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Abstract of the Dissertation

Spectral Theory for Semiclassical Operators

and Artificial Black Holes

by

Michael Allen Hall

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2013

Professor Michael Hitrik, Chair

In this thesis we study several problems related to the spectral theory of semiclassical pseu-

dodifferential operators, as well as artificial black holes in a curved spacetime. For non-

selfadjoint perturbations of selfadjoint operators in dimension 2, we show that one can re-

cover the (quantum) Birkhoff normal form of the operator near a Lagrangian torus satisfying

a Diophantine condition from an appropriate portion of the spectrum, provided the unper-

turbed operator is known and under analyticity assumptions. Also working in dimension 2,

we use a quantum version of the method of averaging, combined with techniques inspired by

secular perturbation theory, to derive microlocal normal forms for selfadjoint semiclassical

operators in dimension 2 with periodic classical flow. Finally, for stationary metrics in 2

space dimensions, we exhibit artificial black holes where the ergosphere and event horizon

meet at isolated points, and which display a complicated dynamical structure.
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CHAPTER 1

Introduction

1.1 Overview

Here we will give brief description of the general areas of study, and further below we will

summarize our results in more detail.

Semiclassical analysis concerns the study of partial differential equations with a small

parameter, which we will usually denote h. In the spectral theory of semiclassical operators,

we are typically interested in the relationship between the spectrum of a semiclassical pseu-

dodifferential operator P and the classical dynamics of its principal symbol p. This thesis

concerns two types of results:

Inverse spectral problems: From the knowledge of (a part of) the spectrum of an operator,

we ask what data about the symbol of an operator can be recovered (e.g. “Can one hear the

shape of a drum?”).

In chapter 2, which includes results published in [Hal], we study a semiclassical inverse

spectral problem for non-selfadjoint perturbations of selfadjoint h-pseudodifferential opera-

tors in dimension 2.

Microlocal normal forms: Under assumptions on the classical dynamics of the system, we

attempt to find a microlocal normal form, which may be applied to derive spectral estimates

of the operator.

In chapter 3, we carry out the reduction to a microlocal normal form near an invari-

ant Lagrangian torus for a selfadjoint perturbation of a selfadjoint operator with periodic

classical flow in dimension 2.
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Artificial black holes are regions of a curved spacetime from which null-geodesics cannot

escape. The singular spacetime metric is not necessarily governed by Einstein’s equations

(hence “artificial”). The study of analogue models of gravity has attracted increased atten-

tion recently, especially in physics, where it is hoped that such phenomena may be produced

in the laboratory and studied as models of gravitational black holes. At the same time, the

area presents a number of questions of independent interest in hyperbolic PDE, as some of

the basic problems come down to simple questions about the wave equation.

In chapter 4, we study stationary spacetime metrics in 2 space dimensions with a sin-

gularity. We can exhibit a number of examples of black holes where the event horizon is

tangent to the ergosphere at several points.

1.2 Statement of Results

1.2.1 Nonselfadjoint operators in dimension 2

In the chapter 2 we solve a semiclassical inverse spectral problem for nonselfadjoint pertur-

bations of selfadjoint operators in dimension two. As mentioned above, we are able to show

that from an appropriate portion of the spectrum of certain operators of the form P + iεQ

and knowledge of the unperturbed operator P , one can recover the Birkhoff normal form of

P + iεQ near a Diophantine torus.

The case of non-selfadjoint operators in dimension two is special because the eigenvalues

may have an explicit description in terms of a Bohr-Sommerfeld quantization condition, an

idea first explored in Melin-Sjöstrand [MS03] in a case where the real and imaginary parts

of the symbol of the operator are nearly in involution on an energy surface.

Our inverse result is based on spectral asymptotics obtained by M. Hitrik, J. Sjöstrand,

and S. Vũ Ngo.c in a related setting [HSN07], where they were able to describe large portions

of the spectrum of certain perturbations P + iεQ in a regime where hN ≤ ε ≤ hγ, where

0 < γ < 1 and N ≥ 1 are arbitrary but fixed. Here P and Q are h-pseudodifferential
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operators with analytic symbols and the unperturbed operator P is elliptic at infinity and is

assumed to be formally selfadjoint. The real part of the symbol of Q satisfies a nondegeneracy

condition.

Letting Hp be the Hamilton vector field of p, the principal symbol of P , it is assumed

that within the compact, connected, non-critical energy surface p−1(0) there are finitely many

invariant tori Λj, each carrying analytic coordinates (x1, x2) such that Hp = a1
∂
∂x1

+ a2
∂
∂x2

along Λj, where the vector of frequencies ~a = (a1, a2) is Diophantine, i.e.

|~a · ~n| ≥ C

|~n|M
, 0 6= ~n ∈ Z2,

for some constants C,M > 0. We will refer to such a torus as a Diophantine torus.

One of the main theorems in [HSN07] gives asymptotic expansions for eigenvalues of

P + iεQ which belong to an h-dependent window in the complex plane of the form

[−hδ, hδ] + i(F + [−εhδ, εhδ]). (1.1)

Here F = 〈Re q〉Λj is the common long time average with respect to the Hp flow of the real

part of the principal symbol of Q over finitely many Diophantine tori Λj. The Diophantine

assumption ensures that this average exists and is the same for all points on any such torus.

For the inverse result, we only consider the case of a single Diophantine torus Λ with average

F .

It is necessary to make some additional technical assumptions which ensure good separa-

tion of the value F from the value of the flow average at points not too close to Λ. One may

consult [HSN07] for precise statements in the most general case, while in this chapter we use

a simplified formulation where we assume the Hamilton flow Hp is completely integrable.

The eigenvalues in (2.3) form a distorted lattice with horizontal spacing ∼ h and vertical

spacing ∼ εh, each such eigenvalue having an asymptotic expansion of the form

P (∞)
(
h
(
k − k0

4

)
− S

2π
, ε, h

)
+O(h∞), (1.2)

3



for some k ∈ Z2, where P (∞)(ξ, ε, h) is the Birkhoff normal form of P + iεQ near Λ, which

is an asymptotic series in (ξ, ε, h).1

To construct the Birkhoff normal form near the Diophantine torus Λ, one makes a se-

quence of analytic, symplectic changes of variables, obtaining local coordinates (x, ξ) so that

Λ = {ξ = 0}, and the symbol of P + iεQ becomes independent of x to higher and higher

order in ξ.

Loosely stated, our main result is:

Theorem 1.1. Assuming the unperturbed operator P is known, the eigenvalues of P + iεQ

in in (2.3) for all sufficiently small values of h, and all ε in the range hN ≤ ε ≤ hγ determine

the Birkhoff normal form of P + iεQ near Λ.

A pleasant side effect of Theorem 1.1 is the verification that the Birkhoff normal form

near the Diophantine torus Λ is in fact unique (because it can be recovered from spectral

asymptotics) up to certain natural kinds of symmetries, which to our knowledge has not

been proven directly. We also discuss the Birkhoff normal form construction, symmetries of

the normal form, and degenerate relationships between the parameters ε and h. While it is

not discussed here in the greatest possible generality, essentially the same proof shows that

in degenerate situations, one can always recover the normal form insofar as it is well-defined,

and also that one may obtain a partial recovery in the presence of a small amount of noise.

1.2.2 Normal forms for h-pseudodifferential operators with periodic classical

flow

Chapter 3 concerns microlocal normal forms for operators Pε = P + εQ, where P and Q are

selfadjoint h-pseudodifferential operators on R2 with smooth symbols. Here we assume P

is elliptic at infinity, having periodic classical flow and vanishing subprincipal symbol, and

we work in the regime where h2−δ � ε = O(hδ), δ > 0. It is well known (see [DS99]) that

1To be precise, there exists a 1-1 partial function from Z2 to the set of eigenvalues in the window
[−hδ, hδ] + i(F + [−εhδ, εhδ]) such that if k ∈ Z2 maps into the window and λk = λk(ε, h) is any point with
asymptotics given by the first term in (1.2), then the image of k is within O(h∞) of λk, uniformly in k.
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the spectrum of P near 0 has a cluster structure, where the clusters are of size ∼ h2 and

separated by a distance ∼ h. When ε � h, a cluster structure persists for the spectrum of

P + εQ,

spec(P + εQ) ∩ neigh(0, R) ⊆ ∪kIk(h)

Ik(h) = f(hk) + [−O(ε+ h2),O(ε+ h2)], k ∈ Z,

for a function f satisfying f(0) = 0, f ′(0) > 0. One would like to have precise asymptotics

for individual eigenvalues within each cluster. As a first step toward such a result, we derive

a microlocal normal form for Pε near a suitable invariant Lagrangian torus.

A source of motivation for the general problem is a classic paper of Weinstein [Wei77],

which used averaging on the level of operators to analyze eigenvalue clusters for the Schrödinger

operator −∆+V on a sphere, obtaining a description of the asymptotic distribution of eigen-

values within the kth cluster in the limit as k → ∞. The methods we use in fact apply to

semiclassical operators of the form −h2∆ + εV on the 2-sphere with the expanded range

hN � ε� h, for any N > 1 fixed.

Letting q be the principal symbol of Q, we set

〈q〉 =
1

T

∫ T

0

q ◦ exp(tHp) dt,

where T > 0 is the common period for the Hp-flow on p−1(0). For any F ∈ R, belonging to

the range of 〈q〉 along p−1(0), we set Λ0,F = {p = 0, 〈q〉 = F}, which is the union of finitely

many two-dimensional Lagrangian tori assuming that dp ∧ d 〈q〉 6= 0 along Λ0,F .

We combine the classical averaging method ([Wei77], [Ver96]) with further microlocal

study near Λ0,F , leading to a complete reduction to a translation invariant operator of the

form P̂ (hDx, ε, h
2/ε;h) on T2, where the symbol of P̂ is of the form

P̂ (ξ, ε, h2/ε;h) = p(ξ1) + ε(r0(ξ, ε, h2/ε) + hr1 + h2r2 + . . .), (x, ξ) ∈ T ∗T2

with r0 = 〈q〉 (ξ) +O(ε+ h2/ε) and rj = O(1), j ≥ 1.

Such a reduction leads to formal quasi-eigenvalues P̂ (hk, h`, ε, h2/ε;h), where (k, `) ∈ Z2.

In a future work, we shall pursue the spectral analysis of the family Pε further, justifying the
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fact that the quasi-eigenvalues asymptotically describe all of the eigenvalues of Pε in suitable

sub-clusters, corresponding to the regular value F of 〈q〉.

1.2.3 Analogue Black Holes

The setting of general relativity is a pseudo-Riemannian manifold M where the curvature

and stress-energy tensors are related by Einstein’s equations. Many other physical systems

have a description in terms of an “effective metric”, whose dynamics may not be described

by Einstein’s equations, but nonetheless may display features analogous to ergoregions and

event horizons for relativistic black holes. Unruh [Unr81] pointed out that these and other

physical features arise in models of acoustic waves in a moving medium.

For a simple intuitive example, we can imagine water swirling into a drain, with both

angular and radial components of the fluid velocity growing very large near the singularity.

The ergoregion is where the fluid’s velocity is supersonic, and there is a black hole event

horizon at the boundary of the region where the radial component is faster than the speed

of sound.

The mathematical model we study is a smooth domain in Rn+1 endowed with a stationary

pseudo-Riemannian metric tensor, which may be studied in terms of the associated wave

equation

n∑
µ,ν=0

1√
(−1)ng(x)

∂

∂xµ

(√
(−1)ng(x) gµν(x)

∂u(x0, x)

∂xν

)
= 0, (1.3)

Here (xν)
n
ν=0 = (x0, x) ∈ Rn+1, the metric tensor has signature (+1,−1,−1, . . . ,−1) and

does not depend on x0, gµν(x) is the inverse of the metric tensor, and g(x) = (det[gµν(x)])−1.

The ergoregion is defined as the region where det[gjk(x)]nj,k=1 < 0. Working in dimension

n = 2, we assume that the boundary of the ergoregion, called the ergosphere, is a smooth,

simple, closed curve, and that the interior contains an inward or outward trapped surface.

This holds for example when there is an appropriate sort of singularity in the metric.

In such a situation, Eskin [Esk10] has shown, using the Poincaré-Bendixson theorem,

6



that if the ergosphere is either a characteristic surface for (1.3), or is nowhere characteristic,

then there must exist a black hole in the interior of the ergoregion, i.e. a characteristic

surface enclosing a region out of which signals may not propagate (or a white hole, which is

the opposite).

In this work, we examine in detail a number of explicit examples in the case where there

are characteristic points on the ergosphere, which shed light on the typical situation. We show

that in general there may be a complicated dynamical picture of the ergoregion, including

bifurcations of characteristic points on the ergosphere, and black hole event horizons which

are C1 curves but not smooth.

7



CHAPTER 2

Diophantine Tori and Nonselfadjoint Inverse Spectral

Problems

2.1 Introduction

Let M denote either R2 or a compact, real analytic manifold of dimension 2, and let M̃

denote a complexification of M , which is C2 in the Euclidean case, and a Grauert tube of

M in the compact analytic 2-manifold case.

We study operators of the form Pε = P+iεQ, where P andQ are analytic h-pseudodifferential

operators on M with principal symbols p, q, respectively, and P is selfadjoint. The principal

symbol of Pε is then p+ iεq, where p is real. We will also make a non-degeneracy assumption

on Re q, but we do not require Q to be selfadjoint.

Consider a Lagrangian torus Λ, contained in an energy surface p−1(0) ∩ T ∗M , which is

invariant with respect to the Hamilton flow of p and satisfies a Diophantine condition (see

Section 2.2.2). For simplicity, we will assume:

The Hamilton flow of p is completely integrable in a neighborhood of p−1(0). (2.1)

This implies that in a neighborhood of Λ the energy surface is foliated by invariant La-

grangian tori.

In action-angle coordinates (x, ξ) such that Λ is the set {ξ = 0} ⊆ T ∗T2
x, where T2 =

R2/2πZ2, let

〈q〉(ξ) =
1

(2π)2

∫
T2

q(x, ξ) dx (2.2)

8



denote the spatial average of 〈q〉. Here we take x to be a multi-valued function whose gradient

is single-valued. We assume that dp and dRe〈q〉 are linearly independent along Λ. Then, as

is explained in Section 2.3, we may make a sequence of changes of variables which transforms

the full symbol of Pε into a Birkhoff normal form, which in this context means an asymptotic

expansion in (ξ, ε, h) that is independent of x to high order. Formally we may carry out this

procedure on the level of operators by conjugating by a sequence of appropriately defined

Fourier integral operators, obtaining what we call a quantum Birkhoff normal form for Pε.

Under some further technical assumptions which we will explain later on, one of the main

theorems of [HSN07] establishes, for any δ > 0, asymptotics for the eigenvalues of Pε in an

h-dependent window in the complex plane{
z ∈ C

∣∣∣∣ |Re z| < hδ

C
, | Im z − εReF | < εhδ

C

}
. (2.3)

Here F = 〈q〉|Λ = 〈q〉(0), and we assume that this average is not shared by any other

invariant torus. The expansions are given in terms of a Bohr-Sommerfeld type condition and

the quantum Birkhoff normal form of Pε near Λ.

Our goal in this chapter is to address the semiclassical inverse problem of determining the

quantum Birkhoff normal form of Pε from the eigenvalues in (2.3), assuming the unperturbed

operator P is known.

Inverse spectral problems have been studied for many years, as surveyed for example

by Zelditch [Zel04]. Recently, semiclassical inverse spectral problems have been investi-

gated by several authors, such as Colin de Verdière [Ver11][Ver], Colin de Verdière-Guillemin

[VG11][VG02], Guillemin-Paul-Uribe [GPU07], Guillemin-Paul [GP10], Guillemin-Uribe [GU07],

Hezari [Hez09], Iantchenko-Sjöstrand-Zworski [ISZ02], Vũ Ngo.c [Vu 11]. Often in inverse

spectral problems one studies the wave trace, in the spirit of Guillemin [Gui96]. The non-

selfadjoint case in dimension 2 is special because the eigenvalues may have an explicit de-

scription in terms of the Birkhoff normal form and Bohr-Sommerfeld type rules, an idea first

explored in Melin-Sjöstrand [MS03]. In such a situation it seems most natural to recover the

normal form directly from eigenvalue asymptotics. Our approach is taken very much in the

9



spirit of Colin de Verdière [Ver].

According to [HSN07], the eigenvalues in the window (2.3) form a distorted lattice, with

horizontal spacing ∼ h and vertical spacing ∼ εh. The window is of size hδ by εhδ, for some

0 < δ � 1, which means that the asymptotic expansions are valid for a comparatively large

number of eigenvalues (on the order of h2(δ−1)) as h→ 0.

In addition, for the semiclassical inverse problem, we assume we know the eigenvalues

for each sufficiently small value of the semiclassical parameter (or possibly for a sequence

of values of h tending to 0). This provides a rich data set, from which we will recover

information about the Birkhoff normal form using elementary order of magnitude arguments.

In the perturbative, non-selfadjoint setting there is also the parameter ε to consider, since

the results of [HSN07] apply to all values of ε such that hK ≤ ε ≤ hδ. We will exploit this

flexibility to assume that we can choose ε so as to rule out any sort of degenerate relationship

between ε and h. For simplicity, we shall assume more strongly that we know the eigenvalues

for all values of ε in such a range. See also the remarks at the end of Section 2.5.

Our main result, stated informally, is the following (see Theorem 2.10 for the precise

statement)

Theorem 2.1. The eigenvalues of Pε in (2.3) determine the quantum Birkhoff normal form

of Pε near Λ.

The plan of the paper is as follows. In Section 2.2, we recall the setting and technical

assumptions of [HSN07] needed to apply one of the main results of that paper. In Section

2.3, we review the normal form construction in the present context, using some notation and

methods due to S. Vũ Ngo.c, and we also discuss symmetries and uniqueness of the normal

form. In Section 2.4, we recall a spectral asymptotics result of [HSN07] in a precise form,

which is the basis of the inverse result. Finally, in Section 2.5, we prove our main theorem.
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2.2 Assumptions

We will state our assumptions along the lines of Section 7 of [HSN07], in particular restricting

our attention to the completely integrable case (2.1) rather than the most general case treated

in that work.

2.2.1 Analyticity and general assumptions

Let us assume that Pε = P+iεQ, with ε ∈ neigh(0,R), satisfies the same general assumptions

as operators studied in [HSN07], which we recall here for convenience.

When M = R2, assume that Pε = Pε(x, hDx;h) = P (x, hDx;h) + iεQ(x, hDx;h) is the

Weyl quantization of a symbol which we also denote Pε(x, ξ, ε;h) = P (x, ξ;h) + iεQ(x, ξ;h).

Assume that Pε is a holomorphic function of (x, ξ) in a complex tubular neighborhood of

R4 ⊆ C4. Assume that

|Pε(x, ξ;h)| ≤ O(1)g(Re(x, ξ)) (2.4)

in this neighborhood, where g ≥ 1 is an order function in the sense that

g(X) ≤ C 〈X − Y 〉M g(Y ), C > 0, M > 0, X, Y ∈ R4.

Assume that P and Q have asymptotic expansions

P (x, ξ;h) ∼
∞∑
j=0

hjpj(x, ξ), Q(x, ξ;h) ∼
∞∑
j=0

hjqj(x, ξ) (2.5)

valid in the space of holomorphic symbols satisfying the bound (2.4). Let us also assume

that the principal symbol p = p0 satisfies an ellipticity condition at infinity,

|p(x, ξ)| ≥ 1

C
g(Re(x, ξ)), |(x, ξ)| ≥ C.

When M is a compact, real analytic 2-manifold, assume that in any choice of local

coordinates Pε = P + iεQ is a differential operator of order m with analytic coefficients,
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which themselves have asymptotic expansions in integer powers of h. Assume also that the

principal symbol p of P satisfies an ellipticity condition near infinity,

|p(x, ξ)| ≥ 1

C
〈ξ〉m, (x, ξ) ∈ T ∗M, |ξ| ≥ C,

where we implicitly assume that M has been equipped with an analytic Riemannian metric,

so that the quantity 〈ξ〉 =
√

1 + |ξ|2 makes sense. Assume also that the underlying Hilbert

space is L2(M,µ(dx)), where µ is the Riemannian volume form on M .

In both cases, we assume that P is formally selfadjoint on L2, which implies that p is

real.

The above assumptions imply also that Pε has a natural closed, densely defined realization

on L2, which has discrete spectrum in a fixed neighborhood of 0 ∈ C for h, ε small enough.

Also, we have that spec(Pε) ∩ neigh(0,C) ⊆ {z | Im z = O(ε)}.

2.2.2 Assumptions on the classical dynamics

We assume the energy surface p−1(0) ∩ T ∗M is non-critical, i.e. dp 6= 0 along this set. For

simplicity, we assume p−1(0) ∩ T ∗M is connected. Let

Hp =
∑
j=1,2

∂p

∂ξj

∂

∂xj
− ∂p

∂xj

∂

∂ξj

denote the Hamilton vector field of p (in any choice of canonical coordinates).

By the complete integrability assumption (2.1), there exists an analytic, real-valued func-

tion p̃ such that Hpp̃ = {p, p̃} = 0 with dp̃ and dp linearly independent almost everywhere.

Here, {·, ·} denotes the Poisson bracket. Then the energy surface p−1(0)∩ T ∗M decomposes

as a disjoint union of compact, connected Hp-invariant sets, which we assume has the struc-

ture of a graph, in which edges correspond to families of regular invariant Lagrangian tori

and vertices correspond to singular invariant sets.

Near an invariant torus Λ we have real analytic action-angle coordinates (x, ξ) such that

Λ = {ξ = 0} and Hp|Λ = a ·∂x for some frequency vector a ∈ R2. We refer to Λ as a rational,

12



irrational, or Diophantine torus if the vector a has the corresponding property. Below, we

will consider a Diophantine torus, i.e. one such that the frequencies a satisfy

|a · k| ≥ 1

C0|k|N0
, 0 6= k ∈ Zn. (2.6)

for some C0 > 0, N0 > 0. (Here, n = 2.)

In action-angle coordinates near any such Λ, the principal symbol p takes the form

p = p(ξ) = a · ξ +O(ξ2). (2.7)

In particular, it is independent of x, which means that it is in Birkhoff normal form.

Let q be the principal symbol of Q(x, hDx;h), and let 〈q〉 |Λ denote the average as in (2.2)

of q with respect to the natural smooth measure on Λ. We assume that the analytic function

Λ 7→ Re 〈q〉 |Λ is not identically constant on any of the aforementioned “edges”, consisting

of families of invariant tori.

When T > 0, let 〈q〉T denote the symmetric time T average of q along the Hp-flow:

〈q〉T (x, ξ) =
1

T

∫ T/2

−T/2
q ◦ exp(sHp)(x, ξ) ds.

For each invariant torus Λ, define the interval

Q∞(Λ) =

[
lim
T→∞

inf
Λ

Re〈q〉T , lim
T→∞

sup
Λ

Re〈q〉T
]
. (2.8)

As in [Sjo00], we have that specPε ∩ {|Re z| ≤ δ} is contained in a band

Im z

ε
∈

[
inf
⋃
Λ

Q∞(Λ)− o(1), sup
⋃
Λ

Q∞(Λ) + o(1)

]

as ε, h, δ → 0.

From now on, fix a single Diophantine invariant Lagrangian torus Λ, set F = 〈q〉 |Λ, and

assume that

dp and dΛ Re〈q〉|Λ are linearly independent. (2.9)
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With all the assumptions above, and in particular assuming complete integrability, the

last global assumption needed is that

ReF 6∈ Q∞(Λ′), Λ′ 6= Λ. (2.10)

Without assuming complete integrability, a different assumption is needed (see [HSN07],

(1.24)).

The eigenvalue asymptotics result of [HSN07] is valid in the (h, ε)-dependent rectangle

(2.3) for sufficiently small h and assuming hK ≤ ε ≤ hδ, where K is a fixed integer, which

can be chosen arbitrarily large, and δ > 0 is also fixed, and can be chosen arbitrarily small.

Remark 2.2. Note that the global condition (2.10) implies the value F is unique to Λ. The

results of [HSN07] apply also to a finite collection of Diophantine tori sharing the value F , in

which case the set of eigenvalues in (2.3) is simply the union of the contributions from each

individual torus, modulo O(h∞). However, we will not consider the problem of separating

the contributions of several tori.

2.3 Quantum Birkhoff normal form

In this section we present the quantum Birkhoff normal form construction near a Diophantine

torus for a perturbed symbol, and discuss issues of uniqueness for the normal form and

normalizing change of variables. Though we only need to consider dimension 2, it is natural

to carry out the discussion in a general dimension n, as no changes are needed. We will work

on T ∗Tn, assuming we are in a microlocal model where the Diophantine torus in question

corresponds to the 0 section {ξ = 0}.

2.3.1 Normal form construction

Let us identify symbols on T ∗Tn with their formal Weyl quantizations. The Moyal formula

P#wQ(x, ξ, ε;h) ∼
∞∑

|α|,|β|=0

h|α|+|β|(−1)|α|

(2i)|α|+|β|α!β!
(∂αx∂

β
ξ P (x, ξ, ε)(∂αξ ∂

β
xQ(x, ξ, ε))
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defines a product operation on symbols which corresponds to composition of the correspond-

ing operators. We denote by [·, ·] the associated bracket operation, which on the level of Weyl

quantizations is simply the commutator bracket.

The normal form construction may be summarized as follows: We make a sequence of an-

alytic, symplectic changes of variables, which transform Pε to a symbol which is independent

of x to higher and higher order in (ξ, ε, h). On the level of operators this is formally equiv-

alent to conjugating by a sequence of Fourier integral operators. The resulting sequence of

symbols is convergent in the space of formal power series in (ξ, ε, h). The quantum Birkhoff

normal form (QBNF) of Pε near the Diophantine torus Λ is an asymptotic expansion which

is the formal limit of this procedure, while if we truncate the procedure after finitely many

steps we get a well-defined analytic change of variables.

Later, we will often write the QBNF as a formal expansion

P (∞)(ξ, ε, h) ∼
∑
j,m,n

P
(∞)
jmn(ξ)εmhn,

where the sum is over integers j ≥ 0, m ≥ 0, n ≥ 0, and Pjmn is a homogeneous polynomial

of degree j in ξ, and P (∞) denotes the entire formal expansion.

For the moment, however, it is convenient to use slightly different notation. Consider a

grading in (ξ, ε, h) which counts the power in ξ plus twice the power in (ε, h). Let O(N)

denote the associated order classes. Here we do not attach any special significance to the

number two, but we note the convenience of this sort of grading: because the Moyal formula

has an asymptotic expansion in powers of (h
i
∂
∂ξ
, ∂
∂x

), the higher weight of h ensures that each

time we lose an order in ξ we gain one in h. This implies that the main contribution in the

bracket i
h
[·, ·] comes from the Poisson bracket of the two symbols.

When Kj = O(j) and K` = O(`), their Poisson bracket satisfies

{Kj, K`} =
∑
k

∂Kj

∂ξk

∂K`

∂xk
− ∂Kj

∂xk

∂K`

∂ξk
= O(j + `− 1),

By what we have said above, we see that i
h
[Kj, K`] = {Kj, K`}+O(j + `).
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Proposition 2.3. Suppose that P = P1 +O(2) is analytic in x and ξ, where P1 = a · ξ, and

that a satisfies the Diophantine condition (2.6). Then for all N ≥ 1 there exist functions

G(1) = 0, G(N) = G2 + · · ·+GN (N ≥ 2), P (N) = P1 + P2 + · · ·+ PN , RN+1,

which are analytic in x, with Gj, Pj and Rj homogeneous of degree j with respect to the

grading described above (thus polynomials in ξ), such that

exp
(
i
h

adG(N)

)
P = P (N) +RN+1 +O(N + 2) (2.11)

with each Pj independent of x.

Here, we write formally adG P = [G,P ] and exp( i
h

adG)P = exp( i
h
G)P exp(− i

h
G), but

note that these do not represent concretely defined operators. Notice also that G(N) = O(2)

for all N ≥ 1.

Remark 2.4. Note that although it is not ruled out by the notation, it will follow from the

proof that no half-powers of h or ε appear in the normal form.

Proof. We proceed by induction on the order N . By assumption the claim holds for N = 1,

with G1 = 0, and R2 representing the homogeneous terms of degree 2. Inductively if (2.11)

holds, then setting G(N+1) = G(N) +GN+1, for some function GN+1, homogeneous of degree

N + 1, to be determined, we claim that the only new term modulo O(N + 2) is given by

{GN+1, P1}. Indeed, by the Campbell-Hausdorff formula

exp
(
i
h

adG(N+1)

)
P = exp

(
i
h

adGN+1
+ i
h

adG(N)

)
P

= exp
(
i
h

adS
)
◦ exp

(
i
h

adGN+1

)
◦ exp

(
i
h

adG(N)

)
P

where S = O(1
2
[GN+1, G

(N)]) = O((N + 1) + 2 − 1) = O(N + 2). Here we have used that

G(N) = O(2). Meanwhile

exp
(
i
h

adGN+1

)
◦ exp

(
i
h

adG(N)

)
P = exp

(
i
h

adGN+1

)
(P (N) +RN+1) = O(1).
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Because of the Campbell-Hausdorff formula and the order of S, applying exp( i
h

adS) only

affects the terms of order O(1 + (N + 2)− 1) = O(N + 2). Therefore we have

exp
(
i
h

adG(N+1)

)
P = exp

(
i
h

adGN+1

)
(P (N) +RN+1) +O(N + 2)

= P (N) +RN+1 + i
h

adGN+1
(P (N) +RN+1) +O(N + 2)

= P (N) +RN+1 + i
h

adGN+1
(P1 +O(2)) +O(N + 2)

= P (N) +RN+1 + i
h

adGN+1
P1 +O(N + 2),

Because the bracket i
h
[·, ·] reduces to the Poisson bracket when one of the arguments is at

most quadratic, we have i
h

adGN+1
P1 = i

h
[GN+1, P1] = {GN+1, P1}, so

exp
(
i
h

adG(N+1)

)
P = P (N) +RN+1 + {GN+1, P1}+O(N + 2),

as claimed.

To make the homogeneous order N + 1 terms independent of x, it suffices to solve the

cohomological equation,

{GN+1, P1} = 〈RN+1〉 −RN+1, (2.12)

for GN+1, where 〈RN+1〉 is the x-average of RN+1 as in (2.2). Indeed, assuming that we have

done so, we then set PN+1 = 〈RN+1〉 and let RN+2 represent the homogenous order N + 2

part of the O(N + 2) error terms, which are analytic.

To solve (2.12), note that because P1 = a · ξ, we have

{GN+1, P1} = −HP1GN+1 = −(a · ∂x)GN+1.

Expanding GN+1 and RN+1 in Fourier series

GN+1(x, ξ) =
∑
k∈Zn

ĜN+1(k, ξ)eik·x

RN+1(x, ξ) =
∑
k∈Zn

R̂N+1(k, ξ)eik·x,

we have

(a · ∂x)GN+1 =
∑
k∈Zn

(ia · k)ĜN+1(k, ξ)eik·x.

17



When 0 6= k ∈ Zn, because a · k does not vanish by the Diophantine condition (2.6), we

may set ĜN+1(k, ξ) = −iR̂N+1(k, ξ)/(a · k), to obtain (a · ∂x)GN+1 = RN+1 − R̂N+1(0, ξ) =

RN+1− 〈RN+1〉 and thus solve the cohomological equation. Furthermore, again by (2.6), we

have

|ĜN+1(k, ξ)| = |R̂N+1(k, ξ)|
i|a · k|

≤ C0|k|N0|R̂N+1(k, ξ)|,

and because RN+1 is analytic in a neighborhood of Tn × {0} ⊆ (Cn/2πZn)×Cn, so too is

GN+1.

Remark 2.5. As mentioned above, exp( i
h

adG(N)) formally represents conjugation by a mi-

crolocally defined Fourier integral operator exp( i
h
G(N)), and such conjugation microlocally

implements the symplectic transformation expHG(N) . To define such operators concretely,

so that they act on microlocally defined distributions, one works on the FBI transform

side in suitable weighted spaces of holomorphic functions. An additional assumption about

smoothness in ε is required. See [HSN07] and the references there.

2.3.2 Symmetries and uniqueness of the normal form

In this section we discuss symmetries and uniqueness of the Birkhoff normal form.

We first remark that there is always some flexibility in choosing action-angle variables

(x, ξ) near an invariant torus (here x ∈ Tn represents the angle variables, and ξ ∈ Rn the

action variables). If A ∈ GL (n,Z) and ψ is any smooth function on Rn, then

κ : (y, η) 7→ (x, ξ) = (A−1y + ∂ψ(η), Atη) (2.13)

gives a well-defined smooth, symplectic change of variables (which is analytic if ψ is analytic)

on Tn ×Rn ∼= T ∗Tn, and thus a new set of action-angle coordinates (y, η).

This transformation also preserves independence of the angle coordinate, and thus takes

one asymptotic expansion which is in normal form (to order N) to another. More precisely,
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if

p(x, ξ, ε, h) = p̃(ξ, ε, h) +O(N) = a · ξ +O(2),

then in the new coordinates

(p ◦ κ)(y, η, ε, h) = p̃(Atη, ε, h) +O(N) = (Aa) · η +O(2).

Once we fix a choice of frequencies a, then, A must be the identity (because of the

Diophantine assumption), which means we only have maps of the form

(y, η) 7→ (y + ∂ψ, η), (2.14)

which do not affect a normal form expansion because the second coordinate is unchanged.

Our aim is to show that the formula (2.14) gives all transformations which preserve

independence of the angle variables in a general function or asymptotic expansion, while

not affecting the frequencies a. Appendix A.1 of [HZ94] essentially contains a proof using

generating functions that if a real symplectic diffeomorphism (y, η) 7→ (x, ξ) satisfies ξ = b(η)

with det(bη) 6= 0, then the mapping is of the form (2.13). The only difference is that the

argument given there is local, and they end up with a more general type of transformation.

In our case, it turns out one can make the formula apply globally, and then because we are

on a torus, periodicity forces the simpler form (2.13), which reduces to (2.14) assuming a is

unchanged. This argument will be given in Proposition 2.7 below.

Before proceeding, however, we note that because we have used complex symplectic

transformations in our reduction to the normal form, it is natural to also consider symplectic

biholomorphisms in a small complex neighborhood of Tn×{0}, for example allowing ψ to be

complex-valued in (2.14). Here when we say a holomorphic transformation is symplectic or

canonical we mean that the mapping preserves the standard symplectic form σ on Cn/2πZn×

Cn, which is a form of type (2, 0), given in coordinates by

σ =
n∑
j=1

dξj ∧ dxj.
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The standard fact that symplectomorphisms admit local generating functions carries over

to the complex setting:

Proposition 2.6. If κ : (y, η) 7→ (x, ξ) = (a(y, η), b(y, η)) is a symplectic biholomorphism

between small neighborhoods of (y0, η0) ∈ Cn and (x0, ξ0) ∈ Cn, and det(bη) 6= 0, then there

exists a holomorphic function φ(y, ξ) such that

κ : (y, ∂yφ) 7→ (∂ξφ, ξ).

The proof is exactly the same as in the real case (see appendix A.1 of [HZ94] for example),

if we note that the implicit function theorem holds for holomorphic maps, and where normally

we use Poincaré’s lemma we instead use the Dolbeault-Grothendieck lemma.

Using this fact, we may now prove

Proposition 2.7. Suppose κ : (y, η) 7→ (x, ξ) is a symplectic biholomorphism between open

sets U, V ⊆ (Cn/2πZn)×Cn, where U and V are small neighborhoods of (Rn/2πZn)×{0}.

Suppose ξ = b(η), where b is a biholomorphism defined near 0 ∈ Cn, such that b(0) = 0,

bη(0) = 1. Then in a small enough neighborhood of (Rn/2πZn)× {0}, κ satisfies

κ : (y, η) 7→ (y + ∂ψ(η), η).

for some analytic function ψ defined in a neighborhood of 0 ∈ Cn.

Proof. We may lift κ to a mapping between small neighborhoods of Rn × {0} ⊆ C2n. We

use the same notations for the lift. By continuity, in small enough neighborhoods we have

that det(bη) 6= 0, so by Proposition 2.6, locally we may find an analytic generating function

φ(y, ξ) so that the mapping is given by

(y, ∂yφ) 7→ (∂ξφ, ξ). (2.15)

When two neighborhoods overlap, the local generating functions φ, φ̃ must agree modulo

constants, and in this way we may define a globally defined analytic generating function
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φ(y, ξ), so that (2.15) is satisfied everywhere. Moreover the derivatives of φ are 2πZn-

periodic, so (2.15) descends to U, V .

Still working with the lift, if ∂yφ = β(ξ) is the inverse of the diffeomorphism b, then for

some function ψ̃, we have

φ(y, ξ) = β(ξ) · y + ψ̃(ξ)

∂ξφ = ∂ξβ · y + ∂ξψ̃.

Thus we have

(y, β(ξ)) 7→ (∂ξβ · y + ∂ξψ̃, ξ).

Because the mapping is 2πZn-periodic in x and y, we must have that for each ξ0 ∈ Cn,

the assignment Zn 3 n 7→ ∂ξβ(ξ0) · n defines an automorphism of Zn. By continuity,

∂ξβ ∈ GL (n,Z) must be constant, and since β(0) = 0, with ∂ξβ(0) = 1, β itself must be the

identity mapping.

Therefore, setting ψ = ψ̃ ◦ b(η), the original mapping is given by

(y, η) 7→ (y + ∂ψ(η), η),

with generating function φ(y, ξ) = ξ · y + ψ̃(ξ), and ψ̃ is now allowed to be complex-valued.

Remark 2.8. Note that Proposition 2.7 only classifies transformations which preserve in-

dependence of the angular variables for a general symbol p̃(ξ, ε, h) = a · ξ + O(2) (while

leaving the frequencies a unchanged). That is, if a transformation has this property with

respect to any such p̃, then it is easy to see the transformation must satisfy the hypotheses

of Proposition 2.7. A priori, some specific symbol may admit more symmetries than the type

described. See also Corollary 2.15.
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2.4 Eigenvalue asymptotics

Under the assumptions stated in Section 2.2, Theorem 1.1 in [HSN07] implies that if hK ≤

ε ≤ hδ, the eigenvalues of Pε = P + iεQ which lie in (2.3) have an asymptotic expansion

given in terms of the QBNF of Pε.

Theorem 2.9 ([HSN07]). Let Pε satisfy all the assumptions of Section 2.2. For each N ≥ 1,

let P (N) be the result of applying Proposition 2.3 to Pε, and let us write

P (N) = P (N)(ξ, ε, h) =
∑

j+2(m+n)≤N

P
(∞)
jmn(ξ)εmhn, (2.16)

where P
(∞)
jmn is a homogeneous polynomial of degree j in ξ which does not depend on N .

For any 0 < δ < 1, and any fixed integer K, suppose that hK ≤ ε ≤ hδ. Recall the

complex window (2.3), where we now take C > 0 to be sufficiently large. Then for each N ,

as h→ 0, the quasi-eigenvalues

P (N)
(
h
(
k − k0

4

)
− S

2π
, ε, h

)
, k ∈ Z2 (2.17)

are equal to the eigenvalues of Pε modulo O(N + 1) in (2.3), in the sense that for all suf-

ficiently small h, there is a one-to-one partial function from the set of quasi-eigenvalues to

spec(Pε), equal to 1 +O(N + 1) uniformly, which is defined whenever a quasi-eigenvalue or

the targeted true eigenvalue lies in (2.3).

The formulation is slightly different from Theorem 1.1 in [HSN07] because of the different

grading we have chosen, but the same proof applies. See also Theorems 5.1 and 5.2 of [HSN07]

for somewhat more direct analogues to the above with the alternate grading.

The expression which appears in place of ξ in (2.17) is the result of a Bohr-Sommerfeld

type condition. The constant vector k0 ∈ Z2 contains the Maslov indices and S ∈ R2 the

actions along a set of fundamental cycles of Λ, for example {x1 = 0}, {x2 = 0}, with respect

to action-angle variables chosen so that Λ is represented as {ξ = 0} ⊆ T ∗T2. For more

details on this point, see [HSN07], as well as section 2 of [HS04].
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2.5 Main Result

Our main result is a uniqueness statement asserting that if the eigenvalues corresponding to

invariant torus Λ are the same for operators P + iεQ1, P + iεQ2, then they have the same

QBNF near Λ.

Theorem 2.10. Suppose that P1 = P + iεQ1, P2 = P + iεQ2 are operators satisfying the

assumptions described in Section 2.2, where P = P (x, hDx;h) is a fixed, self-adjoint operator

with principal symbol p, Λ is an Hp-invariant Lagrangian torus satisfying the Diophantine

condition (2.6), and Q1, Q2 are operators with principal symbols q1, q2, respectively, such

that 〈q1〉 |Λ = 〈q2〉 |Λ, and Λ satisfies the global condition (2.10) with respect to P + iεQν,

ν = 1, 2.

Fix 0 < δ < 1, and let the (ε, h)-dependent rectangle Rδ ⊆ C be as described in equation

(2.3),

Rδ =

{
z ∈ C

∣∣∣∣ |Re z| < hδ

C
, | Im z − εReF | < εhδ

C

}
, (2.18)

where C > 0 is large enough, with F = 〈q1〉 |Λ = 〈q2〉 |Λ . For ν = 1, 2, let P
(∞)
ν , denote the

QBNF of P + iεQν, which is a formal asymptotic expansion of the form

P (∞)
ν (ξ, ε, h) ∼

∑
j,m,n

P
(∞)
ν,jmn(ξ)εmhn = a · ξ + iεF + p01h+O((|ξ|, ε, h)2),

where P
(∞)
ν,jmn, j ≥ 0, m ≥ 0, n ≥ 0, is a homogeneous polynomial in ξ of degree j. Suppose

that for all sufficiently small h and for all ε in the range hK ≤ ε ≤ hγ, where K ≥ 1 and

γ > 1
2

are fixed, we have

spec(P + iεQ1) ∩Rδ = spec(P + iεQ2) ∩Rδ.

Then the QBNF’s P
(∞)
1 , P

(∞)
2 are equal, i.e., for all j,m, n we have P

(∞)
1,jmn = P

(∞)
2,jmn.

Whenever k ∈ Z2, in what follows we will use the notation ξk = h(k− k0
4

)− S
2π

. To simplify

the notation further, let us write P
(∞)
ν (k) for the eigenvalue with asymptotic expansion given

by P
(∞)
ν (ξk, ε, h), according to Theorem 2.9.
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We first prove a lemma which says that for an operator Pε, we can recover the Bohr-

Sommerfeld index k from the associated eigenvalue P
(∞)
ε (k) when, as in the hypotheses of

the theorem, we have a bound ε . hγ for some γ > 1
2
. We remark that the expononent 1

2
is

not fundamental, but essentially comes out of the proof.

Lemma 2.11. Let P
(∞)
1 , P

(∞)
2 represent two QBNF’s arising from operators which satisfy

the hypotheses of Theorem 2.10. In particular, assume

P (∞)
ν (ξ, ε;h) = a · ξ + iεF + p01h+O((|ξ|, ε, h)2), ν = 1, 2, (2.19)

where p01 is a real constant and the vector a satisfies the Diophantine condition

|a · k| ≥ 1

C0|k|N0
, 0 6= k ∈ Z2.

Then for any γ > 1
2
, if ε . hγ, there exists β0 < 1 and h0 > 0 such that for all β ∈ [β0, 1),

when h ∈ [0, h0), if k, ` ∈ Z2 satisfy

P
(∞)
1 (k) = P

(∞)
2 (`) mod O(h∞),

with P
(∞)
1 (k), P

(∞)
2 (`) lying in the window Rβ, then k = `.

Remark 2.12. Note that we want 0 < β < 1 in order to have many eigenvalues P
(∞)
ν (k) which

lie in the rectangle Rβ. Indeed, the dimensions of Rβ are ∼ hβ×εhβ, so by the nondegeneracy

assumption (2.9), # spec(Pε) ∩Rβ ∼ h2β−2 and if P
(∞)
ν (k) ∈ Rβ then |ξk| = O(hβ).

Proof. By the hypotheses on P
(∞)
1 , P

(∞)
2 , and in particular because the the two expansions

have several terms in common, as indicated in (2.19), we have

P
(∞)
1 (k)− P (∞)

2 (`) = ha · (ξk − ξ`) +O((|ξk|, ε, h)2) +O((|ξ`|, ε, h)2). (2.20)

By the Diophantine condition on a, we have

|a · (ξk − ξ`)| = h|a · (k − `)| & h

|k − `|N0
, k 6= `.

24



Let us consider eigenvalues P
(∞)
ν (k) ∈ Rβ with k ∈ Z2, for some β < 1 to be determined.

For any k, ` such that |ξk|, |ξ`| . hβ, we have h|k − `| = |ξk − ξ`| . hβ, so |k − `| . hβ−1.

Hence,

h|a · (k − `)| & h

|k − `|N0
&

h

(hβ−1)N0
= h1+N0(1−β), k 6= `. (2.21)

The lemma will follow if we can show that by choosing β close enough to 1, the above

dominates the contributions of the error terms in (2.20).

Thus, assuming |ξk| . hβ and ε ≤ hγ, we estimate a typical term of one of the QBNF’s:

|P (∞)
ν,jmn(ξ)εmhn . |ξ|jεmhn| . hjβ+mγ+n.

To have P
(∞)
ν,jmn = o(a · (k−`)), in view of (2.21), it suffices to have hjβ+mγ+n = o(h1+N0(1−β)),

or

1 +N0(1− β) < jβ +mγ + n.

After rearranging, this is equivalent to

N0 + 1− n−mγ
N0 + j

< β. (2.22)

Examining the left hand side, we see that it is strictly less than 1, except in the following

cases:

(a) j = m = n = 0

(b) j = 1 and m = n = 0

(c) j = m = 0, and n = 1

(d) j = n = 0 and mγ ≤ 1.

However, the terms corresponding to these cases are exactly those written out in the right

hand side of (2.19). Case (a) corresponds to the constant term 0, cases (b) and (c) correspond

to the terms a · ξ and p01h, respectively, and our hypothesis γ > 1
2

is designed so that case

(d) only applies when m = 1, which corresponds to the term iεF .

25



It follows that the exceptional cases above occur when j+m+n = 1. The left hand side

of (2.22) must be maximized in one of the cases where j + m + n = 2, as increasing any of

j,m, n only makes the left hand side of (2.22) smaller. Therefore, if we choose β so that

N0 + 1− n−mγ
N0 + j

< β < 1

in each of these finitely many cases (which we will not list), then these inequalities also hold

for all j,m, n with j +m+ n ≥ 2.

Therefore, for some large M , we have that for sufficiently small h,

|P (∞)
1 (k)− P (∞)

2 (`)|

≥ h|a · (k − `)| −
∑

2≤j+m+n≤M

|(P (∞)
1,jmn(ξk)− P (∞

2,jmn(ξ`))ε
mhn|

− O((|ξk|, |ξ`|, ε, h)M)

& h1+N0(1−β) −O(1)
∑

2≤j+m+n≤M

hjβ+mγ+n −O(h
M
2 )

& h1+N0(1−β) −O(h
M
2 )

& h1+N0(1−β),

where the last estimate holds when M is chosen sufficiently large. The bound O(h
M
2 ) comes

from the fact that ε . hγ with γ > 1
2

and |ξk|, |ξ`| . hβ, where β is close to 1 (and so greater

than 1
2
, we may assume). Note that the implicit constants depend only on the terms of the

QBNFs and not on k, `, so we get a uniform lower bound on the size of P
(∞)
1 (k) − P (∞)

2 (`)

when k 6= ` and the eigenvalues lie in Rβ.

Summing up, we have found that there exists β < 1 such that if P
(∞)
1 (k), P

(∞)
2 (`) ∈ Rβ,

and k 6= `, then when h is sufficiently small,

|P (∞)
1 (k)− P (∞)

2 (`)| & h1+N0(1−β)

where the implicit constant does not depend on k, `. Therefore, when h is smaller than some

small constant, which does not depend on k, `, if P
(∞)
1 (k) = P

(∞)
2 (`), we must have k = `.
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We now proceed to the proof of the main theorem.

Proof of Theorem 2.10. Theorem 2.9 applies to P1, P2, meaning that their eigenvalues in a

rectangle Rδ as in (2.18) have asymptotic expansions of the form (2.17), in terms of the

QBNF’s P
(∞)
1 , P

(∞)
2 . We will show one can recover the QBNF from the eigenvalues in any

window Rβ where β0 ≤ β < 1, with β0 chosen as in Lemma 2.11. Note that δ ≤ β implies

Rβ ⊆ Rδ, so we may assume without loss of generality that β = δ, and simply refer to both

as β.

Suppose that P
(∞)
1,jmn 6= P

(∞)
2,jmn for some index (j,m, n). Then P

(∞)
1,jmn − P

(∞)
2,jmn is a ho-

mogeneous polynomial of degree j in ξ which does not vanish identically. By homogeneity,

we can find an open subset of the unit circle Ujmn ⊆ {|ξ| = 1} ⊆ R2 on which this poly-

nomial is bounded away from 0 in absolute value. For all h sufficiently small, there exists

ξk = h(k − k0
4

)− S
2π

such that

|ξk| ∼ hβ with ξk/|ξk| ∈ Ujmn. (2.23)

For such ξk, by homogeneity we have

|P (∞)
1,jmn(ξk)ε

mhn − P (∞)
2,jmn(ξk)ε

mhn| ∼ εmhjβ+n.

Let us also take ε = hγ, so that εmhjβ+n ∼ hjβ+mγ+n.

Without loss of generality we may assume that, possibly after increasing β and γ slightly,

we have that jβ + mγ + n = j′β + m′γ + n′ implies m = m′, j = j′, n = n′ (we just need

1, β, γ to be independent over the rationals). Then we have a total ordering of indices

(j,m, n) according to the size of the expression hjβ+mγ+n. Also, because β, γ > 0, for any

fixed M > 0, there are only finitely many indicies (j,m, n) such that jβ + mγ + n ≤ M .

Therefore, of the indices (j,m, n) for which P
(∞)
1,jmn 6= P

(∞)
2,jmn, there is a unique index for which

jβ +mγ + n is minimal. From now on, let (j0,m0, n0) stand for this index.

Then with ξk satisfying (2.23) with j = j0, m = m0, n = n0, and ε = hγ, we have

|P (∞)
1 (k)− P (∞)

2 (k)| = (P
(∞)
1,j0m0n0

− P (∞)
2,j0m0n0

)hj0β+m0γ+n0 + o(hj0β+m0γ+n0), (2.24)
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and so for h sufficiently small,

|P (∞)
1 (k)− P (∞)

2 (k)| & hj0β+m0γ+n0 . (2.25)

By assumption, P
(∞)
1 (k) = P

(∞)
2 (`) for some ` ∈ Z2, and then by Lemma 2.11, we have k = `

for all h sufficiently small. Thus P
(∞)
1 (k) = P

(∞)
2 (k), which contradicts (2.25).

Therefore, we have P
(∞)
1,jmn = P

(∞)
2,jmn for all j,m, n, so the two QBNF’s are equal.

Remark 2.13. We remark that the complete integrability assumptions were unnecessary in

the proof of Theorem 2.10. In principle, one only needs that the asymptotic expansions

given in Theorem 1.1 of [HSN07] are valid, as well as the Diophantine assumption, and so

the main result may hold more generally.

Remark 2.14. We note as an addendum to the discussion in Section 2.3.2 that when an

operator satisfies the hypotheses of Theorem 2.10, it implies uniqueness of the QBNF near

the Diophantine torus Λ. Indeed, Theorem 2.9 describes the eigenvalues of such an operator

in a window Rβ ⊆ C corresponding to Λ, and Theorem 2.10 implies QBNF near Λ can be

(uniquely) recovered from the eigenvalues if we know the frequencies a. This implies that

the QBNF is unique up to the choice of action-angle variables. Thus we have

Corollary 2.15. If Pε is an operator satisfying the hypotheses on the operators in Theorem

2.10, the QBNF of Pε near the Diophantine torus Λ is uniquely defined up to the choice of

action-angle variables.

Remark 2.16. In the proof of Theorem 2.10, we exploited the fact that Theorem 2.9 applies

for all ε in a range hK ≤ ε ≤ hδ to assume that ε = hγ, for a favorable choice of γ. It is

natural to consider situations when ε is, for example, a function of h, or possibly has a more

general sort of degenerate relationship with h. For example:

1. The damped wave operator on a compact manifold may be studied as a non-selfadjoint

perturbation of the selfadjoint operator −h2∆, where ∆ is the Laplace-Beltrami oper-

ator, and the strength of the non-selfadjoint perturbation is ε = h (see [Sjo00]). Then,
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for instance, since ε2 = εh = h2, it is meaningless to ask for the coefficients of these

terms individually in some QBNF for the operator.

2. If P (∞) is an asymptotic expansion satisfying (formally)

P (∞)(ξ, ε, h) = (ε− h)(ε2 − h)P̃ (∞)(ξ, ε, h), (2.26)

for some asymptotic expansion P̃ (∞), then when we restrict to ε ∈ {h, h 1
2}, P (∞) repre-

sents the zero function, and a QBNF may only be uniquely-defined modulo expansions

of this form.

More generally, consider situations where ε, h satisfy r(ε, h) = 0, where r ∈ C∞(neigh(0, 0))

is not flat at (0,0), and r(0, 0) = 0. Replacing r by h−n0r if necessary, we may assume without

loss of generality that ∂kε r(0, 0) 6= 0 for some k ≥ 1.

If ∂εr(0, 0) 6= 0, then by the implicit function theorem we have locally ε = f(h) for some

smooth function f(h). Thus

r(ε, h) = c(ε, h)(ε− f(h)),

where c(0, 0) 6= 0. Then r(ε, h) = 0 precisely when ε = f(h).

In general, if we have ∂kε r(0, 0) = 0, 0 ≤ k ≤ m − 1, and ∂mε r(0, 0) 6= 0, then the

Malgrange preparation theorem (cf. [Hor03], Section 7.5) implies a factorization

r(ε, h) = c(ε, h)(εm + am−1(h)εm−1 + . . .+ a0(h)), (ε, h) ∈ neigh((0, 0)). (2.27)

where c and aj, 0 ≤ j ≤ m − 1, are smooth functions of (ε, h) and h, respectively, with

c(0, 0) 6= 0, aj(0) = 0. As |c(ε, h)| is larger than some fixed, positive constant in a neighbor-

hood of (0,0), let us assume without loss of generality that

r(ε, h) = εm + am−1(h)εm−1 + . . .+ a0(h).

Then by Theorem A.III.I of [Ger88], the roots of the right hand side, considered as a poly-

omial in ε, have formal asymptotic expansions in Puiseux series, i.e. powers of h1/k, for some
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fixed k ∈ N. Thus on the level of formal power series we have

εm + am−1(h)εm−1 + . . .+ a0(h) =
m∏
i=1

(ε− f (i)(h
1
k )),

where f (i)(h
1
k ) represents a formal Puiseux series,

f (i)(h
1
k ) ∼

∞∑
n=0

c(i)
n h

n
k .

Using a Borelian construction, we may find smooth functions f̃ (i)(h), 1 ≤ i ≤ m, defined

when h ≥ 0, with asymptotic expansion near h = 0 given by f (i)(h). Then

εm + am−1(h)εm−1 + . . .+ a0(h) =
m∏
i=1

(ε− f̃ (i)(h
1
k ) +O(h∞)). (2.28)

We claim that r(ε, h) = O(h∞) ⇐⇒ dist(ε,∪mi=1f
(i)(h

1
k )) = O(h∞).

Indeed, (⇐) is clear from (2.28). For (⇒), if dist(ε,∪mi=1f
(i)(h

1
k )) 6= O(h∞), then, possibly

after restricting to a sequence of values of h tending to zero, we have that |ε − f̃ (i)(h
1
k )| ≥

1
O(1)

hNi , with Ni ∈ N, 1 ≤ i ≤ m, hence

|r(ε, h)| =
m∏
i=1

|ε− f̃ (i)(h) +O(h∞)| ≥
m∏
i=1

(
1

O(1)
hNi −O(h∞))

≥ 1

O(1)
hN1+...+Nm 6= O(h∞).

Conversely, if ε is a smooth (real-valued) function of h
1
k ,

ε = f(h
1
k ) ∼

∞∑
n=0

cnh
n
k , cn ∈ R, (2.29)

then by a Borelian construction, we can find smooth functions f (i), 0 ≤ i ≤ k − 1 with

asymptotics given by the Puiseux conjugates of (2.29), i.e.

f (i)(h
1
k ) ∼

∞∑
n=0

cn(ζ ikh
1
k )n,

where ζk is a primitive kth root of unity. (We can take f (0) = f .) Then one can check that

r(ε, h) =
m∏
i=1

(ε− f (i)(h
1
k )) (2.30)
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is a smooth function near (0, 0) ∈ R2, and r(ε, h) = O(h∞) when ε = f(h).

If ε ∈ {fµ(h
1
kµ ) | 1 ≤ µ ≤ M}, where each fµ is a smooth, real-valued function near

0, then letting r(ε, h) be the product of the corresponding expressions (2.30) for each fµ,

we get a smooth function r(ε, h) such that r(ε, h) = O(h∞) along the union of the curves

ε = fµ(h
1
kµ ).

To sum up the discussion, we see that there is a degenerate relationship between the

parameters ε, h precisely when ε is within O(h∞) of a finite number of curves of the form

ε = f̃ (i)(h
1
k ), where f̃ (i) is a smooth, real-valued function near 0.
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CHAPTER 3

Normal forms for h-pseudodifferential operators with

periodic classical flow

3.1 Introduction

The spectral theory of selfadjoint (pseudo)differential operators, whose associated classical

flow is periodic, has a long and distinguished tradition, starting with the classical works of

J. J. Duistermaat-V. Guillemin [Dui75] and A. Weinstein [Wei77], in the case of compact

manifolds. Subsequently, many important contributions to the theory were given, [Ver79],

[MG81], [HR84], [Doz97], [Ivr98]. In the case of semiclassical pseudodifferential operators

whose Hamilton flow is periodic in some energy shell, the cluster structure of the spectrum

has been established in [HR84]. That work also contains some precise results concerning the

semiclassical asymptotics for the counting function of eigenvalues in the clusters, with the

celebrated Bohr-Sommerfeld quantization rule obtained as a special case in dimension one,

see also [DS99].

The purpose of this chapter is to show how the microlocal techniques of [HS04], [HS05],

developed in the context of non-selfadjoint perturbations of selfadjoint operators with peri-

odic classical flow in dimension two, apply to a class of selfadjoint operators of the form

Pε = P + εQ.

Here P = P (x, hDx;h) and Q = Q(x, hDx;h) are selfadjoint in L2(R2), with the classical

flow of P being periodic in a band of energies around 0. The parameter ε > 0 measures the

strength of the selfadjoint perturbation, and in order to have the clustering for the spectrum
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of Pε, one should have ε � h. The general problem is then to understand the structure

of the spectral clusters of the perturbed operator Pε in the semiclassical limit h → 0. In

this work, we make a first and essential step in the study of this problem by constructing

a microlocal (quantum Birkhoff) normal form for Pε near a suitable Lagrangian torus, for

a natural range of the parameter ε, h2−δ ≤ ε ≤ O(hδ), δ > 0. Consequences of the normal

form construction for the spectral analysis of Pε will be explored in a future work, where we

expect to be able to obtain complete semiclassical asymptotic expansions for the individual

eigenvalues of Pε in subclusters, corresponding to regular values of the averaged symbol of

the perturbation along the classical flow. We also remark that contrary to [HS04], [HS05],

no analyticity assumptions are needed here.

The plan of the paper is as follows. In Section 3.2, we rederive the clustering of the

spectrum of P , obtained by means of a direct microlocal study near the closed orbits. In

Section 3.3, we carry out an averaging reduction of Pε microlocally near the energy surface. In

Section 3.4, we microlocalize further to a suitable Lagrangian torus and construct a quantum

Birkhoff normal form for Pε near the torus.

3.2 Clustering of Eigenvalues

Let P (x, ξ;h) ∈ S(1) be a real-valued semiclassical symbol on T ∗Rn ∼= R2n. Here and in

what follows we freely use the standard notation of semiclassical analysis, [DS99], [Zwo12].

Assume that P (x, ξ;h) ∼
∑∞

j=0 h
jpj(x, ξ) in S(1), as h → 0. Assume that the subprincipal

symbol p1 vanishes identically, p1 ≡ 0. We shall write p = p0 for the leading symbol of

P . Let us make the ellipticity assumption p(x, ξ) ≥ 1
C

when |(x, ξ)| ≥ C, for some C > 1.

Assume that the compact energy surface p−1(0) is connected in T ∗Rn, and that dp 6= 0 on

this set.

We let P also denote the h-Weyl quantization P = Opwh (P ). Then P = O(1) : L2(Rn)→

L2(Rn) is a selfadjoint operator on L2(Rn) ([DS99]). We have the following standard result:

Proposition 3.1. The spectrum of P in a fixed neighborhood of 0, spec(P ) ∩ neigh(0,R),

33



is discrete, for all h > 0 small enough.

Proof. There exists 0 ≤ χ ∈ C∞0 (R2n) such that p+χ ≥ 1
C

on T ∗Rn. Then |p+χ− z| ≥ 1
2C

for z ∈ neigh(0,C), and therefore P +χw− z is invertible on L2, for h > 0 sufficiently small.

Here χw stands for the h-Weyl quantization of χ. Since χw is a compact operator on L2

(see [DS99], Chapter 9 or [Zwo12], Chapter 4), it follows that P − z is an analytic family of

Fredholm operators for z ∈ neigh(0,C), invertible for z 6∈ R, and thus invertible outside of

a discrete set, by analytic Fredholm theory ([Zwo12], Appendix D).

When G is any smooth real-valued function on T ∗Rn, we let HG denote the Hamilton

vector field of G, which is given by

HG =
n∑
j=1

∂G

∂ξj

∂

∂xj
− ∂G

∂xj

∂

∂ξj
,

in standard symplectic coordinates. We make the following important assumption on the

Hamiltonian dynamics of p:

Main assumption: For E ∈ neigh(0,R) theHp-flow is periodic on p−1(E) with minimal

period T (E) > 0, which is a smooth function of E.

Remark 3.2. If we assume each Hp–orbit γ has a (not necessarily minimal) period T (γ) which

varies smoothly, then it follows already that this period is a function of the energy alone:

T (γ) = T (E), γ ⊆ p−1(E) (see Chapter 15 of [DS99]). We are assuming in addition that

T (E) is the minimal period of each Hp–orbit γ ⊆ p−1(E).

As in [HR84], [Ver79], [Wei77], see also [HS05], our main assumption implies that the

spectrum of P near 0 has a cluster structure, each cluster being of size O(h2), and with

adjacent clusters separated by a distance ∼ h. More precisely:

Theorem 3.3. We have for all h > 0 small enough, spec(P )∩ neigh(0,R) ⊆ ∪k∈ZIk, where

Ik = [f(h(k − α/4)− S/2π)−O(h2), f(h(k − α/4)− S/2π) +O(h2)],

for a function f ∈ C∞(neigh(0,R); R), f(0) = 0, f ′(0) > 0. Here S =
∫
γ
ξ dx is the classical

action for a periodic trajectory γ ⊆ p−1(0), with α equal to the Maslov index of γ.
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Remark 3.4. The function f is the inverse of the function g ∈ C∞(neigh(0,R); R) defined

by g′(E) = T (E)/2π, g(0) = 0. See [DS99], chapter 15, and [HS04].

Remark 3.5. Theorem 3.3 is still valid if our assumption that the subprincipal symbol van-

ishes, p1 ≡ 0, is replaced by the weaker condition that for E near 0, the average of p1 along

each closed Hp trajectory,

〈p1〉 (x, ξ) =
1

T (E)

∫ T (E)

0

p1(exp(tHp)(x, ξ)) dt, (x, ξ) ∈ p−1(E), (3.1)

is a function of the energy E only,

〈p1〉 = 〈p1〉 (E), E ∈ neigh(0,R).

Here we shall merely indicate how this weaker condition may be used to simplify our operator

P . Indeed for G ∈ S(1) real-valued and compactly supported near p−1(0) (say), we have

e−iG(P + hP1)eiG = P + e−iG[P, eiG] + hP1 +O(h2).

Here e±iG also stand for the h-Weyl quantizations of these symbols. The leading symbol

of e−iG[P, eiG] + hP1 is h(1
i
e−iGHpe

iG + p1) = h(HpG + p1). Then if we choose G so that

HpG+ p1 = 〈p1〉E along p−1(E), we see that we can conjugate our operator P to one whose

subprincipal symbol is constant on each energy surface.

The proof of Theorem 3.3 proceeds in several steps.

1. We first prove a standard semiclassical elliptic estimate away from the energy surface

p−1(0).

Suppose u, v ∈ L2(Rn) with (P−z)u = v. Here z ∈ neigh(0,C). Let χ ∈ C∞0 (T ∗Rn; [0, 1])

be such that χ = 1 near p−1(0). Then we claim

‖(1− χw)u‖ ≤ O(1)‖v‖+O(h∞)‖u‖, (3.2)

where ‖ · ‖ = ‖ · ‖L2(Rn).
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Proof. Let χ̃ ∈ C∞0 (T ∗Rn; [0, 1]) be such that χ = 1 near the support of χ̃, and χ̃ = 1

in a neighborhood of p−1(0). If we let e = 1−χ̃
p−z ∈ S(1), E = Opwh (e), then

E(P − z) = (1− χ̃w) + hR,

where R ∈ Opwh (S(1)). We have, for all h > 0 small enough,

(1− χw)(1 + hR)−1E(P − z) = (1− χw)(1− (1 + hR)−1χ̃w)

= 1− χw − (1− χw)(1 + hR)−1χ̃w.

Since we chose χ̃ so that χ = 1 near the support of χ̃, the Weyl calculus implies

(1− χw)(1 + hR)−1χ̃w = O(h∞) : L2 → L2. Here we have also used that (1 + hR)−1 ∈

Opwh (S(1)), according to Beals’ lemma, [DS99]. Thus the holomorphic family of h-

pseudodifferential operators Ẽ = Ẽ(z) = (1 − χw)(1 + hR)−1E = O(1) : L2 → L2

satisfies Ẽ(P − z) = 1− χw +O(h∞) : L2 → L2, so

(1− χw)u = Ẽv +O(h∞)u,

which implies (3.2).

2. We would like to microlocalize to a neighborhood of p−1(0). For this we first microlo-

calize to a neighborhood of a closed Hp–orbit γ ⊂ p−1(0).

Lemma 3.6. There exists a smooth canonical transformation

κ : neigh(γ, T ∗Rn)→ neigh(τ = x = ξ = 0, T ∗(S1
t ×Rn−1

x ))

such that κ({γ}) = {x = ξ = τ = 0}, p ◦ κ−1 = f(τ).

Remark 3.7. Recall that f−1 = g, where g ∈ C∞(neigh(0,R); R) satisfies g′(E) =

T (E)/2π, g(0) = 0. Then Hg◦p = g′(p)Hp, so 2π is the minimal period of the Hg◦p–

flow.

Proof. Fix any point ρ0 ∈ γ and choose local symplectic coordinates (t, τ, x, ξ) in a

neighborhood of ρ0 and vanishing at that point, where τ = g ◦ p. Then we have

{ξ, x} = 1, {t, x} = 0, {τ, ξ} = 0, (3.3)
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and

Hτ t = 1, Hτx = Hτξ = 0. (3.4)

Putting τ = g ◦ p, we may extend x, ξ according to the latter conditions to a full

neighborhood of γ, obtaining smooth, single-valued functions. Similarly t extends to

a multi-valued function in a neighborhood of γ, in such a way that it increases by 2π

each time we make a loop in the forward direction. The conditions (3.3) extend to a

full neighborhood of γ, and the lemma follows.

3. As explained in [HS04], the canonical transformation κ can be implemented by a multi-

valued microlocally unitary h-Fourier integral operator U = O(1) : L2(Rn)→ L2
f (S

1×

Rn−1), so that the improved Egorov property holds—see the discussion in Section 2 of

[HS04]. Here L2
f (S

1 ×Rn−1) is the space of multi-valued L2 functions on S1 ×Rn−1,

which satisfy the Floquet-Bloch periodicity condition,

u(t− 2π, x) = e
2πi
h

( S
2π

+hα
4

)u(t, x). (3.5)

The multi-valuedness of U is a reflection of the fact that the domain of definition of

the canonical transformation κ is not simply connected, the homotopy group being

generated by the trajectory γ.

It follows that there exists an operator P̃ with the leading symbol f(τ) near {τ = x =

ξ = 0} and with the vanishing subprincipal symbol so that P̃U = UP microlocally

near γ, so that

(P̃U − UP )χw1 (x, hDx) = O(h∞) : L2(Rn)→ L2(Rn), (3.6)

and

χw2 (x, hDx)(P̃U − UP ) = O(h∞) : L2
f (S

1 ×Rn−1)→ L2
f (S

1 ×Rn−1),

for every χ1 ∈ C∞0 (neigh(γ, T ∗Rn)) and for every χ2 ∈ C∞0 (T ∗(S1×Rn−1)) supported

near τ = x = ξ = 0. The operator P̃ acts on the space of L2–functions satisfying the
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Floquet-Bloch condition (3.5), defined microlocally near τ = x = ξ = 0 in T ∗(S1 ×

Rn−1).

Let us also remark that an orthonormal basis for the space L2
f (S

1) of multi-valued L2

functions on the circle satisfying a periodicity condition analogous to (3.5), with the

x-variable suppressed, consists of the functions

ek(t) = exp

(
it

h

(
h
(
k − α

4

)
− S

2π

))
, k ∈ Z,

which satisfy

f(hDt)ek(t) = f

(
h
(
k − α

4

)
− S

2π

)
ek(t).

It follows that if z ∈ neigh(0,R) is such that |z − f(h(k − α
4
)− S

2π
)| ≥ Ch2, k ∈ Z, for

C > 1 sufficiently large but fixed, then the operator

P̃ − z = f(hDt) + h2R− z = (f(hDt)− z)(1 + (f(hDt)− z)−1h2R), R = O(1),

is invertible, microlocally near τ = x = ξ = 0, with the norm of the inverse being

O(h−2).

4. Take finitely many closed trajectories γ1, . . . , γN ⊂ p−1(0) and small open neighbor-

hoods γj ⊆ Ωj, with Ωj invariant under the Hp-flow, such that p−1(0) ⊆ ∪Ωj, and also

cutoff functions 0 ≤ χj ∈ C∞0 (Ωj) such that Hpχj = 0,
∑
χj = 1 near p−1(0). Let Uj

denote a multi-valued h-Fourier integral operator associated to γj, as in the previous

step.

We investigate solving the equation (P − z)u = v, when u, v ∈ L2. For each j,

1 ≤ j ≤ N , we have

χwj (P − z)u = χwj v =⇒ (P − z)χwj u+ [χwj , P ]u = χwj v.

By the microlocal normal form for P in Ωj derived above, given in (3.6),

Uj(P − z)χwj = (P̃ − z)Ujχ
w
j +O(h∞) = (f(hDt) + h2R− z)Ujχ

w
j +O(h∞),
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with R = O(1) : L2
f (S

1 ×Rn−1) → L2
f (S

1 ×Rn−1). When z ∈ neigh(0,R) avoids the

intervals Ik, we just saw that the operator f(hDt) + h2R − z possesses a microlocal

inverse (f(hDt) + h2R− z)−1 = O(1/h2). For each j, we get

(f(hDt) + h2R− z)Ujχ
w
j u = Ujχ

w
j v + Uj[P, χ

w
j ]u.

and then applying the microlocal inverse (f(hDt) + h2R− z)−1, we get

‖χwj u‖ ≤ O(1/h2)‖v‖+O(1/h2)‖[P, χwj ]u‖.

Since the subprincipal symbol of P vanishes, we have in the operator sense, [P, χwj ] =

O(h3). Summing over j we get

‖
∑
χwj u‖ ≤ O(1/h2)‖v‖+O(h)‖u‖

and by the elliptic bound (3.2) we have

‖(1−
∑
χwj )u‖ ≤ O(1)‖v‖+O(h∞)‖u‖.

Combining these, we obtain

‖u‖ ≤ O(1/h2)‖v‖+O(h)‖u‖.

Taking h small enough, we conclude that (P − z)−1 exists and satisfies (P − z)−1 =

O(1/h2) : L2 → L2.

This completes the proof of Theorem 3.3 �.

3.3 Selfadjoint perturbations and averaging along closed orbits

Let us now consider a perturbed h-pseudodifferential operator of the form Pε = P + εQ, ε ∈

neigh(0,R), where P has been introduced in Section 3.2, and Q is the h-Weyl quantization

of a real-valued symbol also denoted by Q = Q(x, ξ;h) ∈ S(1), which has the leading symbol

q. We shall write pε = p+ εq for the leading symbol of Pε. By Theorem 3.3 combined with
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the spectral theorem, we see that the spectrum of P + εQ near 0 is discrete, for ε ≥ 0 small

enough, and

spec(P + εQ) ∩ neigh(0,R) ⊆ ∪k∈Zf
(
h
(
k − α

4

)
− S

2π

)
+ [−O(ε+ h2),+O(ε+ h2)].

When ε � h, the spectrum of P + εQ retains a cluster structure, but for now we do not

make this assumption.

Following in a long tradition dating to [Wei77], [Ver79], and others, we would like to

perform an averaging procedure, replacing q by its average along closed orbits of the Hp-

flow, which we will denote

〈q〉 =
1

T (E)

∫ T (E)/2

−T (E)/2

q ◦ exp(tHp) dt on p−1(E).

Implementing the averaging procedure on the operator level will allow us to reduce the

dimension by one unit, provided that ε = O(hδ), for some δ > 0.

Let G0 ∈ C∞0 (T ∗Rn; R). Then by Taylor’s formula,

pε ◦ exp(εHG0) = p+ εq + εHG0p+O(ε2)

= p+ ε(q −HpG0) +O(ε2).

Since 〈q − 〈q〉〉 = 0, locally near p−1(0) we may solve HpG0 = q − 〈q〉, the solution being a

smooth function. In fact, as in [HS04], on p−1(E), E ∈ neigh(0,R), we can use the explicit

formula

G =
1

T (E)

∫ T (E)/2

−T (E)/2

[
1R<0(t)

(
t+

1

2
T (E)

)
+ 1R>0(t)

(
t− 1

2
T (E)

)]
q ◦ exp(tHp) dt.

Similarly, with G1, G2, . . . denoting a sequence of smooth real-valued functions to be deter-

mined, and G ∼
∑∞

j=0 ε
jGj, if we expand pε ◦ exp(εHG) asymptotically, we claim that we

can iteratively solve for Gj so that

pε ◦ exp(εHG) = p+ ε 〈q〉+O(ε2),

where the O(ε2) error term Poisson commutes with p modulo O(ε∞).
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Explicitly, if G≤N = G0 + εG1 + ε2G2 + . . .+ εNGN satisfies

pε ◦ exp(εHG≤N ) = p+ ε 〈q〉+ a2ε
3 + . . .+ aNε

N + rN+1ε
N+1 +O(εN+2)

where {p, aj} = 0, 2 ≤ j ≤ N , then for G≤N+1 = G≤N + εN+1GN+1, with GN+1 ∈ C∞ to be

determined, we have by a variation on the Baker-Campbell-Hausdorff formula [Hor67], pp.

160–161,

exp(εHG≤N+1
) = exp(εHG≤N + εN+1HGN+1

)

= exp(εHG≤N ) exp(εN+1HGN+1
)(1 +O(εN+2))

where the O(εN+2) bound is in the C∞-sense. This implies that

pε◦ exp(εHG≤N+1
)

= p+ ε 〈q〉+ a2ε
2 + a2ε

3 + . . .+ aNε
N + (rN+1 −HpGN+1)εN+1 +O(εN+2).

As above, we may find a smooth real-valued solution of HpGN+1 = rN+1 − 〈rN+1〉, defined

near p−1(0).

The functions Gj, j ≥ 0, may be defined in a fixed neighborhood of p−1(0). We extend

them to globally defined, compactly supported smooth functions on all of T ∗Rn. By Borel’s

lemma we may choose G ∈ C∞0 (Rn; R) which is given by
∑∞

j=0 ε
jGj asymptotically in the

C∞–sense, and then we have achieved that pε ◦ exp(εHG) is in involution with p modulo

O(ε∞) in a fixed neighborhood of p−1(0), as desired.

By Egorov’s theorem (e.g. [Zwo12], Theorem 11.1), we may quantize the exact canonical

transformation exp(εHG) with an elliptic h-Fourier integral operator U = O(1) : L2(Rn)→

L2(Rn) which is microlocally unitary near p−1(0). Then we have that the selfadjoint operator

P̃ε := U−1PεU is of the form P̃ε ∼
∑∞

j=0 h
jpj(x, ξ, ε) with p0(x, ξ, ε) = p+ε 〈q〉+O(ε2), with

the O(ε2) term in involution with p modulo O(ε∞).

Furthermore, by the results of Section 2 of [HS04], if we choose the principal symbol of

the Fourier integral operator U to be real, then U enjoys the improved Egorov property,

namely that on the level of symbols we have P̃ε = Pε ◦ exp(εHG) + O(h2), so that the
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subprincipal symbol of P̃ε=0 vanishes. We thus reduce ourselves to the study of P̃ε, which

is an h-pseudodifferential operator on Rn satisfying the same general assumptions as in the

previous section, with principal symbol of the form p+ ε 〈q〉+O(ε2).

Remark 3.8. There is a particularly convenient global choice of the h-Fourier integral opera-

tor U . Since G is defined globally, we may use U = e−iεG/h, defined by the spectral theorem,

which is then globally unitary on L2. To see that this choice of U enjoys the improved Egorov

property, note that U(t) = e−itG/h solves the operator ODE

hDtU(t) +GU(t) = 0, 0 ≤ t ≤ ε,

and by [Zwo12], Theorem 11.1, U = U(ε) quantizes the canonical transformation exp(εHG).

Since the subprincipal symbol of G vanishes, the principal symbol of U solves a real transport

equation [Zwo12], and by Proposition 2.1 of [HS05], U enjoys the improved Egorov property.

3.4 Microlocal study near a torus when n = 2

We now work in dimension n = 2, and from now on we will assume that ε = O(hδ) for some

δ > 0. In particular O(ε∞) = O(h∞). Recall from the previous section that we have reduced

ourselves to an operator P̃ε with the leading symbol of the form

p+ ε〈q〉+O(ε2),

where the O(ε2)–term Poisson commutes with p, modulo O(h∞). The subprincipal symbol

of P̃ε is O(ε). In what follows, when working with the operator P̃ε, to simplify the notation,

we shall drop the tilde and continue to write Pε.

Let F0 ∈ R be such that minp−1(0)〈q〉 < F0 < maxp−1(0)〈q〉 and assume that F0 is a regular

value of 〈q〉 restricted to p−1(0). After replacing q by q − F0 we may assume that F0 = 0,

and let us consider the Hp–flow invariant set Λ = {p = 0, 〈q〉 = 0}. We know that dp, d 〈q〉

are linearly independent at each point of Λ, so that Λ is a Lagrangian manifold which is a

union of finitely many 2-tori. Assume for simplicity that Λ is connected so that it is equal
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to a single Lagrangian torus. Because the functions p, 〈q〉 are in involution, they form a

completely integrable system in a neighborhood of Λ. We have action-angle coordinates

near Λ [HZ94], given by a smooth canonical transformation

κ : neigh(ξ = 0, T ∗T2)→ neigh(Λ, T ∗R2),

mapping the zero section in T ∗T2 onto Λ, and such that p ◦ κ = p(ξ), 〈q〉 ◦ κ = 〈q〉 (ξ).

Here we make the identification T ∗T2 ∼= (R/2πZ)2
x × R2

ξ . Because p has periodic flow,

we may choose κ so that in fact p ◦ κ = p(ξ1) by letting ξ1 be the normalized action of a

closed Hp trajectory — see the discussion in Section 4 of [HS04]. The linear independence

of differentials of p and 〈q〉 implies that p′(0) 6= 0, ∂ξ2 〈q〉 (0) 6= 0.

Implementing κ by means of a multi-valued microlocally unitary h-Fourier integral oper-

ator U , which also has the improved Egorov property [HS04], we get a new operator U−1PεU ,

which will still be denoted by Pε,

Pε : L2
f (T

2)→ L2
f (T

2).

Here the selfadjoint operator Pε is defined microlocally near ξ = 0 in T ∗T2, with

Pε ∼
∞∑
j=0

hjpj(x, ξ, ε), (3.7)

the principal symbol being

p0(x, ε, ξ) = p(ξ1) + ε 〈q〉 (ξ) +O(ε2) (3.8)

with the O(ε2) error term independent of x1 modulo O(h∞). Furtermore, p1(x, ξ, ε) = O(ε).

The space here L2
f (T

2) stands for the subspace of L2
loc(R

2) consisting of Floquet periodic

functions u(x), satifying

u(x− ν) = eiν·θu(x), ν ∈ (2πZ)2, θ =
S

2πh
+
α

4
.

Here S = (S1, S2) with Sj being the action of the generator γj of the homotopy group of Λ,

with γ1 being given by a closed Hp–trajectory, and α = (α1, α2) is the corresponding Maslov

index.
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Removing the x1 dependence

Our next goal will be to eliminate the x1-dependence in pj, j ≥ 1 in (3.7). Let A =

A(x, ξ, ε) ∈ S(1) be real and let us consider the conjugation of Pε by the elliptic h-pseudodifferential

operator eiA. We have, identifying the symbols with the corresponding h-Weyl quantizations,

e−iAPεe
iA = Pε + e−iA[Pε, e

iA]

= p0 + h(p1 + {p0, A}) +O(h2).

For future reference, let us notice that we can write

e−iAPεe
iA = e−i adAPε, (adA)Pε = [A,Pε].

We shall now show that A can be chosen so that p1 + Hp0A becomes independent of x1,

modulo O(h∞). In doing so, we shall construct the C∞–symbol A as a formal power series

in ε. Introducing the Taylor expansions,

p0 ∼
∞∑
`=0

ε`p0,`(x, ξ), p1 ∼
∞∑
`=1

ε`p1,`(x, ξ),

and writing

A ∼
∞∑
`=1

ε`a`(x, ξ),

we compute the power series expansion of the Poisson bracket,

Hp0A ∼
∑

k≥0,`≥1

εk+`{p0,k, a`} =
∞∑
m=1

εmfm,

where

fm =
∑

k+`=m,k≥0,`≥1

{p0,k, a`}.

We would like to choose the coefficients a`, ` ≥ 1, so that p1,` + f` is independent of x1,

for all `. When ` = 1, we have p1,1 + f1 = p1,1 + ∂ξ1p ∂x1a1, and since ∂ξ1p(0) 6= 0, we can

determine a1 by solving the transport equation,

p1,1 + ∂ξ1p ∂x1a1 = 〈p1,1〉x1 ,

44



the right hand side standing for the average with respect to x1. Arguing inductively, assume

that the smooth real-valued a1, . . . am have already been determined. The term p1,m+1+fm+1

is of the form

p1,m+1 + ∂ξ1p ∂x1am+1 +
∑

k+`=m+1, `<m+1

{p0,k, a`},

and it is therefore clear that we can choose am+1 so that this expression becomes independent

of x1. Arguing in this fashion, we obtain a sequence aj ∈ C∞(neigh(ξ = 0, T ∗T2)), aj real-

valued, so that if A ∈ C∞ is such that

A(x, ξ, ε) ∼
∞∑
j=0

εjaj,

then the subprincipal symbol of the conjugated operator e−iAPεe
iA is O(ε) and independent

of x1, modulo O(h∞).

Assume inductively that we have found A0 = A, . . . AN−1 so that the operator

P (N)
ε := e−i ad(hN−1AN−1) ◦ . . . e−i ad(hA1) ◦ e−i ad(A)Pε

is of the form ∼
∑∞

j=0 h
jpj, where pj are independent of x1 modulo O(h∞), for j ≤ N .

We then look for the operator of the form eih
NAN and we see as before that the leading

symbol of e−ih
NAN [P

(N)
ε , eih

NAN ] is hN+1Hp0AN . Therefore, e−ih
NANP

(N)
ε eih

NAN is of the

form ∼
∑∞

j=0 h
j p̃j, where p̃j = pj for j ≤ N , and p̃N+1 = pN+1 +Hp0AN . It is therefore clear

that we can determine AN , as a formal power series in ε, so that p̃N+1 becomes independent

of x1. Using the Baker-Campbell-Hausdorff formula and Borel’s lemma, we see that there

exists an h-pseudodifferential operator A with symbol ∼
∑∞

ν=0 h
νaν(x, ξ, ε) ∈ S(1), with

a0 = O(ε), such that

e−i adA ∼ . . . e−ih
2 ad(A2) ◦ e−ih ad(A1) ◦ e−i ad(A0),

and we conclude that the operator P̃ε = e−i adAPε is of the form
∑∞

j=0 h
j p̃j(x2, ξ, ε), where

p̃0 = p(ξ1) + ε〈q〉(ξ) +O(ε2) is also independent of x1, and p̃1(x2, ξ, 0) = 0.
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Removing the x2 dependence

In the previous subsection, using only the fact that ∂ξ1p(0) 6= 0, we have eliminated the

x1-dependence in the full symbol of Pε and have reduced ourselves to an operator of the

form,

P̃ε ∼
∞∑
j=0

hj p̃j(x2, ξ, ε) on L2
f (T

2),

where

p̃0 = p(ξ1) + ε 〈q〉 (ξ) + ε2r2(x2, ξ, ε) +O(ε3)

with the O(ε3) error term independent of x1. Also, p̃1(x2, ξ, 0) = 0.

Arguing in the spirit of [HS04], [HS05], we shall now look for an additional conjugation

by means of Fourier integral operators which eliminates the x2-dependence in the symbol.

Following [HS04], it will be convenient to construct the conjugating operator by viewing h

and h2/ε as two independent asymptotically small parameters, provided of course, that ε is

not too small.

On the level of symbols, we write, using that p̃1(x2, ξ, ε) = εq1(x2, ξ, ε),

P̃ε = p(ξ1) + ε(〈q〉(ξ) +O(ε) + hq1(x2, ξ, ε) +
h2

ε
p̃2 + h

h2

ε
p̃3 + . . .)

= p(ξ1) + ε

(
r0(x2, ξ, ε,

h2

ε
) + hr1(x2, ξ, ε,

h2

ε
) + h2r2 + . . .

)
, (3.9)

with

r0(x2, ξ, ε,
h2

ε
) = 〈q〉+O(ε) +

h2

ε
p̃2,

r1(x2, ξ, ε,
h2

ε
) = q1(x2, ξ, ε) +

h2

ε
p̃3,

rj(x2, ξ, ε,
h2

ε
) =

h2

ε
p̃j+2, j ≥ 2.

In this work, we shall only be concerned with the case when

h2

ε
≤ O(hδ1), (3.10)

46



for some fixed δ1 > 0. When b0 = b0(x2, ξ, ε,
h2

ε
) is such that b0 = O(ε + h2/ε) in the

C∞–sense, we consider the conjugated operator

e
i
h
B0P̃εe

− i
h
B0 , B0 = b0(x2, hDx, ε, h

2/ε). (3.11)

Since B0 and p(hDx1) commute, we see that the symbol of the conjugated operator (3.11) is

of the form

p(ξ1) + ε (r̂0 + hr̂1 + . . .) ,

where by Egorov’s theorem,

r̂0 = r0 ◦ exp(Hb0) =
∞∑
k=0

1

k!
Hk
b0
r0,

while r̂j = O(1) for j ≥ 1. Since the canonical transformation exp(Hb0) is exact, we see that

the conjugated operator acts on the space L2
f (T

2) of Floquet periodic functions.

It follows that

r̂0 = 〈q〉(ξ) +O
(
ε+

h2

ε

)
− ∂ξ2〈q〉∂x2b0 +O

(
(ε,

h2

ε
)2

)
,

and using that ∂ξ2〈q〉 6= 0, it becomes clear how to construct a real-valued smooth symbol

b0 = O(ε + h2/ε), defined near ξ = 0 in T ∗T2, as a formal Taylor series in ε, h2/ε, so that

r̂0 = 〈q〉+O(ε+ h2/ε) is independent of x, modulo O(h∞).

In what follows, we may therefore assume, for simplicity, that the conjugation by eiB0/h

has already been carried out, so that we are reduced to the operator P̃ε of the form (3.9),

where r0 = 〈q〉(ξ) + O(ε + h2/ε) is independent of x, and rj = O(1), j ≥ 1. To eliminate

the x2–dependence in the lower order terms, we could argue as in the previous step, making

the terms rj independent of x2 one at a time, but here we would like to describe a slightly

different method, which has the merit of being more direct. Let us look for a conjugation by

a pseudodifferential operator of the form eiB/h, where

B(x2, ξ, ε,
h2

ε
;h) =

∞∑
ν=1

hνbν(x2, ξ, ε,
h2

ε
).

The conjugated operator

e
i
h
BP̃εe

− i
h
B = e

i
h

ad BP̃ε
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can be expanded as follows,

p(ξ1) + ε
∞∑
k=0

∞∑
j1=1

...

∞∑
jk=1

∞∑
`=0

h`+j1+..+jk
1

k!

(
i

h
ad bj1

)
..

(
i

h
ad bjk

)
r` = p(ξ1) + ε

∞∑
n=0

hnr̂n.

(3.12)

Here r̂n is equal to the sum of all the coefficients for hn coming from the expressions

h`+j1+..+jk
1

k!

(
i

h
ad bj1

)
..

(
i

h
ad bjk

)
r`, (3.13)

with ` + j1 + .. + jk ≤ n and jν ≥ 1. Then r̂0 = r0, r̂1 = r1 + Hb1r0 = r1 − Hr0b1,..,r̂n =

rn−Hr0bn + sn, where sn only depends on b1, ..., bn−1 and is the sum of all coefficients of hn

arising in the expressions (3.13) with `+ j1 + ..+ jk ≤ n, j1, .., jk, ` < n, jν ≥ 1.

It is therefore clear how to find b1, b2, . . . successively with bj = O(1), such that all the

coefficients r̂j in (3.12) are independent of x and = O(1).

The discussion in this section may be summarized in the following theorem, which is the

main result of this chapter.

Theorem 3.9. Let us make all the assumptions of Section (3.2) and let F0 ∈ R be a regular

value of 〈q〉 viewed as a function on p−1(0). Assume that the Lagrangian manifold

Λ0,F0 : p = 0, 〈q〉 = F0

is connected. When γ1 and γ2 are the fundamental cycles in Λ0,F0 with γ1 corresponding

to a closed Hp–trajectory, we write S = (S1, S2) and α = (α1, α2) for the actions and the

Maslov indices of the cycles, respectively. Assume furthermore that ε = O(hδ) is such that

h2/ε ≤ O(hδ), for some δ > 0 fixed. There exists a Lagrangian torus Λ̂0,F0 ⊂ T ∗R2, which

is an O(ε)–perturbation of Λ0,F0 in the C∞–sense, and an h-Fourier integral operator

U = O(1) : L2(R2)→ L2
f (T

2),

which has the following properties:

1. The operator U is microlocally invertible near Λ̂0,F0: there exists an operator V =

O(1) : L2
f (T

2)→ L2(R2) such that for every χ1 ∈ C∞0 (neigh(Λ̂0,F0 , T
∗R2)), we have

(V U − 1)χ1(x, hDx) = O(h∞) : L2(R2)→ L2(R2). (3.14)
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For every χ2 ∈ C∞0 (neigh(ξ = 0, T ∗T2)), we have

(UV − 1)χ2(x, hDx) = O(h∞) : L2
f (T

2)→ L2
f (T

2).

2. We have Egorov’s theorem: Acting on L2
f (T

2), there exists P̂
(
hDx, ε,

h2

ε
;h
)

with the

symbol

P̂

(
ξ, ε,

h2

ε
;h

)
∼ p(ξ1) + ε

∞∑
j=0

hjrj

(
ξ, ε,

h2

ε

)
, |ξ| ≤ 1

O(1)
,

r0 = 〈q〉(ξ) +O
(
ε+

h2

ε

)
,

and

rj = O(1), j ≥ 1,

such that P̂U = UPε microlocally near Λ̂0,F0, i.e.(
P̂U − UPε

)
χ1(x, hDx) = O(h∞), χ2(x, hDx)

(
P̂U − UPε

)
= O(h∞),

for every χ1, χ2 as above.

Remark. In an upcoming work, consequences of Theorem 3.9 for the spectral analysis of

the family of selfadjoint operators Pε will be explored, under the assumption that ε � h.

Notice that this assumption guarantees that the spectrum of the family Pε enjoys a cluster

structure, in view of Theorem 3.

Remark. Assume that the spectrum of P clusters into intervals of size ≤ O(1)hN0 ,

for some integer N0 ≥ 2. Following Section 12 of [HS08], in this case we expect to be

able to extend the normal form construction of Theorem 3.9 to the range hN0 � ε ≤ hδ.

This will also be the subject of future work, and let us presently merely mention that

the examples of selfadjoint operators with periodic classical flow for which the spectral

clusters are of size O(h∞) (in fact, 0) include the semiclassical Laplacian on a compact rank

one symmetric space [Gui78] and the two-dimensional harmonic oscillator with rationally

dependent frequencies.
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CHAPTER 4

Black Holes for Stationary Metrics in 2 Space

Dimensions

4.1 Introduction

Consider the wave equation associated to a stationary metric on a cylindrical domain R×Ω ⊆

R1+2 ∼= R1
x0
×R2

(x1,x2), which takes the form

2∑
i,j=0

1√
g(x)

∂

∂xi

(√
g(x)gij(x)

∂u(x0, x)

∂xj

)
= 0, ~x = (x0, x) ∈ R1+2. (4.1)

Here gij(x) ∈ C∞(R1+2; R) defines a pseudo-Riemannian metric with signature (+1,−1,−1)

and depends only on x, with gij(x) = gji(x), and g(x) = det[gij(x)]−1 where (gij(x))2
i,j=0 is

the inverse of the metric tensor (gij(x))2
i,j=0.

It is well known that equations of the form (4.1) may have black holes; i.e regions which

disturbances may not propagate out of. In general we call these artificial or analogue black

holes the metric may not be a solution of the Einstein equations of general relativity.

Two of the most famous examples arising from physical models are optical black holes and

acoustic black holes. In optics, the propagation of light in a moving medium can be modeled

by an equation of the form (4.1), while in acoustics, the propagation of sound waves in a

moving medium may be described by such an equation. In this work we will primarily study

the acoustic model, albeit with relaxed assumptions on the “fluid flow”.

Physicists are interested in the study of physical systems which may contain artificial

black holes, as they may be suitable for experimental study while retaining enough similar-
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ities to provide insight into gravitational black holes. See the surveys [BLV05],[NVV02] for

example.

4.1.1 Analogy with Relativity

In the present context, we define an event horizon to be a simple closed curve S ⊆ R2 such

that forward null-geodesics either can not pass from the interior to the exterior of S, or vice

versa. In the former case we will say that the region enclosed by S is a black hole, and in

the latter case call it a white hole. It is easy to see that such a curve may only exist in the

ergoregion, and must satisfy that R× S is characteristic for (4.1).

We recall that a bicharacteristic curve for the wave equation (4.1) is a curve (~x(t), ~ξ(t))

satisfying

ẋj =
2∑

k=0

gjk(x)ξk, ξ̇j = −
2∑

k=0

gjkxj (x)ξjξk, j = 0, 1, 2.

Such a curve is called a null-bicharacteristic if in addition we have

2∑
j,k=0

gjk(x)ξjξk = 0. (4.2)

Note that if (4.2) holds at one time, then it holds at all other times as well. A null-

geodesic is a curve ~x(s) which is the projection onto ~x of a null-bicharacteristic, and satisfies∑2
j,k=0 gjk(x)

dxj
ds

dxk
ds

= 0. A forward null-geodesic is a geodesic satisfying ẋ0 > 0.

With g denoting a spactime metric satisfying the assumptions as given after equation

(4.1), set ∆(x) = g11g22−(g12)2. We define the ergoregion to be the region where ∆ < 0. As-

sume the boundary ∆ = 0, called the ergosphere, is a smooth, simple closed curve. Through-

out, the ergoregion will contain a trapped surface, i.e. a stationary non-characteristic surface

which forward null-geodesics may only cross in one direction.

In Eskin [Esk10], it was shown that an ergoregion containing a trapped surface must

contain a black hole or a white hole if either the ergosphere is nowhere-characteristic, or

is itself characteristic. In this chapter, we will discuss metrics where instead there are
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several isolated characteristic points on the ergosphere. As we will show, one may still have

black holes, with a more complicated description of the dynamics of null-geodesics in the

ergoregion.

4.1.2 Acoustic Metrics

We now assume that g is an acoustic metric; that is, we take a vector field v = (v1, v2) ∈

C∞(R2; R2), and define a metric by the formula

(gij)
2
i,j=0 =


1− |v|2 v1 v2

v1 −1 0

v2 0 −1

 (4.3)

with respect to our global coordinate system (x0, x). When v is the velocity field of a

barotropic, inviscid, irrotational fluid flow, then the propagation of sound waves may be

modeled by the wave equation (4.1) for a metric with the form (4.3) (see [Vis98]). Here

we do not require that v satisfy these physical hypotheses, and for simplicity we have not

included physical constants, which amounts to formally assuming the fluid density and speed

of sound are equal to 1.

The inverse of the metric tensor is given by

(gij)2
i,j=0 =


1 v1 v2

v1 v2
1 − 1 v1v2

v2 v1v2 v2
2 − 1

 .
Thus we see that for an acoustic metric, the ergoregion is where 1− |v|2 < 0, i.e. where the

speed of the fluid is supersonic.

Remark 4.1. Without making further assumptions on v such as those mentioned above,

many other metrics may take the form (4.3) in an appropriate coordinate system, including

the Schwarzschild metric.
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4.1.3 Acoustic Metrics in Polar Coordinates

We consider an acoustic metric defined by the velocity field

v =
A

r
r̂ +

B

r
θ̂.

The case where A < 0 and B are constants is a physical model of fluid swirling into a drain

[BLV05]. See also [Esk10]. We will take the same form, but allow A, B to vary. In polar

coordinates, the inverse of the metric tensor is given by

(gij)2
i,j=0 =


1 A/r B/r2

A/r A2/r2 − 1 AB/r3

B/r2 AB/r3 B2/r4 − 1/r2

 . (4.4)

Recall that a black hole or white hole must be a closed characteristic curve. In polar coor-

dinates, we see from (4.4) that a characteristic curve given by S(r, θ) = 0 must satisfy(
A2

r2
− 1

)(
∂S

∂r

)2

+ 2
AB

r3

∂S

∂r

∂S

∂θ
+

(
B

r4
− 1

r2

)(
∂S

∂θ

)2

= 0,

which gives

∂S

∂θ
=
−AB

r3
±
√

(AB)2

r6
−
(
A2

r2
− 1
) (

B2

r4
− 1

r2

)
B2

r4
− 1

r2

∂S

∂r
,

or

∂S

∂θ
=
−AB

r
±
√
A2 +B2 − r2

B2

r2
− 1

∂S

∂r
.

From the latter condition we may construct a pair of vector fields ~V ± = (V ±1 , V
±

2 ) whose

integral curves are characteristic curves,

dr±

ds
= V ±1 =

AB

r
∓
√
A2 +B2 − r2 (4.5)

dθ±

ds
= V ±2 =

B2

r2
− 1. (4.6)
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Scaling the vector fields ~V ± by
AB
r
±
√
A2 +B2 − r2

B2

r2
− 1

yields another vector field ~W± =

(W±
1 ,W

±
2 ),

dr±

ds
= W±

1 = A2 − r2 (4.7)

dθ±

ds
= W±

2 =
AB

r
±
√
A2 +B2 − r2. (4.8)

Note that the scaling factor is sometimes positive, sometimes negative, and we have ~V ± = ~0

whenever |B| = r and sgnA = ± sgnB, while ~W± = ~0 whenever |A| = r and sgnA =

± sgnB. However, the vector fields ~V ± and ~W± have the same integral curves up to repa-

rameterization and concatenation. It was shown in [Esk10] that it is always possible to

construct a pair of nonvanishing characteristic vector fields, so there is no ambiguity in re-

ferring to two globally defined vector fields, but we will not write down an explicit formula.

4.1.4 Change of variables near the ergosphere

We introduce the new variable ρ given by ρ2 = A2 +B2 − r2 for r ≤ A2 +B2. Noting that

B2

r2
− 1 =

B2 − r2

r2
=
ρ2 − A2

r2
=

ρ2 − A2

A2 +B2 − ρ
,

we obtain

2ρ
dρ

dθ
=

d

dθ
[A2 +B2]− 2r

dr

dθ

=
d

dθ
[A2 +B2]− 2r2AB ∓ rρ

ρ− A2
.

In the new coordinates (ρ, θ) and after another rescaling, (4.5)-(4.6) become

dρ±

ds
= F±1 =

r2

ρ2 − A2

[
1

2

d

ds
[A2 +B2]− (AB ∓ rρ)

]
(4.9)

dθ±

ds
= F±2 = ρ. (4.10)

Remark 4.2. Due to the degeneracy of the change of variables near the ergosphere, criti-

cal points of ~F± do not (in general) correspond to critical points in (r, θ), but rather to

characteristic points of the ergosphere.
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As functions of ρ ≥ 0 and θ, ~F± are smooth in a neighborhood of ρ = 0 if A is bounded

below for ρ small. Depending on the formulas for A and B, they may extend smoothly to

ρ < 0. In particular, this is the case when A,B depend only on θ. In such a situation,

we may analyze the behavior near critical points of ~F± as the restriction to a half-space

of the behavior near a regular critical point. Standard results in dynamical systems about

structural stability and normal form theory then apply to the extension.

4.2 Homogeneous Flows

Let A,B depend on θ only, A = A(θ), B = B(θ).

In (r, θ) coordinates, (4.5)-(4.6), (4.7)-(4.8) retain the same expressions, while in (ρ, θ)

coordinates, we obtain

dρ±

ds
= F±1 = AAθ +BBθ −

r2

ρ2 − A2
(AB ∓ rρ) (4.11)

dθ±

ds
= F±2 = ρ. (4.12)

Then ~F± extends smoothly to ρ negative and sufficiently close to 0. A crucial role will be

played by the equilibrium points of ~F±, which only occur when ρ = 0, i.e. on the ergosphere.

For analyzing the linearization at critical points, we compute derivatives of ~F±.

(F±1 )ρ =
−2rrρ
ρ2 − A2

(AB ∓ rρ) +
r2

(ρ2 − A2)2
(2ρ)(AB ∓ rρ) − r2

ρ2 − A2
(∓1)(r + ρrρ) (4.13)

(F±1 )θ = (AAθ +BBθ)θ −
AAθ +BBθ

ρ2 − A2
(AB ∓ rρ)− r2

(ρ2 − A2)2
(−AAθ)(AB ∓ rρ)

− r2

ρ2 − A2
(ABθ + AθB ∓ rθρ) (4.14)

while (F±2 )ρ = 1, (F±2 )θ = 0.

When ρ = 0, we have rρ = −ρ
r

= 0, and (4.13)-(4.14) simplify to

(F±1 )ρ = ∓ r
3

A2
(4.15)

(F±1 )θ = (AAθ +BBθ)θ + (AAθ +BBθ)
B

A
+
A2 +B2

A2
(ABθ + 2AθB). (4.16)
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Next, we consider several explicit choices for A,B, and investigate the phase portraits of the

associated vector fields.

4.2.1 The case A = A0 < 0, B = B0 cos θ

Consider the case where A = A0 < 0 is a constant, B = B0 cos θ, where B0 > 0.

In (r, θ), (4.5)-(4.6) become

dr±

ds
= V ±1 =

A0B0 cos θ

r
∓
√
A2

0 +B2
0 cos2 θ − r2 (4.17)

dθ±

ds
= V ±2 =

B2
0 cos2 θ

r2
− 1, (4.18)

and (4.7)-(4.8) become

dr±

ds
= W±

1 = A2
0 − r2 (4.19)

dθ±

ds
= W±

2 =
A0B0 cos θ

r
±
√
A2

0 +B2
0 cos2 θ − r2, (4.20)

while (4.11)-(4.12) become

dρ±

ds
= F±1 = −B2

0 sin θ cos θ − r2

ρ2 − A2
0

(A0B0 cos θ ∓ rρ) (4.21)

dθ±

ds
= F±2 = ρ. (4.22)

From (4.21)-(4.22) we get critical points when

ρ = 0 and

[
B0 cos θ = 0 or −B0 sin θ − r2

(−A2
0)
A0 = 0

]
⇐⇒ [r = |A0|, θ = ±π/2] or

[
r2 = A0B0 sin θ = A2

0 +B2
0 cos2 θ

]
.

In the case where θ 6= ±π/2, we compute

A2
0 +B2

0(1− sin2 θ) = A0B0 sin θ (4.23)

sin2 θ +
A0

B0

sin θ −
(
A2

0

B2
0

+ 1

)
= 0 (4.24)

sin θ =
1

2

−(A0

B0

)
±

√
5

(
A0

B0

)2

+ 4

 . (4.25)
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(a) Trajectories for r+, θ+ (b) Trajectories for r−, θ−

Figure 4.1: An assortment of numerically simulated trajectories for (4.17)-(4.18), where

A = A0, B = B0 cos θ, with A0 = −2.4, B0 = 1.75. Numerical artifacts appear where

r = |B|,∓B > 0 due to the vanishing of the vector fields (4.17)-(4.18). 1

When |A0| > |B0|, (4.25) has no solutions, so there are only the two critical points at

θ = ±π/2. When |A0| < |B0|, (4.25) provides an additional two solutions for a total of four

critical points.

• When ρ = 0, θ = π/2, we have by (4.15)-(4.16)

∇ρ,θ
~F± =

∓ r3

A2
0

B2
0 − A0B0

1 0

 =

∓A0 B2
0 − A0B0

1 0

 ,
which has determinant (A0−B0)B0 < 0 and is thus a saddle point. The eigenvalues are

∓B0, ∓(B0 − A0) with eigenvectors

∓B0

1

,

∓(B0 − A0)

1

. Examining the critical

points:

• When ρ = 0, θ = −π/2, we have

∇ρ,θ
~F± =

∓ r3

A2
0

B2
0 + A0B0

1 0

 =

∓A0 B2
0 + A0B0

1 0


1Figures created using Mathematica [Mat10].
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(a) Trajectories for r+, θ+ (b) Trajectories for r−, θ−

Figure 4.2: An assortment of numerically simulated trajectories for (4.17)-(4.18), where

A = A0, B = B0 cos θ, with A0 = −1.5, B0 = 2.5. Numerical artifacts appear where

r = |B|,∓B > 0 due to the vanishing of the vector fields (4.17)-(4.18).

which has determinant −B0(A0 + B0)

 < 0, |A0| < |B0|

> 0, |A0| > |B0|
, trace squared A2

0, and

discriminant D = A2
0 + 4(B2

0 + A0B0) = (A0 + 2B0)2 ≥ 0. This is a node (two real

eigenvalues of the same sign) when |A0| > |B0| and a saddle when |A0| < |B0|. The

eigenvalues are ∓B0, ±(A0 + B0) with eigenvectors

∓B0

1

,

±(A0 +B0)

1

, respec-

tively.

• When |A0| < |B0| and θ 6= ±π/2, ρ = 0, and r2 = A0B0 sin θ ( =⇒ sin θ < 0),

∇ρ,θ
~F± =

∓ r3

A2
0
−B2

0 cos2 θ − 2
B3

0

A0
sin θ cos2 θ

1 0

 ,
which has determinant B2

0 cos2 θ + 2
B3

0

A0
sin θ cos2 θ ≥ 0. For |B0|/|A0| slightly larger

than 1, the two such critical points are nodes. One may verify numerically that for

larger values of |B0|/|A0| they are spirals (two imaginary eigenvalues).

In the case where |A0| > |B0|, let us sketch in detail the qualitative picture for the (+)

family. By symmetry, for the (−) family the picture is reflected in the vertical axis.
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(a) (ρ, θ) (b) (r, θ)

Figure 4.3: The qualitative picture near the node r = |A0|, θ = −π/2.

(a) (ρ, θ) (b) (r, θ)

Figure 4.4: The qualitative picture near the saddle point r = |A0|, θ = π/2.

By inspecting the equations (4.19)-(4.20), we see that the circle r = |A0| is characteristic.

The semicircle r = |A0|, x ≤ 0 is a trajectory of the (+) family and r = |A0|, x ≥ 0 is a

trajectory of the (−) family. The endpoints of these trajectories are where the circle is

tangent to the ergosphere, at the two characteristic points r = |A0|, θ = ±π/2.

Inside r = |A0|, trajectories for both the (+) and (−) families converge to the singularity,

as do all trajectories starting where x > 0 in the (+) family and all trajectories with x < 0

in the (−) family.

For the (+) family, there is a node in (ρ, θ) coordinates at r = |A0|, θ = −π/2, from which

emerges a trajectory of (4.17)-(4.18) following the circle r = |A0| clockwise until it reaches θ =

π/2. Since r = |A0|, cos θ < 0 implies ρ = |B| = −B0 cos θ = −B0(θ+π/2)+O((θ+π/2)3), in

the transformed coordinates this trajectory is always tangent to the direction corresponding

to the eigenvalue −B0 as calculated above (which should be +B0 to have forward null-

geodesics, as is apparent by comparing with (4.7)-(4.8)).
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The A0 + B0 eigendirection is stronger than the −B0 eigendirection when |A0| > 2|B0|,

and is then pointed more toward the center of the circle. In this case, there are trajectories

traveling from the node to the singularity. When |B0| < |A0| < 2|B0|, the −B0 direction is

stronger and all trajectories coming out of the node stay outside r = |A0|.

At θ = π/2, in (ρ, θ) coordinates we found above that there is a saddle point. The stable

trajectory for the saddle must follow the curve r = |A0|, x ≤ 0, and as in the previous

paragraph it corresponds to the eigenvalue −B0.

It is now clear how to take the proper sign in each vector field, and we see that the

(+) family points out of the ergosphere when x ≤ 0, and into it when x ≥ 0. Trajectories

of points between r = |A0| and the ergosphere when x ≤ 0 have no choice but to exit the

ergoregion as time increases. As time decreases, they must converge to the node. Trajectories

in the region where r < |A0| or x > 0 must converge to the singularity.

Remark 4.3. In both families, at the point r = |A0|, θ = −π/2, we have nonuniqueness of

solutions for (4.17)-(4.18), with a fan of many possible trajectories originating at one point.

Remark 4.4. Consider now a small perturbation of A, for example A = A0(1+ε cos θ). Since

the formulas for ~F± change continuously, we still have two critical points, both lying on the

ergosphere. By structural stability ([AP37] or [Kuz04], Theorem 2.5), the phase portraits

for the (+) and (−) families have the same qualitative pictures, even in (ρ, θ) coordinates.

Each of these families contains a trajectory which makes up one half of a black hole, whose

existence may not be easy to observe by other means. We know that these two curves are

tangent to the ergosphere, so the event horizon will be at least C1, but in general it may not

be C2, so the black hole is not a C∞ curve in the general case.

Now let us analyze the phase portrait when |A0| < |B0|. Again, by symmetry, the picture

for the (−) family is just the reflection of that for the (+) family.

In this case, our analysis of the critical points shows that we have saddles at θ = ±π/2,

as well as two additional critical points, which we shall assume are nodes by taking |B0|/|A0|

sufficiently close to 1. We again find that r = |A0| is characteristic, being made up of one
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(a) |A0| > 2|B0|. (b) |A0| < |B0|.

Figure 4.5: The qualitative picture for the (+) family.

trajectory of each of the (+) and (−) families, and that trajectories of points inside r = |A0|

must converge to the singularity.

The (+) family, given the proper sign, alternates pointing into and out of the ergosphere

as we pass the four critical points. Between θ = −π/2 and the node clockwise around the

ergosphere it points inward. As in the case when |A0| > |B0|, trajectories in the region

outside r = |A0| with x ≤ 0 have no choice but to exit the ergoregion as x0 increases. When

x ≥ 0, we now have a family of trajectories that enter and exit the ergosphere. Indeed,

if we consider the orbit which converges to θ = −π/2 as x0 → +∞, then as we follow it

backwards in time, it has no choice but to exit the ergosphere somewhere in the segment

of the ergosphere between θ = π/2 and the critical point immediately clockwise. Then this

trajectory is a separatrix for other trajectories. Trajectories to one side must converge to

the singularity as x0 → +∞, while to the other side they must exit in the segment of the

ergosphere between θ = −π/2 and the critical point immediately counterclockwise.

All together, we see that there is still a black hole. However, in this case there is a saddle-

saddle connection, so the dynamics are unstable under a general perturbation, though the

black hole may still be stable under special kinds of perturbations.
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4.2.2 The case A = A0 < 0, B = B0 cos2 θ

Consider the case when A = A0 < 0, B = B0 cos2 θ. Then (4.11)-(4.12) become

dρ±

ds
= F±1 = −2B2

0 sin θ cos3 θ − A2
0 +B2

0 cos4 θ − ρ2

ρ2 − A2
0

(A0B0 cos2 θ ∓ rρ) (4.26)

dθ±

ds
= F±2 = ρ. (4.27)

From (4.26)-(4.27) we get critical points when

ρ = 0 and

[
−2B2

0 sin θ cos3 θ +
r2

A2
0

A0B0 cos2 θ = 0

]
⇐⇒ [r = |A0|, θ = ±π/2] or

[
r2 = 2A0B0 sin θ cos θ = A2

0 +B2
0 cos4 θ

]
.

When |B0|/|A0| is small, it is clear that there are only the two critical points at r = |A0|,

θ = ±π/2, while one can verify numerically that four new critical points appear for larger

values.

We have by (4.16),

(F±1 )θ =

− 2B2
0 cos4 θ + 6B2

0 cos2 θ sin2 θ +
B3

0

A0

sin θ cos5 θ +

(
A2

0 +B2
0 cos4 θ

A0

)
(−2B0 sin θ cos θ),

which means that the critical points at θ = ±π/2 are degenerate in (ρ, θ) coordinates.

However, it will not be necessary to analyze them in more detail.

In (r, θ), (4.5)-(4.6) become

dr±

ds
= V ±1 =

A0B0 cos2 θ

r
∓
√
A2

0 +B2
0 cos4 θ − r2 (4.28)

dθ±

ds
= V ±2 =

B2
0 cos4 θ

r2
− 1, (4.29)

(4.7)-(4.8) become

dr±

ds
= W±

1 = A2
0 − r2 (4.30)

dθ±

ds
= W±

2 =
A0B0 cos2 θ

r
±
√
A2

0 +B2
0 cos4 θ − r2. (4.31)
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Figure 4.6: An assortment of numerically simulated trajectories for the (−) family in (4.28)-

(4.29), where A = A0, B = B0 cos2 θ, with A0 = −2.4, B0 = 1.75. Numerical artifacts

appear where r = |B| due to the vanishing of the vector fields (4.28)-(4.29).

When |A0| = r, we have W±
2 = −B0 cos2 θ ± |B0 cos2 θ|. For the (+) family, this vanishes

identically, but for the (−) family, it only vanishes when θ = ±π/2. Thus for the (−) family,

the entire circle |A0| = r is a trajectory. The (+) family points nontangentially into the

ergosphere everywhere except at θ = ±π/2. Therefore, trajectories of the (+) family must

converge to the singularity as x0 → +∞.

4.3 Conclusions

We have exhibited a class of examples of stationary spacetime metrics with black holes in

2 space dimensions. These examples demonstrate the possibility to have (artificial) black

holes which have an interesting interplay with the velocity field and the dynamics of null

geodesics, leading to a complicated structure of the ergoregion. In particular, the event

horizon is tangent to the ergosphere at several characteristic points, and consists of several

smooth pieces, which may not in general form a C2 curve. In a future work, we plan to

63



expand our range of examples, and further study the stability of such black holes under

perturbations.
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[Ver11] Yves Colin de Verdière. “A semi-classical inverse problem II: reconstruction of the
potential.” In Geometric aspects of analysis and mechanics, volume 292 of Progr.
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