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Abstract

Default reasoning is a mode of commonsense reasoning
which lets us jump to plausible conclusions when there
is no contrary information. A crucial operation of
default reasoning systems is the checking and maintain-
ing of consistency. However, it has been argued that
default reasoning is inconsistent: Any rational agent
will believe that it has some false beliefs. By doing so,
the agent guarantees itself an inconsistent belief set
(Israel, 1980). Perlis (1986) develops Israel’s argument
into an argument for the inconsistency of recollective
Socratic default reasoning systems. The Zoo Keeper'’s
Paradox has been offered as a concrete example to dem-
onstrate the inconsistency of commonsense beliefs.

In this paper, we show that Israel and Perlis’ argu-
ments are not well founded. A rational agent only needs
10 believe that some of its beliefs are possibly or proba-
bly false. This requirement does not imply that the
beliefs of rational agents are necessarily inconsistent.
Decision theory is used to show that concrete examples
of seemingly inconsistent beliefs, such as the Zoo
Keeper's Paradox, can be rational as well as consistent.
These examples show that analyses of commonsense
beliefs can be very misleading when utility is ignored.
We also examine the justifications of the exploratory
and incredulous approaches in default reasoning, deci-
sion theoretic considerations favor the exploratory
approach.

Default Reasoning

The goal of artificial intelligence is to build electronic
agents which can use knowledge to solve problems. A
large part of what we know is commonsense knowledge
consisting of general laws/rules which are almost
always true, with a few exceptions (Reiter, 1980).
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Example 1:

(R1) We can start a car by turning the key while step-
ping slowly on the gas pedal.

R1 is a general rule which is almost always true. There
are exceptions to the rule, such as, “the gas tank is
empty” and “the battery is low.” However, usually we do
not check to make sure that everything is normal. We
just assume by default that the car is in working condi-
tion, unless there is information to the contrary. Say, if
we notice that the ignition switch is lying on the floor
with a loose wire, then we conclude that the car is out of
order and it will not start. Such reasoning is not deduc-
tive, and has been called default reasoning in the
literature.

Example 1 illustrates the non-monotonicity of default
reasoning: A sentence A which is derivable from a the-
ory T may not be derivable from a superset of T.
Because of this property, formalizations of default rea-
soning have been called non-monotonic logics. In this
paper we will use “non-monotonic logics” as a general
term covering all formalizations of default reasoning
with the property of non-monotonicity. !

The Consistency of Default Reasoning

A number of authors have worried about the integrity
and consistency of commonsense/default reasoning.
Israel (1980) claims that non-monotonic logics are not
well motivated, because they rest on the confusion of
proof-theoretic with epistemological issues. Israel also
suggests that commonsense beliefs are very often
inconsistent. Since most non-monotonic logics perform

! Ginsberg (1987b) contains original papers of major
works before 1987. Besnard (1989) is a more recent
introduction to non-monotonic logics.



a consistency test before making a default assumption,
they would be paralyzed by inconsistent beliefs.

Perlis (1986) develops Israel’s argument for the
inconsistency of commonsense beliefs into an argument
for the inconsistency of non-monotonic logics under
some natural conditions. According to Perlis, ideal
thinkers capable of appropriate commonsense reason-
ing must be able to reflect on their past errors. They
must be aware of the fallibility of their use of defaults
(Socratic) and able to recall what default assumptions
they have made (recollective). However, recollective
Socratic reasoning is inconsistent. Perlis also presents
the Zoo Keeper's Paradox as a concrete example that
illustrates the inconsistency of commonsense beliefs.
The performance of the major formalizations, namely,
Circumscription (McCarthy, 1980), Non-monotonic
Logic (McDermott & Doyle, 1980) and Default Logic
(Reiter, 1980), is compromised: they do not produce the
intuitively correct commonsense default conclusions in
cases like the Zoo Keeper's Paradox.

In this section, we will consider briefly the general
arguments for the inconsistency of commonsense
beliefs and default reasoning. A detailed analysis is pre-
sented in Chan (1992).

The Goal of Non-monotonic Logics

Israel’s (1980) major complaint about non-monotonic
logics is that the motivation behind non-monotonic log-
ics is based on a confusion of proof-theoretic with epis-
temological issues. This has been misinterpreted by
some authors as an issue of terminology: Logic is, by its
very definition, monotonic, and the notion of “non-
monotonic logic” is a contradiction in terms (Ginsberg,
1987a). Such misinterpretation misses the point of
Israel’s argument as well as the chance to show that
Israel is mistaken.

Default reasoning makes a default assumption A only
if there is there is no information to the effect that A is
false. This requirement is implemented in non-mono-
tonic logics as a consistency check. Before A is con-
cluded by default, the system checks to see if A is
consistent with the set of current beliefs. A is also
required to be consistent with the justifications of
default assumptions made previously. Hence, a default
assumption will remain consistent with subsequent
default beliefs. This consistency requirement is inter-
preted by Israel as follows:

[To make an assumption that A is to believe
that A is] both compatible with everything
that a given agent believes at a given time
and remains so when the agent’s belief set
undergoes certain kinds of changes under the
pressure of both new information and further
thought, and where those changes are the
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result of rational epistemic policies (Israel,
1980).

Based on this understanding Israel takes non-monotonic
logics to be formal systems for general belief fixation.
He then argues that there is no logic of belief fixation and
scientific procedures are the only methods for belief fix-
ation. Because there are no logics of belief fixation, non-
monotonic logics can never achieve their goal,

Even if Israel is correct in claiming that there is no
logic of belief fixation, his criticism of non-monotonic
logics is not justified. This is because he has misinter-
preted the consistency requirement and the aim of non-
monotonic logics. Non-monotonic logics do not aim to
be general logics for belief fixation. A default assump-
tion A is not required to remain consistent when we add
new information. Actually, the non-monotonic nature of
default reasoning requires that A should be deleted
when it is not consistent with new information! The
correct intuitive understanding of the consistency
requirement is: A new default assumption A should be
consistent with current beliefs and should not falsify the
justifications of default assumptions previously made.
Hence, a default assumption is only guaranteed to
remain consistent with subsequent default beliefs. Non-
monotonic logics are not logics for making general
hypotheses. That is the job of scientific procedures.
Non-monotonic logics have a rather moderate aim,
They are logics for the proper extensions of beliefs by,
and only by, default assumptions supported by default
rules such as “Typically P’s are Q’s.”

The Consistency of Commonsense Beliefs

Israel also argues that the consistency requirement can-
not be met in practice, because commonsense beliefs
are mostly inconsistent. Any rational agent will believe
that it has some false beliefs. By doing so, the agent
guarantees itself an inconsistent belief set; there is no
possible interpretation under which all of its beliefs are
true (Israel, 1980).

If being rational requires our having an inconsistent
set of beliefs, this notion of rationality is too strong, and
should be replaced by a weaker notion. To be rational
an agent does not need to believe that it actually has
some false beliefs. It only needs to believe that some of
its beliefs are possibly or probably false. Such belief
sets may be consistent. Hence commonsense beliefs of
a rational agent are not necessarily inconsistent.

Recollective Socratic Agents

Perlis (1986) develops Israel’s argument for the incon-
sistency of commonsense beliefs into an argument for
the inconsistency of default reasoning under some natu-
ral conditions.



According to Perlis, default reasoning consists of a
sequence of steps involving, in its most general form,
oracles, jumps, and fixes. Since consistency check is
only semidecidable, we need to appeal to an oracle w
tell us that a given default assumption is consistent with
the current beliefs. Because default reasoning jumps 0
conclusions, it is error-prone and fixes are necessary 10
preserve (or re-establish) consistency. For rational
agents to be capable of appropriate commonsense rea-
soning, they must be able to reflect on their past errors,
and indeed, on their potential future errors. They must
be aware of the fallibility of their use of defaults
(Socratic) and able to recall what default assumptions
they have made (recollective). Perlis (1986) shows that
recollective Socratic agents are inconsistent.

As in the case of Israel’s argument, Perlis’ definition
of Socratic thinkers is loo strong. A rational agent does
not need to believe each of its default assumptions and
simultaneously believes that some of its default beliefs
are in fact false. A rational agent only needs the weaker
belief that some of its default beliefs are possibly false.
Such recollective weakly Socratic agents are not neces-
sarily inconsistent.

The Zoo Keeper’s Paradox

In additional to a general argument for the inconsis-
tency of rational agents, Perlis also offers the Zoo
Keeper’s Paradox as a concrete example of inconsistent
commonsense beliefs.

Example 2: (the Zoo Keeper’s Paradox)

Bob works as a zoo keeper and keeps a written record of
the animals there. Ten American bare eagles have been
recorded by Bob as in good health (and so able to fly).
One day Bob receives a message from a laboratory say-
ing that blood samples from the eagles show that some
eagles in the zoo are infected by virus (and as a result
cannot fly). However, the laboratory has mixed up the
blood samples, so we cannot tell which eagle is infected.
Bob still believes that each individual eagle at the zoo
can fly, that he is highly unwilling to leave any of their
cage doors open, and that he is also unwilling to call any
one of them to the attention of the zoo veterinarian. Yet,
he is also very concerned at the verterinarian’s failure to
arrive for work at the usual hour, because he also
believes that some (unspecified) eagles in the zoo are
sick (and cannot ﬂy).2

Are Bob’s beliefs consistent? What conclusions
should a default reasoning system make? We may for-
malize the hard facts in this example as follows:

2 This is a modified version of the Zoo Keeper's Para-
dox in Perlis, 1986. A similar paradox is the Lottery
Paradox discussed in McDermott (1982), Shoham
(1987) & Poole (1991).
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eagle(e,) A -+ A eagle(e,() (C1)

sick(e,) v --- v sick(e, ) (C2)

eagle(x) A sick(x) — — fly(x) (C3)
We have the following default rule:

Eagles typically fly. D)

Let us consider what default assumptions we should
rationally make. For each eagle we would like to con-
clude that it can fly by default, because we do not have
specific information about any individual eagle that it
cannot fly. Applying this reasoning we conclude that the
first nine eagles (in some arbitrary order) fly.

fly(e,) (AD)

fly(eq) (A9)
There are three possibilities regarding the last eagle e

1. Since we have no evidence to single out e 10 from
the rest, we may apply the same reasoning and
conclude by default that e, can fly. However, the
addition of this last default conclusion results in a
set of inconsistent beliefs. According to Perlis this

is what Bob believes.

We may deduce from C1-C3 and A1-A9 that e,,
does not fly. Since there are ten ways to pick this
last eagle, there are ten possible extensions, each
as as the other. An exploratory system
(Reiter, 1980) would pick an arbitrary extension.

An incredulous system (McCarthy, 1980; McDer-
mott & Doyle, 1980) would consider as default
conclusions only those shared by all extensions:

Nine of the eagles fly. (G1)
One of the eagles does not fly. (G2)

In the rest of this section we will consider the consis-
tency of Bob’s beliefs. The exploratory and incredulous
approaches will be examined in the next section.

Are Bob’s beliefs inconsistent? First of all, how do
we know what Bob’s beliefs are? Perlis proposes a
behavioral criterion of use-belief.

Definition 1: (use-belief)

An agent believes a proposition p if it trusts and uses p
in planning and acting, “as if it were true.” The agent
should be willing to recognize p as theorems and ignore
the possibility that p may be false. If the agent also does
something that is appropriate only if p is false, then the
agent only believes that it is highly probable that the
proposition is true (Perlis, 1986).

This definition tries to identify an agent’s beliefs by its
actions. However, actions are not determined only by
beliefs. The rationality of an action also depends on its
utility. In what follows, we will apply decision theory
(Savage, 1972) to find out if Bob’s belief/behavior is
rational.



Suppose Bob believes with probability p that an
eagle e is sick. Being a zoo kecper, Bob is responsible
for keeping e healthy as well as keeping e in the zoo.
Let us represent the utility of different possibilities as
follows:

Event | escape | stay | dead | sick | healthy

Udlity | 0 1 0 v u

Table 1. Utility of events for Bob

We will consider the decision trees for closing/opening
the cage door in two scenarios.

Scenario 1: Closing the cage door does not make the
condition of a sick eagle worse,

sk stay & sick 1+v

close door
=t stay & healthy | 1+u

ick

- stay & sick 1+v

open door
ek escape & healthy| 0 + u

Action  Event Result Utlity

Figure 1. Decision tree for Scenario 1

The expected utility of closing the cage door is greater
than the expected utility of opening the cage door by
(1-p) Gp(1+v) + (1-p) (1+u) =p(1+v) -
(1-p) u). As long as Bob is not absolutely certain that
e is sick (p < 1), he better keeps the door closed. If p=1,
then it makes no difference if the door is closed or open.
Hence, in Scenario 1 Bob should close the cage door no
matter whether he believes that e is sick or not. Bob is
probably in this situation in Example 2. This shows the
possibility of interpreting Bob’s behavior as rational
without attributing an inconsistent set of beliefs to him.

What he does is rational and is consistent with his belief
that one of the eagle is sick.

Scenario 2: A sick eagle will die if the cage door is
closed.

Sick I my&dead | 140

close door
oS stay & healthy | 1+u

(| ad

22 stay & healthy | 144

open door

—sick
(oS tescape & healthy| 0 + u
Action Event Result Utlity

Figure 2. Decision tree for Scenario 2

The expected utility of closing the cage door is greater
than the expected utility of opening the cage door by
(1-p)-pu =p + (1-p) (1+u) - p(1+u) -
(1-p) u). The values of EU(close) - EU(open) for
some representative values of p and u are shown in Table
2. In this scenario Bob has to make a choice between
opening or closing the cage door. What he should do
depends on p as well as u. If keeping the eagle in the zoo
is as important as keeping the eagle healthy (u=1),
then Bob should keep the cage door closed if he believes
that probably the eagle is healthy, but he should open the
cage door if he believes that probably the eagle is sick.
However, if the eagle is an endangered species and it is
very important to keep it healthy («» 1), he should
open the cage door even if he believes that probably the
eagles are not sick (p <0.5) . Because the penalty for
mistake is so high, it is rational for Bob to consider an
unlikely proposition (sick(e)) to be true by default.

Scenario 2 is a special case in which two goals com-
pete for an action. Keeping the cage door closed
achieves the goal of keeping the eagle in the zoo, but
violates the goal of keeping the eagle healthy. Accord-
ing to the policy of minimizing expected loss, it is ratio-
nal to perform the action appropriate to the unlikely
event if the penalty of overlooking the event is too

EU(close) -
—EU(open) | 01 11 5 1 5 9 10 20
1 899 | 889 | .85 8 4 0 01 |~El
P 5 495 | 445 | 25 0 = =7 -45 |-95
9 091 |0 =035 | <08 .1 =44 |8 -89 [+179

Table 2. The value of EU(close) — EU(open) for different p and u.
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great. In other scenarios, the required remedy/preven-
tive action for an unlikely event may not compete with
the normal action appropriate to the more likely event
For example, the probability p of having a car collision
is low. However, the penalty of not wearing a seat belt
is very high if a car collision does occur. Fortunatcly,
the preventive measure of wearing a seat belt can be
performed simultaneously with other actions appropri-
ate for the much more likely event of no car collision.
In such cases we usually entertain two belief sets, belief
set S1 is consistent with the occurrence of a normal
event E, whereas belief set S2 is consistent with the
unlikely possibility of — E. Actions appropriate to S1
are performed if they do not compete with remedy or
preventive actions appropriate to —E.

The Zoo Keeper'’s Paradox illustrates that it is highly
misleading to consider rational behavior without taking
utility into account, Given a belief set, rational behavior
is determined by utility/penalty. It is rational to make a
default assumption only if the penalty for making a mis-
take is (very) low. If the penalty is great enough, even
an unlikely proposition should be considered to be true
by default: preventive measures or remedies are imple-
mented as if the unlikely event will occur or has
occurred.

Exploratory vs. Incredulous Approaches

Can we apply decision theory in the context of non-
monotonic logics? Although probability and utility are
not considered within non-monotonic logics, the prac-
tice of default reasoning is justified by decision theo-
retic considerations. Under the normal operating
conditions of default reasoning, each default rule has a
high probability of being true, it is desirable to draw the
default conclusions and the penalty for drawing a false
conclusion is low. In this section we will consider the
decision theoretic justifications of the exploratory and
incredulous approaches in default reasoning when these
normal operating conditions are satisfied.

Let us take a detour and consider Bob's beliefs
before he received the message from the laboratory. At
that time Bob was presumably justified by the default
rule D to conclude that all ten eagles can fly. Suppose
that the actal world is a maximally typical world in
which all individuals not known to be atypical are
indeed typical, then all ten eagles can fly. Of course, the
actual world is not maximally typical. However,
because exceptions are rare, most of our default conclu-
sions are true. The successful rate depends on how typ-

ical the world is. Although we may make mistakes from
time to time, that is acceptable, because the penalty for
such mistakes are low and in the long run true default
assumptions out number mistaken default assumptions.

Now, consider again the original version of the Zoo
Keeper’s Paradox in which Bob knows that at least one
of the eagles is sick. Since consistency check is an
essential step in the normal operation of non-monotonic
logics, the inconsistent belief set acknowledging ten
healthy eagles cannot be tolerated. There are ten differ-
ent consistent (maximal) extensions of the core beliefs.
An incredulous non-monotonic logic does not commit
itself to any one of the competing extensions. Only
default conclusions shared by all consistent maximal
extensions are made. Such shared conclusions are true
in all maximally typical world with one sick eagle, and
we can appeal to the same statistical justification for
this conservative approach.

Should we commit ourselves to any one of the ten
extensions? If we have some empirical evidence that
makes one of eagle, say ¢, the prime suspect, then we
should prefer an extension in which e, to e, can fly.
Otherwise, all ten extensions are cquazlly justified and
we have no reason to prefer one rather than another.

Suppose Bob knows that exactly one of the eagles is
sick and he uses an exploratory non-monotonic logic to
pick one of the ten extensions. Do we have any statisti-
cal justification for such a practice? There are ten exten-
sions, so the chance of getting all ten default
conclusions right is only 10%. This is a low percentage.
However, let us compute the expected number of cor-
rect conclusions. Let p; be the probability that exten-
sion i is correct and N; be the number of correct
conclusions if extension i 1s correct. The expected num-
ber of correct conclusions is

10
Y N;xp; = 10x0.1+9x8x0.1 = 8.2,
i=1
The expected number of correct conclusions is summa-
rized in Table 3.

Suppose Bob knows that at least one eagle is sick.
Using an exploratory default logic, he would pick an
extension with only one eagle being sick. If the world is
a maximally typical world, then only one eagle is sick
and the expected number of correct default conclusions
is the same as the previous case (8.2). However, if each
cagle has a 50% chance of being sick, then the expected
number of correct default conclusions is reduced to
only 4.6. In general if the default rule in question is very
strong with a very high percentage of typical members,

No. of eagles known to be sick 1

2

3 4 5 6 7

Expected no. of correct conclusions | 8.2

6.8

58 |52 |5 52 |58

Table 3. Expected number of correct default conclusions
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then the expected number of correct default conclusions
would be very close to 8.2. Although there is no empiri-
cal reason to prefer one extension to another, any one of
the extensions would serve just as well. Using an
exploratory default logic, we can always backtrack and
try another extension when we find out later that we
have picked the wrong one.

From this example, we can sce that an exploratory
default logic may be justified even when we do not have
any empirical evidence to prefer one extension over
another. Moreover, under the normal operating condi-
tions of non-monotonic logics, each default rule has a
high probability of being true and incurs a very low
penalty for false conclusions. Using an exploratory sys-
tem we can make more default assumptions without
incurring heavy penalty. In the long run the advantages
of making more correct assumptions will outweigh the
small penalty incurred by occasional false conclusions.
On the other hand, we will miss the chance 0 make
many useful default assumptions if we follow the
incredulous approach.

In special cases where the normal operating condi-
tions of default reasoning are not satisfied, neither the
exploratory nor the incredulous approach would work
as such, We need a more powerful mode of reasoning
which can entertain competing belief sets and act on the
basis of both sets. It is interesting to see how we can
extend current non-monotonic logics or develop new
systems to handle defaults with heavy penalty.

Conclusions

In this paper, we have proposed that a rational agent
only needs to believe that some of its beliefs are possi-
bly or probably false. This requirement does not imply
that the beliefs of rational agents are necessarily incon-
sistent. Decision theory is used here to show that con-
crete examples of seemingly inconsistent beliefs can be
rational as well as consistent. Such examples show that
analysis of commonsense beliefs can be very mislead-
ing when utility is ignored. Justifications of the explor-
atory and incredulous approaches in default reasoning
are examined and decision theoretical considerations
favor the exploratory approach.

The use of decision theoretic analysis in default rea-
soning solves some old issues but also presents some
new challenges. In particular, there are two types of
default assumptions: (i) Some propositions are assumed
to be true by default because they are probable. (ii)
Other propositions are assumed to be true by default
because it is too risky to assume that they are false.
Default assumptions of the second type are numerous in
practical applications and we need to extend existing
systems or develop new systems to incorporate this
overlooked type of default reasoning,
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