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Abstract

Novel Computational Methods for Bayesian Hierarchical Modeling in the Biomedical

Domain

by

Arya Alexander Pourzanjani

The recent growth in the availability of biomedical data promises to reshape health-

care by ushering in an era of personalized medicine where data can be used to diagnose

and treat patients with pinpoint accuracy. Truly realizing this goal requires building

statistical models that individually model patient variations such as age, sex, and ge-

netic makeup, which leads to a combinatorial growth in the number of parameters in a

model and noisy estimates. Fortunately, Bayesian hierarchical models, along with recent

computational advances, provide a solution to this issue. By naturally embedding the

hierarchical structure that many datasets exhibit into the model, these models allow for

separate estimates that capture population-level variation and simultaneously avoid noise

via regularization to a population mean.

In this thesis, we describe novel models and computational methods for Bayesian

hierarchical modeling of biomedical data. We begin by describing our contributions to

various areas of Bayesian modeling, along with the problems from our applied work that

motivated these contributions.

Specifically, we describe our disease progression model, which hierarchically models

patient disease trajectories. The model, which was motivated by our applied work on

Alzheimer’s Disease, utilizes I-splines to capture the characteristic monotonic shape of

dementia disease trajectories, along with Dirichlet distributions over the coefficients of

these I-splines to hierarchically model these trajectories. Next we describe our work on

ix



using the Givens Representation of orthogonal matrices to infer models with orthogonal

matrix parameters, such as factor models, in a general Bayesian framework. We describe

the innovations in our method along with our motivating hierarchical example based on

the analysis of protein biomarkers of coagulopathic trauma patients. Next, we describe

a mechanistic model of coagulopathy that relates clotting assay data to protein concen-

trations, effectively providing a fast and convenient way for clinicians to understand key

protein markers involved in clotting.

Next we transition specifically to Hamiltonian Monte Carlo (HMC) and elucidate

the connection between multiscale posterior distributions and the efficiency of HMC.

We describe the issue of numerical stability inside HMC and present our implicit HMC

algorithm for efficiently sampling non-Gaussian posterior distributions.

Lastly, we provide a summary of our contributions along with ideas for future work.
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Chapter 1

Introduction

1.1 Motivation

Bayesian modeling, and Bayesian hierarchical modeling in particular, is an immensely

powerful tool for the modeling and analysis of modern datasets, both large and small.

In short, hierarchical models allow the modeler to embed their knowledge of natural

hierarchies within data to effectively capture the heterogeneity of the data, while si-

multaneously regularizing unstable estimates to a common, group mean [1]. In many

datasets, a hierarchical structure that can be utilized is often readily apparent. As an

example, within a dataset containing biomarker data for individual hospital patients,

we may naturally group the observations first by the hospital at which it was collected.

Within each hospital we may group our observations by the type of injury the patient

sustained. Within each injury group we may group observations based on relevant indi-

vidual characteristics such as age or sex (Figure 1.1). While we expect variation within

each group, we simultaneously expect that patients within a group can be informative of

one another. For example, we may expect that two patients of similar age who sustained

similar injuries and are being treated at the same hospital may exhibit unique biomarker

1



Introduction Chapter 1

Figure 1.1: Natural hierarchies are readily apparent in many practical datasets, such
as biomedical data which may be grouped by hospital, then injury type, and finally
by patient type.

trajectories, however it would not be unreasonable for these observations to be informa-

tive of one another. Hierarchical modeling allows us to naturally encode this intuition

within our models.

At the time of this writing, an explosion is occurring in the amount of data available in

the medical domain. The price of genome sequencing has surpassed the pace of Moore’s

law, providing a wealth of individualized data to study every disease imaginable [2]. Large

datasets with hierarchical structures, like the aforementioned examples, are becoming

more and more available, and with them comes the promise of “personalized medicine”,

which many expect to immensely improve health outcomes and lives in the upcoming

years [3, 4, 5]. The premise of personalized medicine is that with more data we will be

able to capture individual patient characteristics, which will in turn allow us to provide

2



Introduction Chapter 1

more targeted therapy. However, within this lies a contradiction, the solution of which

hierarchical modeling provides. In particular, to truly personalize our decisions we must

account for every unique characteristic of a patient e.g. their age, sex, genome, type

and extent of injury etc. Unfortunately, once we group patients by all these relevant

characteristics to conduct statistical inference, our once large dataset has been reduced

to many small datasets which individually are difficult to learn from with such small

sample sizes. Hierarchical modeling solves this challenge, by simultaneously grouping

patients and treating them separately to a degree that the data can support.

At the same time that medical data has become more and more available, advances

in the field of Bayesian computation have allowed for the modeling and inference of

larger and larger models, including hierarchical models which were previously intractable

to infer. In particular, the advent of the Hamiltonian Monte Carlo (HMC) sampling

method of Duane et al. [6] and its subsequent introduction to the statistics community

by Neal [7] has opened the flood gates for practical inference of high-dimensional models

by practitioners. Unlike the Metropolis method [8] which was in wide use before HMC,

HMC can scale to larger dimensions at an almost linear rate [9]. More recently, the No-

U-Turn Sample (NUTS) extension of HMC by Hoffman and Gelman [10] and advances in

automatic differentiation have led to practical software packages such as Stan that make

the power of HMC available to wide audiences [11].

This work lies at the intersection of these recent advances in medical data availability

and Bayesian computation, where I have conducted my research for the past few years.

In particular, I describe novel models and computational techniques for inference that

I have developed over the years in pursuit of my goal to better understand biology and

medicine via data analysis.

3



Introduction Chapter 1

1.2 Organization

In Chapters 2, 3, 4, and 5, I describe our advances in the respective areas of disease

progression, factor modeling, and mechanistic modeling along with motivating examples

from our applied work. In Chapter 6, I go over the relationship between Bayesian pos-

teriors and the numerical solution of differential equations and I describe our Implicit

HMC method for inference of multiscale posterior distributions. I close with a summary

of our contributions along with future directions in Chapter 7.
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Chapter 2

Disease Progression Models

Disease progression modeling is a rapidly growing area of data science that seeks to use

patient data to quantify and forecast the severity of a disease [12, 13, 14]. This chapter

summarizes our work titled “Diagnosing Alzheimer’s the Bayesian Way” published in

the Proceedings of StanCon, Asilomar (2018) [15]. We describe linear models of disease

progression. Next we describe our nonlinear disease progression model that utilizes I-

splines and hierarchical Dirichlet priors. Lastly, we describe the specific application of

our model to Alzheimer’s Disease.

2.1 Linear Models of Disease Progression

Several existing models of disease progression, particularly in Alzheimer’s Disease,

utilize monotonic functions to capture the continual worsening of biomarkers. Jedynak

et al. posit that the deterioration of individual biomarkers is tied to a single latent state

for each patient that increases monotonically over time [16]. This latent variable can thus

be used as a disease progression score, representing how far in the disease an individual

has progressed (Figure 2.1).

5
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Figure 2.1: Diagram of a disease progression model with a single latent state repre-
senting disease severity.

While the model was originally presented in a frequentist least-squares framework, if

we let yij(t) denote the jth biomarker for the ith patient at age t, the original model can

be translated to the probabilistic generative model

si(t) = αit+ βi (2.1)

yij(t) ∼ N (f(si(t) | aj, bj, cj, dj), σj), (2.2)

where σj represents the measurement variability for the jth biomarker and f(·|aj, bj, cj, dj)

represents a biomarker-specific 4-parameter sigmoid-curve for the jth biomarker

f(s | aj, bj, cj, dj) =
aj

1 + e−bjs−cj
+ dj. (2.3)

The parameters cj and bj are of particular importance because they indicate when

a biomarker starts deteriorating and how fast it deteriorates once it does. Figures 2.2

and 2.3 show posterior distributions of these parameters on the Bayesian version of this

model fit to real dementia data using the priors

6



Disease Progression Models Chapter 2

Figure 2.2: Posterior distribution of bj parameters of the linear disease progression
model fit to Alzheimer’s data.

γ ∼ HalfNormal(0, 10) (2.4)

αi ∼ HalfNormal(0, γ). (2.5)

The values of the bj and cj parameters illustrate the relative speed of progression of the

four biomarkers in this dementia disease progression model. The form of the degradation

of the biomarkers takes the form of a logistic (or S-curve) because in practice, biomarkers

often seem to get worse slowly at first, then rapidly, and eventually hit a saturation

point. We note that one of the biomarkers has to have fixed values for b and c, to ensure

identifiability of the parameters.

In this model, si(t) is a monotonically increasing transformation of age that represents

a continuous disease progression score for the ith individual. The individual specific

parameters αi and βi determine the rate of progression and relative onset of disease

7
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Figure 2.3: Posterior distribution of cj parameters of the linear disease progression
model fit to Alzheimer’s data.

Figure 2.4: Posterior distribution of patient disease trajectories from the linear disease
progression model fit to Alzheimer’s data.

respectively for the ith individual. To ensure the progression variable si(t) is monotonic

in time, αi is constrained to be positive. Figure 2.4 shows posterior draws of what these

curves typically look like, while Figure 2.5, shows associated biomarker trajectories.

We note that while each patient has a unique set of parameters that describe their per-

sonal latent disease progression score, the parameters that describe individual biomarker

evolution in the sigmoid function are constant across the population. This implies that

the degradation of the biomarkers occurs in the same relative order and relative rate in

all patients, an assumption that would have to be properly verified by examining the

8
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Figure 2.5: Posterior distribution of patient biomarker trajectories from the linear
disease progression model fit to Alzheimer’s data.

relative rates of deterioration in individuals.

2.2 Nonlinear Modeling of Disease Progression Us-

ing I-Splines

While a linear fit can do a reasonable job of capturing each individual’s progression

of biomarkers over time, it leaves much to be desired. The model assumes that the rate

of progression of the disease is constant, i.e. that patients’ disease status continuously

progress at the same rate. In reality, it can often be the case that there are plateaus of

progression, such as in vascular dementia, where progression can slow down then later

pick back up, due either to endogenous or exogenous circumstances. To more flexibly

represent disease progression curves requires a way to flexibly model monotonic functions

of age. Lorenzi et al. [17] use a monotonic Gaussian Process to model how each biomarker

deteriorates over time in the population, and use ordinary Gaussian Processes for each

9
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individual, to describe random deviations from this general progression at the individual

level. To achieve monotonicity in their Gaussian Processes, they use the method proposed

in [18], and fit their model using Expectation Propagation (EP)[17]. To achieve a full

Bayesian implementation that can be fit using standard inference methods, we instead

turn to I-Splines.

2.2.1 I-Splines

I-Splines are a flexible and adjustable set of monotone basis functions used to model

monotonic functions [19]. By taking a linear combination of these functions, and con-

straining the coefficients to be positive, one can flexibly model a wide class of monotone

functions. Similarly, one can model increasing functions with a range from 0 to 1, by

taking a linear combination of the I-Splines where the coefficients are constrained to sum

to one.

To our knowledge, the only other known method for flexibly modeling monotone

functions are monotone Gaussian Processes [18], which were used by [17]. This method

relies on constraining the Gaussian Process to have a positive derivative at a set number

of points, which then usually forces the function to monotone. While attractive, the

method may not return true monotone functions and it is not clear how to select the

points where the derivative should be positive.

Given a domain, and a set of nodes t1, · · · , tD on that domain, the I-Spline basis

functions are obtained by integrating the piece-wise-defined M-Splines, themselves a set

of spline functions defined on the same domain using the same nodes. M-Splines are

defined recursively. The order one M-Spline functions are piece-wise constant functions.

The ith M-Spline of order one is defined as

10
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Figure 2.6: Various M-Spline bases.

Mi1(x) :=


1

(ti+1−ti) , ti ≤ x < ti+1

0, otherwise

(2.6)

while the ith M-Spline of order k is defined recursively as

Mik(x) :=

(
k

k − 1

)
(x− ti)Mi,k−1(x) + (ti+k − x)Mi+1,k−1(x)

ti+k − ti
. (2.7)

One can show that the M-Spline basis functions each integrate to one over the specified

domain and are positive. Figure 2.6 shows the M-Spline basis functions for orders k =

1, 2, 3, 4 using custom code written to generate M-Splines in R.

Because M-Splines integrate to one over the specified domain and are positive, their

integral will be a set of functions that monotonically increase from 0 to 1 over the domain.

Since the M-Splines are piece-wise polynomials, this integral is easy to compute. Figure

11
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Figure 2.7: I-spline basis.

2.7 illustrates an I-spline basis over the domain [−20, 20].

Positive linear combinations of I-Splines will be monotone, while convex linear com-

binations will be monotone and range from 0 to 1. We use this idea to expand the linear

latent progression model to a more flexible latent progression using I-Splines. Specif-

ically, we replace the latent disease progression function, si(t), with a positive linear

combination of I-Splines, rather than with a linear function.

2.3 Application to Alzheimer’s Disease and Demen-

tia

The progression of Alzheimer’s Disease (AD) is characterized by the gradual deteri-

oration of biomarkers and eventual loss of basic memory and decision-making functions,

which makes the I-spline model ideal. Using these biomarker values and other tests to

estimate how far an individual has progressed in the disease is valuable in diagnosis as

well as in assessing the efficacy of interventions. Additionally, prediction of how the in-

dividual will continue to progress is critical in decision making. While it is known that

AD only gets worse over time, it is believed that patients with the disease progress at

different rates and at different stages of their lives. There is no standard path of progres-

12
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sion for people with the disease, which makes estimation of disease severity and future

progression difficult. In addition to estimating these paths for an individual given their

measurements, it is of clinical and biological significance to be able to understand the

order in which certain biomarkers begin to deteriorate, and what their distribution might

look like for various stages of the disease.

Currently, staging of AD is accomplished by the thorough review of a patient by a

panel of expert doctors. While this diagnosis serves as a gold-standard, the diagnosis

process is cumbersome, prone to subjectivity, and typically only includes three discrete

levels, which does not represent the continuously progressing nature of AD. These three

stages are, in order of severity: Normal (NL), Mild Cognitive Impairment (MCI), and

Dementia.

2.3.1 Data

For our analysis we used a pre-cleaned table of biomarker data from the publicly

available Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. The dataset con-

tains various biomarker measurements for 1,737 patients, as well as their age at the time

of measurement. The biomarkers measured include the following:

• ABETA: Concentration of the amyloid-beta protein in cerebrospinal fluid (CSF),

measured in pg/ml. In healthy individuals this harmful protein is actively cleared

from the brain in to the CSF. In individuals with AD, the amyloid-beta protein

concentrates in the brain to form harmful plaques. Low levels in the CSF indicate

the protein is not being cleared from the brain, and is thus an indication of AD.

• HIPPO: Volume of the individual’s hippocampal brain region as measured by MRI

and normalized to their baseline brain volume. In AD the hippocampus is known

13
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Figure 2.8: MRI imaging of a human brain.

to shrink in size as the disease progresses. Volume is typically estimated using

software applied to images like Figure 2.8.

• MMSE: Mini-Mental State Examination (MMSE) test. A 30-point questionnaire

administered by psychologists to assess working memory and brain function in an

individual. Patients with AD show lower scores in MMSE, but unfortunately low-

ered MMSE scores typically only show once the disease has progressed significantly.

• TAU: Concentration of tau protein in the CSF, measured in pg/ml. Tau is a protein

that shows up as a byproduct of dead neurons. High tau in the CSF indicates an

abundance of dying neurons in the brain.

Population histograms of these biomarkers during the three stages of the disease

reveal a monotonic pattern in the four biomarkers we are considering (Figure 2.9). For

example, ABETA appears to be a biomodal distribution where the lower mode becomes

more common as the disease worsens. The distribution of HIPPO appears to shift to

14



Disease Progression Models Chapter 2

Figure 2.9: Histograms of patient biomarker data over the three stages of Alzheimer’s
Disease.

the left with increased worsening of AD. These observations lead us to believe that these

biomarkers can be modeled as coming from a single continuous latent variable that we

can interpret as being a disease progression score.

Figure 2.10 shows biomarker trajectories for ten different patients over time.

2.3.2 Model

In addition to replacing the linear disease progression curves with I-splines, we let the

measurement variability of the ABETA measurements be different for each individual,

and place a hierarchical prior over these parameters. The biomarker plots suggest that

the random variation in these measurements may differ in magnitude from person to

person.

2.3.3 Results

Once fit using Stan, posterior draws of individual disease progression curves imme-

15
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Figure 2.10: Longitudinal trajectories of biomarker data for ten separate patients.

diately reveal possible non-linearities in disease progression (Figure 2.11). While some

patients, such as patient 4, still maintain approximately linear disease progression, oth-

ers such as patient 5 or 9 display slow initial progression then a sharp worsening in the

disease. Others, such as patient 7, seem to worsen then have a flattened prior where

progression is slow, followed by another quickly progressing epoch. These more flexible

disease progression curves also manifest in seemingly more accurate biomarker progres-

sion curves (Figure 2.12), leaving us with an overall more trustworthy and robust model.

16
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Figure 2.11: Posterior draws of nonlinear trajectories from the I-spline model.

Figure 2.12: Posterior draws of nonlinear biomarker trajectories from the I-spline model.

17



Chapter 3

Factor Models and other Models

with Orthogonal Matrix Parameters

In this chapter we present our work titled “General Bayesian Inference over the Stiefel

Manifold via the Givens Transform” [20] where we introduce an approach based on the

Givens representation that allows for a routine, reliable, and flexible way to infer Bayesian

models with orthogonal matrix parameters. This class of models most notably includes

models from multivariate statistics such as factor models and probabilistic principal com-

ponent analysis (PPCA). Our approach overcomes several of the practical barriers to

using the Givens representation in a general Bayesian inference framework. In partic-

ular, we show how to inexpensively compute the change-of-measure term necessary for

transformations of random variables. We also show how to overcome specific topological

pathologies that arise when representing circular random variables in an unconstrained

space. In addition, we discuss how the alternative parameterization can be used to de-

fine new distributions over orthogonal matrices as well as to constrain parameter space

to eliminate superfluous posterior modes in models such as PPCA. While previous ap-

proaches to this inference problem involved specialized updates to the orthogonal matrix

18
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parameters, our approach lets us represent these constrained parameters in an uncon-

strained form. Unlike previous approaches, this allows for the inference of models with

orthogonal matrix parameters using any modern inference algorithm, including those

available in modern Bayesian modeling frameworks such as Stan, Edward, or PyMC3.

We illustrate with examples how our approach can be used in practice in Stan to infer

models with orthogonal matrix parameters, and we compare to existing methods.

3.1 Introduction

Statistical models parameterized in terms of orthogonal matrices are ubiquitous, par-

ticularly in the treatment of multivariate data. This class of models includes certain

multivariate time series models [21], factor models [22], and a swath of recently devel-

oped probabilistic dimensionality reduction models such as Probabilistic PCA (PPCA),

Exponential Family PPCA (BXPCA), mixture of PPCA [23], and Canonical Correlation

Analysis (CCA) [24, Chapt. 12.5]. These sorts of models have not only enjoyed extensive

use in fields such as psychology [25], but are also gaining traction in diverse applications

including biology [26], finance [27], materials science [28], and robotics [29].

Despite their ubiquity, their remains no quick, routine, and flexible options for fitting

models with orthogonal matrix parameters. Existing methods for inferring these models

are either insufficiently general or too complicated to implement and tune in isolation.

Modern probabilistic programming frameworks, such as Stan, Edward, and PyMC3 [30,

31, 32], try to abstract their users away from the details of inference and implementation,

but none offer support for orthogonal matrix parameters. The reason is that rather than

using a specialized inference algorithm for orthogonal matrices, which existing approaches

do, these software frameworks typically handle constrained parameters such as orthogonal

matrices by transforming them to an unconstrained space [30, 33]. For example, if a
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model contains a parameter σ > 0 that is constrained to be positive, these frameworks

typically take the log of this parameter and conduct inference over σ̃ = log σ, which is

unconstrained.

An unconstrained parameterization of orthogonal matrices would allow for general

Bayesian inference in any software framework without having to change its inner-workings,

but because of the complexities in dealing with the space of orthogonal matrices, oth-

erwise known as the Stiefel manifold, several challenges remain in the way of this ap-

proach. While many parameterizations of orthogonal matrices exist [34, 35], only smooth

representations, such as the Givens representation, can be practically considered, as in-

ference methods such as Hamiltonian Monte Carlo (HMC) typically require continuous

and differentiable likelihoods. Furthermore, any such transformation of a random vari-

able typically requires computing a change-of-measure adjustment term that is often

unknown or expensive to compute. A further complication is that the Stiefel manifold

has a fundamentally different topology than Euclidean space, which can lead to biased

inference if particular care is not taken in implementation. Lastly, while not strictly

necessary, any representation would ideally have an intuitive interpretation that would

allow practitioners to work with and even define useful distributions in terms of the new

representation.

We introduce a general approach to the posterior inference of statistical models with

orthogonal matrix parameters based on the Givens representation of orthogonal matrices.

We address several practical implementation issues such as computation of the change-

of-measure adjustment, as well as proper handling of transformed coordinates to ensure

unbiased samples. Our approach enables the application of any general inference algo-

rithm to models containing orthogonal matrix parameters, allowing inference of these

models by any commonly available inference algorithm such as HMC [7], the No-U-Turn

Sampler (NUTS) [10], Automatic Differentiation Variational Inference (ADVI) [33] or
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Black Box Variational Inference [36]. Unlike existing approaches, our approach is easy to

implement and does not require any specialized inference algorithms or modifications to

existing algorithms or software. This allows users to rapidly build and prototype com-

plex probabilistic models with orthogonal matrix parameters in any common software

framework such as Stan, Edward, or PyMC3 without the worry of messy implementation

details.

In Section 3.2 we discuss existing methods for Bayesian inference over the Stiefel man-

ifold and the difficulty in implementing these methods in a general Bayesian inference

framework. In Section 3.3 we describe the Givens representation by first introducing

the Givens reduction algorithm and then connecting it to a geometric perspective of

the Stiefel manifold, providing an approachable intuition to the transform. We go on

to describe practical solutions for using the Givens representation in a general Bayesian

inference setting in Section 3.4. In Section 3.5 we illustrate with statistical examples

the use of the Givens representation and how it compares to existing methods in prac-

tice. Lastly, we conclude with a brief discussion in Section 3.6 where we summarize our

contributions.

3.2 Related Work

Hoff et al. [37] introduces a Gibbs sampling approach to update unknown orthogonal

matrix parameters from a collection of known conditional distributions. Unfortunately,

this requires that the conditional distribution of the orthogonal matrix parameter given

other model parameters belongs to a known parametric distribution that is easy to sam-

ple. In practice, this limits the approach to a specific class of models.

More general HMC methods have been devised, but their use of specialized update rules

makes them difficult to implement and tune in practice. In particular, these methods
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infer orthogonal matrix parameters by using different HMC update rules for constrained

and unconstrained parameters. This separation of constrained and unconstrained pa-

rameters requires additional book-keeping to know which update rules to use on which

parameter. Unfortunately, many probabilistic programming languages do not keep track

of this as they treat parameters agnostically by transforming to an unconstrained space.

The specialization of these methods to HMC also makes them difficult to generalize to

other inference algorithms based on VI or optimization which an unconstrained param-

eterization approach would have no trouble with.

Specifically, Brubaker et al. [38] proposed a modified HMC, which uses a different

update rule for constrained parameters based on the symplectic SHAKE integrator [39].

For unconstrained parameters, the method uses a standard Leapfrog update rule. For

constrained parameters, the method first takes a Leapfrog step which usually moves the

parameter to a value that does not obey constraints. The method then uses Newton’s

method to “project” the parameter value back down to the manifold where the desired

constraints are satisfied.

Byrne and Girolami [40] as well as Holbrook et al. [41] also utilize a separate HMC

update rule to deal with constrained parameters. Specifically, they utilize analytic results

and the matrix exponential to update the parameters in such a way that guarantees

constraints are still satisfied in the embedded matrix coordinates. More precisely, they

use the fact that analytic solutions for the geodesic equations on the Stiefel manifold

in the embedded coordinates are known. This gives rise to their Embedded Manifold

HMC (EMHMC) algorithm. Like the method of [38], the use of separate update rules in

EMHMC makes the algorithm difficult to implement in more general settings.
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3.3 The Givens Representation of Orthogonal Ma-

trices

We motivate and introduce the Givens representation by first describing the related

Givens reduction algorithm of numerical analysis and then tying this to the geometric

aspects of the Stiefel manifold.

3.3.1 Givens Rotations and Reductions

Given any n× p matrix, A, the Givens reduction algorithm is a numerical algorithm

for finding the QR-factorization of A, i.e. an n × p orthogonal matrix Q and an upper-

triangular p × p matrix R such that A = QR. The algorithm works by successively

applying a series of Givens rotations so as to “zero-out” elements of A below the diagonal.

These Givens rotations are simply n × n matrices, Rij(θij), that take the form of an

identity matrix except for the (i, i) and (j, j) positions which are replaced by cos θij and

the (i, j) and (j, i) positions which are replaced by − sin θij and sin θij respectively.

When applied to a vector, Rij(θij) has the effect of rotating the vector counter-

clockwise in the (i, j)-plane, while leaving other elements fixed. Intuitively, its inverse,

R−1
ij (θij), has the same effect, but clockwise. Thus one can “zero-out” the jth element,

uj, of a vector u, by first using the arctan function to find the angle θij formed in the

(i, j)-plane by ui and uj, and then multiplying by the matrix R−1
ij (θij) (Figure 3.1, inset).

In the Givens reduction algorithm, these rotation matrices are applied one-by-one to

A in this way to eliminate all elements below the diagonal. First, all elements in the first

column below the first row are eliminated by successively applying the rotation matrices

R−1
12 (θ12), R−1

13 (θ13), · · · , R−1
1n (θ1n) (Figure 3.2). Because multiplication by Rij(θij) only

affects elements i and j of a vector, once the jth element is zeroed out, the subsequent
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Figure 3.1: (Inset) Givens rotations can be used to rotate a vector so as to eliminate
its component in a certain direction. (Main Figure) A p-frame on the Stiefel manifold
can be visualized as a set of rigidly connected orthogonal basis vectors, u1 and u2,
shown here in black. One can move about the Stiefel manifold and describe any
p-frame by simultaneously applying rotations matrices of a prescribed angle to these
basis vectors. Applying the rotation matrix R12(θ12) corresponds to rotating the two
basis vectors toegher in the (1,2)-plane, which by our convention is the (x, y)-plane.
Similarly, simultaneously apply R13(θ13) corresponds to a rotation of the 2-frame in
the (1, 3) or (x, z)-plane, while R23(θ23) corresponds to rotating u2 about u1.

rotations, R−1
13 (θ13), · · · , R−1

1n (θ1n), will leave the initial changes unaffected. Similarly,

once the first column of A is zeroed out below the first element, the subsequent rotations,

which do not involve the first element will leave the column unaffected. The rotations

R−1
23 (θ23), · · · , R−1

2n (θ2n) can thus be applied to zero out the second column, while leaving

the first column unaffected. This results in the upper triangular matrix

Figure 3.2: The Givens reduction eliminates lower diagonal elements of an n × p
matrix one column at a time. Because each rotation, Rij(θij), only affects rows i and
j, previously zeroed out elements do not change.
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R∗ := R−1
pn (θpn) · · ·R−1

p,p+1(θp,p+1) · · ·R−1
2n (θ2n) · · ·R−1

23 (θ23) · · ·R−1
1n (θ1n) · · ·R−1

12 (θ12)︸ ︷︷ ︸
Q−1

∗

A.

(3.1)

Crucially, the product of rotations, which we call Q−1
∗ , is orthogonal since it is simply

the product of rotation matrices which are themselves orthogonal. Thus its inverse can

be applied to both sides of Equation 3.1 to obtain

Q∗R∗ = A. (3.2)

The familiar QR form can be obtained by setting Q equal to the first p columns of Q∗

and setting R equal to the first p rows of R∗. The Givens reduction is summarized in

Algorithm 1.

Input: A
Result: Q,R
Q−1
∗ = I R∗ = A

for i in 1:p do
for j in (i+1):n do

θij = arctan(Y [j, i]/Y [i, i])
Q−1
∗ = R−1

ij (θij)Q
−1
∗

R∗ = R−1
ij (θij)R∗

end

end
return Q∗[, 1 : p], R∗[1 : p, 1 : p]

Algorithm 1: Psuedo-code for the Givens reduction algorithm for obtaining the QR
factorization of a matrix A.

3.3.2 The Geometry of Orthogonal Matrices

The Stiefel manifold, Vp,n, consists of p-frames: ordered sets of p n-dimensional unit-

length vectors, where p ≤ n. p-frames naturally correspond to n× p orthogonal matrices
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which can be used to define the Stiefel manifold succinctly as

Vp,n := {Y ∈ Rn×p : Y TY = I}. (3.3)

Geometrically, an element of the Stiefel manifold can be pictured as a set of orthog-

onal, unit-length vectors that are rigidly connected to one another. A simple case is

V1,3, which consists of a single vector, u1, on the unit sphere. This single vector can

be represented by two polar coordinates that we naturally think of as longitude and

latitude, but can also be thought of simply as subsequent rotations of the standard

basis vector e1 := (1, 0, 0)T in the (x, y) and (x, z) planes, which we refer to as the

(1, 2) and (1, 3) planes for generality. In mathematical terms, u1 can be represented as

u1 = R12(θ12)R13(θ13)e1 (Figure 3.1).

Continuing without geometric interpretation, V2,3 can be pictured as a vector in V1,3

that has a second orthogonal vector, u2, that is rigidly attached to it as it moves about

the unit sphere. Because this second vector is constrained to be orthogonal to the first,

its position can be described by a single rotation about the first vector. Thus elements

of V2,3 can be represented by three angles: two angles, θ12 and θ13, that represent how

much to rotate the first vector, and a third angle, θ23 that controls how much the second

vector is rotated about the first (Figure 3.1). Mathematically this can be represented as

the 3× 2 orthogonal matrix R12(θ12)R13(θ13)R23(θ23)(e1, e2).

Although elements of the Stiefel manifold can be represented by n× p matrices, their

inherent dimension is less than np because of the constraints that the matrices must

satisfy. The first column must satisfy a single constraint: the unit-length constraint.

The second column must satisfy two constraints: not only must it be unit length, but

it must also be orthogonal to the first column. The third column must additionally be

orthogonal to the second column, giving it a total of three constraints. Continuing in
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this way reveals the inherent dimensionality of the Stiefel manifold to be

d := np− 1− 2− · · · p = np− p(p+ 1)

2
. (3.4)

3.3.3 Obtaining the Givens Representation

The Givens reduction applied to an orthogonal matrix gives rise to a representation

of the Stiefel manifold that generalizes the intuitive geometric interpretation described

above. When applied to an n× p orthogonal matrix Y , the Givens reduction yields

R−1
pn (θpn) · · ·R−1

p,p+1(θp,p+1) · · ·R−1
2n (θ2n) · · ·R−1

23 (θ23) · · ·R−1
1n (θ1n) · · ·R−1

12 (θ12)Y = In,p

(3.5)

where Ip,n is defined to be the first p columns of the n × n identity matrix, i.e. the

matrix consisting of the first p standard basis vectors e1, · · · , ep. The first n−1 rotations

transform the first column into e1, since it zeros out all elements below the first and the

orthogonal rotations do not affect the length of the vector which by hypothesis is unit

length. Similarly, the next n − 2 rotations will leave the length of the second column

and its orthogonality to the first column intact because again, the rotation matrices are

orthogonal. Because the second column must be zero below its second element it must

be e2. Continuing in this way explains the relationship in Equation 3.5.

Because Y was taken to be an arbitrary orthogonal matrix, then it is clear from

Equation 3.5 that any orthogonal matrix Y can be factored as

Y = R12(θ12) · · ·R1n(θ1n) · · ·R23(θ23) · · ·R2n(θ2n) · · ·Rp,p+1(θp,p+1) · · ·Rpn(θpn)In,p.

(3.6)
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Defining Θ := (θ12 · · · θ1n · · · θ23 · · · θ2nθp,p+1 · · · θpn) we can consider any orthogonal

matrix as a function, Y (Θ), of these angles, effectively parameterizing the Stiefel man-

ifold and yielding the Givens representation. The Givens representation is a smooth

representation with respect to the angles Θ [35], and lines up with our geometric insight

discussed in the previous subsection.

3.4 The Givens Representation for Bayesian Infer-

ence of Orthogonal Matrix Parameters

Practical use of the Givens representation in a general Bayesian inference framework

involves solving several practical challenges. In addition to the standard change of mea-

sure term required in any transformation of a random variable, care must be taken to

address certain pathological cases of the Givens representation that occur due to the dif-

ferent topologies of the Stiefel manifold and Euclidean space. We further describe these

challenges and explain how we overcome them in practice. We also briefly remark on

how the Givens representation can be leveraged in practice to solve issues with identifia-

bility, and define new and useful distributions over the Stiefel manifold. We conclude the

section by describing how the computation of the Givens representation scales in theory,

particularly in comparison to EMHMC.

3.4.1 Transformation of Measure Under the Givens Represen-

tation

As is usual in any transformation of random variables, care must be taken to include a

Jacobian determinant term in the transformed density to account for a change of measure

under the transformation. For a posterior density over orthogonal matrices that takes
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the form pY (Y ), the proper density over the transformed random variable, Θ(Y ), takes

the form pΘ(θ) = pY (Y (Θ))|JY (Θ)(Θ)| [42]. Intuitively, this extra Jacobian determinant

term accounts for how probability measures are distorted by the transformation (Figure

3.3). Unfortunately, the Givens representation, Y (Θ), is a map from a space of dimension

d := np − p(p + 1)/2 to a space of dimension np. Hence the determinant is non-square

and thus undefined.

uniform sampling
angle space

non-uniform sampling
on Stiefel Manifold

Figure 3.3: Uniform sampling in the Givens representation coordinates does not neces-
sarily lead to uniform sampling over the Stiefel manifold without the proper measure
adjustment term. Under the mapping, regions near the pole are shrunk to regions
on the sphere with little area, as opposed to regions near to the equator which the
transform maps to much larger areas on the sphere. Intuitively, the change-of-measure
term quantifies this proportion of shrinkage in area.

To compute the change of measure term analogous to the Jacobian determinant, one

must appeal to the algebra of differential forms. We denote the product of n×n rotation
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matrices in the Givens representation by G, i.e.

G := R12(θ12) · · ·R1n(θ1n) · · ·R23(θ23) · · ·Rpn(θpn) · · ·Rp,p+1(θp,p+1) · · ·Rpn(θpn), (3.7)

and its jth column by Gj. The paper [43] shows that the proper measure form for a

signed surface element of Vp,n is the differential form

p∧
i=1

n∧
j=i+1

GT
j dYi. (3.8)

Letting JYi(Θ)(Θ) be the Jacobian of the ith column of Y with respect to the angle

coordinates of the Givens representation, this differential form can be written in the

coordinates of the Givens representation as

p∧
i=1

n∧
j=i+1

GT
j JYi(Θ)(Θ)dΘ. (3.9)

Because this is a wedge product of d d-dimensional elements, Equation 3.9 can be con-

veniently written as the determinant of the d× d matrix



GT
2:nJY1(Θ)(Θ)

GT
3:nJY2(Θ)(Θ)

...

GT
p:nJYp(Θ)(Θ)


, (3.10)

where Gk:l denote columns k through l of G. As we show in the Appendix, this term can

be analytically simplified to the following simple product whose absolute value serves as
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our measure adjustment term:

p∏
i=1

n∏
j=i+1

cosj−i−1 θij. (3.11)

3.4.2 Implementation of Angle Coordinates

When using the Givens representation for general Bayesian inference in practice, care

must be taken to properly account for pathologies that arise from mapping the Stiefel

manifold to Euclidean space. We let θ12, θ23, · · · θp,p+1 range from −π to π and we refer

to these specific coordinates as the latidinal coordinates, to evoke the analogy for the

simple spherical case. Similarly, we let the remaining coordinates range from −π/2

to π/2 and we refer to these coordinates as longitudinal coordinates. This choice of

intervals defines a coordinate chart from Euclidean space to the Stiefel manifold, i.e. a

mapping between the two spaces. As is inevitable with any coordinate chart between

differing topological spaces, there is a subset of the Stiefel manifold of measure zero

that the Givens representation will be unable to represent because the topologies of the

Stiefel manifold and Euclidean space differ. For V1,3 this corresponds to a sliver of the

sphere (Figure 3.4). Furthermore, the coordinate chart will contain singularities where

the adjustment term (Equation 3.11) becomes zero, possibly biasing any distributional

calculations. On the sphere, this corresponds to areas on the unconstrained space being

mapped to smaller and smaller areas near the pole (Figure 3.4). We further discuss these

pathologies and introduce techniques to overcome them in practice.

As is routinely done in practice, a logistic transform can be used to map the interval

[−π, π] to the unconstrained interval (−∞,∞). Unfortunately, this leaves regions of

parameter space that should otherwise be connected, disconnected by the aforementioned

set of measure zero. In practice, this can lead to biased sampling where regions of
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Figure 3.4: The angular coordinates chart has an infinitesimal sliver of measure zero
that lies between θ12 = −π and θ12 = π that separates the two parts of the sphere in
the Givens representation. The grid over the sphere reveals how the Givens represen-
tation maps areas that are the same size in the Θ coordinates to smaller and smaller
regions on the sphere the closer they are to the poles.

parameter space with equal mass are not visited for equal amounts of time if the posterior

is not sufficiently concentrated (Figure 3.5, upper).

To overcome this, we create for each longitudinal angle, θ, a pair of coordinates x

and y then set θ = arctan(y/x). Introducing this auxilary dimension connects otherwise

separate regions of parameter space. Furthermore, we let r =
√
x2 + y2 ∼ N (1, 0.1).

This helps in practice to avoid regions of parameter space where arctan is ill-defined,

while leaving the marginal distribution of θ untouched (Figure 3.5, lower).

For the latitudinal angles, we can use the standard technique of constraining the

parameters over an interval, then using the logistic transform. However, to avoid singu-

larities in the measure adjustment term, we set the interval to the slightly smaller interval

[−π/2+ε, π/2−ε] rather than the full interval [−π/2, π/2]. Here ε is a small value (on the

order of 10−5 in our experiments) that effectively blocks off a small portion of parameter
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Figure 3.5: (Upper) When posterior mass is not sufficiently bounded away from the
edges of the interval, regions of posterior mass that are separated by massless regions
may arise. Because these relatively massless regions are difficult for a sampler to
traverse, biased sampling can often occur, as the sampler is only able to visit one
mode of the posterior distribution. (Lower) By introducing an auxiliary coordinate,
one can effecitvely replicate the topology of a circle, effectively “wrapping” the two
ends of the interval, leading to unbiased sampling.

space surrounding the singularities of the change of measure term. In the spherical case,

this is equivalent to a small patch on either pole that is blocked off. In practice, blocking

off this small region avoid issues such as divergences that occur in HMC in such regions

of high curvature, while not meaningfully affecting the results of posterior inference.
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3.4.3 Coordinate Charts and Identifiability

For certain applications such as PPCA, it may be desirable to further limit parameter

space to avoid symmetries that lead to identifiability issues in the posterior. In the

Givens representation coordinates this is simply a matter of constraining the range of

the longitudinal angles to the interval [−π/2, π/2] (Figure 3.6). Unfortunately, as in the

case of the full interval, this can lead to biased sampling due to regions of low mass

separating regions of high mass in parameter space. However, this issue can be resolved

by carefully connecting these regions via a simple mirroring technique which we describe

next.

Figure 3.6: PPCA seeks to find the best lower dimensional p-frame to describe a
high-dimensional set of points. For n = 2 and p = 1, this corresponds to the vector
that most closely describes a set of two-dimensional points that lie close to flat line.
Since a p-frame and its negative can describe the data equally well, a multi-modal
posterior over the Stiefel manifold results. By limiting the longitudinal angle to lie in
the interval [−π/2, π/2] the sampler does not consider this redundant mode.

We can allow the original longitudinal and latitudinal coordinates, θlon and θlat to

freely roam the Stiefel manifold using the aforementioned approach then define the new

transformed parameters θ∗lon and θ∗lat to essentially be mirrored versions of these original
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coordinates. Specifically, we can define

θ∗lon =


θlon, |θlon| ≤ π

2

−π
2

+ (θlon − π
2
), θlon >

π
2

π
2

+ (θlon + π
2
), θlon < −π

2

(3.12)

and

θ∗lat =


θlat, |θlon| ≤ π

2

−θlat, |θlon| > π
2
.

(3.13)

These transformed coordinates essentially mirror and reflect the original coordinates

so that once the hemisphere is crossed, the path taken continues on the opposite side of the

Stiefel manifold, where there would naturally be an area of high posterior mass (Figure

3.7). In fact, one can check that the PPCA likelihood (Equation 3.16) is continuous

with respect to these new coordinates, allowing for efficient sampling even when there is

appreciable posterior mass near the edge of the hemisphere.

3.4.4 New Distributions Using the Givens Representation

Rather than placing priors over standard orthogonal matrix coordinates, Y , one can

place priors over the coordinates of the Givens representation Θ. In practice this leads to

new classes of possible distributions. [44] utilize sparsity promoting priors over the coor-

dinates of the Givens representation to produce a distribution over the Stiefel manifold

that favors sparse matrices. They apply this distribution to the estimation of normal

mixture classification probabilities. [45] make use of a different parameterization of or-

thogonal matrices to define a distribution over orthogonal matrices.
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Figure 3.7: Occasionally, the direction that best describes a high-dimensional dataset
in PPCA (black line) is near the boundary of the longitudinal coordinate (thick black
border). In this case, its negative will have an appreciable probability mass near it and
the same density. Because of this continuity in the density, these areas of parameter
space can be smoothly connected. Specifically, once the border is crossed (blue path)
the coordinates now describe a point on the opposite end of the Stiefel manifold (green
path).

3.4.5 Computational Scaling of the Givens Representation

The primary computational cost in using the Givens representation is the series of d

n × n matrix multiplications applied to In,p in Equation 3.6. Fortunately, unlike dense

matrix multiplication, applying a Givens rotation to an n × p matrix involves only two

vector additions of size p (Algorithm 2). Thus, since d scales on the order of np, compu-

tation of the Givens representation in aggregate scales as O(np2).

In comparison, EMHMC involves an orthogonalization of an n×p matrix which scales

as O(np2) and a matrix exponential computation that scales as O(p3) [40]. In practice,

we find that EMHMC scales better when p is much smaller than n, whereas the Givens

representation scales better when p is large and closer to n. We present benchmarks in

the following section.
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Input: θ
Result: Y
Y = In,p; idx = d
for i in p:1 do

for j in n:(i+1) do
Yi = cos(θidx)Y [i, ]− sin(θidx)Y [j, ]
Yj = sin(θidx)Y [i, ] + cos(θidx)Y [j, ]
Y [i, ] = Yi
Y [j, ] = Yj
idx = idx− 1
log density += (j − i− 1) log cos θidx

end

end
return Y

Algorithm 2: Psuedo-code for obtaining the orthogonal matrix Y from the Givens
Representation as well as appropriately adjusting the log of the posterior density.

3.5 Results and Examples

We demonstrate the use of the Givens representation and compare it with EMHMC

for three common statistical examples from the literature. All Givens representation

experiments were conducted in Stan using Stan’s automatic warm-up and tuning options.

For all Stan experiments, we ensured that there were no divergences during post-warmup

sampling and that all R̂ were 1.01 or below. All timing experiments were conducted on

a 2016 Macbook Pro.

3.5.1 Uniform Sampling on the Stiefel Manifold

We sample uniformly from the Stiefel manifold of various sizes to assess the practical

scalability of the Givens representation. We compare its sampling efficiency and R̂ values

to EMHMC on 500 post-warmup samples from each method (Table 3.1).

As mentioned in Section 3.4.1, to uniformly sample the Stiefel manifold in the Givens

representation, the change of measure term, Equation 3.11, must be computed as part

of the likelihood. Meanwhile, uniform sampling over the Stiefel manifold is achieved
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EMHMC Givens

p n R̂ neff R̂ neff

1 10 1.00 231 1.00 496
1 100 1.00 317 1.00 488
1 1000 1.00 238 1.00 487
10 10 1.00 408 1.00 390
10 100 1.00 473 1.00 487
10 1000 1.00 454 1.00 488
100 100 1.00 484 1.00 479

Table 3.1: R̂ and neff values averaged over all elements of the matrix parameter Y .

in EMHMC simply using a constant likelihood because the method uses the original

matrix coordinates. However, as mentioned in Section 3.4.5, this comes at the cost

of an expensive HMC update to ensure that the updated parameter still satisfies the

constraints.. In practice, we find that EMHMC scales better as n is increased, although

the approach using the Givens representation in Stan remains competitive (Figure 3.8).

Figure 3.8: For small values of n the Givens representation approach in Stan produces
more effective samplers per second while for larger values the EMHMC scales better
since the primary cost of the matrix exponential remains constant.
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3.5.2 Probabilistic PCA (PPCA)

Factor Analysis (FA) and Probabilistic PCA (PPCA) [46] posit a probabilistic gen-

erative model where high-dimensional data is determined by a linear function of some

low-dimensional latent state [24, Chapt. 12]. Geometrically, for a three-dimensional set

of points forming a flat pancake-like cloud, PCA can be thought of as finding the best

2-frame that aligns with this cloud (Figure 3.9). Formally, PPCA posits the follow-

ing generative process for how a sequence of high-dimensional data vectors xi ∈ Rn,

i = 1, · · · , N arise from some low dimensional latent representations zi ∈ Rp (p < n):

zi ∼ Np(0, I)

xi|zi,W,Λ, σ2 ∼ Nn(WΛzi, σ
2I). (3.14)

To ensure identifiability, W is constrained to be an orthogonal n×p matrix, while Λ is

a diagonal matrix with positive, ordered elements. Because xi is a linear transformation

of a multivariate Gaussian, its distribution is also multivariate Gaussian with mean zero

and covariance C := Wλ2W T + σ2 [24]. Letting Σ̂ := (1/N)
∑N

i=1 xix
T
i denote the

empirical covariance matrix, this gives us the simplified PPCA likelihood

p(x1, · · · ,xN |W,σ2) = −N
2

ln |C| − 1

2

N∑
i=1

xTi C−1xi (3.15)

= −N
2

ln |C| − N

2
tr(C−1Σ̂). (3.16)

Traditional PCA corresponds to the closed-form maximum likelihood estimator for

W in the limit as σ2 → 0, providing no measure of uncertainty for this point-estimate.
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subspace used to
generate data

subspace from 
point-estimate

z
y

x

Figure 3.9: PCA finds a single orthogonal matrix in the Stiefel Manifold that is closest,
in terms of average squared distance, to the set of points. This point estimate can of-
ten mislead us from the true subspace, which in this case is the horizontal (x, y)-plane
which was used to generate the noisy data. The data shown here is within the three-
-dimensional space parameterized by x, y, and z. Alternatively, in Probabilistic PCA
(PPCA) a posterior distribution is used to estimate the approximating subspace and
also to quantify the uncertainty of the result.

Furthermore, for more elaborate models, the analytical form of the maximum-likelihood

estimator is rarely known.

We used the Givens representation to infer this model using simulated data. Specifically,

we generated a three-dimensional dataset that lies on a two-dimensional plane with N =

15 observations according to the above generative process. The data is plotted in Figure

3.9). We chose diag(Λ) = diag(2, 1), σ2 = 1, and W to be I3,2, which in the Givens

representation corresponds to θ12 = θ13 = θ23 = 0 i.e. the horizontal plane. We point

out how this horizontal plane differs from the slanted plane obtained from the classical

PCA maximum likelihood estimate (Figure 3.9). In this case, the advantage of the full

posterior estimate that the Bayesian framework affords is clear. Posterior samples of θ13,

which if we recall from Figure 3.1 is the Givens representation angle that controls the

upwards tilt of the plane, reveal a wide posterior which cautions us against the spurious
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maximum likelihood estimate of θ̂13 = −0.15 (Figure 3.10, right). Note also that by

naturally constraining the set of angles considered as in Section 3.4.3, the superfluous

modes that EMHMC visits are avoided. Likewise, posterior distributions of Λ are more

informative than point estimates for quantifying the inherent dimensionality of the data

(Figure 3.10, left).

Figure 3.10: PPCA inference for three-dimensional synthetic data. (Left) Poste-
rior draws of the Λ parameter are more informative in dimensionality selection than
point-estimates. The posterior distributions for Λ1 and Λ2 (dark grey, and grey) con-
tain almost no mass near zero, suggesting that the data probably contains significant
variation in those directions. Meanwhile, the posterior Λ3 (orange) has it posterior
mode at zero, suggesting there is a high probability that this parameter is close to
zero, which the point estimate by itself neglects to convey. (Right) By limiting the
angles of rotation in the Givens Transform, we can further avoid unidentifiability in
our problem and eliminate multi-modal posteriors that show up in other methods such
as EMHMC.

3.5.3 The Network Eigenmodel

To illustrate the Givens representation on a more elaborate model with orthogonal

matrix parameters, we used it to infer the network eigenmodel of [37] on real data and

compared it to EMHMC. The same model was inferred using EMHMC by [40]. The data,

which was originally described in [47] and freely available in the R package eigenmodel,
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consists of a symmetric 230× 230 graph matrix, Y , which encodes whether the proteins

in a protein network of size n = 230 interact with one another.

The probability of a connection between all combinations of proteins can be de-

scribed by the lower-triangular portion of a symmetric matrix of probabilities, however

the network eigenmodel uses a much lower dimensional representation to represent this

connectivity matrix. Specifically, given an orthogonal matrix U , a diagonal matrix Λ,

and a scalar c, then letting Φ(·) represent the probit link function, the model is described

as follows:

c ∼ N (0, 102) (3.17)

Λi ∼ N (0, n), ∀i (3.18)

Yij ∼ Bernoulli
(
Φ([UΛUT ]ij + c)

)
, ∀i > j. (3.19)

The Stan implementation using the Givens representation took approximately 300

seconds to collect 1000 samples, 500 of which were warmup. In contrast, EMHMC took

812 seconds to run the same 1000 samples using the hyperparameter values specified in

[40]. Figure 3.11 compares traceplots for c,Λ, and the elements of the top row U for the

500 post warmup samples from each sampler. As mentioned in [40] the non-ordering of

the Λ parameters results in a multimodality in the posterior whereby values of Λ can be

“flipped”. Computed R̂ and neff for these parameters are shown in Table 3.2.

3.6 Discussion

We have introduced a systematic approach to incorporating the Givens representation

into a general Bayesian inference framework for the purpose of inferring general Bayesian
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Figure 3.11: Traceplots of samples from the Givens representation implementation in
Stan and EMHMC reveal the multimodality in the elements of Λ. For brevity, only
the top three elements of U are shown.

models with orthogonal matrix parameters. Our approach overcomes practical barriers to

using the Givens representation in such a setting, including having to efficiently compute

the measure adjustment term and dealing with singularities caused by differences in

topology. Furthermore, we also provided an intuitive explanation behind the Givens

representation that is accessible to statisticians and followed with practical examples for

which we provide code. We expect our approach can be used quite widely in practice by

a variety of practitioners.
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EMHMC Givens

Parameter R̂ neff R̂ neff

c 1.00 22 1.00 496
Λ1 1.00 19 1.00 500
Λ2 1.00 23 1.00 500
Λ3 1.10 18 1.00 500

U [1, 1] 1.01 500 1.00 500
U [2, 1] 1.00 500 1.00 500
U [3, 1] 1.02 500 1.00 500

Table 3.2: R̂ and neff values for the parameters in the network eigenmodel. For
brevity, only three of the matrix parameters are shown.
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Chapter 4

Hierarchical Factor Analysis in

Coagulopathy

In this chapter, we present our work titled “Understanding Coagulopathy using Multi-

view Data in the Presence of Sub-Cohorts: A Hierarchical Subspace Approach” [48]

published in the proceedings of the 2018 Machine Learning for Healthcare Conference in

the Journal of Machine Learning Research (JMLR). Death from trauma is most often the

result of uncontrollable bleeding as a result of Acute Traumatic Coagulopathy (ATC), a

disease that manifests itself differently in different sub-cohorts of trauma patients. Un-

derstanding the mechanisms of ATC and how existing patient tests can inform us about

these mechanisms is key to treating the disease. We introduce a hierarchical Canonical

Correlation Analysis (CCA) model that captures a lower dimensional representation of

the coagulation system based on blood protein and other tests. The hierarchial nature

of the model is ideal in the setting where multiple sub-cohorts are present, but statistical

strength can reasonably be borrowed from similar groups. We illustrate how the model

may be useful in understanding and treating ATC.
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4.1 Introduction

Trauma is the leading cause of death between the ages of 1 and 44 [49]. Major trauma

often induces a coagulopathic state known as Acute Traumatic Coagulopathy (ATC) that

manifests in increased bleeding and resultant mortality [50]. Despite the coagulation

cascade being a well-studied field in biochemistry, the causes and mechanisms behind

ATC are still uncertain [51].

One of the primary difficulties in treating ATC is information scarcity. During trauma

care, the state of the coagulation system is often assessed by thromboelastography (TEG).

This assay allows for quick assessment of the patient’s clotting potential using the vis-

coelastic properties of the patient’s blood such as time to clot formation, clotting rate,

clot strength, and rate of clot lysis. Unfortunately, TEG does not provide much insight

on specific clotting factor levels which can highlight the abnormalities causing ATC. As-

says that test for plasma protein levels can take much longer than TEG or may not be

available. Thus, treatment decisions must be made with limited information. If we can

use historical data and other patient data to ascertain the relationship between plasma

protein levels and TEG, decision making can be improved at the point of care.

While some protein data has been collected and analyzed [52], a consensus mechanism

for ATC remains to be found. One possible reason for this is that there may not a single

mechanism behind ATC. Currently, ATC is characterized primarily by clot times, but

assuming a single mechanism can obfuscate the more likely heterogeneous nature of the

disease that has been alluded to previously in the literature [52]. The coagulation system

is a complex network of reactions with many positive and negative feedback mechanisms

[53]. Because of this, there are many possible mechanisms that can cause the system to

fail. Distilling these mechanisms into a small collection of easily-interpretable variables

would go a long way towards better understanding of ATC. This could potentially enable

46



Hierarchical Factor Analysis in Coagulopathy Chapter 4

recognition of phenotypes using limited information such as TEG results, in order to

inform decision making in practice.

Further complicating the issue is the inherent heterogeneity in patients and injury

types. Coagulopathy is not relegated to any particular form of trauma or injury mech-

anism, e.g. car accidents or gunshot wounds. A-priori, we would expect that patients

with different types of injury might have different coagulopathic phenotypes and cannot

be grouped together in an analysis.

We propose a probabilistic graphical model that extends canonical correlation analysis

(CCA) to distill the complex network of interactions in trauma-induced coagulopathy

into a small set of easy-to-understand variables. The model extends CCA in such a

way as to allow different sub-cohorts (based on injury mechanism) to be represented by

different latent variables, i.e. subspaces. At the same time, the model is able to “borrow”

information between similar sub-cohorts when data in a particular sub-cohort is sparse.

This latter feature is accomplished by placing a hierarchical prior over the orthornormal

matrices of weights used in CCA, via the recently introduced Givens representation. To

our knowledge this is the first application of hierarchical modeling (in the Bayesian sense)

to CCA, PCA, or any kind of model with orthornormal matrix parameters, as this task

was previously intractable for even small problems without a change of representation

that the Givens transform provides.

We show how, when applied to blood protein assays and TEG measurements, our

model can find different low-dimensional descriptions of the coagulation system for dif-

ferent sub-cohorts of injured patients, and how the model can share information across

sub-cohorts, via hierarchical modeling. We then illustrate how the shared subspace prop-

erties of CCA may be used in a clinical setting to phenotype patients and guide treatment

using TEG measurements (i.e. without expensive and time-consuming protein assays).
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4.2 Cohort

Our dataset consists of whole blood collected from 174 patients upon arrival to the

emergency department of a Level I trauma center between 2005 to 2015 as part of an

ongoing study [54].

4.2.1 Cohort and Sub-Cohort Selection

To remove any bias arising from age and differing injury severity, we selected patients

below the age of 45 and with an injury severity score greater than or equal to 25, a

common threshold used to mark severe injury in past studies. We examined patients suf-

fering from gun shot wounds (GSW), motor vehicle collisions (MVC), stab wounds (SW)

and assault, representing a diverse set of possible injury mechanisms. These divisions are

also representative of groups with larger sample sizes (GSW) and smaller sample sizes

(assault) to illustrate the inferential power of our hierarchical model. A summary of our

sub-cohorts is given in Table B.1.

4.2.2 Feature Choices

For each patient, we examined the TEG and blood protein assays. These consist

of values of R, K, MA, and Ly30 for TEG and FactorII, FactorX, Protein C, D-Dimer,

Fibrinogen, and Platelets for blood protein. The values are collectively referred to as

xteg and xprot for the remainder of this work. Table B.2 in the Appendix summarizes the

number of missing entries for these values amongst the 174 total patients. We describe

in the methods section how we account for these missing values.
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4.3 Methods

We start with a description of how we handle missing values in our analysis, and give

a short introduction into Canonical Correlation Analysis. Next, we provide a description

of how we conduct full Bayesian posterior inference over the orthornormal matrix param-

eters present in CCA using the Givens transform and Stan [30]. Finally we describe our

novel extension to CCA that takes into account the heterogeneity between sub-cohorts

present in our dataset via Bayesian hierarchical modeling.

4.3.1 Missing Values

We use multiple imputation as described in [55] to conduct inference while properly

accounting for the extra uncertainty that arises from missing data. Specifically, we draw

five imputed datasets, conduct Hamiltonian Monte Carlo (HMC) inference in Stan sepa-

rately on these imputed datasets, and then combine all posterior samples (after sampling

is complete) into a single pool of samples. In this way our posterior samples represent

a mixture of posteriors under various imputation possibilities. For actual imputation we

use a nonparametric random imputation method based on CART and described in [55].

4.3.2 CCA and Probabilistic CCA (PCCA)

Canonical correlation analysis (CCA) is an extension of PCA used to extract cross-

covariance information about a pair of related datasets, or views, that are tied to a

common set of samples [24]. The classical formulation of CCA finds a pair of linear

projections that maximize the shared variance between the two views. Inspecting the

obtained projections allows one to observe the level of commonality across views.

The probabilistic formulation of CCA (PCCA), [56], posits a generative process for the

same task. Formally, if we have two sets of different data types, or views, xprot ∈ RDprot
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and xteg ∈ RDteg , we can define for each view a set of orthonormal loading matrices

W and B and corresponding diagonal matrices, Λ and Γ, that describe the variance

explained by each latent dimension. Then for each sample i ∈ (1, ...N), we can define

three lower-dimensional latent variables: one for each view, z
(i)
prot ∈ RLprot and z

(i)
teg ∈ RLteg ,

and a shared latent variable that connects both views: z
(i)
s ∈ RLs . We define z(i) :=

(z
(i)
prot, z

(i)
teg, z

(i)
s ). A single data point for sample i is generated according to the following

specification:

z(i) ∼ N (z
(i)
prot|0, ILprot)N (z(i)

s |0, ILs)N (z
(i)
teg|0, ILteg) (4.1)

x
(i)
prot ∼ N (x

(i)
prot|BxΓxz

(i)
prot +WprotΛprotz

(i)
s + µprot, σ

2
protIDprot) (4.2)

x
(i)
teg ∼ N (x

(i)
teg|ByΓtegz

(i)
teg +WtegΛtegz

(i)
s + µteg, σ

2
tegIDteg). (4.3)

The maximum likelihood estimate (MLE) for this model converges to the solution of

classical CCA up to an invariant rotation of the axis, as shown in [56]. The intuition

behind this generative process is that by introducing a shared latent variable zs, the

learned W matrices capture information that is shared between the two views, while the

B matrices capture information that is not contained in the other view. A graphical

model of this process is shown in Figure 4.1.

Automatic Dimensionality Selection We note that the diagonal matrices Λ and

Γ serve as importance weights, in the sense that they describe the weight given to each

latent dimension in predicting the higher dimensional data. When these weights are close

to zero, they indicate that a latent dimension has no predictive relationship to the data.

Thus, examining these weights can yield insight into the inherent dimensionality of the

data. Specifically, using full posterior draws of Λ and Γ allows us to make probabilistic
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Figure 4.1: Graphical Model of a Non-Hierarchical CCA for our dataset. We attach
various zero-centered Cauchy priors on the angles of the orthonormal matrices under
the Givens parameterization to induce sparsity in our solutions.

statements about the inherent dimensionality of our data, e.g. if posterior draws show

that a weight is below some value, then with high probability we can conclude that the

latent dimension is unnecessary. We use this type of analysis for selection of the latent

dimension in our results. We place Cauchy priors over importance weights as well as

matrix coefficients to induce sparsity, as described in the Appendix.

4.3.3 Hierarchical Modeling and Hierarchical CCA

Treating dissimilar patients, such as patients with different types of injuries, as a

single homogeneous group will lead to statistical bias in any inference. On the other

hand, a full model where separate parameters are allocated and estimated for each of a

multitude of sub-cohorts can lead to large models with many parameters that usually
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result in high uncertainty estimates in the fully Bayesian case, and overfit estimates in

the maximum likelihood case (lest we provide an inordinate amount of data). Even in

the age of big data, this can be an issue, as once we have appropriately sub-cohorted

by all relevant features, e.g. injury type, sex, race, age, weight, etc. we are left with

small sample sizes within each sub-cohort. Furthermore, certain sub-cohorts are prone

to having less data, e.g. severely injured patients usually have fewer test values available

because there was no time to collect data for those patients!

Hierarchical models are well known in Bayesian data analysis as an elegant solution to

this conundrum. This approach proceeds by treating sub-cohorts as separate entities with

their own respective parameters, but additionally modeling the dependence between the

groups with a common prior distribution over the parameters [57]. Hierarchical models

are very flexible because intuitively they can “adapt” to data by “shrinking” the value

of similar groups to a common value when data in a group is sparse, but they allow

parameter estimates to approach the value given by the data as more data is made

available. The hierarchical model includes as a special case the “full” model, where each

group gets its own parameter that is estimated separately, and a “null” model where each

group is treated as one big homogeneous group. Hierarchical models allow us to have a

model somewhere between these two extremes.

Hierarchical CCA In our probabilistic graphical model, we desire separate CCA pa-

rameters for each sub-cohort of injured patients. This calls for separate orthonormal

matrices for each sub-cohort, and thus for hierarchical modeling, a prior distribution

over orthornormal matrices. At least two distributions over orthornormal matrices exist

in the statistics literature [43]. One such distribution is the Matrix Langevin distribution.

Incorporating these distributions into a probabilistic graphical model and conducting in-

ference is difficult however, because evaluating their density functions involves computing

52



Hierarchical Factor Analysis in Coagulopathy Chapter 4

the hypergeometric function of a matrix argument, a problem shown to be difficult even

for small matrices [58]. We detail in the following section how we use the Givens represen-

tation to build a hierarchical CCA model and perform joint analysis of the sub-cohorts.

4.3.4 Givens Representation for Graphical Models

Training of the model was done in Stan using Hamiltonian Monte Carlo (HMC)

sampling of posteriors for all latent variables and unknown parameters.

In order to conduct full Bayesian inference on weight matrices and set hierarchical

priors on such matrices, we require a way to sample on the space of orthonormal matrices,

preferably using a robust sampling method like HMC, a difficult problem in general due

to the constraint the samples of matrices must satisfy [40]. While methods exist for HMC

sampling of posteriors of general constrained parameters [38, 40], these methods treat

constrained and unconstrained parameters separately and require separate numerical

integrators for each type of parameter, making them difficult to implement in larger

probabilistic graphical models, with complicated priors, such as the model in described

in the preceeding section.

In order to sample posteriors of orthonormal matrices, we instead appeal to the

Givens representation introduced earlier. Because the Givens representation represents

orthornormal matrices as angles, we can place hierarchical priors over orthornormal ma-

trices in a straight-forward manner by simply placing priors over the angles. In our model

we do just that, placing truncated normal priors over the respective angles of each group

of injured patients. Our full probabilistic graphical model is similar to the model shown

earlier in Figure 4.1, but differs in that it contains four times as many group-level pa-

rameters, for the four different sub-cohorts described earlier. Furthermore, the truncated

normal prior acts as a hierarchical prior over the orthornormal matrices.

53



Hierarchical Factor Analysis in Coagulopathy Chapter 4

4.4 Results

In the first sub-section we apply our model to plasma protein assays and TEG mea-

surements to find low dimensional descriptions of the coagulation system for each re-

spective sub-cohort of injured patients. We illustrate how in a probabilistic framework,

we can assess with confidence the differences in sub-cohorts, as well as assess how much

information our model captures, using posterior information. We then briefly describe

the affect of our hierarchical inference.

In the second subsection we explain how the shared subspace properties of CCA

may be used in a clinical setting to phenotype patients and guide treatment using TEG

measurements, without protein assays.

4.4.1 Finding Distinct Phenotypes of Coagulopathy

Table 4.1 shows point estimates of the orthornormal matrices of weights, Wprot and

Wteg, that relate the common latent variable, zs, to measured data, xprot and xteg, for

both the gun shot wound (GSW) and motor vehicle collision (MVC) sub-cohorts. Both

groups of patients share commonalities in their latent variables. For example, their first

latent variables correspond to high FactorII, FactorX, and platelets, but also to low TEG

K (speed of clot formation). On the other hand, the model captures differences between

the different groups, e.g. FactorX is a smaller component of the first latent variable in the

GSW sub-cohort than in the MVC sub-cohort. Full posterior inference provided by Stan

and the Givens transform allows us to compare these relationships probabilistically using

full posteriors rather than relying on point estimates (see Figure 4.2 for an example).

From full posterior draws we can simply count the number of posterior draws where the

FactorX weight parameter is higher in the GSW sub-cohort than the MVC sub-cohort,

giving us a posterior probability of 0.6, in this case of the statement being true, given
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Table 4.1: Point estimates for the orthornormal matrix of weights relating the com-
mon (between the protein and TEG data) latent variable to data for each respective
sub-cohort. Point estimates were obtained by taking the sample with the largest log
probability amongst all 20,000 posterior samples. Cells are colored by intensity of
estimated values. Red indicates a strong positive correlation, light red a weak pos-
itive correlation, blue a strong negative correlation, and light blue a weak negative
correlation.

GSW MVC

Proteins Latent 1 Latent 2 Latent 1 Latent 2

FactorII 0.47 -0.22 0.46 -0.38
FactorX 0.56 -0.09 0.82 0.05
ATIII 0.13 0.06 -0.02 0.57
D-Dimer -0.15 -0.95 -0.05 0.51
Fibrinogen 0.10 0.17 0.22 0.30
Platelets 0.64 -0.02 0.26 0.41

TEG

R -0.74 0.06 0.00 -0.03
K -0.42 -0.07 -0.84 0.14
MA 0.51 0.14 0.53 0.21
Ly30 -0.06 0.98 0.01 0.97

the data we observed.

Other differences between the two sub-cohorts are apparent in the point estimate of

the weight matrix. The model reveals that the second latent variable in the GSW sub-

cohort is tied strongly to low D-Dimer and low Ly30, while in the MVC sub-cohort the

second latent variable is actually tied to high D-Dimer and low Ly30. Figure 4.3 visually

illustrates this sub-cohort specific relationship our model was able to find.

In Figure 4.4 we compare posterior distributions of the “importance” parameters Λ

and Γ of each of the latent dimensions. The plot can be suggestive of different inherent

dimensionalities across the different subcohorts. For example the assault group has a

posterior for the weight of the second shared dimension that is closer to zero while the

GSW group’s weight for that same weight is concentrated more around a smaller positive

value, possibly indicating that of the GSW victims there is an extra dimension to be kept
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Figure 4.2: Densities estimated from posterior samples of the FactorX weight in the
matrix Wprot, in the GSW and MVC sub-cohorts respectively. These posterior results
indicate the MVC sub-cohort are represented by a latent dimension that places more
weigh on FactorX.

track of in their shared latent space.

Lastly, we make note of the shrinkage properties of the hierarchical prior. We con-

ducted separate, non-hierarchical inferences (not shown here) for the GSW group and

MVC groups and found that the posterior distributions of their parameters, in particular

the Wprot and Wteg matrices, were left relatively unchanged from the overall hierarchical

estimates shown here. These groups had 85 and 52 patients in them respectively. On

the other hand, we found much wider posteriors on parameters when estimating the as-

sault group, which consisted of only 16 patients, whereas the hierarchical estimate yields

narrower posteriors that are closer to the estimates of the other sub-cohorts.
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Figure 4.3: Relationship between D-Dimer and TEG Ly30 for different sub-cohorts
of patients. For gun shot wounds victims and stab wound victims (both penetrating
injuries) the two variables have a negative correlation where as for assault and motor
vehicle collisions (both blunt injuries) the relationship is slightly positive.

4.4.2 Using TEG and Injury Data to Predict Phenotypes

Intuitively, the hierarchical CCA model distills the information available in protein

and TEG data into shared latent components and ties together the relationship between

proteins and TEG by specifying how much of the information carried in these measure-

ments can be ascertained simply by knowing the values of the latent variables. For

example, in Table 4.1 we see that latent variable 1 of the GSW sub-cohort is tied to high

FactorII and FactorX levels in the protein category, and low R, low K, and high MA

in the TEG category. Thus intuitively, given values from a TEG test of a patient and

their injury type, we should be able to back out a posterior distribution of the underlying

protein values of that patient. In the case of a GSW victim with low R, low K, and high

MA, the CCA model suggests that there is a good chance that this patient could have

high FactorII and FactorX levels. This information on possible values of the underlying

protein levels could serve as valuable information in a real life trauma setting where in-

terventions are guided based on the state of the coagulation system. For example, plasma
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Figure 4.4: Posterior distributions of the “importance” parameters Λ and Γ of each of
the latent dimensions. In each facet we show a boxplot for the importance parameters
of latent dimension 1 and latent dimnension 2, using samples from their posterior
distributions. These weights describe the exploratory power the latent variables have
in describing our data (see methods section). The row of shared facets represent
importance weights for the latent variable that is shared between the protein and
TEG views while the row of TEG facets shows posteriors of importance weights for
the TEG-only latent variable.

transfusions are administered when it is thought that a patient’s Factor levels are low.

Figure 4.5 shows posterior draws of what a GSW patient’s FactorII will look like given a

TEG reading with low R, low K, and high MA.

The diagonal weight matrix Λ can also roughly tell us how much coagulation protein

information we can extract using TEG readings. High posterior values for the weights

connecting the shared latent variable to the protein data signify that variance in the

protein data can be readily explained by information that is shared between both the

protein and TEG views. Low values of those weights or high values of the Γ weights,

connecting the latent protein variables to the protein data, would signify that there is

information in the protein data that cannot be captured by the shared latent variable

and thus can not be captured by TEG.
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Figure 4.5: Posterior samples of estimated FactorII levels for a patient given their
TEG values.

4.5 Discussion and Related Work

Our results show how trauma data can be distilled into low dimensional latent compo-

nents in such a way as to respect the inherent difference in sub-cohorts of trauma patients.

We show how differences in different groups can manifest themselves in different models,

and how Bayesian posterior analysis of latent variable “weights” can be used to assess

the inherent dimensionality of data in different groups. We then showed the benefits of

hierarchical modeling as it pertains to our analysis, and why hierarchical modeling is an

essential tool when sub-cohorting. We ended with a possible use case of how understand-

ing the underlying relationship of coagulation proteins and TEG measurements via latent

variables can omcrease our understanding of coagulopathy and suggest improvements in

the treatment of trauma. While we acknowledge that sub-cohorting by injury type may

not be the optimal sub-cohort strategy, our method can be used in more general settings
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and especially in medicine where sub-cohorting is important to analysis.
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Chapter 5

Mechanistic Models

In this chapter we present our work titled “Relating Disparate Measures of Coagulapathy

Using Unorthodox Data: A Hybrid Mechanistic-Statistical Approach” from the proceed-

ings of StanCon Helsinki 2018 [59]. We first describe the nature of coagulopathy and

TEG measurements, and then describe our method of fitting ODE models to derived

data. Finally, we show results from applying this estimation procedure in practice.

5.1 Coagulopathy and TEG Measurements

Traumatic injury is the leading cause of death for people under the age of 44 [49].

Many of these deaths are the result of uncontrolled bleeding due to a trauma-induced

disorder called Acute Traumatic Coagulapathy, or known more simply as Coagulopathy

[50]. How major trauma causes Coagulapathy and how to treat the disease is still a

subject of ongoing research. There are various competing hypotheses for why so many

trauma patients are coagulapathic. The Coagulation Cascade and the Fibrinolytic system

are complex networks of dynamically interacting proteins in blood that are responsible

for forming and breaking up clots [53].
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Figure 5.1: Direct protein concetration measurements and TEG are used to examine
the state of the Coagulation Cascade of trauma patients using a small blood sample.
While direct protein measurements are obviously more informative of the exact state
of a patient’s blood at any given time, they are slow and expensive to obtain, compared
to TEG.

It is generally understood that Coagulopathy comes as a result of a malfunction in

one or both of these systems. To better study these complex networks, and how they are

affected during trauma, doctors and scientists have two major assays at their disposal:

direct protein concentration measurements and Thromboelastography, known as TEG

(Figure 5.1). Direct protein concentration measurements can tell us the concentration

levels of key players in the body’s coagulation system. Thus they can help us to under-

stand why a patient’s blood is not clotting and how they can be treated. Unfortunately,

these tests are available only at a very select number of hospitals specializing in trauma,

they are expensive to run, and most importantly they are slow to run in a setting where

applying the correct treatment as quickly as possible is of the utmost importance.
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In contrast to direct protein measurements, TEG measurements are ubiquitous, inex-

pensive to run, and can provide results in as little as 20 minutes. However, they do not

measure protein concentrations directly. Instead, TEG works by placing a small sample

of blood in a cup, chemically initiating the clotting process, then using a metal probe

to measure the physical size of the resulting clot over time in millimeters (mm) (Figure

5.2). The resulting output is a measure of clot thickness over time for the patient that

is indicative of several important features of their clotting state including:

• How long it takes for a patient’s blood to start forming a clot

• How fast the clot grows once clotting is initiated

• How strong the patient’s clots become

• How long the clots are able to maintain their integrity before being broken up

While TEG measurements clearly contain useful information regarding a patient’s

clotting state, they are simply a proxy for the latent system of clotting proteins in the

blood that is much more difficult to measure. Ideally, we can use our mechanistic un-

derstanding of the coagulation system in the form of Ordinary Differential Equations

(ODEs) along with a statistical model, to better understand what exactly TEG is telling

us about the state of the underlying coagulation system, and furthermore to infer a

patient’s protein concentrations using solely their TEG measurements.

Typically, mechanistic ODE models are fit in Stan using data that consists of the

states of the ODE over time, see e.g. [60] or [61]. In these settings one typically posits

an error distribution for the data that is centered around the forward simulated values

of the ODE. In contrast, our TEG data does not come in the form of clot thickness over

time, but rather in the form of four quantities derived from the clot thickness curve that
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Figure 5.2: In a TEG assay a small sample of blood is placed in a cup which is spun
around quickly to initiate the clotting process. A thin metal pin then measures the
size over time in millimeters (mm) of the resulting clot.

are typically used in the medical community to summarize the most important properties

of a TEG curve (Figure 5.3). These four quantities are described below:

1. R: The time (in minutes) for the clot to reach 2 mm. This quantity represents the

time it takes for the clotting process to initiate.

2. K: The time (in minutes) for the clot to reach 20 mm, from the time it reached 2

mm. This quantity represents speed of clot formation.

3. MA: The maximum amplitude of the clot i.e. the size of the clot when it is at its

largest. This quantity measures the strength of a patient’s clot.
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Figure 5.3: TEG curves represent the thickness of a clot over time and are summarized
by the four key quantities R, K, MA, and Ly30.

4. Ly30: The percentage of the clot which has broken down after 30 minutes as

compared to the maximum amplitude of the clot. This quantity measures how fast

clots are being broken up.

5.1.1 A Mechanistic Model of the Coagulation System

The coagulation system is well-studied, with several mechanistic ODE models in the

literature that describe how the system evolves dynamically over time. Models for the

coagulation system vary widely in the number of states, reactions, and parameters they

contain, including complex models with up to 80 states [62]. For our purposes we de-

veloped a simple reduced-order model based off of elements from both the work by [62]

as well as [63] that captures the most important players in the coagulation system. The

model includes the most basic components of the clotting process: the coagulation cas-
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Figure 5.4: A seven-state model of coagulation that models the clotting process, actual
clots, and the clot breakdown process. The rate of activation of FII in the coagulation
cascade is summarized by a delay term that is governed by parameters that are specific
to the patient.

cade responsible for forming clots, actual clot material, and clot breakdown or Fibrinolysis

(Figure 5.4).

We model the coagulation cascade as primarily consisting of the activation of the

blood protein FactorII (FII) to its activated form FIIa via the action of a sigmoid

delay function that is parameterized by parameters b and c. We model these parameter

values as specific to the patient. Importantly, FIIa can be blocked by antithrombin (AT ).

FIIa once activated can then facilitate the conversion of raw clot material, Fibrinogen,

or Fg in to an actual clot Fibrin, or Fn. Once a clot is formed, the clot can be broken

up by the protein tPA, which itself can be blocked by the protein PAI. The differential

equations for this model summarize this process and are shown below. Values for reaction

constants represent how fast these respective reactions occur with respect to one another.

The values we used for these constant were either gathered from the literature or fit using

Maximum A-Posteriori (MAP) estimation.
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dFII

dt
= −CascadeDelay(t, b, c) · TFPI(t) · FII

KFIIa + FII
(5.1)

dFIIa

dt
= CascadeDelay(t, b, c) · TFPI(t) · FII

KFIIa + FII
− kAT · FIIa · AT (5.2)

dAT

dt
= −kAT · FIIa · AT (5.3)

dFg

dt
= −kclot · FIIa ·

Fg

Kclot + Fg
(5.4)

dFn

dt
= kclot · FIIa ·

Fg

Kclot + Fg
− klys · tPA ·

Fn

Klys + Fn
(5.5)

dtPA

dt
= −kPAI · tPA · PAI (5.6)

dPAI

dt
= −kPAI · tPA · PAI (5.7)

(5.8)

5.1.2 A Mechanistic Model for TEG

While the model includes the concentration of Fn (Fibrin) which is a criticial com-

ponent of clots, the actual clot thickness which TEG measures is not measuring Fn per

se, but some function of it. Following [63], we used the Hill function

ClotThickness(t) = k
Fn2

K + Fn2
(5.9)

with k = 64.0 and K = 100.0 to translate Fn to clot thickness.
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5.2 Inferring ODEs Using Hitting Time and Max

Data

In the typical ODE estimation setting, where our data consists of the value of the

ODE states over time, yn, n = 1, · · · , N there typically is a likelihood of the form

N∏
en=1

p(yn|y(sim)
n (y0, θ)), (5.10)

where y
(sim)
n (y0, θ) is a forward simulation of our ODE, given the initial conditions y0 and

the parameters θ. The Hamiltonian Monte Carlo (HMC) algorithm requires the gradient

of the likelihood with respect to the quantities we are trying to estimate, in this case y0

and θ.

In the case of TEG in coagulapathy, the data consists of hitting times, such as the

quantity R, which represents the time it takes for a patient’s clot to reach a size of 2

mm. Thus, in a probabilistic model, the likelihood must instead take the form

p(R|R(sim)(y0, θ)). (5.11)

For HMC to obtain the correct gradients of this likelihood, care must be taken in

computing the hitting time Rsim(y0, θ). First, note that a numerical ODE solver will

return the value of the solution at discrete time points, which in the case of of TEG,

are used to compute clot thickness, Cn at the discrete time points t1, · · · , tN . R is a

continuous value formally defined as

R := inf{t : C(t|y0, θ) > 2.0}, (5.12)

which unfortunately does not have a smooth derivative with respect to the initial condi-

68



Mechanistic Models Chapter 5

tions and unknown parameters. In practice, this would cause problems for HMC, because

the log-likelihood should be a smooth function of the unknowns, and ideally have smooth

derivatives as well.

To ameliorate this, the discrete solution points can be utilized {Cn(y0, θ)} to ob-

tain a continuous function C(t|y0, θ) by interpolating the solution points using cubic

splines. The interpolated function will have two smooth derivatives, allowing HMC to

run smoothly.

5.2.1 Using Cubic Splines to Obtain Continuous ODE Solutions

Fortunately, the Stan language is expressive enough to allow us to easily implement

code for computing a smooth function C(t) that interpolates through the discrete points

Cn, n = 0, · · · , N defined at the points t0, · · · , tN . In particular, we can write a function

in Stan to fit a cubic interpolating spline through a given set of points. We provide a

quick review of cubic smoothing splines and how to compute them loosely following the

exposition in [64].

Our aim is to derive the functional form of a group of cubic splines s3,i−1(t) over the

intervals [ti−1, ti]. The functions will be cubic polynomials and will be twice differentiable,

even at the nodes t0, · · · , tN . We first define fi = s3(ti), mi = s3(ti), and Mi = s′′3(ti) for

i = 0, · · · , N . Since s3,i−1 is a cubic polynomial, its second derivative is linear. Since the

cubic spline must have continuous second derivatives we have

s′′3,i−1(t) = Mi−1
ti − t
hi

+Mi
t− ti−1

hi
(5.13)

for t ∈ [ti−1, ti] where hi = ti − ti−1. Integrating twice we obtain

s3,i−1(t) = Mi−1
(ti − t)3

6hi
+Mi

(t− ti−1)3

6hi
+ Ci−1(t− ti−1) + C̃i−1 (5.14)
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The constants Ci−1 and C̃i−1 are uniquely determined by imposing the end point

values s3(ti−1) = fi−1 and s3(ti) = fi, yielding for i = 1, · · · , N − 1

C̃i−1 = fi−1 −Mi−1
h2
i

6
(5.15)

Ci−1 =
fi − fi−1

hi
− hi

6
(Mi −Mi−1). (5.16)

By imposing continuity of the first dervivatives at the nodes we arrive at the linear

system

µiMi−1 + 2Mi + λiMi+1 = di, i = 1, · · · , N1, (5.17)

where

µi =
hi

hi + hi+1

(5.18)

λi =
hi+1

hi + hi+1

(5.19)

di =
6

hi + hi+1

(
fi+1 − fi
hi+1

− fi − fi−1

hi

)
(5.20)

for i = 1, · · · , N − 1. Setting λ0 = µN = 1 and d0 = d1 leads to the following linear
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system which defines our spline coefficients:



2 λ0 0 · · · 0

µ1 2 λ1
. . .

...

0
. . . . . . . . . 0

...
. . . µN−1 2 λN−1

0 · · · 0 µN 2





M0

M1

...

MN−1

MN


=



d0

d1

...

dN−1

dN


(5.21)

Because this system is tridiagonal, we can solve it in O(N) time using the Thomas

algorithm [64].

5.2.2 Obtaining Hitting Times from the Spline Interpolation

With our continuous clot thickness function in hand, we are now able to compute

stopping times that are a smooth function of our unknowns by using an algebraic solver

on our continuous function and appealing to the implicit function theorem. Letting

C(t|y0, θ) represent our spline function that interpolates the discrete points Cn(y0, θ), R

is defined implicitly as

C(R(y0, θ)|y0, θ) = 2.0. (5.22)

Note that R, the time that the clot hits 2.0 mm is dependent on the initial value of

the system, as well as the parameter values of the system. Taking the partial derivative

of both sides of the equation with respect to θ yields

∂

∂R
C(R|y0, θ)

∂R

∂θ
+

∂

∂θ
C(R|y0, θ) = 0.0, (5.23)
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which then yields the correct partial derivative we need for HMC:

∂R

∂θ
= − ∂

∂θ
C(R|y0, θ)

(
∂

∂R
C(R|y0, θ)

)−1

. (5.24)

This solve can be accomplished and the correct partial derivative will be used in

Stan’s HMC implementation by simply passing the function C(t) to the algebraic solver

available in Stan which uses a modified version of Newton’s method to find the solution

of nonlinear systems of equations [65].

Because Newton Iterations may diverge with a poor starting guess, and at the time

of this writing Stan’s algebraic solver does not support variable initial guesses, we opted

to implement a custom C++ solver based off of the bisection method.

5.2.3 Obtaining the Max of Our Spline Function

Note that the MA, or maximum amplitude TEG values also requires a nonlinear solve

to obtain. To compute this value we also use custom C++ code based off of the bisection

method on the derivative of the function. In this case the appropriate gradient can be

computed similarly.

5.3 Inferring Hybrid Mechanistic-Statistical Models

and the Unorthodox Nature of TEG Data

To use the derived quantities in TEG to infer unknown parameters and initial condi-

tions, we must first forward simulate the ODE, compute the clot thickness as a function

of fibrin concentration, Fn, then use the trajectory of clot of thickness over time to de-

rive our simulated TEG data, which we finally can compare to our data by positing some

statistical model. We describe the finer points of this process in the following section.
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5.3.1 Inferring Protein Concentrations Using TEG Data

Recall, our goal of inferring patient initial concentration of tPA given their TEG

measurements. In theory this should be possible because tPA is a protein primarily

responsible for clot breakup and the Ly30 measurement of TEG measures the amount of

clot breakup after 30 minutes. In this case, the patient has an unusually high Ly30 value

of 1.7, indicating that 1.7% of their clot already broke up after only 30 minutes. In light

of this, we should expect this patient to have a higher than average tPA concentration.

5.3.2 Prior Selection

Recall that in our mechanistic model every patient has ”cascade delay” parameters b

and c that describe the specific state of the coagulation cascade. Using our four pieces

of TEG data, we must infer the two parameters and also the value of the unknown

protein concentrations tPA and PAI for our patient. To do this reasonably, it helps

to incorporate any prior knowledge we have about these parameters. For the protein

concentrations, we set the prior distributions to exponential distributions with respective

means 4e-10 and 9.3e-10. These are the distributions of these protein concentrations

for general trauma patients. With the information given it’s reasonable to assume our

trauma patient’s protein values are drawn form the distribution of protein values for

trauma patients. For b and c, we use weakly informative priors that are representative

of a wide variety of possible coagulation profiles that we would expect to see in trauma

patients.

5.3.3 Posterior Analysis

With priors set, the model can be fit, integrating our prior knowledge and data to pro-

duce a posterior distribution of this patient’s tPA values. Figure 5.5 compares prior and
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Figure 5.5: Posterior versus prior distribution of tPA values.

posterior tPA values for the example patient. This patient’s tPA concentration is higher

than the population average, which we used as our prior distribution. This is reflective of

their relatively high Ly30 value, as expected. This posterior shrinkage is indicative of the

information provided in the data as well as the population-level distributions. We note

that the patient data also informs the parameters of the population-level distribution

through the estimation of the individual patient parameters.

5.3.4 Discussion

We showed how one can tackle the very practical problem of tying together disparate

measures of coagulopathy by incorporating mechanistic and statistical knowledge into

Stan. In particular, we showed how TEG data, which consists of unorthodox measure-

ment quantities, can be used to infer much less ubiquitous but more informative protein

data with clever use of techniques from numerical analysis such as splines, root-finding,
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and the inverse function theorem.

We fit a model to a single patient, first to illustrate our tying together of various nu-

merical techniques, and second to show how a mechanistic model together with Bayesian

analysis in Stan can be used in a practical clinical setting to infer useful information. In

a larger study, for the purpose of more specific model callibration/checking it may be

useful to fit multiple patients, forward simulate TEG data, and check callibration quan-

tities with respect to uncertainty intervals to ensure that modeling and distributional

assumptions are sound. We did not pursue this further as it was outside of our scope,

but we mention it for completeness.

We also point out that our priors for the protein concentrations were selected using

an empirical Bayes approach where we fit a point estimate to protein data from an entire

population of patients we had data for. In a sense, this is a computationally convenient

approximation to a hierarchical model which would simultaneously incorporate data from

multiple patients and learn the population level distributions.
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Chapter 6

Implicit Hamiltonian Monte Carlo

We describe our recent work on multiscale posterior distribution and HMC titled “Im-

plicit Hamiltonian Monte Carlo for Sampling Multiscale Distributions” submitted the

Springer Journal of Statistics and Computing [66]. Hamiltonian Monte Carlo (HMC)

has been widely adopted in the statistics community because of its ability to sample

high-dimensional distributions much more efficiently than other Metropolis-based meth-

ods. Despite this, HMC often performs sub-optimally on distributions with high cor-

relations or marginal variances on multiple scales because the resulting stiffness forces

the leapfrog integrator in HMC to take an unreasonably small stepsize. We provide

intuition as well as a formal analysis showing how these multiscale distributions limit

the stepsize of leapfrog and we show how the implicit midpoint method can be used,

together with Newton-Krylov iteration, to circumvent this limitation and achieve major

efficiency gains. Furthermore, we offer practical guidelines for when to choose between

implicit midpoint and leapfrog and what stepsize to use for each method, depending on

the distribution being sampled. Unlike previous modifications to HMC, our method is

generally applicable to highly non-Gaussian distributions exhibiting multiple scales. We

illustrate how our method can provide a dramatic speedup over leapfrog in the context
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of the No-U-Turn sampler (NUTS) applied to several examples.

6.1 Introduction

The Hamiltonian Monte Carlo (HMC) algorithm [6] and its recent successor, the No-

U-Turn (NUTS) sampler [10], have seen widespread use recently in the statistics commu-

nity because of their proficiency in sampling high-dimensional distributions. In fact, [9]

showed that as the dimension, D, of the distribution p(q) being sampled tends to infin-

ity, HMC requires only O(D5/4) samples to sufficiently explore the distribution, while the

classic random-walk Metropolis algorithm [8] requires O(D2). Roughly speaking, HMC

and NUTS achieve this efficiency gain because rather than exploring parameter space in

a random fashion, they systematically explore level-sets of Hamiltonian energy by using

the leapfrog integrator to numerically simulate Hamiltonian dynamics over the potential

energy surface defined by U(q) = − log p(q) [7]. While the Hamiltonian energy remains

roughly constant over these level sets, when simulating Hamiltonian dynamics using the

leapfrog integrator, the log-probability density and values of the random variables q often

vary quite widely in practice, yielding samples that are much closer to independent than

samples from the random-walk Metropolis algorithm [67].

The key to HMC reaching the correct stationary distribution lies in the reversibility

of the leapfrog integrator that allows the Markov transitions to satisfy detailed-balance.

Furthermore, the leapfrog integrator is volume-preserving in phase-space, which makes

the computation of the Metropolis probabilities in HMC trivial [7]. In fact, the leapfrog

integrator belongs to a class of numerical integrators known as symplectic integrators

that exhibit both of these properties along with a more general property known as sym-

plecticity. Symplectic integrators have been well-studied [39, 68]. However, little work

has been done to characterize how the properties of a probability distribution relate to
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the properties of the associated Hamiltonian system in HMC, and how these properties

make certain integrators more advantageous than others, depending on the problem.

To this end, we provide an analysis of how and why the geometry of Bayesian posterior

distributions with low variance components can lead to multiscale Hamiltonian systems,

i.e. systems with rapidly oscillating components that force leapfrog to take a much

smaller stepsize than what would otherwise be possible with an implicit integrator. We

describe the implicit midpoint integrator as an alternative to leapfrog for these types of

problems, and show how to practically implement it in an HMC context. Furthermore, we

offer practical guidelines on the stepsize to choose when using either leapfrog or implicit

midpoint in an HMC sampler, as well as heuristics for when to choose one algorithm over

the other. Finally, we compare, using practical examples, the efficiency of leapfrog NUTS

(lfNUTS) with an implicit NUTS implementation we introduce called iNUTS. Code for

these experiments is available as an R package that can be obtained by emailing the

authors.

In Section 6.2 we provide a brief introduction to HMC and then describe the concept

of numerical stability of an integrator and how it connects to the geometries of multivari-

ate distributions in HMC. In Section 6.3 we describe the symplectic implicit midpoint

algorithm along with our practical custom implementation specific to HMC. We also de-

rive the mathematical stability limit for the implicit midpoint algorithm, showing how

it provides a clear advantage over leapfrog on multiscale systems. In Section 6.4 we

show how in practice, using real examples, our iNUTS implementation leads to less com-

putational work per effective sample than leapfrog-based NUTS on common multiscale

systems. We conclude with a summary of our contributions and future directions in

Section 6.5.
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Related Work: While various works have explored modifications of the leapfrog in-

tegrator in HMC, the connection between posterior geometry and integrator choice as

well as the multiscale problem has been sparsely examined. On the statistics side, both

[69] and [70] adapted the leapfrog integrator in HMC by splitting the potential energy

into a Gaussian term and a non-Gaussian term, which are integrated separately. While

these methods can alleviate the multiscale problem for distributions that can be well-

approximated by a Gaussian, they fail to offer an efficiency gain over leapfrog for more

complicated distributions, as we describe in Section 6.2. Our implicit midpoint-based

method is able to achieve efficiency gains over leapfrog on a more general class of prob-

lems.

Okudo et al. [71] modify the leapfrog integrator in HMC by adding an auxiliary

variable that allows for online adaptation of the stepsize. The RMHMC method of [72]

uses local Hessian information of the potential energy function to adaptively change

the mass matrix of HMC, which is equivalent to adaptively changing leapfrog stepsizes.

While both of these methods can effectively adapt the stepsize in leapfrog to the local

geometries of non-Gaussian distributions, they are still subject to using a small integrator

stepsize in a multiscale problem, just as standard leapfrog is. In contrast, our implicit

midpoint-based approach has much less severe stepsize limitations [73].

6.2 Hamiltonian Monte Carlo and Numerical Stabil-

ity in a Multiscale Problem

We provide a brief overview of the basic HMC algorithm and how it leads to a

Hamiltonian system of ODEs. We then provide a short explanation and illustration

of numerical stability of the leapfrog integrator on a linear Hamiltonian system, and
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then extend this analysis to show how stability can be a crucial bottleneck in multiscale

systems. Finally, using the linearization of arbitrary Hamiltonian systems, we extend

the multiscale concept to non-Gaussian distributions and draw the connection between

posterior geometry and the mass matrix of HMC. For a more comprehensive review of

HMC, see [7]. For a more recent review that includes an exposition on NUTS, see [67].

For a more thorough review of stability analysis for the numerical solution of Hamiltonian

systems see [39, Ch. 2.6].

6.2.1 Hamiltonian Monte Carlo

HMC provides samples from an arbitrary distribution over q ∈ RD with density p(q)

by taking Markov transitions that satisfy detailed-balance with respect to p(q). In HMC,

a potential energy surface U(q) = − log p(q) is defined, along with a kinetic energy,

K(p) := pTM−1p, and a Hamiltonian, H(q, p) := U(q) +K(p). Given a starting point q0

on this surface, an HMC transition begins by sampling a random momentum, p0 ∈ RD,

from a multivariate normal distribution with mean zero and covariance M [67]. Given

these initial values q0 and p0, the Hamiltonian system

q′ =
∂H

∂p
= M−1 (6.1)

p′ =
∂H

∂p
= −∇q U(q)

is solved, resulting in a new set of points q1 and p1 in phase-space, as shown in Figure

6.1. The point q1 is then accepted or rejected as a new sample of the distribution, in

typical Metropolis fashion using the acceptance probability defined by
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Figure 6.1: Given a starting point q0, an HMC proposal starts by drawing a mo-
mentum, p0, then simulating Hamiltonian dynamics for a fixed time to reach a new
proposal, (q1, p1). A Metropolis accept-reject step is then used to accept the new pro-
posal randomly, depending on the difference between the Hamiltonian at the original
point in q-p space and the Hamiltonian at the proposed point.
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min {1, exp (H(q0, p0)−H(q1, p1))} . (6.2)

In classical HMC, the dynamics defined in (6.1) are simulated by applying discrete

steps of the leapfrog integrator for T steps. These leapfrog steps are discretized by a

stepsize h, yielding

qn+1 = qn + hM−1pn −
h2

2
M−1∇q U(qn) (6.3)

pn+1 = pn −
h

2
∇q U(qn)− h

2
∇q U(qn+1).

These update equations crucially provide a reversible and volume preserving tran-

sition due to the symplectic property of the leapfrog integrator [7]. Moreover, for a

satisfactory stepsize the Hamiltonian, H(q, p), remains nearly constant over the numeri-

cal simulation of the Hamiltonian dynamics.

6.2.2 Numerical Stability

In practice, the stepsize of the leapfrog integrator is limited by its numerical stability,

which is problem-dependent. This concept is easiest to illustrate using a simple system

derived from a univariate Gaussian. Specifically, for a univariate Gaussian distribution

with mean zero and variance σ2, the potential energy function used in HMC is U(q) =

qTΣ−1q. For an identity mass matrix, this leads to the following leapfrog update rule:

qn+1 = qn + hpn −
h2

2
σ2qn (6.4)

pn+1 = pn −
h

2
σ2qn −

h

2
σ2qn+1,
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Figure 6.2: For stepsizes larger than the stability threshold of the problem, the leapfrog
method goes unstable, leading to wild numerical solutions whose errors characteristi-
cally grow after each step (green trajectory). This is in contrast to numerical solutions
below the stability threshold, for which the error stays bounded after a series of steps
(red trajectory).

which can be compactly written in matrix form as

qn+1

pn+1

 =

 1− h2

2
σ2 h

−hσ2(1− h2

4
σ2) 1− h2

2
σ2


qn
pn

 . (6.5)

The update matrix in (6.5) describes how leapfrog advances forward one step, for a

univariate Gaussian system with mass one. Because the leapfrog method is symplectic,

the determinant of this matrix is always one. However, for h < 2/σ the eigenvalues

are complex and have modulus equal to one, while for h > 2/σ they are real with

one of the eigenvalues having modulus greater than one [39, Ch. 2.6]. The latter case

results in numerical instability of the integrator [39]. Intuitively, this means that any

small numerical errors that will inevitably arise in the numerical solutions (qn, pn) will

be successively “magnified” by each application of the leapfrog update matrix, quickly

resulting in a solution with unacceptably large error (Figure 6.2).

The univariate analysis can be readily extended to a multivariate Gaussian of dimen-
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sion D with covariance matrix Σ. With a mass matrix equal to the identity, this results

in the following Hamiltonian system:

q′ = p (6.6)

p′ = Σ−1q.

In general, Σ−1 may have off-diagonal correlation terms that make this derived system

coupled. However, the transformation defined by u := V −1q and w := V −1p, where V

is a matrix whose columns consist of the eigenvectors of Σ−1, essentially uncouples the

differential equations, yielding

u′ = w (6.7)

w′ = Λu,

where Λ is a diagonal matrix composed of the eigenvalues, λ1, · · · , λD, of Σ−1 [39, Ch.

2.6]. This decoupling transformation can be thought of as reparameterizing the problem

so that the potential energy surface exhibits no correlation (Figure 6.3).

Applying the leapfrog update rule (6.3) to the uncoupled equations (6.7) elucidates

how the issue of numerical stability arises in the case of a multivariate Gaussian. Specif-

ically, if one or more of the eigenvalues of Σ−1 do not satisfy the inequality h < 2/
√
λi,

then the leapfrog update matrix will have a real eigenvalue with modulus greater than

one, and instability in the numerical integration will arise. In practice this will lead to

poor acceptance rates in the Markov chain as well as to divergences [67]. Formally, for

leapfrog on a multivariate Gaussian with mass matrix I the stepsize h must satisfy the
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Figure 6.3: A decoupling transformation is equivalent to transforming a correlated
distribution (left) to an uncorrelated one (middle). Similarly, a transformation can be
used to make an arbitrary Gaussian isotropic (right).

inequality

h < 2/
√
ρ(Σ−1) (6.8)

to ensure stability (here ρ(Σ−1) denotes the spectral radius of Σ−1, defined as the maxi-

mum of the absolute value of its eigenvalues).

This condition can severely limit the timestep of leapfrog. Intuitively, the dimensions

of the distribution that exhibit high variance, and thus low curvature in the potential

energy surface, will have slowly oscillating Hamiltonian trajectories that are very smooth

and can be integrated by leapfrog with a reasonable stepsize. Meanwhile, dimensions

with low variance, and thus high curvature, will lead to rapdily oscillating solutions that

require a very small stepsize. Thus a system that has even one state with a dramatically

smaller variance than the others will force leapfrog to take excessively small steps on

the whole system. An ODE system that exhibits this sort of behavior is known as a

multiscale system [74]. In practice, the telltale sign of a distribution that will lead to a

multiscale Hamiltonian system in HMC is the inverse covariance matrix, Σ−1 having a

large condition number. The condition number κ(Σ−1) is defined as the ratio of the largest

eigenvalue of Σ−1 to the smallest. Intuitively, it captures the ratio of the curvatures of the
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dimensions of the potential energy surface. Practically speaking, a large condition number

can arise either when an uncorrelated Gaussian has a large disparity in the variance of its

largest and smallest dimensions, or alternatively when a multivariate Gaussian contains

high correlations between dimensions. In engineering, the multiscale problem is often

resolved by using an appropriate implicit integrator, which is typically able to take much

larger steps on multiscale problems while preserving the accuracy of desired quantities

of the system [73, 75]. We describe this approach and its application to HMC in the

following section.

6.2.3 Nonlinear Posterior Geometry

While the stability analysis considered so far has been only for Gaussian distributions

which result in linear Hamiltonian systems, most practical distributions being sampled by

HMC are not Gaussian and thus result in nonlinear Hamiltonian systems. For nonlinear

systems, one can locally identify a multiscale system by analyzing the condition number

of the local Hessian of the potential energy surface, ∇qqU(q). This local Hessian is

equivalent to the inverse covariance matrix of the local Laplace approximation to the

posterior [1, Chapter 4]. Thus the key difference between the posterior geometry of a

Gaussian distribution and that of a more complicated distribution is that the former has

a potential energy surface with a constant Hessian while the latter may contain vastly

different local Hessians throughout the surface, which can lead to different multiscale

properties of the associated Hamiltonian system (Figure 6.4). In practice, this means

that different leapfrog stepsizes may be required, depending on where on the potential

energy surface the sampler is currently located. Roughly speaking, RMHMC uses local

Hessian evaluations of the potential energy surface to adaptively change this stepsize

based on the local curvature [72].
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Figure 6.4: Unlike a Gaussian distribution, arbitrary non-Gaussian distributions have
non-constant local Hessians (here characterized by the green eigenvectors of the local
Hessian multiplied by their associated eigenvalues) that affect the oscillatory frequency
of HMC trajectories and thus an acceptable leapfrog stepsize.
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6.2.4 The Mass Matrix as a Reparameterization

Although a multivariate Gaussian system exhibiting multiple scales can significantly

hinder the efficiency of the leapfrog method, this deficiency may be resolved by appro-

priately selecting the mass matrix M in (6.1). In fact, utilizing a mass matrix in HMC

that is equal to the covariance Σ of the Gaussian is equivalent to reparameterizing the

problem to an equivalent isotropic Gaussian [7] (Figure 6.3). From a numerical analysis

perspective, M−1 can be viewed as a preconditioner that transforms the problem so as to

give Σ−1 a better condition number κ(Σ−1), i.e. it transforms the problem so that there

is less discrepency between the largest and smallest eigenvalues of Σ−1.

While a conveniently selected mass matrix can effectively eliminate the multiscale

problem of leapfrog for Gaussian distributions, for distributions with more complicated

geometry whose local curvature varies, a constant mass matrix is inherently much less

effective in accounting for multiscale geometry. Splitting methods such as that of [69] as

well as [70] which can handle high curvature and multiple scales by separating out a con-

stant Gaussian approximation of the distribution unfortunately have the same limitation,

as they cannot handle the varying curvature of non-Gaussian posteriors.

6.3 Implicit HMC

The stability bottleneck placed on leapfrog by a multiscale system is characteristic

of explicit integrators like leapfrog. In the ODE community, implicit integrators have

been used to essentially “skip” fast oscillations while accurately evolving in time quan-

tities of interest in the system [73, 75]. We describe the implicit midpoint integrator:

a symplectic alternative to leapfrog that is of the same order of accuracy as leapfrog,

but is implicit, allowing it to take much bigger timesteps on multiscale problems than

what would otherwise be possible with leapfrog. Unlike the approaches of [69] and [70],
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the implicit midpoint integrator is applicable to arbitrary multiscale systems, not just

Gaussian ones.

We explain how, unlike leapfrog, the implicit midpoint method has no stability limit

on a linear system. We then describe a custom Newton-Krylov method for the solution

of the nonlinear system that must be solved at each timestep by midpoint. Finally, we

point out that while the implicit midpoint method is unconditionally stable on a linear

system, in practice it can go unstable on nonlinear problems [73], although at a much

larger stepsize than leapfrog is able to take. We discuss the practical implications of this

and aspects of choosing between leapfrog and implicit midpoint for a specific problem,

and we give practical guidelines for selecting a stepsize for both methods.

6.3.1 Implicit Midpoint and Stability

For general Hamiltonian systems of the form in equation 6.1, the timesteps of implicit

midpoint are defined by

qn+1 = qn + hM−1

(
pn + pn+1

2

)
(6.9)

pn+1 = pn − h∇q U

(
qn + qn+1

2

)
.

Because the point (qn+1, pn+1) is defined implicitly, as opposed to in leapfrog where

an explicitly computable update equation is given, one must resort to either functional

iteration or Newton’s method to compute its value. However, in situations where im-

plicit midpoint would be desirable over leapfrog, Newton’s method or a more robust

modification of it is typically preferred [74, ch. 3.4.2]. We elaborate on this point in the

subsequent subsection.
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Figure 6.5: Unlike the leapfrog integrator which goes unstable for large enough step-
sizes (green trajectory), the implicit midpoint integrator can remain stable at the
same stepsize (red trajectory) and even at stepsizes much larger than the stability
threshold for leapfrog (purple trajectory).

An analaysis that is similar to the one performed for leapfrog in Section 6.2.2 shows

that unlike leapfrog, the implicit midpoint method does not have a stability limit on the

linear system that arise from HMC sampling of a Gaussian distribution. In fact, like the

update matrix for leapfrog, the update matrix for midpoint on a Gaussian distribution

always has determinant one, however it can be shown that its eigenvalues are complex for

any stepsize, h (see the Appendix for a full analysis of the stability of implicit midpoint

for linear Hamiltonian systems). In other words, the implicit midpoint method is stable

on Gaussian systems for any stepsize, i.e. it has not stability limit (Figure 6.5).

6.3.2 Fast Solution of the Nonlinear System

As previously mentioned, (6.9) must typically be solved for (qn+1 pn+1) numerically.

In practice this can be done by applying Newton’s method to solve equation 6.9, however

this can be costly for large systems. First, because the first D equations in 6.9 are linear,

one can substitute the first D equations into the second D to obtain the nonlinear system
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6.10 with D equations and the D unknowns, pn+1. Once pn+1 is obtained, qn+1 can be

obtained by simply plugging the result back into the first set of equations, yielding

pn+1 = pn − h∇qU

(
qn +

h

4
M−1(pn + pn+1)

)
. (6.10)

Renaming pn+1 to x and noting that pn is known from the previous timestep, equation

(10) can be written as

g(x) := x− pn + h∇qU

(
qn +

h

4
M−1(pn + x)

)
. (6.11)

Newton’s method applied to this system consists of starting with an initial guess, x0,

and iteratively obtaining approximate solutions x1, x2, · · · using the following steps until

a convergence criteria is reached:

1. Solve the linear system Jg(xn)δ = −g(xn)

2. Set xn+1 = xn + αδ,

where for the standard Newton iteration α = 1. Here, Jg(xn) refers to the Jacobian of g

evaluated at xn and is given by

Jg(x) := I +
h2

4
∇qqU

(
qn +

h

4
M−1(pn + x)

)
M−1. (6.12)

For large systems, exploitation of the structure of the system is critical for both efficiency

and robustness. We introduce the Newton-Krylov method, which is particularly well-

suited to this class of problems.

Newton-Krylov Methods

In the classic Newton method, the linear solve step requires explicitly computing

Jg(xn) and carrying out a full linear solve of the equation Jg(xn)δ = −g(xn) for δ at each
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Newton iteration. This requires evaluating the Hessian ∇qqU(q) of the potential energy,

which scales as O(D2). A Newton-Krylov method [76] circumvents this expensive linear

solve that occurs at every Newton iteration by replacing the linear solve with an ap-

proximate linear solve that is much cheaper to compute. Specifically, the Newton-Krylov

method replaces the solution δ with an approximate solution δ̃ such that ‖Jg(xn)δ̃+g(xn)‖

is less than some tolerance, ηn, otherwise known as a “forcing term”. This forcing term is

typically selected using a scheduling criteria that satisfies certain theoretical properties.

For our experiments we found the most success with method 2.1 of [77], as it did not rely

on manually selected “tuning parameters”.

In our iNUTS implementation, we use the GMRES solver [78] to compute the approx-

imate linear solves within the Newton-Krylov iterations. The GMRES algorithm works

by iteratively computing approximate solutions to the linear system Jg(xn)δ = −g(xn)

that reduce the norm ‖Jg(xn)δ + g(xn)‖, while needing only to evaluate the product of

the matrix Jg(xn) with an arbitrary vector v.

Needing only to evaluate the product of the matrix Jg(xn) with an arbitrary vector

v, rather than computing Jg(xn) and then computing its product with v, is particularly

advantageous in HMC for two reasons. First, the Jacobian vector product Jg(xn) · v can

be evaluated using only a Hessian-vector product of the potential energy which, in an

efficient automatic differentiation implementation such as the one available in Stan [11],

scales as O(D) as opposed to computing a full Hessian, which scales as O(D2). Second,

the iterated solutions in a Krylov-based solver are known to converge faster when the

matrix Jg(xn) has “clusters” of eigenvalues that are close together [79], as is the case

when the system being solved comes from the posterior of a Bayesian model, particularly

a multilevel Bayesian model. Specifically, in the case of implicit midpoint applied to HMC

on the posterior of a Bayesian multilevel model, the matrix (6.12) will have clusters of

eigenvalues that are all of similar order and correspond to the units in a multilevel model

92



Implicit Hamiltonian Monte Carlo Chapter 6

that are are all at the same level. For example, for the famous “eight schools” model in

[1], there is a variance parameter τ that is at the scale of 1, and eight separate school-

level parameters at the scale of 10. Although there are nine parameters total, and thus a

nine-by-nine system to solve, in practice the Newton-Krylov method can typically solve

the linear system to numerical precision in only two iterations, because there are only

two “clusters” of eigenvalues in the Hessian: the cluster at the scale of 1 and the cluster

at the scale of 10.

Using a Line Search

The second modification we make to the classic Newton method is to change the

steplength α of the Newton iteration to ensure that consecutive iterations of the Newton-

Krylov method effectively reduce the residual error in the nonlinear system. In particular,

we use a geometric line-search to continually halve the size of α until the new solution

satisfies the Armijo-Goldstein condition [64].

Choosing an Initial Guess

While not a modification of Newton’s method per se, in our iNUTS implementation we

also use a unique method of setting the initial guess x0 to the nonlinear solver. In practice,

this greatly improves the number of Newton-Krylov iterations needed for convergence.

In particular, we exploit the numerical properties of the implicit midpoint integrator on

multiscale systems, to obtain a good initial guess. Specifically, when the stepsize h of

the numerical integrator is small relative to the local frequency of a particular oscillating

momentum coordinate p(i), the previous momentum, p
(i)
n , will serve as a good initial guess

to p
(i)
n+1 in the system 6.10, as the numerical solution will not be changing much between

consecutive steps. Similarly, the second to last momentum p
(i)
n−1 will also serve as a good

initial guess, although not quite as good as the last value. On the other hand, when h is
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much larger than the frequency of a particular oscillating variable p(i), which will be the

case in a multiscale system, the numerical solution will approximately “alternate” about

zero taking on the values p
(i)
1 = γ, p

(i)
2 = −γ, p(i)

3 = γ, · · · . Thus in this case, the second

to last momentum serves as a good initial guess. Thus we use pn−1 as an initial guess

overall for the nonlinear equation solver.

6.3.3 Nonlinear Stability Limit and Choosing an Integrator and

a Stepsize

While the implicit midpoint method is unconditionally stable for any stepsize h on a

linear system, it can and will exhibit instability for certain nonlinear systems, although

typically at a stepsize that is much larger than the stepsize at which leapfrog would go

unstable on the same problem [73]. In practice, these instabilities can typically be identi-

fied by observing large growth in the Hamiltonian of the numerical numerical trajectory,

or when Newton-Krylov iterations fail to converge. To find an appropriate stepsize for

implicit midpoint in practice, we recommend running a sampler “warmup” period where

the stepsize h is reduced by some factor like 1/2 until these pathological behaviors are

eliminated. This is akin to the current warmup method of Stan, where the stepsize of

the integrator is reduced until an acceptable accept rate is reached [11].

To select between implicit midpoint and leapfrog on a specific problem, we suggest

starting with implicit midpoint and periodically calculating an approximation to the

largest eigenvalue of the local Hessian of the potential energy function during a warmup

period. This eigenvalue approximation can be efficiently computed with only a few

Hessian-vector products using the power method of numerical linear algebra [79]. This

can in turn be used to get an approximation of the largest stepsize that leapfrog could

take while maintaining stability, via equation 6.8. When the smallest of these approxi-
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mate stepsizes divided by two is close to the implicit midpoint stepsize needed to maintain

stability divided by the average number of gradient evaluations plus Hessian-vector prod-

ucts required by implicit midpoint, then the leapfrog method will be more efficient for the

problem. This is because the leapfrog method requires two gradient evaluations per step,

and a Hessian-vector product, like a gradient evaluation, scales linearly in the number of

inputs to an automatic differentiation system such as the one used in Stan. In practice,

we found that computation of the Hessian-vector product took 1.2-1.3 times the cost of

a gradient evaluation in Stan.

6.4 Experiments

We illustrate on several examples how implicit midpoint can achieve superior effi-

ciency over leapfrog on multiscale problems. For all of our examples we compare using a

custom implementation of NUTS that either uses leapfrog (lfNUTS) or implicit midpoint

(iNUTS). Our code is freely available as an R package, and at the time of writing can be

obtained by emailing the authors.

6.4.1 2-D Gaussian

As discussed in Section 6.2.2, the leapfrog stability limit for a multivariate Gaussian

is directly related to the largest eigenvalue of the inverse covariance matrix. One of the

ways this eigenvalue can be large is when the multivariate Gaussian is highly correlated.

To illustrate how this affects NUTS in practice, we compared the average tree depth per

sample of lfNUTS and iNUTS for varying levels of ρ on the two-dimensional Gaussian
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Figure 6.6: For highly correlated Gaussian distributions, the leapfrog integrator in
lfNUTS is forced to take tiny stepsizes that result in larger average NUTS tree depths.
As the correlation goes to zero, the average tree depth approaches that of iNUTS.

distribution with mean zero, and covariance matrix

Σ =

1 ρ

ρ 1

 . (6.13)

The empirical scaling of average tree depth over 1,000 NUTS samples versus 1− ρ is

shown in Figure 6.6. In the NUTS algorithm, tree depth is selected automatically, when

a Hamiltonian trajectory has “U-turned”. Two to the power of the tree depth represents

how many steps in the trajectory were computed. For more correlated distributions,

leapfrog is forced to take smaller stepsizes, which results in more steps having to be

taken and thus larger tree depths. Note that for a Gaussian system, implicit midpoint

has no stepsize limit for stability regardless of the covariance of the Gaussian. Thus the

stepsize can be chosen large enough so that a tree depth of only one is required.
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6.4.2 Banana Distribution

To illustrate how the implicit midpoint integrator is advantageous for distributions

with nonlinear correlations that cannot be addressed by a mass matrix, we compared

lfNUTS and iNUTS on a highly-correlated banana distribution [80] with parameters

a = 1 and b = 100 whose probability density function (PDF) takes the following form:

p(q1, q2)

=
1

2π
exp

{
−1

2

[
a2q2

1 +
q2 − ab(a2q2

1 + a2)

a2

]}
. (6.14)

The highly-nonlinear correlation structure of this distribution is typical for compli-

cated non-Gaussian distributions. For HMC, the long direction across the length of the

banana compared to its narrow width creates a prototypical multiscale problem, forcing

leapfrog to take an excessively small stepsize that leads to insufficient exploration of the

posterior in lfNUTS compared to iNUTS (Figure 6.7).

A summary of results comparing the two methods is presented in Table 1. Because

the implicit midpoint steps within iNUTS require a nonlinear solve, there is much more

overhead in each step compared to leapfrog. However, because implicit midpoint has

a much larger stability limit than leapfrog, iNUTS is able to take a much larger step,

leading to more efficient samples. In practice, iNUTS ends up needing to do only a third

of the work as lfNUTS to obtain an effective sample. In terms of computer time, iNUTS

took about 30% longer to obtain over ten times as many effective samples.
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Figure 6.7: 1,000 samples of the banana distribution from lfNUTS and iNUTS. Be-
cause of the multiscale nature of the Hamiltonian system that arises when sampling
the banana distribution, lfNUTS is forced to use an unreasonably small stepsize that
nearly reduces its behavior to that of a random walk and renders it unable to explore
the entire distribution (orange samples). Meanwhile, iNUTS can effectively take ten
times as large of a stepsize which allows it to efficiently explore the entire posterior.

lfNUTS iNUTS

avg. grad evals/step 2.00 11.98
avg. hess-vec evals/step 0.00 9.88
avg. work/step 2.00 21.86
avg. tree depth 9.97 5.40
avg. effective samples 42.47 613.26
work/effective sample 47.09 16.11
total computer time (s) 181 231

Table 6.1: A comparison of the computation involved in the sampling experiment.
Average gradient evaluations and Hessian-vector evaluations are per step of the in-
tegrator, and work is the sum of these. Average effective samples are over all 11
dimensions being sampled. While iNUTS requires more work per step, because it
is able to take a much larger step than leapfrog, it can obtain many more effective
samples in a similar time frame.
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6.5 Discussion

We have shown that distributions exhibiting multiple scales limit the stepsize of the

leapfrog integrator in HMC, and how this limitation can be effectively circumvented by

utilizing the implicit midpoint integrator together with Newton-Krylov iteration. Fur-

thermore, we offered a practical implementation of implicit midpoint that is applicable

to Bayesian posterior sampling problems, and provided practical guidelines for choosing

which integrator to use, as well as the stepsize to use in the integrator. As illustrated in

our examples, using implicit midpoint together with Newton-Krylov instead of leapfrog

can provide a practical and significant efficiency boost in the context of NUTS.
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Chapter 7

Conclusion

We have described several novel models and computational methods for Bayesian hierar-

chical modeling of biomedical data. We described various contributions to computational

Bayesian modeling, along with the problems from our applied work that motivated these

contributions.

First we describe our hierarchical disease progression model, for modeling patient

disease trajectories. We then described the intricacies of the nonlinear trajectories in

the model and how we applied it to the progression of dementia in Alzheimer’s disease.

Next we described our work on the Givens Representation of orthogonal matrices to

infer models with orthogonal matrix parameters. We described the innovations in our

method along with our motivating hierarchical problem based on the analysis of protein

biomarkers of coagulopathic trauma patients. Next, we described a mechanistic model

of coagulopathy that relates clotting assay data to protein concentrations, effectively

providing a fast and convenient way for clinicians to understand key protein markers

involves in clotting.

Lastly we described our Implicit Hamiltonian Monte Carlo (HMC) method and il-

lustrated the connection between multiscale posterior distributions and the efficiency of
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HMC. We demonstrated the practical efficiency of our approach on several examples.
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Appendix A

Deriving the Change of Measure

Term in the Givens Representation

We start with the determinant of the matrix form of the change of measure term from

Expression 3.10 (reproduced below):



GT
2:nJY1(Θ)(Θ)

GT
3:nJY2(Θ)(Θ)

...

GT
p:nJYp(Θ)(Θ)


(A.1)

For l = 1, · · · , n, let us define the following shorthand notation

∂i,i+lYk :=
∂

∂θi,i+l
Yk (A.2)

and

∂iYk :=

(
∂i,i+1Yk ∂i,i+2Yk · · · ∂inYk.

)
(A.3)
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In the new notation Equation can be written in the following block matrix form:



GT
2:n∂1Y1 GT

2:n∂2Y1 · · · GT
2:n∂pY1

GT
3:n∂1Y2 GT

3:n∂2Y2 · · · GT
3:n∂pY2

...
...

. . .
...

GT
p:n∂1Yp GT

p:n∂2Yp · · · GT
p:n∂pYp


. (A.4)

First note that the block matrices above the diagonal are all zero. This can be seen by

noting that the rotations in the Givens representation involving elements greater than i

will not affect ei, i.e. letting Ri := Ri,i+1 · · ·Rin,

Yi = R1R2 · · ·Rpei = R1 · · ·Riei. (A.5)

Thus for j > i, ∂jYi = 0 and the determinant of Expression A.4 simplifies to the product

of the determinant of the matrices on the diagonal i.e. the following expression:

p∏
i=1

det
(
GT
i+1:n∂iYi

)
. (A.6)

A.1 Simplifying Diagonal Block Terms

Let Ii denote the first i columns of the n × n identity matrix and let I−i represent

the last n− i columns. The term GT
i+1:n in Expression A.6 can be written as

GT
i+1:n = IT−iG

T = IT−iR
T
p · · ·RT

1 . (A.7)

To simplify the diagonal block determinant terms in Expression A.6 we take advantage

of the following fact:
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det
(
GT
i+1:n∂iYi

)
= det

(
IT−iR

T
p · · ·RT

1

)
= det

(
IT−iR

T
i · · ·RT

1 ∂iYi
)
. (A.8)

In other words, the terms RT
p · · ·RT

i+1 have no effect on the determinant. This can be

shown by first separating terms so that

det
(
GT
i+1:n∂iYi

)
= det

 IT−i︸︷︷︸
(n−i)×n

RT
p · · ·RT

1 ∂iYi︸︷︷︸
n×(n−i)

 (A.9)

= det
(
IT−i
[
RT
p · · ·RT

i+1

] [
RT
i · · ·RT

1 ∂iYi
])
, (A.10)

and then noticing that Ri+1 · · ·Rp only effects the first i columns of the identity matrix,

so that

IT−i
[
RT
p · · ·RT

i+1

]
= (Ri+1 · · ·Rp I−i)

T = (I−i)
T . (A.11)

Thus, Expression A.6 is equivalent to

p∏
i=1

det
(
IT−iR

T
i · · ·RT

1 ∂iYi
)
. (A.12)

Now consider the k, l element of the (n− i)× (n− i) block matrix IT−iR
T
i · · ·RT

1 ∂iYi. This

can be written as
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eTi+kR
T
i · · ·RT

1 ∂i,i+lYi = eTi+kR
T
i · · ·RT

1 ∂i,i+l(R1 · · ·Riei)

= eTi+kR
T
i · · ·RT

1R1 · · ·Ri−1(∂i,i+lRiei)

= eTi+kR
T
i (∂i,i+lRiei). (A.13)

Since eTi+kR
T
i Riei = 0, taking the derivatives of both sides and applying the product rule

yields

∂i,i+l(e
T
i+kR

T
i Riei) = ∂i,i+l0

⇒ (∂i,i+le
T
i+kR

T
i )Riei + eTi+kR

T
i (∂i,i+lRiei) = 0

⇒ eTi+kR
T
i (∂i,i+lRiei) = −(∂i,i+le

T
i+kR

T
i )Riei. (A.14)

Combining (A.14) with A.13, the expression for the k, l element of IT−iR
T
i · · ·RT

1 ∂iYi

becomes −(∂i,i+le
T
i+kR

T
i )Riei.

However, note that

eTi+kR
T
i = eTi+kR

T
in · · ·RT

i,i+1 = eTi+kR
T
i,i+k · · ·RT

i,i+1, (A.15)

and that the partial derivative of this expression with respect to i, i + l is zero when

k > l. Thus it is apparent that IT−iR
T
i · · ·RT

1 ∂iYi contains zeros above the diagonal and

that det
(
IT−iR

T
i · · ·RT

1 ∂iYi
)

is simply the product of the diagonal elements of the matrix.
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A.2 Diagonal Elements of the Block Matrices

To obtain the diagonal terms of the block matrices we directly compute −∂i,i+leTi+kRT
i

for l = k, Riei, and their inner-product. Defining Dij := ∂ijRij,

−∂i,i+kRiei+k = −∂i,i+k(Ri,i+1 · · ·Ri,i+kei+k) (A.16)

= −Ri,i+1 · · ·Ri,i+k−1Di,i+kei+k (A.17)

(A.18)

= Ri,i+1 · · ·Ri,i+k−1



0

...

0

cos θi,i+k

0

...

0

sin θi,i+k

0

...

0



(A.19)
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= Ri,i+1 · · ·Ri,i+k−2



0

...

0

cos θi,i+k−1 cos θi,i+k

0

...

0

sin θi,i+k−1 cos θi,i+k

sin θi,i+k

0

...

0



(A.20)

=



0

...

0

cos θi,i+1 cos θi,i+2 · · · cos θi,i+k−1 cos θi,i+k

sin θi,i+1 cos θi,i+2 · · · cos θi,i+k−1 cos θi,i+k
...

sin θi,i+k−1 cos θi,i+k

sin θi,i+k

0

...

0



(A.21)
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which is zero up to the ith spot and after the i+kth spot. Note that the rotation matrix

Ri applied to the standard basis vector ei can be written as follows:

Riei = Ri,i+1 · · ·Rinei (A.22)

(A.23)

=



0

...

0

cos θi,i+1 cos θi,i+2 · · · cos θi,n−1 cos θin

sin θi,i+1 cos θi,i+2 · · · cos θi,n−1 cos θin
...

sin θi,n−1 cos θin

sin θin



. (A.24)

Finally, directly computing the inner-product of −∂i,i+leTi+kRT
i and Riei we obtain

−(∂i,i+le
T
i+kR

T
i )(Riei) = cos2 θi,i+1 cos2 θi,i+2 · · · cos2 θi,i+k cos θi,i+k+1 · · · cos θin

+ sin2 θi,i+1 cos2 θi,i+2 · · · cos2 θi,i+k cos θi,i+k+1 · · · cos θin

+ sin2 θi,i+2 cos2 θi,i+3 · · · cos2 θi,i+k cos θi,i+k+1 · · · cos θin

...

+ sin2 θi,i+k cos θi,i+k+1 · · · cos θin
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= cos2 θi,i+2 cos2 θi,i+3 · · · cos2 θi,i+k cos θi,i+k+1 · · · cos θin

+ sin2 θi,i+2 cos2 θi,i+3 · · · cos2 θi,i+k cos θi,i+k+1 · · · cos θin

...

+ sin2 θi,i+k cos θi,i+k+1 · · · cos θin

= · · ·

= cos θi,i+k+1 · · · cos θin

=
n∏

k=i+1

cos θik. (A.25)

Thus the determinant of the entire block matrix IT−iR
T
i · · ·RT

1 ∂iYi simplifies to

n∏
k=i+1

(
n∏

j=k+1

cos θik

)
=

n∏
j=i+1

cosj−i−1 θij. (A.26)

Finally, combining this with Expression A.12 yields

p∏
i=1

det
(
IT−iR

T
i · · ·RT

1 ∂iYi
)

=

p∏
i=1

n∏
j=i+1

cosj−i−1 θij. (A.27)
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Appendix B

Summary of Patient Demographics

and Missing Values for the

Application of the Givens

Representation

Injury Mech. N % Male Mean Age Std. Age % TBI Med. Blood Units

GSW 85 90 27 8 40 5.0
MVC 52 90 27 7 75 0.5
SW 21 71 29 8 14 3.0
Assault 16 100 27 7 94 0.0

Table B.1: Brief sub-cohort description including number of samples in each sub-co-
hort (N), percentage of the sub-cohort that is male, average and standard deviation of
age, percent of patients with traumatic brain injury, and median blood units recieved
in the sub-cohort.
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Table of Missing Values

Measurement Number of Missing Value (out of 174)

Proteins

FactorII 49
FactorX 50
Protein C 44
D-Dimer 54
Fibrinogen 123
Platelets 8

TEG

R 135
K 135
MA 133
Ly30 133

Table B.2: Number of missing values for each measurement type.
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Appendix C

Use of Cauchy Priors in Application

of the Givens Representation

We note that in the CCA model described in Chapter 4, we place Cauchy priors over the

scaling variables, Λ and Γ, which induce a sparsity property over latent dimensionality,

forcing Λ and Γ to go to zero unless the signal in the data is sufficiently strong. Similarly

we place Cauchy priors on the entries of the weight matrices W and B to induce sparsity

in the matrix entries for interpretability purposes. These Cauchy priors serve a purpose

that is akin to Laplace priors (or the L1 regularization in frequentist analysis), because

just like the Laplace prior, the Cauchy prior places most of its mass near zero, with

large mass in the tails of the distribution, allowing for appropriately large values when

statistical signal is strong enough. However, we prefer the Cauchy prior, as its continuity

property makes more sense in the context of our analysis (see [57] for a discussion on

using Cauchy priors over Laplace priors). Finally, we mention that the hyper-parameter

values of the Cauchy priors are chosen by leaving them as an unknown in our Stan model

and conducting full Bayesian inference to sample from their posterior distribution.
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Appendix D

Eigenvalues of the Update Matrix

for Implicit Midpoint on a Linear

System

For the simple univariate Gaussian system with mass matrix one defined in Section 6.2.2,

the update equations (6.9) reduce to

qn+1 = qn + h

(
pn + pn+1

2

)
(D.1)

pn+1 = pn − hσ2

(
qn + qn+1

2

)
.

In matrix notation, these update equations can be rewritten as

qn+1

pn+1

 =

 1 h
2

−h
2
σ2 1


qn
pn

+

 0 h
2

−h
2
σ2 0


qn+1

pn+1

 . (D.2)
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Collecting the n+ 1 terms on the right yields

 1 −h
2

h
2
σ2 1


qn+1

pn+1

 =

 1 h
2

−h
2
σ2 1


qn
pn

 , (D.3)

which yields the update equation

qn+1

pn+1

 =

 1 −h
2

h
2
σ2 1


−1 1 h

2

−h
2
σ2 1


qn
pn


=

1

1 + h2

4
σ2

 1 h
2

−h
2
σ2 1


 1 h

2

−h
2
σ2 1


qn
pn


=

1

1 + h2

4
σ2

1− h2

4
σ2 h

−hσ2 1− h2

4
σ2


qn
pn

 . (D.4)

Note that the eigenvalues of the scalar times the matrix in this equation are simply

the eigenvalues of the matrix times the scalar in front. Defining µ := (h2/4)σ2 these

eigenvalues are the solutions of the quadratic equation

λ2 − 2(1− µ) + (1− µ)2 + h2σ2 = 0 (D.5)

which by the quadratic formula are

λ1,2 = (1− µ)± hσi. (D.6)

Thus the moduli of the eigenvalues of the overall update matrix are one.
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