when following

a Cuthill-McKee type approach. For example, in the important case of the Box Thomas

algorithm, a cost of ∼ 35n flops is required by our scheme, as compared with the ∼ 103n

flops required by a Cuthill-McKee type approach; further, solution in only ∼ 18.3n flops

is possible when leveraging the modified system derived by the Box Thomas algorithm, to

solve the system a second time with a new RHS vector.
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Algorithm 5.4 Box Thomas

1: function BoxThomas(al , bl, cl , sl, rm, dm, em, f m , sm, ru, au, bu , cu, gl, gm, gu, m, p)

2: for i = 2 : p do

3: for j = 1 : 4 do

4: em
i−1, j
← −em

i−1, j
/dm

i−1, j

5: dm
i, j
← dm

i, j
+ em

i−1, j
f m
i−1, j

6: rm
i, j
= em

i−1, j
rm

i−1, j

7: gm
4(i−1)+ j

← gm
4(i−1)+ j

+ em
i−1, j

gm
4(i−2)+ j

8: for j = 1 : 4 do

9: em
p, j
← −em

p, j
/dm

p, j

10: bu
V j
← bu

V j
+ em

p, j
sm

p, j

11: ru
V j , j
= em

p, j
rm

p, j

12: gu
V j
← gu

V j
+ em

p, j
gm

4(p−1)+ j

13: for i = p-1 : -1 : 1 do

14: for j = 4 : -1 : 1 do

15: f m
i+1, j
← − f m

i+1, j
/dm

i+1, j

16: rm
i, j
← rm

i, j
+ f m

i+1, j
rm

i+1, j

17: sm
i, j
= f m

i+1, j
sm

i+1, j

18: gm
4(i−1)+ j

← gm
4(i−1)+ j

+ f m
i+1, j

gm
4i+ j

19: for j = 4 : -1 : 1 do

20: f m
1, j
← − f m

1, j
/dm

1, j

21: bl
V j
← bl

V j
+ f m

1, j
rm

1, j

22: sl
V j , j
= f m

1, j
rm

1, j

23: gl
V j
← gl

V j
+ f m

1, j
gm

j

24: CircThomas(al , bl, cl, [gl , sl], m)

25: for j = 1 : 4 do

26: gu
V j
← gu

V j
− ru

V j , j
gl

V j

27: t = −ru
V j , j

28: for k = 1 : 4 do

29: ru
V j ,k
= t sl

V j ,k

30: du
1
= au

1

31: ru
m = cu

m

32: for i = 2 : m do

33: au
i
← −au

i
/bu

i−1

34: bu
i
← bu

i
+ au

i
cu

i−1

35: du
i
= au

i
du

i−1

36: for j = 1 : 4 do

37: ru
i, j
← ru

i, j
+ au

i
ru

i−1, j

38: gu
i
← gu

i
+ au

i
gu

i−1

39: for i = m-1 : -1 : 1 do

40: cu
i
← −cu

i
/bu

i+1

41: du
i
← du

i
+ cu

i
du

i+1

42: for j = 1 : 4 do

43: ru
i, j
← ru

i, j
+ cu

i
ru

i+1, j

44: gu
i
← gu

i
+ cu

i
gu

i+1

45: Gauss
([

ru
[V1:4,m],1:4

, du
[V1:4,m]

]
+ diag

{
bu

[V1:4 ,m]

}
, gu

[V1:4,m]

)

46: for i = 1 : m-1, i , V j,∀ j = 1, . . . , 4 do

47: gu
i
← gu

i
− ru

i,1:4
gu

V1:4
− du

i
gu

m)/bu
i

48: for i = 1 : m do

49: gl
i
← gl

i
− sl

i,1:4
gu

V1:4

50: for i = 1 : p do

51: for j = 1 : 4 do

52: gm
4(i−1)+ j

← (gm
4(i−1)+ j

− rm
i, j

gl
V j
− sm

i, j
gu

V j
)/dm

i, j



Chapter 6

Short-term ensemble ocean wave

forecasting

6.1 Introduction

The complex nature of ocean wave propagation, given by the superposition and

nonlinear interaction of numerous waves of different wavelength, frequency, amplitude,

and direction, and the suddenness with which large and dangerous ocean waves such as

tsunamis and rogue waves sometimes appear, has motivated researchers to develop accurate

analytic and numerical methods to better model and predict ocean wave dynamics.

The recent development of wave energy converters (WECs), which attempt to har-

ness a small fraction the massive amount of energy present in ocean waves, has generated

renewed interest in accurate short-term ocean wave forecasting. Existing WEC devices

work by oscillating at a resonance frequency, tuned to match the peak frequency of the

wave spectrum at the location of the WEC device [48]. The relatively broad bandwidth

of the wave spectrum generally observed in real sea states renders this passive approach

147
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relatively inefficient. The introduction of a control strategy which optimizes the WEC de-

vice power take-off parameters on a wave-by-wave basis to maximize the extracted power

would greatly improve WEC device performance, thus increasing the competitiveness of

marine energy with respect to other more mature fields of renewable energy, such as wind

and solar power systems. The noncausality of 2D models of the relationship between the

wave elevation at the device location and the dynamic behavior of the device (see, e.g., [49]

and [48]) makes the derivation of an optimal control law dependent on the future wavefield.

At a minimum, knowledge of the incoming wavefield is needed over a time window of the

order of 10-20 s into the future (see [50]). An even longer forecasting horizon is desired

when the control inputs are optimized via a receding-horizon Model Predictive Control

(MPC) approach, which requires knowledge of the incoming wavefield over the entire op-

timization horizon considered. It has been observed (see [51]) that optimization horizons

of at least 2-3 dominant wave periods are needed to provide an accurate approximation of

the optimal control strategy.

A few attempts have emerged in the recent literature to develop a reliable wave

forecasting framework. Among the most noteworthy, in [52], deterministic sea-wave pre-

diction (DSWP) has been used for short-term wave forecasting. In this setting, measure-

ments in the proximity of the point of interest are leveraged to develop filters relating the

future wavefield at the location of interest to the acquired measurements. The determin-

istic nature of such an approach does not incorporate stochastic information, and thus this

approach is adversely affected by unmodeled events taking place in the region of interest,

such as multiple swells, wave diffraction, and radiation. In [53], a variational approach was

developed to perform wave forecasting of a one-dimensional JONSWAP spectrum through

the assimilation of synthetic radar data. Preliminary results appeared to be promising, al-
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though no extension to the more challenging two-dimensional case has been formulated.

Finally, in [54] auto-regressive (AR) models, neural networks (NN), and linear and ex-

tended Kalman filter were tested against actual experimental data; results showed that AR

models outperformed the other approaches tested.

This chapter describes the implementation of an Ensemble Kalman Filter (EnKF)

for ocean wave forecasting. The EnKF has been adopted broadly in the numerical weather

prediction community over the last 20 years. The accurate low-rank approximation of

the state covariance in the EnKF method, and the independent propagation each ensemble

member, leveraging nonlinear dynamic equations, are two of the significant advantages

that the EnKF approach has over other forecasting approaches for nonlinear multiscale

phenomenon.

This chapter is organized as follows: Section 6.2 introduces the ocean wave model

for the simulation of ocean wave dynamics and the propagation of the ensemble members

in the EnKF formulation. Section 6.3 describes the measurement devices employed to

collect ocean data: Doppler radar and wave monitoring buoys. Section 6.4 introduces the

Ensemble Kalman Filter, and describes its numerical implementation for short-term ocean

wave forecasting. Section 6.5 analyzes the performance of our EnKF implementation when

different measurement devices are employed in a realistic sea states.

6.2 Ocean wave model

To model the propagation of ocean waves, we consider a rectangular 3D computa-

tional domain with a deformed top, where x and y are the directions parallel to the ocean

surface and z is up, where z = 0 corresponds to the surface at rest. The bathymetry is con-

sidered constant at z = −h, and the wave elevation is denoted η(x, y, t). We assume that the
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flow is incompressible and inviscid; denoting u(x, y, z, t) the velocity at position (x, y, z)

and time t, it is possible to introduce a potential function φ(x, y, z, t) such that u = ∇φ.

The continuity equation for the incompressible, inviscid flow may thus be written

∇2
Tφ = 0, (6.1)

where ∇T = [∂/∂x ∂/∂y ∂/∂z] is the three-dimensional gradient. Continuity holds for

the whole volume of fluid, given by −h ≤ z ≤ η for x ∈ [0, Lx] and y ∈ [0, Ly], where

Lx and Ly represent the spatial extent of the domain in the x and y directions. Periodic

boundary conditions on the computational domain are ultimately assumed in the x and y

directions1, while at the interface between fluid and air (i.e. z = η), dynamic and kinematic

boundary conditions are imposed, and a no-flux boundary condition is imposed at the sea

bottom (i.e. z = −h). The entire model is synthesized as



∇2
Tφ = 0, −h ≤ z ≤ η

∂η

∂t
+ ∇φ · ∇η − ∂φ

∂z
= 0, z = η

∂φ

∂t
+

1

2
∇Tφ · ∇Tφ + gη = 0, z = η

∂φ

∂z
= 0, z = −h

φ(0, y, z, t) = φ(Lx, y, z, t),

η(0, y, t) = η(Lx, y, t),

φ(x, 0, z, t) = φ(x, Ly, z, t),

η(x, 0, t) = η(x, Ly, t)

(6.2)

1As is typical in large-scale pseudospectral simulations (see, e.g., [55]), the physically-relevant region

of the simulation is considered as embedded within a non-physical “fringe” region, which allows period

boundary conditions to be used.
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where g is the gravitational constant and ∇ = [
∂/∂x ∂/∂y

]
is the gradient in the horizontal

directions x and y only. Following [56], the dimensionality of the problem in (6.2) can be

reduced to surface variables alone. To accomplish this, define the surface potential Φ and

surface vertical velocity W as

Φ = φ(x, y, z, t)|z=η ,

W =
∂φ

∂z

∣∣∣∣∣
z=η

;

(6.3)

using the chain rule for differentiation, (6.2) may be written



∇2Φ +
∂W

∂z
= 0, z = η,

∇2
Tφ = 0, −h ≤ z < η,

∂η

∂t
+ ∇Φ · ∇η −W(1 + ∇η · ∇η) = 0, z = η,

∂Φ

∂t
+

1

2
∇Φ · ∇Φ − 1

2
W2(1 + ∇η · ∇η) + gη = 0, z = η,

∂φ

∂z
= 0, z = −h,

Φ(0, y, t) = Φ(Lx, y, t),

η(0, y, t) = η(Lx, y, t),

Φ(x, 0, t) = Φ(x, Ly, t),

η(x, 0, t) = η(x, Ly, t).

(6.4)

To integrate (6.4) numerically, several approaches have been proposed. Among these, the

most promising are those presented in [57] and [58]; we prefer the latter due to its im-

proved consistency and numerical stability. Such methods propagate the surface equations

only, and account for the other equations indirectly [effectively, by analytic solution of the

Laplace equation (6.1)]. The closure problem arising from the introduction of the vertical
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velocity W is addressed by expanding Φ and W into Taylor series about z = 0:

Φ = φ + ηw − η
2

2
∇2φ − η

3

6
∇2w +

η4

24
∇4φ + O(ǫ5), (6.5)

W = w − η∇2φ − η
2

2
∇2w +

η3

6
∇4φ +

η4

24
∇4w + O(ǫ5), (6.6)

where ǫ is the wave steepness, defined as ǫ = kη where k is the wavenumber, and w =

∂φ/∂z|z=0. The Laplace equation arising from the continuity equation is used to replace

∂2φ/∂z2 with −∇2φ. The linear part (w) of the Taylor expansion of W in (6.6) can then be

related to the linear part (φ) of the Taylor expansion of Φ in (6.5) via the analytic solution

of the linear wave equations, i.e.



∇2
Tφ = 0, −h ≤ z ≤ 0

∂η

∂t
− ∂φ
∂z
= 0, z = 0

∂φ

∂t
+ gη = 0, z = 0

∂φ

∂z
= 0, z = −h

(6.7)

As shown in [59], the following expression is obtained:

w =
∂φ

∂z

∣∣∣∣∣
z=0

= F −1[k tanh(kh)F [φ]] , −L[φ], (6.8)

where F [·] denotes the Fourier transform, and F −1[·] denotes its inverse.

After substituting (6.8) into (6.5) and (6.6) wherever w arises, inverting the resulting

expression in (6.5) to express φ as a function of Φ, and finally substituting into (6.6) to
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eliminate φ, it is possible to rewrite W as a function of the surface potential Φ:

W = −L[Φ]− η∇2Φ−L[ηL[Φ]]+
1

2
η2∇2L[Φ]− η∇2(ηL[Φ])−L

[
1

2
η2∇2Φ + ηL[ηL[Φ]]

]
+O(ǫ3)

(6.9)

By substituting (6.9) into the dynamic and kinematic boundary conditions in (6.4), and

retaining the terms until third order, we get:

∂η

∂t
+L[Φ] + ∇ · (η∇Φ) +L[ηL[Φ]] + ∇2

(
1

2
η2L[Φ]

)
+L

[
ηL[ηL[Φ]] +

1

2
η2∇2Φ

]
= 0 (6.10a)

∂Φ

∂t
+ gη +

1

2
∇Φ · ∇Φ − 1

2
L[Φ]L[Φ] − L[Φ]

(
η∇2Φ +L[ηL[Φ]]

)
= 0. (6.10b)

In this way, continuity of the flowfield itself, as well as the no-flux boundary condition at

the sea bottom, are accounted for implicitly in the representation. Note also that periodic

boundary conditions are incorporated via a pseudo-spectral discretization of the horizon-

tal derivatives, which simplifies significantly the computation of the linear operator L[·]

in (6.8).

6.3 Wave measurement devices

Two common measurement devices used for wave monitoring are considered for

data assimilation. The first is a Doppler radar, which measures the radial component of the

wave velocity ur with respect to the radar center, within the radar range Rmax. The wave

radar operates in low-grazing-angle mode. The radar antenna spans 360 degrees every 2

seconds, and provides a surface elevation image with an azimuthal resolution of 1 degree

and radial resolution of 5 m. With this device, the surface potential Φ at a distance r from
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the center of the radar can be obtain through integration:

ΦR(r, θ, t) =

∫ r

0

ur(ρ, θ, t)dρ for r ∈ [0,Rmax]. (6.11)

We thus assume that the surface potential Φ is measurable within the radar range. The

degradation of the radar signal with the distance from the source/receiver is modeled by

adding a distance-dependent white noise to the measurements. In order to mimic the de-

pendence of the signal-to-noise ratio of a radar signal with the fourth power of the distance

r from the source/receiver (see [60]), the artificial noise is modeled as Gaussian random

noise with zero mean and a distance-dependent covariance of

σ2
R(r) = αR + βR

(
r

Rmax

)4

, (6.12)

where αR represents the sum of the background noise and the rms of the error obtained in

the evaluation of the integral in (6.11), while βR accounts for the signal degradation as the

distance from the source increases.

Another common type of measurement device is wave monitoring buoys, which

may be organized into arrays. These devices have already been employed in practice to

measure the local wave elevation [54]. In this case, the wave elevation η is measured

at each buoy location every 2 seconds. Measurement uncertainty is modeled by adding

Gaussian random noise with constant covariance σ2
B to each measurement.
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6.4 The Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is a powerful data assimilation method which

has been adopted broadly by the weather forecasting community in the years since it was

introduced by Evensen [61]. In [62], the EnKF has been applied to ocean wave forecasting

assuming linear wave propagation; this chapter extends this analysis to nonlinear wave

propagation. The implementation proceeds as follows. Initially, a specified number of

ensemble members N is generated by randomly sampling a sea spectrum considered to

be representative of the actual sea state. Then, a physical model of the wave process is

employed to advance each member independently over time. Whenever new measurements

of the wavefield become available, the mean and second-order statistics of the ensemble

distribution are calculated, and a Kalman-like data assimilation step is performed. The

updated ensemble members are then propagated in time until new measurements become

available, and the process repeated.

The dynamic model used to propagate the “truth” and ensemble wavefields is given

by (6.10). The wave elevation η0(x, y) and flow potential Φ0(x, y) are initialized follow-

ing a JONSWAP distribution, as this semi-empirical model has been shown to provide a

reasonably accurate approximation of the frequency spectrum of wind-generated waves in

deep water [63]. Following [64], the JONSWAP spectrum is given by

S (ω) = 155
H2

1/3

T 4
pω

5
e
−944

T 4
p ω

4
(3.3)Y , with

Y = e
−(0.191ωT p−1)2

2σ2 , and σ =



0.07, ω ≤ 5.24/Tp,

0.09, ω > 5.24/Tp,

(6.13)

where H1/3 is the significant wave height, and Tp the dominant wave period. To account
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for angular spreading of the waves, an artificial directionality function f (θ) is defined such

that

f (θ) =



2
π

cos2 (θ − θ0), for θ ∈ [θ0 − π2 , θ0 +
π
2
]

0, elsewhere,

(6.14)

where θ0 is the primary direction of wave propagation. The initial wavefield is then obtained

by randomly selecting Nw = Nω Nθ components, where Nθ is the number of individual

directions θ j modeled, and Nω is the number of frequency components ωi modeled per

direction, for the directional JONSWAP distribution defined as

S (ω, θ) = S (ω) f (θ). (6.15)

The initial wave elevation η0(x, y) is then defined as

η0(x, y) =

Nω∑

i=1

Nθ∑

j=1

√
2S (ωi)∆ω∆θ cos (ki cos θ j x + ki sin θ j y + εi j), (6.16)

where ∆ω is the frequency resolution of the spectrum, ∆θ = π/(Nθ−1) is the directional an-

gular resolution, εi j ∼ U(0, 2π) is a uniformly random phase shift, and ki is the wavenum-

ber associated with each selected frequency component ωi through the finite-depth disper-

sion relationship

ωi =
√

gki tanh (kih). (6.17)

The initial flow potential Φ0(x, y) is then obtained via solution of the linear wave propaga-

tion problem for the initial wave elevation given by (6.16):

Φ0(x, y) =

Nω∑

i=1

Nθ∑

j=1

g

ωi

√
2S (ωi)∆ω∆θ sin (ki cos θ j x + ki sin θ j y + εi j). (6.18)
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Note that, in certain sea conditions, this semi-empirical model has been proven to be in-

accurate in capturing the actual sea spectrum. In such cases, the use of a more sophisti-

cated spectral propagation model, like WAVEWATCH-III [65], is recommended. Ensem-

ble members can thus be generated according to the spectral distribution provided by this

model at a given time, and regenerated accordingly if/when the wave spectrum changes. It

is noted that the adoption of the JONSWAP model in the present analysis generates a rela-

tively narrow bandwidth of the wave spectrum. A significant degradation of the forecasting

performance of our method is expected for wavefields characterized by a broader spectrum,

as observed in [54].

Denoting with X the matrix containing the entire ensemble of state variables, with

one ensemble representation in each of its N columns, data assimilation is performed at

each measurement time via the EnKF update equations, which may be written

V− = µ
[
X− − E

(
X−

)]
, (6.19a)

P− = V−(V−)T/(N − 1), (6.19b)

X+ = X− + P−CT (CP−CT + R)−1(Y −CX−), (6.19c)

where:

• superscript − denotes the prior representation,

• superscript + denotes the posterior representation,

• C is the matrix relating the measurements y to the state vector x = [ηT ΦT ]T ,

• R is the measurement noise covariance matrix (defined according to device specifics–

see §6.3),
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• Y is the matrix obtained by perturbing (N times, in each of its N columns) the vector

of measurements y with random noise, constructed consistent with R,

• E (X−) is the mean of the (prior) ensemble set, and

• P− is the (low-rank) ensemble approximation of the (prior) covariance matrix.

Note specifically that, to implement (6.19) in a numerically tractable fashion when the state

dimension n is large, the n × n matrix P− is never explicitly computed. Rather, (6.19b) is

kept in its factored form and substituted into (6.19c), and the n × N factor V−, which itself

defines P−, is everywhere multiplied by C, as required by (6.19c), before being used further.

Distinct from the standard EnKF formulation, a fading-memory parameter µ ≥ 1

has been introduced, as suggested by [66, 67] (the standard EnKF formulation is retrieved

for µ = 1). This fading-memory formulation increases the response of the EnKF to new

measurements. A resampling strategy is also implemented, for which a small percentage

of the ensemble members are regenerated after a given time interval, as suggested by [68].

This resampling (a.k.a. covariance inflation) strategy also increases the responsiveness of

the EnKF to new measurements.

The outer region of each ensemble member (away from the measurements, which

are generally centered around or slightly upstream of the WEC device itself) is considered

as a nonphysical “fringe” or “sponge” region in the ensemble representation of the actual

flowfield. An artificial forcing function, akin to that adopted in [55], is applied specifically

to randomly “scramble”, somewhat gently, the relative phase of the waves in the various en-

semble members in the ensemble representation of the wavefield in this region. This Phase

Scrambling of the waves in the ensemble representation in this fringe zone has the effect

of increasing the modelled variance of the ensemble representation (that is, increasing the
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corresponding components of P−) in this spatial region, specifically for those wave com-

ponents that are present in the particular sea state under consideration. Larger (compared

to R) variance in this region and in these components tends, by (6.19c), to lead to larger

measurement updates as the waves convect again into regions where measurements become

available (that is, in the vicinity of the WEC device). Note specifically that the artificial

forcing function used in the fringe region is not designed simply to diminish the waves in

the ensemble members towards zero in the fringe region, which would have the undesired

effect of decreasing the modelled variance of the ensemble representation in this region

for the wave components in question, thereby causing the undesired effect of decreasing

the measurement updates as the waves convect back into the regions where measurements

become available.

6.5 Simulations

Some initial numerical results are now presented to assess the performance of the

EnKF wave forecasting strategy proposed above under different measurement configura-

tions and sea states.

In our numerical tests, the computational domain used for simulation of the “truth”

wavefield is a Cartesian rectangular domain [0, Lx] × [0, Ly], with Lx = 8000 m and

Ly = 4000 m, and nx = 512 and ny = 256 gridpoints are used in the x and y directions,

respectively. A constant depth of h = 100 m is assumed. For the simulation of the ensem-

ble members, a rectangular domain of size [0, LKF
x ] × [0, LKF

y ] is used, with LKF
x = 6000 m

and LKF
y = 4000 m, and nKF

x = 384 and nKF
y = 256 gridpoints are used in the x and y

directions, respectively. For convenience, the two grids described above coincide in the y

direction, and coincide over 384 gridpoints in the x direction. The FFTW package [69] is



160

used to implement optimized FFT routines for the wavefield simulations, assuming periodic

boundary conditions in x and y on the domains considered, as described further below.

The main direction of propagation of the waves is taken as parallel to the x direction;

that is, θ0 = 0 in (6.14). Significantly, the domain size of the “truth” simulation, and the

domain size of the EnKF-based reconstruction of this wavefield, are taken as large and

different in the x direction. The results given later in this section show that the EnKF-based

reconstruction in the region of interest (near the WEC device) is still quite effective. That

is, the wavefield of the truth simulation is reconstructed well by the EnKF representation in

the region of interest, even though the domain size in the x direction in the truth and EnKF

models do not match. This indicates that the (artificial) periodic boundary conditions used

in both sets of simulations are not key factors in the accuracy of the reconstruction, and that

a spatially-periodic EnKF-based reconstruction of a nonperiodic wavefield is expected to

show similar behavior in terms of the accuracy of the reconstructed wavefield in the region

of interest.

Noting (6.16), the initial wavefield η0(x, y) for the sea state is obtained by randomly

sampling Nω · Nθ = 50 wave components from the JONSWAP spectrum in (7.36) with

H1/3 = 3 m, and Tp = 10 s (see Figure 6.1). This produces a wavefield with a dominant

wavelength of 150 m and an associated phase speed of 16 m/s.

Simulations have been performed in which the number of ensemble wavefields,

N, is equal to 125 or 250. Each wavefield of the ensemble set is generated by randomly

sampling a perturbation of the JONSWAP spectrum used to generate the truth model. This

is achieved by considering the significant wave height H1/3 as a uniformly random variable

within the interval [2.5 m, 3.5 m], the dominant wave period within the range [8 s, 12 s],

and the main direction of wave propagation within [−π/20, π/20]. Furthermore, every 40
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Figure 6.1: Snapshot of the initial wavefield η0(x, y).

seconds, approximately 10% of the ensemble members are regenerated from a perturbed

JONSWAP spectrum. The fading-memory parameter µ in (6.19) is taken as 1.1. The

simulation is run for T = 100 s, with a constant timestep ∆t = 0.5 s. The third-order

low-storage mixed implicit/explicit Runge-Kutta algorithm IMEXRKCB3e in [26] and

Chapter 2 is used for the time integration of (6.10), with the linear terms treated implicitly,

and the nonlinear treated explicitly.

As far as the measurement strategy is concerned, four different scenarios have been

considered, two involving a Doppler radar and two involving arrays of measurement buoys,

with different configurations, as described below. In all cases, a sampling interval of 2 s is

considered. After the simulation has reached time T , the ensemble wavefield is advanced

in time over a forecasting horizon Th of one minute, and the associated ensemble forecast

is compared to the actual propagated wavefield. Particular attention is placed on wave

estimation at a single point, referred to as point of interest, at the center of the computational

domain, i.e., at (x, y) = (Lx/2, Ly/2). In the WEC application, this would represent the

location of one or more WEC devices, as motivated in §7.1.
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6.5.1 Doppler radar

The first case considers the estimator performance in a configuration in which a

Doppler radar is colocated with the point of interest, such as a ship using a wave radar

to predict oncoming rogue waves. The second case considers a non-colocated Doppler

radar configuration, with the radar placed 1000 m upstream of the point of interest, such

as for WEC device tuning, or for a monitoring station outside of a harbor or other fixed

cargo transfer location. In both configurations, a radar range of 500 m is assumed, and

the parameters used for the definition of the measurement noise covariance in (6.12) are

αR = 10−3 and βR = 10−3.

Results are shown in Figures 6.2-6.5. The case with colocated radar and N =

125 shows that wavefield reconstruction (Figures 6.2a-f) is performed with poor accuracy

within the radar range. Results improve considerably when N = 250 ensemble members

are employed. In this case, the wave reconstruction (see Figures 6.3a-b) creates a region

of low error which extends outside the radar range approximately 1000 m downstream.

This refined estimation of the incoming wavefield significantly improves the thirty-second-

ahead forecast (Figures 6.3c-d), as well as the one-minute-ahead forecast (Figures 6.3e-f),

although this appears to be the maximum forecasting horizon possible in this configuration,

as a high-error region appears upstream close to the point of interest.

The non-colocated case is of particular interest, since in this framework the down-

stream region of low-error coincides with the point of interest. When 125 ensemble mem-

bers are employed, wavefield reconstruction is again rather poor (Figures 6.4a-b), with the

low-error region barely covering the point of interest. The thirty-second-ahead forecast

(Figures 6.4c-d) shows a rapid contraction of the low-error region, as observed in the colo-

cated case, due to the side regions of high error spreading toward the center of the domain.
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(b) Wavefield cross-section at th = 0 s
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(e) Forecasting error at th = 60 s
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(f) Wavefield cross-section at th = 60 s

Figure 6.2: Current estimate, 30-second prediction, and 1-minute prediction using 125

ensemble members and a colocated radar. In the left figures, the green point represents

the point of interest, and the blue dashed circle represents the radar range. In the right

figures, the black solid line represents the actual wave height, the red dashed line

represents the reconstructed wave height, the two blue vertical lines indicate the radar

range, and the green vertical line indicates the position of the point of interest.
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(a) Forecasting error at th = 0 s
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(e) Forecasting error at th = 60 s
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(f) Wavefield cross-section at th = 60 s

Figure 6.3: Current estimate, 30-second prediction, and 1-minute prediction using 250

ensemble members and a colocated radar. Symbols marked as in Figure 6.2.
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This phenomenon is even more evident in the one-minute ahead forecast (Figures 6.4e-f),

in which the low-error region essentially disappears altogether.

Again, results improve significantly when 250 ensemble members are employed. In

this case, estimation results (Figures 6.5a-b) show that a low-error region is created which

extends outside the radar range 1000 m downstream, thus including the point of interest. As

time advances, the low-error region convects toward the point of interest, while moderately

shrinking; the error of the wave forecast after thirty seconds and one minute (Figures 6.5c-d

and 6.5e-f, respectively) at the point of interest are comparatively quite low.

Comparative analysis of the four configurations considered above (Figure 6.6) re-

veals interesting trends. The case with colocated radar and 125 ensemble members (Fig-

ure 6.6a) fails to correctly reconstruct the actual wavefield accurately at the point of interest.

Also, the accuracy of the estimate at the point of interest degrades rapidly, due mainly to

the low-error region convecting downstream. Results improve with a higher number of

ensemble members (Figure 6.6b). In this case, the estimation error at the point of interest

remains below 2% for the first 30 seconds, and increases to 8% by 60 seconds. This im-

provement is mainly explained by the increased extension of the low-error region upstream

of the radar range.

Even better results are achieved in the non-colocated configuration: with 125 en-

semble members (Figure 6.6c), the relative error is around 12% (on average) for the entire

forecast horizon, with substantial magnitude error but minimal phase error for the first 30

seconds. Leveraging 250 ensemble members (Figure 6.6d), the relative error is kept below

5% for the first 25 seconds with virtually zero phase lag. After that time, some magnitude

errors are evident, but the phase error is minimal. This result suggests that this configura-

tion (that is, 250 ensemble members and the wave radar situated upstream of the point of



166

 

 

2000 2500 3000 3500 4000 4500 5000 5500 6000
−1000

−800 

−600 

−400 

−200 

0    

200  

400  

600  

800  

1000 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

(a) Forecasting error at th = 0 s

2000 2500 3000 3500 4000 4500 5000 5500 6000
−1.5

−1

−0.5

0

0.5

1

1.5

x

η
,
η̂

(b) Wavefield cross-section at th = 0 s
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(e) Forecasting error at th = 60 s
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(f) Wavefield cross-section at th = 60 s

Figure 6.4: Current estimate, 30-second prediction, and 1-minute prediction using 125

ensemble members and a non-colocated radar. Symbols marked as in Figure 6.2.
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(e) Forecasting error at th = 60 s
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Figure 6.5: Current estimate, 30-second prediction, and 1-minute prediction using 250

ensemble members and a non-colocated radar. Symbols marked as in Figure 6.2.
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(c) Non co-located radar, NKF = 125
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(d) Non co-located radar, NKF = 250

Figure 6.6: Zero- to 60-second-ahead wave height (black), predicted wave height (red)

and prediction error magnitude (blue, normalized by the significant wave height H1/3), at

the point of interest, as a function of time (normalized by the dominant wave period

Tp = 60 sec), estimated using wave radar configured as indicated.

interest) is preferred for longer forecasting horizons, such as for WEC device tuning.

6.5.2 Measurement buoys

The first case considers a single array of three buoys placed 250 m directly upstream

of the point of interest, with a lateral separation of 100 m, while the second case considers

two arrays of three equally-spaced buoys each, one 250 m and the other 1000 m directly

upstream of the point of interest, again with a lateral spacing of 100 m. The measure-

ment noise has been modeled as a Gaussian random variable with zero mean and constant
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covariance σ2
B = 10−3.

Results are shown in Figures 6.7-6.10. The case with a single array of buoys and

125 ensemble members shows that a region of low estimation error develops in the neigh-

borhood of the buoy array, and extends nearly 500 m upstream and downstream, allowing

good estimation error at the point of interest (Figures 6.7a-b). Thirty-second- and one-

minute-ahead prediction (Figures 6.7c-d and Figures 6.7e-f) still show fairly good overall

results, with the low-error region shrinking while being convected downstream.

Distinct from what observed in the wave radar setting, increasing the number of

ensemble members for the single buoy array does not seem to improve performance signif-

icantly (see Figures 6.8a-f). It is also observed that the wavefield reconstruction error with

250 ensemble members appears slightly lower at the sides of the buoy array than the case

with 125 ensemble members.

The inclusion of a second row of measurement buoys significantly extends the re-

gion of low estimation error, as shown in Figures 6.9a-b, where 125 ensemble members

have been used. The thirty-second-ahead forecast (Figures 6.9c-d) shows the low-error

region shrinking significantly, while maintaining good amplitude and phase estimation at

the point of interest. The low-error region effectively vanishes by the sixty-second-ahead

forecast (Figures 6.9e-f).

Incorporating 250 ensemble members only slightly increases the initial region of

low estimation error, especially at the sides of the two buoy arrays, as shown in Fig-

ures 6.10a-b. After thirty seconds, this region shrinks slightly (Figures 6.10c-d), while

after one minute it is significantly reduced, as observed in Figures 6.10e-f.

A comparative analysis of the four cases described above is reported in Figure 6.11.

The case with a single array and 125 ensemble members (Figure 6.11a) shows a relative
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(e) Forecasting error at th = 60 s
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(f) Wavefield cross-section at th = 60 s

Figure 6.7: Current estimate, 30-second prediction, and 1-minute prediction using 125

ensemble members and a single array of three buoys placed 250 m upstream of the point

of interest. In the left figures, the green point represents the point of interest, and the blue

circles represent the measurement buoys. In the right figures, the black solid line

represents the actual wave height, the red dashed line represents the reconstructed wave

height, the blue vertical line indicates the buoy location, and the green vertical line

indicates the position of the point of interest.
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(e) Forecasting error at th = 60 s
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Figure 6.8: Current estimate, 30-second prediction, and 1-minute prediction using 250

ensemble members and a single row of three buoys placed 250 m upstream of the point

of interest. Symbols marked as in Figure 6.7.
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(e) Forecasting error at th = 60 s
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Figure 6.9: Current estimate, 30-second prediction, and 1-minute prediction using 125

ensemble members and two rows of three buoys each, placed 250 m and 1000 m

upstream of the point of interest. Symbols marked as in Figure 6.7.
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Figure 6.10: Current estimate, 30-second prediction, and 1-minute prediction using 250

ensemble members and two rows of three buoys each, placed 250 m and 1000 m

upstream of the point of interest. Symbols marked as in Figure 6.7.
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error which is initially decreasing in the first 30 seconds. This happens because the point

of interest lies on the margin of the low-error region, while after thirty seconds it appears

to be in the middle of it, as this region convects downstream. For the single array case with

250 ensemble members (Figure 6.11b), the initial estimation is improved with respect to the

previous case, and increases after 30 seconds. The case with a double array of measurement

buoys and 125 ensemble members (Figure 6.11c) initially shows somewhat worse perfor-

mance in the first half of the forecasting horizon, though results improve slightly in the

second half, as compared with the single array case. A similar trend is observed with 250

ensemble members. This indicates that the double array configuration offered only slight

improvement in extending the length of the forecasting horizon while retaining adequate

accuracy.

Comparing the configurations implementing wave radar alone with those imple-

menting wave monitoring buoys alone shows that the estimation/forecasting error at the

point of interest is generally somewhat improved in the wave radar case. Moreover, even

those portions of the domain which are farther from the measurement location show higher

errors, thus suggesting that reconstructing wave elevation by measuring wave velocity rep-

resents a much more challenging task, due to the extremely complicated nature of wave

interaction.

6.6 Conclusions

We have developed a novel framework for ensemble wave forecasting based on the

assimilation of measured data. Four different representative configurations of sensors have

been considered: colocated or non-colocated wave radar, or a single or double array of

wave monitoring buoys. Sensitivity with respect to the number of ensemble members has
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(d) Double array, NKF = 250

Figure 6.11: Zero- to 60-second-ahead wave height (black), predicted wave height (red)

and prediction error magnitude (blue, normalized by the significant wave height H1/3), as

a function of time (normalized by the dominant wave period Tp = 60 sec), estimated

using measurement buoys configured as indicated.



176

also been investigated. When a sufficient number of ensemble members are used, all four

configurations are shown to estimate and forecast the wave field at the point of interest with

reasonable accuracy. Results illustrate that measuring the wave elevation directly (leverag-

ing monitoring buoys), rather than measuring wave velocity (leveraging wave radar) gen-

erally offers somewhat improved forecast accuracy.

The number of ensemble members needed to provide accurate estimates and fore-

casts by the EnKF in this project ranged from 125 to 250. This is somewhat larger than the

number of ensemble members typically used in weather forecasting, where 50-70 ensem-

ble members are typically employed. This might be partially explained by the ambitious

goal of the present setting, which is to provide an accurate pointwise forecast of the wave

elevation at a point of interest. In contrast, in weather forecasting applications, the attention

is usually focused on the prediction of atmospheric quantities (like humidity, precipitation,

temperature, winds, and pressure) averaged over a broad region.

Simulations have shown that it is possible to perform wave forecasting with rea-

sonable accuracy up to one minute into the future, under the assumption of a relatively

narrow-band sea spectrum. The success of the forecasting framework developed here de-

pends upon an accurate knowledge of the average wave spectrum. Note that a wider-band

sea spectrum makes forecast much more difficult, as discussed in [54]. Uncertainty of the

wave directionality is another factor that could quickly deteriorate the accuracy of a fore-

cast. In this work, we have assumed that actual wavefield is made of a superposition of

waves which are all travel close to a main direction of propagation, which is assumed to be

accurately known. A degradation of performance is expected in the case of multidirectional

wavefields. The accurate forecast results reported in this work should thus be considered

in light of these limitations; significant further development and testing of this framework,
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and validation against actual wave data, is thus motivated.

Finally, we remark that the pseudo-spectral model for wave propagation adopted in

this work does not account for near-shore wave shoaling, wave breaking, bottom friction

and viscous effects. To account for such phenomena, a different wave model needs to be

used, though the EnKF framework developed and implemented in the present work is still

quite applicable. Wave forecasting algorithms which account for such significant physical

phenomena should be developed and tested in future work.
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Chapter 7

Nonlinear Model Predictive Control of a

one- and two-body point absorber wave

energy converter

7.1 Introduction

With the cost of fossil fuels consistently increasing, renewable energies have been

receiving growing interest in recent years. Akin to other more mature fields of renewable

energy, such as solar and wind energy, ocean wave energy conversion has recently raised

significant attention. This has lead to the development of a variety of topologies for WEC

devices, which have been undergoing extensive numerical simulations (see [70] and [71],

for example). In some remarkable cases, the design has reached the prototype testing phase,

which has been carried out in tanks [72] or actual ocean locations [73]. So far, the design

optimization of such devices have relied on a rather passive approach, in which the struc-

tural parameters are defined in order to maximize the power take-off when the device is

178
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oscillating at the peak frequency of the sea spectrum at the location of installment.

This, however, has led to rather suboptimal performances, preventing wave energy

conversion to achieve further competitiveness with respect to other renewable energy al-

ternatives. In order to improve the efficiency of WECs, active control strategies have been

developed and thoroughly investigated. Among the different topologies currently available,

the point-absorber wave energy converter has emerged as the device of choice for bench-

marking [48]. In [74], the performances of a broad selection of promising active control

policies applied to the point absorber have been assessed. As a result, linear model pre-

dictive control (LMPC) has proved to outperform any other control logic developed so far.

Furthermore, MPC allows to handle in a straightforward fashion the presence of structural

constraints, such as actuator saturation and device motion constraints, which may prevent

the device from experiencing mechanical failure in harsh operating conditions occurring in

offshore applications. However, the classical LMPC formulation, although extremely ap-

pealing, presents fundamental limitations, since it can handle only linear and quadratic cost

functions, and linear equality and inequality constraints. Thus, nonlinear effects affecting

WEC dynamics cannot be properly accounted for and a linearization of those is required

in the LMPC formulation, often leading to suboptimal results. Recently, nonlinear model

predictive control has been applied to the optimization of a point absorber WEC subject to

nonlinearities (such as mooring forces [75]) and time-varying parameters (such as adaptive

PTO damping [76]).

The goal is to extend the application of NMPC to the optimization of the power

take-off of a point-absorber subject to other nonlinear effects, such as drag forces. Two

topologies will be considered for the point absorber: the one-body model, in which a float-

ing buoy moored to the sea bed oscillates in heave, and a more realistic two-body model,
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in which the buoy oscillates with respect to a reaction plate immersed in water and moored

to the sea floor. In both cases, two configurations of the PTO unit will be analyzed: one in

which the PTO unit is able to absorb and produce power (two-way power flow), and one

in which the actuator works in generator-mode only (one-way power flow). This last re-

quirement is of particular interest, since it leads to the implementation of a PTO unit with a

much simpler design. Differently from [76], no assumption is made on the actuator dynam-

ics, and one-way power flow constraint is imposed as a nonlinear constraint in the NMPC

formulation. In this way, the nonlinear dynamic model in the nonlinear optimization has

constant coefficients and the cost function is still quadratic, which simplifies the solution

of the NMPC optimization problem. Besides, the adoption of a direct multiple shooting

strategy for the discretization of the state trajectories in the NMPC formulation, together

with an analytic computation of the associated gradients and function values, contributes

to further accelerate convergence of the nonlinear optimization problem, since it rules out

any need for numerical differentiation tools such as automatic differentiation, finite differ-

ences, complex step differentiation, etc.). We want to remark that complete knowledge of

the interacting wavefield is assumed. The problem associated to wave forecasting is not

discussed here and we therefore refer to other works, such as [54] and [77], while for the

problem of prediction-based MPC some preliminary results are reported in [51] and [62].

This chapter is organized as follows. In Section 7.2, a nonlinear state-space dy-

namic model is presented for the one-body and two-body wave energy converter. Sec-

tion 7.3 introduces the direct multiple shooting NMPC formulation and the associated non-

linear programming problem, with particular attention to its numerical implementation.

Performances of NMPC applied to a one- and two-body wave energy converter, under dif-

ferent operating conditions, are assessed in Section 7.4.
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Figure 7.1: Model of a one-body point absorber WEC device.

7.2 One-body and two-body WEC model

7.2.1 One-body WEC

The one-body model for the point absorber wave energy converter (herein also

dubbed WEC1) in heave is shown in Figure 7.1, in which the wave elevation at the de-

vice location at time t is indicated with η(t), and the degree of freedom associated to heave

motion is indicated with z. The dynamic model is obtained through a balance of forces

affecting the device:

m z̈(t) + r ż(t) + k z(t) = fD(t) + fR(t) + fe(t) + u(t) (7.1)

where m is the WEC mass, r the viscous damping, k = ρgS w the hydrostatic stiffness,

where ρ is the water density, g is the gravitational constant, and S w is the waterplane area.

On the RHS, fD is the nonlinear drag force, fR the radiation force, fe the excitation force,

and u is the control force. The drag force is determined through Morrison equation:

fD(t) = −1

2
ρS wCDż(t)2 sgn ż(t) (7.2)
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where CD is the drag coefficient. The radiation force fR(t) is defined, according to [78], as

fR(t) = −A11 z̈(t) − fr(t)

= −A11 z̈(t) −
∫ t

−∞
hr(t − τ) ż(τ) dτ

(7.3)

where A11 is the added mass and hr(t) is the radiation impulse response function. The

excitation force fe is defined as

fe(t) =

∫ +∞

−∞
he(t − τ) η(τ) dτ (7.4)

where he(t) is the excitation impulse response function. Differently from the radiation force,

this impulse response function is noncausal, as thoroughly discussed in [49]. In order to

obtain a nonlinear state-space form, the reduced radiation force fr in (7.3) is approximated

by a state-space representation, by introducing a dummy variable Xr, as done in [79]:

Ẋr(t) = Ar Xr(t) + Br ż(t)

fr(t) = Cr Xr(t) + Dr ż(t)

(7.5)

Combining (7.1) and (7.5) and introducing the state space vector x = [XT
r z ż]T gives

the state-space model:

ẋ(t) = A x(t) + E fD(x(t)) + E fe(t) + B u(t)

= f1(x(t); u(t), fe(t))

(7.6)
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Figure 7.2: Model of a two-body point absorber WEC device.

with

A =



Ar 0 Br

0 0 I

− Cr

m+A11
− k

m+A11
− r+Dr

m+A11



E =



0

0

1
m+A11



B =



0

0

1
m+A11



7.2.2 Two-body WEC

The derivation of the state-space model for the two-body WEC (dubbed WEC2)

follows the formulation presented in [80]. An illustrative scheme of the device is shown

in Figure 7.2, where the buoy displacement is indicated with z1, while the reaction plate

motion is indicated with z2. The actuator acts between the buoy and the reaction plate. The

associated equations of motion for this system are



m1z̈1(t) + r1ż1(t) + k1z1(t) = fD1
(t) + fR11

(t) + fR12
(t) + fe1

(t) + u(t)

m2z̈2(t) + r2ż2(t) + k2z2(t) = fD2
(t) + fR22

(t) + fR21
(t) + fe2

(t) − u(t)

(7.7)
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where subscript 1 indicated quantities referred to the buoy, while 2 refers to the reaction

plate. In particular, k2 accounts for both the hydrostatic stiffness of the reaction plate and

the stiffness of the mooring system. As far as the radiation forces are concerned, each

body experiences two contributions, one due to the displacement of the body and the other

due to the interaction between the two connected bodies. Each radiation force fRi j
can be

expressed as

fRi j
(t) = −Ai jz̈ j(t) − fri j

(t), i, j = 1, 2

= −Ai jz̈ j(t) −
∫ t

−∞
hri j

(t − τ) ż j(τ) dτ

(7.8)

The integral representing each reduced radiation force fri j
can be discretized and repre-

sented as a state-space subsystem:

Ẋri j
(t) = Ari j

Xri j
(t) + Bri j

ż j(t)

fri j
(t) = Cri j

Xri j
(t) + Dri j

ż j(t)

i, j = 1, 2 (7.9)

Each drag term is then defined as:

fDi
(t) = −1

2
ρS wi

CDi
żi(t)

2 sgn żi(t), i = 1, 2 (7.10)

Combining Equations (7.7) and (7.9), and introducing vector

x = [XT
r11

XT
r12

z1 ż1 XT
r22

XT
r21

z2 ż2]T

gives the state-space model

ẋ(t) = A x(t) + E1 fD1
(x(t)) + E2 fD2

(x(t)) + E1 fe1
(t) + E2 fe2

(t) + B u(t)

= f2(x(t); u(t), fe1
(t), fe2

(t))

(7.11)
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with

A =



Ar11
0 0 Br11

0 0 0 0

0 Ar12
0 0 0 0 0 Br12

0 0 0 I 0 0 0 0

−Cr11

mT1

−Cr12

mT1

− k1

mT1

− r1+Dr11

mT1
(m2+A22)

A12Cr22

mT1
(m2+A22)

A12Cr21

mT1
(m2+A22)

A12k2

mT1
(m2+A22)

A12(r2+Dr22
)

mT1
(m2+A22)

0 0 0 0 Ar22
0 0 Br22

0 0 0 Br21
0 Ar21

0 0

0 0 0 0 0 0 0 I

A21Cr11

mT2
(m1+A11)

A21Cr12

mT2
(m1+A11)

A21k1

mT2
(m1+A11)

A21(r1+Dr11
)

mT2
(m1+A11)

−Cr22

mT2

−Cr21

mT2

− k2

mT2

− r2+Dr22

mT2



E1 =



0

0

0

1
mT1

0

0

0

− A21

mT2
(m1+A11)



E2 =



0

0

0

− A12

mT1
(m2+A22)

0

0

0

1
mT2



B =



0

0

0

1
mT1

+
A12

mT1
(m2+A22)

0

0

0

− 1
mT2

− A21

mT2
(m1+A11)



where mT1
= m1 + A11 − A12A21/(m2 + A22) and mT2

= m2 + A22 − A12A21/(m1 + A11). In the

following, the two state-space models here described (7.6) and (7.11), will be leveraged in

the NMPC formulation for the optimization of the power take-off.

7.3 Nonlinear Model Predictive Control formulation

The nonlinear Model Predictive Control formulation here described follows directly

the work in [81] and [82]. At each instant t0, a cost function J(x, u) is minimized over a
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control horizon Th subject to equality and inequality constraints involving the state-space

vector x and the control input u, in order to determine the optimal control value u∗ to impose

at the next time instant. The associated nonlinear optimization problem appears as follows:

min
x, u

J(x, u) = min
x, u

∫ t0+Th

t0

L(x(t), u(t)) dt + E(x(t0 + T ))

subject to

x̄0 − x(t0) = 0

f(x(t), u(t), e(t)) − ẋ = 0, t ∈ [t0, t0 + Th]

d(x(t), u(t)) ≥ 0, t ∈ [t0, t0 + Th]

(7.12)

where x̄0 is the value of the state vector at the beginning of the control interval, e(t) rep-

resents exogenous inputs affecting system dynamics, and d(x, u) represents the inequality

constraints. The objective function is of Bolza type and it is composed by a Lagrange

term L(x, u) and a Meyer term E(x(t0 + Th)). The continuous-time optimization problem

in (7.12) is first discretized following a direct multiple shooting approach: the control inter-

val [t0, t0 + Th] is first divided into N smaller intervals [tk, tk+1] of constant size ∆t. In each

interval, the control input u(t) is discretized under a zero-order hold assumption, which

means that a constant value uk is assumed in each kth interval. The same assumption is

made for the external disturbances e(t), such as the excitation forces in the present appli-

cation. Furthermore, in order to impose the dynamics constraints, a matching condition is

imposed at the end of each interval [tk, tk+1], i.e.

χ
k(xk+1; xk, uk) − xk+1 = 0, t = tk+1
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where χk represents the state trajectory discretized over the interval. For brevity of notation

the exogenous input e(t) does not appear in the discretized trajectory formulation, even if

it is necessary for its computation. After discretization, the nonlinear problem in (7.12)

appears as

min
xk , uk

N−1∑

k=0

Lk(xk, uk) + E(xN)

subject to

x̄0 − x0 = 0

c(xk, xk+1, uk) = χk(xk+1; xk, uk) − xk+1 = 0, k = 0, 1, . . . , N − 1

d(xk, uk) ≥ 0, k = 0, 1, . . . , N − 1

(7.13)

The nonlinear programming problem (NLP) in (7.13) is then solved leveraging a sequential

quadratic programming (SQP) algorithm (see [83], for an extensive description). Introduc-

ing the vector of optimization variables w = [UT XT ]T , where

U = [uT
0 uT

1 . . . uT
N−1]T

X = [xT
0 xT

1 . . . xT
N]T

starting from an initial guess (w0, λ0), where λ is the Lagrange multiplier associated to the

constraints, at each iteration i it is required to solve the following quadratic programming
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(QP) problem:

min
∆w

1

2
∆wT B(i)∆w + b(i) T∆w

subject to

C(i)∆w + c(i) = 0

D(i)∆w + d(i) ≥ 0

(7.14)

where B(i) is the Hessian of the Lagrangian L(w, λ) associated to the NLP problem (7.13),

and b(i) is the cost function gradient, evaluated at the current iteration w(i). Besides

C(i) = ∇wc(w)|w(i) , c(i) = c(w(i))

D(i) = ∇wd(w)|w(i) , d(i)= d(w(i))

The solution is then updated through

w(i+1) = w(i) + α∆w∗ (7.15)

where ∆w∗ is the optimal solution of the QP problem in (7.14) and α ∈ [0, 1] is a parameter

to be determined using a line search algorithm (see [83] for further details). Convergence

is achieved when the norm ‖w(i+1) − w(i)‖ is less than a prescribed tolerance.

In the current implementation, the goal is to optimize the WEC average power take-

off over the desired control horizon Th, subject to motion constraints limiting the device

maximum velocity and oscillation, actuator constraints defining the maximum control input

umax, and the device nonlinear dynamics. This continuous-time nonlinear optimization
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problem for the one-body model in (7.6) can be formulated as

min
1

Th

∫ t0+Th

t0

Pa(t) dt = min
1

Th

∫ t0+Th

t0

ż(t)u(t) dt

subject to

x̄0 − x(t0) = 0

f1(x(t), u(t), fe(t)) − ẋ = 0, t ∈ [t0, t0 + Th]

|z(t)| ≤ pmax, t ∈ [t0, t0 + Th]

|ż(t)| ≤ vmax, t ∈ [t0, t0 + Th]

|u(t)| ≤ umax, t ∈ [t0, t0 + Th]

(7.16)

Discretization of (7.16) leads to

min
1

2N

N−1∑

k=0

xT
k+1S T

v uk + uT
k S vxk+1

subject to

x̄0 − x0 = 0

ck(xk, xk+1, uk) : χk(xk+1; xk, uk) − xk+1 = 0, k = 0, 1, . . . , N − 1

|S p xk| ≤ pmax, k = 0, 1, . . . , N − 1

|S v xk| ≤ vmax, k = 0, 1, . . . , N − 1

|uk| ≤ umax, k = 0, 1, . . . , N − 1

(7.17a)

where S p and S v are vectors extracting WEC position and velocity from the state vector

x. For the case in which the PTO power flow is not reversible, i.e. the PTO is able to

only absorb energy, the NLP problem in (7.17a) has to be modified by imposing the extra
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inequality Pa(t) ≤ 0 over the entire control horizon Th, i.e.:

min
1

2N

N−1∑

k=0

xT
k+1S T

v uk + uT
k S vxk+1

subject to

x̄0 − x0 = 0

ck(xk, xk+1, uk) : χk(xk+1; xk, uk) − xk+1 = 0, k = 0, 1, . . . , N − 1

|S p xk| ≤ pmax, k = 0, 1, . . . , N − 1

|S v xk| ≤ vmax, k = 0, 1, . . . , N − 1

|uk| ≤ umax, k = 0, 1, . . . , N − 1

1

2
(xT

k+1S T
v uk + uT

k S vxk+1) ≤ 0, k = 0, 1, . . . , N − 1

(7.17b)

This constraint is quadratic, therefore it cannot be enforced using LMPC. We want to re-

mark that, while solving the NLP problem in (7.17b), we have sometimes experienced poor

convergence performances, mainly related to the choice of the initial guess in the SQP op-

timization. This problem is overcome by solving the “relaxed" NLP problem (7.17a) first

and use the solution, although possibly unfeasible, as a first guess for problem (7.17b).

For the two-body model, the absorbed power depends instead on the relative ve-

locity between the buoy and the reaction plate, and motion constraints involve relative
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displacement and velocity between the two bodies. The optimization problem appears as

min
1

Th

∫ t0+Th

t0

Pa(t) dt = min
1

Th

∫ t0+Th

t0

(ż1(t) − ż2(t))u(t) dt

subject to

x̄0 − x(t0) = 0

f2(x(t), u(t), fe 1,2(t)) − ẋ = 0, t ∈ [t0, t0 + Th]

|z1(t) − z2(t)| ≤ ∆pmax, t ∈ [t0, t0 + Th]

|ż1(t) − ż2(t)| ≤ ∆vmax, t ∈ [t0, t0 + Th]

|u(t)| ≤ umax, t ∈ [t0, t0 + Th]

(7.18)

Discretization of (7.18) leads to

min
1

2N

N−1∑

k=0

xT
k+1S T

∆vuk + uT
k S ∆vxk+1

subject to

x̄0 − x0 = 0

ck(xk, xk+1, uk) : χk(xk+1; xk, uk) − xk+1 = 0, k = 0, 1, . . . , N − 1

|S ∆p xk| ≤ ∆pmax, k = 0, 1, . . . , N − 1

|S ∆v xk| ≤ ∆vmax, k = 0, 1, . . . , N − 1

|uk| ≤ umax, k = 0, 1, . . . , N − 1

(7.19a)

where S ∆p and S ∆v are vectors extracting relative position and velocity between the two

bodies of the WEC from the state vector x. As for the one-body WEC optimization case,
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the one-way power flow design requirement is imposed by adding the extra inequality:

min
1

2N

N−1∑

k=0

xT
k+1S T

∆vuk + uT
k S ∆vxk+1

subject to

x̄0 − x0 = 0

ck(xk, xk+1, uk) : χk(xk, uk) − xk+1 = 0, k = 0, 1, . . . , N − 1

|S ∆p xk| ≤ ∆pmax, k = 0, 1, . . . , N − 1

|S ∆v xk| ≤ ∆vmax, k = 0, 1, . . . , N − 1

|uk| ≤ umax, k = 0, 1, . . . , N − 1

1

2
(xT

k+1S T
∆vuk + uT

k S ∆vxk+1) ≤ 0, k = 0, 1, . . . , N − 1

(7.19b)

Given a number of states n and control input m, the SQP algorithm for the NMPC

optimization requires at each iteration i the solution of a QP problem in mN + n(N + 1)

unknowns. For longer forecasting horizons, i.e. high N, this approach becomes quickly

impractical. For this reason, a condensing approach [84] is adopted in order to leverage the

sparsity pattern in the gradient of the equality constraints arising from the discretization of

the system dynamics. At each iteration of the SQP algorithm, the gradient of the equality

constraint, for both approaches described above, appears as:

C(i) =



−I

∂c0/∂u0|w(i) ∂c0/∂x0|w(i) −I

. . .
. . .

. . .

∂cN−1/∂uN−1|w(i) ∂cN−1/∂xN−1|w(i) −I



(7.20)

Considering the more compact notation Cx
k
= ∂ck/∂xk|w(i) , a block Gaussian elimination
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matrix G(i) can be constructed as

G(i) =



I

Cx
0

I

Cx
1
Cx

0
Cx

1
I

...
...

. . .
. . .

∏N−1
j=0 Cx

j

∏N−1
j=1 Cx

j
. . . Cx

N−1
I



Multiplying the equality constraint equation in (7.14) by G(i) and rearranging allows to

obtain an explicit expression of the state increment vector ∆X as a linear function of the

control input increment vector ∆U, i.e.

∆X = C′(i)u ∆U + c′(i) (7.21)

where c′(i) = G(i)c(i), while C
′(i)
u is the partition of the product C′(i) = G(i)C(i) inherent to the

vector of unknowns ∆U. Replacing (7.21) into (7.14), allows to obtain a QP problem in

the only variable ∆U. Suppressing superscript (i) for clarity of notation, we have

min
∆U

1

2
∆UT B′∆U + b′T∆U

subject to

D′∆U + d′ ≥ 0

(7.22)
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Figure 7.3: Comparison of sgn function (black solid line) against a smooth hyperbolic

tangent approximation for different value of K: K = 5 (blue dashed), K = 10 (red

dashed), and K = 20 (green dashed).

where

B′ = Buu + BuxC
′
u + C′Tu Bxu + C′Tu BxxC

′
u

b′ = bu + C′Tu bx + C′Tu Bxx + (Bux + BT
xu) c′/2

D′ = Du + DxC
′
u

d′ = d + Dxc
′

The number of unknowns to be determined at each iteration i of the SQP algorithm is now

reduced to mN, which represents a significant improvement, since m is generally small in

MPC applications (m = 1 in the present implementation).

Different choices are available to determine the discretized state trajectories χk. In

particular, two approaches have been tested: in the first case we adopted a discrete time-

stepping scheme to integrate the continuous-time nonlinear dynamics equations over the

control interval; in the second we converted the nonlinear state-space model into discrete

time following the Taylor-Lie approach derived in [85]. We then leveraged such model to

propagate the state vector over the control interval. As it will be shown, both approaches

allows a straightforward computation of the analytic gradients for the SQP solver.
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The necessity of providing smooth analytic gradients, in order to facilitate conver-

gence of the nonlinear solver, has justified the introduction of a smooth approximation for

the drag force. In this fashion, the drag forces in (7.6) and (7.11). are replaced by the

approximation:

fDi
(t) = −1

2
ρS wi

CDi
żi(t)

2 tanh [K żi(t)] (7.23)

where K is a tuning parameter affecting the zero-crossing slope. As shown in Figure 7.3, a

value of K equal to 20 guarantees an excellent approximation.

7.3.1 Continuous-time approach

Two cases will be considered: the first one arises when the time-stepping scheme

allows a stepsize equal to the size of the shooting interval ∆t. In this case, the state trajec-

tory over each interval [tk, tk+1] can be calculated through a single step of time integration.

Amongst the innumerable choices of time integration algorithms, explicit Runge-Kutta

(ERK) schemes (see [30] for an extensive discussion) represents the way to go for the

present application. As a matter of fact, Runge-Kutta schemes have the advantage over lin-

ear multistep methods (LMM) of avoiding the introduction of spurious solutions and being

self-starting. The adoption of an explicit scheme over an implicit one is due to the fact that

it leads to an easier computation of the gradients. Besides, implicit scheme are generally

preferred for the integration of stiff systems [20], which is not the case of our application.

Considering the following ODE:

ẋ(t) = f(x(t), u(t), e(t)) (7.24)



196

and an s-stage ERK scheme with the associated Butcher tableau:

0 0

c2 a2,1 0

c3 a3,1 a3,2 0

...
...

...
. . .

. . .

cs as,1 as,2 · · · as,s−1 0

b1 b2 · · · bs−1 bs

discretization of the state constraint through a single step of ERK integration over the time

interval [tk, tk+1] appears as

ck(xk, xk+1, uk) : xk + ∆t

s∑

i=1

biKi(xk, uk) − xk+1 = 0, k = 0, 1, . . . , N − 1

K1 = f (xk, uk, ek)

Ki = f

xk + ∆t

i−1∑

j=1

ai, jK j, uk, ek

 , i = 2, 3, . . . , s

(7.25)

Once vectors Ki are calculated and stored, gradient computation cal be easily performed

through the following recursion:

∂ck

∂uk

= ∆t

s∑

i=1

bi

∂Ki

∂uk

, k = 0, 1, . . . , N − 1

∂K1

∂uk

=
∂f

∂u
(xk, uk, ek)

∂Ki

∂uk

=
∂f

∂u

xk + ∆t

i−1∑

j=1

ai, jK j, uk, ek

 +
∂f

∂x

xk + ∆t

i−1∑

j=1

ai, jK j, uk, ek



∆t

i−1∑

j=1

ai, j

∂K j

∂uk

 , i = 2, 3, . . . , s

∂ck

∂xk

= I + ∆t

s∑

i=1

bi

∂Ki

∂xk

, k = 0, 1, . . . , N − 1

∂K1

∂xk

=
∂f

∂x
(xk, uk, ek)

∂Ki

∂xk

=
∂f

∂x

xk + ∆t

i−1∑

j=1

ai, jK j, uk, ek



I + ∆t

i−1∑

j=1

ai, j

∂K j

∂xk

 , i = 2, 3, . . . , s

∂ck

∂xk+1

= −I, k = 0, 1, . . . , N − 1

(7.26)
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However, as is often the case, in order to guarantee the stability of the time stepping

scheme, a smaller stepsize ∆tL must be defined such that ∆tL = ∆t/L, where L is a positive

integer value. In this case, the equality constraints ck are determined through the recursion:

ck(xk, xk+1, uk) : χ
(L)

k
(xk, uk) − xk+1 = xk +

L−1∑

l=0

∆χ
(l)

k
(xk, uk) − xk+1 = 0, k = 0, 1, . . . , N − 1

χ(0)

k
= xk

χ(l+1)

k
= χ

(l)

k
+ ∆χ

(l)

k
= χ

(l)

k
+ ∆tL

s∑

i=1

biK
(l)

i
(χk, uk), l = 0, 1, . . . , L − 1

K
(l)

1
= f

(
χ(l)

k
, uk, ek

)

K
(l)

i
= f

χ
(l)

k
+ ∆tL

i−1∑

j=1

ai, jK
(l)

j
, uk, ek

 , i = 2, 3, . . . , s

(7.27)

While the function evaluations K
(l)

i
are being calculated in each interval k, the gradients can

be recursively computed as well:

∂ck

∂uk

=
∂χ

(L)

k

∂uk

=

L−1∑

l=0


∂∆χ

(l)

k

∂uk

+
∂∆χ

(l)

k

∂χ
(l)

k

∂χ
(l)

k

∂uk

 = . . . , k = 0, 1, . . . , N − 1

∂χ(0)

∂uk

= 0

∂∆χ
(l)

k

∂uk

= ∆tL

s∑

i=1

bi

∂K
(l)

i

∂uk

, l = 0, 1, . . . , L − 1

∂K
(l)

1

∂uk

=
∂f

∂u

(
χ(l)

k
, uk, ek

)

∂K
(l)

i

∂uk

=
∂f

∂x

χ
(l)

k
+ ∆tL

i−1∑

j=1

ai, jK
(l)

j
, uk, ek



∆tL

i−1∑

j=1

ai, j

∂K
(l)

j

∂uk

 , i = 2, 3, . . . , s

∂ck

∂xk

=
∂χ

(L)

k

∂xk

= I +

L−1∑

l=0

∂∆χ
(l)

k

∂χ
(l)

k

∂χ
(l)

k

∂xk

= . . . , k = 0, 1, . . . , N − 1

∂χ(0)

∂xk

= I

∂∆χ
(l)

k

∂χ
(l)

k

= ∆tL

s∑

i=1

bi

∂K
(l)

i

∂χ
(l)

k

, l = 0, 1, . . . , L − 1

∂K
(l)

1

∂χ
(l)

k

=
∂f

∂x

(
χ(l)

k
, uk, ek

)

∂K
(l)

i

∂χ
(l)

k

=
∂f

∂x

χ
(l)

k
+ ∆tL

i−1∑

j=1

ai, jK
(l)

j
, uk, ek



I + ∆tL

i−1∑

j=1

ai, j

∂K
(l)

j

∂χ
(l)

k

 , i = 2, 3, . . . , s

∂ck

∂xk+1

= −I, k = 0, 1, . . . , N − 1

(7.28)
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This approach allows the computation of analytic gradients in a simple and rapid way.

7.3.2 Discrete-time approach

Consider a nonlinear continuous-time system like

ẋ(t) = f (x(t)) + gu(x(t)) u(t) + ge(x(t)) e(t) (7.29)

a discrete-time approximation, up to a specified order M, can be obtained leveraging a

Taylor-Lie series expansion [85] as

xk+1 = Φ
M
h (xk, uk, ek) = xk +

M∑

i=1

hi

i!

dix

dti

∣∣∣∣∣∣
tk

= xk +

M∑

i=1

hi

i!
A[i](xk, uk, ek) (7.30)

where h is the sampling. Each A[i] is then determined through the following recursive

formulas:

A[1](x, u, e) = f (x) + gu(x) u + ge(x) e

A[i+1](x, u, e) =
∂A[i](x, u, e)

∂x
( f (x) + gu(x) u + ge(x) e)

Significant simplification is obtained in the present application, since the function gu(x)

in (7.29) is constant and equal to B, while ge(x) = E for WEC1 and [E1 E2] for WEC2.

A model order M = 3 has been considered, since for M = 2 the discrete-time model is

unstable for ∆t > 0.18. Introducing for simplicity of notation matrix B composed of the

control matrix B and exogenous inputs Ei and, likewise, vector uk = [uk fei
], the third-order
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nonlinear discrete-time model for the WEC dynamics is

xk+1 = xk + h f (xk) +
h2

2
f ′(xk) f (xk) +

h3

6
f ′′(xk) f (xk) f (xk) +

h3

6
f ′(xk) f ′(xk) f (xk)+

+ h(Buk) +
h2

2
f ′(xk)(Buk) +

h3

6
f ′′(xk)(Buk) f (xk) +

h3

6
f ′′(xk) f (xk)(Buk)+

+
h3

6
f ′(xk) f ′(xk)(Buk) +

h3

6
f ′′(xk)(Buk)(Buk)

(7.31)

Leveraging this expression, the dynamics constraint ck over the interval [tk, tk+1] can be

written as a single application of (7.31), by considering h = ∆t, i.e.

ck(xk, xk+1, uk) : xk + ∆t f (xk) +
∆t2

2
f ′(xk) f (xk) +

∆t3

6
f ′′(xk) f (xk) f (xk) +

∆t3

6
f ′(xk) f ′(xk) f (xk)+

+ ∆t(Buk) +
∆t2

2
f ′(xk)(Buk) +

∆t3

6
f ′′(xk)(Buk) f (xk) +

∆t3

6
f ′′(xk) f (xk)(Buk)+

+
∆t3

6
f ′(xk) f ′(xk)(Buk) +

∆t3

6
f ′′(xk)(Buk)(Buk) − xk+1 = 0

(7.32)

Gradients with respect to the variables uk, xk, and xk+1 are easily determined as

∂ck

∂uk

= ∆tB +
∆t2

2
f ′(xk)B +

∆t3

6
f ′′(xk)B f (xk) +

∆t3

6
f ′′(xk) f (xk)B +

∆t3

6
f ′(xk) f ′(xk)B +

∆t3

3
f ′′(xk)(Buk)B

∂ck

∂xk

= I + ∆t f ′(xk) +
∆t2

2
f ′(xk) f (xk) +

∆t2

2
f ′′(xk) f (xk) +

∆t2

2
f ′(xk) f ′(xk)+

+
∆t3

6
f ′′′(xk) f (xk) f (xk) +

∆t3

6
f ′′(xk) f ′(xk) f (xk) +

∆t3

6
f ′′(xk) f (xk) f ′(xk)+

+
∆t3

6
f ′′(xk) f ′(xk) f (xk) +

∆t3

6
f ′(xk) f ′′(xk) f (xk) +

∆t3

6
f ′(xk) f ′(xk) f ′(xk)+

+
∆t2

2
f ′′(xk)(Buk) +

∆t3

6
f ′′′(xk)(Buk) f (xk) +

∆t3

6
f ′′(xk)(Buk) f ′(xk) +

∆t3

6
f ′′′(xk) f (xk)(Buk)+

+
∆t3

6
f ′′(xk) f ′(xk)(Buk) +

∆t3

6
f ′′(xk) f ′(xk)(Buk) +

∆t3

6
f ′(xk) f ′′(xk)(Buk) +

∆t3

6
f ′′′(xk)(Buk)(Buk)

∂ck

∂xk+1

= −I

(7.33)

Notice that in the present application, the computation of the tensor f ′′′(xk) is not needed,

since the only nonlinearity in the system is represented by the drag term, which is quadratic

with respect to the state, hence f ′′′(x) ≡ 0.

As for the continuous-time case, a timestep which is independent of the size of the

shooting interval is generally preferred, since stepsize directly affects the integration error.
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In this case, given a desired timestep ∆tD, the discrete state trajectory is determined through

D = ∆t/∆tD recursive applications of (7.31) with h = ∆tD, i.e.

ck(xk, xk+1, uk) : χ
(D)

k
(xk, uk) − xk+1 = 0, k = 0, 1, . . . , N − 1

χ(0)

k
= xk

χ(d+1)

k
= ΦM

∆tD
(χ

(d)

k
, uk), d = 0, 1, . . . , D − 1

(7.34)

Gradients computation is performed through the application of the following recursive for-

mulas:

∂ck

∂uk

=
∂χ

(D)

k

∂uk

=
∂ΦM
∆tD

∂uk

(χ
(D−1)

k
, uk) +

∂ΦM
∆tD

∂xk

(χ
(D−1)

k
, uk)
∂χ

(D−1)

k

∂uk

= . . . , k = 0, 1, . . . , N − 1

∂χ
(0)

k

∂uk

= 0

∂ck

∂xk

=
∂χ

(D)

k

∂xk

=
∂ΦM
∆tD

∂xk

(χ
(D−1)

k
, uk)
∂χ

(D−1)

k

∂xk

= . . . , k = 0, 1, . . . , N − 1

∂χ
(0)

k

∂xk

= I

∂ck

∂xk+1

= −I

(7.35)

Again, recursion allows a minimal storage implementation.

7.4 Simulations

The performance of NMPC applied to the optimization of the power take-off of a

one- and two-body WEC model have been evaluated when the wave energy converter oper-

ates under ideal conditions of pure sinusoidal wave excitation and irregular waves sampled

from a realistic sea spectrum. More specifically, a JONSWAP distribution [63] has been

considered for the generation of irregular waves. Given a specified significant wave height

H1/3 and dominant wave period Tp, the sea spectrum is defined as a function of the fre-
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quency ω as

S (ω) = 155
H2

1/3

T 4
pω

5
e
−944

T 4
p ω

4
(3.3)Y ,

with Y = e
−(0.191ωT p−1)2

2σ2 ,

and σ =



0.07, ω ≤ 5.24/Tp

0.09, ω > 5.24/Tp

(7.36)

The wave elevation time series at the device location η(t) is determined as a superposition

of Nw = 40 waves, i.e.

η(t) =

Nw∑

j=1

√
2S (ω j)∆ω cos(ω jt + ε j) (7.37)

where ε j ∈ U(0, 2π) is a uniformly random phase shifting. The physical parameters defin-

ing the one-body and two-body WEC devices here considered are reported in Table 7.1.

The optimization constraints in Section 7.3 are chosen as pmax = ∆pmax = 5 m,

vmax = ∆vmax = 5 m/s, and umax = 10 MN. A control horizon of two wave periods for

the case of pure sinusoidal wave and two dominant wave periods for the case of irregular

waves is considered. Such horizon is then divided into N shooting intervals of size 0.4 s.

In each interval, the equality constraints arising from the nonlinear dynamics are computed

using either the continuous-time approach or the discrete-time approach presented in Sec-

tion 7.3. For the continuous-time case, ERK4 is used for time stepping, while for the

discrete-time case, a third-order nonlinear model is employed. In both cases, an integration

time step of 0.1 s is considered. We have to remark that in all the simulations in this chapter,

the employment of either approaches has led to comparable results. In particular, conver-

gence is achieved in 15-20 iterations, independently of the discretization scheme adopted.
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Table 7.1: System parameters for WEC1 and WEC2.

WEC1

Parameter Value

m 6.44e5 kg

A11 1.44e6 kg

r 5.04e3 Ns/m

k 3.01e6 N/m

ρS wCD 3.62e5 kg/m

WEC2

Parameter Value

m1 6.44e5 kg

A11 1.44e6 kg

r1 5.04e3 Ns/m

k1 3.01e6 N/m

ρS w 1CD 1 3.62e5 kg/m

m2 3.62e5 kg

A22 9.12e6 kg

A12 2.64e5 kg

A21 2.64e5 kg

r2 7.12e3 Ns/m

k2 5.28e5 N/m

ρS w 2CD 2 1.09e6 kg/m
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Therefore, as a general guideline, the continuous-time approach leveraging ERK4 is to be

preferred, since it benefits from higher discretization accuracy and lower computational

time required to compute the gradients, as compared to the discrete-time approach based

on the third-order Taylor-Lie approximation. However, in the present application, the com-

putation of the tensor f ′′′(xk) is avoided since it is identically zero. This makes the compu-

tational cost of the discrete-time approach comparable to the continuous-time formulation.

Furthermore, the second-order discrete model leads to a computationally faster approach,

with respect to the ERK4 approach, hence it is to be preferred whenever it provides a suf-

ficiently accurate approximation of the continuous-time model. Once the optimal solution

u∗(t) is determined over the forecasting horizon, only the first control value is imposed at

the next time iteration, then the NMPC optimization is repeated with the updated initial

state condition x̄0.

We first compared the improvement that nonlinear MPC guarantees over linear

MPC for the one-body WEC. The linear formulation is obtained by linearizing the drag

force fD(t) around a reference velocity v̄. The linearized viscous force f̄D(t) is then defined

as

f̄D(t) = −ρS wCD|v̄|ż(t) (7.38)

For the present simulations, a reference velocity v̄ = 2 m/s is assumed. This value has

been obtained by minimizing the difference in position and velocity between linear and

nonlinear model for WEC1 when operating in a seastate characterized by a JONSWAP

spectral distribution with H1/3 = 3 m and Tp = 10 s.

Since the state-space model, as well as other constraints, are linear and the cost

function is quadratic, the optimization problem is solved by a single quadratic program-

ming iteration. Results are reported in Figures 7.4-7.6. The case of pure sinusoidal forcing



204

with a peak-to-trough amplitude of 3 m and a period of 10 s shows substantial discrepancy

between the performance of linear MPC and nonlinear MPC (Figure 7.4). This is due to

an erroneous approximation of the drag term, which leads to an optimal control law with

higher magnitude with respect to the one derived through NMPC. As a results, the absorbed

power with LMPC has higher oscillations than with NMPC, but the latter gives an average

power take-off which is 78% higher. This gain is reduced to 23% for irregular waves with

a significant wave height of 3 m, and a dominant wave period of 10 s. This is due to the

constraints on the machinery force, preventing the LMPC solution from overshooting with

respect to the nonlinear solution. This phenomenon is also noticed in Figure 7.6, where the

device is tested against a pure sinusoid of amplitude 5 m and period 10 s. In this case, the

performance gain is only 4%, since both control laws oscillates with an amplitude close

to the constraints. In general, the gain of NMPC over LMPC is higher in those sea condi-

tions which force the device to work outside the region of validity of the linear drag force

approximation. This is the case for irregular waves with small amplitude, for example.

Figures 7.7 and 7.8 show the performance of NMPC applied to the one-body WEC

described in Section 7.2 with two-way and one-way power flow configuration. The case

with pure sinusoidal forcing (Figure 7.7) shows that the one-way configuration experiences

a decrease of performance of nearly 26% with respect to the two-way PTO. This loss in-

creases to 50% for the case of irregular seastate (Figure 7.8). This is mainly due to the

short-period waves of the sea spectrum, which cause frequent changes of sign of the device

velocity. When this happens, the machinery force has to work to keep the WEC device

still (zero velocity) against the wavefield, in order to prevent the power flow from inverting

direction. This effect is mitigated in case of irregular waves with higher dominant wave

period Tp, since the occurrence of short-period waves is greatly reduced. On the opposite
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Figure 7.4: Comparison between the power take-off of a one-body WEC device

leveraging linear (black solid line) and nonlinear (red dashed line) MPC. A sinusoidal

wave with a peak-to-trough amplitude of 3 m and period of 10 s is considered. The

average absorbed power is 9.75e2 kW with LMPC and 1.74e3 kW with NMPC.
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Figure 7.5: Comparison between the power take-off of a one-body WEC device

leveraging linear (black solid line) and nonlinear (red dashed line) MPC. A realistic

seastate with H1/3 = 3 m and Tp = 10 s is considered. The average absorbed power is

1.09e3 kW with LMPC and 1.34e3 kW with NMPC.
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Figure 7.6: Comparison between the power take-off of a one-body WEC device

leveraging linear (black solid line) and nonlinear (red dashed line) MPC. A sinusoidal

wave with a peak-to-trough amplitude of 5 m and period of 10 s is considered. The

average absorbed power is 3.76e3 kW with LMPC and 3.90e3 kW with NMPC.
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side, a lower period Tp would result in an even higher performance gap between two-way

and one-way power flow configuration.

A comparison of the power take-off associated to the one-body and two-body WEC

topologies presented in Section 7.2 is shown in Figures 7.9 and 7.10. In particular, in case of

pure sinusoidal forcing (Figure 7.9), the average power take-off of the two-body configura-

tion is 38% less than the average power take-off achieved with the one-body configuration.

This is mainly due to the parasite motion of the immersed reaction plate, also characterized

by a higher drag coefficient with respect to the WEC buoy. As a result, the machinery force

in the two-body WEC is kept lower than in the one-body case, despite the relative velocity

between buoy and reaction plate being higher than the buoy velocity of the one-body WEC.

Similar considerations can be made for the case of irregular waves (Figure 7.10), even if

in this case the performance gap is only 16%. This is motivated by the fact that the larger

oscillations of the one-body device are limited by machinery constraints, thus allowing the

two-body topology to achieve comparable performances. This result suggests that the the

two-body topology should be preferred over the one-body configuration for those sea con-

dition in which the wave energy converter is forced to work near the actuator saturation

limits, since the two-body configuration is structurally easier to realize, with respect to the

more ideal one-body model.

Finally, Figures 7.11 and 7.12 shows the power take-off results for the two-body

WEC with one-way and two-way power flow. As compared to the one-body topology,

the one-way power flow constraint leads to a slightly higher decrease in performance. In

particular, a loss of average absorbed power of approximately 36% is experienced in the

pure sinusoidal case (Figure 7.11), while for irregular waves this loss is increased up to

nearly 55%. This is justified by the combined detrimental effects of short-period waves
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Figure 7.7: Comparison between the power take-off of a one-body WEC device

leveraging NMPC with two-way (black solid line) and one-way (red dashed line) power

flow. A sinusoidal wave with a peak-to-trough amplitude of 3 m and period of 10 s is

considered. The average absorbed power is 1.74e3 kW with two-way power flow and

1.28e3 kW with one-way power flow.
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Figure 7.8: Comparison between the power take-off of a one-body WEC device

leveraging NMPC with two-way (black solid line) and one-way (red dashed line) power

flow. A realistic seastate with H1/3 = 3 m and Tp = 10 s is considered. The average

absorbed power is 1.34e3 kW with two-way power flow and 6.66e2 kW with one-way

power flow.
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Figure 7.9: Comparison between the power take-off of a one-body (black solid line) and

two-body (red dashed line) WEC device leveraging NMPC. A sinusoidal wave with a

peak-to-trough amplitude of 3 m and period of 10 s is considered. The average absorbed

power is 1.74e3 kW for the one-body WEC and 1.08e3 kW for the two-body WEC.
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Figure 7.10: Comparison between the power take-off of a one-body (black solid line)

and two-body (red dashed line) WEC device leveraging NMPC. A realistic seastate with

H1/3 = 3 m and Tp = 10 s is considered. The average absorbed power is 1.34e3 kW for

the one-body WEC and 1.12e3 kW for the two-body WEC.
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and parasite motion of the reaction plate, which force the WEC buoy to have zero relative

velocity with respect to the reaction plate during most of the operating time, thus limiting

the period of actual power generation.

7.5 Conclusions

We have investigated the performance of NMPC applied to the optimization of the

power take-off of a point-absorber wave energy converter. Two topologies have been con-

sidered: a one-body configuration, in which the device is constituted by a spar oscillating

in heave, and a two-body model, in which the spar oscillates with respect to a reaction

plate moored to the sea bed. Our NMPC implementation imposes the dynamics constraints

leveraging a multiple shooting approach in which the state trajectories are calculated over

each shooting interval. Two ways have been proposed in order to discretize such trajec-

tories: a continuous-time and a discrete-time approach. The former leverages an explicit

Runge-Kutta scheme for the integration of the continuous-time model, while the former

uses a Taylor-Lie expansion to obtain the nonlinear discrete-time dynamics model, given

a specified order of accuracy. Both approaches allows fast computation of the gradients

needed in the SQP formulation. In particular, such computation can be carried out an-

alytically through the application of recursive formulas, provided an expression for the

gradients of the dynamics model is available. Another significant advantage associated to

the employment of recursive formulas is that the storage required for the evaluation of the

dynamics constraint function and gradient is minimal, so that the memory requirements for

performing a single-step and a multi-step time integration of the state trajectory over each

shooting interval are the same.

Compared to linear MPC, nonlinear MPC has proved to always lead to better perfor-



214

0 5 10 15 20 25 30 35 40 45 50
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

10000

t

P
a
(t

)

(a) Absorbed power

0 5 10 15 20 25 30 35 40 45 50

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x 10
7

t

u
(t

)
(b) Machinery force

0 5 10 15 20 25 30 35 40 45 50

−5

−4

−3

−2

−1

0

1

2

3

4

5

t

z 1
(t

)
−

z 2
(t

)

(c) WEC2 buoy relative position

0 5 10 15 20 25 30 35 40 45 50

−5

−4

−3

−2

−1

0

1

2

3

4

5

t
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Figure 7.11: Comparison between the power take-off of a two-body WEC device

leveraging NMPC with two-way (black solid line) and one-way (red dashed line) power

flow. A sinusoidal wave with a peak-to-trough amplitude of 3 m and period of 10 s is

considered. The average absorbed power is 1.08e3 kW with two-way power flow and

6.86e2 kW with one-way power flow.
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Figure 7.12: Comparison between the power take-off of a two-body WEC device

leveraging NMPC with two-way (black solid line) and one-way (red dashed line) power

flow. A realistic seastate with H1/3 = 3 m and Tp = 10 s is considered. The average

absorbed power is 1.12e3 kW with two-way power flow and 5.07e2 kW with one-way

power flow.
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mance, since the nonlinear effects affecting the WEC dynamics are accurately captured over

the forecasting horizon. Besides, the nonlinear MPC formulation allows to directly impose

the constraint of PTO working in generator-mode only, thus unable to return power, which

represents a more simplified solution from a design point of view. Results have shown that

the one-way power flow constraint leads to substantial performance decrease in both the

one-body and two-body WEC configuration. In particular, the effect is more noticeable in

the case of irregular waves, due to the more frequent changes of sign in the device velocity,

owing to the presence of short-period waves in the sea spectrum. Moreover, the two-body

topology has shown to provide lower levels of average energy absorption with respect to

the one-body configuration. However, the presence of the immersed reaction plate has the

beneficial effect of reducing the spar oscillation, which reflects into a significant reduc-

tion of the performance gap between the two topologies when the device operates close to

machinery constraints.

The NMPC formulation here described is extremely flexible and it allows the op-

timization of nonquadratic cost functions, nonlinear dynamics, and other nonlinear con-

straints. However, the current approach does not handle the case of integer-valued control

inputs, which would require the implementation of a nonlinear mixed-integer program-

ming solver. Finally, the simulations presented in this chapter have been conducted under

the ideal assumption of complete knowledge of the future wavefield over the defined con-

trol horizon. The application of NMPC for the optimization of a WEC device leveraging

forecast data is not discussed here and is object of future work.

Acknowledgements

This chapter contains work previously published in:



217

• D. Cavaglieri, T.R. Bewley, A. Karthikeyan, M. Previsic, “Nonlinear Model Predic-

tive Control of a point absorber wave energy converter", Submitted to IEEE Transac-

tions on Sustainable Energy, 2016



Chapter 8

Conclusions and future work

In this thesis we present new numerical schemes for Computational Fluid Dynam-

ics, forecast and control. In particular, our work includes new time stepping schemes for

the efficient integration of high-dimensional systems, new algorithms for the relaxation

step in the multigrid solution of large elliptic systems, an Ensemble Kalman Filter fore-

casting algorithm for short-term ocean wave prediction, and a new analytic approach to the

discretization of state trajectories in direct multiple shooting Nonlinear Model Predictive

Control, with application to power optimization of wave energy converters.

First, we introduce new IMEXRK schemes for time discretization of high-dimensio-

nal PDEs. Such schemes work best when applied to the time integration of discretized

PDE systems with a RHS which can be divided into a linear stiff component and a non-

linear nonstiff component. This is the case of the Navier-Stokes Equations, for example,

although several other fluid dynamics models belong to this category. Compared to other

IMEXRK schemes available in the literature, ours offer comparable or better accuracy and

stability properties with significantly reduced memory storage requirement. According to

their numerical implementation, these new schemes can be divided into two categories:

218
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the first one can be seen as an extension of low-storage explicit Runge-Kutta scheme to

IMEXRK schemes, while the second is an improvement upon the low-storage incremen-

tal IMEXRK schemes CN/RKW3 and the scheme in [1], the only two other schemes of

this kind developed so far. In comparison, our new schemes have improved accuracy and

stability properties, with same or slightly increased storage requirement.

Afterward, we describe two new smoothing schemes, i.e. tweed and box relaxation,

for the multigrid solution of large linear systems arising from the spatial discretization of

elliptic PDEs. In particular, these schemes best perform when applied to the iterative so-

lution of elliptic PDE problems defined over stretched structured grids and discretized us-

ing 3-point-stencil discrete derivative operators. Compared to the state-of-the-art approach,

which involves using alternating-direction zebra relaxation for the smoothing step, together

with full weighting for restriction and bilinear interpolation for prolongation, our schemes

guarantee comparable convergence results with significantly reduced computational cost.

This is achieved through the development of ad hoc modifications of the Thomas algorithm

employed for the factorization of tridiagonal systems. Beside their application within the

multigrid framework, these schemes can also be implemented for the efficient solution of

the linear system arising from the spatial discretization of one-dimensional PDEs defined

over wireframe structures, since the factorization time scales linearly with the dimension

of the system matrix.

Then, we present a new forecasting scheme for the short-term prediction of ocean

wave elevation. This scheme uses Ensemble Kalman Filter in order to assimilate synthetic

measurement data provided by wave radar and arrays of wave monitoring buoys. Within

this formulation, the initial ensemble wavefields are generated from a known spectral dis-

tribution. Time propagation is then carried out by leveraging a nonlinear pseudospectral
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model, featuring one of our new low-storage third-order IMEXRK schemes for time dis-

cretization. Results have shown that accurate wave forecasting is possible up to thirty

seconds into the future, provided a relatively large number of ensemble members is used.

Finally, we introduce a new approach for the analytic computation of discretized

state trajectories and associated state and control input gradients for the solution of the

nonlinear optimization problem arising within the Nonlinear Model Predictive Control for-

mulation leveraging a direct multiple shooting approach. The resulting algorithm is then

applied to the power take-off optimization of a point absorber wave energy converter, sub-

ject to nonlinear constraints.

As future work, a selection of our new third-order incremental IMEXRK schemes

is to be tested in the DNS simulation of a turbulent channel flow at high Reynolds num-

bers. Results will allow to ultimately assess the performance of the new proposed schemes

against the most popular approach, which instead relies on CN/RKW3 for time discretiza-

tion. Furthermore, a multigrid algorithm leveraging the new smoothers can be implemented

to speed up the solution of the pressure Poisson equation arising in the simulation of duct

and cavity flows defined over stretched structured grids.
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