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A Two-step Estimation Approach for Logistic Varying

Coefficient Modeling of Longitudinal Data

Jun Dong, Jason P. Estes, Gang Li and Damla Şentürk∗

University of California, Los Angeles
email: dsenturk@ucla.edu∗

Abstract

Varying coefficient models are useful for modeling longitudinal data and have been
extensively studied in the past decade. Motivated by commonly encountered dichoto-
mous outcomes in medical and health cohort studies, we propose a two-step method to
estimate the regression coefficient functions in a logistic varying coefficient model where
the outcome is binary. The model depicts time-varying covariate effects without imposing
stringent parametric assumptions. The proposed estimation is simple and can be con-
veniently implemented using existing statistical packages such as SAS and R. We study
asymptotic properties of the proposed estimators which lead to asymptotic inference and
also develop bootstrap inferential procedures to test whether the coefficient functions are
indeed time-varying or are equal to zero. The proposed methodology is illustrated with
the analysis of a smoking cessation data set. Simulations are used to evaluate the per-
formance of the proposed method compared to an alternative estimation method based
on local maximum likelihood and two parametric modeling approaches: generalized esti-
mating equations (GEE) for logistic regression and the generalized linear mixed models
(GLMM).

Key words and phrases: Generalized estimating equations, Generalized linear mixed mod-
els, Logistic regression, Longitudinal binary data, Smoothing, Time-varying effects



1 Introduction

Longitudinal data arise frequently from medical and health cohort studies where the sub-

jects are measured repeatedly over time. Our working example is the smoking cessation

data described in Shoptaw, Fuller, Yang, Frosch, Nahom, Jarvik, Rawson and Ling (2002).

Follow-up data was collected on 175 participants for 12 weeks in a clinical trial to evalu-

ate two behavioral methods for optimizing smoking cessation outcomes in methadone main-

tained cigarette smokers. At each visit, samples of breath were measured for carbon monox-

ide level and a binary outcome representing smoking status was recorded along with many

covariates including age, gender and behavioral treatment. Hence, the data is of the form

[{tij, Xi(tij), Yi(tij)}, i = 1, . . . , n, j = 1, . . . , Ti], where Xi(tij) = {Xi1(tij), . . . , Xid(tij)}T and

Yi(tij) denote the vector of d covariates and the binary response variable for subject i, re-

spectively, measured at time tij. Of interest is to assess the potentially time-varying effects of

behavioral treatments on the outcomes adjusting for potential risk factors.

Many parametric models have been proposed to analyze longitudinal binary data (Pender-

gast, Gange, Newton, Windstorm, Palta and Fisher (1996)). A commonly used approach is the

method of Liang and Zeger (1986) based on generalized estimating equations (GEE). The GEE

approach models the marginal distributions using a generalized linear model and assumes a

common correlation matrix for the repeated measurements within each subject. The regression

parameters are estimated by solving generalized estimating equations and the method provides

consistent estimates of the regression coefficients even if the correlation matrix is misspecified.

Another important approach is generalized linear mixed models (GLMM)

Yi(tij)
∣∣{Xi(tij), βi} ∼ Bernoulli{πi(tij)}, log

{
πi(tij)

1− πi(tij)

}
= Xi(tij)α + Zi(tij)βi; (1)

see McCullagh and Nelder (1989, sec. 14.5), Breslow and Clayton (1993) and the references

therein. In (1), α is a vector of unknown fixed effects and β is a vector of unknown random
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effects coefficients with an unknown covariance matrix D. Wolfinger and O’Connell (1993)

used iterative reweighted likelihood to fit the GLMM model, and the method has been made

available in SAS as a macro called GLIMMIX.

Both the GEE and GLMM methods assume constant covariate effects over time. This is

a rather stringent assumption that may not always hold in applications. As illustrated by

our simulation study in Section 5, both methods could lead to misleading results when the

covariate effects are indeed time-varying. Therefore, it is important to check whether or not

all the covariate effects are time invariant. Furthermore, even if the covariate effects do not

change over time, parametric approaches involving a small number of parameters do not work

well when there is a large number of repeated measurements, as the pattern of covariate effects

over time may not be fully captured by only a few parameters. Reported simulations in Section

5 show that confidence intervals based on GLMM can have lower coverage probability than

the nominal level for finite samples due to underestimation of the variance of the estimators.

In contrast to GEE and GLMM, logistic varying coefficient models for longitudinal binary

data have been proposed to allow regression coefficient functions to change over time,

Yi(t)
∣∣Xi(t) ∼ Bernoulli {πi(t)} , log

{
πi(t)

1− πi(t)

}
= Xi(t)

Tβ(t), (2)

without assuming any parametric form (Cleveland, Grosse and Shyu (1991); Hastie and Tib-

shirani, (1993); Cai, Fan and Li (2000)). In (2), corr{Yi(s), Yi′(t)} = γ(s, t)I(i=i′), where β(t)

is a vector of d regression coefficient functions, πi(t) = Pr{Yi(t) = 1|Xi(t)}, and γ(s, t) is an

unknown bivariate correlation function. In this model, the observations from different subjects

are independent and the repeated measurements from the same subject are correlated. The use

of this model is two-fold. First, it can be used to check whether or not the effect of a covariate

changes over time by plotting the corresponding coefficient function. Secondly, it provides

a useful alternative to the GEE and GLMM methods for analyzing longitudinal binary data

when the constant covariate effects assumption is not valid.
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Recently several works have been proposed for estimation in generalized varying coefficient

models. Zhang (2004) extended the GLMM model by representing the covariate effects via

smooth but otherwise arbitrary functions of time. They use random effects to model the cor-

relation among and within subjects, and use the double penalized quasi-likelihood method for

estimation. However as mentioned in the paper, this approach does not perform well for bi-

nary outcomes and may require an additional bias correction step. Qu and Li (2006) proposed

an efficient estimation procedure for generalized varying coefficient models for longitudinal

data via an integrated quadratic inference function and penalized splines approach. This ap-

proach can easily take into account correlation within subjects; however it is still parametric

in nature although the dimension of the parameter space is high. Şentürk, Dalrymple, Mo-

hammed, Kaysen and Nguyen (2013) and Estes, Nguyen, Dalrymple, Mu and Şentürk (2014)

consider extensions of the local maximum likelihood approach of Cai, Fan and Li (2000) for

estimation in generalized varying coefficient models for i.i.d. data to modeling longitudinal

data. This extension is shown to be useful in applications where follow-up in longitudinal

studies are truncated by death. For estimation in a generalized varying coefficient model from

unsynchronized longitudinal data where response and predictors may not be collected at the

same time points, Şentürk, Dalrymple, Mohammed, Kaysen and Nguyen (2013) proposed a

nonparametric moments approach, while Cao, Zeng, Fine (2014) proposed kernel weighted

estimating equations.

As a novel departure from existing literature, we propose a two-step procedure to estimate

the coefficient functions in a logistic varying coefficient model. The first step involves fitting

a standard logistic regression at each of the observation time point tij. In the second step

an estimate of each regression coefficient function is obtained by smoothing the raw estimates

from the first step based on a nonparametric regression method. Thus a major advantage of

the proposal is that our estimators can be easily obtained using existing statistical softwares.
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We point out that our approach is similar to that used by Fan and Zhang (2000) for varying

coefficient models with continuous response, referred to by the authors as the functional linear

model. However, there is a fundamental difference between a functional linear model and a

logistic varying coefficient model in that the raw estimates are unbiased for the linear model,

but biased for the logistic regression model for finite samples. The bias for the latter model has

to be handled with care when developing the large sample properties of the proposed two-step

(TS) estimators. In addition to establishing the asymptotic properties of the TS estimators

leading to asymptotic confidence intervals, we also develop bootstrap inferential procedures to

test whether the coefficient functions are indeed time-varying or are equal to zero. While the

first hypothesis evaluates whether the logistic varying coefficient model reduces to a parametric

form, the second can be used in identifying significant predictors.

This paper is organized as follows. The two-step estimation procedure is described in detail

in Section 2. In Section 3, the asymptotic properties of the proposed estimators are studied,

and statistical inference procedures are discussed. In Section 4, we apply the proposed method

to the smoking cessation data described earlier. In Section 5, we present simulation studies to

assess and compare the performance of the proposed TS estimation with the local maximum

likelihood (LML) approach of Şentürk, Dalrymple, Mohammed, Kaysen and Nguyen (2013)

and Estes, Nguyen, Dalrymple, Mu and Şentürk (2014), the GEE method of Liang and Zeger

(1986) and the GLMM model implemented in Wolfinger and O’Connell (1993). We conclude

with a discussion section and collect technical proofs in an appendix.

2 The Proposed Two-step Estimation Procedure

In this section, we derive a two-step estimate for the coefficient function β(t). In the first

step, a raw estimate of β(t) at each design time point is obtained by fitting a standard logistic

regression. In the second step, a final estimate of β(t) is obtained by smoothing the raw

4



estimates using a nonparametric curve estimation method. Throughout this paper, we let

D = [{tij, Xi(tij)}, i = 1, . . . , n, j = 1, . . . , Ti], which contains the design time points and the

covariate information. The range of time is [0, D] for some specified D. Note that under model

(2), we have Cov{Yi(t), Yi(t)|D} = Var{Yi(t)|D} = πi(t){1− πi(t)} and Cov{Yi(s), Yi(t)|D} =

γ(s, t) [Var{Yi(s)|D} ∗ Var{Yi(t)|D}]1/2, where γ(t, t) = 1.

2.1 Step I: Obtaining the Raw Estimates

Let A = {tj, j = 1, . . . , T} be the collection of distinct time points among {tij, i = 1, . . . , n, j =

1, . . . , Ti}. For any tj ∈ A, let Nj = {i1, . . . , inj} denote the collection of subject indices of

all Yi(tij) observed at tj, where nj is the number of subjects observed at tj. Then, under

model (2), we have at the time tj,

Yi(tj)
∣∣Xi(tj) ∼ Bernoulli{πi(tj)}, log

{
πi(tj)

1− πi(tj)

}
= Xi(tj)

Tβ(tj), for all i ∈ Nj. (3)

The raw estimate b(tj) = {b1(tj), . . . , bd(tj)}T is defined as the maximum likelihood estimate

of β(tj) = {β1(tj), . . . , βd(tj)}T from the standard logistic regression model (3).

2.2 Step II: Refining the Raw Estimates

For the r-th component of the coefficient vector, we obtain a refined estimate by smoothing

the raw estimates [{tj, br(tj)}, j = 1, . . . , T ], r = 1, . . . , d. For example, the local polynomial

smoothing method (Fan and Gijbels (1996)) yields the following linear estimator for the qth

derivative of β(t), which is assumed to be (p + 1)-times continuously differentiable for some

p ≥ q:

β̂
(q)
r (t) =

T∑
j=1

ωq,p+1(tj, t)br(tj) for r = 1, . . . , d, 0 ≤ q ≤ p+ 1. (4)

The weight functions ωq,p+1(tj, t) in (4) are induced by the local polynomial fitting and are

defined in the assumptions section given at beginning of the Appendix. Note that the raw

estimates of the coefficient functions are defined only at the design time points. However, the
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refined estimate β̂
(q)
r (t) are defined for all t ∈ [0, D]. Furthermore, it aggregates the information

around time t.

Remark 1. We note that the raw estimate b(tj) of β(tj) usually has a finite sample bias that

may not be negligible when nj is small. This bias will be carried over to the refined estimate

obtained in the second step and needs to be handled with care when studying the asymptotic

properties of the two-step estimator. In practice, one may also run into situations where, for

some time point tj, the sample size nj is smaller than the number of covariates d. In such a

case, it is impossible to fit a logistic regression at time tj. Similar to the approach by Fan and

Zhang (2000) for functional linear models, one could leave b(tj) missing. This is equivalent to

treating observations at these tj’s as if they were not in the data at all. This potentially reduces

the bias compared to including them in the calculation. Another possible solution is to increase

the sample size by including observations from the neighbors. For instance, one could include

observations at tj−1 and tj+1 to fit the logistic regression at tj. A third approach is to impute

the missing observations in the data via getting information from the neighboring time points.

As indicated in Fan and Zhang (2000), the bias created by the second and third methods are

negligible as long as β(t) is smooth and the time window is small.

Remark 2. In step 2 we define our estimator (4) by smoothing each component separately

without utilizing the covariance structure between different components. One could potentially

improve our estimator by incorporating the covariance information that is determined by the

correlation function γ(s, t). However, because the bivariate function γ(s, t) is unknown, the

efficiency gain could be hard to realize if γ(s, t) is not accurately estimated. We choose to use

(4) for its simplicity and computational convenience. In addition, the fact that each component

is smoothed separately allows the estimation to adapt to the different degrees of smoothness

of the varying coefficient regression functions. This is a big advantage of the proposed TS

algorithm where bandwidths for smoothing in the second step can be chosen by plotting the raw
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estimates from the first step or by automatic bandwidth selection algorithms. We utilize plots

of the raw estimates in the analysis of the smoking cessation data in Section 4 and utilize

the rule-of-thumb bandwidth selection criteria of Ruppert, Sheather and Wand (1995) in the

simulation studies presented in Section 5.

3 Asymptotic Properties and Inference

In this section, we investigate the asymptotic bias, variance and normality of the proposed

TS estimators. A bootstrap method is also proposed to construct global confidence bands,

which enables one to perform hypothesis testing about the coefficient functions. We assume

the outcomes at each time point are missing completely at random hereafter.

3.1 Asymptotic Properties

Denote the response vector and the design matrix for the logistic regression model (3) at tj by

Ỹj = {Yi1(tj), Yi2(tj), · · · , Yinj (tj)}
T, and X̃j = {Xi1(tj), Xi2(tj), . . . , Xinj

(tj)}T respectively.

The following lemma gives the asymptotic properties of the raw estimators.

Lemma 1. Assume that condition (A4) in the Appendix holds. Assume further that given D,

(N1) The covariates are uniformly bounded, i.e., there exists an M0 such that |Xijr| ≤M0, for

all i, j, and r.

(N2) Let Ij = X̃T
j WjX̃j be the Fisher information matrix where Wj = diag[πi1(tj){1 −

πi1(tj)}, . . . , πinj (tj){1 − πinj (tj)}] is the covariance matrix of Ỹj. Further let λ1,nj and

λ`,nj be respectively the smallest and the largest eigenvalue of Ij. There exists a random

variable M1 such that, with probability 1, λ`,nj/λ1,nj < M1, for all nj, j and E(M1) <∞.

Let b(tj) be the raw estimate of β(tj) defined in Section 2.1. Then

E{b(tj)− β(tj)|D} = o
(
n−1
j

)
, Cov{b(tj)|D} = I−1

j {1 + o(1)} and
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Cov{b(tj), b(tk)|D} = I−1
j IjkI

−1
k γ(tj, tk){1 + o(1)}, (5)

as nj →∞ and nk →∞, where Ijk = X̃T
j W

1/2
j MjkW

1/2
k X̃k. The nj×nk matrix Mjk is defined

as follows: If the ath entry of Ỹj and the bth entry of Ỹk come from the same subject, then the

(a, b)th entry of Mjk is equal to 1, and is 0 otherwise.

Note that

E

{
β̂

(q)
r (t)|D

}
=

T∑
j=1

ωq,p+1(tj, t)E {br(tj)|D} , and

Var

{
β̂

(q)
r (t)|D

}
=

∑
j

∑
k

ωq,p+1(tj, t)ωq,p+1(tk, t)Cov {br(tj), br(tk)|D} . (6)

The following theorem gives the asymptotic bias of β̂
(q)
r (t).

Theorem 1. Assume that the conditions (A1)-(A6) in the Appendix and the conditions (N1)

and (N2) of Lemma 1 hold. Then

Bias

{
β̂

(q)
r (t)|D

}
=

q!β
(p+1)
r (t)hp−q+1

(p+ 1)!
Bp+1(Kq,p+1) {1 + op(1)}+O(1/n∧)

= O(hp−q+1) +O(1/n∧),

as T → ∞ and n∧ = min{n1, . . . , nT} → ∞, for r = 1, . . . , d and 0 ≤ q ≤ p + 1, where h is

the bandwidth for local polynomial smoothing and Bp+1(Kq,p+1) is as defined in the Appendix

before the proof of Lemma 1.

We note that the asymptotic bias comes from two sources. The first term is from the

smoothing step, which goes to 0 when the bandwidth tends to 0. The second term is from the

logistic regression in the first step, since the MLE in ordinary logistic regression is biased. It

goes to 0 when the sample sizes go to ∞.

The variance of β̂(q)(t) in (6) can be further simplified under more assumptions on the

model. First, assume condition (A4) holds and let Ωj = E[πi(tj){1 − πi(tj)}Xi(tj)Xi(tj)
T],

and Ωjk = E[
√
πi(tj){1− πi(tj)}

√
πi(tk){1− πi(tk)}Xi(tj)Xi(tk)

T]. Then, for any given time
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tj and β(tj), Ij = X̃T
j WjX̃j =

∑nj
k=1 πik(tj){1 − πik(tj)}Xik(tj)Xik(tj)

T, where πik(tj){1 −

πik(tj)} = {eXik (tj)
Tβ(tj)}/{1 + eXik (tj)

Tβ(tj)}2, depends on Xik(tj) only. Therefore, Ij is a sum

of i.i.d. random matrices with E(Ij)=njΩj. This fact, combined with Lemma 1, implies that

Cov{b(tj), b(tk)|D} = I−1
j IjkI

−1
k γ(tj, tk){1 + o(1)} = γ(tj, tk)

njk
njnk

Ω−1
j ΩjkΩ

−1
k {1 + op(1)}

and Var{b(tj)|D} = (Ω−1
j /nj){1 + op(1)}, with probability 1, where njk is the number of

subjects in Nj ∩Nk. Plugging the above equations into (6) gives

Var

{
β̂

(q)
r (t)|D

}
=
{∑
j 6=k

njk
njnk

γ(tj, tk)ωq,p+1(tj, t)ωq,p+1(tk, t)(Ω
−1
j ΩjkΩ

−1
k )(rr)

+
∑
j

1

nj
ω2
q,p+1(tj, t)(Ω

−1
j )(rr)

}
{1 + op(1)},

(7)

where M (rr) denotes the (r, r)th element of a matrix M . In general, we can not simplify

the formula in (7) without further assumptions. This is because Ωj depends on j through

β(tj) and X̃j, which makes the summation very hard to compute. If the covariates Xi(tj) and

coefficient functions β(t) satisfy conditions (A7) and (A8), that is, they are time-invariant, then

Ωj = Ωk = Ωjk = Ω1. In this case, Cov{b(tj), b(tk)|D} = γ(tj, tk){njk/(njnk)}Ω−1
1 {1+op(1)}

and Cov{br(tj), br(tk)|D} = γ(tj, tk){njk/(njnk)}ω(rr){1+op(1)} where ωrr = (Ω−1
1 )(rr) denotes

the (r, r)th element of Ω−1
1 .

We will derive the asymptotic variance for two specific situations: nij is either small or large,

as in Fan and Zhang (2000). Let It = {j : |tj−t| ≤ h} be the indices of the local neighborhood.

In some situations, njk may be much smaller than nj or nk for all j 6= k, j, k ∈ It and nj, j ∈ It

are about the same proportion as n. Results for this situation are summarized in the following

theorem.

Theorem 2. Let conditions (A1)-(A8), (N1) and (N2) hold. Assume

njk/(njnk) =

{
o{1/(nTh2q+1)}, j 6= k,

1/(cn) + o{1/(nTh2q+1)}, j = k
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holds uniformly for all j, k ∈ It for some constant 0 < c < 1, then when h→ 0 and nTh2q+1 →

∞ as n, T →∞,

Var
{
β̂

(q)
r (t)|D

}
=

ωrrq!2

cnTh2q+1f(t)
V (Kq,p+1){1 + op(1)},

where V (·) is as defined in the Appendix before the proof of Lemma 1 and f(·) denotes the

density of t.

The proof of Theorem 2 is similar to the proof of Theorem 2 of Fan and Zhang (2000) except

that γ(t, t) is 1 and therefore is not included in the above result. Recall that they define γ(s, t)

as the covariance function of the process, and we define it as the correlation function.

In some other situations, nj, nk and njk may be about the same as n. An extreme case is

a dataset with no missing values, in which nj = n for all j = 1, . . . , T . Let γα,β(s, t) denote

∂α+βγ(s, t)/∂sα∂tβ for any integers α, β = 0, 1, . . . , p+ 1.

Theorem 3. Let conditions (A1)-(A8), (N1) and (N2) hold. Assume njk/(njnk) = 1/n +

o(1/n) holds uniformly for all j = 1, . . . , T . Then when h→ 0 and n, T →∞,

Var
{
β̂

(q)
r (t)|D

}
=
ωrr

n

{
γq,q(t, t) +

2q!γq,p+1(t, t)h
p−q+1

(p+ 1)!
Bp+1(Kq,p+1)

}
+ op

(hp−q+1

n

)
,

where Bp+1(·) is as defined in the Appendix before the proof of Lemma 1.

The proof of Theorem 3 is straight forward by applying Lemma 3 in Fan and Zhang (2000),

but with σ2(t) = 0. This lemma is applicable because our γ(s, t) satisfies the requirements of

γ0(s, t) in their paper.

Furthermore, the next theorem gives asymptotic normality of β̂
(q)
r (t). First, define b =

(bT1 , b
T
2 , . . . , b

T
T )T and β = (βT

1 , β
T
2 , . . . , β

T
T )T, to be the vectors of the raw estimators and the true

coefficients across time. For r ∈ {1, . . . , d}, define a T×dT matrix P (r), whose {k, (k−1)d+r}th

elements for k ∈ {1, . . . , T} are equal to 1, and all other elements are equal to 0. The operator

P (r) extracts the rth row of b and β, i.e. P (r)b = {br(t1), . . . , br(tT )}T. Define dT × dT block
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diagonal matrix B̄ = Diag {I0(β1)
−1, . . . , I0(βT )−1} where I0(βj) is the Fisher information

matrix for βj unconditional on D for j = 1, . . . , T , i.e.

I0(βj) = E
{
π1j(1− π1j)X1(tj)

TX1(tj)
}
. (8)

Further let Σi be the matrix
Xi1X

T
i1πi1(1− πi1) · · · · · ·

Xi2X
T
i1

√
πi1(1− πi1)

√
πi2(1− πi2)γ(t1, t2) · · · · · ·

...
. . .

...

XiTX
T
i1

√
πi1(1− πi1)

√
πiT (1− πiT )γ(t1, tT ) · · · XiTX

T
iTπiT (1− πiT )


and Σ = E(Σi) with respect to [Xij = {Xi1(tj), . . . , Xid(tj)}T, j = 1, . . . , T ]. The matrix Σ is

well defined because under condition (A4), E(Σi) = E(Σi′).

Theorem 4. Let conditions (A1)-(A4), (A6), (N1) and (N2) hold. Then conditional on D, it

holds that

√
n(b− β)

d−→ B̄ ∗N(0,Σ),

as T is fixed and n → ∞. For fixed T , let ωT (t) be the vector of weight functions, ωT (t) =

{ωq,p+1(t1, t), . . . , ωq,p+1(tT , t)}T where β̂
(q)
r (t) = ωT (t)P (r)b by (4). Then it holds that

√
n
{
β̂

(q)
r (t)− ωT (t)P (r)β

}
d−→ ωT (t)P (r)B̄ ∗N(0,Σ),

as T is fixed and n→∞. Or equivalently,

V
− 1

2
T

√
n
{
β̂

(q)
r (t)− ωT (t)P (r)β

}
d−→ N(0, IT ),

as n→∞ for fixed T where VT = ωT (t)P (r)B̄Σ
{
ωT (t)P (r)B̄

}T
.

Theorem 4 shows that for any fixed T , the distribution of our final estimate β̂
(q)
r (t) for

β
(q)
r (t) is approximately normal for sufficiently large n. However, to construct a confidence

interval for β
(q)
r (t), the difference between ωT (t)P (r)β and β

(q)
r (t) must go to zero at a rate
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faster than (VT/n)1/2, since

V
− 1

2
T

√
n

{
β̂

(q)
r (t)− β(q)

r (t)

}
= V

− 1
2

T

√
n

{
β̂

(q)
r (t)− ωT (t)P (r)β

}
+V

− 1
2

T

√
n
{
ωT (t)P (r)β − β(q)

r (t)
}
.

The following proposition gives conditions under which this requirement is satisfied. For sim-

plicity, we only consider the case nj = n for j = 1, . . . , T .

Proposition 1. Assume that the conditions in Theorem 4 hold and
√
nhp−q+1/T → 0, then

V
− 1

2
T

√
n
{
ωT (t)P (r)β − β(q)

r (t)
}

= op(1)IT .

Remark 3. As an example, lets consider the case p = 1 and q = 0, the local linear smoothing.

It is easy to verify that if h ∝ T ε−1 for ε ∈ (0, 1) and n ∝ T δ for δ ∈ (0, 6− 4ε), then n→∞,

h → 0, Th → ∞ and
√
nhp−q+1/T → 0 as T → ∞, which are needed for Theorem 4 and

Proposition 1 to hold. For instance, if ε = 4/5, then h = O(T−1/5). In addition, δ should be

between 0 and 2.8, which could be easily satisfied in practice since n is usually much bigger

than T .

3.2 Statistical Inference: The Proposed Asymptotic Confidence Intervals and the
Bootstrap Confidence Bands

In practice, the variance of β̂
(q)
r (t) can be estimated using equation (6). Cov{b(tj), b(tk)}

is estimated by the first term in the second and the third equations of (1) by replacing

Wj,Wk and γ(tj, tk) with their estimates accordingly. Here we estimate γ(tj, tk) by the Pear-

son’s sample correlation, denoted by γ̂(tj, tk), with data {Yi(tj), Yi(tk)} for all i ∈ Njk. We

estimate Wj by Ŵj = diag[π̂i1(tj){1 − π̂i1(tj)}, . . . , π̂inj (tj){1 − π̂inj (tj)}], where π̂ik(tj) =

{eXik (tj)
T bβ(tj)}/{1 + eXik (tj)

T bβ(tj)}. Then Îj = X̃T
j ŴjX̃j and Îjk = X̃T

j Ŵ
1
2
j MjkŴ

1
2
k X̃k. In (6),

Var{br(tj)} is estimated by the (r, r)th element of Î−1
j , and Cov{br(tj), br(tk)} by the (r, r)th

element of γ̂(tj, tk)Î
−1
j ÎjkÎ

−1
k . Finally, the variance estimator for β

(q)
r (t) is given by

V̂ar

{
β̂

(q)
r (t)

}
= 2

∑
j<k

ωq,p+1(tj, t)ωq,p+1(tk, t)Ĉov{br(tj), br(tk)}+
T∑
j=1

ω2
q,p+1(tj, t)V̂ar{br(tj)}.

(9)
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The asymptotic results suggest that a 95% confidence interval of β
(q)
r (t) be given by β̂

(q)
r (t)±

1.96[V̂ar
{
β̂

(q)
r (t)

}
]1/2, where the variance estimator is from (9).

Next we propose a global confidence band for the estimated curve β̂
(q)
r (t), t ∈ [t1, tT ] via

bootstrap. We want to find two curves L(t) and U(t), t ∈ [t1, tT ], such that, in the nominal

confidence level 0.95,

P
{
L(t) ≤ β(q)

r (t) ≤ U(t), t ∈ [t1, tT ]
}

= 0.95. (10)

We consider a confidence band that is symmetric about the estimated curve. Therefore,

{L(t), U(t)} = β̂
(q)
r (t)±C0.95[V̂ar

{
β̂

(q)
r (t)

}
]1/2, where C0.95 is an unknown constant that satisfies

equation (10). With the confidence band taking the form above, equation (10) is equivalent to

P

supt∈[t1,tT ]

| β̂(q)
r (t)− β(q)

r (t) |√
V̂ar{β̂(q)

r (t)}
< C0.95

 = 0.95.

We can estimate C0.95 with a bootstrap 95th percentile of the distribution of the supremum in

the equation above. The algorithm is as following:

1. Resample the subjects with replacement from the original data, say B times. For sim-

plicity, the size of each resample is the same as the original data.

2. For the kth resample, k ∈ 1, . . . , B, calculate the value

C(k) = supt∈[t1,tT ]

| β̂(q)
r

(k)

(t)− β̂(q)
r (t) |√

V̂ar{β̂(q)
r

(k)

(t)}

,

where the superscript k indicates it is for the kth resample.

3. Estimate C0.95 by the sample 95th percentile of the B values C(k), k = 1, . . . , B, denoted

by Ĉ0.95.

Therefore, our bootstrap confidence band for β
(q)
r (t), t ∈ [t1, tT ] is given by β̂

(q)
r (t) ± Ĉ0.95

[V̂ar
{
β̂

(q)
r (t)

}
]1/2.
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Finally, the bootstrap confidence band can be used to test hypotheses about βr(t). A typical

null hypothesis is H0 : β
(q)
r (t) = f(t), for all t ∈ [t1, tT ], where f(t) is a known function defined

in the specific interval. When f(t) ≡ 0, we can test whether the rth covariate is insignificant

throughout this interval, which in turn provides a way of variable selection in modeling. We

reject the null hypothesis if the curve f(t) is not completely inside the confidence band.

Another null hypothesis of interest is H0 : β
(q)
r (t) ≡ C∗, for all t ∈ [t1, tT ], where C∗ is an

unknown constant. With this null hypothesis, we can test whether the correlation of the rth

covariate with the response variable is time-invariant, which in turn provides a way to simplify

a fully nonparametric model into a semiparametric model, or even a fully parametric model.

In the latter case, GEE or GLMM may be more efficient. We reject the null hypothesis if

there does not exist a horizontal line completely inside the confidence band. Note that this

test is expected to be conservative because the significance level is usually less than α. The

reason is clear from the testing procedure. When the null hypothesis is true, confidence bands

at nominal confidence level 95% for the line f(t) ≡ C∗, for all t ∈ [t1, tT ], has a probability

of 0.95 to cover f(t). For those that do not cover f(t), they may cover another constant line

such as f(t) + 0.01. In this case, the test will still accept H0. This results an acceptance rate

higher than 0.95 for H0, which implies that the significance level is less than 0.05.

4 Application to Smoking Cessation Data

In this section, we illustrate the proposed method using the smoking cessation data described

in the Introduction. The main objective of this clinical trial is to evaluate and compare two

behavioral methods, relapse prevention (RP) and contingency management (CM), alone and in

combination, for optimizing smoking cessation outcomes using nicotine replacement therapy in

methadone maintained cigarette smokers. All 175 participants received nicotine transdermal

therapy and were randomly assigned to receive one of the four behavioral treatments (none,
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RP, CM, RP+CM) for a period of 12 weeks. The participants were scheduled to visit back on

every Monday, Wednesday and Friday. At every visit, measures were taken, including samples

of breath (analyzed for carbon monoxide - CO reading) and urine, and weekly self-reported

number of cigarettes smoked. Some participants didn’t complete all the 36 visits, nevertheless

many covariates were measured for each participant.

The dichotomous response variable of interest is smoking status determined from the CO

reading, where smokers are coded as 1 (smoking status=1) and non-smokers as 0 (smoking

status=0). The following subset of covariates are considered in our analysis: gender (2 cat-

egories), ethnicity (3 categories), treatment group assignments (4 categories), baseline CO

reading, baseline urine opiate result (2 categories dirty or clean), baseline urine cocaine result

(2 categories dirty or clean), baseline cotinine reading, age, number of cigarettes smoked per

day, number of years smoked, depth of inhalation (3 categories), and number of times mak-

ing serious attempt to quit. These covariates are all baseline measures, which means they

are time-invariant. We treat categorical variables as class variables. That is, each category

(except the reference level) has its own coefficient function. Among the 175 participants, only

one subject is found to have a 0 (not at all) for the variable INHALE. It is modified to value 1

to reduce the categories to 3 for INHALE. The only two Asian subjects are dropped from the

data to reduce the variable ETHNICITY to 3 categories. The rationale for these reductions in

categories is that if a category has too few observations, the coefficient function corresponding

to this category will have a sample size that is too small for a logistic regression model. This

may result in an unstable raw estimator in the first step, and make the final estimator ques-

tionable. Hence, there are 17 coefficient functions to be estimated, including the intercept and

all non-reference levels of the categorical variables. Using the notation of our model, we have

T = 36, n = 173, d = 17 for this example. We utilize local linear regression as the smoothing

method in step two where the bandwidths are selected visually by plotting the raw estimates
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from step one separately for each varying coefficient function. The selected 17 bandwidths

were between 12 and 17.

Figure 1 shows the percentage of nonmissing outcomes during each visit of the study. In

the first 3 weeks, most individuals (over 90%) are observed at the scheduled visits. In the

next several weeks, this percentage drops to about 70%. Figure 1 also descriptively illustrates

the effect of behavioral treatments. It plots the percentage of smokers (smoking status=1)

by the 4 treatment groups along the 36 time points. The CM-only and RP+CM groups are

significantly below the reference group (“none”), by having almost no overlap. The RP-only

group is also below the reference group, but they overlap during the middle of the 12 week

period. RP+CM group is also slightly below CM-only group with some overlap. It can be

seen that both treatments are helping, but CM is much more effective.

The refined estimators of the coefficient functions, along with their 95% bootstrap confi-

dence bands and 95% point-wise confidence bands for all the covariates are presented in Figures

2-4. It is observed that the treatment effects of CM-only and CM+RP are significantly dif-

ferent from 0. In particular, the 95% bootstrap confidence band of the CM+RP treatment is

almost completely below the zero line. This indicates a strong negative effect of the CM+RP

treatment on the probability of being a smoker. The estimated curve for RP-only treatment

is generally below the zero line, except in the middle. But the 95% bootstrap confidence band

covers the entire zero line, indicating that it is not significant. These results are consistent

with the findings of Shoptaw, Fuller, Yang, Frosch, Nahom, Jarvik, Rawson and Ling (2002)

and visual findings from Figure 1.

The effect of the baseline CO reading is significant in the first 5 weeks of the study. This is

likely because it is more difficult for heavier smokers entering the study to quit smoking, and

this effect became weaker and weaker along time until there was no effect. All other covariates

are non-significant since the 95% bootstrap confidence bands cover the entire zero line. Similar
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to the baseline CO reading, the baseline cotinine reading also has a consistently positive effect,

although it is not significant. Men have higher probability of being smokers than women, as

the estimated curve is mostly above the zero line. There is no difference among the different

ethnicities. Age has a slight negative effect. It may reflect a stronger mind to quit smoking

among older participants. As expected, cigarettes per day reported at baseline positively

predicts smoking. The effect has become stronger at the end of the study, which may indicate

a relapse. Number of years smoked has a positive effect only for the second half of the study,

also reflecting a relapse. It reflects the fact that it is harder to change long standing behavior

patterns. The number of attempts to quit smoking has a negative effect on smoking status.

People who are more committed to quit smoking by themselves are less likely to be smokers

in the study. Inhaling deeply when smoking has a constant positive relationship on smoking

status, compared to inhaling somewhat. Inhaling very deeply has no obvious relationship,

possibly because of the small sample size in the group that inhales very deeply (24) compared

to those inhaling deeply (110). The relationship between smoking status and clean urine opiate

is positive, while the relationship to clean urine cocaine is negative. Intuitively, both should be

negative. This result may be due to the collinearity between the two. The Pearson’s sample

correlation is 0.266 with p-value 0.0004.

Overall for the smoking cessation data, the proposed two-step method and the logistic

varying coefficient modeling were very effective in describing the results. They not only confirm

the finding of Shoptaw, Fuller, Yang, Frosch, Nahom, Jarvik, Rawson and Ling (2002) in a

more general model, but also evaluate the effects of many other covariates and lead to intuitive

interpretations. We are also able to study the change of effect along time, which distinguishes

varying coefficient models from many others.
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5 Simulation Studies

We conduct simulation studies to evaluate the finite sample performance of the proposed

methodology including the TS estimation, asymptotic pointwise confidence intervals and the

bootstrap confidence bands. We also include comparisons with LML, the parametric GEE

method of Liang and Zeger (1986) and GLMM of Wolfinger and O’Connell (1993) with a ran-

dom y-intercept. Smoothing in the TS is carried out via local linear regression. For component-

wise bandwidth selection of the proposed TS method, we utilize the automatic rule-of-thumb

bandwidth selector of Ruppert, Sheather and Wand (1995), separately for each varying coeffi-

cient function. LML maximizes the local likelihood and selects a single global bandwidth for

all varying coefficient functions. We utilize leave-one-subject out cross-validation for selection

of the global bandwidth similar to Cai, Fan and Li (2000). For more details on the LML

method, we refer the readers to Şentürk, Dalrymple, Mohammed, Kaysen and Nguyen (2013)

and Estes, Nguyen, Dalrymple, Mu and Şentürk (2014). While all four methods are used for

comparisons via integrated mean squared error (IMSE), coverage of the point-wise asymptotic

confidence intervals are compared for TS, GEE and GLMM.

5.1 Finite Sample Performance Comparisons

We utilize two simulation models. In model 1, there are 3 coefficient functions for the two

covariates X1, X2, and the y-intercept. The covariate X1 is a time-invariant discrete uniform

variable taking on values in {0.5, 1, 1.5}. The covariate X2 is generated from a Uniform(0, 0.5)

distribution. The sample size is 175 as in the smoking cessation data and results are reported

based on 500 Monte Carlo runs. The times {tj, j = 1, . . . , 36} are also from the smoking

cessation data. We assume the correlation structure among repeated measurements to be AR-

1(0.65), that is corr{Yi(tj1), Yi(tj2)} = 0.65|j1−j2|. The algorithm described in Park, Park and

Shin (1996) is adopted to generate correlated binary data. The varying coefficient functions
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are β0(t) = 2 sin{2π(t − 1)/81}, β1(t) = {log10(t) − 1}/4, and β2(t) = 1/(20t) − 2. Model 2

differs from Model 1 only in the specification of the regression coefficient functions and the

correlation structure. The coefficients are assumed to be time-invariant, β0 = 0.6, β1 = 0.2,

β2 = −0.1, and the correlation structure is AR-1(0.42).

The median of the selected bandwidths across the 500 Monte Carlo runs were (8.5, 15.0,

17.2) and (15.3, 15.3, 15.7) for {β0(t), β1(t), β2(t)} for the TS method in the two simulation

models, respectively. The median of the selected global bandwidths for LML were 9 and 30

in the two simulation models, respectively. The results from the two models are reported in

Tables 1 - 2 and in Figure 5-7. Figure 5 displays the true coefficient functions (solid gray) and

their TS estimates (solid black) together with the proposed 95% bootstrap confidence bands

(dashed black) from the sample with the median IMSE value among 500 Monte Carlo runs.

Note that the true coefficient functions fall inside the bootstrap confidence bands, and that

the automatic bandwidth selection may lead to under smoothing at times, as displayed for

the estimation of β1(t). Nevertheless, the TS method, selecting different bandwidths for each

coefficient function separately, is more effective in targeting varying coefficient functions of

varying degrees of smoothness compared to the LML method with a global bandwidth. This

can be observed in the estimated integrated mean square errors (IMSE) reported in Table 2.

Since the median global bandwidth selected by LML is 9 in the first simulation model with

coefficient functions of varying degrees of smoothness, LML performs better in estimation of

β0(t) which requires a lower bandwidth, but undersmooths β1(t) and β2(t), leading to higher

mean IMSE values, compared to the TS method. Note also that when the covariate effects

change over time (Model 1), GLMM and GEE have a much larger mean IMSE, compared to

TS and LML, due to modeling bias. It can be 26 times as big as the IMSE from TS. Figure

6 also plots the mean estimated mean square error (MSE) over time in Model 1. Estimated

MSE from GEE and GLMM is much higher than those from TS and LML except for β1(t). As
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expected, GEE and GLMM perform much better than TS and LML when the assumption for

GEE and GLMM models for constant covariate effects is met in simulation Model 2 (Figure 7).

This is because parametric modeling is much more efficient under constant covariate effects.

Table 1 compares the coverage probabilities of point-wise confidence intervals at nominal

levels 95% and 90% for the two simulation models at eight time points from the total 36

points. It is observed that the coverage probability of the proposed TS method is reasonably

close to the nominal level for both models. In contrast, the coverage probability of GLMM

and GEE can be very low (< 5%) when the true regression coefficients change over time

(Model 1). Even for Model 2 where the covariate effects do not change over time, the coverage

probability of GLMM for β2(t) is still lower than the nominal level. Hence the proposed method

provides an efficient tool to check whether the varying coefficient functions are constants and

can accommodate varying coefficient functions of varying degrees of smoothness. For cases

where covariate effects are constant, the parametric modeling approaches are preferred.

5.2 Performance of the Proposed Bootstrap Confidence Bands

We conduct further simulations to study the performance of the bootstrap confidence bands

described in Section 3.2. Results are shown in Tables 3 and 4. While Table 3 reports on

coverage rates of the proposed bootstrap confidence bands, Tables 4 reports results from a

hypotheses testing setup, utilizing the relationship between hypotheses testing and confidence

bands (or confidence interval in non-functional situations). Results are reported from 200

Monte Carlo runs where each run is based on 500 bootstrap samples at sample size n = 175.

Component-wise bandwidths are selected based on the automatic rule-of-thumb bandwidth

selection of Ruppert, Sheather and Wand (1995) in each Monte Carlo run and fits to bootstrap

samples utilize the same bandwidths as those selected for the Monte Carlo runs. We use two

settings where the first setting is the same as Model 1 described above and the second setting

differs from Model 1 by utilizing time-invariant coefficient functions, β0(t) = −1, β1(t) = 0
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and β2(t) = 2.

The coverage rates reported in Table 3 are pretty close to the nominal levels in both settings,

where β2(t) is less covered than β0(t) and β1(t). This may be due to the fact that β2(t), being

the most smooth function of the three, may be under smoothed in some runs because of the

under smoothing tendency of the automatic bandwidth selectors. Table 4 gives the estimated

rejection proportions (in %) for two hypotheses tests: 1. H0(a) : βr(t) does not change over

time; 2. H0(b) : βr(t) = 0, for all t ∈ [t0, tT ]. The testing procedure is based on the proposed

bootstrap confidence bands. In the first setting, the powers for rejecting H0(a) and H0(b) are

satisfying for β0(t) and β2(t) where they are all at 100%. The powers for β1(t) are much smaller

than those for the other two coefficient functions. This is because β1(t) is much more similar to

a constant function, more specifically a constant function at 0. Note also that the powers for

rejecting H0(a) are consistently smaller than those for rejecting H0(b), since H0(b) is a special

case for H0(a). For the second setting, reported proportions for H0(a) at all varying coefficient

functions and for H0(b) at β1(t) are estimated significance levels since the null hypotheses are

true in these cases. For H0(b), while the significance levels for β1(t) are close to the nominal

levels, the reported values for the other two coefficient functions show that the powers are 1

for rejecting H0(b) when the constants are other than 0. For H0(a), the estimated significance

levels are consistently less than the nominal level as discussed in Section 3.2. These findings

imply that the proposed bootstrap confidence bands are very effective in identifying whether

H0(a) is true and the unknown constant.

6 Discussion

In this paper, we proposed a TS estimation procedure for logistic varying coefficient modeling

of longitudinal binary data. The basic idea behind the proposal as well as its implementation

are simple. We also evaluated the asymptotic properties of the proposed estimators and found
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them to be asymptotically unbiased. We established the asymptotic variance under two specific

situations and proved that the estimators are asymptotically normal, leading to the proposed

asymptotic and finite sample inference procedures. We applied the proposed methodology to

smoking cessation data. The main results are consistent with findings from previous studies.

Moreover, we evaluated many other covariates and have provided reasonable interpretations of

the results. The estimators give intuitively consistent inferences and the bootstrap confidence

intervals are effective in identifying significant predictors.

Simulation studies indicate that TS and LML perform better than GEE and GLMM models

when their parametric assumptions do not hold. Unlike LML, TS is able to target coefficient

functions with varying degrees of smoothness, via component-wise bandwidth selections. In

addition, TS also allows for visual selection of component-wise bandwidths via plotting of the

raw varying coefficient function estimates. When the underlying model reduces to a parametric

form with time-invariant coefficient functions, parametric models GEE and GLMM lead to

more efficient estimation as expected. The efficacy of the proposed bootstrap confidence bands

are shown via simulation studies where the implied tests have very high power in many cases.

While the first hypothesis of constant coefficient functions tests whether the logistic varying

coefficient model reduces to a semi-parametric or a parametric model, the second hypothesis

of coefficient functions being equal to zero, allows us to perform model selection.

The proposed methodology can easily be extended to be applicable to other forms of lon-

gitudinal data. For example longitudinal categorical data can be modeled in a similar way, as

long as an appropriate marginal model (e.g. the proportional odds model of Agresti (2002))

is selected for cross-sectional modeling in the first step. A second extension can be to spatial

correlated longitudinal data, such as that encountered in progression detection of glaucoma in

the visual field (Gardiner and Crabb (2002)). Spatial correlation can be taken into account in

the proposed TS method by applying a higher dimensional smoothing procedure in the second
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step.
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Appendix: Proofs

The following technical conditions are needed.

(A1) The time points t1, t2, . . . , tT are a random sample from a probability density f and t is

a continuous point of f in the interior of the support of f .

(A2) The function βr(t) is (p+ 1)-times continuously differentiable for some p.

(A3) The kernel function K is a bounded symmetric probability density function with a

bounded support.

(A4) The covariates Xi(tj), i = 1, . . . , n are independently and identically distributed as X1(tj)

with E{X1(tj)X1(tj)
T} positive definite for j = 1, . . . , T .

(A5) h→ 0 and Th→∞ as T →∞.

(A6) min{n1, n2, . . . , nT} → ∞ as n→∞, while T is fixed or T →∞.

(A7) The covariates Xi(tj) satisfy condition (A4) and they are time-invariant. That is,

Xi(tj) = Xi(t1) for all j = 1, . . . , T .
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(A8) All the true coefficient functions are time-invariant. That is, βr(t) = βr for all r = 1, . . . , d

and t ∈ [ 0, D].

We define further notations. Let Cj = {1, tj − t, . . . , (tj − t)p}T, j = 1, 2, . . . , T and

Kh(t) = K(t/h)/h be a kernel function with a bandwidth h. Let C = (C1, C2, . . . , CT ) and

W = diag(W1, . . . ,WT ) with Wj = Kh(tj − t). Then the weights in (4) are defined as

ωq,p+1(tj, t) = q!eTq+1,p+1(C
TWC)−1CjWj, j = 1, 2, . . . , T , where eq+1,p+1 denotes a (p + 1)-

dimensional unit vector with one at its (q + 1)th entry, and zero elsewhere. More specifically,

the local linear weights are given by ω0,2(tj, t), j = 1, 2, . . . , T with q = 0 and p = 1. Let Kq,p+1

be the equivalent kernel of ωq,p+1, which is defined byKq,p+1(t) = eTq+1,p+1S
−1(1, t, . . . , tp)TK(t),

where S = (sij), i, j = 0, 1, . . . , p, and sij =
∫
K(u)ui+jdu. Recall that K(t) is the original

kernel function. Furthermore, define Bp+1(K) =
∫
K(u)up+1du, and V (K) =

∫
K2(u)du.

Proof of Lemma 1: For tj ∈ A, let βj = β(tj) and bj = b(tj). Let l(θ) be the log-likelihood

defined for the logistic regression at tj. Refer to McCullagh and Nelder (1989) for details.

Here θ is the parameter vector of interest in the logistic model. Therefore, the true value of θ

is βj, and it is estimated by bj. The first part of the Lemma on asymptotic bias follows from

equation (4.18) of McCullagh and Nelder (1989). Refer to Ferguson (1996) (page 119) for part

of the deduction below. First, expand l̇(θ) at βj as l̇(θ) = l̇(βj)+
∫ 1

0
l̈{βj+λ(θ−βj)}dλ(θ−βj).

Now let θ = bj. Because bj is the MLE of βj, it is a strongly consistent sequence satisfying

l̇(bj) = 0. Hence l̇(βj) = njBnj(bj − βj), where Bnj = −
∫ 1

0
(1/nj)l̈{βj + λ(bj − βj)}dλ. Recall

the Fisher information for this logistic regression is Ij = X̃T
j WjX̃j and note that l̇(βj)−Ij(bj−

βj)− (njBnj − Ij)(bj − βj) = 0. This implies that

bj−βj = I−1
j {l̇(βj)−(njBnj−Ij)(bj−βj)} =

√
njI

−1
j

{
1
√
nj
l̇(βj)− (Bnj −

1

nj
Ij)
√
nj(bj − βj)

}
.

(A.1)
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Note that under condition (A4), Ij = X̃jW
T
j X̃j =

∑nj
i=1 πij(1 − πij)Xi(tj)

TXi(tj) ∼ O(nj).

Conditional on D, and under assumptions (N1) and (N2), the normed bj is asymptotically

normal, i.e. I
1/2
j (bj − βj)

d−→ N(0, I) as nj → ∞. We refer readers to Gourieroux and

Monfort (1981), where the result is shown in the proof of Proposition 4. Define the first term

in equation (A.1) as Anj . By condition (A4) and the Strong Law of Large Numbers (SLLN),

we have Anj = l̇(βj)/
√
nj = Op(1). Also E(Anj) = E{l̇(βj)}/

√
nj = 0. Define the second term

in equation (A.1) as Cnj . From the part (3) of the proof for Theorem (4) given below, we have

Cnj |D
d−→ 0, or Cnj = op(1). Then bj − βj =

√
njI

−1
j

(
Anj − Cnj

)
, and

Cov(bj|D) = E[{bj − E(bj)}{bj − E(bj)}T]

= E {(bj − βj)− E(bj − βj)} {(bj − βj)− E(bj − βj)}T

= E
{

(bj − βj)(bj − βj)T
}
− E(bj − βj)E(bj − βj)T

= E
{
njI

−1
j (Anj − Cnj)(Anj − Cnj)TI−1

j

}
+ o

(
1

nj

)
o

(
1

nj

)T

= njI
−1
j E(AnjA

T
nj

)I−1
j − njI−1

j E(AnjC
T
nj

+ CnjA
T
nj

)I−1
j

+njI
−1
j E(CnjC

T
nj

)I−1
j + o

(
1

n2
j

)
.

This, combined with Anj = Op(1), Cnj = op(1) and the following result from McCullagh and

Nelder (1989), Anj = l̇(βj)/
√
nj = X̃T

j {Ỹj − E(Ỹj)}/
√
nj, implies that

Cov(bj|D) = I−1
j X̃T

j E[{Ỹj − E(Ỹj)}{Ỹj − E(Ỹj)}T]X̃jI
−1
j {1 + o(1)}

= I−1
j X̃T

j WjX̃jI
−1
j {1 + o(1)} = I−1

j {1 + o(1)},

and Cov(bj, bk|D) = E[{(bj − βj)− E(bj − βj)}{(bk − βk)− E(bk − βk)}T]

= E(bj − βj)(bk − βk)T − E(bj − βj)E(bk − βk)T

= E
{√

nj
√
nkI

−1
j (Anj − Cnj)(Ank − Cnk)TI−1

k

}
− o(n−1

j )o(n−1
k )

=
√
nj
√
nkI

−1
j E(AnjA

T
nk

)I−1
k −

√
nj
√
nkI

−1
j E(AnjC

T
nk

+ CnjA
T
nk

)I−1
k
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+
√
nj
√
nkI

−1
j E(CnjC

T
nk

)I−1
k − o{(njnk)

−1}

= I−1
j X̃T

j E
[
{Ỹj − E(Ỹj)}{Ỹk − E(Ỹj)}T

]
X̃kI

−1
k −

√
nj
√
nkI

−1
j E{Op(1)op(1)}I−1

k

+
√
nj
√
nkI

−1
j E{op(1)op(1)}I−1

k − o{(njnk)
−1}

= I−1
j X̃T

j W
1
2
j MjkW

1
2
k X̃kI

−1
k γ(tj, tk) + o{(njnk)−1} = I−1

j IjkI
−1
k γ(tj, tk){1 + o(1)}.

This completes the proof.

Proof of Theorem 1: Suppose the conditions of the theorem hold. Then

E
{
β̂(q)
r (t)|D

}
=

T∑
j=1

ωq,p+1(tj, t)E {br(tj)} =
T∑
j=1

ωq,p+1(tj, t) {βr(tj) +O(1/nj)}

=
T∑
j=1

ωq,p+1(tj, t)βr(tj) +

{
T∑
j=1

ωq,p+1(tj, t)

}
O(1/n∧)

=
T∑
j=1

ωq,p+1(tj, t)

[
p+1∑
k=0

β(k)
r (t)

(tj − t)k

k!
+ o

{
(tj − t)p+1

}]
+O(1/n∧)

=

p+1∑
k=0

{
β

(k)
r (t)

k!

T∑
j=1

ωq,p+1(tj, t)(tj − t)k
}

+
T∑
j=1

ωq,p+1(tj, t)o
{

(tj − t)p+1
}

+O(1/n∧)

=β(q)
r (t) +

{
1

(p+ 1)!
β(p+1)
r (t) + op(1)

} T∑
j=1

ωq,p+1(tj, t)(tj − t)p+1 +O(1/n∧)

=β(q)
r (t) +

q!β
(p+1)
r (t)hp−q+1

(p+ 1)!
Bp+1(Kq,p+1) {1 + op(1)}+O(1/n∧),

where we used Lemma 2 of Fan and Zhang (2000) in the third and the last two equalities. The

conclusion of the Theorem follows immediately.

Proof of Theorem 4: Under mild conditions, the MLE bj of βj exists and is strongly

consistent. We will show the asymptotic normality of the vector (b− β) as n∧ →∞. Without

loss of generality, let’s consider a simple case: nj = n, j = 1, . . . , T . From the proof of Lemma

1, we have bj − βj =
√
njI

−1
j

(
Anj − Cnj

)
. Then we can write the vector (b− β) as
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b1−β1

b2−β2
...

bT−βT

=Diag
(√

nI−1
1 , . . . ,

√
nI−1

T

)

An1−Cn1

An2−Cn2

...
AnT−CnT

=B(n)(A(n)−C(n)),

where A(n) = (An1 , . . . , AnT )T, B(n) = Diag
(√

nI−1
1 , . . . ,

√
nI−1

T

)
and C(n) = (Cn1 , . . . , CnT )T.

In the following, we would like to prove that, conditional on D,
√
n(b−β) =

√
nB(n)(A(n)−C(n))

is asymptotically normal when n→∞ and T is fixed.

1. From the notations above, we have
√
nB(n) = n ∗ Diag

(
I−1
1 , . . . , I−1

T

)
and its inverse

(
√
nB(n))

−1 = Diag {I1, . . . , IT} /n. Under the condition (A4) and by SLLN,

1

n
Ij =

1

n
X̃T
j WjX̃j =

1

n

n∑
i=1

πij(1− πij)Xi(tj)
TXi(tj)

a.s.−→ E
{
π1j(1− π1j)X1(tj)

TX1(tj)
}

= I0(βj).

Therefore, with probability one, n−1Ij|D → I0(βj). And with probability one,
√
nB(n)|D →

B̄, a constant matrix.

2.

A(n) =


An1

An2

...
AnT

=
1√
n


l̇(β1)

l̇(β2)
...

l̇(βT )

=
1√
n

n∑
i=1


Xi(t1){Yi(t1)−πi1}
Xi(t2){Yi(t2)−πi2}

...
Xi(tT ){Yi(tT )−πiT}

=
n∑
i=1

Zi.

To prove that A(n)|D
d−→ N(0,Σ), we need to show that the following Lindeberg con-

ditions hold. Conditional on D,
∑n

i=1 E‖Zi‖21{‖Zi‖ > ε} → 0, every ε > 0, and∑n
i=1 Cov(Zi)→ Σ.

Proof: ‖Zi‖ = [
∑T

j=1 ‖Xi(tj)‖2{Yi(tj)−πij}2]1/2/
√
n. Conditional on D, and for all ε > 0,

n∑
i=1

E‖Zi‖21{‖Zi‖ > ε} 6
n∑
i=1

E
‖Zi‖2+δ

εδ
=

1

n1+ δ
2 εδ

n∑
i=1

E

[
T∑
j=1

‖Xi(tj)‖2{Yi(tj)− πij}2
] 2+δ

2

.
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Now let h{Xi(t1), . . . , Xi(tT )} = E[
∑T

j=1 ‖Xi(tj)‖2{Yi(tj)−πij}2|D](2+δ)/2. Since |Yi(tj)−

πij| ≤ 1, and by the assumption (N1),

Eh{Xi(t1), . . . , Xi(tT )} ≤ E

(
T∑
j=1

‖Xi(tj)‖2
) 2+δ

2

≤
(
T × d×M2

0

) 2+δ
2 <∞.

By the condition (A4) and SLLN, [
∑n

i=1 h{Xi(t1), . . . , Xi(tT )}]/n a.s.−→ Eh{Xi(t1), . . . , Xi(tT )}.

That is, with probability one and conditional on D,

1

n

n∑
i=1

h{Xi(t1), . . . , Xi(tT )} → Eh{Xi(t1), . . . , Xi(tT )},

n∑
i=1

E‖Zi‖21{‖Zi‖ > ε} =
1

n
δ
2 εδ
∗ 1

n

n∑
i=1

h{Xi(t1), . . . , Xi(tT )} → 0,

and CovZi =
1

n
Cov


Xi(t1){Yi(t1)− πi1}
Xi(t2){Yi(t2)− πi2}

...
Xi(tT )(Yi(tT )− πiT}

 =
1

n
Σi.

By the condition (A4) and SLLN,
∑n

i=1 CovZi = (
∑n

i=1 Σi)/n
a.s.−→ Σ. With probability

one and conditional on D,
∑n

i=1 CovZi → Σ. It is obvious that E(Zi|D) = 0. Therefore,

the multivariate Lindeberg-Feller Central Limit Theorem from Van der Vaart (1989)

applies. We have shown that A(n)|D is asymptotically normal with distribution N(0,Σ).

3. In this part, we want to prove C(n)|D
d−→ 0, where

C(n) =


(Bn1 − I1/n1)

√
n1(b1 − β1)

(Bn2 − I2/n2)
√
n2(b2 − β2)

...
(BnT − IT/nT )

√
nT (bT − βT )

 .
Let Cnj = (Bnj − Ij/nj)

√
nj(bj − βj).

(a) By Ferguson (1996), Bnj
a.s.−→ I0(βj). This is also the same matrix as in part 1 of

this proof: I0(βj) = E
{
π1j(1− π1j)X1(tj)

TX1(tj)
}

. Therefore, Bnj
a.s.−→ I0(βj) and

Ij/n
a.s.−→ I0(βj) together imply that Bnj − Ij/n

a.s.−→ 0 and Bnj − n−1Ij|D
a.s.−→ 0.
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(b)
√
nj(bj − βj) =

√
njI

−1/2
j ∗ I1/2

j (bj − βj). We have I
1/2
j (bj − βj)|D

d−→ N(0, I)

from the proof of Lemma 1. Also we have n−1Ij|D → I0(βj) from (a). Therefore,

√
nj(bj − βj)|D

d−→ N{0, I0(βj)}.

Combined the results above, we have C(n)|D
d−→ 0.

Therefore A(n)−C(n)|D
d−→ N(0,Σ). Conditional on D,

√
n(b−β) =

√
nB(n)∗(A(n)−C(n))

d−→

B̄ ∗ N(0,Σ) as n → ∞. This means b is asymptotic multivariate normal as n → ∞. Note

that the smoothing coefficients {ωq,p+1(tj, t), j = 1, 2, . . . , T} only depend on t, {t1, . . . , tT} and

the specification of kernel function K and bandwidth h. When T and {t1, . . . , tT} are fixed,

they don’t change as n → ∞. Therefore, our linear smoother (linear combination of the raw

estimates b1r, . . . , bTr for the rth component of βt) is asymptotically normal. Explicitly,

√
n
{
β̂

(q)
r (t)− ωT (t)P (r)β

}
= ωT (t)P (r)

√
n(b− β)

d−→ ωT (t)P (r)B̄ ∗N(0,Σ),

as n→∞. This completes the proof.

Proof of Proposition 1: To prove the proposition, we first need to study the order of VT .

Define I0(tj, tk) = E{
√
π1j(1− π1j)

√
π1k(1− π1k)X1(tj)

TX1(tk)}, where the expected value

is taken with respected to the predictors Xi(tj)
′s. More specifically, I0(tj, tj) = E{π1j(1 −

π1j)X1(tj)
TX1(tj)} is the Fisher information matrix I0(βj) defined in (8). Also, I0(tj, tk) =

I0(tk, tj). With these notations, the matrix Σ can be written as

Σ =


I0(β1) I0(t1, t2) · · · · · ·
I0(t2, t1) I0(β2) · · · · · ·

...
...

. . .
...

I0(tT , t1) I0(tT , t2) · · · I0(βT )

 .
Thus

B̄ΣB̄T =


I0(β1)

−1 I0(β1)
−1I0(t1, t2)I0(β2)

−1 · · · · · ·
I0(β2)

−1I0(t2, t1)I0(β1)
−1 I0(β2)

−1 · · · ...
...

...
. . .

...
I0(βT )−1I0(tT , t1)I0(β1)

−1 I0(βT )−1I0(tT , t2)I0(β2)
−1 · · · I0(βT )

 ,
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P (r)B̄ΣB̄TP (r)T =


{I0(β1)

−1}(rr) · · · · · · · · ·
{I0(β2)

−1I0(t2, t1)I0(β1)
−1}(rr) {I0(β2)

−1}(rr) · · · ...
...

...
. . .

...
{I0(βT )−1I0(tT , t1)I0(β1)

−1}(rr) · · · · · · {I0(βT )}(rr)

 .
Therefore VT = ωT (t)P (r)B̄ΣB̄TP (r)TωT (t)T =

∑
j 6=k ωq,p+1(tj, t)ωq,p+1(tk, t){I0(βj)−1I0(tj, tk)

I0(βk)
−1}(rr) +

∑T
j=1 ω

2
q,p+1(tj, t){I0(βj)−1}(rr) = VT (1) + VT (2). Let Φ(tj, tk) = ωq,p+1(tj, t)

ωq,p+1(tk, t){I0(βj)−1I0(tj, tk)I0(βk)
−1}(rr). Recall that t1, t2, . . . , tT are i.i.d. from a probabil-

ity density f under condition (A1). We hereby assume the following regularity conditions:

E{I0(βj)−1}(rr) < ∞, θ = EΦ(tj, tk) < ∞ and ζ = E{Φ(tj, tk)}2 < ∞. Notice that Φ(tj, tk)

is symmetric in its arguments (tj, tk). In the notation of Hoeffding (1948), VT (1) is propor-

tional to a U-Statistic satisfying all conditions in Theorem 7.1. By this theorem, we have

√
T [VT (1)/{T (T − 1)} − θ]

d−→ N(0, 4ζ). Thus VT (1) = Op(T
2) since θ > 0 and ζ > 0 in

general. As a direct result from SLLN, VT (2) =
∑T

j=1 ω
2
q,p+1(tj, t){I0(tj, tj)−1}(rr) = Op(T ).

Therefore, VT = VT (1) +VT (2) = Op(T
2). Furthermore, from the proof of Theorem 1, we have∑T

j=1 ωq,p+1(tj, t)βr(tj) = β
(q)
r (t)+Op(h

p−q+1)+Op(1/n). Or equivalently, ωT (t)P (r)β−β(q)
r (t) =

Op(h
p−q+1)+Op(1/n). Therefore, we have V

−1/2
T

√
n{ωT (t)P (r)β−β(q)

r (t)} = Op(
√
nhp−q+1/T )+

Op{1/(
√
nT )}. This completes the proof.
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Table 1: Comparison of coverage rates (in %) of the pointwise confidence intervals based on
TS, GLMM and GEE at 8 selected time points at nominal confidence level 1− α = 95% and
90%.

Model I Model II
95% 90% 95% 90%

t TS GLMM GEE TS GLMM GEE TS GLMM GEE TS GLMM GEE
β0(t) 1 94.4 97.0 95.8 89.8 93.2 90.0 96.0 94.4 96.0 90.8 89.4 90.4

12 93.6 0.0 0.0 89.4 0.0 0.0 96.0 92.8
24 94.8 0.0 0.0 87.2 0.0 0.0 98.4 94.8
36 95.0 0.0 0.0 87.6 0.0 0.0 97.6 91.8
47 94.2 0.0 0.0 88.0 0.0 0.0 97.2 94.2
59 93.4 0.0 0.0 87.2 0.0 0.0 97.2 93.0
71 94.6 0.0 0.0 88.6 0.0 0.0 98.0 95.2
82 96.6 97.0 95.8 93.0 93.2 90.0 96.6 91.2

β1(t) 1 93.0 0.2 0.4 87.2 0.2 0.2 93.6 94.2 94.4 89.2 90.0 89.6
12 93.2 79.8 86.8 87.4 69.2 75.0 96.8 93.2
24 94.0 95.0 93.6 87.8 90.6 90.4 98.0 94.4
36 95.4 88.8 85.6 89.6 81.0 76.2 97.8 94.8
47 94.8 78.4 73.2 89.2 68.8 59.4 98.4 95.2
59 95.6 66.8 56.4 90.4 53.8 45.0 97.0 93.6
71 95.2 55.0 45.2 89.8 43.2 35.4 96.6 94.2
82 94.8 46.6 38.2 88.8 35.6 28.4 94.4 89.4

β2(t) 1 94.2 0.0 0.0 88.8 0.0 0.0 96.0 85.6 95.2 91.2 76.6 90.0
12 92.6 0.0 0.0 87.8 0.0 0.0 97.8 92.0
24 94.4 0.0 0.0 88.2 0.0 0.0 98.2 95.0
36 94.0 76.4 33.0 90.0 62.6 21.2 97.4 93.6
47 95.2 62.8 40.2 90.2 47.8 28.6 97.8 94.8
59 94.4 0.0 0.0 87.2 0.0 0.0 98.0 93.8
71 95.0 0.0 0.0 89.2 0.0 0.0 97.2 93.8
82 94.4 0.0 0.0 89.0 0.0 0.0 96.0 89.8



Table 2: Comparison of the mean estimated integrated mean square error (IMSE) over 500
Monte Carlo runs. Estimated IMSE is taken to be the sum of the estimated MSE across all
36 time points.

IMSE IMSE Ratio
TS GLMM GEE LML GLMM/TS GEE/TS LML/TS

Model 1 β0(t) 2.5818 69.6154 69.5812 2.4231 26.96 26.95 0.94
β1(t) 1.2855 0.6183 0.6427 1.5610 0.48 0.50 1.21
β2(t) 7.4790 53.6650 53.2927 10.3667 7.18 7.13 1.39

Model 2 β0(t) 2.9709 0.6714 0.5635 2.0040 0.23 0.19 0.67
β1(t) 0.2523 0.0576 0.0495 0.1709 0.23 0.20 0.68
β2(t) 0.0059 0.0018 0.0009 0.0037 0.31 0.15 0.62

Table 3: Bootstrap confidence bands: Coverage rates (in %) at nominal confidence level 1−α
= 95% and 90%. All simulations are based on 200 Monte Carlo runs. 1.96∗(standard error) is
reported in parenthesis.

95% 90%
Setting β0(t) β1(t) β2(t) β0(t) β1(t) β2(t)

1 92.5 92.0 89.0 85.0 87.5 80.0
(3.65) (3.76) (4.34) (4.95) (4.58) (5.54)

2 94.5 93.0 91.0 85.5 84.5 82.0
(3.16) (3.54) (3.97) (4.88) (5.02) (5.32)

Table 4: Hypotheses Testing: The estimated rejection ratio (in %) for the two hypotheses tests
: H0(a) : βr(t) does not change over time; H0(b) : βr(t) = 0, for all t ∈ [t0, tT ]. Note that the
superscript ∗ indicates the empirical probability of a Type I error.

α = 5% α = 10%
Setting H0 β0(t) β1(t) β2(t) β0(t) β1(t) β2(t)

1 (a) 100 3.5 100 100 9.0 100
(b) 100 27.5 100 100 43.0 100

2 (a) 1.5∗ 1.5∗ 2.5∗ 4.0∗ 3.5∗ 5.5∗

(b) 100 7.0∗ 100 100 15.5∗ 100
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Figure 1: The Smoking Cessation data. Percentage of nonmissing outcomes during each visit
of the study (top plot). Percentage of smokers (determined by CO readings) by 4 treatment
groups (bottom plot). Index of time is plotted in days.
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Figure 2: The Smoking Cessation data (part 1). Curve estimate (solid line in center), 95%
bootstrap confidence band (solid lines) and 95% point-wise confidence intervals (dash lines).
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Figure 3: The Smoking Cessation data (part 2). Curve estimate (solid line in center), 95%
bootstrap confidence band (solid lines) and 95% point-wise confidence intervals (dash lines).
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Figure 4: The Smoking Cessation data (part 3). Curve estimate (solid line in center), 95%
bootstrap confidence band (solid lines) and 95% point-wise confidence intervals (dash lines).
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Figure 5: Simulation Model 1: The true varying coefficient functions (solid gray), their esti-
mates (solid black) based on the proposed TS method and 95% bootstrap confidence bands
(black dashed) from a the run with median IMSE among 500 Monte Carlo runs.
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Figure 6: Simulation Model 1: Mean estimated mean square error (MSE) over time.
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Figure 7: Simulation Model 2: Mean estimated mean square error (MSE) over time.




