
UCLA
Technology Innovations in Statistics Education

Title
Discrete Bayes with R

Permalink
https://escholarship.org/uc/item/9kb6x0bw

Journal
Technology Innovations in Statistics Education, 3(2)

ISSN
1933-4214

Author
Albert, Jim

Publication Date
2009-12-23

DOI
10.5070/T532000039
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9kb6x0bw
https://escholarship.org
http://www.cdlib.org/


1. Introduction

In teaching Bayesian thinking, many authors advocate beginning with a “discrete model” ap-
proach, where one lists a plausible list of parameter values and then assigns prior probabilities
to these parameter values. This approach has several advantages. First, it is relatively easy
to specify a prior probability distribution on a set of values, and second, it is straightforward
to compute the posterior and predictive distributions by multiplying and summing prior and
likelihood values. This discrete model approach is common in introductory Bayesian texts
such as Antleman (1997), Schmitt (1969), Berry (1995), Rossman and Albert (2000), and
Bolstad (2007).

One typically illustrates this discrete model approach for standard sampling distributions
such as the binomial (unknown proportion), Poisson (unknown mean), and normal (unknown
mean and known standard deviation). All of these familiar sampling distributions are part
of R, and so this suggests that one can easily implement this discrete model approach in R.
There are several functions currently available in R packages that implement discrete priors for
specific sampling problems such as pdisc for binomial sampling in the LearnBayes package
and poisdp and normdp for Poisson and normal sampling in the Bolstad package. These
particular functions are discussed respectively in Albert (2009) and Bolstad (2007).

There are some features of R that are helpful in writing a general-purpose function for imple-
menting discrete Bayes. A prior can be represented by a single vector, say prior, where the
elements of prior are the probabilities and the names of prior contain the parameter val-
ues. A R function can accept sampling density functions such as dnorm, dgamma, and dbinom

as input arguments. Last, once a discrete Bayes function is written, one can define print,
plot, and summary methods for this function to graph, display, and summarize the posterior
probability vector in specific ways.

To encourage the teaching of the discrete Bayesian model approach for a wide range of in-
ference problems, this paper illustrates the use of several generic R functions for performing
Bayesian calculations for one and two parameter problems. In Section 2, we illustrate the
use of a single function discrete.bayes that can be used to obtain posterior probabilities
and the predictive probability. The main inputs to this function are the sampling density and
the prior distribution. In Section 3, a similar function discrete.bayes.2 is described that
implements Bayesian calculations for arbitrary two parameter problems.

2. Discrete Bayes with One Parameter

Suppose we observe a sample y1, ..., yn from a sampling density density f(y|θ) depending



on a single unknown parameter θ. Further suppose that there are k plausible values of θ,
θ1, ..., θk with respective prior probabilities P (θ1), ..., P (θk). The joint probability function of
θj , y = (y1, ..., yn) is given by the product

f(y, θj) = P (θj)×
n∏

i=1

f(yi|θj).

We can rewrite this joint probability as

f(y, θj) =

[
P (θj)

∏n
i=1 f(yi|θj)∑k

m=1 P (θm)
∏n

i=1 f(yi|θm)

]
×
[

k∑
m=1

P (θm)
n∏

i=1

f(yi|θm)

]
.

The first term in brackets represents the posterior density of the parameter value θj , P (θj |y).
The second bracketed term represents the (prior) predictive probability of y, f(y). Both
terms are important in a Bayesian analysis. The posterior probabilities {P (θj |y)} are useful
for performing inference about the parameter, and the predictive probability is useful for
assessing the suitability of the Bayesian model and for comparing Bayesian models by means
of Bayes factors.

The syntax for our R function has the form

discrete.bayes(df,prior,y,...)

There are four arguments:

1. df is the name of the function defining the sampling density.

2. prior is a vector that defines the prior density. The names of the elements of the vector
define the parameter values and the entries of the vector give the prior probabilities.

3. y is a vector of data values.

4. ... define any further fixed parameter values used in the function.

The output of discrete.bayes is a list with two components:

1. prob is a vector containing the posterior probabilities {P (θj |y)}

2. pred is a scalar with the prior predictive probability f(y)

The output is assigned to the R class bayes and print, plot, and summary methods have
been assigned to this class. The print method will display only the posterior probabilities
and the plot method will construct a bar graph of the probabilities. The summary method
will compute the posterior mean and standard deviation and will also display a “highest
probability content” interval estimate for the parameter.



2.1. Learning about a proportion

As a first example, suppose one wishes to learn about a baseball player’s probability of getting
a hit p. I believe that a reasonable set of probabilities are 0.20, 0.21, ..., 0.36 and I assign
these probabilities the corresponding weights 1, 1, 1, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 1, 1, 1. In
R, I create a vector prior with values 1, 1, 1, 2, 2, 2, ..., and I name the probability entries
with the proportion values. The probability vector is normalized by dividing by its sum.

> options(digits = 4)

> options(width = 60)

> prior = c(1, 1, 1, 2, 2, 2, 4, 4, 4, 4, 2, 2,

+ 2, 2, 1, 1, 1)

> names(prior) = seq(0.2, 0.36, by = 0.01)

> prior = prior/sum(prior)

> prior

0.2 0.21 0.22 0.23 0.24 0.25 0.26

0.02778 0.02778 0.02778 0.05556 0.05556 0.05556 0.11111

0.27 0.28 0.29 0.3 0.31 0.32 0.33

0.11111 0.11111 0.11111 0.05556 0.05556 0.05556 0.05556

0.34 0.35 0.36

0.02778 0.02778 0.02778

The name of the sampling density is the binomial density dbinom that corresponds to the
sampling density

f(y|p) =

(
n

y

)
py(1− p)n−y.

I observe the player’s hitting performance for four periods of 80 at-bats (opportuntities) – for
these four periods, he is 20 for 80, 22 for 80, 19 for 80, and 29 for 80. I place the hit counts
in the vector y and the sample sizes in the vector n.

> y = c(20, 22, 19, 29)

> n = c(80, 80, 80, 80)

We obtain the posterior probabilities and the predictive probability by using discrete.bayes

with arguments dbinom, prior, and y. We add the additional argument size=n which is the
vector of fixed sample sizes used in the function dbinom.

> library(LearnBayes)

> out = discrete.bayes(dbinom, prior, y, size = n)

> print(out)

0.2 0.21 0.22 0.23 0.24 0.25

0.0001211 0.0005415 0.0019028 0.0106905 0.0243648 0.0456369



0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

Prior Probabilities

p
0.

00
0.

10
0.

20

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

Posterior Probabilities

p

0.
00

0.
10

0.
20

Figure 1: Prior and posterior distributions of a binomial proportion using a
discrete prior.

0.26 0.27 0.28 0.29 0.3 0.31

0.1420861 0.1856314 0.2052824 0.1935953 0.0783586 0.0547606

0.32 0.33 0.34 0.35 0.36

0.0332026 0.0175422 0.0040532 0.0016436 0.0005864

The posterior probabilities are stored in the vector out$prob. We display the prior and
posterior probabilities in Figure 1 using two applications of the barplot function.

> par(mfrow = c(2, 1))

> barplot(prior, main = "Prior Probabilities", xlab = "p",

+ ylim = c(0, 0.2))

> barplot(out$prob, main = "Posterior Probabilities",

+ xlab = "p")

This graph clearly shows how one’s prior beliefs are updated on the basis of this hitting data.

2.2. Learning about the number of successes in a finite population

There are a variety of sampling densities included in the base package of R that can be used
in discrete.bayes. It is easy to make slight modifications to these functions for specific
problems that don’t quite fit within these function definitions. To illustrate this situation,
suppose a small community has 100 voters and one is interested in estimating the number
in favor of a school levy. One takes a random sample of 20 voters without replacement from
the population and 12 support the levy. One is interested in learning about the unknown



number M in the population who are supportive. Here the likelihood of M is given by the
hypergeometric probability

L(M) = Prob(12/20 in support|M) =

(M
12

)(100−M
8

)(100
20

) .

Since the R function dhyper uses a different parameterization, we define the new function
dhyper2 that gives the probability of x successes in a sample of n with a population size of
N and population number of successes M .

> dhyper2=function(x,M,sample.size=n,pop.size=N)

+ dhyper(x,M,N-M,n)

In this finite population example, there are 101 possible values for the population number of
levy supporters M from 0 to 100 and we assign a uniform prior on these values. Using the
rep function, we place the probabilities 1/101, ..., 1/101 in the vector M and assign the names
0, ..., 100 to these probabilities.

> prior=rep(1/101,101)

> names(prior)=0:100

We define the given values of the sample size n, population size N , and observed number of
sample successes x. Then we use the function discrete.bayes with inputs the hypergeomet-
ric sampling function dhyper2, the prior density prior and the observed data x to update
the posterior probabilities.

> n=20; x=12; N=100

> s=discrete.bayes(dhyper2,prior,x,

+ sample.size=n,pop.size=N)

The plot method is used to graph the posterior probabilities of M displayed in Figure 2.

> par(mfrow=c(1,1))

> plot(s,xlab="M",ylab="Probability")

The summary method computes the posterior mean and standard deviation of M and outputs
a 90% interval estimate for the parameter. In this example, this interval includes values small
than 50, so there is insufficient evidence to conclude that a majority of the voters support the
levy.

> summary(s)



0 5 11 18 25 32 39 46 53 60 67 74 81 88 95

M

P
ro

ba
bi

lit
y

0.
00

0.
01

0.
02

0.
03

0.
04

Figure 2: Posterior probabilities of the number M in support of the levy in the
population.

$mean

[1] 59.27

$sd

[1] 9.26

$coverage

[1] 0.9061

$set

[1] 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

[19] 62 63 64 65 66 67 68 69 70 71 72 73 74

2.3. Learning about a Poisson rate

As a third example, suppose you observe the number of home runs y in a specific number
of opportunities n. Since home runs are rare events, it is common to assume that y has a



Poisson distribution with mean nλ where λ corresponds to the true home run rate:

f(y|λ) =
(nλ)y exp(−nλ)

y!
, y = 0, 1, ...

The R Poisson density function dpois only depends on the mean λ. But we can write a new
function dpois2 with an extra input n corresponding to the interval size.

> dpois2 = function(y, lambda, n = 1) dpois(y, n *

+ lambda)

Now we can use the function discrete.bayes using the sampling density defined in dpois2.
We initially believe the home run rate λ can be one of the size values 0.02, 0.04, 0.06, 0.08,
0.10, 0.12 with probabilities 0.1, 0.1, 0.2, 0.3, 0.2, 0.1.

> prior = c(0.1, 0.1, 0.2, 0.3, 0.2, 0.1)

> names(prior) = seq(0.02, 0.12, by = 0.02)

We observe 20 home runs in 400 at-bats and update our probabilities using discrete.bayes.
We display and plot the posterior probabilities of the rates in Figure 3.

> y = 20

> n = 400

> out = discrete.bayes(dpois2, prior, y, n = 400)

> print(out)

0.02 0.04 0.06 0.08 0.1 0.12

7.908e-04 2.782e-01 6.206e-01 9.848e-02 1.910e-03 1.228e-05

> plot(out, main = "Posterior Probabilities",

+ xlab = "lambda")

We are pretty confident the player’s true home run rate λ is between 0.04 and 0.06.

2.4. Binomial or Poisson sampling?

One can use discrete models to illustrate model comparison by the use of values from the prior
predictive distribution. In the previous example, we illustrated a Poisson sampling model for
home run data. Suppose instead that we let y be binomial with parameters n and p. We
assign the same prior on p as we used for λ in the Poisson example.

> prior = c(0.1, 0.1, 0.2, 0.3, 0.2, 0.1)

> names(prior) = seq(0.02, 0.12, by = 0.02)



0.02 0.04 0.06 0.08 0.1 0.12

Posterior Probabilities

lambda

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 3: Posterior distribution of a Poisson rate for home run example.

Then we update the probabilities using discrete.bayes with sampling density dbinom:

> y = 20

> n = 400

> out.binom = discrete.bayes(dbinom, prior, y, size = n)

> print(out.binom)

0.02 0.04 0.06 0.08 0.1 0.12

6.822e-04 2.829e-01 6.310e-01 8.427e-02 1.150e-03 4.309e-06

We display the values of the two predictive probabilities from the Poisson and binomial models
and compute the Bayes factor in support of the binomial model.

> c(out$pred, out.binom$pred)

[1] 0.02010 0.01986

> BF = out.binom$pred/out$pred

> BF

[1] 0.988

The Bayes factor is close to one, indicating that the two sampling models using the same
prior beliefs are very similar.



The prior beliefs of this particular person are concentrated about p = .08, indicating that he
or she believes that this player is a strong home run hitter. Suppose a second person believes
the player is more ordinary and assigns the following prior.

> prior.new = c(0.2, 0.3, 0.2, 0.1, 0.1, 0.1)

> names(prior.new) = seq(0.02, 0.12, by = 0.02)

We compute the predictive probability from this new prior model using discrete.bayes:

> y = 20

> n = 400

> out.binom2 = discrete.bayes(dbinom, prior.new,

+ y, size = n)

> BF = out.binom2$pred/out.binom$pred

> BF

[1] 1.510

Here the Bayes factor is 1.510, indicating that the new prior is more consistent with the
observed home run rate y/n = 0.05 than the initial prior.

3. Discrete Bayes with Two Parameters

3.1. The R function

The discrete model approach can be extended easily for problems, such as normal sampling or
the comparison of Poisson rates, where there are two unknown parameters. A prior distribu-
tion is now represented by a matrix, where the rows and columns are labeled with the values
of the two parameters and the entries of the matrix correspond to the prior probabilities.

The syntax for the R function has the form

discrete.bayes.2(df,prior,y,...)

There are four arguments:

1. df is the name of the function defining the sampling density with two parameters.

2. prior is a matrix that defines the prior density. The row names and column names of
the elements of the vector define respectively the names of parameter 1 and parameter
2 and the entries of the matrix give the prior probabilities.



3. y is a matrix of data values, where each row corresponds to a single observation.

4. ... define any further fixed parameter values used in the function.

The output of discrete.bayes.2 is a list with two components:

1. prob is a matrix containing the posterior probabilities

2. pred is a scalar with the prior predictive probability

The output is assigned to the R class bayes2. A plot method assigned to this class uses the
image function to display the probability matrix as gray rectangles where higher probabilities
correspond to darker rectangles.

3.2. Learning about two proportions

Berry (1996) illustrates using discrete prior models to learn about the equality of two pro-
portions. In Example 8.5, he is interested in seeing if a particular basketball player Ford
has a “hot hand”. Suppose p1 denotes the probability that Ford is successful in shooting a
free throw following a miss and p2 denotes the probability the Ford is successful following a
successful shot. Berry is interested in estimating the proportions given the prior information
that there is no hot hand and the proportions p1 and p2 are equal.

We observe y1, y2 independent where y1 is binomial(n1, p1), y2 is binomial(n2, p2). We’re
interested in testing the hypothesis that p1 = p2. The sampling density is programmed using
the following R function twoproplike.

> twoproplike = function(y, p1, p2, size1, size2) dbinom(y[1],

+ size = size1, prob = p1) * dbinom(y[2], size = size2,

+ prob = p2)

Berry considers the following “testing” prior for this situation. Each proportion can be one of
the nine values 0.1, ..., 0.9. Based on some survey data, Berry assumes the prior probability
that p1 = p2 is equal to 45/108, so the probability that the proportions are different is
1 − 45/108. Given this constraint, each proportion pair in the set {p1 = p2} and the set
{p1 6= p2} is assigned the same probability.

We set up a prior probability matrix prior the reflects the above information. The row names
for prior are the values of p1, and the column names are values of p2.

> p1 = seq(0.1, 0.9, length = 9)

> p2 = p1

> prior = matrix(0, 9, 9) + 7/864

> diag(prior) = 5/108

> dimnames(prior)[[1]] = p1

> dimnames(prior)[[2]] = p2



0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

Prior Probabilities for Two Proportions

p1

p2

Figure 4: Image display of the prior distribution for two proportions in testing
problem.

We graph the prior below first using discrete.bayes.2 with no data to output the probabil-
ities in a special R class. A plot method for this class is written for this class that uses the R
base function image with gray colors where darker colors correspond to higher probabilities.
Using the plot method for this class, one obtains an image plot of this prior probability ma-
trix in Figure 4. It is clear from this figure that the prior is concentrated along the diagonal
where the proportions are equal.

> out=discrete.bayes.2(twoproplike,prior)

> plot(out,xlab="P1",ylab="P2",

+ main = "Prior Probabilities")

The data is (y1, n1) = (17, 22) and (y1, n2) = (36, 51), indicating that Ford was 17 for 22
following a miss and 36 for 51 following a successful shot. The values y1 and y2 are stored
in the 2 by 1 matrix y. We use the function discrete.bayes.2 using the sampling density
twoproplike, the prior probability matrix prior and the data matrix y. The fixed binomial
sample sizes are indicated through the arguments size1 = 22, size2 = 51.

> y = matrix(c(17, 36), 1, 2, byrow = TRUE)

> out = discrete.bayes.2(twoproplike, prior, y, size1 = 22,

+ size2 = 51)

The posterior probabilities, stored in S$prob, are plotted using the plot method in Figure 5.

> plot(out, xlab="P1", ylab="P2",

+ main = "Posterior Probabilities")



0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

Posterior Probabilities for Two Proportions

p1

p2

Figure 5: Image plot of the posterior probabilities for two proportions.

One can compute the posterior probability that the proportions are equal by summing the
probabilities on the diagonal.

> sum(diag(out$prob))

[1] 0.7223

The prior probability that p1 = p2 is 0.4167 and the posterior probability of equality is 0.7223,
which indicates that there is support from the data for the hypothesis of equal proportions.
In other words, one has a stronger belief that there is not a hot hand effect from the data.

3.3. Learning about the mean and standard deviation of a normal distribution

Suppose I am interested in the sleeping habits of my statistics students. I assume that the
hours of sleep for the 16 students, y1, ..., y16, are a random sample from a normal population
with mean µ and standard deviation σ. The likelihood function of (µ, σ) is given by

L(µ, σ) =
16∏
i=1

φ(yi, σ, µ),

where φ() is the normal(µ, σ) density available as the R function dnorm.

We assign a grid of values of plausible values to the mean µ and σ:

> mu = seq(5, 9, by = 0.2)

> sigma = seq(0.5, 3, by = 0.2)



The following function prior.two.parameters (contained in the LearnBayes package will
accept as input two vectors and output a matrix of uniform prior probabilities over the mesh
grid defined by the two vectors.

> prior.two.parameters = function(parameter1, parameter2) {

+ prior = matrix(1, length(parameter1), length(parameter2))

+ prior = prior/sum(prior)

+ dimnames(prior)[[1]] = parameter1

+ dimnames(prior)[[2]] = parameter2

+ prior

+ }

Here we use this function to construct a uniform prior over the grid of values of µ and σ.

> prior = prior.two.parameters(mu, sigma)

We input the sample of sleeping times and put it in a vector.

> y = c(4.25, 9.25, 7, 9.16, 6.25, 6.75,

+ 7.5, 9.5, 8, 7.25, 7.91, 7.5, 8, 7, 8.5, 6.5)

The posterior probabilities are computed using the function discrete.bayes.2.

> source("discrete.bayes.2.R")

> out = discrete.bayes.2(dnorm, prior, y)

The output of the function discrete.bayes.2 is assigned to a R class. We use the plot

method to graph the posterior probabilities and the graph is displayed in Figure 6.

> plot(out, xlab="MU", ylab="SIGMA")

Using the optional argument marginal, this plot method also computes and displays the
marginal probabilities for each parameter. We use this plot method with marginal = 1 to
display the marginal posterior density of µ and the method with marginal = 2 to obtain the
marginal posterior density of σ. (See Figures 7 and 8.)

> plot(out, marginal=1, xlab="MU")

> plot(out, marginal=2, ylab="SIGMA")



5 6 7 8 9

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

MU

S
IG

M
A

Figure 6: Image display of the posterior distribution for the mean and standard
deviation for the sleeping data example.

5 5.4 5.8 6.2 6.6 7 7.4 7.8 8.2 8.6 9

MU

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 7: Marginal posterior distribution of the mean for the sleeping data
example.



0.5 0.9 1.3 1.7 2.1 2.5 2.9

SIGMA

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 8: Marginal posterior distribution of the standard deviation for the
sleeping data example.

4. Concluding Remarks

In teaching Bayesian thinking, there needs to be a good balance of concepts and computation.
In using R, one would like the student to focus on the interpretation of the results rather than
the generation of the R code. Towards this goal, one is generally interested in using functions
that have the potential of wide applicability. In a typical Bayesian analysis, there are two
important issues related to the choice of sampling model and prior. First, one wonders if
the posterior inference is sensitive to reasonable changes in the sampling distribution and/or
prior. A related issue is goodness of fit – are there particular choices of prior and sampling
model that are more consistent with the observed data? The sensitivity issue is addressed
by looking at changes in, say a particular posterior mean, when one changes the prior or
sampling model. The goodness of fit issue is addressed by comparing the predictive density
of the observed for different models.

The functions discrete.bayes and discrete.bayes.2 (contained in release 2.1 of the
LearnBayes package) are general-use functions that can be used to address both the sensitivity
and goodness of fit issues. They require little programming by the student and can be used
to perform posterior updating for a wide variety of priors and sampling distributions. By
the use of the pred component, the student can easily compare different models (different
priors or different sampling distributions) by the use of Bayes factors. The functions will
hopefully encourage the instructor to go beyond the common sampling distributions such as
the binomial, normal, and Poisson that are typically used in Bayesian teaching.



References

Albert, J. (2009), Bayesian Computation with R, Springer.

Antleman, G. (1997), Elementary Bayesian Statistics, Cheltenham: Edward Elgar Pub-
lishing.

Berry, D. A. (1995), Basic Statistics: A Bayesian Perspective, Belmont, CA: Wadsworth.

Bolstad, W. M. (2007), Introduction to Bayesian Statistics, Wiley.

Rossman, A. and Albert, J. (2000), Workshop Statistics: Discovery with Data, A Bayesian
Approach, Key College.

Schmitt, S. A. (1969), Measuring Uncertainty: An Elementary Introduction to Bayesian
Statistics, Reading, MA: Addison-Wesley.

Appendix: Code for R functions

R function discrete.bayes and print, plot, and summary methods.

discrete.bayes=function (df, prior, y, ...)

{

param = as.numeric(names(prior))

lk = function(j) prod(df(y, param[j], ...))

likelihood = sapply(1:length(param), lk)

pred = sum(prior * likelihood)

prob = prior * likelihood/pred

obj = list(prob = prob, pred = pred)

class(obj) <- "bayes"

obj

}

print.bayes=function(x)

x$prob

plot.bayes=function(x,...)

barplot(x$prob,...)

summary.bayes=function(s,coverage=.9)

{

x = as.numeric(names(s$prob))

p = s$prob

post.mean=sum(x*p)



post.sd=sqrt(sum((x-post.mean)^2*p))

names(p)=NULL

n = length(x)

sp = sort(p, index.return = TRUE)

ps = sp$x

i = sp$ix[seq(n, 1, -1)]

ps = p[i]

xs = x[i]

cp = cumsum(ps)

ii = 1:n

j = ii[cp >= coverage]

j = j[1]

eprob = cp[j]

set = sort(xs[1:j])

v = list(mean=post.mean,sd=post.sd,coverage = eprob, set = set)

return(v)

}

R function discrete.bayes.2 and plot method.

discrete.bayes.2=function(df,prior,y=NULL,...)

{

like=function(i,...)

if(is.matrix(y)==TRUE)

df(y[i,],param1,param2,...) else

df(y[i],param1,param2,...)

n.rows=dim(prior)[1]

n.cols=dim(prior)[2]

param1=as.numeric(dimnames(prior)[[1]])

param2=as.numeric(dimnames(prior)[[2]])

param1=outer(param1,rep(1,n.cols))

param2=outer(rep(1,n.rows),param2)

likelihood=1

if(length(y)>0)

{

n=ifelse(is.matrix(y)==FALSE,length(y),dim(y)[1])

for(j in 1:n)

likelihood=likelihood*like(j,...)

}

product=prior*likelihood

pred=sum(prior*likelihood)

prob=prior*likelihood/pred



obj=list(prob=prob,pred=pred)

class(obj)<-"bayes2"

obj

}

plot.bayes2=function(S,marginal=0,...)

if(marginal==0)image(as.numeric(dimnames(S$prob)[[1]]),

as.numeric(dimnames(S$prob)[[2]]),S$prob,

col=gray(1-(0:32)/32),...) else

if(marginal==1) barplot(apply(S$prob,1,sum),...) else

barplot(apply(S$prob,2,sum),...)


	Introduction
	Discrete Bayes with One Parameter
	Learning about a proportion
	Learning about the number of successes in a finite population
	Learning about a Poisson rate
	Binomial or Poisson sampling?

	Discrete Bayes with Two Parameters
	The R function
	Learning about two proportions
	Learning about the mean and standard deviation of a normal distribution

	Concluding Remarks



